WO2022220474A1 - 첨가제, 이를 포함하는 리튬 이차 전지용 전해액 및 리튬 이차 전지 - Google Patents

첨가제, 이를 포함하는 리튬 이차 전지용 전해액 및 리튬 이차 전지 Download PDF

Info

Publication number
WO2022220474A1
WO2022220474A1 PCT/KR2022/004925 KR2022004925W WO2022220474A1 WO 2022220474 A1 WO2022220474 A1 WO 2022220474A1 KR 2022004925 W KR2022004925 W KR 2022004925W WO 2022220474 A1 WO2022220474 A1 WO 2022220474A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
lithium secondary
secondary battery
active material
additive
Prior art date
Application number
PCT/KR2022/004925
Other languages
English (en)
French (fr)
Inventor
김상형
이태진
김민서
우명희
박혜진
김상훈
김다현
유보경
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to CN202280007491.5A priority Critical patent/CN116472631A/zh
Priority to US18/002,853 priority patent/US20240047746A1/en
Priority to EP22788330.3A priority patent/EP4210143A1/en
Priority to KR1020237026620A priority patent/KR20230175176A/ko
Publication of WO2022220474A1 publication Critical patent/WO2022220474A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

화학식 1로 표현되는 첨가제, 이를 포함하는 리튬 이차 전지용 전해액 및 리튬 이차 전지를 제공한다. 상기 화학식 1에 대한 상세 내용은 명세서에 기재한 바와 같다.

Description

첨가제, 이를 포함하는 리튬 이차 전지용 전해액 및 리튬 이차 전지
본 기재는 첨가제, 이를 포함하는 리튬 이차 전지용 전해액 및 리튬 이차 전지에 관한 것이다.
리튬 이차 전지는 재충전이 가능하며, 종래 납 축전지, 니켈-카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지 등과 비교하여 단위 중량당 에너지 밀도가 3배 이상 높고 고속 충전이 가능하기 때문에 노트북이나 핸드폰, 전동공구, 전기자전거용으로 상품화되고 있으며, 추가적인 에너지 밀도 향상을 위한 연구 개발이 활발하게 진행되고 있다.
이러한 리튬 이차 전지는 리튬을 인터칼레이션(intercalation) 및 디인터칼레이션(deintercalation)할 수 있는 양극 활물질을 포함하는 양극과 리튬을 인터칼레이션 및 디인터칼레이션할 수 있는 음극 활물질을 포함하는 음극을 포함하는 전지 셀에 전해액을 주입하여 사용된다.
특히, 전해액은 리튬염이 용해된 유기 용매를 사용하고 있으며, 이러한 전해액은 리튬 이차 전지의 안정성 및 성능을 결정하는데 중요하다.
전해액의 리튬염으로 가장 많이 사용되고 있는 LiPF6는 전해액의 유기 용매와 반응하여 용매의 고갈을 촉진시키고 다량의 가스를 발생시키는 문제를 가지고 있다. LiPF6가 분해되면 LiF 와 PF5를 생성하고, 이는 전지에서 전해액 고갈을 야기하며 고온 성능 열화 및 안전성에 취약한 결과를 초래한다.
특히, 저온에서는, 전지의 내부 저항의 상승에 의해 방전시의 전압 강하가 크고, 충분한 방전 전압이 얻어지기 어렵다는 문제가 있다.
일 구현예는 저온에서의 전지의 내부 저항 상승을 억제하여 저온 조건에서도 우수한 출력 특성을 가지는 첨가제를 제공하는 것이다.
다른 일 구현예는 상기 첨가제를 적용함으로써 수명 특성이 향상된 리튬 이차 전지를 제공하는 것이다.
또 다른 일 구현예는 상기 리튬 이차 전지용 전해액을 포함하는 리튬 이차 전지를 제공하는 것이다.
본 발명의 일 구현예는 하기 화학식 1로 표현되는 첨가제를 제공한다.
[화학식 1]
Figure PCTKR2022004925-appb-img-000001
상기 화학식 1에서,
X는 C(=O) 또는 S(=O)2이고,
R1 및 R2는 각각 독립적으로 플루오로기, 또는 적어도 하나의 플루오로기로 치환된 C1 내지 C5 플루오로알킬기이다.
일 예로 상기 화학식 1은 하기 화학식 1-1 또는 화학식 1-8 중 어느 하나로 표현될 수 있다.
[화학식 1-1] [화학식 1-2]
Figure PCTKR2022004925-appb-img-000002
Figure PCTKR2022004925-appb-img-000003
[화학식 1-3]
Figure PCTKR2022004925-appb-img-000004
[화학식 1-4]
Figure PCTKR2022004925-appb-img-000005
[화학식 1-5]
Figure PCTKR2022004925-appb-img-000006
[화학식 1-6]
Figure PCTKR2022004925-appb-img-000007
[화학식 1-7]
Figure PCTKR2022004925-appb-img-000008
[화학식 1-8]
Figure PCTKR2022004925-appb-img-000009
상기 화학식 1-1 또는 화학식 1-8에서,
Ra, Rb, Rc 및 Rd는 각각 독립적으로 수소 또는 플루오로기이고,
n 및 m은 각각 독립적으로 0 또는 4의 정수 중 하나이다.
구체적인 일 예로 상기 첨가제는 화학식 1-1 또는 화학식 1-2로 표현될 수 있다.
본 발명의 다른 일 구현예는 비수성 유기 용매, 리튬염 및 전술한 첨가제를 포함하는 리튬 이차 전지용 전해액을 제공한다.
상기 첨가제는 상기 리튬 이차 전지용 전해액의 전체 100 중량부에 대하여 0.01 내지 5.0 중량부로 포함될 수 있다.
본 발명의 또 다른 일 구현예는 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 및 전술한 전해액을 포함하는 리튬 이차 전지를 제공한다.
상기 양극 활물질은 하기 화학식 4로 표현되는 리튬 복합 산화물일 수 있다.
[화학식 4]
LixM1 yM2 zM3 1-y-zO2-aXa
상기 화학식 4에서,
0.5≤x≤1.8, 0≤a≤0.05, 0<y≤1, 0≤z≤1, 0≤y+z≤1, M1, M2 및 M3은 각각 독립적으로 Ni, Co, Mn, Al, B, Ba, Ca, Ce, Cr, Fe, Mo, Nb, Si, Sr, Mg, Ti, V, W, Zr 또는 La 등의 금속 및 이들의 조합에서 선택되는 1종 이상의 원소를 포함하고, X는 F, S, P 또는 Cl에서 선택되는 1종 이상의 원소를 포함한다.
상기 화학식 4에서, 0.8≤y≤1, 0≤z≤0.2, M1은 Ni일 수 있다.
상기 음극 활물질은 흑연이거나 또는 Si 복합체 및 흑연을 함께 포함할 수 있다.
상기 Si 복합체는 Si계 입자를 포함한 코어 및 비정질 탄소 코팅층을 포함할 수 있다.
상기 Si계 입자는 Si-C 복합체, SiOx(0 < x ≤ 2) 및 Si alloy 중 1종 이상을 포함할 수 있다.
상기 Si-C 복합체는 Si 입자 그리고 결정질 탄소를 포함하는 코어 및 상기 코어 표면에 위치하는 비정질 탄소 코팅층을 포함하고,
상기 Si 입자의 평균입경은 50nm 내지 200nm일 수 있다.
출력 특성 및 급속 충전 특성이 우수한 리튬 이차 전지를 구현할 수 있다.
도 1은 본 발명의 일 구현예에 따른 리튬 이차 전지를 도시한 개략도이다.
도 2는 화학식 1-1로 표시되는 첨가제의 합성 과정에서 생성되는 중간 생성물의 1H-NMR 그래프이다.
도 3은 화학식 1-1로 표시되는 첨가제의 1H-NMR 그래프이다.
도 4는 화학식 1-2로 표시되는 첨가제의 합성 과정에서 생성되는 중간 생성물의 1H-NMR 그래프이다.
도 5는 화학식 1-2로 표시되는 첨가제의 1H-NMR 그래프이다.
도 6은 실시예 1 내지 4, 비교예 1 및 2에 따른 리튬 이차 전지의 저온(10 ℃)에서의 방전 용량 유지율을 나타낸 그래프이다.
<부호의 설명>
100: 리튬 이차 전지
112: 음극
113: 세퍼레이터
114: 양극
120: 전지 용기
140: 봉입 부재
이하, 본 발명의 일 구현예에 따른 리튬 이차 전지에 대하여 첨부된 도면을 참조하여 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구항의 범주에 의해 정의될 뿐이다.
리튬 이차 전지는 사용하는 분리막과 전해액의 종류에 따라 리튬 이온 전지, 리튬 이온 폴리머 전지 및 리튬 폴리머 전지 등으로 분류될 수 있고, 형태에 따라 원통형, 각형, 코인형, 파우치형 등으로 분류될 수 있으며, 사이즈에 따라 벌크 타입과 박막 타입으로 나눌 수 있다. 이들 전지의 구조와 제조 방법은 이 분야에 널리 알려져 있으므로 상세한 설명은 생략한다.
여기서는 리튬 이차 전지의 일 예로 원통형 리튬 이차 전지를 예시적으로 설명한다. 도 1은 일 구현예에 따른 리튬 이차 전지의 구조를 개략적으로 나타낸 것이다. 도 1을 참고하면, 일 구현예에 따른 리튬 이차 전지(100)는 양극(114), 양극(114)과 대향하여 위치하는 음극(112), 양극(114)과 음극(112) 사이에 배치되어 있는 세퍼레이터(113) 및 양극(114), 음극(112) 및 세퍼레이터(113)를 함침하는 전해액(도시하지 않음)을 포함하는 전지 셀과, 상기 전지 셀을 담고 있는 전지 용기(120) 및 상기 전지 용기(120)를 밀봉하는 밀봉 부재(140)를 포함한다.
이하, 일 구현예에 따른 첨가제에 대해 설명한다.
본 발명의 일 구현예에 따른 첨가제는 하기 화학식 1로 표현된다.
[화학식 1]
Figure PCTKR2022004925-appb-img-000010
상기 화학식 1에서,
X는 C(=O) 또는 S(=O)2이고,
R1 및 R2는 각각 독립적으로 플루오로기, 또는 적어도 하나의 플루오로기로 치환된 C1 내지 C5 플루오로알킬기이다.
본 발명의 구현예에 따른 첨가제는 세슘 플루오로 설포닐이미드 염을 포함하는 구조이다.
상기 첨가제는 전해액에서 분해되어 양극 및 음극의 표면에 각각 피막을 형성한다. 구체적으로, 양극 표면의 피막은 양극으로부터 발생되는 리튬 이온의 용출을 효과적으로 제어함으로써, 양극 분해 현상을 방지할 수 있다.
또한, 상기 첨가제는 비수성 유기 용매에 포함되는 카보네이트계 용매 보다 먼저 환원 분해되어 음극 상에 SEI 피막 (Solid Electrolyte interface)을 형성함으로써 전해액 분해 및 이로 인한 전극의 분해 반응을 방지함으로써 가스 발생에 의한 내부 저항 증가를 억제할 수 있다. 상기 음극 상에 형성된 SEI 피막은 충방전 시 환원 반응을 통하여 일부 분해되어 양극 표면으로 이동하여 산화 반응을 통하여 양극 표면에도 피막을 형성하며 양극 표면의 분해 및 전해액의 산화 반응을 방지함으로써, 고온 및 저온 수명 특성 향상에 기여할 수 있다.
일 예로 상기 화학식 1은 하기 화학식 1-1 또는 화학식 1-8 중 어느 하나로 표현될 수 있다.
[화학식 1-1] [화학식 1-2]
Figure PCTKR2022004925-appb-img-000011
Figure PCTKR2022004925-appb-img-000012
[화학식 1-3]
Figure PCTKR2022004925-appb-img-000013
[화학식 1-4]
Figure PCTKR2022004925-appb-img-000014
[화학식 1-5]
Figure PCTKR2022004925-appb-img-000015
[화학식 1-6]
Figure PCTKR2022004925-appb-img-000016
[화학식 1-7]
Figure PCTKR2022004925-appb-img-000017
[화학식 1-8]
Figure PCTKR2022004925-appb-img-000018
상기 화학식 1-1 또는 화학식 1-8에서,
Ra, Rb, Rc 및 Rd는 각각 독립적으로 수소 또는 플루오로기이고,
n 및 m은 각각 독립적으로 0 또는 4의 정수 중 하나이다.
예컨대 상기 첨가제는 상기 화학식 1-1 또는 화학식 1-2로 표현될 수 있다.
본 발명의 다른 일 구현예에 따른 리튬 이차 전지용 전해액은 비수성 유기 용매, 리튬염 및 전술한 첨가제를 포함한다.
상기 첨가제는 상기 리튬 이차 전지용 전해액의 전체 100 중량부에 대하여 0.01 내지 5.0 중량부로 포함될 수 있고, 예컨대 0.01 내지 3.0 중량부, 0.01 내지 2.0 중량부, 0.01 내지 1.0 중량부, 0.05 내지 1.0 중량부, 0.1 내지 1.0 중량부, 또는 0.2 내지 1.0 중량부로 포함될 수 있다.
첨가제의 함량 범위가 상기와 같은 경우 장기 충/방전 또는 저온에서의 저항 증가를 방지하여 수명 특성 및 저온 출력 특성이 개선된 리튬 이차 전지를 구현할 수 있다.
상기 비수성 유기 용매는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다.
상기 비수성 유기 용매로는 카보네이트계, 에스테르계, 에테르계, 케톤계, 알코올계, 또는 비양성자성 용매를 사용할 수 있다.
상기 카보네이트계 용매로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트(DPC), 메틸프로필 카보네이트(MPC), 에틸프로필 카보네이트(EPC), 메틸에틸 카보네이트(MEC), 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 부틸렌 카보네이트(BC) 등이 사용될 수 있다. 상기 에스테르계 용매로는 메틸 아세테이트, 에틸 아세테이트, n-프로필 아세테이트, t-부틸 아세테이트, 메틸프로피오네이트, 에틸프로피오네이트, 프로필프로피오네이트, 데카놀라이드(decanolide), 메발로노락톤(mevalonolactone), 카프로락톤(caprolactone) 등이 사용될 수 있다. 상기 에테르계 용매로는 디부틸 에테르, 테트라글라임, 디글라임, 디메톡시에탄, 2-메틸테트라히드로퓨란, 테트라히드로퓨란 등이 사용될 수 있다. 또한, 상기 케톤계 용매로는 시클로헥사논 등이 사용될 수 있다. 또한 상기 알코올계 용매로는 에틸알코올, 이소프로필 알코올 등이 사용될 수 있으며, 상기 비양성자성 용매로는 R-CN(R은 탄소수 2 내지 20의 직쇄상, 분지상, 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류, 디메틸포름아미드 등의 아미드류, 1,3-디옥솔란 등의 디옥솔란류, 설포란(sulfolane)류 등이 사용될 수 있다.
상기 비수성 유기 용매는 단독으로 또는 하나 이상 혼합하여 사용할 수 있으며, 하나 이상 혼합하여 사용하는 경우의 혼합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있고, 이는 당해 분야에 종사하는 사람들에게는 널리 이해될 수 있다.
또한, 상기 카보네이트계 용매의 경우 환형(cyclic) 카보네이트와 사슬형(chain) 카보네이트를 혼합하여 사용하는 것이 좋다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 1:1 내지 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 비수성 유기 용매는 상기 카보네이트계 용매에 방향족 탄화수소계 유기용매를 더 포함할 수도 있다. 이때 상기 카보네이트계 용매와 방향족 탄화수소계 용매는 1:1 내지 30:1의 부피비로 혼합될 수 있다.
상기 방향족 탄화수소계 용매로는 하기 화학식 2의 방향족 탄화수소계 화합물이 사용될 수 있다.
[화학식 2]
Figure PCTKR2022004925-appb-img-000019
상기 화학식 2에서, R201 내지 R206은 서로 동일하거나 상이하며 수소, 할로겐, 탄소수 1 내지 10의 알킬기, 할로알킬기 및 이들의 조합으로 이루어진 군에서 선택되는 것이다.
상기 방향족 탄화수소계 용매의 구체적인 예로는 벤젠, 플루오로벤젠, 1,2-디플루오로벤젠, 1,3-디플루오로벤젠, 1,4-디플루오로벤젠, 1,2,3-트리플루오로벤젠, 1,2,4-트리플루오로벤젠, 클로로벤젠, 1,2-디클로로벤젠, 1,3-디클로로벤젠, 1,4-디클로로벤젠, 1,2,3-트리클로로벤젠, 1,2,4-트리클로로벤젠, 아이오도벤젠, 1,2-디아이오도벤젠, 1,3-디아이오도벤젠, 1,4-디아이오도벤젠, 1,2,3-트리아이오도벤젠, 1,2,4-트리아이오도벤젠, 톨루엔, 플루오로톨루엔, 2,3-디플루오로톨루엔, 2,4-디플루오로톨루엔, 2,5-디플루오로톨루엔, 2,3,4-트리플루오로톨루엔, 2,3,5-트리플루오로톨루엔, 클로로톨루엔, 2,3-디클로로톨루엔, 2,4-디클로로톨루엔, 2,5-디클로로톨루엔, 2,3,4-트리클로로톨루엔, 2,3,5-트리클로로톨루엔, 아이오도톨루엔, 2,3-디아이오도톨루엔, 2,4-디아이오도톨루엔, 2,5-디아이오도톨루엔, 2,3,4-트리아이오도톨루엔, 2,3,5-트리아이오도톨루엔, 자일렌, 및 이들의 조합으로 이루어진 군에서 선택되는 것이다.
상기 전해액은 전지 수명을 향상시키기 위하여 비닐렌 카보네이트, 비닐 에틸렌 카보네이트 또는 하기 화학식 3의 에틸렌계 카보네이트계 화합물을 수명 향상 첨가제로 더욱 포함할 수도 있다.
[화학식 3]
Figure PCTKR2022004925-appb-img-000020
상기 화학식 3에서, R207 및 R208은 서로 동일하거나 상이하며, 수소, 할로겐기, 시아노기(CN), 니트로기(NO2) 및 불소화된 탄소수 1 내지 5의 알킬기로 이루어진 군에서 선택되며, 상기 R207 및 R208 중 적어도 하나는 할로겐기, 시아노기(CN), 니트로기(NO2) 및 불소화된 탄소수 1 내지 5의 알킬기로 이루어진 군에서 선택되나, 단 R207 및 R208가 모두 수소는 아니다.
상기 에틸렌계 카보네이트계 화합물의 대표적인 예로는 디플루오로 에틸렌카보네이트, 클로로에틸렌 카보네이트, 디클로로에틸렌 카보네이트, 브로모에틸렌 카보네이트, 디브로모에틸렌 카보네이트, 니트로에틸렌 카보네이트, 시아노에틸렌 카보네이트 또는 플루오로에틸렌 카보네이트 등을 들 수 있다. 이러한 수명 향상 첨가제를 더욱 사용하는 경우 그 사용량은 적절하게 조절할 수 있다.
상기 리튬염은 비수성 유기 용매에 용해되어, 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 이차 전지의 작동을 가능하게 하고, 양극과 음극 사이의 리튬 이온의 이동을 촉진하는 역할을 하는 물질이다. 이러한 리튬염의 대표적인 예로는 LiPF6, LiBF4, LiDFOP, LiDFOB, LiPO2F2, LiSbF6, LiAsF6, LiN(SO2C2F5)2, Li(CF3SO2)2N, LiN(SO3C2F5)2, Li(FSO2)2N(리튬 비스플루오로설포닐이미드 (lithium bis(fluorosulfonyl)imide: LiFSI), LiC4F9SO3, LiClO4, LiAlO2, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(여기서, x 및 y는 자연수이며, 예를 들면 1 내지 20의 정수임), LiCl, LiI 및 LiB(C2O4)2(리튬 비스옥살레이트 보레이트(lithium bis(oxalato) borate: LiBOB)로 이루어진 군에서 선택되는 하나 또는 둘 이상을 들 수 있다. 리튬염의 농도는 0.1M 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
본 발명의 또 다른 일 구현예는 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 및 전술한 전해액을 포함하는 리튬 이차 전지를 제공한다.
상기 양극은 양극 집전체 및 상기 양극 집전체에 상에 위치하는 양극 활물질 층을 포함하며, 상기 양극 활물질 층은 양극 활물질을 포함한다.
상기 양극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물(리티에이티드 인터칼레이션 화합물)을 사용할 수 있다.
구체적으로는 코발트, 망간, 니켈 및 이들의 조합으로부터 선택되는 금속과 리튬과의 복합 산화물 중 적어도 1종을 사용할 수 있다.
물론 상기 복합 산화물의 금속의 일부가 다른 금속 이외의 금속으로치환된 것을 사용할 수도 있고, 상기 복합 산화물의 인산 화합물, 예컨대 LiFePO4, LiCoPO4, 및 LiMnPO4로 이루어지는 군으로부터 선택되는 적어도 1종일 수도 있으며, 상기 복합 산화물의 표면에 코팅층을 갖는 것도 사용할 수 있고, 또는 상기 복합 산화물과 코팅층을 갖는 복합 산화물을 혼합하여 사용할 수도 있다. 이 코팅층은 코팅 원소의 옥사이드, 코팅 원소의 하이드록사이드, 코팅 원소의 옥시하이드록사이드, 코팅 원소의 옥시카보네이트 및 코팅 원소의 하이드록시카보네이트로 이루어진 군에서 선택되는 적어도 하나의 코팅 원소 화합물을 포함할 수 있다. 이들 코팅층을 이루는 화합물은 비정질 또는 결정질일 수 있다. 상기 코팅층에 포함되는 코팅 원소로는 Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr 또는 이들의 혼합물을 사용할 수 있다. 코팅층 형성 공정은 상기 화합물에 이러한 원소들을 사용하여 양극 활물질의 물성에 악영향을 주지 않는 방법(예를 들어 스프레이 코팅, 침지법 등)으로 코팅할 수 있으면 어떠한 코팅 방법을 사용하여도 무방하며, 이에 대하여는 당해 분야에 종사하는 사람들에게 잘 이해될 수 있는 내용이므로 자세한 설명은 생략하기로 한다.
양극 활물질은 예컨대 하기 화학식 4로 표현되는 리튬 복합 산화물 중 1종 이상일 수 있다.
[화학식 4]
LixM1 yM2 zM3 1-y-zO2-aXa
상기 화학식 4에서,
0.5≤x≤1.8, 0≤a≤0.05, 0<y≤1, 0≤z≤1, 0≤y+z≤1, M1, M2 및 M3은 각각 독립적으로 Ni, Co, Mn, Al, B, Ba, Ca, Ce, Cr, Fe, Mo, Nb, Si, Sr, Mg, Ti, V, W, Zr 또는 La 등의 금속 및 이들의 조합에서 선택되는 1종 이상의 원소를 포함하고, X는 F, S, P 또는 Cl에서 선택되는 1종 이상의 원소를 포함한다.
예컨대 상기 화학식 4에서, M1은 Ni일 수 있고, M2 및 M3은 각각 독립적으로 Co, Mn, Al, B, Ba, Ca, Ce, Cr, Fe, Mo, Nb, Si, Sr, Mg, Ti, V, W, Zr 또는 La 등의 금속 및 이들의 조합에서 선택되는 1종 이상의 원소를 포함할 수 있다.
상기 화학식 4에서, 0.6≤x≤1.8, 0.3≤y≤1, 0.01≤z≤0.7일 수 있다.
예컨대 상기 화학식 4에서, M1은 Ni이고, M2는 Co이며, M3은 Mn, Al, B, Ba, Ca, Ce, Cr, Fe, Mo, Nb, Si, Sr, Mg, Ti, V, W, Zr 또는 La 등의 금속 및 이들의 조합에서 선택되는 1종 이상의 원소를 포함할 수 있다.
상기 화학식 4에서 0.7≤x≤1.8, 0.3≤y≤1, 및 0≤z≤0.6일 수 있고, 0.8≤x≤1.8, 0.4≤y≤1, 및 0≤z≤0.5이거나, 0.9≤x≤1.8, 0.5≤y≤1, 및 0≤z≤0.4이거나, 0.6≤y≤1, 및 0≤z≤0.3이거나, 또는 0.7≤y≤1, 및 0≤z≤0.2 일 수 있다.
예컨대 상기 화학식 4에서, M1은 Ni일 수 있고,
상기 화학식 4에서, 0.8≤y≤1, 0≤z≤0.2일 수 있다.
일 실시예에서 상기 양극 활물질은 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, LiNiaMnbCocO2 (a+b+c=1), LiNiaMnbCocAldO2 (a+b+c+d=1) 및 LiNieCofAlgO2 (e+f+g=1)로 이루어지는 군으로부터 선택되는 적어도 1종일 수 있다.
예컨대 상기 LiNiaMnbCocO2 (a+b+c=1), LiNiaMnbCocAldO2 (a+b+c+d=1) 및 LiNieCofAlgO2 (e+f+g=1)에서 선택되는 양극 활물질은 하이 니켈 (high Ni)계 양극 활물질일 수 있다.
예를 들어 상기 LiNiaMnbCocO2 (a+b+c=1) 및 LiNiaMnbCocAldO2 (a+b+c+d=1)의 경우, 니켈의 함량은 60% 이상 (a ≥ 0.6)일 수 있으며, 더욱 구체적으로 80% 이상 (a ≥ 0.8)일 수 있다.
예를 들어 상기 LiNieCofAlgO2 (e+f+g=1)의 경우, 니켈의 함량은 60% 이상 (e ≥ 0.6)일 수 있으며, 더욱 구체적으로 80% 이상 (e ≥ 0.8)일 수 있다.
상기 양극 활물질의 함량은 양극 활물질 층 전체 중량에 대하여 90 중량% 내지 98 중량%일 수 있다.
본 발명의 일 구현예에 있어서, 상기 양극 활물질 층은 선택적으로 도전재 및 바인더를 포함할 수 있다. 이때, 상기 도전재 및 바인더의 함량은 양극 활물질 층 전체 중량에 대하여 각각 1.0 중량% 내지 5.0 중량%일 수 있다.
상기 도전재는 양극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용 가능하며, 그 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 혼합물을 포함하는 도전성 재료를 사용할 수 있다.
상기 바인더는 양극 활물질 입자들을 서로 잘 부착시키고, 또한 양극 활물질을 전류 집전체에 잘 부착시키는 역할을 하며, 그 대표적인 예로는 폴리비닐알콜, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 디아세틸셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 양극 집전체로는 Al을 사용할 수 있으나 이에 한정되는 것은 아니다.
상기 음극은 음극 집전체 및 이 음극 집전체 위에 형성되는 음극 활물질을 포함하는 음극 활물질 층을 포함한다.
상기 음극 활물질은 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 물질, 리튬 금속, 리튬 금속의 합금, 리튬에 도프 및 탈도프 가능한 물질 또는 전이 금속 산화물을 포함한다.
상기 리튬 이온을 가역적으로 인터칼레이션/디인터칼레이션할 수 있는 물질로는 탄소 물질로서, 리튬 이차 전지에서 일반적으로 사용되는 탄소계 음극 활물질은 어떠한 것도 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 린편상 (flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연을 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본(soft carbon) 또는 하드 카본(hard carbon), 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.
상기 리튬 금속의 합금으로는 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속의 합금이 사용될 수 있다.
상기 리튬에 도프 및 탈도프 가능한 물질로는 Si계 화합물을 들 수 있으며, 예를 들어 Si, Si-C 복합체, SiOx(0 < x < 2), Si-Q 합금(상기 Q는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 15족 원소, 16족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si은 아님), Sn, SnO2, Sn-R(상기 R은 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 15족 원소, 16족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Sn은 아님) 등을 들 수 있고, 또한 이들 중 적어도 하나와 SiO2를 혼합하여 사용할 수도 있다.
상기 원소 Q 및 R로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Tl, Ge, P, As, Sb, Bi, S, Se, Te, Po, 및 이들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수 있다.
상기 전이 금속 산화물로는 바나듐 산화물, 리튬 바나듐 산화물 또는 리튬 티타늄 산화물 등을 들 수 있다.
일 실시예에서 상기 음극 활물질은 흑연이거나 또는 Si 복합체 및 흑연을 함께 포함할 수 있다.
상기 음극 활물질이 Si 복합체 및 흑연을 함께 포함하는 경우, 상기 Si 복합체 및 흑연은 혼합물의 형태로 포함될 수 있으며, 이 경우 상기 Si 복합체 및 흑연은 1 : 99 내지 50 : 50의 중량비로 포함될 수 있다. 더욱 구체적으로는 상기 Si 복합체 및 흑연은 3 : 97 내지 20 : 80의 중량비 또는 5 : 95 내지 20 : 80의 중량비로 포함될 수 있다.
상기 Si 복합체는 Si계 입자를 포함한 코어 및 비정질 탄소 코팅층을 포함하며, 예컨대 상기 Si계 입자는 Si-C 복합체, SiOx(0 < x ≤ 2) 및 Si alloy 중 1종 이상을 포함할 수 있다. 예를 들어 상기 Si-C 복합체는 Si 입자 그리고 결정질 탄소를 포함하는 코어 및 이 코어 표면에 위치하는 비정질 탄소 코팅층을 포함할 수 있다.
상기 결정질 탄소는 예컨대 흑연을 포함할 수 있으며, 더욱 구체적으로는 천연 흑연, 인조 흑연 또는 이들의 혼합물을 포함할 수 있다.
상기 결정질 탄소의 평균 입경은 5 ㎛ 내지 30 ㎛일 수 있다.
본 명세서에서, 평균 입경은 누적 분포 곡선(cumulative size-distribution curve)에서 부피비로 50%에서의 입자 크기 (D50)일 수 있다.
상기 Si-C 복합체에서 Si 입자의 평균 입경은 50 nm 내지 200 nm일 수 있다.
상기 Si 입자의 평균 입경이 상기 범위에 포함되는 경우, 충방전시 발생하는 부피 팽창을 억제할 수 있고, 충방전시 입자 파쇄에 의한 전도성 경로(conductive path)의 단절을 막을 수 있다.
상기 Si 입자는 상기 Si-C 복합체의 전체 중량에 대하여 1 내지 60 중량%로 포함될 수 있으며, 예컨대 3 내지 60 중량%로 포함될 수 있다.
상기 비정질 탄소 전구체로는 석탄계 핏치, 메조페이스 핏치, 석유계 핏치, 석탄계 오일, 석유계 중질유 또는 페놀 수지, 퓨란 수지, 폴리이미드 수지 등의 고분자 수지를 사용할 수 있다.
상기 비정질 탄소는 결정질 탄소 100 중량부에 대하여 1 내지 50 중량부, 예를 들어 5 내지 50 중량부, 또는 10 내지 50 중량부로 포함될 수 있다.
상기 음극 활물질 층에서 음극 활물질의 함량은 음극 활물질 층 전체 중량에 대하여 95 중량% 내지 99 중량%일 수 있다.
본 발명의 일 구현예에 있어서, 상기 음극 활물질 층은 바인더를 포함하며, 선택적으로 도전재를 더욱 포함할 수도 있다. 상기 음극 활물질 층에서 바인더의 함량은 음극 활물질 층 전체 중량에 대하여 1 중량% 내지 5 중량%일 수 있다. 또한 도전재를 더욱 포함하는 경우에는 음극 활물질을 90 중량% 내지 98 중량%, 바인더를 1 중량% 내지 5 중량%, 도전재를 1 중량% 내지 5 중량% 사용할 수 있다.
상기 바인더는 음극 활물질 입자들을 서로 잘 부착시키고, 또한 음극 활물질을 전류 집전체에 잘 부착시키는 역할을 한다. 상기 바인더로는 비수용성 바인더, 수용성 바인더 또는 이들의 조합을 사용할 수 있다.
상기 비수용성 바인더로는 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 폴리아미드이미드, 폴리이미드 또는 이들의 조합을 들 수 있다.
상기 수용성 바인더로는 고무계 바인더 또는 고분자 수지 바인더를 들 수 있다. 상기 고무계 바인더는 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버(SBR), 아크릴로나이트릴-부타디엔 러버, 아크릴 고무, 부틸고무, 불소고무 및 이들의 조합에서 선택되는 것일 수 있다. 상기 고분자 수지 바인더는 폴리테트라플루오로에틸렌, 에틸렌프로필렌공중합체, 폴리에틸렌옥시드, 폴리비닐피롤리돈, 폴리에피크로로히드린, 폴리포스파젠, 폴리아크릴로니트릴, 폴리스틸렌, 에틸렌프로필렌디엔공중합체, 폴리비닐피리딘, 클로로설폰화폴리에틸렌, 라텍스, 폴리에스테르수지, 아크릴수지, 페놀수지, 에폭시 수지, 폴리비닐알콜으로 및 이들의 조합에서 선택되는 것일 수 있다.
상기 음극 바인더로 수용성 바인더를 사용하는 경우, 점성을 부여할 수 있는 셀룰로즈 계열 화합물을 증점제로서 더욱 포함할 수 있다. 이 셀룰로즈 계열 화합물로는 카르복시메틸 셀룰로즈, 하이드록시프로필메틸 셀룰로즈, 메틸 셀룰로즈, 또는 이들의 알칼리 금속염 등을 1종 이상 혼합하여 사용할 수 있다. 상기 알칼리 금속으로는 Na, K 또는 Li를 사용할 수 있다. 이러한 증점제 사용 함량은 음극 활물질 100 중량부에 대하여 0.1 중량부 내지 3 중량부일 수 있다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하며, 그 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 혼합물을 포함하는 도전성 재료를 사용할 수 있다.
상기 음극 집전체로는 구리 박, 니켈 박, 스테인레스강 박, 티타늄 박, 니켈 발포체(foam), 구리 발포체, 전도성 금속이 코팅된 폴리머 기재, 및 이들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수 있다.
리튬 이차 전지의 종류에 따라 양극과 음극 사이에 세퍼레이터가 존재할 수도 있다. 이러한 세퍼레이터는 다공성 기재이거나; 또는 복합 다공성 기재일 수 있다.
다공성 기재는 공극을 포함하는 기재로서 상기 공극을 통하여 리튬 이온이 이동할 수 있다. 상기 다공성 기재는 예컨대 폴리에틸렌, 폴리프로필렌, 폴리비닐리덴 플루오라이드 또는 이들의 2층 이상의 다층막이 사용될 수 있으며, 폴리에틸렌/폴리프로필렌 2층 세퍼레이터, 폴리에틸렌/폴리프로필렌/폴리에틸렌 3층 세퍼레이터, 폴리프로필렌/폴리에틸렌/폴리프로필렌 3층 세퍼레이터 등과 같은 혼합 다층막이 사용될 수 있음은 물론이다.
상기 복합 다공성 기재는 다공성 기재 및 상기 다공성 기재 상에 위치하는 기능층을 포함하는 형태일 수 있다. 상기 기능층은 추가적인 기능 부가가 가능하게 되는 관점에서, 예를 들면 내열층, 및 접착층 중 적어도 하나일 수 있으며, 예컨대 상기 내열층은 내열성 수지 및 선택적으로 필러를 포함할 수 있다.
또한, 상기 접착층은 접착성 수지 및 선택적으로 필러를 포함할 수 있다.
상기 필러는 유기 필러이거나 무기 필러일 수 있다.
도 1을 참고하면, 일 구현예에 따른 리튬 이차 전지(100)는 음극(112), 음극(112)과 대향하여 위치하는 양극(114), 음극(112)과 양극(114) 사이에 배치되어 있는 세퍼레이터(113) 및 음극(112), 양극(114) 및 세퍼레이터(113)를 함침하는 전해액(도시하지 않음)을 포함하는 전지 셀과, 상기 전지 셀을 담고 있는 전지 용기(120) 및 상기 전지 용기(120)를 밀봉하는 밀봉 부재(140)를 포함한다.
이하 본 발명의 실시예 및 비교예를 기재한다. 그러한 하기한 실시예는 본 발명의 일 실시예일뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다.
첨가제의 합성
합성예 1: 화학식 1-1로 표현되는 화합물의 합성
[반응식 1]
Figure PCTKR2022004925-appb-img-000021
0℃에서 Benzene 7.5 ml에 ClSO2NCO (4.5 g, 0.03 mol)을 넣어준다. 이후 30℃에서, dichloromethane 15 ml에 sulfamoyl fluoride (3 g, 0.036 mol)을 용해시킨 후, 앞서 만든 용액에 투입하고 24 시간 교반하였다. 미반응 물질들을 evaporator를 통해 제거하였다. 이 때 생성되는 중간 생성물을 1H-NMR로 확인하였고, 그 결과는 도 2와 같다.
도 2는 화학식 1-1로 표시되는 첨가제의 합성 과정에서 생성되는 중간 생성물의 1H-NMR 그래프이다.
도 2를 참고하면, 상기 중간 생성물 CO5S2F2N2H2의 1H-NMR 피크 데이터는 다음과 같다.
1H NMR (400 MHz, DMSO-d6): δ 11.68 (s, 2H)
이어서 n-hexane solution에 2.5M Cs2CO3 (2.5 eq.)을 녹인 용액을 0 ℃에서 첨가한 후, 1 시간 동안 교반하였다. 얻어진 semi-solid 생성물을 소량의 에틸 아세테이트를 전개액으로 실리카겔을 통과시킨 뒤 농축하여 화학식 1-1로 표시되는 첨가제를 흰색 고체로 얻었다 (CO5S2F2N2Cs2의 수득률: 54%).
상기 화학식 1-1로 표시되는 첨가제의 합성 결과를 1H-NMR로 확인하였고, 그 결과는 도 3과 같다.
도 3은 화학식 1-1로 표시되는 첨가제의 1H-NMR 그래프이다.
도 3을 참고하면, 상기 중간 생성물 CO5S2F2N2H2의 1H-NMR 그래프에서 나타났던 피크가 사라지는 결과로부터 목적하는 화합물이 생성되었음을 알 수 있다.
1H NMR (400 MHz, DMSO-d6): δ - (s, H)
합성예 2: 화학식 1-2로 표현되는 화합물의 합성
[반응식 2]
Figure PCTKR2022004925-appb-img-000022
0℃에서 FSO2NH2 (5g, 0.05 mol)에 sulfuryl dichloride (2.72g, 0.02 mol)를 넣어준다. 이후 25 ℃에서, 6시간 동안 교반한 다음, 미반응 물질들을 evaporator를 통해 제거하였다. 이 때 생성되는 중간 생성물을 1H-NMR로 확인하였고, 그 결과는 도 4와 같다.
도 4는 화학식 1-2로 표시되는 첨가제의 합성 과정에서 생성되는 중간 생성물의 1H-NMR 그래프이다.
도 4를 참고하면, 상기 중간 생성물 O6S3F2N2H2의 1H-NMR 피크 데이터는 다음과 같다.
1H NMR (400 MHz, DMSO-d6): δ 10.34 (s, 2H)
이어서, 얻어진 중간 생성물을 dichloromethane (15ml)에 용해하고, n-hexane solution에 2.5M Cs2CO3 (2.5 eq.)을 녹인 용액을 0 ℃에서 첨가한 후, 1 시간 동안 교반하였다. 얻어진 semi-solid 생성물을 소량의 에틸 아세테이트를 전개액으로 실리카겔을 통과시킨 뒤 농축하여 화학식 1-2로 표시되는 첨가제를 흰색 고체로 얻었다 (O6S3F2N2Cs2의 수득률: 60%).
상기 화학식 1-2로 표시되는 첨가제의 합성 결과를 1H-NMR로 확인하였고, 그 결과는 도 5와 같다.
도 5는 화학식 1-2로 표시되는 첨가제의 1H-NMR 그래프이다.
도 5를 참고하면, 상기 중간 생성물 O6S3F2N2Cs2의 1H-NMR 그래프에서 나타났던 피크가 사라지는 결과로부터 목적하는 화합물이 생성되었음을 알 수 있다.
1H NMR (400 MHz, DMSO-d6): δ - (s, H)
리튬 이차 전지의 제작
실시예 1
양극 활물질로서 LiNi0.88Co0.07Al0.05O2, 바인더로서 폴리비닐리덴 플루오라이드 및 도전재로서 케첸 블랙을 각각 97:2:1의 중량비로 혼합하여, N-메틸 피롤리돈에 분산시켜 양극 활물질 슬러리를 제조하였다.
상기 양극 활물질 슬러리를 14 ㎛ 두께의 Al 포일 위에 코팅하고, 110℃에서 건조한 후, 압연(press)하여 양극을 제조하였다.
음극 활물질로서 인조흑연과 Si-C 복합체가 93:7의 중량비로 혼합된 혼합물을 사용하였으며, 음극 활물질과 스티렌-부타디엔 고무 바인더 및 카르복시메틸셀룰로오스를 각각 97:1:2의 중량비로 혼합하여, 증류수에 분산시켜 음극 활물질 슬러리를 제조하였다.
상기 Si-C 복합체는 인조 흑연 및 실리콘 입자를 포함하는 코어 및 상기 코어의 표면에 석탄계 핏치가 코팅된 것이다.
상기 음극 활물질 슬러리를 10㎛ 두께의 Cu 포일 위에 코팅하고, 100℃에서 건조한 후, 압연(press)하여 음극을 제조하였다.
상기 제조된 양극 및 음극과 두께 25㎛의 폴리에틸렌 재질의 세퍼레이터를 조립하여 전극 조립체를 제조하고 전해액을 주입하여 리튬 이차 전지를 제작하였다.
전해액 조성은 하기와 같다.
(전해액 조성)
염: LiPF6 1.5 M
용매: 에틸렌 카보네이트: 에틸메틸 카보네이트: 디메틸 카보네이트 (EC: EMC:DMC=20:10:70의 부피비)
첨가제: 상기 합성예 1에 따른 화학식 1-2로 표현되는 화합물 0.25 중량부
(단, 상기 전해액 조성에서 “중량부”는 전해액 전체(리튬염+비수성 유기 용매+첨가제) 100 중량에 대한 첨가제의 상대적인 중량을 의미한다.)
실시예 2
첨가제로서 상기 화학식 1-2로 표현되는 화합물을 0.5 중량부로 첨가한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제작하였다.
실시예 3
첨가제로서 상기 화학식 1-2로 표현되는 화합물을 1.0 중량부로 첨가한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제작하였다.
실시예 4
첨가제로서 화학식 1-1로 표현되는 화합물을 0.5 중량부로 첨가한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제작하였다.
비교예 1
첨가제가 포함되지 않은 전해액을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제작하였다.
비교예 2
첨가제로서 하기 화학식 A로 표현되는 세슘 비스(플루오로설포닐)이미드를 0.5 중량부로 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬 이차 전지를 제작하였다.
[화학식 A]
Figure PCTKR2022004925-appb-img-000023
평가: 저온 (10℃) 수명 특성 평가
상기 실시예 1 내지 4, 비교예 1 및 2에서 제조한 리튬 전지에 대하여 아래와 같이 수명 특성을 평가하였고, 그 결과를 하기 표 1 및 도 6에 나타내었다.
충방전 실험은 10℃에서 수행되었으며, 초기 화성 효율은 0.1C 충전/0.1C 방전으로 평가하였고, 수명은 1.5C 충전/1.0C 방전을 100회 반복하여 평가하였다. 수명 특성은 하기 수학식 1로 정의되는 용량 유지율 (capacity retention ratio)로 계산한다.
<수학식 1>
용량 유지율[%]=[각 사이클에서의 방전용량/1번째 사이클에서의 방전용량]*100
10℃, 2.5V 내지 4.2V에서 1.5 C 충전/1.0 C 방전 C-rate로 100 사이클 충방전을 실시하면서 방전용량의 변화를 측정하여 그 결과를 도 6에 나타내었고, 특히 100 사이클에서의 방전 용량 유지율을 하기 표 1에 나타내었다.
첨가제 조성
(중량부)
저온(10℃)
방전 용량 유지율
(%)
비교예 1 - 77.1
비교예 2 화학식 A (0.5) 83.4
실시예 1 화학식 1-2 (0.25) 86.2
실시예 2 화학식 1-2 (0.5) 87.0
실시예 3 화학식 1-2 (1.0) 85.5
실시예 4 화학식 1-1 (0.5) 84.4
도 6은 실시예 1 내지 4, 비교예 1 및 2에 따른 리튬 이차 전지의 저온(10 ℃)에서의 방전 용량 유지율을 나타낸 그래프이다.
표 1 및 도 6을 참고하면, 실시예 1 내지 4의 경우 비교예 1 및 2 대비 저온 수명 특성이 개선됨을 알 수 있다.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.

Claims (12)

  1. 하기 화학식 1로 표현되는 첨가제:
    [화학식 1]
    Figure PCTKR2022004925-appb-img-000024
    상기 화학식 1에서,
    X는 C(=O) 또는 S(=O)2이고,
    R1 및 R2는 각각 독립적으로 플루오로기, 또는 적어도 하나의 플루오로기로 치환된 C1 내지 C5 플루오로알킬기이다.
  2. 제1항에서,
    상기 화학식 1은 하기 화학식 1-1 또는 화학식 1-8 중 어느 하나로 표현되는, 첨가제:
    [화학식 1-1] [화학식 1-2]
    Figure PCTKR2022004925-appb-img-000025
    Figure PCTKR2022004925-appb-img-000026
    [화학식 1-3]
    Figure PCTKR2022004925-appb-img-000027
    [화학식 1-4]
    Figure PCTKR2022004925-appb-img-000028
    [화학식 1-5]
    Figure PCTKR2022004925-appb-img-000029
    [화학식 1-6]
    Figure PCTKR2022004925-appb-img-000030
    [화학식 1-7]
    Figure PCTKR2022004925-appb-img-000031
    [화학식 1-8]
    Figure PCTKR2022004925-appb-img-000032
    상기 화학식 1-1 또는 화학식 1-8에서,
    Ra, Rb, Rc 및 Rd는 각각 독립적으로 수소 또는 플루오로기이고,
    n 및 m은 각각 독립적으로 0 또는 4의 정수 중 하나이다.
  3. 제1항에서,
    상기 화학식 1-1 또는 화학식 1-2로 표현되는, 첨가제.
  4. 비수성 유기 용매,
    리튬염, 및
    제1항 내지 제3항 중 어느 한 항에 따른 첨가제
    를 포함하는 리튬 이차 전지용 전해액.
  5. 제4항에 있어서,
    상기 첨가제는 상기 리튬 이차 전지용 전해액의 전체 100 중량부에 대하여 0.01 내지 5.0 중량부로 포함되는 리튬 이차 전지용 전해액.
  6. 양극 활물질을 포함하는 양극;
    음극 활물질을 포함하는 음극;
    제5항의 리튬 이차 전지용 전해액
    을 포함하는 리튬 이차 전지.
  7. 제6항에서,
    상기 양극 활물질은 하기 화학식 4로 표현되는 것인, 리튬 이차 전지:
    [화학식 4]
    LixM1 yM2 zM3 1-y-zO2-aXa
    상기 화학식 4에서,
    0.5≤x≤1.8, 0≤a≤0.05, 0<y≤1, 0≤z≤1, 0≤y+z≤1, M1, M2 및 M3은 각각 독립적으로 Ni, Co, Mn, Al, B, Ba, Ca, Ce, Cr, Fe, Mo, Nb, Si, Sr, Mg, Ti, V, W, Zr 또는 La 등의 금속 및 이들의 조합에서 선택되는 1종 이상의 원소를 포함하고, X는 F, S, P 또는 Cl에서 선택되는 1종 이상의 원소를 포함한다.
  8. 제7항에서,
    상기 화학식 4에서,
    0.8≤y≤1, 0≤z≤0.2, M1은 Ni인, 리튬 이차 전지.
  9. 제6항에서,
    상기 음극 활물질은 흑연이거나 또는 Si 복합체 및 흑연을 함께 포함하는, 리튬 이차 전지.
  10. 제9항에서,
    상기 Si 복합체는 Si계 입자를 포함한 코어 및 비정질 탄소 코팅층을 포함하는, 리튬 이차 전지.
  11. 제10항에서,
    상기 Si계 입자는 Si-C 복합체, SiOx(0 < x ≤ 2) 및 Si alloy 중 1종 이상을 포함하는, 리튬 이차 전지.
  12. 제11항에서,
    상기 Si-C 복합체는 Si 입자 그리고 결정질 탄소를 포함하는 코어 및 상기 코어 표면에 위치하는 비정질 탄소 코팅층을 포함하고,
    상기 Si 입자의 평균입경은 50nm 내지 200nm인, 리튬 이차 전지.
PCT/KR2022/004925 2021-04-12 2022-04-06 첨가제, 이를 포함하는 리튬 이차 전지용 전해액 및 리튬 이차 전지 WO2022220474A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280007491.5A CN116472631A (zh) 2021-04-12 2022-04-06 添加剂、包括其的用于可再充电锂电池的电解液和可再充电锂电池
US18/002,853 US20240047746A1 (en) 2021-04-12 2022-04-06 Additive, electrolyte comprising same for rechargeable lithium battery, and rechargeable lithium battery
EP22788330.3A EP4210143A1 (en) 2021-04-12 2022-04-06 Additive, electrolyte comprising same for rechargeable lithium battery, and rechargeable lithium battery
KR1020237026620A KR20230175176A (ko) 2021-04-12 2022-04-06 첨가제, 이를 포함하는 리튬 이차 전지용 전해액 및리튬 이차 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0047369 2021-04-12
KR20210047369 2021-04-12

Publications (1)

Publication Number Publication Date
WO2022220474A1 true WO2022220474A1 (ko) 2022-10-20

Family

ID=83639806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/004925 WO2022220474A1 (ko) 2021-04-12 2022-04-06 첨가제, 이를 포함하는 리튬 이차 전지용 전해액 및 리튬 이차 전지

Country Status (5)

Country Link
US (1) US20240047746A1 (ko)
EP (1) EP4210143A1 (ko)
KR (1) KR20230175176A (ko)
CN (1) CN116472631A (ko)
WO (1) WO2022220474A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023119948A1 (ja) * 2021-12-24 2023-06-29 株式会社村田製作所 二次電池
WO2023119945A1 (ja) * 2021-12-24 2023-06-29 株式会社村田製作所 二次電池用電解液および二次電池
EP4358170A1 (en) * 2022-10-21 2024-04-24 Samsung SDI Co., Ltd. Method of manufacturing electrode for rechargeable lithium battery, electrode manufactured therefrom, and rechargeable lithium battery including the electrode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102786443A (zh) * 2011-05-20 2012-11-21 华中科技大学 二元或三元含氟磺酰亚胺的碱金属盐和离子液体及其应用
US20150236379A1 (en) * 2012-10-11 2015-08-20 Rockwood Lithium GmbH Additives for galvanic cells
KR20180028000A (ko) * 2016-09-07 2018-03-15 솔브레인 주식회사 전해액 첨가제 및 이를 포함하는 리튬 이차 전지
WO2019189670A1 (ja) * 2018-03-29 2019-10-03 三菱ケミカル株式会社 非水系電解液及び非水系電解液電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102786443A (zh) * 2011-05-20 2012-11-21 华中科技大学 二元或三元含氟磺酰亚胺的碱金属盐和离子液体及其应用
US20150236379A1 (en) * 2012-10-11 2015-08-20 Rockwood Lithium GmbH Additives for galvanic cells
KR20180028000A (ko) * 2016-09-07 2018-03-15 솔브레인 주식회사 전해액 첨가제 및 이를 포함하는 리튬 이차 전지
WO2019189670A1 (ja) * 2018-03-29 2019-10-03 三菱ケミカル株式会社 非水系電解液及び非水系電解液電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AHMED FAIZ, RAHMAN MD MAHBUBUR, CHANDRA SUTRADHAR SABUJ, LOPA NASRIN SIRAJ, RYU TAEWOOK, YOON SOOJIN, CHOI INHWAN, LEE SEUNGCHAN, : "Novel divalent organo-lithium salts with high electrochemical and thermal stability for aqueous rechargeable Li-Ion batteries", ELECTROCHIMICA ACTA, ELSEVIER, AMSTERDAM, NL, vol. 298, 1 March 2019 (2019-03-01), AMSTERDAM, NL , pages 709 - 716, XP055926879, ISSN: 0013-4686, DOI: 10.1016/j.electacta.2018.12.161 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023119948A1 (ja) * 2021-12-24 2023-06-29 株式会社村田製作所 二次電池
WO2023119945A1 (ja) * 2021-12-24 2023-06-29 株式会社村田製作所 二次電池用電解液および二次電池
EP4358170A1 (en) * 2022-10-21 2024-04-24 Samsung SDI Co., Ltd. Method of manufacturing electrode for rechargeable lithium battery, electrode manufactured therefrom, and rechargeable lithium battery including the electrode

Also Published As

Publication number Publication date
EP4210143A1 (en) 2023-07-12
KR20230175176A (ko) 2023-12-29
US20240047746A1 (en) 2024-02-08
CN116472631A (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
WO2022220474A1 (ko) 첨가제, 이를 포함하는 리튬 이차 전지용 전해액 및 리튬 이차 전지
WO2020218773A1 (ko) 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
WO2013137509A1 (ko) 리튬 이차 전지용 양극 활물질의 제조 방법, 리튬 이차전지용 양극 활물질 및 리튬 이차전지
WO2019027127A1 (ko) 리튬 전지용 전해액 및 이를 포함하는 리튬 전지
WO2021010650A1 (ko) 리튬 이차전지용 전해질 첨가제, 이를 포함하는 리튬 이차전지용 전해질 및 리튬 이차전지
WO2019139271A1 (ko) 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
WO2022158728A1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
WO2021194073A1 (ko) 리튬 이차 전지
WO2019151725A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지
WO2021194074A1 (ko) 리튬 이차 전지의 전해질용 첨가제, 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2021071109A1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
WO2018131952A1 (ko) 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2020222469A1 (ko) 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2022265259A1 (ko) 리튬이차전지용 전해질 및 이를 포함하는 리튬이차전지
WO2022203206A1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
WO2018070733A1 (ko) 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
WO2019151724A1 (ko) 고온 저장 특성이 향상된 리튬 이차전지
WO2021118085A1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
WO2019050160A1 (ko) 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2013137510A1 (ko) 리튬 이차 전지용 양극 활물질의 제조 방법, 리튬 이차전지용 양극 활물질 및 리튬 이차전지
WO2021194220A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2022158702A1 (ko) 첨가제, 이를 포함하는 리튬 이차 전지용 전해액 및 리튬 이차 전지
WO2022025424A1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
WO2021149910A1 (ko) 첨가제, 이를 포함하는 리튬 이차 전지용 전해액 및 리튬 이차 전지
WO2023140429A1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22788330

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022788330

Country of ref document: EP

Effective date: 20230406

WWE Wipo information: entry into national phase

Ref document number: 202280007491.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE