WO2021020864A1 - 리튬 이차전지용 전해질 첨가제, 이를 포함하는 리튬 이차전지용 전해질 및 리튬 이차전지 - Google Patents

리튬 이차전지용 전해질 첨가제, 이를 포함하는 리튬 이차전지용 전해질 및 리튬 이차전지 Download PDF

Info

Publication number
WO2021020864A1
WO2021020864A1 PCT/KR2020/009938 KR2020009938W WO2021020864A1 WO 2021020864 A1 WO2021020864 A1 WO 2021020864A1 KR 2020009938 W KR2020009938 W KR 2020009938W WO 2021020864 A1 WO2021020864 A1 WO 2021020864A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
formula
secondary battery
lithium secondary
Prior art date
Application number
PCT/KR2020/009938
Other languages
English (en)
French (fr)
Inventor
임진혁
샤투노프파벨
체이올가
강영혜
김애란
박혜진
우명희
유덕재
이태진
이하림
조원석
최현봉
Original Assignee
삼성에스디아이주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이주식회사 filed Critical 삼성에스디아이주식회사
Priority to EP20848662.1A priority Critical patent/EP4007030A4/en
Priority to US17/630,120 priority patent/US20220263132A1/en
Priority to CN202080055832.7A priority patent/CN114730919A/zh
Publication of WO2021020864A1 publication Critical patent/WO2021020864A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • It relates to an electrolyte additive for a lithium secondary battery, an electrolyte for a lithium secondary battery including the same, and a lithium secondary battery including the same.
  • Lithium secondary batteries are used as power sources for portable electronic devices such as video cameras, mobile phones, and notebook computers. Rechargeable lithium secondary batteries have a higher energy density per unit weight and can be charged at a high speed compared to conventional lead storage batteries, nickel-cadmium batteries, nickel hydrogen batteries, and nickel zinc batteries.
  • An organic electrolyte is generally used as an electrolyte for a lithium secondary battery.
  • the organic electrolyte is prepared by dissolving a lithium salt in an organic solvent.
  • the organic solvent is preferably stable at high voltage, high ionic conductivity and dielectric constant, and low viscosity.
  • an organic electrolyte containing a lithium salt is used as an electrolyte for a lithium secondary battery
  • life characteristics and high temperature stability of the lithium secondary battery may be deteriorated due to a side reaction between the negative electrode/anode and the electrolyte. Therefore, there is a need for an electrolyte for a lithium secondary battery capable of providing a lithium secondary battery having improved lifespan characteristics and high temperature stability.
  • One aspect is to provide a novel electrolyte additive for lithium secondary batteries.
  • Another aspect is to provide an electrolyte for a lithium secondary battery including the electrolyte additive.
  • Another aspect is to provide a lithium secondary battery including the lithium secondary battery electrolyte.
  • a lithium secondary battery electrolyte additive including a compound represented by the following formula (1).
  • R 1 to R 3 are independently of each other, hydrogen, a substituted or unsubstituted C 1 -C 30 alkyl group, a substituted or unsubstituted C 4 -C 30 carbocyclic group, a substituted or unsubstituted C 6 -C 30 aryl group, a substituted or unsubstituted C 2 -C 30 alkenyl group, a substituted or unsubstituted C 2 -C 30 alkynyl group, or a substituted or unsubstituted C 2 -C 30 heteroaryl group,
  • R 4 to R 6 are each independently a substituted or unsubstituted C 1 -C 30 alkyl group, a substituted or unsubstituted C 4 -C 30 carbocyclic group, a substituted or unsubstituted C 6 -C 30 aryl group, a substituted Or an unsubstituted C 2 -C 30 alkenyl group, a substituted or unsubstituted C 2 -C 30 alkynyl group, or a substituted or unsubstituted C 2 -C 30 heteroaryl group.
  • An electrolyte for a lithium secondary battery containing the additive is provided.
  • a positive electrode including a positive electrode active material
  • a negative electrode including a negative electrode active material
  • a lithium secondary battery having improved high temperature characteristics and resistance characteristics can be manufactured.
  • FIG. 1 is a schematic diagram of a lithium secondary battery according to an embodiment.
  • lithium secondary battery 2 negative electrode
  • the electrolyte additive for a lithium secondary battery includes a compound represented by the following Formula 1:
  • R 1 to R 3 are independently of each other, hydrogen, a substituted or unsubstituted C 1 -C 30 alkyl group, a substituted or unsubstituted C 4 -C 30 carbocyclic group, a substituted or unsubstituted C 6 -C 30 aryl group, substituted or unsubstituted C 2 -C 30 alkenyl group, substituted or unsubstituted C 2 -C 30 alkynyl group, or substituted or unsubstituted C 2 -C 30 heteroaryl group
  • R 4 to R 6 are each independently a substituted or unsubstituted C 1 -C 30 alkyl group, a substituted or unsubstituted C 6 -C 30 aryl group, a substituted or unsubstituted C 2 -C 30 alkenyl group, a substituted or unsubstituted It is a substituted C 2 -C 30 alkynyl group, or a substituted or unsubstituted C 2 -C 30 heteroaryl group.
  • Substituted C 1 -C 30 alkyl group, substituted C 4 -C 30 carbocyclic group, substituted C 6 -C 30 aryl group, substituted C 2 -C 30 alkenyl group, substituted C 2 -C 30 alkynyl group, or a substituent of a substituted C 2 -C 30 heteroaryl group for example, C 1 -C 20 alkyl group, C 2 -C 20 alkenyl group, C 2 -C 20 alkynyl group, C 1 -C 20 It is at least one selected from the group consisting of an alkoxy group, a halogen, a cyano group, a hydroxy group, and a nitro group.
  • a lithium secondary battery having high output and high capacity can be manufactured by using a lithium transition metal oxide containing nickel and one or more other transition metals and having a nickel content of 80 mol% or more with respect to the total number of moles of the transition metal as a positive electrode active material.
  • a lithium transition metal oxide having a high nickel content has an unstable surface structure, so that gas generation due to side reactions during the charging and discharging process of the battery increases, and the elution of transition metals such as nickel is more severe. Accordingly, the life characteristics of the lithium secondary battery are deteriorated.
  • the lithium secondary battery has an increased resistance at high temperatures, so stability at high temperatures needs to be improved.
  • the electrolyte additive containing the compound of Formula 1 When the electrolyte additive containing the compound of Formula 1 is used, it is possible to manufacture a lithium secondary battery having improved life characteristics and high temperature stability due to excellent resistance suppression effect at high temperatures.
  • R 1 to R 3 are each independently hydrogen, a C 1 -C 30 alkyl group; A C 1 -C 30 alkyl group substituted with one or more selected from the group consisting of a methyl group, an ethyl group, a propyl group, a butyl group, -F, -Cl, -Br, -I, a cyano group, a hydroxy group and a nitro group; Or a C 2 -C 30 alkenyl group substituted with one or more selected from the group consisting of a methyl group, an ethyl group, a propyl group, a butyl group, -F, -Cl, -Br, -I, a cyano group, a hydroxy group, and a nitro group. .
  • R 4 to R 6 in Formula 1 are each independently a C 1 -C 30 alkyl group; A C 1 -C 30 alkyl group substituted with one or more selected from the group consisting of a methyl group, an ethyl group, a propyl group, a butyl group, -F, -Cl, -Br, -I, a cyano group, a hydroxy group and a nitro group; Or a C 2 -C 30 alkenyl group substituted with one or more selected from the group consisting of a methyl group, an ethyl group, a propyl group, a butyl group, -F, -Cl, -Br, -I, a cyano group, a hydroxy group, and a nitro group. .
  • R 1 to R 3 are, for example, hydrogen or a C 1 -C 10 alkyl group, specifically a C 1 -C 5 alkyl group.
  • the compound of Formula 1 may be a compound of Formula 2 below.
  • R 4 to R 6 are each independently a substituted or unsubstituted C 1 -C 30 alkyl group, a substituted or unsubstituted C 4 -C 30 carbocyclic group, a substituted or unsubstituted C 6 -C 30 aryl A group, a substituted or unsubstituted C 2 -C 30 alkenyl group, a substituted or unsubstituted C 2 -C 30 alkynyl group, or a substituted or unsubstituted C 2 -C 30 heteroaryl group.
  • a substituted C 1 -C 30 alkyl group a substituted C 4 -C 30 carbocyclic group, a substituted C 6 -C 30 aryl group, a substituted C 2 -C 30 alkenyl group, a substituted C 2 -C 30 alkynyl group, or a substituent of a substituted C 2 -C 30 heteroaryl group, for example, C 1 -C 20 alkyl group, C 2 -C 20 alkenyl group, C 2 -C 20 alkynyl group, C 1 -C 20 It is at least one selected from the group consisting of an alkoxy group, a halogen, a cyano group, a hydroxy group, and a nitro group.
  • R 4 to R 6 are, for example, unsubstituted C 1 -C 10 alkyl group, methyl group, ethyl group, propyl group, butyl group, -F, -Cl, -Br, -I, cyano group, hydroxyl
  • LiPF 6 is generally used as a lithium salt contained in an electrolyte, but it has a problem that it lacks thermal stability and is easily hydrolyzed even with moisture.
  • the electrolyte additive containing the compound represented by Formula 1 is added to the electrolyte, nitrogen of the imidazole ring in the compound of Formula 1 is generated by decomposition of moisture (H 2 O) molecules and LiPF 6 PF 5 - By capturing ions, the hydrolysis reaction of LiPF 6 due to moisture can be suppressed. As a result, generation of gas inside the lithium secondary battery is suppressed, thereby improving cycle life characteristics. In addition, the swelling phenomenon of the battery due to suppression of gas generation can be prevented.
  • the compound represented by Formula 1 contains nitrogen, decomposition of organic solvents such as ethylene carbonate (EC) is suppressed to reduce gas generation, and as a result, the resistance increase rate can be lowered.
  • the compound represented by Formula 1 has an SO 2 moiety, a stable film can be formed on the anode. Due to the formation of such a thin film, the elution of additional metals from the substrate is suppressed, and as a result, overdischarge of the lithium secondary battery is suppressed while the lithium secondary battery is left unattended, thereby improving the characteristics of the lithium secondary battery.
  • a decomposition reaction of the electrolyte occurs on the surface of the negative electrode, because the reduction potential of the electrolyte is relatively higher than that of lithium.
  • This electrolyte decomposition reaction can prevent further electrolyte decomposition by forming a solid electrolyte interphase (SEI) on the electrode surface to inhibit the movement of electrons required for the reaction between the negative electrode and the electrolyte.
  • SEI solid electrolyte interphase
  • the additive for lithium secondary battery electrolyte represented by Chemical Formula 1 includes a silyl group -Si(R 4 )(R 5 )(R 6 ) at the end, thereby forming an SEI film with a high concentration of silyl group, thereby forming a chemically stable high polarity. A film of can be formed. Accordingly, the lithium ion conductivity is improved by lowering the resistance at the interface between the electrolyte and the negative electrode, thereby increasing the low-temperature discharge voltage.
  • the compound represented by Formula 1 may be selected from compounds represented by the following Formulas 3 to 6.
  • Ph represents a phenyl group
  • the above-described compounds stabilize salt by-products (PF5) by imidazole (Imidazole) functional groups and act as HF scavengers. They are oxidatively decomposed at the anode to form a sulfite-based film to form a sulfite-based anode at high temperature. It plays a role in inhibiting side reactions (Solvent decomposition).
  • An electrolyte for a lithium secondary battery is a lithium salt; Organic solvent; And the additive.
  • the content of the additive may be in the range of 0.1% to 10% by weight based on the total weight of the lithium secondary battery electrolyte, but is not limited thereto, and a content in a range that does not impair battery characteristics may be appropriately selected.
  • the content of the additive may range from 0.5% to 5% by weight based on the total weight of the lithium secondary battery electrolyte.
  • the content of the additive is within the above content range, a lithium secondary battery having improved high-temperature characteristics and resistance characteristics can be manufactured without deteriorating battery life.
  • the electrolyte for a lithium secondary battery contains 0.1 to 2% by weight of at least one selected from compounds represented by the following Formulas 3 to 6, and the organic solvent is 50 to 95 vol% of chain carbonate and 5 to 50 vol of cyclic carbonate It may be an electrolyte containing% of a mixed solvent.
  • the lithium salt is LiPF 6 , LiBF 4 , LiCF 3 SO 3 , Li(CF 3 SO 2 ) 2 N, LiC 2 F 5 SO 3 , Li(FSO 2 ) 2 N, LiC 4 F 9 SO 3 , LiN (SO 2 CF 2 CF 3 ) 2 , and may include one or more selected from compounds represented by the following Formulas 10 to 13, but is not limited thereto, and may be used as a lithium salt in the art. Anything can be used.
  • the concentration of the lithium salt in the electrolyte is 0.01 to 5.0M, for example 0.05 to 5.0M, for example 0.1 to 5.0M, for example 0.1 to 2.0M. When the concentration of the lithium salt is within the above range, further improved lithium secondary battery characteristics may be obtained.
  • the organic solvent may be at least one selected from carbonate-based solvents, ester-based solvents, ether-based solvents, and ketone-based solvents.
  • EMC Ethyl methyl carbonate
  • MPC methyl propyl carbonate
  • EPC ethyl propyl carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • DPC dipropyl carbonate
  • PC propylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • ester solvents methyl propionate, ethyl propionate, ethyl butyrate, methyl acetate, ethyl acetate, n-propyl acetate, dimethyl acetate, Gamma butyrolactone, decanolide, gamma valerolactone, mevalonolactone, caprolactone, etc.
  • AN acetonitrile
  • SN succinonitrile
  • adiponitrile and the like can be used.
  • dimethylsulfoxide, dimethylformamide, dimethylacetamide, tetrahydrofuran, and the like may be used, but are not necessarily limited thereto, and any solvent that can be used as an organic solvent in the art may be used.
  • the organic solvent may contain a mixed solvent of 50 to 95 vol% of a chain carbonate and 5 to 50 vol% of a cyclic carbonate, for example, a mixed solvent of 70 to 95 vol% of a chain carbonate and 5 to 30 vol% of a cyclic carbonate.
  • the organic solvent may be a mixed solvent of three or more organic solvents.
  • the organic solvent is ethyl methyl carbonate (EMC), methyl propyl carbonate, ethyl propyl carbonate, dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, propylene carbonate (PC), ethylene carbonate (EC), fluoroethylene carbonate (FEC), vinylene carbonate (VC), vinylethylene carbonate (VEC), butylene carbonate, ethyl propionate, ethyl butyrate, dimethyl sulfoxide, dimethyl formamide, dimethyl acetamide, It may include at least one selected from the group consisting of gamma-valerolactone, gamma-butyrolactone, and tetrahydrofuran, but is not limited thereto, and any one that can be used as an organic solvent in the art may be used. .
  • the electrolyte for a lithium secondary battery may further include an aliphatic nitrile compound.
  • the aliphatic nitrile compound may include acetonitrile (AN) or succinonitrile (SN), but is not limited thereto, and any nitrile group may be used if a nitrile group is included at the end of the hydrocarbon.
  • the content of the aliphatic nitrile compound may be in the range of 0.1% to 10% by weight based on the total weight of the lithium secondary battery electrolyte, but is not limited thereto. The content can be appropriately selected.
  • the electrolyte may be in a liquid or gel state.
  • a lithium secondary battery includes a positive electrode including a positive electrode active material; A negative electrode including a negative electrode active material; And an electrolyte disposed between the anode and the cathode, and the electrolyte includes the above-described additive.
  • the lithium secondary battery includes the electrolyte additive for a lithium secondary battery, an increase in initial resistance of the lithium secondary battery is suppressed, gas generation due to side reactions is suppressed, and life characteristics are improved.
  • the positive electrode active material includes a lithium transition metal oxide including nickel and other transition metals.
  • the content of nickel is 60 mol% or more, such as 75 mol% or more, such as 80 mol% or more, such as 85 mol% or more, based on the total number of moles of the transition metal. For example, it may be 90 mol% or more.
  • the lithium transition metal oxide may be represented by the following Formula 7:
  • M is manganese (Mn), vanadium (V), magnesium (Mg), gallium (Ga), silicon (Si), tungsten (W), molybdenum (Mo), iron (Fe), chromium (Cr), copper (Cu), zinc (Zn), titanium It is at least one selected from the group consisting of (Ti), aluminum (Al) and boron (B), and A is F, S, Cl, Br, or a combination thereof.
  • the lithium transition metal oxide may be a compound represented by Formulas 8 and 9:
  • 0.6 ⁇ x ⁇ 0.95, 0 ⁇ y ⁇ 0.2, and 0 ⁇ z ⁇ 0.1 For example, 0.7 ⁇ x ⁇ 0.95, 0 ⁇ y ⁇ 0.3, and 0 ⁇ z ⁇ 0.3.
  • lithium transition metal oxides are LiNi 0.7 Co 0.2 Mn 0.1 O 2 , LiNi 0.88 Co 0.08 Mn 0.04 O 2 , LiNi 0.8 Co 0.15 Mn 0.05 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.88 Co 0.1 Mn It may be 0.02 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , LiNi 0.8 Co 0.1 Mn 0.2 O 2 or LiNi 0.88 Co 0.1 Al 0.02 O 2 .
  • the positive electrode active material is Li-Ni-Co-Al (NCA), Li-Ni-Co-Mn (NCM), lithium cobalt oxide (LiCoO 2 ), lithium manganese oxide (LiMnO 2 ), lithium It includes at least one active material selected from the group consisting of nickel oxide (LiNiO 2 ) and lithium iron phosphate (LiFePO 4 ).
  • the negative active material may include at least one selected from a silicon-based compound, a carbon-based material, a composite of a silicon-based compound and a carbon-based compound, and a silicon oxide (SiO x , 0 ⁇ x ⁇ 2).
  • the silicon-based compound may be silicon particles, silicon alloy particles, or the like.
  • the size of the silicon-based compound is less than 200 nm, for example, 10 to 150 nm.
  • size may indicate the average particle diameter when the silicon-based compound is spherical, and may indicate the average long axis length when the silicon particle is non-spherical.
  • the lifespan characteristics are excellent, and when the electrolyte according to an embodiment is used, the lifespan of the lithium secondary battery is further improved.
  • the carbon-based material may be crystalline carbon, amorphous carbon, or a mixture thereof.
  • the crystalline carbon may be graphite such as amorphous, plate-like, flake, spherical or fibrous natural graphite or artificial graphite, and the amorphous carbon is soft carbon (low temperature calcined carbon) or hard carbon (hard carbon). carbon), mesophase pitch carbide, calcined coke, or the like.
  • the composite of a silicon-based compound and a carbon-based compound is a composite having a structure in which silicon nanoparticles are disposed on the carbon-based compound, a composite in which silicon particles are included on the surface and inside of the carbon-based compound, and the silicon particles are coated with a carbon-based compound. It may be a complex contained within the compound.
  • the carbon-based compound may be graphite, graphene, graphene oxide, or a combination thereof.
  • the composite of the silicon-based compound and the carbon-based compound is an active material obtained by coating carbon after dispersing silicon nanoparticles having an average particle diameter of about 200 nm or less on the carbon-based compound particles, and an active material in which the silicon (Si) particles are present on and inside the graphite.
  • the average particle diameter of the secondary particles of the composite of the silicon-based compound and the carbon-based compound may be 5um to 20um.
  • the average particle diameter of the silicon nanoparticles may be 5 nm or more, such as 10 nm or more, such as 20 nm or more, such as 50 nm or more, such as 70 nm or more.
  • the average particle diameter of the silicon nanoparticles may be 200 nm or less, 150 nm or less, 100 nm or less, 50 nm or less, 20 nm or less, or 10 nm or less.
  • the average particle diameter of the silicon nanoparticles may be 100nm to 150nm.
  • the average particle diameter of the secondary particles of the composite of the silicon-based compound and the carbon-based compound may be 5um to 18um, for example 7um to 15um, for example 10um to 13um.
  • the silicon-carbon-based compound composite is a porous silicon composite containing a porous core including secondary particles of the porous silicon composite and a shell including a second graphene disposed on the core A cluster, wherein the porous silicon composite secondary particles include an aggregate of two or more silicon composite primary particles, and the silicon composite primary particles include silicon; It may be a porous silicon composite cluster including a silicon oxide (SiOx) (O ⁇ x ⁇ 2) disposed on the silicon and a first graphene disposed on the silicon oxide. According to another embodiment, a silicon-carbon cluster.
  • the composite composite may include a porous silicon composite cluster including secondary particles of a porous silicon composite and second carbon flakes on at least one side of the secondary particles of the porous silicon composite; And a carbon-based coating film including amorphous carbon disposed on the porous silicon composite cluster, wherein the porous silicon composite secondary particles include an aggregate of two or more silicon composite primary particles, and the silicon composite primary particles include silicon; A silicon oxide (SiOx) (O ⁇ x ⁇ 2) on at least one surface of the silicon and a first carbon flake on at least one surface of the silicon oxide, wherein the silicon oxide is a film, a matrix, or It may be a porous silicon composite cluster structure that exists as a combination.
  • first carbon flake and the second carbon flake may exist in the form of a film, particle, matrix, or a combination thereof.
  • first carbon flake and the second carbon flake may be graphene, graphite, carbon fiber, graphene oxide, or the like, respectively.
  • the composite of the silicon-based compound and the carbon-based compound is an active material obtained by coating carbon after dispersing silicon nanoparticles having an average particle diameter of about 200 nm or less on the carbon-based compound particles, and an active material in which the silicon (Si) particles are present on and inside the graphite.
  • the average particle diameter of the secondary particles of the composite of the silicon-based compound and the carbon-based compound may be 5um to 20um.
  • the average particle diameter of the silicon nanoparticles may be 5 nm or more, such as 10 nm or more, such as 20 nm or more, such as 50 nm or more, such as 70 nm or more.
  • the average particle diameter of the silicon nanoparticles may be 200 nm or less, 150 nm or less, 100 nm or less, 50 nm or less, 20 nm or less, or 10 nm or less.
  • the average particle diameter of the silicon nanoparticles may be 100nm to 150nm.
  • the average particle diameter of the secondary particles of the composite of the silicon-based compound and the carbon-based compound may be 5um to 18um, for example 7um to 15um, for example 10um to 13um.
  • the silicon-carbon-based compound composite is a porous silicon composite containing a porous core including secondary particles of the porous silicon composite and a shell including a second graphene disposed on the core A cluster, wherein the porous silicon composite secondary particles include an aggregate of two or more silicon composite primary particles, and the silicon composite primary particles include silicon; It may be a porous silicon composite cluster including a silicon oxide (SiOx) (O ⁇ x ⁇ 2) disposed on the silicon and a first graphene disposed on the silicon oxide. According to another embodiment, a silicon-carbon cluster.
  • the composite composite may include a porous silicon composite cluster including secondary particles of a porous silicon composite and second carbon flakes on at least one side of the secondary particles of the porous silicon composite; And a carbon-based coating film including amorphous carbon disposed on the porous silicon composite cluster, wherein the porous silicon composite secondary particles include an aggregate of two or more silicon composite primary particles, and the silicon composite primary particles include silicon; A silicon oxide (SiOx) (O ⁇ x ⁇ 2) on at least one surface of the silicon and a first carbon flake on at least one surface of the silicon oxide, wherein the silicon oxide is a film, a matrix, or It may be a porous silicon composite cluster structure that exists as a combination.
  • first carbon flake and the second carbon flake may exist in the form of a film, particle, matrix, or a combination thereof.
  • first carbon flake and the second carbon flake may be graphene, graphite, carbon fiber, graphene oxide, or the like, respectively.
  • the above-described composite of the silicon-based compound and the carbon-based compound includes, for example, an active material coated with a carbon-based compound after dispersing Si particles on the graphite particles, an active material in which the Si particles are present on and inside the graphite, and the silicon particles are converted into a carbon-based compound. And coated composites.
  • the average particle diameter of the Si particles is 50 to 200 nm, for example 100 to 180 nm, for example about 150 nm.
  • the composite of the silicon-based compound and the carbon-based compound may include, for example, a porous silicon composite cluster of Korean Patent Publication 10-2018-0031585 and a porous silicon composite cluster structure disclosed in Korean Patent Publication 10-2018-0056395.
  • the increase rate of direct current internal resistance is 155% or less, for example, 150% or less, for example, 135 to Can be 155%.
  • Mars can be 3 cycles, for example.
  • the form of the lithium secondary battery is not particularly limited, and includes a lithium ion battery, a lithium ion polymer battery, a lithium sulfur battery, and the like.
  • the lithium secondary battery may be manufactured by the following method.
  • the anode is prepared.
  • a positive electrode active material composition in which a positive electrode active material, a conductive material, a binder, and a solvent are mixed is prepared.
  • the positive electrode active material composition is directly coated on a metal current collector to prepare a positive electrode plate.
  • the positive electrode active material composition may be cast on a separate support, and then a film peeled from the support may be laminated on a metal current collector to prepare a positive electrode plate.
  • the anode is not limited to the shapes listed above, but may be in a shape other than the above shape.
  • the positive electrode active material is a lithium-containing metal oxide and may be used without limitation as long as it is commonly used in the art.
  • a complex oxide of a metal selected from cobalt, manganese, nickel, and combinations thereof and lithium may be used, and a specific example thereof is Li a A 1-b B 1 b D 1 2 (In the above formula, 0.90 ⁇ a ⁇ 1.8, and 0 ⁇ b ⁇ 0.5); Li a E 1-b B 1 b O 2-c D 1 c (in the above formula, 0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05); LiE 2-b B 1 b O 4-c D 1 c (where 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05); Li a Ni 1-bc Co b B 1 c D 1 ⁇ (in the above formula, 0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05, 0 ⁇ ⁇ 2); Li a Ni 1-bc Co
  • A is Ni, Co, Mn, or a combination thereof
  • B is Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, rare earth elements, or combinations thereof
  • D is O, F, S, P, or a combination thereof
  • E is Co, Mn, or a combination thereof
  • F is F, S, P, or a combination thereof
  • G is Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, or a combination thereof
  • Q is Ti, Mo, Mn, or a combination thereof
  • I is Cr, V, Fe, Sc, Y, or a combination thereof
  • J is V, Cr, Mn, Co, Ni, Cu, or a combination thereof.
  • the positive electrode may include a positive electrode active material having a layered structure.
  • the positive electrode active material includes a lithium transition metal oxide containing nickel and one or more other transition metals, and the content of nickel is 60 mol% or more with respect to the total number of moles of the transition metal, for example For example at least 75 mol%, for example at least 80 mol%, for example at least 85 mol%, for example at least 90 mol%.
  • the cathode active material is LiNi 0.33 Co 0.33 Mn 0.33 O 2 , LiNi 0.33 Co 0.33 Al 0.33 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.6 Co 0.2 Al 0.2 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 or LiNi 0.8 Co 0.1 Al 0.1 O 2 may be, but is not limited thereto.
  • the coating layer may contain a coating element compound of oxide, hydroxide, oxyhydroxide of coating element, oxycarbonate of coating element, or hydroxycarbonate of coating element.
  • the compound constituting these coating layers may be amorphous or crystalline.
  • As a coating element included in the coating layer Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr, or a mixture thereof may be used.
  • the coating layer formation process may be any coating method as long as the compound can be coated by a method that does not adversely affect the physical properties of the positive electrode active material by using these elements (e.g., spray coating, dipping method, etc.). Since the content can be well understood by those engaged in the relevant field, detailed description will be omitted.
  • Carbon black, graphite fine particles, etc. may be used as the conductive material, but are not limited thereto, and any material that can be used as a conductive material in the art may be used.
  • binder vinylidene fluoride/hexafluoropropylene copolymer, polyvinylidene fluoride (PVDF), polyacrylonitrile, polymethyl methacrylate, polytetrafluoroethylene and mixtures thereof, or styrene butadiene rubber-based polymer, etc. Although may be used, it is not limited thereto, and any one that can be used as a binder in the art may be used.
  • N-methylpyrrolidone N-methylpyrrolidone, acetone, water, and the like may be used, but are not limited thereto, and any solvent that can be used in the art may be used.
  • the contents of the positive electrode active material, the conductive material, the binder, and the solvent are the levels commonly used in lithium secondary batteries.
  • One or more of the conductive material, binder, and solvent may be omitted depending on the use and configuration of the lithium secondary battery.
  • an anode active material composition is prepared by mixing an anode active material, a conductive material, a binder, and a solvent.
  • the negative electrode active material composition is directly coated and dried on a metal current collector to prepare a negative electrode plate.
  • a film peeled from the support may be laminated on a metal current collector to prepare a negative electrode plate.
  • the negative active material may be, for example, at least one selected from a silicon-based compound, a carbon-based material, a silicon oxide (SiO x (0 ⁇ x ⁇ 2)), and a composite of a silicon-based compound and a carbon-based compound.
  • the negative active material may be any material that can be used as a negative active material for a lithium secondary battery in the art.
  • it may include at least one selected from the group consisting of lithium metal, a metal alloyable with lithium, a transition metal oxide, a non-transition metal oxide, and a carbon-based material.
  • the negative active material may be used together as long as it can be used as a negative active material for a lithium secondary battery in the art.
  • the metal alloyable with lithium is Si, Sn, Al, Ge, Pb, Bi, Sb Si-Y alloy (wherein Y is an alkali metal, alkaline earth metal, group 13 element, group 14 element, transition metal, rare earth Element or a combination element thereof, not Si), Sn-Y alloy (the Y is an alkali metal, alkaline earth metal, group 13 element, group 14 element, transition metal, rare earth element, or a combination element thereof, not Sn ), etc.
  • the element Y is Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, It may be Se, or Te.
  • the negative active material may be lithium titanium oxide, vanadium oxide, lithium vanadium oxide, or the like.
  • the conductive agent and the binder may be the same as those of the positive electrode active material composition.
  • water may be used as a solvent.
  • water is used as a solvent
  • carboxymethylcellulose (CMC), styrene butadiene rubber (SBR), an acrylate polymer, and a methacrylate polymer are used as a binder
  • carbon black, acetylene black, and graphite are conductive. Can be used zero.
  • the contents of the negative active material, the conductive agent, the binder, and the solvent are the levels commonly used in lithium secondary batteries.
  • One or more of the conductive agent, the binder, and the solvent may be omitted according to the use and configuration of the lithium secondary battery.
  • the negative electrode After mixing 94% by weight of a negative electrode active material, 3% by weight of a binder, and 3% by weight of a conductive agent in a powder state, water is added so that the solid content is about 70% by weight to make a slurry, and the slurry is coated and dried. Then, the negative electrode can be produced by rolling.
  • a composite of silicon and a carbon-based compound may be used as the negative active material.
  • the conductive material, the binder, and the solvent may be the same as those of the positive electrode active material composition.
  • the contents of the negative electrode active material, the conductive material, the binder, and the solvent are the levels commonly used in lithium secondary batteries.
  • One or more of the conductive material, binder, and solvent may be omitted depending on the use and configuration of the lithium secondary battery.
  • a separator to be inserted between the anode and the cathode is prepared. Any of the separators can be used as long as they are commonly used in lithium secondary batteries. A material having low resistance to ion movement of the electrolyte and excellent in the moisture-absorbing ability of the electrolyte may be used.
  • a rollable separator such as polyethylene or polypropylene may be used for a lithium ion battery, and a separator having excellent electrolyte impregnation ability may be used for a lithium ion polymer battery.
  • the separator may be manufactured according to the following method.
  • a separation membrane composition is prepared by mixing a polymer resin, a filler, and a solvent.
  • the separator composition may be directly coated and dried on the electrode to form a separator.
  • a separator film peeled off from the support may be laminated on an electrode to form a separator.
  • the polymer resin used for manufacturing the separator is not particularly limited, and all materials used for the bonding material of the electrode plate may be used.
  • vinylidene fluoride/hexafluoropropylene copolymer polyvinylidene fluoride (PVDF), polyacrylonitrile, polymethyl methacrylate, or mixtures thereof may be used.
  • PVDF polyvinylidene fluoride
  • the loading level of the negative active material composition is set according to the loading level of the positive active material composition. It is in the range of 12 mg/cm 2 or more, for example 15 mg/cm 2 or more, depending on the dose per gram of the negative active material composition.
  • the electrode density may be 1.5 g/cc or more, for example, 1.6 g/cc or more.
  • As a design that values energy density a design with a density of 1.65g/cc or more and 1.9g/cc or less is preferred.
  • the electrolyte may further include a non-aqueous electrolyte, a solid electrolyte, and an inorganic solid electrolyte in addition to the above-described electrolyte.
  • organic solid electrolyte for example, a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, a polyester sulfide, polyvinyl alcohol, polyvinylidene fluoride, and the like may be used.
  • Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 or the like may be used.
  • the lithium secondary battery 1 includes a positive electrode 3, a negative electrode 2, and a separator 4.
  • the above-described positive electrode 3, negative electrode 2 and separator 4 are wound or folded to be accommodated in the battery case 5.
  • the electrolyte according to an embodiment of the present invention is injected into the battery case 5 and sealed with a cap assembly 6 to complete the lithium secondary battery 1.
  • the battery case may have a cylindrical shape, a square shape, or a thin film type.
  • the lithium secondary battery may be a large thin film type battery.
  • the lithium secondary battery may be a lithium ion battery.
  • a separator may be disposed between the positive electrode and the negative electrode to form a battery structure. After the battery structure is stacked in a bi-cell structure, it is impregnated with an electrolyte, and the resulting product is accommodated in a pouch and sealed to complete a lithium ion polymer battery.
  • a plurality of battery structures are stacked to form a battery pack, and the battery pack can be used in all devices requiring high capacity and high output.
  • the battery pack can be used for laptop computers, smart phones, electric vehicles, and the like.
  • the lithium secondary battery according to the exemplary embodiment may exhibit excellent battery characteristics by significantly reducing the DCIR increase rate compared to a lithium secondary battery employing a general nickel-rich lithium nickel composite oxide as a positive electrode active material.
  • the operating voltage of the lithium secondary battery to which the positive electrode, negative electrode and electrolyte are applied is, for example, a lower limit of 2.5-2.8V to an upper limit of 4.1V or higher, for example, 4.1-4.45V.
  • the lithium secondary battery may include, for example, a power tool that receives power and moves by an electric motor; Electric vehicles including electric vehicles (EV), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (Escooters); Electric golf cart; Power storage systems, etc., but are not limited thereto.
  • Electric vehicles including electric vehicles (EV), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like
  • Electric two-wheeled vehicles including electric bicycles (E-bikes) and electric scooters (Escooters); Electric golf cart; Power storage systems, etc., but are not limited thereto.
  • alkyl group refers to a branched or unbranched aliphatic hydrocarbon group.
  • the alkyl group may be substituted or unsubstituted.
  • the alkyl group includes methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, hexyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, etc. , Is not limited to these, and each of them may be optionally substituted in other embodiments.
  • the alkyl group can contain 1 to 6 carbon atoms.
  • an alkyl group having 1 to 6 carbon atoms is a methyl group.
  • At least one hydrogen atom in the alkyl is a halogen atom, a C1-C20 alkyl group substituted with a halogen atom (e.g., CF 3 , CHF 2 , CH 2 F, CCl 3, etc.), C1-C20 alkoxy, C2-C20 alkoxyalkyl , Hydroxy group, nitro group, cyano group, amino group, amidino group, hydrazine, hydrazone, carboxyl group or salt thereof, sulfonyl group, sulfamoyl group, sulfonic acid group or salt thereof, phosphoric acid or salt thereof, or C1-C20 Alkyl group, C2-C20 alkenyl group, C2-C20 alkynyl group, C1-C20 heteroalkyl group, C6-C20 aryl group, C7-C20 arylalkyl group, C6-C20 heteroaryl group, C7-C20 heteroarylalkyl
  • alkenyl group is a hydrocarbon group having 2 to 20 carbon atoms including one or more carbon-carbon double bonds, ethenyl group, 1-propenyl group, 2-propenyl group, 2-methyl-1-propenyl group, 1-butenyl group, 2-butenyl group, cyclopropenyl group, cyclopentenyl, cyclohexenyl, cyclopentenyl, and the like, but are not limited thereto.
  • the alkenyl group may or may not be substituted.
  • the alkenyl group may have 2 to 40 carbon atoms.
  • alkynyl group refers to a hydrocarbon group having 2 to 20 carbon atoms including one or more carbon-carbon triple bonds, and includes ethynyl group, 1-propynyl group, 1-butynyl group, 2-butynyl group, and the like However, it is not limited to these. In other embodiments, the alkynyl group may or may not be substituted. In other embodiments, the alkynyl group may have 2 to 40 carbon atoms.
  • a substituent group is derived from an unsubstituted parent group, wherein one or more hydrogen atoms are substituted with other atoms or functional groups. Unless otherwise indicated, if a functional group is considered to be “substituted”, this means that the functional group is C 1 -C 20 alkyl, C 2 -C 20 alkenyl, C 2 -C 20 alkynyl, C 1 -C 20 alkoxy, halogen , It means substituted with one or more substituents independently selected from the group consisting of a cyano group, a hydroxy group and a nitro group. When one functional group is described as “optionally substituted”, the functional group may be substituted with the above-described substituent.
  • halogen includes fluorine, bromine, chlorine, iodine and the like.
  • Alkoxy represents “alkyl-O-”, and alkyl is as described above.
  • alkoxy group include a methoxy group, an ethoxy group, a 2-propoxy group, a butoxy group, a t-butoxy group, a pentyloxy group, and a hexyloxy group.
  • At least one hydrogen atom in the alkoxy may be substituted with the same substituent as in the case of the above-described alkyl group.
  • Heteroaryl refers to a monocyclic or bicyclic organic group containing one or more heteroatoms selected from N, O, P, or S, and wherein the remaining ring atoms are carbon.
  • the heteroaryl group may include, for example, 1-5 heteroatoms, and may include 5-10 ring members.
  • the S or N may be oxidized to have various oxidation states.
  • heteroaryl examples include thienyl, furyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, isothiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2 ,5-oxadiazolyl, 1,3,4-oxadiazolyl group, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1, 3,4-thiadiazolyl, isothiazol-3-yl, isothiazol-4-yl, isothiazol-5-yl, oxazol-2-yl, oxazol-4-yl, oxazol-5 -Yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl, 1,2,4-triazol-3-yl, 1,2,4-triazole-5 -Yl, 1,2,3-tria
  • heteroaryl includes the case where a heteroaromatic ring is optionally fused to one or more aryl, cycloaliphatic, or heterocycles.
  • carbon ring refers to a saturated or partially unsaturated non-aromatic monocyclic, bicyclic or tricyclic hydrocarbon group.
  • Examples of the monocyclic hydrocarbon include cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, and the like.
  • bicyclic hydrocarbons examples include bornyl, decahydronaphthyl, bicyclo[2.1.1] hexyl, and bicyclo[2.1.1]heptyl. [2.2.1]heptyl), bicyclo[2.2.1]heptenyl, or bicyclo[2.2.2]octyl.
  • tricyclic hydrocarbon examples include adamantly and the like.
  • At least one hydrogen atom in the carbon ring may be substituted with the same substituent as in the case of the above-described alkyl group.
  • the reaction mixture was stirred at room temperature (25° C.) for 1 hour. Subsequently, the liquid portion of the reaction mixture was partially evaporated under reduced pressure to reduce the volume of the reaction product to about 1/3 of the initial volume. The remaining suspension was filtered to obtain a white precipitate, which was washed twice with anhydrous dichloromethane and once with 5 ml of anhydrous hexane. The resulting product was vacuum-dried for 24 hours to remove the remaining solvent to obtain the compound of Formula 3 as a white powder.
  • the content of the compound of Formula 3 is about 0.1% by weight based on the total weight of the electrolyte.
  • An electrolyte for a lithium secondary battery was prepared in the same manner as in Preparation Example 1, except that the content of the compound of Formula 3 was changed to about 0.5% by weight based on the total weight of the electrolyte.
  • An electrolyte for a lithium secondary battery was prepared in the same manner as in Preparation Example 1, except that the content of the compound of Formula 3 was changed to about 1% by weight based on the total weight of the electrolyte.
  • An electrolyte for a lithium secondary battery was prepared in the same manner as in Preparation Example 1, except that the content of the compound of Formula 3 was changed to about 2% by weight based on the total weight of the electrolyte.
  • An electrolyte for a lithium secondary battery was prepared in the same manner as in Preparation Example 1, except that Compound 1 was not added.
  • An electrolyte for a lithium secondary battery was prepared in the same manner as in Preparation Example 1, except that 1-(trimethylsilyl)imidazole was used instead of the compound of Formula 3.
  • An electrolyte for a lithium secondary battery was prepared in the same manner as in Preparation Example 1, except that 1H-pyrazole-1-sulfonic acid was used instead of the compound of Formula 3.
  • silicon-carbon compound composite a carbon-silicon composite (manufactured by BTR) including carbon-coated silicon particles was used.
  • the slurry was applied to a thickness of about 60 ⁇ m on an aluminum current collector having a thickness of 20 ⁇ m using a doctor blade, dried for 0.5 hours in a hot air dryer at 100° C., dried once again under vacuum and 120° C. for 4 hours, and rolled (roll press) to prepare a positive electrode.
  • a cylindrical lithium secondary battery was manufactured using a 14 ⁇ m-thick polyethylene separator coated with ceramic on the positive electrode as a separator and the electrolyte prepared in Preparation Example 1 as an electrolyte.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the electrolyte prepared according to Preparation Examples 2 to 4 was used instead of the electrolyte prepared in Preparation Example 1.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that the electrolyte prepared in Comparative Preparation Examples 1 to 3 was used instead of the electrolyte prepared in Preparation Example 1.
  • the lithium secondary batteries prepared in Examples 1 to 4 and Comparative Examples 1 to 3 were tested under conditions of 1 C/10 second discharge (SOC 100) at 25° C. and ⁇ V/ for the lithium secondary battery before high temperature storage in an oven at 60° C.
  • Initial direct current resistance (DCIR) was measured as a value of ⁇ I (change in voltage/change in current). Some of the results are shown in Table 1 and FIG. 2 below.
  • DCIR direct current resistance
  • the resistance was measured after storing at the initial stage and at a high temperature (60°C) for 30 days, and the DCIR increase rate (%) was calculated according to Equation 1 below.
  • DCIR increase rate [DCIR(30d.)-DCIR(0d.)/DCIR(0d.)] X 100%
  • Comparative Example 1 not containing the compound of Formula 3 and Comparative Example 2 containing other additives And compared with Comparative Example 3, it can be seen that the rate of increase in high temperature resistance is significantly lower. This is because the compound of Formula 3 effectively acts as a scavenger of PF 5 to stabilize the lithium salt and form a stable film on the surface of the positive electrode to effectively suppress side reactions between the positive electrode and the electrolyte.
  • Example 1 as an electrolyte additive, The compound of Formula 3 is used, and the compound of Formula 3 has an imidazole-SO 3 -Si(CH 3 ) 3 structure and a SO 3 moiety is directly bonded to nitrogen (N) of imidazole.
  • 1-(trimethylsilyl)imidazole having a structure in which Si(CH 3 ) 3 is directly bonded to nitrogen of imidazole as an electrolyte additive is used, and 1-(trimethylsilyl)imidazole is used as an electrolyte additive. It has a structure in which Si(CH 3 ) 3 is directly bonded to nitrogen (N).
  • 1H pyrazole-1-sulfonic acid is used as an electrolyte additive, and 1H pyrazole-1-sulfonic acid has a structure in which nitrogen (N) of the pyrazole is connected to SO 3 H, and the chemical formula of Example 1 Unlike the compound of 3, it has a structure without Si.
  • 1-(trimethylsilyl)imidazole which is an electrolyte additive of Comparative Example 2
  • 1H pyrazole-1-sulfonic acid which is an electrolyte additive of Comparative Example 3
  • the electrolyte additive used in Comparative Example 2 or Comparative Example 3 was used, the effect of using the electrolyte additive of Example 1 could not be obtained.

Abstract

하기 화학식 1로 표시되는 화합물을 포함하는 리튬 이차전지용 전해질 첨가제, 이를 포함하는 리튬이차전지용 전해질 및 이를 포함하는 리튬이차전지가 제시된다: <화학식 1> 상기 화학식 1 중, R 1 내지 R 6은 상세한 설명에서 정의된 바와 같다.

Description

리튬 이차전지용 전해질 첨가제, 이를 포함하는 리튬 이차전지용 전해질 및 리튬 이차전지
리튬 이차전지용 전해질 첨가제, 이를 포함하는 리튬 이차전지용 전해질 및 이를 포함하는 리튬 이차전지에 관한 것이다.
리튬 이차전지는 비디오 카메라, 휴대폰, 노트북 컴퓨터 등 휴대용 전자기기의 구동 전원으로 사용된다. 재충전이 가능한 리튬이차전지는 기존의 납 축전지, 니켈-카드뮴 전지, 니켈수소 전지, 니켈아연 전지 등과 비교하여 단위 중량당 에너지 밀도가 높고 고속 충전이 가능하다.
리튬 이차전지는 높은 구동 전압에서 작동되므로 리튬과 반응성이 높은 수계 전해질이 사용될 수 없다. 리튬 이차전지용 전해질로는 일반적으로 유기 전해질이 사용된다. 유기 전해질은 리튬염이 유기용매에 용해되어 제조된다. 유기용매는 고전압에서 안정적이며, 이온전도도와 유전율이 높고 점도가 낮은 것이 바람직하다.
그러나, 리튬 이차전지용 전해질로 리튬염을 포함하는 유기 전해질이 사용되면 음극/양극과 전해질 사이의 부반응에 의해 리튬 이차전지의 수명 특성 및 고온 안정성이 저하될 수 있다. 그러므로 향상된 수명 특성 및 고온 안정성을 가지는 리튬 이차전지를 제공할 수 있는 리튬 이차전지용 전해질이 요구된다.
한 측면은 신규한 리튬 이차전지용 전해질첨가제를 제공하는 것이다.
다른 한 측면은 상기 전해질 첨가제를 포함하는 리튬 이차전지용 전해질을 제공하는 것이다.
또 다른 한 측면은 상기 리튬 이차전지용 전해질을 포함하는 리튬 이차전지를 제공하는 것이다.
한 측면에 따라, 하기 화학식 1로 표시되는 화합물을 포함하는 리튬 이차전지 전해질 첨가제가 제공된다.
<화학식 1>
Figure PCTKR2020009938-appb-img-000001
상기 화학식 1 중, R 1 내지 R 3는 서로 독립적으로, 수소, 치환 또는 비치환된 C 1-C 30 알킬기, 치환된 또는 비치환된 C 4-C 30 탄소고리기, 치환 또는 비치환된 C 6-C 30 아릴기, 치환 또는 비치환된 C 2-C 30 알케닐기, 치환 또는 비치환된 C 2-C 30 알키닐기, 또는 치환 또는 비치환된 C 2-C 30 헤테로아릴기이고,
R 4 내지 R 6은 서로 독립적으로 치환 또는 비치환된 C 1-C 30 알킬기, 치환된 또는 비치환된 C 4-C 30 탄소고리기, 치환 또는 비치환된 C 6-C 30 아릴기, 치환 또는 비치환된 C 2-C 30 알케닐기, 치환 또는 비치환된 C 2-C 30 알키닐기, 또는 치환 또는 비치환된 C 2-C 30 헤테로아릴기이다.
다른 한 측면에 따라,
리튬염;
유기 용매;
상기 첨가제를 포함하는, 리튬 이차전지용 전해질이 제공된다.
또 다른 한 측면에 따라,
양극활물질을 포함하는 양극;
음극활물질을 포함하는 음극; 및
상기 양극과 음극 사이에 배치되는 전해질;을 포함하며,
상기 전해질이 상술한 첨가제를 포함하는 리튬이차전지가 제공된다.
일구현예에 따른 리튬이차전지용 전해질 첨가제를 포함하는 리튬 이차전지용 전해질을 이용하면 고온 특성과 저항 특성이 향상된 리튬 이차전지를 제조할 수 있다.
도 1은 일구현예에 따른 리튬 이차전지의 모식도이다.
도 2는 실시예 1 내지 4 및 비교예 1 내지 3에 따른 리튬 이차전지의 고온저장 저항 특성을 나타낸 그래프이다.
<부호의 설명>
1: 리튬 이차전지 2: 음극
3: 양극 4: 세퍼레이터
5: 전지케이스 6: 캡 어셈블리
이하, 일구현예에 따른 리튬이차전지용 전해질 첨가제, 이를 포함하는 리튬이차전지용 전해질 및 상기 전해질을 채용한 리튬 이차전지에 관하여 더욱 상세히 설명한다.
일 구현예에 따른 리튬 이차전지용 전해질 첨가제는 하기 화학식 1로 표시되는 화합물을 포함한다:
<화학식 1>
Figure PCTKR2020009938-appb-img-000002
상기 화학식 1 중, R 1 내지 R 3는 서로 독립적으로, 수소, 치환 또는 비치환된 C 1-C 30 알킬기, 치환된 또는 비치환된 C 4-C 30 탄소고리기, 치환 또는 비치환된 C 6-C 30 아릴기, 치환 또는 비치환된 C 2-C 30 알케닐기, 치환 또는 비치환된 C 2-C 30 알키닐기, 또는 치환 또는 비치환된 C 2-C 30 헤테로아릴기이고
R 4 내지 R 6은 서로 독립적으로 치환 또는 비치환된 C 1-C 30 알킬기, 치환 또는 비치환된 C 6-C 30 아릴기, 치환 또는 비치환된 C 2-C 30 알케닐기, 치환 또는 비치환된 C 2-C 30 알키닐기, 또는 치환 또는 비치환된 C 2-C 30 헤테로아릴기이다.
하기 화학식 1에서 치환된 C 1-C 30 알킬기, 치환된 C 4-C 30 탄소고리기, 치환된 C 6-C 30 아릴기, 치환된 C 2-C 30 알케닐기, 치환된 C 2-C 30 알키닐기, 또는 치환된 C 2-C 30 헤테로아릴기의 치환기는, 예를 들어 C 1-C 20 알킬기, C 2-C 20 알케닐기, C 2-C 20 알키닐기, C 1-C 20 알콕시기, 할로겐, 시아노기, 하이드록시기 및 니트로기로 이루어진 군에서 선택된 하나 이상이다.
니켈 및 하나 이상의 다른 전이금속을 함유하며, 니켈의 함량이 전이금속의 전체 몰 수에 대하여 80mol% 이상인 리튬전이금속산화물을 양극활물질로서 사용함에 의하여 고출력 및 고용량을 갖는 리튬이차전지를 제작할 수 있다. 그런데 일반적으로 리튬이차전지에서, 니켈의 함량이 높은 리튬전이금속산화물은 표면 구조가 불안정하여 전지의 충방전 과정에서 부반응에 의한 가스 발생이 증가하고 니켈과 같은 전이금속의 용출이 더 심화된다. 따라서, 리튬이차전지의 수명 특성이 저하된다. 또한 리튬이차전지는 고온에서 저항이 증가되어 고온에서의 안정성 개선이 필요하다.
상기 화학식 1의 화합물을 포함하는 전해질 첨가제를 이용하면 고온에서 저항 억제 효과가 우수하여 수명 특성 및 고온 안정성이 개선된 리튬이차전지를 제조할 수 있다.
상기 화학식 1 중, 상기 R 1 내지 R 3은 서로 독립적으로, 수소, C 1-C 30 알킬기; 메틸기, 에틸기, 프로필기, 부틸기, -F, -Cl, -Br, -I, 시아노기, 하이드록시기 및 니트로기로 이루어진 군에서 선택된 하나 이상으로 치환된, C 1-C 30 알킬기; 또는 메틸기, 에틸기, 프로필기, 부틸기, -F, -Cl, -Br, -I, 시아노기, 하이드록시기 및 니트로기로 이루어진 군에서 선택된 하나 이상으로 치환된, C 2-C 30 알케닐기이다.
상기 화학식 1의 R 4 내지 R 6은 서로 독립적으로, C 1-C 30 알킬기; 메틸기, 에틸기, 프로필기, 부틸기, -F, -Cl, -Br, -I, 시아노기, 하이드록시기 및 니트로기로 이루어진 군에서 선택된 하나 이상으로 치환된, C 1-C 30 알킬기; 또는 메틸기, 에틸기, 프로필기, 부틸기, -F, -Cl, -Br, -I, 시아노기, 하이드록시기 및 니트로기로 이루어진 군에서 선택된 하나 이상으로 치환된, C 2-C 30 알케닐기이다.
화학식 1에서, 상기 R 1 내지 R 3은 예를 들어 수소이거나 C 1-C 10 알킬기, 구체적으로 C 1-C 5 알킬기이다.
일 구현예에 따르면, 상기 화학식 1의 화합물은 하기 화학식 2의 화합물일 수 있다.
<화학식 2>
Figure PCTKR2020009938-appb-img-000003
화학식 2 중, R 4 내지 R 6은 서로 독립적으로 치환 또는 비치환된 C 1-C 30 알킬기, 치환 또는 비치환된 C 4-C 30 탄소고리기, 치환 또는 비치환된 C 6-C 30 아릴기, 치환 또는 비치환된 C 2-C 30 알케닐기, 치환 또는 비치환된 C 2-C 30 알키닐기, 또는 치환 또는 비치환된 C 2-C 30 헤테로아릴기이다.
하기 화학식 2에서 치환된 C 1-C 30 알킬기, 치환된 C 4-C 30 탄소고리기, 치환된 C 6-C 30 아릴기, 치환된 C 2-C 30 알케닐기, 치환된 C 2-C 30 알키닐기, 또는 치환된 C 2-C 30 헤테로아릴기의 치환기는, 예를 들어 C 1-C 20 알킬기, C 2-C 20 알케닐기, C 2-C 20 알키닐기, C 1-C 20 알콕시기, 할로겐, 시아노기, 하이드록시기 및 니트로기로 이루어진 군에서 선택된 하나 이상이다.
상기 화학식 2에서 R 4 내지 R 6은 예를 들어 비치환된 C 1-C 10 알킬기, 메틸기, 에틸기, 프로필기, 부틸기, -F, -Cl, -Br, -I, 시아노기, 하이드록시기 및 니트로기로 이루어진 군에서 선택된 하나 이상으로 치환된 C 1-C 10 알킬기, 비치환된 C 2-C 10 알케닐기, 메틸기, 에틸기, 프로필기, 부틸기, -F, -Cl, -Br, -I, 시아노기, 하이드록시기 및 니트로기로 이루어진 군에서 선택된 하나 이상으로 치환된 C 2-C 10 알케닐기, 비치환된 C 4-C 10 탄소고리기, 메틸기, 에틸기, 프로필기, 부틸기, -F, -Cl, -Br, -I, 시아노기, 하이드록시기 및 니트로기로 이루어진 군에서 선택된 하나 이상으로 치환된 C 4-C 10 탄소고리기, 비치환된 C 6-C 10 아릴기, 또는 메틸기, 에틸기, 프로필기, 부틸기, -F, -Cl, -Br, -I, 시아노기, 하이드록시기 및 니트로기로 이루어진 군에서 선택된 하나 이상으로 치환된 C 6-C 10 아릴기이다.
상기 화학식 1의 화합물이 전해질에 첨가되어 리튬 이차전지의 성능을 향상시키는 이유에 대하여 이하에서 보다 구체적으로 설명하나 이는 본 발명의 이해를 돕기 위한 것으로서 본 발명의 범위가 이하 설명의 범위로 한정되는 것은 아니다.
전해질에 포함되는 리튬염으로서 LiPF 6가 일반적으로 사용되지만, 열안정성이 부족하고 수분으로도 가수분해되기 쉽다는 문제점을 가지고 있다. 하지만, 상기 화학식 1로 표시되는 화합물을 포함하는 전해질 첨가제를 전해질에 부가하면, 상기 화학식 1의 화합물에서 이미다졸 고리의 질소가 수분(H 2O) 분자 및 LiPF 6 분해(decomposition)에 의해 발생하는 PF 5 - 이온을 포획(capture) 함으로써 수분에 의한 LiPF 6의 가수분해반응을 억제할 수 있다. 그 결과, 리튬 이차전지 내부에서의 가스 발생이 억제되어 사이클 수명 특성이 향상된다. 또한, 가스 발생 억제로 인한 전지의 스웰링 현상이 방지될 수 있다.
또한 상기 화학식 1로 표시되는 화합물은 질소를 포함함으로 인해, 에틸렌카보네이트(EC) 등과 같은 유기 용매의 분해를 억제하여 가스 발생을 저감시키고, 그 결과 저항 증가율을 낮출 수 있었다. 또한 상기 화학식 1로 표시되는 화합물은 SO 2 모이어티를 갖고 있어 양극 상부에 안정적인 피막을 형성할 수 있다. 이러한 박막의 형성으로 인해, 기재로부터 추가적인 금속의 용출이 억제되고, 그 결과 리튬 이차전지의 방치 중 리튬 이차전지의 과방전(overdischarge)이 억제되어, 리튬 이차전지의 특성이 향상될 수 있다.
리튬 이차전지의 초기 충전시 음극의 표면에서는 전해질의 분해반응이 일어나게 되는데, 이는 전해질의 환원 전위가 상대적으로 리튬의 전위에 비해 높기 때문이다. 이러한 전해질 분해반응은 전극 표면에 SEI(solid electrolyte interphase)를 형성시켜 음극과 전해질의 반응에 요구되는 전자의 이동을 억제시켜 줌으로서 추가적인 전해질의 분해를 방지할 수 있다. 이에 따라 전지의 성능은 음극 표면에 형성된 피막의 특성에 따라 크게 좌우되며, 이를 고려하여 충전 반응시 전해질보다 먼저 분해될 수 있는 전해질 첨가제의 도입을 통해, 보다 견고하고 우수한 전기적 특성을 갖는 SEI층의 형성이 요구된다.
상기 화학식 1로 표시되는 리튬 이차전지 전해질용 첨가제는 실릴기 -Si(R 4)(R 5)(R 6)를 말단에 포함함으로써, 실릴 그룹의 농도가 높은 SEI 피막이 형성되어 화학적으로 안정한 높은 극성의 막이 형성될 수 있다. 이에 따라, 전해질과 음극의 계면에서의 저항을 낮추어 리튬 이온전도도가 향상되고, 이로 인해 저온 방전 전압 상승 효과를 갖는다.
상기 화학식 1로 표시되는 화합물은 하기 화학식 3 내지 6으로 표시되는 화합물중에서 선택될 수 있다.
<화학식 3>
Figure PCTKR2020009938-appb-img-000004
<화학식 4>
Figure PCTKR2020009938-appb-img-000005
화학식 4 중, Ph은 페닐기를 나타내고,
<화학식 5>
Figure PCTKR2020009938-appb-img-000006
<화학식 6>
Figure PCTKR2020009938-appb-img-000007
상술한 화합물들은 이미다졸(Imidazole) 작용기에 의한 염 부산물(PF5) 안정화와 HF 제거제(Scavenger)하는 역할을 하며 양극에서 산화 분해 되어 설파이트(Sulfite)를 기반으로 하는 피막을 형성하여 고온에서의 양극 부반응을 (Solvent decomposition) 억제하는 역할을 한다.
일 구현예에 따른 리튬 이차전지용 전해질은 리튬염; 유기용매; 및 상기 첨가제를 포함할 수 있다. 첨가제의 함량은 상기 리튬 이차전지용 전해질의 총 중량을 기준으로 0.1 중량% 내지 10 중량% 범위일 수 있으나, 이에 한정되는 것은 아니며, 전지 특성을 저해하지 않는 범위의 함량이 적절히 선택될 수 있다. 예를 들어, 상기 첨가제의 함량은 상기 리튬 이차전지용 전해질의 총 중량을 기준으로 0.5 중량% 내지 5 중량% 범위 일 수 있다. 첨가제의 함량이 상기 함량 범위일 때 전지 수명이 저하됨이 없이 고온 특성 및 저항 특성이 개선된 리튬이차전지를 제작할 수 있다.
일구현예에 따른 리튬이차전지용 전해질은 하기 화학식 3 내지 6으로 표시되는 화합물 중에서 선택된 하나 이상 0.1 내지 2 중량%를 포함하며, 상기 유기용매가 사슬형 카보네이트 50 내지 95vol% 및 고리형 카보네이트 5 내지 50vol%의 혼합용매를 포함하는 전해질일 수 있다.
<화학식 3>
Figure PCTKR2020009938-appb-img-000008
<화학식 4>
Figure PCTKR2020009938-appb-img-000009
<화학식 5>
Figure PCTKR2020009938-appb-img-000010
<화학식 6>
Figure PCTKR2020009938-appb-img-000011
일 구현예에 따르면, 상기 리튬염은 LiPF 6, LiBF 4, LiCF 3SO 3, Li(CF 3SO 2) 2N, LiC 2F 5SO 3, Li(FSO 2) 2N, LiC 4F 9SO 3, LiN(SO 2CF 2CF 3) 2, 및 하기 화학식 10 내지 13으로 표시되는 화합물 중에서 선택된 하나 이상을 포함할 수 있으나, 이에 제한되는 것은 아니며, 당해 기술분야에서 리튬염으로 사용될 수 있는 것이라면 모두 사용될 수 있다.
[화학식 10]
Figure PCTKR2020009938-appb-img-000012
[화학식 11]
Figure PCTKR2020009938-appb-img-000013
[화학식 12]
Figure PCTKR2020009938-appb-img-000014
[화학식 13]
Figure PCTKR2020009938-appb-img-000015
상기 전해질에서 상기 리튬염의 농도는 0.01 내지 5.0M, 예를 들어 0.05 내지 5.0M, 예를 들어 0.1 내지 5.0M, 예를 들어 0.1 내지 2.0M이다. 리튬염의 농도가 상기 범위일 때 더욱 향상된 리튬이차전지 특성이 얻어질 수 있다.
유기용매는 카보네이트계 용매, 에스테르계 용매, 에테르계 용매, 및 케톤계 용매, 중에서 선택된 하나 이상일 수 있다.
카보네이트계 용매로서 에틸메틸카보네이트(EMC), 메틸프로필카보네이트(MPC), 에틸프로필카보네이트(EPC), 디메틸카보네이트(DMC), 디에틸카보네이트(DEC), 디프로필카보네이트(DPC), 프로필렌카보네이트(PC), 에틸렌카보네이트(EC), 부틸렌카보네이트(BC) 등이 사용될 수 있으며, 에스테르계 용매로서 메틸프로피오네이트, 에틸프로피오네이트, 에틸부티레이트, 메틸아세테이트, 에틸아세테이트, n-프로필아세테이트, 디메틸아세테이트, 감마부티로락톤, 데카놀라이드(decanolide), 감마발레로락톤, 메발로노락톤(mevalonolactone), 카프로락톤(caprolactone), 등이 사용될 수 있으며, 에테르계 용매로서 디부틸 에테르, 테트라글라임, 디글라임, 디메톡시에탄, 2-메틸테트라히드로퓨란, 테트라히드로퓨란 등이 사용될 수 있으며, 케톤계 용매로는 시클로헥사논 등이 사용될 수 있으며, 니트릴계 용매로서 아세토니트릴(AN), 석시노니트릴(SN), 아디포니트릴 등이 사용될 수 있다. 기타 용매로서 디메틸술폭사이드, 디메틸포름아미드, 디메틸아세트아미드, 테트라하이드로퓨란 등이 사용될 수 있으나 반드시 이들로 한정되지 않으며 당해 기술 분야에서 유기용매로 사용될 수 있는 것이라면 모두 가능하다. 예를 들어, 유기용매는 사슬형 카보네이트 50 내지 95vol% 및 고리형 카보네이트 5 내지 50vol%의 혼합용매, 예를 들어 사슬형 카보네이트 70 내지 95vol% 및 고리형 카보네이트 5 내지 30vol%의 혼합용매를 포함할 수 있다. 예를 들어, 유기용매는 3가지 이상의 유기용매의 혼합용매일 수 있다.
일 구현예에 따르면, 상기 유기용매는 에틸메틸카보네이트(EMC), 메틸프로필카보네이트, 에틸프로필카보네이트, 디메틸카보네이트(DMC), 디에틸카보네이트(DEC), 디프로필카보네이트, 프로필렌카보네이트(PC), 에틸렌카보네이트(EC), 플루오로에틸렌카보네이트(FEC), 비닐렌 카보네이트(VC), 비닐에틸렌 카보네이트(VEC), 부틸렌카보네이트, 에틸프로피오네이트, 에틸부티레이트, 디메틸술폭사이드, 디메틸포름아미드, 디메틸아세트아미드, 감마-발레로락톤, 감마-부티로락톤 및 테트라하이드로퓨란으로 구성된 군에서 선택된 1종 이상을 포함할 수 있으나, 이에 한정되는 것은 아니며, 당해 기술분야에서 유기 용매로 사용될 수 있는 것이라면 모두 사용될 수 있다.
일구현예에 따르면, 상기 리튬 이차전지용 전해질은 지방족 니트릴 화합물을 더 포함할 수 있다. 예를 들어, 상기 지방족 니트릴 화합물은 아세토니트릴(AN) 또는 숙시노니트릴(SN)을 포함할 수 있으나, 이에 한정되는 것은 아니며, 탄화수소의 말단에 니트릴기가 포함된다면 모두 사용될 수 있다. 예를 들어, 상기 지방족 니트릴 화합물의 함량은 상기 리튬 이차전지용 전해질의 총 중량을 기준으로 0.1 중량% 내지 10 중량% 범위일 수 있으나, 이에 한정되는 것은 아니며, 금속 용출 억제 효과를 저해하지 않는 범위의 함량이 적절히 선택될 수 있다.
상기 전해질은 액체 또는 겔 상태일 수 있다.
다른 일구현예에 따른 리튬이차전지는 양극활물질을 포함하는 양극; 음극활물질을 포함하는 음극; 및 양극과 음극 사이에 배치되는 전해질;을 포함하며, 전해질이 상술한 첨가제를 포함한다.
상기 리튬이차전지는 상술한 리튬이차전지용 전해질 첨가제를 포함함에 의하여, 리튬이차전지의 초기 저항 증가가 억제되고, 부반응에 의한 가스 발생이 억제되고, 수명 특성이 향상된다. 양극활물질은 니켈 및 다른 전이금속을 포함하는 리튬전이금속산화물을 포함한다. 니켈 및 다른 전이금속을 포함하는 리튬전이금속산화물에서 니켈의 함량은 전이금속의 전체 몰 수에 대하여 60mol% 이상, 예를 들어 75mol% 이상, 예를 들어 80mol% 이상, 예를 들어 85mol% 이상, 예를 들어 90mol% 이상일 수 있다.
예를 들어, 리튬전이금속산화물이 하기 화학식 7으로 표시될 수 있다:
<화학식 7>
Li aNi xCo yM zO 2-bA b
화학식 7 중, 1.0≤a≤1.2, 0≤b≤0.2, 0.6≤x<1, 0<y≤0.3, 0<z≤0.3, x+y+z=1, M은 망간(Mn), 바나듐(V), 마그네슘(Mg), 갈륨(Ga), 실리콘(Si), 텅스텐(W), 몰리브덴(Mo), 철(Fe), 크롬(Cr), 구리(Cu), 아연(Zn), 티타늄(Ti), 알루미늄(Al) 및 보론(B)으로 이루어진 군으로부터 선택된 하나 이상이고, A는 F, S, Cl, Br 또는 이들의 조합이다. 예를 들어, 0.7≤x<1, 0<y≤0.3, 0<z≤0.3; 0.8≤x<1, 0<y≤0.3, 0<z≤0.3; 0.8≤x<1, 0<y≤0.2, 0<z≤0.2; 0.83≤x<0.97, 0<y≤0.15, 0<z≤0.15; 또는 0.85≤x<0.95, 0<y≤0.1, 0<z≤0.1;일 수 있다.
예를 들어, 리튬전이금속산화물이 하기 화학식 8 및 9로 표시되는 화합물일 수 있다:
<화학식 8>
LiNi xCo yMn zO 2
상기 화학식 8 중, 0.6≤x≤0.95, 0<y≤0.2, 0<z≤0.1이다. 예를 들어, 0.7≤x≤0.95, 0<y≤0.3, 0<z≤0.3이다.
<화학식 9>
LiNi xCo yAl zO 2
상기 화학식 9중, 0.6≤x≤0.95, 0<y≤0.2, 0<z≤0.1이다. 예를 들어, 0.7≤x≤0.95, 0<y≤0.3, 0<z≤0.3이다. 예를 들어, 0.8≤x≤0.95, 0<y≤0.3, 0<z≤0.3이다. 예를 들어, 0.82≤x≤0.95, 0<y≤0.15, 0<z≤0.15이다. 예를 들어, 0.85≤x≤0.95, 0<y≤0.1, 0<z≤0.1이다.
예를 들어, 리튬전이금속산화물은 LiNi 0.7Co 0.2Mn 0.1O 2, LiNi 0.88Co 0.08Mn 0.04O 2, LiNi 0.8Co 0.15Mn 0.05O 2, LiNi 0.8Co 0.1Mn 0.1O 2, LiNi 0.88Co 0.1Mn 0.02O 2, LiNi 0.8Co 0.15Al 0.05O 2, LiNi 0.8Co 0.1Mn 0.2O 2 또는 LiNi 0.88Co 0.1Al 0.02O 2일 수 있다.
다른 일구현예에 의하면, 상기 양극 활물질은 Li-Ni-Co-Al (NCA), Li-Ni-Co-Mn (NCM), 리튬 코발트 산화물 (LiCoO 2), 리튬 망간 산화물 (LiMnO 2), 리튬 니켈 산화물 (LiNiO 2) 및 리튬 철 인산화물 (LiFePO 4)로 이루어진 군에서 선택된 적어도 하나의 활물질을 포함한다.
음극 활물질은 실리콘계 화합물, 탄소계 재료, 실리콘계 화합물과 탄소계 화합물의 복합체 및 실리콘 산화물(SiO x, 0<x<2) 중에서 선택된 하나 이상을 포함할 수 있다. 실리콘계 화합물은 실리콘 입자, 실리콘 합금 입자 등일 수 있다.
실리콘계 화합물의 사이즈는 200nm 미만, 예를 들어 10 내지 150 nm이다. 용어 “사이즈”는 실리콘계 화합물이 구형인 경우에는 평균입경을 나타내고 실리콘 입자가 비구형인 경우에는 평균 장축 길이를 나타낼 수 있다.
실리콘계 화합물의 사이즈가 상기 범위일 때 수명 특성이 우수하여 일구현예에 따른 전해질을 사용한 경우 리튬이차전지의 수명이 더욱 더 개선된다.
상기 탄소계 재료로는 결정질 탄소, 비정질 탄소 또는 이들의 혼합물일 수 있다. 상기 결정질 탄소는 무정형, 판상, 인편상(flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연일 수 있으며, 상기 비정질 탄소는 소프트 카본(soft carbon: 저온 소성 탄소) 또는 하드 카본(hard carbon), 메조페이스 피치(mesophase pitch) 탄화물, 소성된 코크스 등일 수 있다.
실리콘계 화합물과 탄소계 화합물의 복합체는 실리콘 나노입자가 탄소계 화합물 상부에 배치된 구조를 갖는 복합체, 실리콘 입자가 탄소계 화합물 표면과 내부에 포함된 복합체, 실리콘 입자가 탄소계 화합물로 코팅되어 탄소계 화합물 내부에 포함된 복합체일 수 있다. 실리콘계 화합물과 탄소계 화합물의 복합체에서 탄소계 화합물은 흑연, 그래핀, 그래핀 옥사이드 또는 그 조합물일 수 있다.
실리콘계 화합물과 탄소계 화합물의 복합체는 탄소계 화합물 입자 상에 평균입경이 약 200nm 이하의 실리콘 나노입자를 분산한 후 카본 코팅하여 얻어지는 활물질, 실리콘(Si) 입자가 그래파이트 상부 및 내부에 존재하는 활물질 등일 수 있다. 실리콘계 화합물과 탄소계 화합물의 복합체의 2차 입자 평균 입경은 5um 내지 20um일 수 있다. 실리콘 나노입자의 평균 입경은 5nm 이상, 예를 들어 10nm 이상, 예를 들어 20nm 이상, 예를 들어 50nm 이상, 예를 들어 70nm 이상일 수 있다. 실리콘 나노입자의 평균 입경은 200nm 이하, 150nm 이하, 100nm 이하, 50nm 이하, 20nm 이하, 10nm 이하일 수 있다. 예를 들어, 실리콘 나노입자의 평균 입경은 100nm 내지 150nm일 수 있다.
실리콘계 화합물과 탄소계 화합물의 복합체의 2차 입자 평균 입경은 5um 내지 18um, 예를 들어 7um 내지 15um, 예를 들어 10um 내지 13um일 수 있다.
일구현예에 따른 실리콘-탄소계 화합물 복합체는 다공성 실리콘 복합체 이차 입자를 포함하는 다공성 코어(core)와 상기 코어의 상부에 배치된 제2그래핀을 포함하는 쉘(shell)을 함유하는 다공성 실리콘 복합체 클러스터이며, 상기 다공성 실리콘 복합체 이차 입자는 두 개 이상의 실리콘 복합체 일차 입자의 응집체를 포함하며, 상기 실리콘 복합체 일차 입자는 실리콘; 상기 실리콘 상에 배치된 실리콘 산화물(SiOx)(O<x<2) 및 상기 실리콘 산화물 상에 배치된 제1그래핀을 포함하는 다공성 실리콘 복합체 클러스터일 수 있다.다른 일구현예에 따른 실리콘-탄소계 화합물 복합체는 다공성 실리콘 복합체 이차 입자와 상기 다공성 실리콘 복합체 이차 입자의 적어도 일면상의 제2탄소 플레이크를 포함하는 다공성 실리콘 복합체 클러스터; 및 상기 다공성 실리콘 복합체 클러스터 상부에 배치된 비정질 탄소를 포함하는 탄소계 코팅막을 포함하며, 상기 다공성 실리콘 복합체 이차 입자는 두 개 이상의 실리콘 복합체 일차 입자의 응집체를 포함하며, 상기 실리콘 복합체 일차 입자는 실리콘; 상기 실리콘의 적어도 일면상의 실리콘 산화물(SiOx)(O<x<2) 및 상기 실리콘 산화물의 적어도 일 면상의 제1탄소 플레이크를 포함하며, 상기 실리콘 산화물은 막(film), 매트릭스(matrix) 또는 그 조합물의 상태로 존재하는 다공성 실리콘 복합체 클러스터 구조체일 수 있다.
상기 제1탄소플레이크 및 제2탄소플레이크는 각각 막(film), 입자, 매트릭스(matrix) 또는 그 조합물의 상태로 존재할 수 있다. 그리고 제1탄소플레이크 및 제2탄소플레이크는 각각 그래핀, 그래파이트, 탄소섬유, 그래핀 옥사이드 등일 수 있다.
실리콘계 화합물과 탄소계 화합물의 복합체는 탄소계 화합물 입자 상에 평균입경이 약 200nm 이하의 실리콘 나노입자를 분산한 후 카본 코팅하여 얻어지는 활물질, 실리콘(Si) 입자가 그래파이트 상부 및 내부에 존재하는 활물질 등일 수 있다. 실리콘계 화합물과 탄소계 화합물의 복합체의 2차 입자 평균 입경은 5um 내지 20um일 수 있다. 실리콘 나노입자의 평균 입경은 5nm 이상, 예를 들어 10nm 이상, 예를 들어 20nm 이상, 예를 들어 50nm 이상, 예를 들어 70nm 이상일 수 있다. 실리콘 나노입자의 평균 입경은 200nm 이하, 150nm 이하, 100nm 이하, 50nm 이하, 20nm 이하, 10nm 이하일 수 있다. 예를 들어, 실리콘 나노입자의 평균 입경은 100nm 내지 150nm일 수 있다.
실리콘계 화합물과 탄소계 화합물의 복합체의 2차 입자 평균 입경은 5um 내지 18um, 예를 들어 7um 내지 15um, 예를 들어 10um 내지 13um일 수 있다.
일구현예에 따른 실리콘-탄소계 화합물 복합체는 다공성 실리콘 복합체 이차 입자를 포함하는 다공성 코어(core)와 상기 코어의 상부에 배치된 제2그래핀을 포함하는 쉘(shell)을 함유하는 다공성 실리콘 복합체 클러스터이며, 상기 다공성 실리콘 복합체 이차 입자는 두 개 이상의 실리콘 복합체 일차 입자의 응집체를 포함하며, 상기 실리콘 복합체 일차 입자는 실리콘; 상기 실리콘 상에 배치된 실리콘 산화물(SiOx)(O<x<2) 및 상기 실리콘 산화물 상에 배치된 제1그래핀을 포함하는 다공성 실리콘 복합체 클러스터일 수 있다.다른 일구현예에 따른 실리콘-탄소계 화합물 복합체는 다공성 실리콘 복합체 이차 입자와 상기 다공성 실리콘 복합체 이차 입자의 적어도 일면상의 제2탄소 플레이크를 포함하는 다공성 실리콘 복합체 클러스터; 및 상기 다공성 실리콘 복합체 클러스터 상부에 배치된 비정질 탄소를 포함하는 탄소계 코팅막을 포함하며, 상기 다공성 실리콘 복합체 이차 입자는 두 개 이상의 실리콘 복합체 일차 입자의 응집체를 포함하며, 상기 실리콘 복합체 일차 입자는 실리콘; 상기 실리콘의 적어도 일면상의 실리콘 산화물(SiOx)(O<x<2) 및 상기 실리콘 산화물의 적어도 일 면상의 제1탄소 플레이크를 포함하며, 상기 실리콘 산화물은 막(film), 매트릭스(matrix) 또는 그 조합물의 상태로 존재하는 다공성 실리콘 복합체 클러스터 구조체일 수 있다.
상기 제1탄소플레이크 및 제2탄소플레이크는 각각 막(film), 입자, 매트릭스(matrix) 또는 그 조합물의 상태로 존재할 수 있다. 그리고 제1탄소플레이크 및 제2탄소플레이크는 각각 그래핀, 그래파이트, 탄소섬유, 그래핀 옥사이드 등일 수 있다.
상술한 실리콘계 화합물과 탄소계 화합물의 복합체는 예를 들어 그래파이트 입자 상에 Si 입자를 분산한 후 탄소계 화합물 코팅한 활물질, Si 입자가 그래파이트 상부 및 내부에 존재하는 활물질, 실리콘 입자가 탄소계 화합물로 코팅된 복합체를 들 수 있다.
상기 Si 입자의 평균입경은 50 내지 200nm, 예를 들어 100 내지 180nm, 예를 들어 약 150nm이다. 실리콘계 화합물과 탄소계 화합물의 복합체는 예를 들어 대한민국 특허공개 10-2018-0031585의 다공성 실리콘 복합체 클러스터, 대한민국 특허공개 10-2018-0056395에 개시된 다공성 실리콘 복합체 클러스터 구조체를 포함할 수 있다.
리튬이차전지의 화성(Formation) 진행 후 고온(60℃)에서 30일간 보관한 후 저항직류저항(DCIR: direct current internal resistance) 상승율은 155% 이하, 예를 들어 150% 이하, 예를 들어 135 내지 155%일 수 있다. 화성은 예를 들어 3사이클일 수 있다.
상기 리튬 이차전지는 그 형태가 특별히 제한되지는 않으며, 리튬이온전지, 리튬이온폴리머전지, 리튬설퍼전지 등을 포함한다.
상기 리튬 이차전지는 다음과 같은 방법에 의하여 제조될 수 있다.
먼저 양극이 준비된다.
예를 들어, 양극활물질, 도전재, 바인더 및 용매가 혼합된 양극활물질 조성물이 준비된다. 상기 양극활물질 조성물이 금속 집전체 위에 직접 코팅되어 양극판이 제조된다. 다르게는, 상기 양극활물질 조성물이 별도의 지지체 상에 캐스팅된 다음, 상기 지지체로부터 박리된 필름이 금속 집전체상에 라미네이션되어 양극판이 제조될 수 있다. 상기 양극은 상기에서 열거한 형태에 한정되는 것은 아니고 상기 형태 이외의 형태일 수 있다.
상기 양극활물질은 리튬함유 금속산화물로서, 당업계에서 통상적으로 사용되는 것이면 제한 없이 모두 사용될 수 있다. 예를 들어, 코발트, 망간, 니켈, 및 이들의 조합에서 선택되는 금속과 리튬과의 복합 산화물 중 1종 이상의 것을 사용할 수 있으며, 그 구체적인 예로는, Li aA 1-bB 1 bD 1 2(상기 식에서, 0.90 ≤ a ≤ 1.8, 및 0 ≤ b ≤ 0.5이다); Li aE 1-bB 1 bO 2-cD 1 c(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05이다); LiE 2-bB 1 bO 4-cD 1 c(상기 식에서, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05이다); Li aNi 1-b-cCo bB 1 cD 1 α(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α ≤ 2이다); Li aNi 1-b-cCo bB 1 cO 2-αF 1 α(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); Li aNi 1-b-cCo bB 1 cO 2-αF 1 2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); Li aNi 1-b-cMn bB 1 cD 1 α(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α ≤ 2이다); Li aNi 1-b-cMn bB 1 cO 2-αF 1 α(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); Li aNi 1-b-cMn bB 1 cO 2-αF 1 2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); Li aNi bE cG dO 2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0.001 ≤ d ≤ 0.1이다.); Li aNi bCo cMn dGeO 2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0 ≤ d ≤0.5, 0.001 ≤ e ≤ 0.1이다.); Li aNiG bO 2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다.); Li aCoG bO 2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다.); Li aMnG bO 2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다.); Li aMn 2G bO 4(상기 식에서, 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다.); QO 2; QS 2; LiQS 2; V 2O 5; LiV 2O 5; LiI 1O 2; LiNiVO 4; Li (3-f)J 2(PO 4) 3(0 ≤ f ≤ 2); Li (3-f)Fe 2(PO 4) 3(0 ≤ f ≤ 2); LiFePO 4의 화학식 중 어느 하나로 표현되는 화합물을 사용할 수 있다:
상기 화학식에 있어서, A는 Ni, Co, Mn, 또는 이들의 조합이고; B는 Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, 희토류 원소 또는 이들의 조합이고; D는 O, F, S, P, 또는 이들의 조합이고; E는 Co, Mn, 또는 이들의 조합이고; F는 F, S, P, 또는 이들의 조합이고; G는 Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, 또는 이들의 조합이고; Q는 Ti, Mo, Mn, 또는 이들의 조합이고; I는 Cr, V, Fe, Sc, Y, 또는 이들의 조합이며; J는 V, Cr, Mn, Co, Ni, Cu, 또는 이들의 조합이다.
예를 들어, LiCoO 2, LiMn gO 2g(g=1, 또는 2), LiNi 1-gMn gO 2g(0<g<1), LiNi 1-g-kCo gMn kO 2 (0≤g≤0.5, 0≤k≤0.5), LiFePO 4 등이다.
구체적으로, 상기 양극은 층상 구조를 가지는 양극활물질을 포함할 수 있다.
예를 들어, 상기 양극활물질은 상기 양극활물질이, 니켈 및 하나 이상의 다른 전이금속을 함유하는 리튬전이금속산화물을 포함하며, 상기 니켈의 함량이 전이금속의 전체 몰 수에 대하여 60mol% 이상, 예를 들어 75mol% 이상, 예를 들어 80mol% 이상, 예를 들어 85mol% 이상, 예를 들어 90mol% 이상이다.
예를 들어, 상기 양극활물질은 LiNi 0.33Co 0.33Mn 0.33O 2, LiNi 0.33Co 0.33Al 0.33O 2, LiNi 0.6Co 0.2Mn 0.2O 2, LiNi 0.6Co 0.2Al 0.2O 2, LiNi 0.8Co 0.1Mn 0.1O 2 또는 LiNi 0.8Co 0.1Al 0.1O 2일 수 있으나, 이에 한정되는 것은 아니다.
물론 상기 화합물 표면에 코팅층을 갖는 것도 사용할 수 있고, 또는 상기 화합물과 코팅층을 갖는 화합물을 혼합하여 사용할 수도 있다. 이 코팅층은 코팅 원소의 옥사이드, 하이드록사이드, 코팅 원소의 옥시하이드록사이드, 코팅 원소의 옥시카보네이트, 또는 코팅 원소의 하이드록시카보네이트의 코팅 원소 화합물을 포함할 수 있다. 이들 코팅층을 이루는 화합물은 비정질 또는 결정질일 수 있다. 상기 코팅층에 포함되는 코팅 원소로는 Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr 또는 이들의 혼합물을 사용할 수 있다. 코팅층 형성 공정은 상기 화합물에 이러한 원소들을 사용하여 양극활물질의 물성에 악영향을 주지 않는 방법(예를 들어 스프레이 코팅, 침지법 등)으로 코팅할 수 있으면 어떠한 코팅 방법을 사용하여도 무방하며, 이에 대하여는 당해 분야에 종사하는 사람들에게 잘 이해될 수 있는 내용이므로 자세한 설명은 생략하기로 한다.
상기 도전재로는 카본블랙, 흑연미립자 등이 사용될 수 있으나, 이들로 한정되지 않으며, 당해 기술분야에서 도전재로 사용될 수 있는 것이라면 모두 사용될 수 있다.
상기 바인더로는 비닐리덴 플루오라이드/헥사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드(PVDF), 폴리아크릴로니트릴, 폴리메틸메타크릴레이트, 폴리테트라플루오로에틸렌 및 그 혼합물 또는 스티렌 부타디엔 고무계 폴리머 등이 사용될 수 있으나, 이들로 한정되지 않으며 당해 기술분야에서 바인더로 사용될 수 있는 것이라면 모두 사용될 수 있다.
상기 용매로는 N-메틸피롤리돈, 아세톤 또는 물 등이 사용될 수 있으나, 이들로 한정되지 않으며 당해 기술분야에서 사용될 수 있는 것이라면 모두 사용될 수 있다.
상기, 양극활물질, 도전재, 바인더 및 용매의 함량은 리튬 이차전지에서 통상적으로 사용되는 수준이다. 리튬 이차전지의 용도 및 구성에 따라 상기 도전재, 바인더 및 용매 중 하나 이상이 생략될 수 있다.
다음으로 음극이 준비된다.
예를 들어, 음극활물질, 도전재, 바인더 및 용매를 혼합하여 음극활물질 조성물이 준비된다. 상기 음극활물질 조성물이 금속 집전체 상에 직접 코팅 및 건조되어 음극판이 제조된다. 다르게는, 상기 음극활물질 조성물이 별도의 지지체상에 캐스팅된 다음, 상기 지지체로부터 박리된 필름이 금속 집전체상에 라미네이션되어 음극판이 제조될 수 있다.
음극 활물질은 예를 들어 실리콘계 화합물, 탄소계 재료, 실리콘 산화물 (SiO x(0<x<2), 실리콘계 화합물과 탄소계 화합물의 복합체 중에서 선택된 하나 이상일 수 있다.
상기 음극 활물질은 당해 기술분야에서 리튬 이차전지의 음극활물질로 사용될 수 있는 것이라면 모두 가능하다. 예를 들어, 리튬 금속, 리튬과 합금 가능한 금속, 전이금속 산화물, 비전이금속산화물 및 탄소계 재료로 이루어진 군에서 선택된 하나 이상을 포함할 수 있다.
상기 음극 활물질은 상술한 음극 활물질 이외에 당해 기술분야에서 리튬이차전지의 음극 활물질로 사용될 수 있는 것이라면 함께 사용가능하는 것도 가능하다. 예를 들어, 상기 리튬과 합금 가능한 금속은 Si, Sn, Al, Ge, Pb, Bi, Sb Si-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 또는 이들의 조합 원소이며, Si는 아님), Sn-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 또는 이들의 조합 원소이며, Sn은 아님) 등일 수 있다. 상기 원소 Y로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, 또는 Te일 수 있다.
예를 들어, 상기 음극 활물질 은 리튬 티탄 산화물, 바나듐 산화물, 리튬 바나듐 산화물 등일 수 있다.
음극 활물질 조성물에서 도전제 및 바인더는 상기 양극 활물질 조성물의 경우와 동일한 것을 사용할 수 있다.
다만, 음극 활물질 조성물에서는 물을 용매로 사용할 수 있다. 예를 들어, 물을 용매로 사용하고, 카르복시메틸셀룰로오즈(CMC), 스티렌부타디엔러버(SBR), 아크릴레이트계 중합체, 메타크릴레이트계 중합체를 바인더로 사용하고, 카본블랙, 아세틸렌 블랙, 그래파이트를 도전제로 사용할 수 있다.
상기 음극 활물질, 도전제, 바인더 및 용매의 함량은 리튬이차전지에서 통상적으로 사용하는 수준이다. 리튬이차전지의 용도 및 구성에 따라 상기 도전제, 바인더 및 용매 중 하나 이상이 생략될 수 있다.
예를 들어, 음극 활물질 94 중량%, 바인더 3 중량%, 도전제 3 중량%를 분말 상태로 혼합한 후, 고형분이 약 70중량%가 되도록 물을 넣어 슬러리를 만든 뒤, 이 슬러리를 코팅, 건조, 압연해서 음극을 제작할 수 있다.
음극 활물질로는 실리콘과 탄소계 화합물의 복합체가 이용될 수 있다.
음극활물질 조성물에서 도전재, 바인더 및 용매는 상기 양극활물질 조성물의 경우와 동일한 것을 사용할 수 있다.
상기 음극활물질, 도전재, 바인더 및 용매의 함량은 리튬 이차전지에서 통상적으로 사용하는 수준이다. 리튬 이차전지의 용도 및 구성에 따라 상기 도전재, 바인더 및 용매 중 하나 이상이 생략될 수 있다. 다음으로, 상기 양극과 음극 사이에 삽입될 분리막이 준비된다. 상기 분리막은 리튬 이차전지에서 통상적으로 사용되는 것이라면 모두 사용 가능하다. 전해질의 이온 이동에 대하여 저저항이면서 전해질 함습 능력이 우수한 것이 사용될 수 있다. 예를 들어, 유리 섬유, 폴리에스테르, 테프론, 폴리에틸렌, 폴리프로필렌, 폴리테트라플루오로에틸렌(PTFE) 또는 이들의 조합물 중에서 선택된 것으로서, 부직포 또는 직포 형태이어도 무방하다. 예를 들어, 리튬이온전지에는 폴리에틸렌, 폴리프로필렌 등과 같은 권취 가능한 분리막이 사용되며, 리튬이온폴리머전지에는 전해질 함침 능력이 우수한 분리막이 사용될 수 있다. 예를 들어, 상기 분리막은 하기 방법에 따라 제조될 수 있다.
고분자 수지, 충진제 및 용매를 혼합하여 분리막 조성물이 준비된다. 상기 분리막 조성물이 전극 상부에 직접 코팅 및 건조되어 분리막이 형성될 수 있다. 또는, 상기 분리막 조성물이 지지체상에 캐스팅 및 건조된 후, 상기 지지체로부터 박리시킨 분리막 필름이 전극 상부에 라미네이션되어 분리막이 형성될 수 있다.
상기 분리막 제조에 사용되는 고분자 수지는 특별히 한정되지 않으며, 전극판의 결합재에 사용되는 물질들이 모두 사용될 수 있다. 예를 들어, 비닐리덴플루오라이드/헥사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드(PVDF), 폴리아크릴로니트릴, 폴리메틸메타크릴레이트 또는 이들의 혼합물 등이 사용될 수 있다.
음극 활물질 조성물의 로딩레벨(loading level)은 양극 활물질 조성물의 로딩레벨에 따라 설정된다. 음극 활물질 조성물 g당 용량에 따라 12mg/cm 2 이상, 예를 들어 15mg/cm 2 이상 범위이다. 전극 밀도는 1.5g/cc 이상 예를 들어 1.6g/cc 이상에 될 수 있다. 에너지 밀도를 중시하는 설계로서 밀도는 1.65g/cc 이상 1.9g/cc 이하 같은 설계가 선호 된다.
다음으로, 상술한 전해질이 준비된다.
일구현예에 따르면 전해질은 상술한 전해질 이외에 비수 전해질, 고체 전해질, 무기 고체 전해질을 추가로 포함할 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리불화비닐리덴 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li 3N, LiI, Li 5NI 2, Li 3N-LiI-LiOH, Li 2SiS 3, Li 4SiO 4, Li 4SiO 4-LiI-LiOH, Li 3PO 4-Li 2S-SiS 2 등이 사용될 수 있다.
도 1에서 보여지는 바와 같이 상기 리튬이차전지 (1)는 양극 (3), 음극 (2) 및 분리막 (4)를 포함한다. 상술한 양극 (3), 음극 (2) 및 분리막 (4)가 와인딩되거나 접혀서 전지 케이스 (5)에 수용된다. 이어서, 상기 전지 케이스 (5)에 본 발명의 일구현예에 따른 전해질이 주입되고 캡(cap) 어셈블리 (6)로 밀봉되어 리튬이차전지 (1)가 완성된다. 상기 전지 케이스는 원통형, 각형, 박막형 등일 수 있다. 예를 들어, 상기 리튬이차전지는 대형박막형전지일 수 있다. 상기 리튬이차전지는 리튬이온전지일 수 있다.
상기 양극 및 음극 사이에 분리막이 배치되어 전지구조체가 형성될 수 있다. 상기 전지구조체가 바이셀 구조로 적층된 다음, 전해질에 함침되고, 얻어진 결과물이 파우치에 수용되어 밀봉되면 리튬이온폴리머전지가 완성된다.
또한, 상기 전지 구조체는 복수개 적층되어 전지팩을 형성하고, 이러한 전지팩이 고용량 및 고출력이 요구되는 모든 기기에 사용될 수 있다. 예를 들어, 노트북, 스마트폰, 전기차량 등에 사용될 수 있다.
일구현예에 따른 리튬이차전지는 일반적인 니켈 리치 리튬 니켈 복합 산화물을 양극 활물질로 채용한 리튬이차전지와 비교하여, DCIR 상승율이 현저히 감소하여, 우수한 전지 특성을 발휘할 수 있다.
상기 양극, 음극, 전해질을 적용한 리튬이차전지의 작동전압은 예를 들어 하한은 2.5-2.8V 내지 상한은 4.1V 이상, 예를 들어 4.1-4.45V 이다.
또한, 상기 리튬이차전지는 예를 들어, 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(Escooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에서, "알킬기"라는 용어는 분지형 또는 비분지형 지방족 탄화수소기를 의미한다. 일구현예에서, 알킬기는 치환 또는 비치환될 수 있다. 알킬기는 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, 이소부틸기, tert-부틸기, 펜틸기, 헥실기, 시클로프로필기, 시클로펜틸기, 시클로헥실기, 시클로헵틸기 등을 포함하나, 이들로 한정되지 않으며, 이들 각각은 다른 구현예에서 선택적으로 치환될 수 있다. 다른 구현에에서, 알킬기는 1 내지 6의 탄소원자를 포함할 수 있다. 예를 들어, 탄소수 1 내지 6의 알킬기는, 메틸기. 에틸기, 프로필기, 이소프로필기, 부틸기. 이소부틸기, sec-부틸기, 펜틸기, 3-펜틸기, 헥실기 등을 포함하나, 이들로 한정되지 않는다.
상기 알킬중 하나 이상의 수소 원자는 할로겐 원자, 할로겐 원자로 치환된 C1-C20의 알킬기(예: CF 3, CHF 2, CH 2F, CCl 3 등), C1-C20의 알콕시, C2-C20의 알콕시알킬, 히드록시기, 니트로기, 시아노기, 아미노기, 아미디노기, 히드라진, 히드라존, 카르복실기나 그의 염, 술포닐기, 설파모일(sulfamoyl)기, 술폰산기나 그의 염, 인산이나 그의 염, 또는 C1-C20의 알킬기, C2-C20 알케닐기, C2-C20 알키닐기, C1-C20의 헤테로알킬기, C6-C20의 아릴기, C7-C20의 아릴알킬기, C6-C20의 헤테로아릴기, C7-C20의 헤테로아릴알킬기, C6-C20의 헤테로아릴옥시기, 또는 C6-C20의 헤테로아릴옥시알킬기로 치환될 수 있다.
본 명세서에서, "알케닐기"는 하나 이상의 탄소-탄소 이중결합을 포함하는 탄소수 2 내지 20의 탄화수소기로서, 에테닐기, 1-프로페닐기, 2-프로페닐기, 2-메틸-1-프로페닐기, 1-부테닐기, 2-부테닐기, 시클로프로페닐기, 시클로펜테닐, 시클로헥세닐, 시클로펜테닐 등을 포함하나, 이들로 한정되지 않는다. 다른 구현예에서, 알케닐기는 치환되거나 치환되지 않을 수 있다. 다른 구현예에서, 알케닐기의 탄소수가 2 내지 40일 수 있다.
본 명세서에서, "알키닐기"라는 용어는 하나 이상의 탄소-탄소 삼중결합을 포함하는 탄소수 2 내지 20의 탄화수소기로서, 에티닐기, 1-프로피닐기, 1-부티닐기, 2-부티닐기 등을 포함하나, 이들로 한정되지 않는다. 다른 구현예에서, 알키닐기는 치환되거나 치환되지 않을 수 있다. 다른 구현예에서, 알키닐기의 탄소수가 2 내지 40일 수 있다.
본 명세서에서, 치환기는 치환되지 않은 모작용기(parent group)로부터 유도되며, 여기서 하나 이상의 수소 원자가 다른 원자나 작용기로 치환된다. 다르게 표시되지 않으면, 작용기가 "치환된" 것으로 여겨지면, 이것은 상기 작용기가 C 1-C 20 알킬, C 2-C 20 알케닐, C 2-C 20 알키닐, C 1-C 20 알콕시, 할로겐, 시아노기, 하이드록시기 및 니트로기로 이루어진 군에서 독립적으로 선택된 하나 이상의 치환기로 치환됨을 의미한다. 하나의 작용기가 "선택적으로 치환된"이라고 기재되면, 상기 작용기는 상술한 치환기로 치환될 수 있다.
용어 "할로겐"는 불소, 브롬, 염소, 요오드 등을 포함한다.
"알콕시"는 "알킬-O-"을 나타내며, 알킬은 상술한 바와 같다. 알콕시기는 예를 들어 메톡시기, 에톡시기, 2-프로폭시기, 부톡시기, t-부톡시기, 펜틸옥시기, 헥실옥시기 등을 들 수 있다. 상기 알콕시중 하나 이상의 수소 원자는 상술한 알킬기의 경우와 동일한 치환기로 치환될 수 있다.
"헤테로아릴"은 N, O, P 또는 S 중에서 선택된 하나 이상의 헤테로원자를 포함하고, 나머지 고리원자가 탄소인 모노사이클릭(monocyclic) 또는 바이사이클릭(bicyclic) 유기 그룹을 의미한다. 상기 헤테로아릴기는 예를 들어 1-5개의 헤테로원자를 포함할 수 있고, 5-10 고리 멤버(ring member)를 포함할 수 있다. 상기 S 또는 N은 산화되어 여러가지 산화 상태를 가질 수 있다.
헤테로아릴의 예로는 티에닐, 푸릴, 피롤릴, 이미다졸릴, 피라졸릴, 티아졸릴, 이소티아졸릴, 1,2,3-옥사디아졸릴, 1,2,4-옥사디아졸릴, 1,2,5-옥사디아졸릴, 1,3,4-옥사디아졸릴기, 1,2,3-티아디아졸릴, 1,2,4-티아디아졸릴, 1,2,5-티아디아졸릴, 1,3,4-티아디아졸릴, 이소티아졸-3-일, 이소티아졸-4-일, 이소티아졸-5-일, 옥사졸-2-일, 옥사졸-4-일, 옥사졸-5-일, 이소옥사졸-3-일, 이소옥사졸-4-일, 이소옥사졸-5-일, 1,2,4-트리아졸-3-일, 1,2,4-트리아졸-5-일, 1,2,3-트리아졸-4-일, 1,2,3-트리아졸-5-일, 테트라졸릴, 피리드-2-일, 피리드-3-일, 2-피라진-2일, 피라진-4-일, 피라진-5-일, 2- 피리미딘-2-일, 4- 피리미딘-2-일, 또는 5-피리미딘-2-일을 들 수 있다.
용어 "헤테로아릴"은 헤테로방향족 고리가 하나 이상의 아릴, 지환족(cyclyaliphatic), 또는 헤테로사이클에 선택적으로 융합된 경우를 포함한다.
용어 “탄소고리”는 포화 또는 부분적으로 불포화된 비방향족(non-aromatic) 모노사이클릭, 바이사이클릭 또는 트리사이클릭 탄화수소기를 말한다.
상기 모노사이클릭 탄화수소의 예로서, 사이클로펜틸, 사이클로펜테닐, 사이클로헥실, 사이클로헥세닐 등이 있다.
상기 바이사이클릭 탄화수소의 예로서, 보닐(bornyl), 데카하이드로나프틸(decahydronaphthyl), 바이사이클로[2.1.1]헥실(bicyclo[2.1.1]hexyl), 바이사이클로[2.1.1]헵틸(bicyclo[2.2.1]heptyl), 바이사이클로[2.2.1]헵테닐(bicyclo[2.2.1]heptenyl), 또는 바이사이클로[2.2.2]옥틸(bicyclo[2.2.2]octyl)이 있다.
상기 트리사이클릭 탄화수소의 예로서, 아다만틸(adamantly) 등이 있다.
상기 탄소고리중 하나 이상의 수소 원자는 상술한 알킬기의 경우와 마찬가지의 치환기로 치환 가능하다.
이하의 실시예 및 비교예를 통하여 본 발명이 더욱 상세하게 설명된다. 단, 실시예는 본 발명을 예시하기 위한 것으로서 이들만으로 본 발명의 범위가 한정되는 것이 아니다.
예비제조예 1: 화학식 3의 화합물의 제조
트리메틸실릴이미다졸(trimethylsilylimidazole: TCI) (0.05 mol, 9.44 g) 의 무수 디클로로메탄 용액 10 ml를 트리메틸실릴 클로로술포네이트(trimethylsilyl chlorosulfonate, Sigma-Aldrich)(0.05 mol, 7.01 g)의 무수 디클로로메탄 용액에 0℃에서 적가하였다.
상기 반응 혼합물을 실온(25℃)에서 1시간 동안 교반하였다. 이어서, 반응 혼합물에서 액체 부분을 일부 감압증발하여 반응 결과물의 부피를 초기 부피의 약 1/3로 줄였다. 남아 있는 현탁액을 여과하여 흰색 침전물을 얻었고, 이를 무수 디클로메탄으로 2번 세척하고 무수 헥산 5ml로 1회 세척하였다. 상기 결과물을 24시간동안 진공건조하여 남아있는 용매를 제거하여 화학식 3의 화합물을 흰색 분말로 얻었다.
수율: 8.59 g (88%)
1H NMR (400 MHz, CDCl3), δ 0.63 (s, 9H), 7.08 (s, 1H), 7.71 (s, 1H), 8.63 (s, 1H).
13C NMR (100 MHz, CDCl3), δ -0.70 (s), 121.94 (s), 122.67 (s), 137.08 (s).
29Si NMR (80 MHz, CDCl3), δ 26.86 (s).
제조예 1: 전해질의 제조
에틸렌 카보네이트(EC), 에틸메틸 카보네이트(EMC), 디메틸카보네이트(DMC)의 부피비가 2:1:7인 혼합용매에 1.5 M의 LiPF 6를 첨가한 다음, 예비제조예 1에 따라 얻은 화학식 3의 화합물을 첨가하여 리튬 이차전지용 전해질을 제조하였다.
상기 화학식 3의 화합물의 함량은 전해질 총중량을 기준으로 하여 약 0.1 중량%이다.
<화학식 3>
Figure PCTKR2020009938-appb-img-000016
제조예 2: 전해질의 제조
화학식 3의 화합물의 함량이 전해질 총중량을 기준으로 하여 약 0.5 중량%로 변화된 것을 제외하고는 제조예 1과 동일한 방법으로 리튬 이차전지용 전해질을 제조하였다.
제조예 3:전해질의 제조
화학식 3의 화합물의 함량이 전해질 총중량을 기준으로 하여 약 1중량%로 변화된 것을 제외하고는 제조예 1과 동일한 방법으로 리튬 이차전지용 전해질을 제조하였다.
제조예 4:전해질의 제조
화학식 3의 화합물의 함량이 전해질 총중량을 기준으로 하여 약 2중량%로 변화된 것을 제외하고는 제조예 1과 동일한 방법으로 리튬 이차전지용 전해질을 제조하였다.
비교제조예 1:전해질의 제조
상기 화합물 1을 첨가하지 않는 것을 제외하고는, 제조예 1과 동일한 방법으로 리튬 이차전지용 전해질을 제조하였다.
비교제조예 2:전해질의 제조
화학식 3의 화합물 대신 1-(트리메틸실릴)이미다졸을 사용한 것을 제외하고는, 제조예 1과 동일한 방법으로 리튬 이차전지용 전해질을 제조하였다.
비교제조예 3:전해질의 제조
화학식 3의 화합물 대신 1H 피라졸-1-술폰산(1H-Pyrazole-1-sulfonic acid)을 사용한 것을 제외하고는, 제조예 1과 동일한 방법으로 리튬 이차전지용 전해질을 제조하였다.
실시예 1: 리튬 이차전지의 제조
흑연(Graphite) 87중량%, 실리콘-탄소계 화합물 복합체 11 중량%, 스티렌-부타디엔 고무(SBR)(ZEON) 1중량% 및 카르복시메틸셀룰로오스(CMC, NIPPON A&L) 1.0중량%를 혼합한 후 증류수에 투입하고 기계식 교반기를 사용하여 60분간 교반하여 음극활물질 슬러리를 제조하였다. 상기 슬러리를 닥터 블레이드를 사용하여 10㎛ 두께의 구리 집전체 위에 약 60㎛ 두께로 도포하고 100℃의 열풍건조기에서 0.5시간 동안 건조한 후 진공, 120℃의 조건에서 4시간 동안 다시 한번 건조하고, 압연(roll press)하여 음극을 제조하였다.
실리콘-탄소계 화합물 복합체로는 카본 코팅된 실리콘 입자를 포함하는 탄소-실리콘 복합체(BTR사 제조)을 이용하였다.
LiNi 0.8Co 0.1Al 0.1O 2(NCA) 97중량%, 도전재로서 인조흑연(SFG6, Timcal) 분말 0.5중량%, 카본블랙(Ketjenblack, ECP) 0.8중량%, 개질 아크릴로니트릴 고무(BM-720H, Zeon Corporation) 0.2중량%, 폴리비닐리덴플루오라이드(PVdF, S6020, Solvay) 1.2중량%, 폴리비닐리덴플루오라이드(PVdF, S5130, Solvay) 0.3중량%를 혼합하여 N-메틸-2-피롤리돈에 투입한 후 기계식 교반기를 사용하여 30분간 교반하여 양극활물질 슬러리를 제조하였다. 상기 슬러리를 닥터 블레이드를 사용하여 20㎛ 두께의 알루미늄 집전체 위에 약 60㎛ 두께로 도포하고 100℃의 열풍건조기에서 0.5시간 동안 건조한 후 진공, 120℃의 조건에서 4시간 동안 다시 한번 건조하고, 압연(roll press)하여 양극을 제조하였다.
분리막으로서 양극에 세라믹이 코팅된 두께 14㎛ 폴리에틸렌 세퍼레이터 및 전해질로서 상기 제조예 1에서 제조된 전해질을 사용하여 원통형 리튬 이차전지를 제조하였다.
실시예 2-4: 리튬 이차전지의 제조
제조예 1에서 제조된 전해질 대신 제조예 2 내지 4에 따라 제조된 전해질을 각각 사용한다는 것을 제외하고는, 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 1-3: 리튬 이차전지의 제조
제조예 1에서 제조된 전해질 대신 비교제조예 1 내지 3에서 제조된 전해질을 사용한다는 것을 제외하고는, 실시예 1과 동일한 방법으로 리튬 이차전지를 제조하였다.
평가예 1: 상온(25℃) 초기 직류저항(DC-IR) 및 고온 저장후 직류저항 증가율 테스트
실시예 1 내지 4 및 비교예 1 내지 3에서 제작된 리튬 이차전지를 25℃에서 1C/10초 방전(SOC 100) 조건 하에서 테스트하고 60℃의 오븐에 고온 보관하기 전의 리튬이차전지에 대하여 ΔV/ΔI(전압의 변화/전류의 변화) 값으로 초기 직류저항(DCIR)을 측정하였다. 그 결과의 일부를 하기 표 1 및 도 2에 나타내었다. 그리고 직류저항(DCIR)을 측정한 후 초기와 고온(60℃)에서 30일간 보관한 후 저항을 측정하여, DCIR 증가율(%)을 하기 식 1에 따라 계산하였다.
[식 1]
DCIR 증가율 =[DCIR(30d.)-DCIR(0d.)/DCIR(0d.)] X 100%
DCIR 1C/10sec discharge 진행 시 시작 시점에서의 전압과(V1) 전류를(I1) 측정하고 10sec 시점에서 전압과(V2) 전류를(I2) 측정 하여 (V1-V2)/(I2-I1) 수식으로 계산하여 구하였다.
저항 증가율 측정 결과를 하기 표 1 및 도 2에 나타내었다.
구 분 초기 직류저항(DCIR)(mΩ) 30일 후 DCIR(mΩ) DCIR 증가율 (%)
실시예 1 28.0 40.5 144.6
실시예 2 28.0 39.5 141.1
실시예 3 28.1 39.3 139.6
실시예 4 28.2 38.3 139.6
비교예 1 28.1 43.5 155.0
비교예 2 28.0 45 160.7
비교예 3 28.2 47 166.7
상기 표 1 및 도 2에 나타난 바와 같이, 실시예 1 내지 4의 리튬 이차전지는 고온에서 장기간 보관한 경우에도, 화학식 3의 화합물을 포함하지 않는 비교예 1과, 다른 첨가제를 함유한 비교예 2 및 비교예 3과 비교하여 고온 저항 증가율이 현저히 낮음을 알 수 있다. 이는 화학식 3의 화합물이 PF 5의 포획(scavenger) 역할을 효과적으로 수행하여 리튬염을 안정화시키고 양극 표면에 안정적인 피막을 형성하여 양극과 전해질의 부반응을 효과적으로 억제하기 때문이다.실시예 1에서는 전해질 첨가제로서 화학식 3의 화합물을 이용하며 상기 화학식 3의 화합물은 이미다졸-SO 3-Si(CH 3) 3 구조를 갖고 SO 3 모이어티가 이미다졸의 질소(N)에 직접적으로 결합된 구조를 갖는다.
이에 비하여 비교예 2에서는 전해질 첨가제로서 이미다졸의 질소에 Si(CH 3) 3 가 직접 결합된 구조를 갖는 1-(트리메틸실릴)이미다졸을 사용하며 1-(트리메틸실릴)이미다졸은 이미다졸의 질소(N)에 Si(CH 3) 3가 직접 결합된 구조를 갖고 있다.
또한 비교예 3에서는 전해질 첨가제로서 1H 피라졸-1-술폰산을 이용하며, 1H 피라졸-1-술폰산은 피라졸의 질소(N)가 SO 3H가 연결되어 있고 구조를 갖고 실시예 1의 화학식 3의 화합물과 달리 Si이 없는 구조를 갖고 있다.
상술한 바와 같이 비교예 2 의 전해질 첨가제인 1-(트리메틸실릴)이미다졸 및 비교예 3의 전해질 첨가제인 1H 피라졸-1-술폰산은 실시예 1에서 사용된 화학식 3의 화합물과 그 구조가 매우 달라 비교예 2 또는 비교예 3에서 사용된 전해질 첨가제를 사용해서는 실시예 1의 전해질 첨가제를 이용한 효과를 얻을 수 없었다.

Claims (14)

  1. 하기 화학식 1로 표시되는 화합물을 포함하는 리튬 이차전지 전해질첨가제:
    <화학식 1>
    Figure PCTKR2020009938-appb-img-000017
    상기 화학식 1 중, R 1 내지 R 3는 서로 독립적으로, 수소, 치환 또는 비치환된 C 1-C 30 알킬기, 치환된 또는 비치환된 C 4-C 30 탄소고리기, 치환 또는 비치환된 C 6-C 30 아릴기, 치환 또는 비치환된 C 2-C 30 알케닐기, 치환 또는 비치환된 C 2-C 30 알키닐기, 또는 치환 또는 비치환된 C 2-C 30 헤테로아릴기이고
    R 4 내지 R 6은 서로 독립적으로 치환 또는 비치환된 C 1-C 30 알킬기, 치환된 또는 비치환된 C 4-C 30 탄소고리기, 치환 또는 비치환된 C 6-C 30 아릴기, 치환 또는 비치환된 C 2-C 30 알케닐기, 치환 또는 비치환된 C 2-C 30 알키닐기, 또는 치환 또는 비치환된 C 2-C 30 헤테로아릴기이다.
  2. 제1항에 있어서,
    상기 화학식 1 중, 상기 R 1 내지 R 3은 서로 독립적으로, 수소, C 1-C 30 알킬기; 메틸기, 에틸기, 프로필기, 부틸기, -F, -Cl, -Br, -I, 시아노기, 하이드록시기 및 니트로기로 이루어진 군에서 선택된 하나 이상으로 치환된, C 1-C 30 알킬기; 또는 메틸기, 에틸기, 프로필기, 부틸기, -F, -Cl, -Br, -I, 시아노기, 하이드록시기 및 니트로기로 이루어진 군에서 선택된 하나 이상으로 치환된, C 2-C 30 알케닐기인, 리튬 이차전지용 전해질 첨가제.
  3. 제1항에 있어서,
    상기 화학식 1 중, 상기 R 4 내지 R 6은 서로 독립적으로, C 1-C 30 알킬기; 메틸기, 에틸기, 프로필기, 부틸기, -F, -Cl, -Br, -I, 시아노기, 하이드록시기 및 니트로기로 이루어진 군에서 선택된 하나 이상으로 치환된, C 1-C 30 알킬기; 또는 메틸기, 에틸기, 프로필기, 부틸기, -F, -Cl, -Br, -I, 시아노기, 하이드록시기 및 니트로기로 이루어진 군에서 선택된 하나 이상으로 치환된, C 2-C 30 알케닐기인, 리튬 이차전지용 전해질 첨가제.
  4. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 2로 표시되는 화합물인, 리튬 이차전지용 전해질 첨가제:
    <화학식 2>
    Figure PCTKR2020009938-appb-img-000018
    화학식 2 중, R 4 내지 R 6은 서로 독립적으로 치환 또는 비치환된 C 1-C 30 알킬기, 치환된 또는 비치환된 C 4-C 30 탄소고리기, 치환 또는 비치환된 C 6-C 30 아릴기, 치환 또는 비치환된 C 2-C 30 알케닐기, 치환 또는 비치환된 C 2-C 30 알키닐기, 또는 치환 또는 비치환된 C 2-C 30 헤테로아릴기이고,
    하기 화학식 2에서 치환된 C 1-C 30 알킬기, 치환된 C 4-C 30 탄소고리기, 치환된 C 6-C 30 아릴기, 치환된 C 2-C 30 알케닐기, 치환된 C 2-C 30 알키닐기, 또는 치환된 C 2-C 30 헤테로아릴기의 치환기는, C 1-C 20 알킬기, C 2-C 20 알케닐기, C 2-C 20 알키닐기, C 1-C 20 알콕시기, 할로겐, 시아노기, 하이드록시기 및 니트로기로 이루어진 군에서 선택된 하나 이상이다.
  5. 제4항에 있어서,
    상기 화학식 2에서 R 4 내지 R 6은 C 1-C 5 알킬기, C2-C5 알케닐기 또는 할로겐으로 치환된 C2-C5 알케닐기인 리튬 이차전지용 전해질 첨가제.
  6. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 3 내지 6으로 표시되는 화합물중에서 선택되는 리튬 이차전지용 전해질 첨가제.
    <화학식 3>
    Figure PCTKR2020009938-appb-img-000019
    <화학식 4>
    Figure PCTKR2020009938-appb-img-000020
    화학식 4 중, Ph은 페닐기를 나타낸다.
    <화학식 5>
    Figure PCTKR2020009938-appb-img-000021
    <화학식 6>
    Figure PCTKR2020009938-appb-img-000022
  7. 리튬염;
    비수계 유기 용매; 및
    제1항 내지 제6항 중 어느 한 항에 따른 첨가제를 포함하는, 리튬 이차전지용 전해질.
  8. 제7항에 있어서,
    상기 첨가제의 함량은 상기 리튬 이차전지용 전해질의 총 중량을 기준으로 0.1 중량% 내지 10 중량% 범위인, 리튬 이차전지용 전해질.
  9. 제7항에 있어서,
    상기 첨가제의 함량은 상기 리튬 이차전지용 전해질의 총 중량을 기준으로 0.5 중량% 내지 5 중량% 범위인, 리튬 이차전지용 전해질.
  10. 제7항에 있어서,
    상기 리튬염은 LiPF 6, LiBF 4, LiCF 3SO 3, Li(CF 3SO 2) 2N, LiC 2F 5SO 3, Li(FSO 2) 2N, LiC 4F 9SO 3, LiN(SO 2CF 2CF 3) 2, 및 하기 화학식 10 내지 13으로 표시되는 화합물 중에서 선택된 하나 이상인 리튬이차전지용 전해질:
    [화학식 10]
    Figure PCTKR2020009938-appb-img-000023
    [화학식 11]
    Figure PCTKR2020009938-appb-img-000024
    [화학식 12]
    Figure PCTKR2020009938-appb-img-000025
    [화학식 13]
    Figure PCTKR2020009938-appb-img-000026
  11. 제7항에 있어서,
    상기 유기용매가 에틸메틸카보네이트(EMC), 메틸프로필카보네이트, 에틸프로필카보네이트, 디메틸카보네이트(DMC), 디에틸카보네이트(DEC), 디프로필카보네이트, 프로필렌카보네이트(PC), 에틸렌카보네이트(EC), 플루오로에틸렌카보네이트(FEC), 비닐렌 카보네이트(VC), 비닐에틸렌 카보네이트(VEC), 부틸렌카보네이트, 에틸프로피오네이트, 에틸부티레이트, 디메틸술폭사이드, 디메틸포름아미드, 디메틸아세트아미드, 감마-발레로락톤, 감마-부티로락톤 및 테트라하이드로퓨란으로 구성된 군에서 선택된 1종 이상을 포함하는, 리튬 이차전지용 전해질.
  12. 양극활물질을 포함하는 양극;
    음극활물질을 포함하는 음극; 및
    상기 양극과 음극 사이에 배치되는 전해질;을 포함하며,
    상기 전해질이 상기 제1 항 내지 제6 항 중 어느 한 항에 따른 첨가제를 포함하는 리튬이차전지.
  13. 제12항에 있어서, 상기 양극이 하기 화학식 7로 표시되는 리튬전이금속산화물을 포함하는 리튬이차전지:
    <화학식 7>
    Li aNi xCo yM zO 2-bA b
    상기 화학식 7중, 1.0≤a≤1.2, 0≤b≤0.2, 0.6≤x<1, 0<y≤0.3, 0<z≤0.3, x+y+z=1, M은 망간(Mn), 바나듐(V), 마그네슘(Mg), 갈륨(Ga), 실리콘(Si), 텅스텐(W), 몰리브덴(Mo), 철(Fe), 크롬(Cr), 구리(Cu), 아연(Zn), 티타늄(Ti), 알루미늄(Al) 및 보론(B)으로 이루어진 군으로부터 선택된 하나 이상이고, A는 F, S, Cl, Br 또는 이들의 조합이다.
  14. 제12항에 있어서, 상기 양극이 하기 화학식 8 또는 9로 표시되는 리튬전이금속산화물을 포함하는 리튬이차전지:
    <화학식 8>
    LiNi xCo yMn zO 2
    상기 화학식 8 중, 0.6≤x≤0.95, 0<y≤0.2, 0<z≤0.1이다.
    <화학식 9>
    LiNi xCo yAl zO 2
    상기 화학식 9 중, 0.6≤x≤0.95, 0<y≤0.2, 0<z≤0.1이다.
PCT/KR2020/009938 2019-07-31 2020-07-28 리튬 이차전지용 전해질 첨가제, 이를 포함하는 리튬 이차전지용 전해질 및 리튬 이차전지 WO2021020864A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20848662.1A EP4007030A4 (en) 2019-07-31 2020-07-28 ELECTROLYTE ADDITIVE FOR LITHIUM SECONDARY BATTERIES AND ELECTROLYTE FOR LITHIUM SECONDARY BATTERIES AND LITHIUM SECONDARY BATTERIES THEREFROM
US17/630,120 US20220263132A1 (en) 2019-07-31 2020-07-28 Electrolyte additive for lithium secondary battery, electrolyte for lithium secondary battery including the same, and lithium secondary battery including electrolyte
CN202080055832.7A CN114730919A (zh) 2019-07-31 2020-07-28 用于锂二次电池的电解质添加剂以及各自包含其的用于锂二次电池的电解质和锂二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190093356A KR102537228B1 (ko) 2019-07-31 2019-07-31 리튬 이차전지용 전해질 첨가제, 이를 포함하는 리튬 이차전지용 전해질 및 리튬 이차전지
KR10-2019-0093356 2019-07-31

Publications (1)

Publication Number Publication Date
WO2021020864A1 true WO2021020864A1 (ko) 2021-02-04

Family

ID=74230443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/009938 WO2021020864A1 (ko) 2019-07-31 2020-07-28 리튬 이차전지용 전해질 첨가제, 이를 포함하는 리튬 이차전지용 전해질 및 리튬 이차전지

Country Status (5)

Country Link
US (1) US20220263132A1 (ko)
EP (1) EP4007030A4 (ko)
KR (1) KR102537228B1 (ko)
CN (1) CN114730919A (ko)
WO (1) WO2021020864A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113013491A (zh) * 2021-03-16 2021-06-22 广州天赐高新材料股份有限公司 电解液添加剂、电解液及锂离子电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223152A (ja) * 1998-11-24 2000-08-11 Mitsuru Sano 充放電におけるサイクル寿命を延長したリチウムイオン二次電池
KR20180031585A (ko) 2016-09-19 2018-03-28 삼성전자주식회사 다공성 실리콘 복합체 클러스터, 그 탄소 복합체, 이를 포함한 전극, 리튬 전지, 전계 방출 소자, 바이오센서, 반도체 소자 및 열전소자
KR20180056395A (ko) 2016-11-18 2018-05-28 삼성전자주식회사 다공성 실리콘 복합체 클러스터 구조체, 이를 포함한 탄소 복합체, 그 제조방법, 이를 포함한 전극, 및 리튬 전지, 소자
KR20180137527A (ko) * 2016-04-22 2018-12-27 놈스 테크놀로지스, 인크. 헤테로고리형 이온성 액체
KR20190027189A (ko) * 2017-09-06 2019-03-14 삼성에스디아이 주식회사 리튬 이차 전지
KR20190055733A (ko) * 2017-11-15 2019-05-23 삼성전자주식회사 리튬전지 전해질 첨가제, 이를 포함하는 유기전해액 및 리튬전지

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280063A (ja) * 2001-03-15 2002-09-27 Sony Corp 電解質および電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223152A (ja) * 1998-11-24 2000-08-11 Mitsuru Sano 充放電におけるサイクル寿命を延長したリチウムイオン二次電池
KR20180137527A (ko) * 2016-04-22 2018-12-27 놈스 테크놀로지스, 인크. 헤테로고리형 이온성 액체
KR20180031585A (ko) 2016-09-19 2018-03-28 삼성전자주식회사 다공성 실리콘 복합체 클러스터, 그 탄소 복합체, 이를 포함한 전극, 리튬 전지, 전계 방출 소자, 바이오센서, 반도체 소자 및 열전소자
KR20180056395A (ko) 2016-11-18 2018-05-28 삼성전자주식회사 다공성 실리콘 복합체 클러스터 구조체, 이를 포함한 탄소 복합체, 그 제조방법, 이를 포함한 전극, 및 리튬 전지, 소자
KR20190027189A (ko) * 2017-09-06 2019-03-14 삼성에스디아이 주식회사 리튬 이차 전지
KR20190055733A (ko) * 2017-11-15 2019-05-23 삼성전자주식회사 리튬전지 전해질 첨가제, 이를 포함하는 유기전해액 및 리튬전지

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4007030A4
W DABKOWSKI , J MICHALSKI , Z SKRZYPCZYNSKI: "A Convenient Synthesis Of Phosphorus And Sulfonyl Substituted N-Imidazoles (Triazoles) Using The Corresponding Acid Chlorides And N-TrimethylsilylImidazoles (Triazoles)", PHOSPHORUS AND SULFUR AND THE RELATED ELEMENTS, vol. 26, no. 3, 14 March 2007 (2007-03-14), pages 321 - 326, XP009525800, DOI: 10.1080/03086648608084586 *

Also Published As

Publication number Publication date
CN114730919A (zh) 2022-07-08
KR20210015072A (ko) 2021-02-10
KR102537228B1 (ko) 2023-05-26
US20220263132A1 (en) 2022-08-18
EP4007030A4 (en) 2024-01-24
EP4007030A1 (en) 2022-06-01

Similar Documents

Publication Publication Date Title
WO2015020486A1 (ko) 리튬 이차전지용 양극 재료 및 이를 포함하는 리튬 이차전지
WO2021010650A1 (ko) 리튬 이차전지용 전해질 첨가제, 이를 포함하는 리튬 이차전지용 전해질 및 리튬 이차전지
WO2018135889A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2019027127A1 (ko) 리튬 전지용 전해액 및 이를 포함하는 리튬 전지
WO2019027137A1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
WO2021167428A1 (ko) 리튬 이차 전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2022220474A1 (ko) 첨가제, 이를 포함하는 리튬 이차 전지용 전해액 및 리튬 이차 전지
WO2015170786A1 (ko) 유기전해액 및 상기 전해액을 채용한 리튬전지
WO2021040388A1 (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2022211589A1 (ko) 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
WO2018021746A1 (ko) 리튬 전지 전해질용 첨가제, 이를 포함하는 리튬 전지용 전해질 및 상기 전해질을 채용한 리튬 전지
WO2018135890A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2019151725A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지
WO2021071109A1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
WO2018131952A1 (ko) 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2020222469A1 (ko) 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2020149677A1 (ko) 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2021020864A1 (ko) 리튬 이차전지용 전해질 첨가제, 이를 포함하는 리튬 이차전지용 전해질 및 리튬 이차전지
WO2022169109A1 (ko) 리튬 이차전지용 전해질 및 이를 포함하는 리튬 이차전지
WO2022260383A1 (ko) 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
WO2022092906A1 (ko) 양극 활물질 및 이의 제조방법
WO2019078672A2 (ko) 이차전지용 양극활물질 제조방법 및 이를 이용하는 이차전지
WO2023063648A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2019151724A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지
WO2020197093A1 (ko) 리튬 이차전지용 전해질 첨가제를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20848662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020848662

Country of ref document: EP

Effective date: 20220228