WO2018056650A1 - 리튬 리치 안티페로브스카이트 코팅 lco계 리튬 복합체, 이의 제조방법, 이를 포함하는 양극 활물질 및 리튬 이차 전지 - Google Patents

리튬 리치 안티페로브스카이트 코팅 lco계 리튬 복합체, 이의 제조방법, 이를 포함하는 양극 활물질 및 리튬 이차 전지 Download PDF

Info

Publication number
WO2018056650A1
WO2018056650A1 PCT/KR2017/010141 KR2017010141W WO2018056650A1 WO 2018056650 A1 WO2018056650 A1 WO 2018056650A1 KR 2017010141 W KR2017010141 W KR 2017010141W WO 2018056650 A1 WO2018056650 A1 WO 2018056650A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
lco
composite
lithium composite
active material
Prior art date
Application number
PCT/KR2017/010141
Other languages
English (en)
French (fr)
Inventor
박세호
성다영
장민철
손병국
최정훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2018553415A priority Critical patent/JP6699878B2/ja
Priority to EP17853364.2A priority patent/EP3444880B1/en
Priority to US16/093,533 priority patent/US10964972B2/en
Priority to CN201780026805.5A priority patent/CN109155411B/zh
Publication of WO2018056650A1 publication Critical patent/WO2018056650A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • H01M4/1315Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx containing halogen atoms, e.g. LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • H01M4/13915Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx containing halogen atoms, e.g. LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an LCO-based lithium composite applicable to a cathode active material of a high voltage lithium secondary battery, a method for producing the same, and a use thereof.
  • LiMn 2 O 4 has advantages such as low cost and high power, but has a disadvantage of lower energy density than lithium cobalt oxide.
  • the conventional lithium secondary battery was charged at a charge voltage of 3.0 V to 4.2 V.
  • a higher charge voltage 4.3 V to 5.0 V
  • LiCoO 2 positive electrode active material is one of the most active materials currently used due to the high energy density, stability and electrochemical efficiency at a charge voltage lower than 4.2V.
  • LiCoO 2 positive electrode active material is one of the most active materials currently used due to the high energy density, stability and electrochemical efficiency at a charge voltage lower than 4.2V.
  • the capacity of the lithium secondary battery due to Co dissolution, structural change and decomposition of the electrolyte sharply decreases.
  • Al 2 O 3 , ZrO 2 , ZnO, SiO 2 , TiO 2 , metal phosphates on the LiCoO 2 surface by using a wet coating method such as the sol-gel method to improve the reduction of the capacity decrease due to doping , eg, AlPO 4 ), metal fluorides (eg, AlF 3 ), etc. have been proposed [Jang et al ., LiAl y Co 1y O2 (R3m) Intercalation Cathode for Rechargeable Lithium Batteries, J. Electrochem . Soc .
  • the coating process requires a large amount of solvents and precursors in the process, and there is a process difficulty by performing post-heat-treatment after the process.
  • capacity degradation occurs under high voltage and high temperature environments due to the low thermal stability of the coated LiCoO 2 composite.
  • Korean Patent No. 10-1588652 proposes a technique for coating nano-sized Zr oxide and nano-sized Si oxide on the surface of lithium cobalt oxide, and the capacity in high voltage and high temperature environment by the coating. It is suggested that deterioration can be suppressed.
  • Patent Document 1 Republic of Korea Patent No. 10-1588652 (2016.01.20), a positive electrode active material, a lithium secondary battery having the same and a manufacturing method
  • Non-Patent Document 1 Tukamoto H, West A R. Electronic conductivity of LiCoO2 and its enhancement by magnesium doping. J Electrochem Soc, 1997, 144: 3164-3168.
  • Non-Patent Document 2 Jan et al., LiAlyCo1yO2 (R3m) Intercalation Cathode for Rechargeable Lithium Batteries, J. Electrochem. Soc. 1999 volume 146, issue 3, 862-868
  • Non-Patent Document 3 Kim et al., Electrochemical Stability of Thin-Film LiCoO2 Cathodes by Aluminum-Oxide Coating Chemistry of Materials 2003 15 (7), 1505-1511
  • Non-Patent Document 4 A. M. Kannan and A. Manthiram, Surface / Chemically Modified LiMn2O4 Cathodes for Lithium-Ion Batteries, Electrochem. Solid-State Lett. 2002 volume 5, issue 7, A167-A169
  • the present inventors have conducted various studies so that there is no capacity reduction even when operating under a high voltage of 4.3 V or higher, and thus, a composite having a core-shell structure coated with a lithium rich antiperovskite compound was prepared.
  • a composite having a core-shell structure coated with a lithium rich antiperovskite compound was prepared.
  • the positive electrode active material confirmed that the safe battery operation was completed the present invention.
  • another object of the present invention is to provide a use for applying the LCO-based lithium composite as a positive electrode active material of a lithium secondary battery.
  • the present invention provides a LCO-based lithium composite, characterized in that the coating layer of a compound having a lithium rich antiperovskites (Lithium Rich Antiperovskites, LiRAP) crystal structure is formed on the surface of the LCO-based particles.
  • LiRAP lithium Rich Antiperovskites
  • the LCO-based particles are characterized in that the average particle diameter of 1 to 1000nm.
  • the coating layer is characterized in that the thickness of 1nm to 100 ⁇ m.
  • the present invention provides a method for producing an LCO-based lithium composite comprising the step of dry or wet coating the lithium rich anti-perovskite compound on the LCO-based particles.
  • the present invention provides a lithium rich anti-perovskite compound precursor mixed solution, mixed with the LCO-based particles, and then the lithium rich anti-perovskite compound on the LCO-based particles through a sol-gel process and heat treatment It provides a method for producing an LCO-based lithium composite comprising the step of forming a coating layer.
  • the present invention provides a positive electrode active material and a lithium secondary battery for a lithium secondary battery comprising the LCO-based lithium composite.
  • the LCO-based lithium composite having a novel core-shell structure according to the present invention maintains high ion conductivity and is electrochemically stable even when driven under high voltage as the surface is coated with a compound having a lithium rich antiperovskite crystal structure. Its characteristics such as potential window, low electric conductivity and low toxicity are all satisfied.
  • the LCO-based lithium composite is a variety of lithium secondary batteries, especially high-voltage lithium, such as solid oxide batteries, all-solid-state batteries, lithium-sulfur batteries that operate at room temperature and high temperature due to the stability at high temperatures of the lithium rich antiperovskite compound Applicable to secondary batteries.
  • high-voltage lithium such as solid oxide batteries, all-solid-state batteries, lithium-sulfur batteries that operate at room temperature and high temperature due to the stability at high temperatures of the lithium rich antiperovskite compound Applicable to secondary batteries.
  • FIG. 1 is a cross-sectional view showing a core-shell LCO-based lithium composite 10 proposed in the present invention.
  • FIG. 2 is a scanning electron microscope image of the LCO-based lithium composite
  • Figure 3 shows the Cl element
  • Figure 4 shows the Co element.
  • the present invention provides a composite of a novel composition that can be used as a positive electrode active material of a lithium secondary battery.
  • FIG. 1 is a cross-sectional view showing a core-shell LCO-based lithium composite 10 proposed in the present invention, wherein the LCO-based lithium composite 10 has a structure in which a shell 3 is formed on a core 1 with a coating layer. .
  • LCO-based particles of lithium cobalt oxide are used as the core 1
  • a compound having a lithium rich antiperovskite crystal structure is used as the shell 3.
  • core 1 lithium cobalt oxide, and LCO-based particles all mean the core 1 or particles constituting the same.
  • the shell (3), the lithium rich antiperovskite compound, LiRAP-based compound all means the shell (3), or a material constituting the same.
  • the LCO-based particles which are lithium cobalt oxides used as the core 1 are not limited in the present invention, and all known lithium cobalt oxides may be used.
  • the LCO-based particles represented by the formulas (1) to (11) are materials capable of inserting and detaching lithium ions, and are used as positive electrode active materials of lithium secondary batteries.
  • the LCO particles may be preferably used in a high-voltage lithium secondary battery, and LCO particles of the formulas (1) and (2) may be preferably used.
  • the LCO-based particles of Formula (2) may have a layered crystal structure.
  • the core 1 further includes a lithium reactive element, if necessary, to three-dimensionally convert the two-dimensional lithium migration path on the surface of the positive electrode active material, thereby improving the rate characteristic when the battery is applied by increasing the moving speed of lithium ions.
  • the resistance on the surface of the positive electrode active material can be reduced so that the capacity characteristics can be improved without fear of lowering the initial capacity.
  • the lithium reactive element may be coated with any one or more metals selected from the group consisting of Ti, W, Zr, Mn, Mg, P, Ni, Al, Sn, V, Cr, and Mo, among them excellent Any one or two or more lithium reactive elements selected from the group consisting of Ti, P, Mn, and Al, which are excellent in generating lithium defect structures with reactivity, may be used.
  • the coating may be made in the form of coating the entire core (1) or discontinuously distributed, preferably to achieve a discontinuous distribution.
  • the lithium compound is 'discontinuously distributed means a region in which a lithium compound is present and a region in which a lithium compound is present, but a region in which the lithium compound is not present exists in a specific region. By distributing to isolate, disconnect or separate as in the island type, it means that the region in which the lithium compound is present is distributed without continuity.
  • the content of the lithium reactive element is present continuously or discontinuously on the core 1 and can form a fast path of lithium ions. However, if the content is too high, there is a risk of increasing the resistance in the shell 3, so the content is appropriately limited to the content of 50 to 50,000ppm.
  • Treatment with lithium reactive elements may be oxides, hydroxides, oxyhydroxides, halides, nitrates, carbonates, acetates, oxalates, citrates or sulfates, and the like, followed by treatment with any one or a mixture of two or more thereof. , Through a heat treatment at 400 °C to 1100 °C.
  • Core (1) particles presented in the present invention has a range of particle sizes that can be used as the positive electrode active material.
  • the average particle diameter may be 1 to 1000 nm, specifically 5 to 500 nm, preferably 10 to 100 nm.
  • the subsequent LiRAP compound may be uniformly coated on the surface of the core 1 without agglomeration between the particles in the manufacturing process.
  • lithium element may be distributed in a single concentration value in the core, or at a concentration gradient gradually increasing from the interface between the core 1 and the shell 3 toward the center of the core. Can be distributed. When distributed in the concentration gradient in this way it can increase toward the center of the core (1) within each of the range of a to w of the formula (2) to formula (11).
  • the production of the core 1 having such characteristics is not particularly limited in the present invention, and the production of the composite metal oxide through dry or wet as known in the art may be used.
  • the manufacture of the core 1 through the wet process is as follows.
  • a basic or acidic aqueous solution is added to a mixed aqueous solution containing a precursor of metal constituting Formulas (1) to (11) to prepare a precursor mixed solution having a pH adjusted.
  • the stirring may be performed in an inert gas atmosphere for smooth synthesis, wherein the inert gas may be nitrogen, argon, helium, and the like.
  • the metal precursors are metal hydroxides, sulfates, alkoxides, oxalates, phosphates, halides, oxyhalides, sulfides, At least one of oxide, peroxide, acetate, nitrate, carbonate, citrate, phthalate and perchlorate is possible.
  • Ammonia, sodium hydroxide, and the like may be used as the base for adjusting the pH, and sulfuric acid, hydrochloric acid, or nitric acid may be used as the acid.
  • Coprecipitation may be performed by stirring at a speed of 100 to 1000 rpm while maintaining a temperature range of 40 to 60 ° C. in a range of pH 11 to 12, and the pH may be adjusted by adding a basic aqueous solution as described above. .
  • Coprecipitation may be performed under an inert gas atmosphere for a smooth coprecipitation reaction, wherein the inert gas may be nitrogen, helium, argon, or the like.
  • the LCO-based particles constituting the core 1 through drying and heat treatment are produced.
  • the drying is not particularly limited, but may be, for example, performed in a temperature range of 80 to 120 °C.
  • the heat treatment may be carried out by firing in a temperature range of 200 to 800 °C, the firing may be performed under an oxygen or air atmosphere.
  • the LCO-based lithium composite 10 forms a shell 3 with a compound having a lithium rich antiperovskite crystal structure (hereinafter referred to as 'LiRAP').
  • the antiperovskite structure in ABX 3 , X is a cation such as alkali metal, and A and B mean anions.
  • a and B mean anions.
  • the LCO-based lithium composite 10 proposed in the present invention is used as a positive electrode active material, and the performance and physical properties of the lithium secondary battery are determined by the interfacial reaction between the positive electrode active material and the electrolyte and the lithium ion conductivity.
  • LiRAP compounds are used as the shell 3 for the rapid delivery of lithium ions at the interface.
  • the lithium-rich LiRAP compound When the lithium-rich LiRAP compound is introduced and the LCO-based lithium composite 10 is applied as a positive electrode active material, the lithium ion conductivity is high, so that the reaction at the interface between the positive electrode active material and the electrolyte may proceed rapidly, and the characteristics of the LiRAP compound itself In particular, structural stability at high temperatures may be improved to prevent capacity deterioration of the lithium secondary battery when driven at high temperatures.
  • the LiRAP compound used by this invention can be a compound represented by following (12)-(18), These can be used individually or in mixture of 2 or more types, respectively.
  • LiRAP compounds represented by the formulas (12) to (18) have an ionic conductivity of 10 to 10 -10 S / cm.
  • Li 3 OCl represented by formula (12) is a representative LiRAP compound, which exhibits a high level of ion conductivity of 0.85 ⁇ 10 ⁇ 3 S / cm at room temperature and has tetragonal phases with tetragonal phases. Excellent stability at high temperature due to (orthorhombic) crystal structure.
  • the LiRAP compound represented by Formula (13) is a metal substituted with a lithium cation, and has an ion conductivity of 10 ⁇ 2 S / cm at room temperature, which is higher than the 10 ⁇ 3 value of Li 3 OCl.
  • LiRAP compounds represented by Formulas (14) and (15) have a ionic conductivity of 10 ⁇ 7 S / cm at room temperature.
  • the LiRAP compounds represented by the formulas (16), (17) and (18) have a dopant substituted with oxygen (O) in which the dopant is not substituted at the Cl position as shown in formulas (12) to (15).
  • O oxygen
  • Compounds of this structure have ionic conductivity and thermal stability equal to or greater than those of LiRAP compounds of formulas (12) to (15).
  • the LiRAP compound constituting the shell 3 may be used alone or in combination of two or more compounds selected from formulas (12) to (18). In addition, it satisfies the same formula, it can be used by varying the type of metal or dopant. At this time, the selection of the compound is not particularly limited in the present invention and may be appropriately selected by those skilled in the art.
  • the LiRAP compounds of the formulas (12), (15) and (16) are lithium hydroxide (LiOH) or lithium nitrate (LiNO 3 ) precursors and lithium halides (e.g. LiCl) Mixing the precursors; And annealing the obtained mixture at a high temperature of 180 to 400 ° C.
  • LiRAP compounds of Formulas (12) and (15) are prepared by changing the conditions or the composition used in each step.
  • LiRAP compounds of formulas (13), (14), (17) and (18) may be prepared by adding a precursor comprising M, N or A to the mixing step (Li, M; Li, N; or Li , A) 3 OCl can be prepared.
  • the precursors are hydroxides, sulfates, alkoxides, oxalates, phosphates, halides, oxyhalides, sulfides, oxides, peroxides, acetates, nitrates, carbonates, citrates, phthalates and perchloric acids comprising Mn, Ca, or Ba It may be one or more selected from salts, preferably an alkoxide may be used.
  • Doping of the halogen element in the compounds of Formulas (12) to (18) may be in a solid state, a liquid state or a gaseous state and is not particularly limited in the present invention.
  • HX may include one selected from the group consisting of HF, HI, HCl, HBr, and combinations thereof, but may not be limited thereto.
  • the shell 3 may be coated in an amount of 20 wt% or less, preferably 0.0001 to 20 wt%, based on 100 wt% of the LCO-based lithium composite 10, and through this content, nano to micron level, preferably 1 nm.
  • a coating layer having a thickness of 100 to 100 ⁇ m, more preferably 10 to 100nm.
  • the content of the LCO-based lithium composite 10 constituting the shell (3) is less than the above range may be difficult to form a coating layer, if it exceeds the above range there is a concern that the resistance increases due to obstacles in the movement of lithium ions. have.
  • This resistance applies equally to the limitation of the thickness of the coating layer. That is, when the thickness of the coating layer is less than the above range, the effect of increasing the mobility of lithium ions and the effect of improving the characteristics of the battery is insignificant. On the contrary, when the thickness exceeds the above range, the resistance may be increased. Can lead to a decrease.
  • lithium cobalt oxides of the formulas (1) and (2) are used as the core 1 constituting the LCO-based lithium composite 10, and the shell (3) is represented by the formula (13) , LiRAP compounds of the formulas (16) and (18) are preferably used.
  • the production of the LCO-based lithium composite 10 may be used a method of a composite having a known core-shell structure, it is prepared by a batch type (one-pot coating synthesis) or a continuous process (continuous process) It is possible.
  • Preparation of the LCO-based lithium composite 10 according to one embodiment may be carried out as follows:
  • Method 2 A LiRAP compound precursor mixed solution was prepared, mixed with LCO particles, and then a LiRAP coating layer was formed on the LCO particles through a sol-gel process and heat treatment.
  • the manufacturing process of (method 1) described above has the advantage that the process is simple and mass production is easy, and the manufacturing process of (method 2) has the advantage of simultaneously performing the production of LiRAP compound together with the coating.
  • a method for preparing a composite having various core-cell structures may be used, and the present invention is not particularly limited.
  • the LCO-based lithium composite 10 was manufactured through the process of (Method 2).
  • LiRAP through (Method 1) is not particularly limited, and it can be produced through a combination of a compound having a known antiperovskite crystal structure and a doping method.
  • the LCO oxide used as the core 1 and the precursor solution of the LiRAP compound for constructing the shell 3 are mixed.
  • the precursor solution of the LiRAP compound includes a precursor and a dopant solution of the metal constituting Formulas (1) to (11).
  • the lithium precursor is selected from metal hydroxides, sulfates, alkoxides, oxalates, phosphates, halides, oxyhalides, sulfides, oxides, peroxides, acetates, nitrates, carbonates, citrates, phthalates and perchlorates containing lithium as lithium precursors.
  • metal hydroxides and halides are used.
  • Cationic dopants include metal hydroxides, sulfates, alkoxides, oxalates, phosphates, halides, oxyhalides, sulfides, oxides, peroxides and acetic acids, including the cations represented by formulas (13) to (18), that is, alkaline earth metals. At least one selected from salts, silates, carbonates, citrate, percarbonates and perchlorates is possible, preferably alkaline earth metal hydroxides and halides.
  • the anionic dopant solution is a dopant represented by formulas (13) to (18), that is, an aqueous solution containing a halogen element, preferably selected from the group consisting of HF, HI, HCl, HBr and combinations thereof. It may be included, but is not limited thereto.
  • the precursor mixture is mixed with one or more active materials selected from LCO particles of formulas (1) to (11), and a small amount of H 2 O is added to form a gelled precursor mixture and then dried at a temperature of 250 to 350 ° C. for at least 2 hours and at least 1 hour.
  • the heat treatment and drying time is not particularly limited, but a heat treatment of 2 to 10 hours and a drying time of 1 to 5 hours are preferable. At this time, the heat treatment and drying may be carried out in the atmosphere or in an oxygen atmosphere.
  • the LCO-based lithium composite 1 proposed in the present invention can be applied to a lithium secondary battery due to high ionic conductivity and stability at high temperature.
  • Applicable lithium secondary batteries are not limited to positive or negative electrodes, and are particularly applicable to lithium-air batteries, lithium oxide batteries, lithium-sulfur batteries, lithium metal batteries, and all-solid-state batteries that operate at high temperatures.
  • the lithium secondary battery includes a positive electrode, a negative electrode, and a separator and an electrolyte disposed therebetween, wherein the positive electrode has a positive electrode active material layer formed on a positive electrode current collector, and the LCO-based lithium composite of the present invention as the positive electrode active material layer ( Use 1).
  • the LiRAP compound constituting the shell improves the reaction and lithium ion transfer rate at the interface between the core (ie, the active material) and the electrolyte, thereby improving battery performance. Bring.
  • the LiRAP compound itself due to the inherent properties of the LiRAP compound itself, its electrochemically stable potential window, low electrical conductivity, high temperature stability, low toxicity, etc., it improves battery performance and thermal stability.
  • cathode active material constituting the cathode
  • a lithium composite metal oxide using the LCO-based lithium composite 1 alone or a known cathode active material may be used together.
  • lithium composite metal oxides are lithium manganese oxides such as Li 1 + x Mn 2 - x O 4 (0 ⁇ x ⁇ 0.33), LiMnO 3 , LiMn 2 O 3 , LiMnO 2 ; Lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , LiFe 3 O 4 , V 2 O 5 , Cu 2 V 2 O 7 and the like; Ni-site type lithium nickel oxide represented by LiNi 1 - x M x O 2 (M Mn, Al, Cu, Fe, Mg, B or Ga; 0.01 ⁇ x ⁇ 0.3); Lithium manganese composite represented by LiMn 2-x M x O 2 (M Ni, Fe, Cr, Zn or Ta; 0.01 ⁇ x ⁇ 0.1) or Li 2 Mn 3 MO 8 (which is M Fe, Ni, Cu or Zn) oxide; Spinel-structure lithium manganese composite oxides represented by LiNi x M
  • Such a positive electrode active material may be formed on a positive electrode current collector.
  • the positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • carbon on the surface of aluminum or stainless steel, The surface-treated with nickel, titanium, silver, etc. can be used.
  • the positive electrode current collector may use various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric having fine irregularities formed on a surface thereof so as to increase the adhesion with the positive electrode active material.
  • the negative electrode has a negative electrode mixture layer having a negative electrode active material formed on the negative electrode current collector, or uses a negative electrode mixture layer (for example, lithium foil) alone.
  • the type of the negative electrode current collector or the negative electrode mixture layer is not particularly limited in the present invention, and a known material may be used.
  • the negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery, and for example, carbon on the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel , Surface-treated with nickel, titanium, silver, or the like, aluminum-cadmium alloy, or the like can be used.
  • the negative electrode current collector may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric having fine irregularities formed on the surface, similar to the positive electrode current collector.
  • the negative electrode active material is one selected from the group consisting of crystalline artificial graphite, crystalline natural graphite, amorphous hard carbon, low crystalline soft carbon, carbon black, acetylene black, Ketjen black, super-P, graphene, fibrous carbon Carbon-based material, Si-based material, LixFe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1 - x Me ' y O z (Me: Mn, Fe Me ': Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen; 0 ⁇ x ⁇ 1;1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8) Metal composite oxides; Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 ,
  • the negative electrode active material is SnxMe 1 - x Me ' y O z (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, group 1, group 2, group 3 elements of the periodic table, Metal composite oxides such as halogen, 0 ⁇ x ⁇ 1, 1 ⁇ y ⁇ 3, 1 ⁇ z ⁇ 8); SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 2 , Bi 2 O 3 , Bi 2 O 4 and An oxide such as Bi 2 O 5 may be used, and a carbon-based negative active material such as crystalline carbon, amorphous carbon or a carbon composite may be used alone or in combination of two or more thereof.
  • a carbon-based negative active material such as crystalline carbon, amorphous carbon or a carbon composite may be used alone or in combination
  • the electrode mixture layer may further include a binder resin, a conductive material, a filler and other additives.
  • the binder resin is used for bonding the electrode active material and the conductive material and the current collector.
  • binder resins include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetra Fluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers thereof, and the like.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethyl cellulose
  • EPDM ethylene-propylene-diene polymer
  • sulfonated-EPDM styrene-butadiene rubber
  • fluorine rubber various copolymers thereof, and the like.
  • the said conductive material is used in order to improve the electroconductivity of an electrode active material further.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Polyphenylene derivatives and the like can be used.
  • the filler is optionally used as a component for inhibiting the expansion of the electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
  • the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
  • the separator is to separate the negative electrode and the positive electrode and to provide a passage for the movement of lithium ions, if it is usually used as a separator in a lithium secondary battery can be used without particular limitation, in particular in the ion transfer of the electrolyte It is desirable to have a low resistance against the electrolyte and excellent electrolytic solution-moisture capability.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer or the like
  • a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer or the like
  • the laminated structure of two or more layers of can be used.
  • conventional porous nonwoven fabrics such as nonwoven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers and the like may be used.
  • a coated separator including a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be optionally used as a single layer or
  • examples of the electrolyte used in the present invention include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like which can be used in manufacturing a lithium secondary battery. It doesn't happen.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the organic solvent may be an ester solvent such as methyl acetate, ethyl acetate, ⁇ -butyrolactone or ⁇ -caprolactone; Ether solvents such as dibutyl ether or tetrahydrofuran; ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), ethyl methyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate, Carbonate solvents such as PC); Alcohol solvents such as ethyl alcohol and isopropyl alcohol; Nitriles such as R-CN (R is a C2 to C20 linear, branched or cyclic hydrocarbon group, which may
  • carbonate-based solvents are preferable, and cyclic carbonates having high ionic conductivity and high dielectric constant (for example, ethylene carbonate or propylene carbonate) that can improve the charge and discharge performance of a battery, and low viscosity linear carbonate compounds (for example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable.
  • the cyclic carbonate and the chain carbonate may be mixed and used in a volume ratio of about 1: 1 to about 1: 9, so that the performance of the electrolyte may be excellent.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, LiSCN, LiC (CF 3 SO 2 ) 3 , (CF 3 SO 2 ) 2 NLi, (FSO 2 ) 2 NLi, chloroborane lithium, lower aliphatic lithium carbonate, 4-phenyl Lithium salts, such as lithium borate and a lithium imide, can further be included.
  • the concentration of the lithium salt is preferably used within the range of 0.1 to 2.0M.
  • concentration of the lithium salt is included in the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance, and lithium ions can move effectively.
  • the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc. for the purpose of improving battery life characteristics, reducing battery capacity, and improving discharge capacity of the battery.
  • haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc.
  • Ethyl phosphite triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imida
  • One or more additives such as zolidine, ethylene glycoldialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride may be included. In this case, the additive may be included in 0.1 to 5% by weight based on the total weight of the electrolyte.
  • the inorganic solid electrolyte is a ceramic-based material, a crystalline or amorphous and crystalline materials can be used, Thio-LISICON (Li 3. 25 Ge 0 .25 P 0.
  • organic solid electrolyte examples include polymer-based materials such as polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohol, and polyvinylidene fluoride. What mixed lithium salt can be used. At this time, these may be used alone or in combination of at least one or more.
  • the manufacturing of the electrode for lithium secondary batteries according to the present invention is not particularly limited, and a conventional battery manufacturing process is followed.
  • the lithium secondary battery including the cathode active material according to the present invention stably exhibits excellent discharge capacity, output characteristics, and capacity retention rate, portable devices such as mobile phones, notebook computers, and digital cameras, power tools ); Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
  • EVs electric vehicles
  • PHEVs plug-in hybrid electric vehicles
  • the synthesized material was ground by mixing 21.6 g of LiCoO 2 powder and 2.1 g of LiCl powder to prepare a ground mixed powder. 3 ml H 2 O was added to the mixed powder to prepare a gel mixture. Then, after more than two hours in an autoclave of 600 °C heat treatment under an oxygen atmosphere, and dried under the same temperature for about an hour LCO-based core (LiCoO 2) on Li 1. 889 Ba 0 . ClO 037 0 .963 0.037 F is to prepare a coated LCO-based lithium composite.
  • Elemental mapping of the LCO-based lithium composite prepared in Preparation Example 1 was performed using a scanning electron microscope, and the results are shown in FIGS. 2 to 4.
  • FIG. 2 is a scanning electron microscope image of the LCO-based lithium composite
  • Figure 3 shows the Cl element
  • Figure 4 shows the Co element.
  • Figures 2 to 4 the LCO-based lithium composite's distribution of Co and Cl over the entire surface over the entire surface on the Li 2 LiCoO 2. 99 Ba 0 . It can be seen that 005 ClO is uniformly coated.
  • a lithium secondary battery comprising the same.
  • composition for forming an anode by mixing the LCO-based lithium composite carbon black conductive material and the PVdF binder prepared in Preparation Example 1 in a ratio of 90: 5: 5 by weight in an N-methylpyrrolidone solvent (viscosity: 5000 mPa ⁇ s) After preparing, applying it to an aluminum current collector, and dried and rolled to prepare a positive electrode.
  • N-methylpyrrolidone solvent viscosity: 5000 mPa ⁇ s
  • a lithium metal having a thickness of 20 ⁇ m with a copper current collector attached thereto was used as a negative electrode for manufacturing a negative electrode.
  • An electrode assembly was manufactured by interposing a separator of porous polyethylene between the positive electrode and the negative electrode prepared as described above, the electrode assembly was placed in a case, and an electrolyte solution was injected into the case to prepare a lithium secondary battery. At this time, the electrolyte was prepared by dissolving lithium bistrifluoromethane sulfonyl imide (LiTFSI) at a concentration of 1 M in a dimethoxyethane (DME) organic solvent.
  • LiTFSI lithium bistrifluoromethane sulfonyl imide
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the LCO-based lithium composite obtained in Preparation Example 2 was used as a cathode active material instead of the LCO-based lithium composite obtained in Preparation Example 1.
  • Comparative example 1 Manufacturing of Lithium Secondary Battery
  • LiCoO 2 as the positive electrode active material A lithium secondary battery was manufactured by the same method as in Example 1, except that (average particle diameter: 12 ⁇ m) was used.
  • the battery characteristics of the lithium secondary battery prepared in Example 1 and Comparative Example 1 were evaluated in the following manner.
  • Example 1 the batteries of Example 1 and Comparative Example 1 had the same initial discharge capacity, but showed a large difference in terms of retention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 Li 리치 안티페로브스카이트가 코팅된 LCO계 리튬 복합체, 이의 제조방법, 이를 포함하는 양극 활물질 및 리튬 이차 전지에 관한 것으로, LCO계 입자 표면에 리튬 리치 안티페로브스카이트(Lithium Rich Antiperovskites, LiRAP) 결정 구조를 갖는 화합물의 코팅층이 형성된 리튬 복합체를 양극 활물질로 적용할 경우 고전압에서 작동하는 전지에 유리하고, 높은 리튬 이온 전도도를 가지며, 열적 안정성이 우수하여 고온에서 구동하는 리튬 이차 전지에 적용 가능하다.

Description

리튬 리치 안티페로브스카이트 코팅 LCO계 리튬 복합체, 이의 제조방법, 이를 포함하는 양극 활물질 및 리튬 이차 전지
본 출원은 2016년 9월 23일자 한국 특허 출원 제10-2016-0122465호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
본 발명은 고전압 리튬 이차 전지의 양극 활물질로 적용 가능한 LCO계 리튬 복합체, 이의 제조방법 및 용도에 관한 것이다.
최근 환경 문제에 대한 관심이 커짐에 따라 대기 오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석 연료를 사용하는 차량을 대체할 수 있는 전기자동차, 하이브리드 전기자동차에 대한 연구가 많이 진행되고 있다.
상기 전기자동차 또는 전력저장용(ESS)과 같은 중대형 전원용으로 사용되는 이차 전지는 고출력, 고에너지 밀도, 고에너지 효율을 필요로 한다. LiMn2O4는 저렴한 가격 및 고출력 등의 장점을 가지고 있지만, 에너지 밀도가 리튬 코발트 산화물에 비해 낮은 단점이 있다.
이들의 제품성능이 핵심부품인 전지에 의해 좌우되므로 고용량 전지에 대한 소비자들의 요구가 증대되고 있다. 이러한 전지의 고용량화에 의해 전지 시스템의 고전압화가 진행되고 있는 추세이다.
이에 기존의 리튬 이차 전지의 경우 3.0V 내지 4.2V의 충전 전압에서 충전하고 있었으나, 이보다 높은 충전 전압(4.3V 내지 5.0V)을 적용함으로써 보다 높은 에너지 용량을 발휘하고자 하는 연구가 진행되고 있다.
LiCoO2로 대표되는 리튬 코발트 산화물은 양극 활물질로 고전압용으로 사용한다. 즉, LiCoO2 양극 활물질은 4.2V 보다 더 낮은 충전 전압에서 높은 에너지 밀도와 안정성 및 전기화학적 효율로 인해 현재 가장 많이 사용되고 있는 활물질 중에 하나이다. 그러나 4.3V 이상의 영역에서 Co 용해(dissolution), 구조적 변화(structural change)와 전해질의 분해에 따른 리튬 이차 전지의 용량이 급격히 감소하는 문제가 발생하였다.
따라서, 이를 해결하기 위한 다양한 시도가 이뤄지고 있다.
Takamoto 등은 논문을 통해 리튬 코발트 산화물의 Co3 +의 일부를 Mg2 +로 치환하여 양극 활물질의 이온전도도가 높아진다는 것을 보고 하였다. 하지만, Mg의 도핑으로는 양극의 용량 저하(capacity retention)를 개선할 수 없었고, bare LiCoO2 보다 더 낮은 비용량(specific capacity)을 나타내었다[Tukamoto H, West A R. Electronic conductivity of LiCoO2 and its enhancement by magnesium doping. J Electrochem Soc, 1997, 144: 3164-3168].
이에, 도핑에 따른 용량 저하의 감소를 개선하기 위해 졸-겔법과 같은 습식 코팅 방법을 이용하여, LiCoO2 표면에 Al2O3, ZrO2, ZnO, SiO2, TiO2, 금속 인산염(metal phosphates, e.g., AlPO4), 금속 불화염(metal fluorides, e.g., AlF3) 등을 코팅하는 방안이 제안되었다[Jang et al., LiAlyCo1yO2(R3m) Intercalation Cathode for Rechargeable Lithium Batteries, J. Electrochem . Soc. 1999 volume 146, issue 3, 862-868; Kim et al., Electrochemical Stability of Thin-Film LiCoO2 Cathodes by Aluminum-Oxide Coating Chemistry of Materials 2003 15 (7), 1505-1511; A. M. Kannan and A. Manthiram, Surface/Chemically Modified LiMn2O4 Cathodes for Lithium-Ion Batteries, Electrochem . Solid-State Lett. 2002 volume 5, issue 7, A167-A169].
그러나 상기 코팅 공정은 그 과정에서 많은 양의 용매 및 전구체가 필요할 뿐만 아니라 공정 이후 포스트-열처리(post-heat-treatment)를 수행하여 공정상 어려움이 있다. 또한, 코팅된 LiCoO2 복합체의 낮은 열적 안정성으로 인해 고전압 및 고온 환경 하에서 용량 열화가 발생한다.
이에 대한 대안으로, 대한민국 등록특허 제10-1588652호에서는 리튬 코발트 산화물의 표면에 나노 크기의 Zr 산화물과 나노 크기의 Si 산화물을 코팅하는 기술을 제시하면서, 상기 코팅에 의해 고전압 및 고온 환경에서의 용량 열화를 억제할 수 있다고 제시하고 있다.
상기와 같이 다양한 기술이 제안되었으나 아직까지 고전압 및 고온 환경 하에서 작동할 수 있는 리튬 이차 전지의 기술 개발이 요원하다.
(특허문헌 1) 대한민국 등록특허 제10-1588652호 (2016.01.20), 양극 활물질, 그를 갖는 리튬 이차 전지 및 그의 제조방법
(비특허문헌 1)Tukamoto H, West A R. Electronic conductivity of LiCoO2 and its enhancement by magnesium doping. J Electrochem Soc, 1997, 144: 3164-3168.
(비특허문헌 2)Jang et al., LiAlyCo1yO2(R3m) Intercalation Cathode for Rechargeable Lithium Batteries, J. Electrochem. Soc. 1999 volume 146, issue 3, 862-868
(비특허문헌 3)Kim et al., Electrochemical Stability of Thin-Film LiCoO2 Cathodes by Aluminum-Oxide Coating Chemistry of Materials 2003 15 (7), 1505-1511
(비특허문헌 4)A. M. Kannan and A. Manthiram, Surface/Chemically Modified LiMn2O4 Cathodes for Lithium-Ion Batteries, Electrochem. Solid-State Lett. 2002 volume 5, issue 7, A167-A169
이에 본 출원인은 4.3V 이상의 고전압 하에서 작동하더라도 용량 감소가 없도록 다각적인 연구를 수행한 결과, 리튬 코발트 산화물의 표면을 리튬 리치 안티페로브스카이트 화합물로 코팅한 코어-쉘 구조의 복합체를 제조하고, 이를 양극 활물질로 적용할 경우 안전한 전지 구동이 가능함을 확인하여 본 발명을 완성하였다.
따라서, 본 발명의 목적은 신규한 구조의 LCO계 리튬 복합체 및 이의 제조방법을 제공하는 데 있다.
또한, 본 발명의 다른 목적은 상기 LCO계 리튬 복합체를 리튬 이차 전지의 양극 활물질로 적용하는 용도를 제공하는 데 있다.
상기 목적을 달성하기 위해, 본 발명은 LCO계 입자 표면에 리튬 리치 안티페로브스카이트(Lithium Rich Antiperovskites, LiRAP) 결정 구조를 갖는 화합물의 코팅층이 형성된 것을 특징으로 하는 LCO계 리튬 복합체를 제공한다.
이때 상기 LCO계 입자는 평균 입경이 1 내지 1000nm인 것을 특징으로 한다.
또한, 상기 코팅층은 두께가 1nm 내지 100㎛인 것을 특징으로 한다.
또한, 본 발명은 LCO계 입자 상에 상기 리튬 리치 안티페로브스카이트 화합물을 건식 또는 습식 코팅하는 단계를 포함하는 LCO계 리튬 복합체의 제조방법을 제공한다.
또한, 본 발명은 리튬 리치 안티페로브스카이트 화합물 전구체 혼합 용액을 제조하고, 이를 LCO계 입자와 혼합한 다음, 졸-겔 공정 및 열처리를 통해 LCO계 입자 상에 리튬 리치 안티페로브스카이트 화합물의 코팅층을 형성하는 단계를 포함하는 LCO계 리튬 복합체의 제조방법을 제공한다.
또한, 본 발명은 상기 LCO계 리튬 복합체를 포함하는 것을 특징으로 하는 리튬 이차 전지용 양극 활물질 및 리튬 이차 전지를 제공한다.
본 발명에 따른 신규한 코어-쉘 구조를 갖는 LCO계 리튬 복합체는 표면이 리튬 리치 안티페로브스카이트 결정 구조를 갖는 화합물로 코팅함에 따라 고전압 하에서 구동하더라도 높은 이온 전도도를 유지하고, 전기화학적으로 안정한 전위창, 낮은 전기전도도, 낮은 독성 등의 특성을 모두 만족시킨다.
또한, 상기 LCO계 리튬 복합체는 리튬 리치 안티페로브스카이트 화합물의 고온에서의 안정성으로 인해 상온 및 고온에서 작동하는 고체산화물 전지, 전고체 전지, 리튬-황전지 등 다양한 리튬 이차 전지, 특히 고전압 리튬 이차 전지에 적용 가능하다.
도 1은 본 발명에서 제시하는 코어-쉘 LCO계 리튬 복합체(10)를 보여주는 단면도이다.
도 2는 LCO계 리튬 복합체의 주사전자현미경 이미지이고, 도 3은 Cl 원소, 도 4는 Co 원소를 보여준다.
본 발명에서는 리튬 이차 전지의 양극 활물질로 사용 가능한 신규한 조성의 복합체를 제시한다.
코어-쉘 LCO계 리튬 복합체
도 1은 본 발명에서 제시하는 코어-쉘 LCO계 리튬 복합체(10)를 보여주는 단면도로, 상기 LCO계 리튬 복합체(10)는 코어(1) 상에 쉘(3)이 코팅층이 형성한 구조를 갖는다. 이때 코어(1)는 리튬 코발트 산화물인 LCO계 입자가 사용되고, 쉘(3)로는 리튬 리치 안티페로브스카이트 결정 구조를 갖는 화합물을 사용한다.
본 명세서에서 언급하는 용어, 코어(1), 리튬 코발트 산화물, LCO계 입자는 모두 코어(1), 또는 이를 구성하는 입자를 의미한다.
또한, 본 명세서에서 언급하는 용어, 쉘(3), 리튬 리치 안티페로브트카이트 화합물, LiRAP계 화합물은 모두 쉘(3), 또는 이를 구성하는 재질을 의미한다.
이하 각 조성에 대해 더욱 상세히 설명한다.
코어(1)로 사용하는 리튬 코발트 산화물인 LCO계 입자는 본 발명에서 한정하지 않으며, 공지된 모든 리튬 코발트 산화물이 사용될 수 있다.
(1) LiCoO2
(2) Li1-aCoO2 (0<a<1,)
(3) LibCoMcO2 (M=W, Mo, Zr, Ti, Mg, Ta, Al, Fe, V, Cr 또는 Nb, 1≤b≤1.2이고, 0≤c≤0.02)
(4) LiCo1 -d MndO2 (0≤d<1)
(5) LiMn2-e CoeO4 (0<e<2)
(6) LiNi1 -f CofO2 (0≤f<1),
(7) LiNi1 -g- hCoMhO2(M=Al, Sr, Mg 또는 La, 0≤g≤1, 0≤h≤1, 0≤g+h≤1)
(8) Li(NijCokMnl)O2 (0<j<1, 0<k<1, 0<l<1, j+k+l=1),
(9) Li(NimConMno)O4 (0<m<2, 0<n<2, 0<o<2, m+n+o=2)
(10) Li1 + pNiqCorMesO2, (Me= SC, Y, La, Rh, Ir, Al, Ga, In 또는 Ta, 0.02≤p≤0.2, 0.4≤q≤0.58, 0.4≤r≤0.5, 0.0≤s≤0.1, p+q+r+s=1)
(11) LitNiuMnvCowO2 (1≤t≤1.2, u=1-v-w, 0<v<1, 0<w<1이고, u>v이며, w=nv 또는 v=nw이고, n>1)
상기 식(1) 내지 식(11)로 표시되는 LCO계 입자는 리튬 이온의 삽입 및 탈리가 가능한 물질로서, 리튬 이차 전지의 양극 활물질로서 사용된다. 특히 LCO계 입자는 고전압용 리튬 이차 전지에 바람직하게 사용될 수 있으며, 상기 식 중 식(1) 및 식(2)의 LCO계 입자가 바람직하게 사용될 수 있다.
이때 상기 식(2)의 LCO계 입자는 층상 결정 구조(layered crystal structure)를 갖는 것일 수 있다.
코어(1)는 필요한 경우 리튬 반응성 원소를 더욱 포함하여, 양극 활물질 표면에서의 2차원적인 리튬의 이동 경로를 3차원적으로 변환함으로써, 리튬 이온의 이동 속도 증가로 전지 적용시 율 특성을 향상시킬 수 있고, 또, 양극 활물질 표면에서의 저항 감소로 초기 용량 저하에 대한 우려 없이 용량 특성을 향상시킬 수 있도록 한다.
상기 리튬 반응성 원소는 Ti, W, Zr, Mn, Mg, P, Ni, Al, Sn, V, Cr 및 Mo로 이루어진 군에서 선택되는 어느 하나 이상의 금속으로 코팅될 수 있으며, 이 중에서도 리튬과의 우수한 반응성으로 리튬 결함 구조 생성 효과가 우수한 Ti, P, Mn, 및 Al로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 리튬 반응성 원소가 사용될 수 있다.
이때 코팅은 코어(1) 전체를 코팅하거나, 불연속적으로 분포하는 형태로 이루어질 수 있으며, 바람직하기로 불연속적인 분포가 이뤄지도록 한다. 본 발명에 있어서, 리튬 화합물이 '불연속적으로 분포한다'란, 특정 영역 내에 리튬 화합물이 존재하는 영역과 존재하지 않는 영역이 존재하되, 리튬 화합물이 존재하지 않는 영역이 리튬 화합물이 존재하는 영역을 아일랜드형(island type)과 같이 고립, 단절 또는 분리하도록 분포함으로써, 리튬 화합물이 존재하는 영역이 연속성 없이 분포하는 것을 의미한다.
상기 리튬 반응성 원소의 함량은 코어(1) 상에 연속 또는 불연속적으로 존재하며, 리튬 이온의 빠른 경로를 형성할 수 있다. 그러나 그 함량이 지나치게 높을 경우 오히려 쉘(3) 내 저항을 증가시킬 우려가 있으므로, 그 함량을 50 내지 50,000ppm의 함량으로 적절히 한정한다. 리튬 반응성 원소를 이용한 처리는 이를 포함하는 산화물, 수산화물, 옥시수산화물, 할로겐화물, 질산염, 탄산염, 아세트산염, 옥살산염, 시트르산염 또는 황산염 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물로 처리한 다음, 400℃ 내지 1100℃에서 열처리를 통해 이뤄질 수 있다.
본 발명에서 제시하는 코어(1) 입자는 양극 활물질로 사용 가능한 입자 크기의 범위를 갖는다. 일례로, 평균 입경이 1 내지 1000nm 일 수 있고, 구체적으로는 5 내지 500nm, 바람직하기로 10 내지 100nm 일 수 있다. 상기 코어(1) 입자의 크기가 상기 범위 내의 평균 입경을 가질 경우 제조 공정에서 입자 간의 뭉침이 없이 후속하는 LiRAP 화합물이 코어(1)의 표면에 균일하게 코팅될 수 있다.
또, 상기 코어(1)에 있어서, 리튬 원소는 코어 내에서 단일 농도 값으로 분포할 수도 있고, 또는 상기 코어(1)와 쉘(3)의 계면에서부터 코어 중심으로 갈수록 점진적으로 증가하는 농도 구배로 분포할 수 있다. 이와 같이 농도 구배로 분포할 경우 상기 식(2) 내지 식(11)의 a 내지 w의 각각의 범위 내에서 코어(1) 중심으로 갈수록 증가할 수 있다.
이러한 특징을 갖는 코어(1)의 제조는 본 발명에서 특별히 한정하지 않으며, 공지된 바의 건식 또는 습식을 통한 복합 금속 산화물의 제조가 사용될 수 있다.
습식 공정을 통한 코어(1)의 제조는 다음과 같다.
먼저, 식(1) 내지 식(11)을 구성하는 금속의 전구체를 포함하는 혼합 수용액에 염기성 또는 산성 수용액을 투입하여 pH가 조절된 전구체 혼합 용액을 제조한다. 상기 교반은 원활한 합성을 위하여 불활성 가스 분위기하에서 수행되는 것일 수 있으며, 이때 불활성 가스는 질소, 아르곤, 헬륨 등일 수 있다.
상기 금속 전구체는 금속 수산화물(hydroxide), 황산염(sulfate), 알콕시화물(alkoxide), 옥살산염(oxalate), 인산염(phosphate), 할로겐화물(halide), 옥시할로겐화물(oxyhalide), 황화물(sulfide), 산화물(oxide), 과산화물(peroxide), 아세트산염(acetate), 질산염(nitrate), 탄산염(carbonate), 구연산염(citrate), 프탈산염(phthalate) 및 과염소산염(perchlorate) 중 1종 이상이 가능하다.
상기 pH 조절을 위한 염기로는 암모니아, 수산화나트륨 등이 가능하고, 산으로는 황산, 염산 또는 질산이 사용 가능하다.
다음으로, 상기 전구체 혼합 용액에 식(1) 내지 식(11)을 구성하는 금속의 다른 전구체 용액을 투입 후 공침하여 침전물을 형성한다.
공침은 통상 pH 11 내지 12 범위에서, 40 내지 60℃의 온도범위를 유지하면서 100 내지 1000 rpm의 속도로 교반하면서 수행하는 것일 수 있으며, 상기 pH는 전술한 바와 같이 염기성 수용액을 첨가하여 조절할 수 있다.
공침은 원활한 공침 반응을 위하여 불활성 가스 분위기 하에서 수행될 수 있으며, 이때 불활성 가스는 질소, 헬륨, 아르곤 등일 수 있다.
다음으로, 건조 및 열처리를 통해 코어(1)를 구성하는 LCO계 입자를 제조한다.
상기 건조는 특별히 제한되는 것은 아니나, 예컨대 80 내지 120℃의 온도 범위에서 수행되는 것일 수 있다.
상기 열처리는 200 내지 800℃의 온도범위로 소성하여 수행하는 것일 수 있으며, 상기 소성은 산소 또는 공기 분위기하에서 수행하는 것일 수 있다.
특히, 본 발명에 따른 LCO계 리튬 복합체(10)는 리튬 리치 안티페로브스카이트 결정 구조(Lithium Rich Antiperovskites, 이하 'LiRAP'라 한다)를 갖는 화합물로 쉘(3)을 형성한다.
안티페로브스카이트 구조는 ABX3에서, X가 알칼리 금속과 같은 양이온 이고, A 및 B는 음이온을 의미한다. 안티페로브스카이트 결정 구조는 A와 B, X에 어떤 원자(또는 작용기)가 있느냐에 따라 수백 가지 종류가 알려져 있고 전기적 특성도 도체에서 반도체, 부도체까지 다양하다.
본 발명에서 제시하는 LCO계 리튬 복합체(10)는 양극 활물질로서 사용하며, 이때 양극 활물질과 전해액 간의 계면 반응 및 리튬 이온 전도도에 의해 리튬 이차 전지의 성능 및 물성이 결정된다. 이에, 계면에서의 리튬 이온의 빠른 전달을 위해 쉘(3)로 LiRAP 화합물을 사용한다.
리튬 리치(rich)한 LiRAP 화합물이 도입되어 LCO계 리튬 복합체(10)를 양극 활물질로 적용할 경우 리튬 이온 전도도가 높아 양극 활물질과 전해질 계면에서의 반응이 빠르게 진행될 수 있고, 상기 LiRAP 화합물 자체의 특성, 특히 고온에서의 구조 안정성이 개선되어 고온에서 구동시 리튬 이차 전지의 용량 열화를 방지할 수 있다.
본 발명에서 사용하는 LiRAP 화합물은 하기 (12) 내지 식(18)로 표시되는 화합물이 가능하며, 이들은 각각 단독 또는 2종 이상 혼합하여 사용이 가능하다.
(12) Li3OCl
(13) Li(3-a)Ma/2OHal (M=Mn, Ca, Ba 또는 Sr, Hal=F, Cl, Br 또는 I, 0<a<3)
(14) Li(3-b)N(b/3)OHal (N = a trivalent metal, Hal= F, Cl, Br 또는 I, 0≤b≤3)
(15) LiOXcY(1-c), (X 및 Y는 서로 다른 할라이드, 0≤c≤1)
(16) Li3-dClO1-dHald (Hal= F, Cl, Br 또는 I이고, 0<d<1)
(17) Li3 -e- fAeO1 - fHalfCl (A = Na, K, Hal= F, Cl, Br 또는 I, 0<e<2, 0<f<1)
(18) Li3 -2g- hMgO1 - hHalhCl (M= Mg, Mn, Ca, Ba 또는 Sr, Hal= F, Cl, Br 또는 I, 0<g<1, 0<h<1)
상기 식(12) 내지 식(18)로 표시되는 LiRAP 화합물은 이온 전도도가 10 내지 10-10 S/cm이다.
구체적으로, 식(12)로 표시되는 Li3OCl는 대표되는 LiRAP 화합물로서, 이는 상온에서 0.85 X 10-3 S/cm의 높은 수준의 이온 전도도를 나타내고, 정방정상(tetragonal phases)을 갖는 사방정계(orthorhombic) 결정 구조로 인해 고온에서 안정성이 우수하다.
또한, 식(13)으로 표시되는 LiRAP 화합물은 리튬 양이온에 금속이 치환된 것으로, 상온에서 이온 전도도가 10-2 S/cm로서 Li3OCl의 10-3 수치 보다 높은 이온 전도성을 갖는다.
그리고 식(14) 및 식(15)로 표시되는 LiRAP 화합물은 상온에서 이온 전도도가 10-7 S/cm 수준을 갖는다.
특히, 식(16), 식(17) 및 식(18)로 표시되는 LiRAP 화합물은 식(12) 내지 식(15)와 같이 Cl 위치에 도펀트가 치환된 것이 아닌 산소(O)에 도펀트가 치환된 구조를 갖는다. 이러한 구조의 화합물은 식(12) 내지 식(15)의 LiRAP 화합물과 비교하여 동등 이상의 이온 전도도 및 열적 안정성을 갖는다.
상기 쉘(3)을 구성하는 LiRAP 화합물은 식(12) 내지 식(18) 중에서 선택된 화합물을 단독으로 사용하거나 2종 이상 혼합하여 사용할 수 있다. 또한, 동일 식을 만족하되, 금속 또는 도펀트의 종류를 달리하여 사용이 가능하다. 이때 화합물의 선정은 본 발명에서 특별히 한정하지 않으며 이 분야의 통상의 지식을 가진 자에 의해 적절히 선택할 수 있다.
발명의 일 구현예에 따르면, 식(12), 식(15), 식(16)의 LiRAP 화합물은 리튬 하이드록사이드(LiOH) 또는 리튬 나이트레이트 (LiNO3) 전구체와 리튬 할라이드(예, LiCl) 전구체를 혼합하는 단계; 및 얻어진 혼합물을 180 내지 400℃의 고온에서 어닐링하는 단계를 거쳐 제조한다. 이때 각 단계에 사용하는 조건 또는 조성의 변화를 통해 식(12) 및 식(15)의 LiRAP 화합물을 제조한다.
식(13), 식(14), 식(17) 및 식(18)의 LiRAP 화합물은 M, N 또는 A를 포함하는 전구체를 상기 혼합 단계에 첨가하여 (Li, M; Li, N; 또는 Li, A)3OCl의 제조가 가능하다.
상기 전구체는 Mn, Ca, 또는 Ba를 포함하는 수산화물, 황산염, 알콕시화물, 옥살산염, 인산염, 할로겐화물, 옥시할로겐화물, 황화물, 산화물, 과산화물, 아세트산염, 질산염, 탄산염, 구연산염, 프탈산염 및 과염소산염 중에서 선택된 1종 이상일 수 있으며, 바람직하기로 알콕시화물이 사용될 수 있다.
상기 식(12) 내지 식(18)의 화합물 중 할로겐 원소의 도핑은 고체 상태, 액체 상태 또는 기체 상태로 이뤄질 수 있으며 본 발명에서 특별히 한정하지 않는다.
그 예로서, 상기 전구체들의 혼합 단계에 HX(X=할라이드)로 표시되는 화합물의 첨가를 통해 이루어지거나, Li3OCl 또는 (Li,M)3OCl을 제조한 후 액상 또는 기상의 HX로 처리하는 방식으로 수행이 가능하다. 이때 HX는 HF, HI, HCl, HBr, 및 이들의 조합들로 이루어진 군으로부터 선택된 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.
이때 쉘(3)은 LCO계 리튬 복합체(10) 100 중량% 에 대해 20 중량% 이하, 바람직하기로 0.0001 내지 20 중량%로 코팅될 수 있으며, 이러한 함량을 통해 나노에서 마이크론 수준, 바람직하기로 1nm 내지 100㎛, 더욱 바람직하기로 10 내지 100nm의 두께를 갖는 코팅층을 형성한다.
상기 쉘(3)을 구성하는 LCO계 리튬 복합체(10)의 함량이 상기 범위 미만이면 코팅층의 형성에 어려움이 있을 수 있고, 상기 범위를 초과할 경우 리튬 이온의 이동시 장애가 되어 저항이 증가할 우려가 있다.
이러한 저항은 코팅층의 두께의 한정과 관련하여 동일하게 적용된다. 즉, 코팅층의 두께가 상기 범위 미만이면 리튬 이온의 이동도 증가 효과 및 이에 따른 전지 특성 개선 효과가 미미하고, 이와 반대로 상기 범위를 초과할 경우 저항이 오히려 증가할 수 있어 양극 활물질로 사용 시 전지 성능의 저하를 가져올 수 있다.
본 발명의 일 구현예에 따르면, LCO계 리튬 복합체(10)를 구성하는 코어(1)로는 식(1) 및 식(2)의 리튬 코발트 산화물을 사용하고, 쉘(3)로는 식(13), 식(16) 및 식(18)의 LiRAP 화합물을 사용하는 것이 바람직하다.
상기 LCO계 리튬 복합체(10)의 제조는 공지된 코어-쉘 구조를 갖는 복합체의 방법이 사용될 수 있으며, 배치식(batch type, one-pot coating synthesis) 또는 연속 공정(continuous process)에 의해 제조가 가능하다.
일 구현예에 따른 LCO계 리튬 복합체(10)의 제조는 하기와 같이 수행할 수 있다:
(방법 1) LCO계 입자 상에 LiRAP 화합물을 건식 또는 습식 코팅 코팅
(방법 2) LiRAP 화합물 전구체 혼합 용액을 제조하고, 이를 LCO계 입자와 혼합한 다음, 졸-겔 공정 및 열처리를 통해 LCO계 입자 상에 LiRAP 코팅층을 형성
상기 제시한 (방법 1)의 제조 공정은 공정이 단순하고 대량 생산이 용이한 이점이 있으며, (방법 2)의 제조 공정은 코팅과 함께 LiRAP 화합물의 생성이 동시에 수행하는 이점이 있다. 이러한 2가지 방법 이외에 다양한 코어-셀 구조의 복합체 제조방법이 사용될 수 있으며, 본 발명에서 특별히 한정하지 않는다. 본 발명의 실시예에서는 (방법 2)의 공정을 통해 LCO계 리튬 복합체(10)를 제조하였다.
(방법 1)을 통한 LiRAP의 제조는 특별히 한정하지 않으며, 공지의 안티페로브스카이트 결정 구조를 갖는 화합물의 제조 및 도핑 방법의 조합을 통해 제조가 가능하다.
(방법 2)를 통한 코어-쉘 구조의 LCO계 리튬 복합체(10) 하기와 같이 수행한다.
먼저, 코어(1)로 사용하는 LCO계 산화물과 쉘(3)을 구성하기 위한 LiRAP 화합물의 전구체 용액을 혼합한다.
상기 LiRAP 화합물의 전구체 용액은 식(1) 내지 식(11)을 구성하는 금속의 전구체 및 도펀트 용액을 포함한다. 이때 리튬 전구체로 리튬을 포함하는 금속 수산화물, 황산염, 알콕시화물, 옥살산염, 인산염, 할로겐화물, 옥시할로겐화물, 황화물, 산화물, 과산화물, 아세트산염, 질산염, 탄산염, 구연산염, 프탈산염 및 과염소산염 중에서 선택된 1종 이상이 가능하며, 바람직하기로 금속 수산화물 및 할로겐화물을 사용한다.
양이온 도펀트는 식(13) 내지 식(18)에서 제시하는 양이온, 즉 알칼리토금속을 포함하는 금속수산화물, 황산염, 알콕시화물, 옥살산염, 인산염, 할로겐화물, 옥시할로겐화물, 황화물, 산화물, 과산화물, 아세트산염, 실산염, 탄산염, 구연산염, 과탄산염 및 과염소산염 중에서 선택된 1종 이상이 가능하며, 바람직하기로 알칼리토금속 수산화물 및 할로겐화물을 사용한다.
음이온 도펀트 용액은 식(13) 내지 식(18)에서 제시하는 도펀트, 즉, 할로겐 원소를 포함하는 수용액으로, 바람직하기로, HF, HI, HCl, HBr 및 이들의 조합들로 이루어진 군으로부터 선택된 것을 포함하는 것일 수 있으나, 이에 제한되지 않는다.
다음으로, 코어-쉘 구조를 갖는 LCO계 리튬 복합체(10)를 제조하기 위해 상기 전구체 혼합물에 식(1) 내지 식(11)의 LCO계 입자 중에서 선택된 1종 이상의 활물질을 혼합하고 미량의 H2O를 첨가하여 겔(gelation) 상태의 전구체 혼합물을 만든 후 250 내지 350℃의 온도에서 2시간 이상의 열처리 및 1시간 이상의 시간으로 건조 시킨다.
상기 열처리 및 건조 시간은 특별히 제한된 것은 아니나, 2 내지 10시간의 열처리 및 1 내지 5시간의 건조 시간이 바람직하다. 이때, 열처리 및 건조는 대기 중에서 또는 산소 분위기하에서 실시될 수 있다.
리튬 이차 전지
본 발명에서 제시하는 LCO계 리튬 복합체(1)는 높은 이온 전도도, 고온에서의 안정성으로 인해 리튬 이차 전지에 적용이 가능하다.
적용 가능한 리튬 이차 전지는 양극 또는 음극의 제한이 없으며, 특히 고온에서 작동하는 리튬-공기 전지, 리튬 산화물 전지, 리튬-황 전지, 리튬 금속 전지, 및 전고체 전지 등에 적용이 가능하다.
일례로, 리튬 이차 전지는 양극, 음극 및 이들 사이에 위치한 분리막 및 전해질을 포함하며, 이때 양극은 양극 집전체 상에 양극 활물질층이 형성되며, 상기 양극 활물질층으로 본 발명의 LCO계 리튬 복합체(1)를 사용한다.
상기 LCO계 리튬 복합체(1)를 양극 활물질로서 사용함에 따라, 쉘을 구성하는 LiRAP 화합물에 의해 코어(즉, 활물질)과 전해질 간 계면에서의 반응 및 리튬 이온 전달 속도가 향상되어 전지 성능의 향상을 가져온다. 또한, LiRAP 화합물 자체의 고유 특성, 전기화학적으로 안정한 전위창, 낮은 전기 전도도, 고온 안정성, 낮은 독성 등으로 인해 전지의 성능 및 열적 안정성을 개선한다
양극을 구성하는 양극 활물질로는 상기 LCO계 리튬 복합체(1)를 단독으로 사용하거나 공지의 양극 활물질로 사용하는 리튬 복합금속 산화물이 함께 사용될 수 있다.
일례로, 추가 가능한 리튬 복합금속 산화물은 Li1 + xMn2 - xO4 (0≤x≤0.33), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 구리 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; LiNi1 - xMxO2 (M Mn, Al, Cu, Fe, Mg, B 또는 Ga; 0.01≤x≤0.3)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; LiMn2-xMxO2(M Ni, Fe, Cr, Zn 또는 Ta; 0.01≤x≤0.1) 또는 Li2Mn3MO8 (M Fe, Ni, Cu 또는 Zn임)으로 표현되는 리튬 망간 복합 산화물; LiNixMn2 - xO4로 표현되는 스피넬 구조의 리튬 망간 복합 산화물; Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4;로 이루어진 군에서 선택된 1종 이상이 가능하다.
이러한 양극 활물질은 양극 집전체 상에 형성될 수 있다. 상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되지 않으며, 예를 들면 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 이때, 상기 양극 집전체는 양극 활물질과의 접착력을 높일 수도 있도록, 표면에 미세한 요철이 형성된 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태를 사용할 수 있다.
또한, 음극은 음극 집전체 상에 음극 활물질을 갖는 음극 합제층이 형성되거나, 음극 합제층(일예로, 리튬 호일)을 단독으로 사용한다.
이때 음극 집전체나 음극 합제층의 종류는 본 발명에서 특별히 한정하지 않으며, 공지의 재질이 사용 가능하다.
또한, 음극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되지 않으며, 예를 들면 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 상기 음극 집전체는 양극 집전체와 마찬가지로, 표면에 미세한 요철이 형성된 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 사용될 수 있다
또한, 음극 활물질은 결정질 인조 흑연, 결정질 천연 흑연, 비정질 하드카본, 저결정질 소프트카본, 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 수퍼-P, 그래핀(graphene), 섬유상 탄소로 이루어진 군으로부터 선택되는 하나 이상의 탄소계 물질, Si계 물질, LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1 - xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료; 티타늄 산화물; 리튬 티타늄 산화물 등을 포함할 수 있지만, 이들만으로 한정되는 것은 아니다.
여기에 더하여, 음극 활물질은 SnxMe1 - xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO22, Bi2O3, Bi2O4 및 Bi2O5 등의 산화물 등을 사용할 수 있고, 결정질 탄소, 비정질 탄소 또는 탄소 복합체와 같은 탄소계 음극 활물질이 단독으로 또는 2종 이상이 혼용되어 사용될 수 있다.
이때, 상기 전극 합제층은 바인더 수지, 도전재, 충진제 및 기타 첨가제 등을 추가로 포함할 수 있다.
상기 바인더 수지는 전극 활물질과 도전재의 결합과 집전체에 대한 결합을 위해 사용한다. 이러한 바인더 수지의 예로는, 폴리비닐리덴플로라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 하이드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.
상기 도전재는 전극 활물질의 도전성을 더욱 향상시키기 위해 사용한다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등이 사용될 수 있다.
상기 충진제는 전극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
한편, 상기 리튬 이차 전지에 있어서, 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차 전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용 가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또, 본 발명에서 사용되는 전해질로는 리튬 이차 전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매;시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 리튬염은 리튬 이차 전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 리튬염은 일례로, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, LiSCN, LiC(CF3SO2)3, (CF3SO2)2NLi, (FSO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4-페닐 붕산 리튬, 리튬이미드 등의 리튬염을 더욱 포함할 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 5 중량%로 포함될 수 있다.
또한, 무기 고체 전해질 또는 유기 고체 전해질을 더욱 포함한다. 상기 무기고체 전해질은 세라믹 계열의 재료로, 결정성 또는 비결정성 재질이 사용될 수 있으며, Thio-LISICON(Li3 . 25Ge0 .25P0. 75S4), Li2S-SiS2, LiI-Li2S-SiS2, LiI-Li2S-P2S5, LiI-Li2S-P2O5, LiI-Li3PO4-P2S5, Li2S-P2S5, Li3PS4, Li7P3S11, Li2O-B2O3, Li2O-B2O3-P2O5, Li2O-V2O5-SiO2, Li2O-B2O3, Li3PO4, Li2O-Li2WO4-B2O3, LiPON, LiBON, Li2O-SiO2, LiI, Li3N, Li5La3Ta2O12, Li7La3Zr2O12, Li6BaLa2Ta2O12, Li3PO(4-3/2w)Nw (w는 w<1), Li3.6Si0.6P0.4O4 등의 무기 고체 전해질이 가능하다.
유기 고체 전해질의 예로는 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리 에스테르 설파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴 등의 폴리머 계열의 재료에 리튬염을 혼합한 것을 사용할 수 있다. 이때, 이들은 단독으로 또는 적어도 하나 이상을 조합하여 사용할 수 있다.
본 발명에 따른 리튬 이차 전지용 전극의 제조는 특별히 한정하지 않으며, 통상의 전지 제조 공정을 따른다.
상기와 같이 본 발명에 따른 양극 활물질을 포함하는 리튬 이차 전지는 우수한 방전 용량, 출력 특성 및 용량 유지율을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
[실시예]
제조예 1: LCO계 리튬 복합체 제조
반응 용기에 LiCoO2 분말 21.6 g, LiOH 분말 2.4 g, LiCl 분말 2.1 g, BaOH2 분말 0.043 g을 혼합하여 활물질과 LiRAP 전구체가 혼합된 분말을 제조 하였다. 상기 혼합 분말에 3 ml H2O를 첨가하여 젤 상태의 혼합물을 제조하였다.
이어서, 산소 분위기 하에 240℃의 오토클레이브에서 2시간 이상 열처리 후, 약 1시간 동안 동일 온도하에서 건조 시켜 LCO계 코어(LiCoO2)에 Li2 . 99Ba0 . 005ClO가 코팅된 LCO계 리튬 복합체를 제조하였다.
제조예 2: LCO계 리튬 복합체 제조
반응 용기에 LiNO3 분말 6.528 g, LiF 분말 0.048 g, Ba(CH3COO)2 분말 0.46 g을 100 ml HNO3 (0.1 M)에 녹인 후 12시간 동안 상온 반응 시켰다. 반응 후, 회전 증발 농축기와 전기 오븐을 사용하여 건조 시켰다. 건조된 파우더는 900 ℃, 3일 동안 소성 과정을 거친 후 3 ℃/min의 속도로 상온으로 떨어트린다. 합성된 파우더는 미반응물 제거를 위해 증류수로 수 차례 씻겨내고 다시 600 ℃, 1시간 동안 공기 중에서 소성 시켰다. 합성된 물질을 LiCoO2 분말 21.6 g, LiCl 분말 2.1 g과 hand mixing을 하여 grinding된 혼합 분말을 제조 하였다. 상기 혼합 분말에 3 ml H2O를 첨가하여 젤 상태의 혼합물을 제조하였다. 이어서, 산소 분위기 하에서 600 ℃의 오토클레이브에서 2시간 이상 열처리 후, 약 1시간 동안 동일 온도 하에서 건조 시켜 LCO계 코어(LiCoO2)에 Li1 . 889Ba0 . 037ClO0 .963F0.037가 코팅된 LCO계 리튬 복합체를 제조하였다.
실험예 1: LCO계 리튬 복합체 분석
주사전자현미경을 이용하여 상기 제조예 1에서 제조한 LCO계 리튬 복합체의 원소 매핑을 수행하였고, 그 결과를 도 2 내지 도 4에 나타내었다.
도 2는 LCO계 리튬 복합체의 주사전자현미경 이미지이고, 도 3은 Cl 원소, 도 4는 Co 원소를 보여준다. 도 2 내지 도 4를 참조하면, 상기 LCO계 리튬 복합체는 전면에 걸쳐 Co 및 Cl의 분포가 전면에 걸쳐 있어 LiCoO2 상에 Li2 . 99Ba0 . 005ClO가 균일하게 코팅되어 있음을 알 수 있다.
실시예 1: 리튬 이차 전지의 제조
상기 제조예 1에서 얻어진 LCO계 리튬 복합체를 양극 활물질로 사용하여 양극을 제조하고, 이를 포함하는 리튬 이차 전지를 제조하였다.
상기 제조예 1에서 제조한 LCO계 리튬 복합체 카본블랙 도전재 및 PVdF 바인더를 N-메틸피롤리돈 용매 중에서 중량비로 90:5:5의 비율로 혼합하여 양극 형성용 조성물(점도: 5000mPa·s)을 제조하고, 이를 알루미늄 집전체에 도포한 후, 건조 및 압연하여 양극을 제조하였다.
또, 음극 제조를 위해 구리 집전체가 부착되어 있는 20 ㎛ 두께의 Li 금속을 음극으로 사용하였다.
상기와 같이 제조된 양극과 음극 사이에 다공성 폴리에틸렌의 분리막을 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 전해액을 주입하여 리튬 이차 전지를 제조하였다. 이때 전해액은 다이메톡시에탄(DME) 유기 용매에 1M 농도의 리튬비스트리플루오르메테인 술포닐 이미드 (LiTFSI)를 용해시켜 제조하였다.
실시예 2: 리튬 이차 전지의 제조
상기 제조예 1에서 얻어진 LCO계 리튬 복합체 대신 제조예 2에서 얻어진 LCO계 리튬 복합체를 양극 활물질로 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 리튬 이차 전지를 제조하였다.
비교예 1: 리튬 이차 전지의 제조
양극 활물질로서 LiCoO2 (평균 입경: 12㎛)을 사용하는 것을 제외하고는, 상기 실시예 1에서와 동일한 방법으로 실시하여 리튬 이차전지를 제조하였다.
실험예 2: 전지 성능 평가
상기 실시예 1, 및 비교예 1에서 제조한 리튬 이차 전지에 대해 하기와 같은 방법으로 전지특성을 평가하였다.
상기에서 제조한 리튬 이차 전지를 상온(25), 4.25V 구동전압에서 0.2C/0.2C의 조건으로 충/방전을 50회 실시한 후, 초기용량 대비 용량 유지율 80% 지점의 cycle 횟수를 측정하였고, 하기 표 1에 나타내었다.
양극 활물질 1회 초기 방전용량 용량 유지율 80% 달성 사이클*
실시예1 Li2 . 99Ba0 . 005ClO coated LCO 151 mAh/g 32
실시예2 Li1 . 889Ba0 . 037ClO0 .963F0.037 coated LCO 151 mAh/g 33
비교예1 LiCoO2 151 mAh/g 22
*상온(25℃)에서의 초기 대비
상기 표 1을 보면, 실시예 1 및 비교예 1의 전지의 경우 초기 방전용량을 동일하였으나, 유지율 면에서 큰 차이를 나타냄을 알 수 있다.
이상에서는 본 명세서의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 본 명세서는 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해돼서는 안 될 것이다.
[부호의 설명]
10: LCO계 리튬 복합체
1: 코어 3: 쉘

Claims (11)

  1. LCO계 리튬 복합체에 있어서,
    LCO계 입자 표면에 리튬 리치 안티페로브스카이트(Lithium Rich Antiperovskites, LiRAP) 결정 구조를 갖는 화합물의 코팅층이 형성된 것을 특징으로 하는 LCO계 리튬 복합체.
  2. 제1항에 있어서,
    상기 LCO계 입자는 하기 식(1) 내지 식(11) 중에서 선택된 1종 이상인 것을 특징으로 하는 LCO계 리튬 복합체:
    (1) LiCoO2
    (2) Li1-aCoO2 (0<a<1,)
    (3) LibCoMcO2 (M=W, Mo, Zr, Ti, Mg, Ta, Al, Fe, V, Cr 또는 Nb, 1≤b≤1.2이고, 0≤c≤0.02)
    (4) LiCo1-d MndO2 (0≤d<1)
    (5) LiMn2-e CoeO4 (0<e<2)
    (6) LiNi1-f CofO2 (0≤f<1),
    (7) LiNi1 -g- hCoMhO2(M=Al, Sr, Mg 또는 La, 0≤g≤1, 0≤h≤1, 0≤g+h≤1)
    (8) Li(NijCokMnl)O2 (0<j<1, 0<k<1, 0<l<1, j+k+l=1),
    (9) Li(NimConMno)O4 (0<m<2, 0<n<2, 0<o<2, m+n+o=2)
    (10) Li1 + pNiqCorMesO2, (Me= SC, Y, La, Rh, Ir, Al, Ga, In 또는 Ta, 0.02≤p≤0.2, 0.4≤q≤0.58, 0.4≤r≤0.5, 0.0≤s≤0.1, p+q+r+s=1)
    (11) LitNiuMnvCowO2 (1≤t≤1.2, u=1-v-w, 0<v<1, 0<w<1이고, u>v이며, w=nv 또는 v=nw이고, n>1)
  3. 제1항에 있어서,
    상기 LCO계 입자는 평균 입경이 1 내지 1000nm인 것을 특징으로 하는 LCO계 리튬 복합체.
  4. 제1항에 있어서,
    상기 LCO계 입자는 그 표면에 Ti, W, Zr, Mn, Mg, P, Ni, Al, Sn, V, Cr 및 Mo로 이루어진 군에서 선택된 1종 이상의 리튬 반응성 원소가 연속 또는 불연속적으로 코팅된 것을 특징으로 하는 LCO계 리튬 복합체.
  5. 제1항에 있어서,
    상기 리튬 리치 안티페로브스카이트 화합물은 하기 식(12) 내지 식(18) 중에서 선택된 1종 이상인 것을 특징으로 하는 LCO계 리튬 복합체:
    (12) Li3OCl
    (13) Li(3-a)Ma/2OHal (M=Mn, Ca, Ba 또는 Sr, Hal=F, Cl, Br 또는 I, 0<a<3)
    (14) Li(3-b)N(b/3)OHal (N a trivalent metal, Hal= F, Cl, Br 또는 I, 0≤b≤3)
    (15) LiOXcY(1-c), (X 및 Y는 서로 다른 할라이드, 0≤c≤16) Li3 - dClO1 - dHald (Hal= F, Cl, Br 또는 I이고, 0<d<1)
    (17) Li3 -e- fAeO1 - fHalfCl (A = Na, K, Hal= F, Cl, Br 또는 I, 0<e<2, 0<f<1)
    (18) Li3 -2g- hMgO1 - hHalhCl (M= Mg, Mn, Ca, Ba 또는 Sr, Hal= F, Cl, Br 또는 I, 0<g<1, 0<h<1)
  6. 제1항에 있어서,
    상기 리튬 리치 안티페로브스카이트 화합물은 10 내지 10-10 S/cm의 이온 전도도를 갖는 것을 특징으로 하는 LCO계 리튬 복합체.
  7. 제1항에 있어서,
    상기 코팅은 전체 복합체 중량 100 중량% 내에서 리튬 리치 안티페로브스카이트 화합물의 함량이 20 중량% 이하가 되도록 하는 것을 특징으로 하는 LCO계 리튬 복합체.
  8. 제1항에 있어서,
    상기 코팅층은 두께가 1nm 내지 100㎛인 것을 특징으로 하는 LCO계 리튬 복합체.
  9. 리튬 리치 안티페로브스카이트 화합물 전구체 혼합 용액을 제조하고, 이를 LCO계 입자와 혼합한 다음, 졸-겔 공정 및 열처리를 통해 LCO계 입자 상에 리튬 리치 안티페로브스카이트 화합물의 코팅층을 형성하는 단계를 포함하는 제1항의 LCO계 리튬 복합체의 제조방법.
  10. 제1항 내지 제8항 중 어느 한 항에 따른 LCO계 리튬 복합체를 포함하는 것을 특징으로 하는 리튬 이차 전지용 양극 활물질.
  11. 양극, 음극 및 이들 사이에 위치한 전해질을 포함하는 리튬 이차 전지에 있어서,
    상기 양극은 제10항의 양극 활물질을 포함하는 것을 특징으로 하는 리튬 이차 전지.
PCT/KR2017/010141 2016-09-23 2017-09-15 리튬 리치 안티페로브스카이트 코팅 lco계 리튬 복합체, 이의 제조방법, 이를 포함하는 양극 활물질 및 리튬 이차 전지 WO2018056650A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018553415A JP6699878B2 (ja) 2016-09-23 2017-09-15 リチウムリッチアンチペロブスカイトコーティングlco系リチウム複合体、この製造方法、これを含む正極活物質及びリチウム二次電池
EP17853364.2A EP3444880B1 (en) 2016-09-23 2017-09-15 Lithium-rich antiperovskite-coated lco-based lithium composite, method for preparing same, and positive electrode active material and lithium secondary battery comprising same
US16/093,533 US10964972B2 (en) 2016-09-23 2017-09-15 Lithium-rich antiperovskite-coated LCO-based lithium composite, method for preparing same, and positive electrode active material and lithium secondary battery comprising same
CN201780026805.5A CN109155411B (zh) 2016-09-23 2017-09-15 富锂反钙钛矿涂覆的lco类锂复合物、其制备方法以及包含其的正极活性材料和锂二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0122465 2016-09-23
KR1020160122465A KR101790890B1 (ko) 2016-09-23 2016-09-23 Li 리치 안티페로브스카이트 코팅 LCO계 리튬 복합체, 이의 제조방법, 이를 포함하는 양극 활물질 및 리튬 이차 전지

Publications (1)

Publication Number Publication Date
WO2018056650A1 true WO2018056650A1 (ko) 2018-03-29

Family

ID=60301020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/010141 WO2018056650A1 (ko) 2016-09-23 2017-09-15 리튬 리치 안티페로브스카이트 코팅 lco계 리튬 복합체, 이의 제조방법, 이를 포함하는 양극 활물질 및 리튬 이차 전지

Country Status (6)

Country Link
US (1) US10964972B2 (ko)
EP (1) EP3444880B1 (ko)
JP (1) JP6699878B2 (ko)
KR (1) KR101790890B1 (ko)
CN (1) CN109155411B (ko)
WO (1) WO2018056650A1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101886003B1 (ko) * 2016-09-30 2018-08-07 주식회사 엘지화학 Li 리치 안티페로브스카이트 화합물, 이를 포함하는 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
KR102596885B1 (ko) * 2018-08-24 2023-10-31 주식회사 엘지에너지솔루션 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
CN110867576A (zh) * 2018-08-28 2020-03-06 比亚迪股份有限公司 三元正极材料及其制备方法、锂离子电池和电动汽车
WO2020241821A1 (ja) * 2019-05-31 2020-12-03 キヤノン株式会社 活物質、活物質の製造方法、電極、及び電池
CN110492102A (zh) * 2019-08-19 2019-11-22 珠海冠宇电池有限公司 一种锂离子电池极片及其制备方法及锂离子电池
CN111211303B (zh) * 2020-01-13 2021-04-13 珠海冠宇电池股份有限公司 一种负极活性材料及其制备方法和应用
JP2021136192A (ja) * 2020-02-28 2021-09-13 国立研究開発法人物質・材料研究機構 リチウムリッチアンチペロブスカイト化合物、リチウムイオン二次電池用固体電解質およびリチウムイオン固体二次電池
JP2023068207A (ja) * 2020-03-27 2023-05-17 国立大学法人京都大学 アンチペロブスカイト化合物、電池用電解質、及び、電池
CN111682210B (zh) * 2020-05-27 2022-11-04 南方科技大学 正极材料及其制备方法、二次电池
CN111952598B (zh) * 2020-07-03 2021-06-04 南方科技大学 负极片及其制备方法、二次电池
CN114447301B (zh) * 2022-01-21 2023-03-10 合肥国轩高科动力能源有限公司 一种三元正极材料、其制备方法及应用
CN114628679A (zh) * 2022-02-22 2022-06-14 银叶元素公司 一种锂离子电池正极材料及其制备方法与应用
CN115863571A (zh) * 2022-12-01 2023-03-28 宁德时代新能源科技股份有限公司 正极活性材料及其制备方法、二次电池和用电装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030083476A (ko) * 2002-04-23 2003-10-30 주식회사 엘지화학 수명 특성과 안전성이 우수한 리튬 금속 복합 산화물 및이의 제조 방법
JP2013054926A (ja) * 2011-09-05 2013-03-21 Seiko Epson Corp リチウムイオン二次電池用電極活物質、リチウムイオン二次電池用電極体およびリチウムイオン二次電池
US20150132626A1 (en) * 2013-11-11 2015-05-14 Samsung Sdi Co., Ltd. Electrode assembly and secondary battery using the electrode assembly
WO2015094847A1 (en) * 2013-12-17 2015-06-25 Dow Global Technologies Llc Improved lithium metal oxide cathode materials and method to make them

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934340B2 (ja) 1981-05-29 1984-08-22 株式会社宮村鉄工所 生茶葉蒸熱装置
DE102007062089A1 (de) * 2007-12-21 2009-07-02 Giesecke & Devrient Gmbh Verfahren zum Erzeugen einer Mikrostruktur
JP4849093B2 (ja) 2008-04-28 2011-12-28 トヨタ自動車株式会社 抵抗層形成抑制コート層被覆正極活物質およびそれを用いた全固体リチウム二次電池
CN101588652B (zh) 2008-05-23 2011-06-01 上海贝尔阿尔卡特股份有限公司 用于网络或协作mimo系统中的基站及其harq方法
JP5801034B2 (ja) * 2010-02-01 2015-10-28 日本航空電子工業株式会社 摺動部品、摺動部品表面の加工方法および生産方法
US8303176B2 (en) * 2010-05-11 2012-11-06 Vladimir Kochergin Cryogenic fiber optic temperature sensor and method of manufacturing the same
US9246188B2 (en) * 2011-02-14 2016-01-26 Los Alamos National Security, Llc Anti-perovskite solid electrolyte compositions
WO2012112229A2 (en) * 2011-02-14 2012-08-23 Los Alamos National Security, Llc Anti-perovskite solid electrolyte compositions
JP5934340B2 (ja) 2012-03-22 2016-06-15 株式会社東芝 電気化学セル、電気化学セルの製造方法、電池パック及び車
CN104303346B (zh) 2012-03-27 2018-04-13 约翰逊控制技术公司 用于高压锂离子电池单元的聚砜涂层
JP2014049310A (ja) * 2012-08-31 2014-03-17 Toyota Motor Corp 活物質材料、全固体電池、および活物質材料の製造方法
US10008736B2 (en) * 2012-10-23 2018-06-26 Quantumscape Corporation Method for forming and processing antiperovskite material doped with aluminum material
CN104812485A (zh) 2012-11-19 2015-07-29 弗劳恩霍弗应用技术研究院 具有结晶状无机材料和/或无机-有机杂化聚合物制成的涂层的微粒电极材料及其制备方法
DE102013226064A1 (de) * 2013-12-16 2015-06-18 Robert Bosch Gmbh Verfahren zur Herstellung einer Funktionsschicht für eine Lithium-Zelle
KR102183996B1 (ko) 2014-01-29 2020-11-27 삼성에스디아이 주식회사 양극 활물질 및 그 제조방법, 상기 양극 활물질을 채용한 양극과 리튬 전지
KR101644684B1 (ko) 2014-02-28 2016-08-01 주식회사 엘지화학 리튬-니켈계 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR101633256B1 (ko) 2014-06-09 2016-06-27 주식회사 포스코 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
US10044061B2 (en) * 2014-06-11 2018-08-07 Los Alamos National Security, Llc Methods for growth of lithium-rich antiperovskite electrolyte films and use thereof
JP6494194B2 (ja) * 2014-07-04 2019-04-03 マクセルホールディングス株式会社 リチウム二次電池用被覆正極活物質、その製造方法及びそれを用いたリチウム二次電池
JP6332882B2 (ja) * 2014-09-05 2018-05-30 富士フイルム株式会社 全固体二次電池、固体電解質組成物、これを用いた電池用電極シート、電池用電極シートの製造方法および全固体二次電池の製造方法
CN104466239B (zh) 2014-11-27 2017-02-22 中国科学院物理研究所 富锂反钙钛矿硫化物、包括其的固体电解质材料及其应用
US10177365B2 (en) 2015-03-05 2019-01-08 Uchicago Argonne, Llc Metal fluoride passivation coatings prepared by atomic layer deposition for Li-ion batteries
CN105489859A (zh) 2015-12-11 2016-04-13 上海动力储能电池系统工程技术有限公司 表面改性的高电压镍锰酸锂材料及其制备方法
CN105552327B (zh) 2015-12-18 2018-03-30 哈尔滨工业大学 具有多层结构的锂金属氧化物复合正极材料和组成该材料的前驱体材料及其制备方法和应用
CN109075385B (zh) * 2016-05-03 2022-08-02 香港科技大学 半固态电池中的含有碳添加剂的电池电极
CN105932225A (zh) * 2016-06-29 2016-09-07 中国科学院青岛生物能源与过程研究所 一种全固态二次锂电池用改善室温电子离子快速传输电极片的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030083476A (ko) * 2002-04-23 2003-10-30 주식회사 엘지화학 수명 특성과 안전성이 우수한 리튬 금속 복합 산화물 및이의 제조 방법
JP2013054926A (ja) * 2011-09-05 2013-03-21 Seiko Epson Corp リチウムイオン二次電池用電極活物質、リチウムイオン二次電池用電極体およびリチウムイオン二次電池
US20150132626A1 (en) * 2013-11-11 2015-05-14 Samsung Sdi Co., Ltd. Electrode assembly and secondary battery using the electrode assembly
WO2015094847A1 (en) * 2013-12-17 2015-06-25 Dow Global Technologies Llc Improved lithium metal oxide cathode materials and method to make them

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HONG, WANG ET AL.: "Effects of La2O3/Li2O/TiO2-coating on Electrochemical Performance of LiCoO2 Cathode", JOURNAL OF RARE EARTHS, vol. 25, no. 1, 2007, pages 124 - 128, XP022933931 *

Also Published As

Publication number Publication date
EP3444880A4 (en) 2019-04-03
JP6699878B2 (ja) 2020-05-27
KR101790890B1 (ko) 2017-10-26
EP3444880A1 (en) 2019-02-20
JP2019513680A (ja) 2019-05-30
CN109155411B (zh) 2022-02-08
CN109155411A (zh) 2019-01-04
US10964972B2 (en) 2021-03-30
EP3444880B1 (en) 2020-02-26
US20190131651A1 (en) 2019-05-02

Similar Documents

Publication Publication Date Title
WO2018056650A1 (ko) 리튬 리치 안티페로브스카이트 코팅 lco계 리튬 복합체, 이의 제조방법, 이를 포함하는 양극 활물질 및 리튬 이차 전지
WO2011105832A2 (ko) 고용량의 양극활물질 및 이를 포함하는 리튬 이차전지
WO2019182364A1 (ko) 리튬-함유 복합체의 코팅층을 구비한 세퍼레이터, 이를 포함하는 리튬 이차전지 및 상기 이차전지의 제조방법
WO2020145639A1 (ko) 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지
WO2019103363A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019074306A2 (ko) 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2018143612A1 (ko) 코어-쉘 구조의 리튬 코발트 산화물을 포함하는 리튬 이차전지용 양극 활물질, 이를 제조하는 방법, 및 상기 양극 활물질을 포함하는 양극 및 이차전지
WO2017095074A1 (ko) 티타늄계 복합체를 포함하는 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2018062770A1 (ko) 리튬 리치 안티페로브스카이트 화합물, 이를 포함하는 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2021187961A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2018038501A1 (ko) 리튬이온전지용 복합양극활물질, 그 제조방법 및 이를 포함한 양극을 함유한 리튬이온전지
WO2019017643A9 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019098541A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019212321A1 (ko) 양극 활물질의 세정 방법, 이를 포함하는 양극 활물질의 제조 방법 및 이에 의해 제조된 양극 활물질
WO2019245286A1 (ko) 리튬 이차 전지용 양극 활물질 및 리튬 이차 전지
WO2021096204A1 (ko) 비가역 첨가제, 상기 비가역 첨가제를 포함하는 양극재, 상기 양극재를 포함하는 리튬 이차전지
WO2019078688A2 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2018147558A1 (ko) 장수명에 적합한 이차전지용 전극의 제조방법
WO2016053051A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2020067830A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2021153936A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2021025464A1 (ko) 이차전지용 양극 활물질의 제조방법
WO2016053053A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019078685A2 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2020145638A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조방법에 의해 제조된 양극 활물질

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018553415

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017853364

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017853364

Country of ref document: EP

Effective date: 20181113

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17853364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE