WO2018143612A1 - 코어-쉘 구조의 리튬 코발트 산화물을 포함하는 리튬 이차전지용 양극 활물질, 이를 제조하는 방법, 및 상기 양극 활물질을 포함하는 양극 및 이차전지 - Google Patents

코어-쉘 구조의 리튬 코발트 산화물을 포함하는 리튬 이차전지용 양극 활물질, 이를 제조하는 방법, 및 상기 양극 활물질을 포함하는 양극 및 이차전지 Download PDF

Info

Publication number
WO2018143612A1
WO2018143612A1 PCT/KR2018/001169 KR2018001169W WO2018143612A1 WO 2018143612 A1 WO2018143612 A1 WO 2018143612A1 KR 2018001169 W KR2018001169 W KR 2018001169W WO 2018143612 A1 WO2018143612 A1 WO 2018143612A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
lithium
shell
active material
cobalt
Prior art date
Application number
PCT/KR2018/001169
Other languages
English (en)
French (fr)
Inventor
조치호
박성빈
박지영
이보람
한정민
허혁
정왕모
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=63040239&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018143612(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from KR1020170013649A external-priority patent/KR102120272B1/ko
Priority claimed from KR1020170013613A external-priority patent/KR102095520B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880001796.9A priority Critical patent/CN109314230B/zh
Priority to US16/097,049 priority patent/US11038159B2/en
Priority to EP18748698.0A priority patent/EP3439081A4/en
Priority to JP2018548046A priority patent/JP6578453B2/ja
Publication of WO2018143612A1 publication Critical patent/WO2018143612A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a cathode active material for a lithium secondary battery including a lithium cobalt oxide having a core-shell structure, and a method of manufacturing the same.
  • lithium secondary batteries have high energy density and operating potential, have long cycle life, and have low self discharge rate. Is commercially available and widely used.
  • LiCoO 2 Currently, LiCoO 2 , Samsung SDI (NMC / NCA), LiMnO 4 , and LiFePO 4 are used as cathode materials for lithium secondary batteries.
  • LiCoO 2 there are also advantages such as high rolling density, so many LiCoO 2 have been used until now, and researches to increase the working voltage to develop high capacity secondary batteries have been conducted.
  • LiCoO 2 has a low charge / discharge current of about 150 mAh / g, has a problem in that the crystal structure is unstable at a voltage of 4.3V or higher, and the lifespan characteristic is sharply lowered. There is a risk of ignition by reaction with the electrolyte. .
  • the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • the inventors of the present application include three types of dopants independently doped with lithium cobalt doping oxide in the core and lithium cobalt doping oxide in the shell, as described later.
  • the dopants satisfy certain conditions, the structural stability of the crystal structure is improved and the crystal structure is maintained even in the operating voltage range of more than 4.5V, and thus the present invention has been found to exhibit high high voltage characteristics and to complete the present invention.
  • the cathode active material for secondary batteries according to the present invention is a cathode active material for lithium secondary batteries containing a lithium cobalt doping oxide having a core-shell structure
  • the lithium cobalt-doped oxide of the core and the lithium cobalt-doped oxide of the shell each contain three kinds of dopants independently of each other, and satisfy the following (a) or (b).
  • OC is the average oxidation number of the dopants present in the core
  • OS is the average oxidation number of the dopants present in the shell.
  • the dopants of the core are metal (M1) of +2 oxidized water, metal (M2) of +3 oxidized water, and metal (M3) of +4 oxidized water, and the contents of M1, M2, and M3 Satisfies the following condition (2) based on the molar ratio;
  • the dopants of the shell are metal (M1 ') of +2 oxidized water, metal (M2') of +3 oxidized water, and metal (M3 ') of +4 oxidized water, and M1', M2 ', and M3. 'Satisfies the following condition (3) based on the molar ratio.
  • CM1 is M1 content
  • CM2 is M2 content
  • CM3 is M3 content
  • CM1 'is M1' content CM2 'is M2' content
  • CM3 'is M3' content CM1 'is M1' content
  • lithium cobalt oxide for driving a battery of 4.35V, 4.4V, 4.45V at high voltage
  • the lithium cobalt oxide is doped with Al, Ti, Zr, Mg, P, Ca, F, Co, etc.
  • coatings have been used to achieve structural durability and surface stability in high voltage environments.
  • lithium cobalt oxide is an intrinsic property, whereby Co 3 + is oxidized to Co 4 + in a condition of x ⁇ 50 in Li x CoO 2 , resulting in an increase in structural stress due to a small ion radius of Co 4 + .
  • the inventors of the present application have conducted extensive studies, and as a core-shell structured lithium cobalt doped oxide, three types of dopants in which the lithium cobalt doped oxide in the core and the lithium cobalt doped oxide in the shell each have different oxidation numbers
  • the average oxidation number of the dopants doped in the core and shell to have the above range while satisfying the condition (1), or by adjusting the content ratio of the dopants conditions (2) and (3)
  • the life characteristics were significantly improved by suppressing the change of the surface structure under high temperature and high voltage to improve the structural stability of the positive electrode active material particles.
  • the driving voltage is prepared on a half coin cell basis.
  • t (ratio) of the condition (1) can satisfy the condition of 0.8 ⁇ t ⁇ 0.95
  • r (molar ratio) of the conditions (2) and (3) is 2 ⁇ r ⁇ 2.5
  • r '(Molar ratio) may satisfy the condition of 0.5 ⁇ r ′ ⁇ 1.5.
  • the crystal structure can be maintained without a phase change in a range in which the anode potential at full charge exceeds 4.5 V based on the Li potential.
  • the lithium cobalt doped oxide of the core may have a composition of Formula 1 below.
  • M1, M2 and M3 are each independently one element selected from the group consisting of Ti, Mg, Al, Zr, Ba, Ca, Ta, Nb, Mo, Ni, Zn, Si, V and Mn;
  • the lithium cobalt doped oxide of the shell may have a composition of Formula 2 below.
  • M1 ', M2' and M3 ' are one element independently selected from the group consisting of Ti, Mg, Al, Zr, Ba, Ca, Ta, Nb, Mo, Ni, Zn, Si, V and Mn ;
  • the composition formulas of the core and the shell are all doped with cobalt sites in the form of three kinds of dopants, and do not differ greatly in the type and amount of doping elements.
  • the lithium cobalt-doped oxide of the core-shell structure according to the present invention satisfies the conditions (2) and (3) of (b), in the content ratio, the core is +2 compared to the shell +3 And + tetravalent contents have more configuration.
  • the concept of the shell is not another phase completely separate from the core, but a concept such as surface doping due to a change in composition and / or content, so long as the core can be distinguished from the shell.
  • Surface doped configurations are also within the scope of the present invention.
  • the thickness of the shell which differs in the composition distinguished from the core, may be 50 to 2000 nm, in particular 50 to 200 nm.
  • the resistance may be large due to the large resistance of the shell, there is a problem that may be negative in the resistance and rate characteristics due to the disconnection of the Li ion migration passage, If the thickness is too thin, high voltage stability by the shell may not be guaranteed, which is undesirable.
  • each dopant substituted in the cobalt sites of the core and shell may have a different oxidation number
  • M1 And M1 ' may be a metal of +2 oxidized water
  • M2 and M2' may be a metal of +3 oxidized water
  • M3 and M3 ' may be a metal of +4 oxidized water.
  • the present invention is more advantageous to the intended structural stability when the dopants doped in the core and shell have different oxidation numbers from the other elements doped together so that +2, +3, and +4 all have oxidation numbers. Do.
  • the metal of the +2 oxidized water the doped metal is oxidized before Co 3 + to prevent oxidation to Co 4 + to prevent structural stress to improve the structural stability
  • +3 Metal plays a role of maintaining structure in place of cobalt oxidized to Co 4 +
  • the metal of +4 oxidized water suppresses the change of surface structure and maintains the movement of lithium ions under high temperature and high voltage. It is easy to prevent the degradation of the output characteristics of the secondary battery.
  • the lithium cobalt doped oxide according to the present invention can maintain structural stability even in the operating range of more than 4.5V.
  • the dopants having different oxidation numbers doped to each of the cobalt portion of the lithium cobalt oxide partially serves to improve the structural safety for each time and situation.
  • the metals M1 and M1 'of the oxidized water are each independently one element selected from the group consisting of Mg, Ca, Ni, and Ba;
  • the metals M2 and M2 'of the + trivalent oxidized water are each independently one element selected from the group consisting of Ti, Al, Ta, and Nb;
  • the metals M3 and M3 'of the +4 oxidized water are each independently selected from the group consisting of Ti, Ta, Nb, Mn, and Mo and may be an element different from M2 and M2', and more specifically, +2 is an oxidized water.
  • the metal M1 may be Mg
  • the metal M2 of the +3 oxidized water may be Ti or Al
  • the metal M3 of the +4 oxidized water may be Ti, Nb, or Mo.
  • the inclusion of all of these dopants in excess does not continue to increase structural stability, and the total content of doped dopants does not exceed 12%, specifically 6%, based on the molar ratio in the core and shell, respectively.
  • the improved structural stability can be exhibited.
  • each of the dopants may be uniformly doped throughout the core and shell of the lithium cobalt doping oxide, but not limited to, to prevent local structural changes in the particles.
  • the surface of the lithium cobalt doped oxide may be coated with Al 2 O 3 having a thickness of 50 nm to 100 nm.
  • the present invention provides a method for producing a lithium cobalt doping oxide of the core-shell structure of the positive electrode active material, the manufacturing method,
  • the lithium-cobalt doping oxide of the core-shell structure is first prepared by coprecipitation of the doped cobalt precursor containing a dopant for the manufacture of the core, and then calcining the doped cobalt precursor and the lithium precursor
  • the doping of the cobalt precursor itself during the core manufacturing is produced by reacting with the lithium precursor, so that the dopant can react with the lithium precursor evenly distributed in the cobalt, and less by-products to obtain the present invention
  • the yield of lithium cobalt doped oxides containing dopants is high.
  • the solution can be converted to a basic atmosphere to prepare a doped cobalt oxide as a doped cobalt precursor by coprecipitation.
  • the content of the salt containing the dopant element and the content of cobalt salt may be determined in consideration of the composition of the core as the final product.
  • the salts containing the dopant elements of the above process (i) each contain salts of metals (M1) of +2 oxidized water.
  • +3 is a salt containing metal (M2) of oxidized water
  • +4 is a salt containing metal (M3) of oxidized water
  • CM1 is the content of M1
  • CM2 is the content of M2
  • CM3 is the content of M3.
  • Salts and cobalt salts containing the dopant element for preparing the doped cobalt precursor of the process (i) are not limited as long as it can be a coprecipitation process, for example, in the form of carbonate, sulfate, or nitrate And in detail, sulfate.
  • the content of the cobalt precursor, the lithium precursor, and the three kinds of dopant precursors may be determined in consideration of the composition of the shell.
  • the three kinds of dopant precursors of the process (iii) are precursors in which +2 comprises a metal (M1 ') of oxidized water.
  • +3 is a precursor containing a metal (M2 ') of oxidized water
  • +4 is a precursor containing a metal (M3') of oxidized water
  • a mixing ratio of the precursors may be determined to satisfy the following condition (2).
  • CM1 ' is the content of M1'
  • CM2 ' is the content of M2'
  • CM3 ' is the content of M3'.
  • the dopants when designed to satisfy condition (1) of (a), the dopants may be mixed to satisfy condition (1) in steps (i) and (iii).
  • oxides such as Al 2 O 3 can be mixed by dry or wet mixing, and the method disclosed in the art is not limited.
  • the present invention provides another method for producing a lithium cobalt doping oxide of the core-shell structure of the positive electrode active material, specifically the manufacturing method,
  • lithium of the core-shell structure by mixing three kinds of dopant precursors independently of the core particles, the cobalt precursors, the lithium precursors, and the process (i), followed by secondary firing to form a shell on the surface of the core particles.
  • a cobalt precursor, a lithium precursor, and a dopant precursor are mixed and fired at the same time from the core to the shell, so that the lithium cobalt doped oxide may be manufactured by a simpler method.
  • the content of the dopant precursors, cobalt precursor, and lithium precursor may be determined in consideration of the final product.
  • the mixing ratio of the dopant precursors in steps (i) and (iii) may be set to satisfy the condition (1).
  • the mixing ratio of the three types of dopant precursors is determined to satisfy the conditions (2) and (3). Can be done.
  • the cobalt precursor may be cobalt oxide, for example, Co 3 O 4
  • the dopant precursor may be a metal, a metal oxide or a metal salt for the dopant
  • the lithium precursor may also be one or more selected from the group consisting of, but not limited to, LiOH and Li 2 CO 3 .
  • the dopants of the three kinds of dopant precursors may have different oxidation numbers from each other, in more detail, in order to achieve improved structural stability in various ways at high voltage, and more specifically, +2 is the oxidation number.
  • +2 is the oxidation number.
  • the primary firing to obtain a lithium cobalt doping oxide of the core is performed for 8 to 12 hours at a temperature of 850 to 1100
  • the secondary firing for forming a shell is 5 to 12 at a temperature of 700 to 1100 Time can be performed.
  • the lithium source When the primary firing is performed at an excessively low temperature outside the above range or when performed for an excessively short time, the lithium source may not sufficiently penetrate and the cathode active material may not be stably formed. In the case of being carried out for an excessively high temperature or for an excessively long time, the physical and chemical properties of the doped lithium cobalt oxide may be changed, which may cause performance deterioration.
  • the precursors constituting the shell may remain between the positive electrode active materials without reacting, causing performance degradation of the battery.
  • the dopant component of the shell may be doped into the core portion, in which case the conditions (1) to (3 Difficulty in making it satisfactory) is undesirable.
  • the resulting lithium-cobalt-doped oxide of the core-shell structure satisfies the above conditions (a) or (b), thereby exhibiting the intended effect of the present invention.
  • the present invention also provides a positive electrode on which a positive electrode mixture including the positive electrode active material, the conductive material, and the binder is applied to a current collector. If necessary, the positive electrode mixture may further include a filler.
  • the positive electrode current collector is generally manufactured in a thickness of 3 to 500 ⁇ m, and is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • stainless steel, aluminum, nickel, titanium , And one selected from surface treated with carbon, nickel, titanium, or silver on the surface of aluminum or stainless steel may be used, and in detail, aluminum may be used.
  • the current collector may form fine irregularities on its surface to increase the adhesion of the positive electrode active material, and may be in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the conductive material is typically added in an amount of 1 to 30% by weight based on the total weight of the positive electrode mixture including the positive electrode active material.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the binder is a component that assists the bonding of the active material and the conductive material to the current collector, and is generally added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers, and the like.
  • the filler is optionally used as a component for inhibiting expansion of the positive electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
  • the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
  • the present invention also provides a secondary battery comprising the positive electrode, specifically, the secondary battery comprising the positive electrode, the negative electrode and the electrolyte.
  • the type of the secondary battery is not particularly limited, but as a specific example, the secondary battery may be a lithium secondary battery such as a lithium ion battery, a lithium ion polymer battery, or the like having advantages such as high energy density, discharge voltage, and output stability.
  • a lithium secondary battery is composed of a positive electrode, a negative electrode, a separator, and a lithium salt-containing nonaqueous electrolyte.
  • the negative electrode is manufactured by coating and drying a negative electrode active material on a negative electrode current collector, and optionally, the components as described above may optionally be further included.
  • the negative electrode current collector is generally made to a thickness of 3 to 500 micrometers.
  • the negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • a surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper, or stainless steel may be used.
  • Surface-treated with carbon, nickel, titanium, silver and the like, aluminum-cadmium alloy and the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the negative electrode active material may be, for example, carbon such as hardly graphitized carbon or graphite carbon; Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1 - x Me ' y O z (Me: Mn, Fe, Pb, Ge; Me' Metal complex oxides such as Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, halogen, 0 ⁇ x ⁇ 1; 1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8); Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 , and metal oxides such as Bi 2
  • the separator is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
  • the pore diameter of the separator is generally from 0.01 to 10 micrometers, the thickness is generally from 5 to 30 micrometers.
  • olefin polymers such as chemical resistance and hydrophobic polypropylene; Sheets or non-woven fabrics made of glass fibers or polyethylene are used.
  • a solid electrolyte such as a polymer
  • the solid electrolyte may also serve as a separator.
  • the electrolyte may be a lithium salt-containing non-aqueous electrolyte, the lithium salt-containing non-aqueous electrolyte is composed of a non-aqueous electrolyte and a lithium salt, the non-aqueous organic solvent, an organic solid electrolyte, an inorganic solid electrolyte and the like are used, but these It is not limited only.
  • non-aqueous organic solvent examples include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and gamma Butyl lactone, 1,2-dimethoxy ethane, tetrahydroxyfuran, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolon, formamide, dimethylformamide, dioxolon, acetonitrile Nitromethane, methyl formate, methyl acetate, triester phosphate, trimethoxy methane, dioxoron derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, Aprotic organic solvents such as tetrahydrofuran derivatives, ethers, methyl pyroionate and ethyl propionate can be used.
  • organic solid electrolyte examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyagitation lysine, polyester sulfides, polyvinyl alcohols, polyvinylidene fluorides, and ions. Polymerizers containing a sex dissociation group and the like can be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates and the like of Li, such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , and the like, may be used.
  • the lithium salt is a good material to be dissolved in the nonaqueous electrolyte, and for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, chloroborane lithium, lower aliphatic lithium carbonate, lithium tetraphenylborate, imide and the like can be used.
  • pyridine triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, Nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxy ethanol, aluminum trichloride and the like may be added.
  • pyridine triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide
  • Nitrobenzene derivatives sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyr
  • a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics, and FEC (Fluoro-Ethylene) may be further included. Carbonate), PRS (Propene sultone) may be further included.
  • lithium salts such as LiPF 6 , LiClO 4 , LiBF 4 , LiN (SO 2 CF 3 ) 2, and the like, may be prepared by cyclic carbonate of EC or PC, which is a highly dielectric solvent, and DEC, DMC, or EMC, which are low viscosity solvents.
  • Lithium salt-containing nonaqueous electrolyte can be prepared by adding to a mixed solvent of linear carbonate.
  • FIG. 1A and 1B are graphs showing capacity retention rates when the upper limit voltage was charged to 4.55 V at 25 ° C. according to Experimental Example 1.
  • FIG. 1A and 1B are graphs showing capacity retention rates when the upper limit voltage was charged to 4.55 V at 25 ° C. according to Experimental Example 1.
  • Lithium cobalt-doped oxide Li 1.02 Co 0.944 Mg 0.006 Al 0.04 Ti 0.01 O 2 is doped with Li 1 . 02 Co 0 . 94 Mg 0 . 04 Al 0 . 01 Ti 0 .
  • a cathode active material having a core-shell structure formed on a core of 01 O 2 was prepared.
  • Lithium cobalt doped oxides doped with Mg, Al, and Ti were calcined for a period of time Li 1.02 Co 0.977 Mg 0.008 Al 0.01 Ti 0.005 O 2 to Li 1 . 02 Co 0 . 96 Mg 0 . 03 Al 0 . 005 Ti 0 .
  • a cathode active material having a core-shell structure formed on a core of 005 O 2 was prepared.
  • the lithium cobalt doped oxide prepared in Example 3 After mixing 0.05% by weight of Al 2 O 3 having an average particle diameter of 50 nm to the lithium cobalt doped oxide prepared in Example 3 based on the total mass of the positive electrode active material, it was calcined at 570 for 6 hours to obtain 500 ppm of aluminum. The coating layer of was formed. At this time, the aluminum coating layer was formed to an average thickness of approximately 50 nm.
  • Lithium cobalt-doped oxide Li 1.02 Co 0.944 Mg 0.004 Al 0.01 Ti 0.02 O 2 was Li 1 . 02 Co 0 . 94 Mg 0 . 04 Al 0 . 01 Ti 0 .
  • a cathode active material having a core-shell structure formed on a core of 01 O 2 was prepared.
  • Li cobalt-doped oxide Li 1.02 Co 0.957 Mg 0.013 Al 0.02 Ti 0.01 O 2 was Li 1 . 02 Co 0 . 944 Mg 0 . 006 Al 0 . 04 Ti 0 .
  • a cathode active material having a core-shell structure formed on a core of 01 O 2 was prepared.
  • Li cobalt-doped oxide Li 1.02 Co 0.97 Mg 0.02 Al 0.005 Ti 0.005 O 2 was Li 1 . 02 Co 0 . 98 Mg 0 . 005 Al 0 . 01 Ti 0 .
  • a cathode active material having a core-shell structure formed on a core of 005 O 2 was prepared.
  • Table 1 shows the average oxidation number (up to the first decimal point) and the ratios of the doping elements of Examples 1 to 4 and Comparative Examples 1 to 4.
  • Tables 2 and 3 show the amounts and content ratios of the doping elements of Examples 1 to 4 and Comparative Examples 1 to 4.
  • Oxide particles prepared in Examples 1 and 3 and Comparative Examples 1 to 4 were used as positive electrode active materials, and natural graphite was used as a binder and PVdF.
  • the capacity retention rate of a battery using the positive electrode active material of the embodiment according to the present invention shows a capacity retention rate of 90% or more, whereas the capacity of the battery using the positive electrode active material of the comparative examples does not satisfy any conditions.
  • the maintenance rate is about 85% or less, so the life characteristics are not good, so that the embodiments satisfying the conditions of the present invention can be seen that the high voltage high temperature life characteristics are higher, which can be expected to accelerate the difference as the cycle progresses. .
  • the positive electrode active material according to the present invention three kinds of dopants are independently doped to the lithium cobalt doping oxide of the core and the lithium cobalt doping oxide of the shell, and the average oxidation ratio of the doped dopants is as follows.
  • the structural stability of the crystal structure is improved and the crystal structure is maintained even in the operating voltage range of more than 4.5V, which shows the high high voltage characteristic and the effect of improving the life characteristic by maintaining the structural stability even at high temperature. have.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 코어-쉘 구조의 리튬 코발트 도핑 산화물을 포함하는 리튬 이차전지용 양극 활물질로서, 상기 코어의 리튬 코발트 도핑 산화물과 쉘의 리튬 코발트 도핑 산화물은 각각 서로 독립적으로 3 종류의 도펀트들을 포함하고, 특정 조건을 만족하는 양극 활물질, 이를 제조하는 방법, 및 상기 양극 활물질을 포함하는 양극 및 이차전지에 관한 것이다.

Description

코어-쉘 구조의 리튬 코발트 산화물을 포함하는 리튬 이차전지용 양극 활물질, 이를 제조하는 방법, 및 상기 양극 활물질을 포함하는 양극 및 이차전지
관련 출원(들)과의 상호 인용
본 출원은 2017년 1월 31일자 한국 특허 출원 제10-2017-0013613호 및 제10-2017-0013649호에 기초한 복합 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 코어-쉘 구조의 리튬 코발트 산화물을 포함하는 리튬 이차전지용 양극 활물질 및 이를 제조하는 방법에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차전지 중 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
또한, 환경문제에 대한 관심이 커짐에 따라 대기오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석연료를 사용하는 차량을 대체할 수 있는 전기자동차, 하이브리드 전기자동차에 대한 연구가 많이 진행되고 있다. 이러한 전기자동차, 하이브리드 전기자동차 등의 동력원으로는 주로 니켈 수소금속 이차전지가 사용되고 있지만, 높은 에너지 밀도와 방전 전압의 리튬 이차전지를 사용하는 연구가 활발히 진행되고 있으며, 일부 상용화 단계에 있다.
현재 리튬 이차전지의 양극재로는 LiCoO2, 삼성분계(NMC/NCA), LiMnO4, LiFePO4 등이 사용되고 있다. 이중에서 LiCoO2의 경우, 높은 압연밀도 등의 장점 또한 분명히 존재하기 때문에 현재까지도 LiCoO2가 다수 사용되고 있는 편이며, 고용량 이차전지를 개발하기 위해 사용전압을 상승시키기 위한 연구가 진행되고 있는 실정이다. 그러나, LiCoO2는 충방전 전류량이 약 150 mAh/g 정도로 낮으며, 4.3V 이상의 전압에서는 결정구조가 불안정하여 수명 특성이 급격히 저하되는 문제가 있고, 전해액과의 반응에 의한 발화의 위험성을 가지고 있다.
이를 해결하기 위해, 종래에는 상기 LiCoO2에 Al, Ti, Mg, Zr과 같은 금속을 도핑하거나, LiCoO2의 표면에 Al, Ti, Mg, Zr과 같은 금속을 코팅하는 기술이 사용되기도 하나, 그러나, 이러한 선행기술들은 모두 도핑 원소를 50ppm ~ 8000ppm 이내로 도핑하는 방법만을 개시하고 있어, 4.5V 초과의 고전압에서는 여전히 구조적 안정성을 유지하지 못하는 문제가 있었고, 상기 금속으로 이루어진 코팅층의 경우, 충방전시 Li 이온의 이동을 방해하거나, LiCoO2의 용량을 감소시켜, 오히려 이차전지의 성능을 저하시키고, 고온 및 고전압에서의 안정성 및 수명 특성에 여전히 문제가 있었다.
따라서, 고온 및 고전압 환경에서도 수명특성이 높고 안정성이 강화된 리튬 코발트 산화물 기반의 양극 활물질 개발의 필요성이 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 이후 설명하는 바와 같이, 코어의 리튬 코발트 도핑 산화물과 쉘의 리튬 코발트 도핑 산화물에 각각 독립적으로 도핑된 3 종류의 도펀트들을 포함하고, 상기 도펀트들이 특정 조건을 만족하는 경우, 4.5V 초과의 작동전압 범위에서도 결정 구조의 구조적 안정성이 향상되어 결정 구조가 유지되는 바, 높은 고전압 특성을 나타냄을 발견하고 본 발명을 완성하기에 이르렀다.
따라서, 본 발명에 따른 이차전지용 양극 활물질은, 코어-쉘 구조의 리튬 코발트 도핑 산화물을 포함하는 리튬 이차전지용 양극 활물질로서,
상기 코어의 리튬 코발트 도핑 산화물과 쉘의 리튬 코발트 도핑 산화물은 각각 서로 독립적으로 3 종류의 도펀트들을 포함하고, 하기 (a) 또는 (b)를 만족하는 것을 특징으로 한다.
(i) 상기 코어에 존재하는 도펀트들의 평균 산화수와, 쉘에 존재하는 도펀트들의 평균 산화수의 비율이 하기 조건 (1)을 만족하거나;
0.7 ≤ t(비율) = OC/OS < 0.95 (1)
여기서, 상기 OC는 코어에 존재하는 도펀트들의 평균 산화수이고, OS는 쉘에 존재하는 도펀트들의 평균 산화수이다.
(ii) 상기 코어의 도펀트들은, +2가 산화수의 금속(M1), +3가 산화수의 금속(M2), 및 +4가 산화수의 금속(M3)이며, 상기 M1, M2, 및 M3의 함량은 몰비를 기준으로 하기 조건 (2)를 만족하고; 상기 쉘의 도펀트들은, +2가 산화수의 금속(M1'), +3가 산화수의 금속(M2'), 및 +4가 산화수의 금속(M3')이며, 상기 M1', M2', 및 M3'의 함량은 몰비를 기준으로 하기 조건 (3)을 만족한다.
2 ≤ r(몰비) = CM1/(CM2+CM3) ≤ 3 (2)
0.5 ≤ r'(몰비) = CM1'/(CM2'+CM3') < 2 (3)
여기서, 상기 CM1은 M1의 함량, CM2는 M2의 함량, CM3는 M3의 함량, CM1'은 M1'의 함량, CM2'는 M2'의 함량, CM3'는 M3의' 함량이다.
일반적으로 양극 활물질로서 4.35V, 4.4V, 4.45V의 전지 구동을 위한 리튬 코발트 산화물을 고전압으로 사용하는 경우, 리튬 코발트 산화물은 Al, Ti, Zr, Mg, P, Ca, F, Co 등의 도핑 또는 코팅으로 고전압 환경에서 구조적인 내구성 및 표면 안정성을 구현하였었다. 구체적으로, 리튬 코발트 산화물은 본질적인 특성으로 LixCoO2에서 x < 50인 상황에서 Co3 + 가 Co4 + 로 산화되면서, 작은 Co4 + 의 이온 반경으로 인해 구조적인 스트레스가 증가하고, 계속하여 충전함으로써 x = 20 부근까지 감소하면 코인 하프셀 전압 기준 4.53V 영역에서 O3 구조에서 H1-3 구조로의 구조변화가 발생한다. 이러한 구조변화는 충, 방전시 비가역적으로 발생되면서 4.55V 이상에서 효율, 방전 율 특성, 및 수명 특성의 열위가 두드러지게 확인된다. 물론, 기존의 4.2V에서 4.45V의 셀 개발에서는 O3 구조서부터 큰 변화 없이 충 방전이 이루어졌으나(물론, mono-clinic 상으로의 변화가 있으나 이는 가역적이며 수명에는 영향이 없다), 4.5V 이상의 전지 구동을 위해서는 상기 H1-3으로의 구조 변화를 막아야 하는 문제가 발생한다.
이에, 본 출원의 발명자들은 심도 있는 연구를 거듭한 끝에, 코어-쉘 구조의 리튬 코발트 도핑 산화물로서, 코어의 리튬 코발트 도핑 산화물과 쉘의 리튬 코발트 도핑 산화물이 각각 서로 다른 산화수를 가지는 3 종류의 도펀트를 가지면서 이들의 평균 산화수를 조절하여 코어와 쉘에 도핑된 도펀트들의 평균 산화수비가 상기 범위를 가지도록 하여 조건 (1)을 만족하거나, 도펀트들의 함량비를 조절하여 조건 (2) 및 (3)을 만족하도록 하는 경우에는, 고온, 고전압 하에서 표면 구조 변화를 억제하여 양극 활물질 입자의 구조적 안정성을 향상시킴으로써 수명 특성이 현저히 향상되는 것을 밝혀내었다.
본 출원의 명세서에서, 구동 전압은 하프 코인 셀 기준으로 작성되었다.
여기서, 상기 t(비율)이 조건 (1)의 범위를 벗어나고, 상기 r(몰비) 또는 r'(몰비)이 조건 (2) 또는 조건(3)를 벗어나는 경우, 비가역적인 결정구조의 변화가 많이 일어나며, 이에 수명 특성에 있어서도 열위가 나타나는 바, 본원발명이 소망하는 효과를 얻을 수 없다.
더욱 상세하게는, 상기 조건 (1)의 t(비율)은 0.8 ≤ t < 0.95의 조건을 만족할 수 있고, 조건 (2) 및 (3)의 r(몰비)는 2 ≤ r ≤ 2.5를, r'(몰비)는 0.5 ≤ r'≤ 1.5의 조건을 만족할 수 있다.
이러한 조건을 만족하는 코어-쉘 구조의 리튬 코발트 도핑 산화물은, 만충전시의 양극 전위가 Li 전위 기준으로 4.5V 초과인 범위에서, 상변화 없이 결정구조가 유지될 수 있다.
먼저, 상기 코어의 리튬 코발트 도핑 산화물은 하기 화학식 1의 조성을 가질 수 있다.
LiaCo1-x-y-zM1xM2yM3zO2 (1)
상기 식에서,
M1, M2 및 M3은 서로 독립적으로 Ti, Mg, Al, Zr, Ba, Ca, Ta, Nb, Mo, Ni, Zn, Si, V 및 Mn로 이루어진 군에서 선택되는 1종의 원소이고;
0.95≤a≤1.05;
0<x≤0.04, 0<y≤0.04, 및 0<z≤0.04이다.
유사하게, 상기 쉘의 리튬 코발트 도핑 산화물은 하기 화학식 2의 조성을 가질 수 있다.
LibCo1-s-t-wM1'sM2'tM3'wO2 (1)
상기 식에서,
M1', M2' 및 M3'은 서로 독립적으로 Ti, Mg, Al, Zr, Ba, Ca, Ta, Nb, Mo, Ni, Zn, Si, V 및 Mn로 이루어진 군에서 선택되는 1종의 원소이고;
0.95≤b≤1.05;
0<s≤0.04, 0<t≤0.04, 및 0<w≤0.04이다.
상세하게는, 0<x≤0.02, 0<y≤0.02, 및 0<z≤0.02, 0<s≤0.02, 0<t≤0.02, 및 0<w≤0.02일 수 있다.
즉, 상기 화학식에서 보는 바와 같이, 코어와 쉘의 조성식은 모두, 3 종류의 도펀트들이 코발트 자리에 도핑된 형태로, 그 도핑원소의 종류 및 도핑량에 있어서도 크게 다르지 않다. 다만, 본 발명에 따른 코어-쉘 구조의 리튬 코발트 도핑 산화물이 (b)의 조건 (2) 및 (3)을 만족하는 경우, 그 함량비에 있어서, 코어가 쉘보다 +2가 대비 +3가 및 +4가의 함량이 더 많은 구성을 가진다.
따라서, 상기에서 볼 수 있듯이, 상기 쉘의 개념은 코어와 구분하여 완전히 독립된 다른 상이 아니라, 조성 및/또는 함량이 변하여 표면 도핑된 것과 같은 개념이라고 볼 수 있어, 코어와 쉘을 구분할 수 있는 정도라면 표면 도핑된 구성도 본 발명의 범주에 포함된다.
이때. 코어와 구분되는 조성에 차이가 있는 쉘의 두께는, 50 내지 2000 nm, 상세하게는, 50 내지 200 nm일 수 있다.
상기 범위를 벗어나, 쉘의 두께가 너무 두꺼운 경우에는, 저항이 큰 쉘의 영향으로 저항이 클 수 있으며, Li 이온 이동통로의 단절로 인해 저항 및 율 특성에서 부정적일 수 있는 문제가 있고, 쉘의 두께가 너무 얇은 경우에는, 쉘에 의한 고전압 안정성을 보장받지 못할 수 있는 바, 바람직하지 않다.
한편, 상기 코어와 쉘의 코발트 자리에 치환되는 도펀트들의 종류는 전체가 동일할 수도(M1=M1', M2=M2', M3=M3'), 상이(M1≠M1'≠M2≠M2'≠M3≠M3')할 수도 있으며, 일부가 동일, 예를 들어, M1=M1', M2=M2', M3≠M3'할 수도 있고, 어떠한 조합도 가능하며 상기 예로 한정되는 것은 아니다.
또한, 상기 도펀트들은 화학식 1 및 2에서 나열된 것과 같은 도펀트들 중에서 선택되는 것으로, 상세하게는, 코어와 쉘의 코발트 자리에 치환되는 각각의 도펀트들은 서로 다른 산화수를 가질 수 있으며, 상세하게는, M1 및 M1'는 +2가 산화수의 금속이고, M2 및 M2'는 +3가 산화수의 금속이며, 및 M3 및 M3'는 +4가 산화수의 금속일 수 있다.
이와 같이, 코어와 쉘에 도핑되는 도펀트들이 +2, +3, +4가 산화수를 모두 가지도록, 함께 도핑되는 다른 원소들과 서로 상이한 산화수를 가지는 경우에 본원발명이 의도한 구조적 안정성에 더욱 유리하다.
구체적으로, +2가 산화수의 금속은, 도핑된 금속이 Co3 +보다 먼저 산화되어, Co4 +로의 산화를 방지하여 구조적인 스트레스 발생을 막아 구조적 안정성을 향상시킬 수 있고, +3가 산화수의 금속은 Co4 +로 산화된 코발트를 대신하여 구조를 유지시키는 역할과 함께 표면 안정성도 향상시키며, +4가 산화수의 금속은 고온 및 고전압 하에서, 표면 구조 변화를 억제하고, 리튬 이온의 이동을 상대적으로 용이하게 하여 이차전지의 출력 특성 저하를 방지한다. 이와 같은 도펀트들의 조합에 의해 본 발명에 따른 리튬 코발트 도핑 산화물은 4.5V 초과의 작동범위에서도 구조적 안정성을 유지할 수 있다.
즉, 상기 각각에 도핑되는 서로 다른 산화수를 가지는 도펀트들은 리튬 코발트 산화물의 코발트 자리를 일부 치환되어 각각의 시기와 상황에 맞게 구조적 안전성을 향상시키는 역할을 수행한다.
이때, +2가 산화수의 금속 M1 및 M1'은 각각 독립적으로 Mg, Ca, Ni 및 Ba로 이루어진 군에서 선택되는 1종의 원소이고; 상기 +3가 산화수의 금속 M2 및 M2'은 각각 독립적으로 Ti, Al, Ta 및 Nb으로 이루어진 군에서 선택되는 1종의 원소이며; 상기 +4가 산화수의 금속 M3 및 M3'은 각각 독립적으로 Ti, Ta, Nb, Mn 및 Mo으로 이루어진 군에서 선택되며 M2 및 M2'와 다른 원소일 수 있고, 더욱 상세하게는, +2가 산화수의 금속(M1)은 Mg이고, 상기 +3가 산화수의 금속(M2)은 Ti 또는 Al이며, 상기 +4가 산화수의 금속(M3)은 Ti, Nb 또는 Mo일 수 있다.
더욱이, 이러한 도펀트들이 모두 과량으로 포함된다고 해서 구조적 안정성이 계속 증가하는 것은 아니고, 도핑되는 도펀트들의 총 함량이 코어 및 쉘에 각각에서 몰비를 기준으로 12%, 상세하게는 6%를 넘지 않으면서, 코어와 쉘의 평균 산화수비가 상기 조건(1)을 만족하거나, 함량비가 상기 조건(2) 및 조건(3)을 만족하는 경우에 향상된 구조적 안정성을 발휘할 수 있음은 상기에서 설명한 바와 같다.
한편, 상기 각각의 도펀트들은, 한정되지는 아니하나, 입자 내에서 국부적인 구조 변화를 방지하기 위해 리튬 코발트 도핑 산화물의 코어 및 쉘 전체적으로 균일하게 도핑될 수 있다.
또한, 상기 리튬 코발트 도핑 산화물의 표면 구조 안정화를 더욱 향상시키기 위해서, 상기 리튬 코발트 도핑 산화물의 표면에는, 50 nm 내지 100 nm 두께의 Al2O3이 코팅되어 있을 수 있다.
또한, 본 발명은 상기 양극 활물질의 코어-쉘 구조의 리튬 코발트 도핑 산화물을 제조하는 방법을 제공하고, 상기 제조 방법은,
(i) 3 종류의 도펀트들을 포함하는 도핑 코발트 전구체를 공침에 의해 제조하는 과정; 및
(ii) 상기 도핑 코발트 전구체와 리튬 전구체를 혼합하고, 1차 소성하여 코어 입자를 제조하는 과정; 및
(iii) 상기 코어 입자, 코발트 전구체, 리튬 전구체, 및 3 종류의 도펀트 전구체들을 혼합하고, 2차 소성하여 코어 입자 표면에 쉘을 형성함으로써 코어-쉘 구조의 리튬 코발트 도핑 산화물을 제조하는 과정;
을 포함할 수 있다.
상기 제조방법에 따르면, 상기 코어-쉘 구조의 리튬 코발트 도핑 산화물은 먼저, 코어의 제조를 위해, 도펀트를 포함하는 도핑 코발트 전구체를 공침에 의해 제조하고, 이후에 도핑 코발트 전구체와 리튬 전구체를 소성하는 과정을 거치는 바, 코어 제조시 코발트 전구체 자체에 도핑이 이루어진 후, 리튬 전구체와 반응하여 생성되므로 도펀트가 코발트 내에 고르게 분포한 상태로 리튬 전구체와 반응할 수 있고, 부생성물이 적어 본원발명이 얻고자 하는 도펀트들을 포함하는 리튬 코발트 도핑 산화물의 수득률이 높다.
여기서, 상기 과정(i)에서, 도펀트 원소를 포함하는 염들과 코발트염을 물에 용해시킨 후, 용액을 염기성 분위기로 전환하여, 공침에 의해 도핑 코발트 전구체로서 도핑 코발트 산화물을 제조할 수 있다. 이때, 상기 도펀트 원소를 포함하는 염들의 함량과 코발트염의 함량은 최종 생성물인 코어의 조성을 고려하여 혼합비를 결정할 수 있다.
특히, 상기 (b)의 조건 (2) 및 (3)을 만족하도록 설계되는 경우에는, 상기 과정(i)의 도펀트 원소를 포함하는 염들은 각각 +2가 산화수의 금속(M1)을 포함하는 염, +3가 산화수의 금속(M2)을 포함하는 염, 및 +4가 산화수의 금속(M3)을 포함하는 염이며, 상기 염들의 혼합비는 하기 조건 (2)를 만족하도록 정해질 수 있다.
2 ≤ r(몰비) = CM1/(CM2+CM3) ≤ 3 (1)
여기서, CM1은 M1의 함량, CM2는 M2의 함량, CM3는 M3의 함량이다.
상기 과정(i)의 도핑 코발트 전구체를 제조하기 위한 상기 도펀트 원소를 포함하는 염들과 코발트염들은 공침 과정을 수행할 수 있는 형태라면 한정되지 아니하고, 예를 들어, 탄산염, 황산염, 또는 질산염의 형태일 수 있고, 상세하게는, 황산염일 수 있다.
상기 과정(iii)에서 코발트 전구체, 리튬 전구체, 및 3 종류의 도펀트 전구체의 함량은, 쉘의 조성을 고려하여 혼합비를 결정할 수 있다.
특히, 상기 (b)의 조건 (2) 및 (3)을 만족하도록 설계되는 경우에는, 상기 과정(iii)의 3 종류의 도펀트 전구체들은, +2가 산화수의 금속(M1')을 포함하는 전구체, +3가 산화수의 금속(M2')을 포함하는 전구체, 및 +4가 산화수의 금속(M3')을 포함하는 전구체이며, 상기 전구체들의 혼합비는 하기 조건 (2)을 만족하도록 정해질 수 있다.
0.5 ≤ r(몰비) = CM1'/(CM2'+CM3') < 2 (2)
여기서, CM1'은 M1'의 함량, CM2'는 M2'의 함량, CM3'는 M3'의 함량이다.
한편, 상기 (a)의 조건 (1)을 만족하도록 설계되는 경우에는, 과정(i) 및 (iii)에서 상기 도펀트들이 조건 (1)을 만족하도록 혼합될 수 있다.
더 나아가, 리튬 코발트 도핑 산화물에 추가적인 금속 코팅을 위해서는 예를 들어, Al2O3 등의 산화물을 건식 또는 습식 혼합하여 가능하고, 당업계에 개시된 방법이라면 한정되지 아니한다.
또한, 본 발명은, 상기 양극 활물질의 코어-쉘 구조의 리튬 코발트 도핑 산화물을 제조하는 또 하나의 방법을 제공하고, 구체적으로 상기 제조방법은,
(i) 코발트 전구체, 리튬 전구체, 및 3 종류의 도펀트 전구체를 혼합하고, 1차 소성하여 코어 입자를 제조하는 과정; 및
(ii) 상기 코어 입자, 코발트 전구체, 리튬 전구체, 및 상기 과정(i)과는 독립적으로 3 종류의 도펀트 전구체들을 혼합하고, 2차 소성하여 코어 입자 표면에 쉘을 형성함으로써 코어-쉘 구조의 리튬 코발트 도핑 산화물을 제조하는 과정;
을 포함할 수 있다.
상기 제조방법에 따르면, 상기 코어부터 쉘까지 코발트 전구체와 리튬 전구체, 및 도펀트 전구체들을 한꺼번에 혼합하여 소성하여 제조하는 바, 보다 간편한 방법으로, 리튬 코발트 도핑 산화물을 제조할 수 있다.
이때, 상기 각각의 단계에서, 도펀트 전구체들, 코발트 전구체, 및 리튬 전구체의 함량은 최종 생성물을 고려하여 혼합비를 결정할 수 있다.
특히, 상기 (a)의 조건 (1)을 만족하도록 설계되는 경우에는, 과정(i) 및 (iii)에서 상기 도펀트 전구체들의 혼합비는 상기 조건 (1)을 만족하도록 설정될 수 있다.
또는, 상기 (b)의 조건 (2) 및 (3)을 만족하도록 설계되는 경우에는, 상기 각각의 단계에서, 3종류의 도펀트 전구체들의 혼합비는 상기 조건 (2)및 (3)을 만족하도록 정해질 수 있다.
한편, 상기 어느 방법에 의해서도 본원발명의 코어-쉘 구조의 리튬 코발트 도핑 산화물을 제조하는 것은 가능하며, 여기서, 상기 코발트 전구체는 코발트 산화물, 예를 들어, Co3O4일 수 있고, 상기 도펀트 전구체들은 도펀트용 금속, 금속 산화물 또는 금속염일 수 있으며, 상기 리튬 전구체 역시, 한정되지 아니하나, 상세하게는, LiOH, 및 Li2CO3로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기에서 설명한 바와 같이, 3 종류의 도펀트 전구체들의 도펀트들은, 고전압에서 다양한 방법으로, 보다 향상된 구조적 안정성을 발휘하기 위해서는 상세하게는, 서로 상이한 산화수를 가질 수 있고, 더욱 상세하게는, +2가 산화수의 금속, +3가 산화수의 금속, 및 +4가 산화수의 금속일 수 있다.
한편, 코어의 리튬 코발트 도핑 산화물을 얻기 위한 상기 1차 소성은 850 내지 1100의 온도에서 8 시간 내지 12 시간 수행되고, 쉘을 형성하기 위한 상기 2차 소성은 700 내지 1100의 온도에서 5 시간 내지 12 시간 수행될 수 있다.
상기 1차 소성이 상기 범위를 벗어나 지나치게 낮은 온도에서 수행되거나, 지나치게 짧은 시간 동안 수행될 경우에는 수행될 경우에는, 리튬 소스가 충분히 침투하지 못하여 상기 양극 활물질이 안정적으로 형성되지 못할 수 있고, 이와 반대로, 상기 범위를 벗어나 지나치게 높은 온도, 또는 지나치게 긴 시간 동안 수행될 경우에는, 상기 도핑이 이루어진 리튬 코발트계 산화물의 물리적, 화학적 특성을 변화시켜, 오히려 성능 저하를 유발할 수 있어 바람직하지 않다.
유사하게, 상기 2차 소성이 상기 범위를 벗어나 지나치게 낮은 온도, 또는 지나치게 짧은 시간 동안 수행될 경우에는, 쉘을 이루는 전구체들이 반응하지 못한 채로 양극 활물질 사이에 잔류하여 전지의 성능 저하를 유발할 수 있고, 이와 반대로, 상기 2차 소성이 상기 범위를 벗어나 지나치게 높은 온도, 또는 너무 긴 시간 동안 수행될 경우에는, 쉘의 도펀트 성분이 코어부로 도핑이 될 수 있고, 이 경우, 상기 조건 (1) 내지 (3)을 만족하도록 제조하는데 어려움이 있는 바, 바람직하지 않다.
이러한 결과로 얻어지는 코어-쉘 구조의 리튬 코발트 도핑 산화물은, 상기 (a) 또는 (b)의 조건들을 만족하여, 본 발명이 의도한 효과를 발휘한다.
본 발명은 또한, 상기 양극 활물질, 도전재, 및 바인더를 포함하는 양극 합제가 집전체에 도포되어 있는 양극을 제공한다. 필요에 따라서는 상기 양극 합제는 충진제를 더 포함할 수 있다.
상기 양극 집전체는 일반적으로 3 ~ 500 ㎛의 두께로 제조되며, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티타늄, 및 알루미늄이나 스테인레스 스틸의 표면에 카본, 니켈, 티타늄 또는 은으로 표면처리 한 것 중에서 선택되는 하나를 사용할 수 있고, 상세하게는 알루미늄이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
상기 양극활물질은, 예를 들어, 상기 양극활물질 입자 외에, 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1 + xMn2 - xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiV3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1 - xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2 -xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등으로 구성될 수 있으며, 이들만으로 한정되는 것은 아니다.
상기 도전재는 통상적으로 양극 활물질을 포함한 양극 합제 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
본 발명은 또한, 상기 양극을 포함하는 이차전지, 구체적으로, 상기 양극과 음극 및 전해액을 포함하는 것을 특징으로 하는 이차전지를 제공한다. 상기 이차전지는 그것의 종류가 특별히 한정되는 것은 아니지만, 구체적인 예로서, 높은 에너지 밀도, 방전 전압, 출력 안정성 등의 장점을 가진 리튬이온 전지, 리튬이온 폴리머 전지 등과 같은 리튬 이차전지일 수 있다.
일반적으로, 리튬 이차전지는 양극, 음극, 분리막, 및 리튬염 함유 비수 전해액으로 구성되어 있다.
이하에서는, 상기 리튬 이차전지의 기타 성분에 대해 설명한다.
상기 음극은 음극 집전체 상에 음극 활물질을 도포, 건조하여 제작되며, 필요에 따라, 앞서 설명한 바와 같은 성분들이 선택적으로 더 포함될 수도 있다.
상기 음극 집전체는 일반적으로 3 내지 500 마이크로미터의 두께로 만들어진다. 이러한 음극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질은, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1 - xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료 등을 사용할 수 있다.
상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 마이크로미터고, 두께는 일반적으로 5 ~ 30 마이크로미터다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
상기 전해액은 리튬염 함유 비수 전해질일 수 있고, 상기 리튬염 함유 비수 전해질은 비수 전해질과 리튬염으로 이루어져 있으며, 상기 비수 전해질로는 비수계 유기용매, 유기 고체 전해질, 무기 고체 전해질 등이 사용되지만 이들만으로 한정되는 것은 아니다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시푸란, 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 설파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합제 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 비수 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene sultone) 등을 더 포함시킬 수 있다.
하나의 구체적인 예에서, LiPF6, LiClO4, LiBF4, LiN(SO2CF3)2 등의 리튬염을, 고유전성 용매인 EC 또는 PC의 환형 카보네이트와 저점도 용매인 DEC, DMC 또는 EMC의 선형 카보네이트의 혼합 용매에 첨가하여 리튬염 함유 비수 전해질을 제조할 수 있다.
도 1a 및 1b는 실험예 1에 따른 25℃에서 상한 전압을 4.55V로 충전한 때의 용량 유지율을 나타내는 그래프이다.
이하에서는, 본 발명의 실시예를 참조하여 설명하지만, 이는 본 발명의 더욱 용이한 이해를 위한 것으로, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
코어의 제조
<제조예 1>
MgO 4mol, Al2O3 1mol, TiO2 1mol 조성을 가지도록 Co3O4, 및 Li2CO3을 건식 혼합한 후, 노에서 1,050에서 10시간 동안 소성하여 Mg, Al, Ti가 도핑된 리튬 코발트 도핑 산화물 Li1 . 02Co0 . 94Mg0 . 04Al0 . 01Ti0 . 01O2을 제조하였다.
<제조예 2>
MgO 0.6mol, Al2O3 4mol, TiO2 1mol 조성을 가지도록 Co3O4, Li2CO3을 건식 혼합한 후, 노에서 1,050에서 10시간 동안 소성하여 Mg, Al, Ti가 도핑된 리튬 코발트 도핑 산화물 Li1 . 02Co0 . 944Mg0 . 006Al0 . 04Ti0 . 01O2을 제조하였다.
<제조예 3>
Co3(SO4)4, 황산마그네슘(MgSO4), 황산알루미늄(Al2(SO4)3), 황산티타늄(Ti(SO4)2)이 Co : Mg : Al : Ti = 0.94 : 0.04 : 0.01 : 0.01로 혼합된 혼합 수용액에 분산시키고, 수산화 나트륨을 사용하여 공침하여 (Co0 . 94Mg0 . 04Al0 . 01Ti0 . 01)(OH)2의 전구체 입자를 얻었다.
상기 전구체 100g에 입자 내 총 원소들의 몰비가 Li:M(Co, Mg, Al, Ti)=1.02:1의 몰비가 되도록 LiOH.H2O 41g를 첨가하여 지르코니아 볼과 함께 볼밀을 이용해 혼합한 후, 혼합물을 공기 분위기하에서 1010에서 12시간 고온에서 1차 소성하여 Mg, Al, Ti가 도핑된 리튬 코발트 도핑 산화물 Li1 . 02Co0 . 94Mg0 . 04Al0 . 01Ti0 . 01O2을 제조하였다.
<제조예 4>
MgO 3mol, Al2O3 0.4mol, TiO2 0.2mol, Co3O4, 및 Li2CO3을 건식 혼합한 후, 노에서 1,050에서 10시간 동안 소성하여 Mg, Al, Ti가 도핑된 리튬 코발트 도핑 산화물 Li1.02Co0.964Mg0.03Al0.004Ti0.002O2을 제조하였다.
<제조예 5>
MgO 3mol, Al2O3 0.5mol, TiO2 0.5mol, Co3O4 및 Li2CO3 을 건식 혼합한 후, 노에서 1,050에서 10시간 동안 소성하여 Mg, Al, Ti가 도핑된 리튬 코발트 도핑 산화물 Li1.02Co0.96Mg0.03Al0.005Ti0.005O2을 제조하였다.
<제조예 6>
MgO 0.5mol, Al2O3 1mol, TiO2 0.5mol, Co3O4 및 Li2CO3을 건식 혼합한 후, 노에서 1,050에서 10시간 동안 소성하여 Mg, Al, Ti가 도핑된 리튬 코발트 도핑 산화물 Li1.02Co0.98Mg0.005Al0.01Ti0.005O2을 제조하였다.
<제조예 7>
Co3(SO4)4, 황산마그네슘(MgSO4), 황산알루미늄(Al2(SO4)3), 황산티타늄(Ti(SO4)2)이 Co : Mg : Al : Ti = 0.96 : 0.03 : 0.005 : 0.005로 혼합된 혼합 수용액에 분산시키고, 수산화 나트륨을 사용하여 공침하여 (Co0 . 96Mg0 . 03Al0 . 005Ti0 . 005)(OH)2의 전구체 입자를 얻었다.
상기 전구체 100g에 입자 내 총 원소들의 몰비가 Li:M(Co, Mg, Al, Ti)=1.02:1의 몰비가 되도록 LiOH.H2O 41g를 첨가하여 지르코니아 볼과 함께 볼밀을 이용해 혼합한 후, 혼합물을 공기 분위기하에서 1010에서 12시간 고온에서 1차 소성하여 Mg, Al, Ti가 도핑된 리튬 코발트 도핑 산화물 Li1 . 02Co0 . 96Mg0 . 03Al0 . 005Ti0 . 005O2을 제조하였다.
<제조예 8>
MgO 1.3mol, Al2O3 0.1mol, TiO2 0.2mol, Co3O4 및 Li2CO3 을 건식 혼합한 후, 노에서 1,050에서 10시간 동안 소성하여 Mg, Al, Ti가 도핑된 리튬 코발트 도핑 산화물 Li1.02Co0.984Mg0.013Al0.001Ti0.002O2을 제조하였다.
<실시예 1>
상기 제조예 1에서 제조된 리튬 코발트 도핑 산화물 200 g과 Mg0.6 mol, Al2O3 1mol, TiO2 1mol, Co3O4 및 Li2CO3 을 건식 혼합한 후, 노에서 950에서 10시간 동안 소성하여 Mg, Al, Ti가 도핑된 리튬 코발트 도핑 산화물 Li1.02Co0.944Mg0.006Al0.04Ti0.01O2이 Li1 . 02Co0 . 94Mg0 . 04Al0 . 01Ti0 . 01O2의 코어에 형성된 코어-쉘 구조의 양극 활물질을 제조하였다.
<실시예 2>
상기 실시예 1에서 제조된 리튬 코발트 도핑 산화물에 평균 입경이 50 nm인 Al2O3을 양극 활물질 전체 질량을 기준으로 0.05 중량% 추가 혼합한 후 570에서 6 시간 동안 2차 소성하여, 알루미늄 500 ppm의 코팅층을 형성하였다. 이때, 알루미늄 코팅층은 평균적으로 대략 50 nm 의 두께로 형성되었다.
<실시예 3>
상기 제조예 5에서 제조된 리튬 코발트 도핑 산화물 200 g과, MgO 3mol, Al2O3 0.5mol, TiO2 0.5 mol, Co3O4 및 Li2CO3 을 건식 혼합한 후, 노에서 950에서 10시간 동안 소성하여 Mg, Al, Ti가 도핑된 리튬 코발트 도핑 산화물 Li1.02Co0.977Mg0.008Al0.01Ti0.005O2이 Li1 . 02Co0 . 96Mg0 . 03Al0 . 005Ti0 . 005O2의 코어에 형성된 코어-쉘 구조의 양극 활물질을 제조하였다.
<실시예 4>
상기 실시예 3에서 제조된 리튬 코발트 도핑 산화물에 평균 입경이 50 nm인 Al2O3을 양극 활물질 전체 질량을 기준으로 0.05 중량% 추가 혼합한 후 570에서 6 시간 동안 2차 소성하여, 알루미늄 500 ppm의 코팅층을 형성하였다. 이때, 알루미늄 코팅층은 평균적으로 대략 50 nm 의 두께로 형성되었다.
<실시예 5>
상기 제조예 1에서 제조된 리튬 코발트 도핑 산화물 200 g과 Mg0.4 mol, Al2O3 1mol, TiO2 2mol, Co3O4 및 Li2CO3 을 건식 혼합한 후, 노에서 950에서 10시간 동안 소성하여 Mg, Al, Ti가 도핑된 리튬 코발트 도핑 산화물 Li1.02Co0.944Mg0.004Al0.01Ti0.02O2이 Li1 . 02Co0 . 94Mg0 . 04Al0 . 01Ti0 . 01O2의 코어에 형성된 코어-쉘 구조의 양극 활물질을 제조하였다.
<비교예 1>
상기 제조예 2에서 제조된 리튬 코발트 도핑 산화물 200 g과, MgO 0.076 g, Al2O3 0.267 g, TiO2 0.43 g, Co3O4 50 g, 및 Li2CO3 20.475 g을 건식 혼합한 후, 노에서 950에서 10시간 동안 소성하여 Mg, Al, Ti가 도핑된 리튬 코발트 도핑 산화물 Li1.02Co0.957Mg0.013Al0.02Ti0.01O2이 Li1 . 02Co0 . 944Mg0 . 006Al0 . 04Ti0 . 01O2의 코어에 형성된 코어-쉘 구조의 양극 활물질을 제조하였다.
<비교예 2>
상기 제조예 4에서 제조된 리튬 코발트 도핑 산화물 200 g과, MgO 0.07 g, Al2O3 0.53 g, TiO2 -1.73 g, Co3O4 50 g, 및 Li2CO3 20.475 g을 건식 혼합한 후, 노에서 950에서 10시간 동안 소성하여 Al, Ti가 도핑된 리튬 코발트 도핑 산화물 Li1.02Co0.908Mg0.012Al0.04Ti0.04O2이 Li1 . 02Co0 . 964Mg0 . 03Al0 . 004Ti0 . 002O2의 코어에 형성된 코어-쉘 구조의 양극 활물질을 제조하였다.
<비교예 3>
상기 제조예 6에서 제조된 리튬 코발트 도핑 산화물 200 g과, MgO 0.48 g, Al2O3 0.13 g, TiO2 0.216 g, Co3O4 50 g, 및 Li2CO3 20.475 g을 건식 혼합한 후, 노에서 950에서 10시간 동안 소성하여 Mg, Al, Ti가 도핑된 리튬 코발트 도핑 산화물 Li1.02Co0.97Mg0.02Al0.005Ti0.005O2이 Li1 . 02Co0 . 98Mg0 . 005Al0 . 01Ti0 . 005O2의 코어에 형성된 코어-쉘 구조의 양극 활물질을 제조하였다.
하기 표 1은 상기 실시예 1 내지 4, 및 비교예 1 내지 4의 도핑 원소의 평균 산화수(소수점 첫째짜리까지) 과 그 비를 나타낸 것이다.
OC OS t
실시예 1 2.5 3.1 0.81
실시예 2 2.5 3.1 0.81
실시예 3 2.4 2.9 0.83
실시예 4 2.4 2.9 0.83
실시예 5 2.5 3.5 0.72
비교예 1 3.1 2.9 1.07
비교예 2 2.2 3.3 0.67
비교예 3 3 2.5 1.2
하기 표 2 및 3은 상기 실시예 1 내지 4 및 비교예 1 내지 4의 도핑 원소의 함량과 함량비를 나타낸 것이다.
CM1 CM2 CM3 r
실시예 1 4 1 1 2
실시예 2 4 1 1 2
실시예 3 3 0.5 0.5 3
실시예 4 3 0.5 0.5 3
실시예 5 4 1 1 2
비교예 1 0.6 4 1 0.12
비교예 2 3 0.4 0.2 5
비교예 3 0.5 1 0.5 0.33
CM1' CM2' CM3' r'
실시예 1 0.6 4 1 0.12
실시예 2 0.6 4 1 0.12
실시예 3 0.8 1 0.5 0.53
실시예 4 0.8 1 0.5 0.53
실시예 5 0.4 1 1 0.2
비교예 1 1.3 2 1 2.3
비교예 2 1.2 4 4 0.15
비교예 3 2 0.5 0.2 2.85
<실험예 1>
상기 실시예 1 및 3, 및 비교예 1 내지 4에서 제조된 산화물 입자들을 양극 활물질로서 사용하고, 바인더로서 PVdF 및 도전재로서 천연 흑연을 사용하였다. 양극활물질: 바인더: 도전재를 중량비로 96 : 2 : 2가 되도록 NMP에 잘 섞어 준 후 20 ㎛ 두께의 Al 호일에 도포한 후 130에서 건조하여 양극을 제조하였다. 음극으로는 리튬 호일을 사용하고, EC : DMC : DEC = 1 : 2 : 1 인 용매에 1M의 LiPF6가 들어있는 전해액을 사용하여 하프 코인 셀들을 제조하였다.
상기 제조된 하프 코인 셀들을, 25에서 0.5C으로 상한 전압을 각각 4.55V로 하여 충전하고 다시 1.0C으로 하한 전압 3V까지 방전하는 것을 1회 사이클로 하여, 50회 사이클의 용량 유지율을 측정하였고, 그 결과를 하기 도 1a 및 도 1b에 나타내었다.
도 1a 및 도 1b를 참조하면, 본원발명에 따른 실시예의 양극 활물질을 사용한 전지의 용량 유지율은 90% 이상의 용량 유지율을 나타냄에 비해, 어느 조건도 만족하지 못하는 비교예들의 양극 활물질을 사용한 전지의 용량 유지율은 약 85% 이하로 수명 특성이 좋지 않아, 본원발명의 조건을 만족하는 실시예들이 고전압 고온 수명 특성이 더 높음을 알 수 있고, 이는 사이클이 진행될수록 그 차이가 더욱 가속화됨을 예상할 수 있다.
이상 본 발명의 실시예를 참조하여 설명하였지만, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
상기에서 설명한 바와 같이, 본 발명에 따른 양극 활물질은, 코어의 리튬 코발트 도핑 산화물과 쉘의 리튬 코발트 도핑 산화물에 각각 독립적으로 3 종류의 도펀트들이 도핑되고, 도핑된 도펀트들의 평균 산화수 비가 하기 청구항 1의 조건 (1)을 만족함으로써, 4.5V 초과의 작동전압 범위에서도 결정 구조의 구조적 안정성이 향상되어 결정 구조가 유지되는 바, 높은 고전압 특성 나타내고, 고온에서도 구조적 안정성을 유지하여 수명 특성이 향상되는 효과가 있다.

Claims (18)

  1. 코어-쉘 구조의 리튬 코발트 도핑 산화물을 포함하는 리튬 이차전지용 양극 활물질로서,
    상기 코어의 리튬 코발트 도핑 산화물과 쉘의 리튬 코발트 도핑 산화물은 각각 서로 독립적으로 3 종류의 도펀트들을 포함하고, 하기 (a) 또는 (b)를 만족하는 양극 활물질:
    (a) 상기 코어에 존재하는 도펀트들의 평균 산화수와, 쉘에 존재하는 도펀트들의 평균 산화수의 비율이 하기 조건 (1)을 만족하거나;
    0.7 ≤ t(비율) = OC/OS < 0.95 (1)
    여기서, 상기 OC는 코어에 존재하는 도펀트들의 평균 산화수이고, OS는 쉘에 존재하는 도펀트들의 평균 산화수이다.
    (b) 상기 코어의 도펀트들은, +2가 산화수의 금속(M1), +3가 산화수의 금속(M2), 및 +4가 산화수의 금속(M3)이며, 상기 M1, M2, 및 M3의 함량은 몰비를 기준으로 하기 조건 (2)를 만족하고; 상기 쉘의 도펀트들은, +2가 산화수의 금속(M1'), +3가 산화수의 금속(M2'), 및 +4가 산화수의 금속(M3')이며, 상기 M1', M2', 및 M3'의 함량은 몰비를 기준으로 하기 조건 (3)을 만족한다.
    2 ≤ r(몰비) = CM1/(CM2+CM3) ≤ 3 (2)
    0.5 ≤ r'(몰비) = CM1'/(CM2'+CM3') < 2 (3)
    여기서, 상기 CM1은 M1의 함량, CM2는 M2의 함량, CM3는 M3의 함량, CM1'은 M1'의 함량, CM2'는 M2'의 함량, CM3'는 M3의' 함량이다.
  2. 제 1 항에 있어서, 상기 (i)에서 t(비율)은 0.8 ≤ t < 0.95의 조건을 만족하는 양극 활물질.
  3. 제 1 항에 있어서, 상기 (ii)에서 r(몰비)는 2 ≤ r ≤ 2.5를, r'(몰비)는 0.5 ≤ r'≤ 1.5의 조건을 만족하는 양극 활물질.
  4. 제 1 항에 있어서, 상기 코어-쉘 구조의 리튬 코발트 도핑 산화물은, 만충전시의 양극 전위가 Li 전위 기준으로 4.5V 초과인 범위에서, 상변화 없이 결정구조가 유지되는 양극 활물질.
  5. 제 1 항에 있어서, 상기 코어의 리튬 코발트 도핑 산화물은 하기 화학식 1의 조성을 가지는 양극 활물질:
    LiaCo1-x-y-zM1xM2yM3zO2 (1)
    상기 식에서,
    M1, M2 및 M3은 서로 독립적으로 Ti, Mg, Al, Zr, Ba, Ca, Ta, Nb, Mo, Ni, Zn, Si, V 및 Mn로 이루어진 군에서 선택되는 1종의 원소이고;
    0.95≤a≤1.05;
    0<x≤0.04, 0<y≤0.04, 0<z≤0.04이다.
  6. 제 1 항에 있어서, 상기 쉘의 리튬 코발트 도핑 산화물은 하기 화학식 2의 조성을 가지는 양극 활물질:
    LibCo1-s-t-wM1'sM2'tM3'wO2 (2)
    상기 식에서,
    M1', M2' 및 M3'은 서로 독립적으로 Ti, Mg, Al, Zr, Ba, Ca, Ta, Nb, Mo, Ni, Zn, Si, V 및 Mn로 이루어진 군에서 선택되는 1종의 원소이고;
    0.95≤b≤1.05;
    0<s≤0.04, 0<t≤0.04, 0<w≤0.04이다.
  7. 제 5 항 또는 제 6 항에 있어서, 상기 M1 및 M1'는 +2가 산화수의 금속이고, 상기 M2 및 M2'는 +3가 산화수의 금속이며, 상기 M3 및 M3'는 +4가 산화수의 금속인 양극 활물질.
  8. 제 7 항에 있어서,
    상기 M1 및 M1'은 각각 독립적으로 Mg, Ca, Ni 및 Ba로 이루어진 군에서 선택되는 1종의 원소이고;
    상기 M2 및 M2'은 각각 독립적으로 Ti, Al, Ta 및 Nb으로 이루어진 군에서 선택되는 1종의 원소이며;
    상기 M3 및 M3'은 각각 독립적으로 Ti, Ta, Nb, Mn 및 Mo으로 이루어진 군에서 선택되며 M2 및 M2'와 다른 원소인 양극 활물질.
  9. 제 1 항에 있어서, 상기 쉘의 두께는 50 내지 2000 nm인 양극 활물질.
  10. 제 1 항에 있어서, 상기 쉘의 표면에는 50 nm 내지 100 nm 두께의 Al2O3이 코팅되어 있는 양극 활물질.
  11. 제 1 항에 따른 이차전지용 양극 활물질의 코어-쉘 구조의 리튬 코발트 도핑 산화물을 제조하는 방법으로서,
    (i) 3 종류의 도펀트들을 포함하는 도핑 코발트 전구체를 공침에 의해 제조하는 과정; 및
    (ii) 상기 도핑 코발트 전구체와 리튬 전구체를 혼합하고, 1차 소성하여 코어 입자를 제조하는 과정; 및
    (iii) 상기 코어 입자, 코발트 전구체, 리튬 전구체, 및 3 종류의 도펀트 전구체들을 혼합하고, 2차 소성하여 코어 입자 표면에 쉘을 형성함으로써 코어-쉘 구조의 리튬 코발트 도핑 산화물을 제조하는 과정;
    을 포함하는 제조방법.
  12. 제 11 항에 있어서, 상기 과정(i)에서, 도펀트 원소를 포함하는 염들과 코발트염을 물에 용해시킨 후, 용액을 염기성 분위기로 전환하여, 공침에 의해 도핑 코발트 전구체로서 도핑 코발트 산화물을 제조하는 제조방법.
  13. 제 1 항에 따른 이차전지용 양극 활물질의 코어-쉘 구조의 리튬 코발트 도핑 산화물을 제조하는 방법으로서,
    (i) 코발트 전구체, 리튬 전구체, 및 3 종류의 도펀트 전구체를 혼합하고, 1차 소성하여 코어 입자를 제조하는 과정; 및
    (ii) 상기 코어 입자, 코발트 전구체, 리튬 전구체, 및 상기 과정(i)과는 독립적으로 3 종류의 도펀트 전구체들을 혼합하고, 2차 소성하여 코어 입자 표면에 쉘을 형성함으로써 코어-쉘 구조의 리튬 코발트 도핑 산화물을 제조하는 과정;
    을 포함하는 제조방법.
  14. 제 11 항 또는 제 13 항에 있어서, 상기 3 종류의 도펀트 전구체들의 도펀트들은 서로 상이한 산화수를 가지는 제조방법.
  15. 제 11 항 또는 제 13 항에 있어서, 상기 코어-쉘 구조의 리튬 코발트 도핑 산화물은 하기 (a) 또는 (b)를 만족하는 제조방법:
    (a) 상기 코어에 존재하는 도펀트들의 평균 산화수와, 쉘에 존재하는 도펀트들의 평균 산화수의 비율이 하기 조건 (1)을 만족하거나;
    0.7 ≤ r(비율) = OC/OS < 0.95 (1)
    여기서, 상기 OC는 코어에 존재하는 도펀트들의 평균 산화수이고, OS는 쉘에 존재하는 도펀트들의 평균 산화수이다.
    (b) 상기 코어의 도펀트들은, +2가 산화수의 금속(M1), +3가 산화수의 금속(M2), 및 +4가 산화수의 금속(M3)이며, 상기 M1, M2, 및 M3의 함량은 몰비를 기준으로 하기 조건 (2)를 만족하고; 상기 쉘의 도펀트들은, +2가 산화수의 금속(M1'), +3가 산화수의 금속(M2'), 및 +4가 산화수의 금속(M3')이며, 상기 M1', M2', 및 M3'의 함량은 몰비를 기준으로 하기 조건 (3)을 만족한다.
    2 ≤ r(몰비) = CM1/(CM2+CM3) ≤ 3 (2)
    0.5 ≤ r'(몰비) = CM1'/(CM2'+CM3') < 2 (3)
    여기서, 상기 CM1은 M1의 함량, CM2는 M2의 함량, CM3는 M3의 함량, CM1'은 M1'의 함량, CM2'는 M2'의 함량, CM3'는 M3의' 함량이다.
  16. 제 11 항 또는 제 13 항에 있어서, 상기 1차 소성은 850 내지 1100의 온도에서 8 시간 내지 12 시간동안 수행되고, 상기 2차 소성은 700 내지 1100의 온도에서 5 시간 내지 12 시간동안 수행되는 제조방법.
  17. 제 1 항 내지 제 10 항 중 어느 하나에 따른 양극 활물질, 도전재, 및 바인더를 포함하는 양극 합제가 집전체에 도포되어 있는 양극.
  18. 제 17 항에 따른 양극을 포함하는 것을 특징으로 하는 이차전지.
PCT/KR2018/001169 2017-01-31 2018-01-26 코어-쉘 구조의 리튬 코발트 산화물을 포함하는 리튬 이차전지용 양극 활물질, 이를 제조하는 방법, 및 상기 양극 활물질을 포함하는 양극 및 이차전지 WO2018143612A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880001796.9A CN109314230B (zh) 2017-01-31 2018-01-26 正极活性材料、其制造方法以及包含其的正极和二次电池
US16/097,049 US11038159B2 (en) 2017-01-31 2018-01-26 Positive electrode active material for lithium secondary battery including lithium cobalt oxide having core-shell structure, method for producing the same, and positive electrode and secondary battery including the positive electrode active material
EP18748698.0A EP3439081A4 (en) 2017-01-31 2018-01-26 CATHODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY, COMPRISING LITHIUM OXIDE AND COBALT HAVING A CURORARY STRUCTURE, PREPARATION METHOD THEREFOR, AND CATHODE AND SECONDARY BATTERY COMPRISING AN ACTIVE CATHODE MATERIAL
JP2018548046A JP6578453B2 (ja) 2017-01-31 2018-01-26 コア−シェル構造のリチウムコバルト酸化物を含むリチウム二次電池用正極活物質、これを製造する方法、および前記正極活物質を含む正極および二次電池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0013649 2017-01-31
KR10-2017-0013613 2017-01-31
KR1020170013649A KR102120272B1 (ko) 2017-01-31 2017-01-31 코어-쉘 구조의 리튬 코발트 산화물을 포함하는 리튬 이차전지용 양극 활물질 및 이를 제조하는 방법
KR1020170013613A KR102095520B1 (ko) 2017-01-31 2017-01-31 코어-쉘 구조의 리튬 코발트 산화물을 포함하는 리튬 이차전지용 양극 활물질 및 이를 제조하는 방법

Publications (1)

Publication Number Publication Date
WO2018143612A1 true WO2018143612A1 (ko) 2018-08-09

Family

ID=63040239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001169 WO2018143612A1 (ko) 2017-01-31 2018-01-26 코어-쉘 구조의 리튬 코발트 산화물을 포함하는 리튬 이차전지용 양극 활물질, 이를 제조하는 방법, 및 상기 양극 활물질을 포함하는 양극 및 이차전지

Country Status (5)

Country Link
US (1) US11038159B2 (ko)
EP (1) EP3439081A4 (ko)
JP (1) JP6578453B2 (ko)
CN (1) CN109314230B (ko)
WO (1) WO2018143612A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3686160A4 (en) * 2017-11-13 2020-12-09 LG Chem, Ltd. ACTIVE MATERIAL FOR POSITIVE ELECTRODE BASED ON LITHIUM COBALT, PROCESS FOR ITS MANUFACTURING, POSITIVE ELECTRODE WITH IT AND SECONDARY BATTERY
EP3966884A4 (en) * 2019-05-09 2023-07-12 A123 Systems, LLC METHODS AND SYSTEMS FOR DRY SURFACE DOPING OF CATHODE MATERIALS

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110867576A (zh) * 2018-08-28 2020-03-06 比亚迪股份有限公司 三元正极材料及其制备方法、锂离子电池和电动汽车
JP7030865B2 (ja) * 2019-09-11 2022-03-07 日本化学工業株式会社 リチウム二次電池用正極活物質の製造方法
KR20220062307A (ko) * 2019-09-11 2022-05-16 니폰 가가쿠 고교 가부시키가이샤 리튬 2차 전지용 양극 활물질 및 리튬 2차 전지
WO2021152428A1 (ja) * 2020-01-31 2021-08-05 株式会社半導体エネルギー研究所 二次電池、携帯情報端末、車両および正極活物質の作製方法
CN112909231A (zh) * 2021-01-19 2021-06-04 华东师范大学 一种掺杂包覆复合改性钴酸锂lcmo@bt及其制备方法和应用
US20230323552A1 (en) * 2021-02-02 2023-10-12 The University Of Chicago Mixed sodium and lithium period four transition metal oxides for electrochemical lithium extraction

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100300330B1 (ko) * 1999-05-11 2001-09-26 김순택 리튬 이차 전지용 양극 활물질
WO2010150038A1 (en) * 2009-06-24 2010-12-29 Reminex Sa Particles of doped litium cobalt oxide, method for preparing the same and their use in lithium ion batteries
US20130022869A1 (en) * 2011-07-18 2013-01-24 Seung-Beob Yi Positive electrode active material for lithium secondary battery, method of preparing the same, positive electrode for lithium secondary battery including the same, and lithium secondary battery including the positive electrode
JP2013541819A (ja) * 2010-10-20 2013-11-14 カウンスィル オブ サイエンティフィック アンド インダストリアル リサーチ 正極材料及び該正極材料からのリチウムイオン電池
KR20160040117A (ko) * 2014-10-02 2016-04-12 주식회사 엘지화학 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR20160049995A (ko) * 2014-10-28 2016-05-10 주식회사 엘지화학 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100326444B1 (ko) 1999-11-23 2002-02-28 김순택 리튬 이차 전지
JP4813453B2 (ja) 2000-11-16 2011-11-09 日立マクセルエナジー株式会社 リチウム含有複合酸化物および非水二次電池
JP2004002141A (ja) 2002-03-07 2004-01-08 Tosoh Corp リチウム−ニッケル−マンガン複合酸化物とその製造方法及びそれを用いるリチウムイオン二次電池
KR20030083476A (ko) 2002-04-23 2003-10-30 주식회사 엘지화학 수명 특성과 안전성이 우수한 리튬 금속 복합 산화물 및이의 제조 방법
JP2010135187A (ja) 2008-12-04 2010-06-17 National Institute Of Advanced Industrial Science & Technology 正極活物質、正極および非水電解質二次電池
KR101287092B1 (ko) * 2009-04-10 2013-07-17 히다치 막셀 가부시키가이샤 전극용 활물질, 그 제조방법, 비수 2차 전지용 전극 및 비수 2차 전지
US20110008678A1 (en) 2009-07-10 2011-01-13 Intematix Corporation Electrode materials for secondary (rechargeable) electrochemical cells and their method of preparation
CN101997113A (zh) 2009-08-17 2011-03-30 北京当升材料科技股份有限公司 一种锂离子电池用多层包覆结构的多元材料及其制备方法
JP5791877B2 (ja) * 2009-09-30 2015-10-07 三洋電機株式会社 正極活物質、この正極活物質の製造方法、及び、正極活物質を用いた非水電解質二次電池
KR101534896B1 (ko) 2010-06-29 2015-07-08 유미코르 2차 전지용 고밀도 및 고전압 안정성 캐소드 물질
KR101392800B1 (ko) 2011-04-08 2014-05-27 주식회사 엘지화학 개선된 특성의 리튬 코발트계 산화물의 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2012164141A1 (en) 2011-05-31 2012-12-06 Omg Kokkola Chemicals Oy Lithium cobalt oxide material
JP5871186B2 (ja) * 2012-03-01 2016-03-01 株式会社Gsユアサ 非水電解質二次電池用活物質、その活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池
CN102631875A (zh) * 2012-03-19 2012-08-15 上海中兴派能能源科技有限公司 一种多级核壳结构多元材料及其前驱体及它们的制备方法
CN103367704B (zh) 2012-04-06 2016-05-11 协鑫动力新材料(盐城)有限公司 梯度分布的复合多元材料前驱体及其制备方法和应用
EP2940761B1 (en) 2012-12-26 2019-12-18 IUCF-HYU (Industry-University Cooperation Foundation Hanyang University) Cathode active material for lithium secondary batteries
CN105229830A (zh) * 2013-02-28 2016-01-06 汉阳大学校产学协力团 锂二次电池用正极活性物质
KR101682502B1 (ko) 2013-10-11 2016-12-05 주식회사 엘 앤 에프 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
EP3082183B1 (en) 2013-12-13 2018-10-10 Santoku Corporation Positive-electrode active material powder, positive electrode containing positive-electrode active material powder, and secondary battery
KR101553137B1 (ko) 2014-01-22 2015-09-14 연세대학교 산학협력단 리튬 이온 이차전지용 다중 복합화 전극
CN103794776B (zh) 2014-02-13 2016-03-16 湖南美特新材料科技有限公司 一种高电压、高压实锂离子电池复合正极材料及制备方法
KR101568263B1 (ko) 2014-08-07 2015-11-11 주식회사 에코프로 리튬 이차 전지용 양극활물질 및 이를 포함하는 리튬 이차 전지
KR101758992B1 (ko) 2014-10-02 2017-07-17 주식회사 엘지화학 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR101831019B1 (ko) 2014-10-02 2018-02-21 주식회사 엘지화학 리튬이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬이차전지
KR102314046B1 (ko) 2014-11-28 2021-10-18 삼성에스디아이 주식회사 양극 활물질, 이를 포함하는 양극 및 상기 양극을 채용한 리튬 이차 전지
JP2016105366A (ja) 2014-12-01 2016-06-09 ソニー株式会社 二次電池用活物質、二次電池用電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6614766B2 (ja) 2014-12-09 2019-12-04 三星エスディアイ株式会社 正極活物質、およびリチウムイオン二次電池
KR102314576B1 (ko) 2014-12-17 2021-10-19 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
CN107004851A (zh) * 2014-12-31 2017-08-01 北京当升材料科技股份有限公司 锂离子电池用梯度结构的多元材料、其制备方法、锂离子电池正极以及锂离子电池
KR102426251B1 (ko) 2015-04-28 2022-07-28 삼성에스디아이 주식회사 리튬이차전지용 산화코발트, 이로부터 형성된 리튬이차전지용 리튬코발트산화물, 그 제조방법 및 이를 포함한 양극을 구비한 리튬 이차 전지
US10333140B2 (en) 2015-07-02 2019-06-25 Umicore Cobalt-based lithium metal oxide cathode material
CA2994527A1 (en) * 2015-08-04 2017-02-09 Hitachi High-Technologies Corporation Non-aqueous electrolyte solution containing oxofluorophosphorous compounds
CN105958038A (zh) 2016-07-11 2016-09-21 湖南美特新材料科技有限公司 一种可快充的长寿命高电压钴酸锂正极材料及制备方法
CN106207138B (zh) 2016-09-20 2019-10-01 中国科学院化学研究所 一种锂离子电池正极材料制备方法及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100300330B1 (ko) * 1999-05-11 2001-09-26 김순택 리튬 이차 전지용 양극 활물질
WO2010150038A1 (en) * 2009-06-24 2010-12-29 Reminex Sa Particles of doped litium cobalt oxide, method for preparing the same and their use in lithium ion batteries
JP2013541819A (ja) * 2010-10-20 2013-11-14 カウンスィル オブ サイエンティフィック アンド インダストリアル リサーチ 正極材料及び該正極材料からのリチウムイオン電池
US20130022869A1 (en) * 2011-07-18 2013-01-24 Seung-Beob Yi Positive electrode active material for lithium secondary battery, method of preparing the same, positive electrode for lithium secondary battery including the same, and lithium secondary battery including the positive electrode
KR20160040117A (ko) * 2014-10-02 2016-04-12 주식회사 엘지화학 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR20160049995A (ko) * 2014-10-28 2016-05-10 주식회사 엘지화학 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3439081A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3686160A4 (en) * 2017-11-13 2020-12-09 LG Chem, Ltd. ACTIVE MATERIAL FOR POSITIVE ELECTRODE BASED ON LITHIUM COBALT, PROCESS FOR ITS MANUFACTURING, POSITIVE ELECTRODE WITH IT AND SECONDARY BATTERY
US11837719B2 (en) 2017-11-13 2023-12-05 Lg Energy Solution, Ltd. Lithium cobalt-based positive electrode active material, preparation method thereof, positive electrode including same, and secondary battery including positive electrode
EP3966884A4 (en) * 2019-05-09 2023-07-12 A123 Systems, LLC METHODS AND SYSTEMS FOR DRY SURFACE DOPING OF CATHODE MATERIALS

Also Published As

Publication number Publication date
US20190148711A1 (en) 2019-05-16
CN109314230A (zh) 2019-02-05
JP6578453B2 (ja) 2019-09-18
EP3439081A4 (en) 2019-08-14
JP2019509599A (ja) 2019-04-04
US11038159B2 (en) 2021-06-15
CN109314230B (zh) 2022-04-01
EP3439081A8 (en) 2019-05-01
EP3439081A1 (en) 2019-02-06

Similar Documents

Publication Publication Date Title
WO2018143612A1 (ko) 코어-쉘 구조의 리튬 코발트 산화물을 포함하는 리튬 이차전지용 양극 활물질, 이를 제조하는 방법, 및 상기 양극 활물질을 포함하는 양극 및 이차전지
WO2019221497A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2015130106A1 (ko) 리튬-니켈계 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019194510A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2017069405A1 (ko) 다층 구조의 금속 산화물들을 포함하는 양극 활물질 제조용 전구체 및 이를 사용하여 제조된 리튬 이차전지용 양극 활물질
WO2019103363A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019168301A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2018056650A1 (ko) 리튬 리치 안티페로브스카이트 코팅 lco계 리튬 복합체, 이의 제조방법, 이를 포함하는 양극 활물질 및 리튬 이차 전지
WO2019172568A1 (ko) 양극 활물질, 그 제조 방법, 이를 포함하는 양극 및 이차전지
WO2020145639A1 (ko) 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지
WO2019059552A2 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019083221A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2018143733A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지의 제조 방법
WO2018038501A1 (ko) 리튬이온전지용 복합양극활물질, 그 제조방법 및 이를 포함한 양극을 함유한 리튬이온전지
WO2019059654A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2020111543A1 (ko) 팔면체 구조의 리튬 망간계 양극 활물질, 이를 포함하는 양극 및 리튬 이차전지
WO2018160023A1 (ko) 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2020085731A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2020036396A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2019059647A2 (ko) 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2019212321A1 (ko) 양극 활물질의 세정 방법, 이를 포함하는 양극 활물질의 제조 방법 및 이에 의해 제조된 양극 활물질
WO2021154021A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2019045399A2 (ko) 리튬 이차전지
WO2020111545A1 (ko) 양극 활물질, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지
WO2018147558A1 (ko) 장수명에 적합한 이차전지용 전극의 제조방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018548046

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018748698

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018748698

Country of ref document: EP

Effective date: 20181029

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE