WO2014202760A2 - Vacuum expanded dry composition and syringe for retaining same - Google Patents

Vacuum expanded dry composition and syringe for retaining same Download PDF

Info

Publication number
WO2014202760A2
WO2014202760A2 PCT/EP2014/063041 EP2014063041W WO2014202760A2 WO 2014202760 A2 WO2014202760 A2 WO 2014202760A2 EP 2014063041 W EP2014063041 W EP 2014063041W WO 2014202760 A2 WO2014202760 A2 WO 2014202760A2
Authority
WO
WIPO (PCT)
Prior art keywords
paste
less
pressure
mbar
dry composition
Prior art date
Application number
PCT/EP2014/063041
Other languages
English (en)
French (fr)
Other versions
WO2014202760A3 (en
Inventor
Kristian Larsen
Michael Wrang Mortensen
Original Assignee
Ferrosan Medical Devices A/S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BR112015030612-8A priority Critical patent/BR112015030612B1/pt
Priority to JP2016520511A priority patent/JP6390873B2/ja
Priority to US14/895,674 priority patent/US9724078B2/en
Priority to AU2014283170A priority patent/AU2014283170B2/en
Priority to CN201480035341.0A priority patent/CN105358071B/zh
Priority to EP14734064.0A priority patent/EP3010419B1/en
Application filed by Ferrosan Medical Devices A/S filed Critical Ferrosan Medical Devices A/S
Priority to RU2016101631A priority patent/RU2700162C2/ru
Priority to CA2912357A priority patent/CA2912357C/en
Publication of WO2014202760A2 publication Critical patent/WO2014202760A2/en
Publication of WO2014202760A3 publication Critical patent/WO2014202760A3/en
Priority to HK16109479.3A priority patent/HK1221388A1/zh
Priority to US15/639,237 priority patent/US10595837B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00491Surgical glue applicators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0009Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form containing macromolecular materials
    • A61L26/0028Polypeptides; Proteins; Degradation products thereof
    • A61L26/0038Gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0009Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form containing macromolecular materials
    • A61L26/0052Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0061Use of materials characterised by their function or physical properties
    • A61L26/0066Medicaments; Biocides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0061Use of materials characterised by their function or physical properties
    • A61L26/009Materials resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/22Valves or arrangement of valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/19Syringes having more than one chamber, e.g. including a manifold coupling two parallelly aligned syringes through separate channels to a common discharge assembly
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/24Ampoule syringes, i.e. syringes with needle for use in combination with replaceable ampoules or carpules, e.g. automatic
    • A61M5/2448Ampoule syringes, i.e. syringes with needle for use in combination with replaceable ampoules or carpules, e.g. automatic comprising means for injection of two or more media, e.g. by mixing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/28Syringe ampoules or carpules, i.e. ampoules or carpules provided with a needle
    • A61M5/284Syringe ampoules or carpules, i.e. ampoules or carpules provided with a needle comprising means for injection of two or more media, e.g. by mixing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/3129Syringe barrels
    • A61M5/3135Syringe barrels characterised by constructional features of the proximal end
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/252Polypeptides, proteins, e.g. glycoproteins, lipoproteins, cytokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/252Polypeptides, proteins, e.g. glycoproteins, lipoproteins, cytokines
    • A61L2300/254Enzymes, proenzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/418Agents promoting blood coagulation, blood-clotting agents, embolising agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/04Materials for stopping bleeding
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/06Flowable or injectable implant compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M2005/3123Details having air entrapping or venting means, e.g. purging channels in pistons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/3129Syringe barrels
    • A61M2005/3132Syringe barrels having flow passages for injection agents at the distal end of the barrel to bypass a sealing stopper after its displacement to this end due to internal pressure increase

Definitions

  • Figure 1 Average reconstitution time +/- standard deviation of the standard freeze- dried gelatine pastes comprising different polyols of example 1 , which have not been vacuum expanded. Inclusion of different polyols in the freeze-dried paste composition resulted in spontaneous reconstitution of the pastes within about 30 seconds.
  • Figure 2. Average reconstitution time +/- standard deviation of the standard lyophilised and vacuum expanded lyophilised gelatine pastes of example 3. Vacuum expansion greatly decreased the spontaneous reconstitution time of pastes comprising mannitol.
  • Figures 3 to 14 depict different embodiments and stages of the method of the present disclosure.
  • Figure 3 shows two possible embodiments of a syringe for use as a container before the paste has been added.
  • Concept 1 encompasses a standard single use syringe and concept 2 encompasses a single use syringe with a lyophilisation bypass in the syringe body. The pressure valve is closed.
  • Figur 19b shows a frontal view of another embodiment of the pressure chamber of the presently disclosed syringe with the pressure valve from fig. 19a.
  • Figures 19c-d show cut-through frontal view of the configuration of the pressure valve from fig. 19a inside the pressure chamber from fig. 19b.
  • Steps c) to d) may conveniently be performed directly in the freeze-dryer as one continuous process.
  • suitable containers holding the paste of step b) may be placed in a freeze-dryer, wherein the paste is expanded by low vacuum, frozen to fix the expanded paste structure and freeze-dried until dry.
  • Figures 3 to 14 show different embodiments of the process steps.
  • the invention relates to a method for preparing a dry composition suitable for use in haemostasis and/or wound healing comprising the sequential steps of:
  • Bioactive agents which are unstable in solution may be added to the paste prior to drying and will thus be present in the dry composition of the invention.
  • thrombin may be added to the paste prior to drying, thereby avoiding the time-consuming and error-prone thrombin dilution steps.
  • the biocompatible polymer of the present disclosure may be a biologic or a non- biologic polymer.
  • Suitable biologic polymers include proteins, such as gelatin, collagen, albumin, hemoglobin, casein, fibrinogen, fibrin, fibronectin, elastin, keratin, and laminin; or derivatives or combinations thereof. Particularly preferred is the use of gelatin or collagen, more preferably gelatin.
  • Other suitable biologic polymers include
  • polyacrylamides polyvinyl resins, polylactide- glycolides, polycaprolactones, and polyoxyethylenes; or derivatives or combinations thereof. Also combinations of different kinds of polymers are possible.
  • the period of time for cross-linking may be optimised by a skilled person and is normally a period between about 10 minutes to about 12 hours, such as about 1 hour to about 10 hours, for example between about 2 hours to about 10 hours, such as between about 4 hours to about 8 hours, for example between about 5 hours to about 7 hours, such as about 6 hours.
  • the polymer has been cross-linked by chemical means, i.e. by exposure to a chemical cross-linking agent.
  • suitable chemical cross- linking agents include but are not limited to aldehydes, in particular glutaraldehyde and formaldehyde, acyl az ' ide, caboiimides, hexamethylene diisocyanate, polyether oxide, 1 ,4-butanedioldiglycidyl ether, tannic acid, aldose sugars, e.g. D-fructose, genipin and dye-mediated photo-oxidation.
  • Specific compounds include but are not limited to l-(3- dimethylaminopropyl)-3-ethylcarboiimide hydrochloride (EDC), dithiobis(propanoic dihydrazide) (DTP), l-ethyl-3-(3-dimethylamino-propyl)-carbodiimide (EDAC).
  • EDC dimethylaminopropyl-3-ethylcarboiimide hydrochloride
  • DTP dithiobis(propanoic dihydrazide)
  • EDAC l-ethyl-3-(3-dimethylamino-propyl)-carbodiimide
  • the agent in powder form comprises or consists of cross-linked gelatine particles obtained from a gelatine hydrogel.
  • a gelatine hydrogel may be prepared by dissolving an amount of gelatine in an aqueous buffer to form a non-cross- linked hydrogel, typically having a solids content from 1 % to 70% by weight, usually from 3% to 10% by weight.
  • the gelatin is cross-linked, for example by exposure to either glutaraldehyde (e.g. 0.01 % to 0.05% w/w, overnight at 0 DEG to 15 DEG C. in aqueous buffer), sodium periodate (e.g. 0.05 M, held at 0 DEG C. to 15 DEG C.
  • EDC 1 -ethyl-3-(3-dimethylaminopropyl) carbodiimide
  • EDC 1 -ethyl-3-(3-dimethylaminopropyl) carbodiimide
  • the resulting crosslinked hydrogels may be fragmented and dried to obtain a gelatine powder.
  • the average particle diameter is between 1 ⁇ and 1000 ⁇ , such as between 10 ⁇ and 800 ⁇ , for example between 50 ⁇ and 600 ⁇ , such as between 100 ⁇ and 500 ⁇ , for example between 200 ⁇ and 400 ⁇ , such as about 300 ⁇ .
  • the average particle diameter is less than 100 ⁇ , such as less than 50 ⁇ , for example less than 30 ⁇ , such as less than 20 ⁇ , for example less than 10 ⁇ .
  • a smoother paste is desirable is in the control of bone bleeding.
  • the paste of the present disclosure comprises more than 10% of the biocompatible polymer, such as more than 15% of the biocompatible polymer, for example more than 16% of the biocompatible polymer, such as more than 17% of the biocompatible polymer, for example more than 18% of the biocompatible polymer, such as more than 19% of the biocompatible polymer, for example more than 20% of the biocompatible polymer.
  • the paste of the present disclosure comprises less than 40% of the biocompatible polymer, such as less than 30% of the biocompatible polymer, for example less than 25% of the biocompatible polymer, such as less than 20% of the biocompatible polymer.
  • the composition after drying comprises between about 40% and 80% of the biocompatible polymer, such as between about 45% and 75% of the biocompatible polymer, for example between about 50% and 70% of the biocompatible polymer.
  • An aqueous medium is used in the methods of the present disclosure for initially preparing the paste, which is subsequently vacuum expanded and dried, and for reconstituting the dried paste.
  • the aqueous medium may also be a buffered aqueous medium suitable for use in a haemostatic paste.
  • Any suitable buffering agent known to a person of skill may be used, such as one or more buffering agents selected from the group consisting of: Sodium citrate; Citric acid, Sodium citrate; Acetic acid, Sodium acetate; K2HP04, KH2P04; Na2HP04, NaH2P04; CHES; Borax, Sodium hydroxide; TAPS; Bicine; Tris; Tricine;TAPSO; HEPES; TES; MOPS; PIPES; Cacodylate; SSC; MES, or others.
  • the pH of the buffered aqueous medium should be suitable for creating a haemostatic paste intended for human use and can be determined by the skilled person.
  • the aqueous medium is mixed with the agent in powder form in sufficient amounts to obtain a wet paste.
  • the paste prior to drying contains less water, i.e. is thicker, than a paste intended for e.g. surgical use so that less water has to be removed in the drying process.
  • the hydrophilic polymer is selected from the group consisting of Polyethylenimine (PEI), Poly(ethylene glycol) (PEG), Poly(ethylene oxide), Polyvinyl alcohol) (PVA), Poly(styrenesulfonate) (PSS), Poly(acrylic acid) (PAA), Poly(allylamine hydrochloride) and Polyvinyl acid).
  • the hydrophilic compound is PEG.
  • Polyoxyethylene Castor Oil Derivatives Polyoxyethylene Sorbitan Fatty Acid Esters, Polyoxyethylene Stearates, Polyvinyl Alcohol, Sodium Lauryl Sulfate, Sorbitan Esters (Sorbitan Fatty Acid Esters) and Tricaprylin.
  • the dry composition comprises two polyols, for example mannitol and glycerol or trehalose and a glycol.
  • the dry composition comprises one or more sugar alcohols, such as one or more sugar alcohols selected from the group consisting of Glycol, Glycerol, Erythritol, Threitol, Arabitol, Xylitol, Ribitol, Mannitol, Sorbitol, Dulcitol, Fucitol, Iditol, Inositol, volemitol, Isomalt, Maltitol, Lactitol, Polyglycitol.
  • sugar alcohols such as one or more sugar alcohols selected from the group consisting of Glycol, Glycerol, Erythritol, Threitol, Arabitol, Xylitol, Ribitol, Mannitol, Sorbitol, Dulcitol, Fucitol, Idito
  • the dry composition comprises glycol, such as propylene glycol.
  • the paste according to the invention prior to drying comprises from about 4% to about 40% of one or more polyols, for example from about 4% to about 30% of one or more polyols, such as from about 4% to about 25% of one or more polyols, for example from about 4% to about 20% of one or more polyols, such as from about 4% to about 18% of one or more polyols, for example from about 4% to about 17% of one or more polyols, such as from about 4% to about 16% of one or more polyols, for example from about 4% to about 15% of one or more polyols, such as from about 4% to about 14% of one or more polyols, for example from about 4% to about 13% of one or more polyols, such as from about 4% to about 12% of one or more polyols, for example from about 4% to about 1 1 % of one or more polyols, such as about 4% to about 10% of one or more polyols.
  • the paste according to the invention prior to drying comprises from about 6% to about 40% of one or more hydrophilic compounds, for example from about 6% to about 30% of one or more hydrophilic compounds, such as from about 6% to about 25% of one or more hydrophilic compounds, for example from about 6% to about 20% of one or more hydrophilic compounds, such as from about 6% to about 18% of one or more hydrophilic compounds, for example from about 6% to about 17% of one or more hydrophilic compounds, such as from about 6% to about 16% of one or more hydrophilic compounds, for example from about 6% to about 15% of one or more hydrophilic compounds, such as from about 6% to about 14% of one or more hydrophilic compounds, for example from about 6% to about 13% of one or more hydrophilic compounds, such as from about 6% to about 12% of one or more hydrophilic compounds, for example from about 6% to about 1 1 % of one or more hydrophilic compounds, such as about 6% to about 10% of one or more hydrophilic compounds.
  • the paste according to the invention prior to drying comprises more than about 1 % of one or more hydrophilic compounds, such as more than about 2% of one or more hydrophilic compounds, for example more than about 3% of one or more hydrophilic compounds, such as more than about 4% of one or more hydrophilic compounds, for example more than about 5% of one or more hydrophilic compounds, such as more than about 6% of one or more hydrophilic compounds, for example more than about 7% of one or more hydrophilic compounds, such as more than about 8% of one or more hydrophilic compounds, for example more than about 9% of one or more hydrophilic compounds, such as more than about 10% of one or more hydrophilic compounds.
  • one or more hydrophilic compounds such as more than about 2% of one or more hydrophilic compounds, for example more than about 3% of one or more hydrophilic compounds, such as more than about 4% of one or more hydrophilic compounds, for example more than about 5% of one or more hydrophilic compounds, such as more than about 6% of one or more hydrophil
  • the dry composition comprises from about 15% to about 60% of one or more hydrophilic compounds, such as from about 15% to about 50% of one or more hydrophilic compounds, for example from about 15% to about 50%, such as from about 15% to about 45% of one or more hydrophilic compounds, for example from about 15% to about 40%, such as from about 15% to about 35% of one or more hydrophilic compounds, for example from about 15% to about 30% of one or more hydrophilic compounds.
  • the dry composition comprises from about 20% to about 60% of one or more hydrophilic compounds, such as from about 20% to about 50% of one or more hydrophilic compounds, for example from about 20% to about 50%, such as from about 20% to about 45% of one or more hydrophilic compounds, for example from about 20% to about 40%, such as from about 20% to about 30% of one or more hydrophilic compounds.
  • hydrophilic compounds such as from about 20% to about 50% of one or more hydrophilic compounds, for example from about 20% to about 50%, such as from about 20% to about 45% of one or more hydrophilic compounds, for example from about 20% to about 40%, such as from about 20% to about 30% of one or more hydrophilic compounds.
  • the hydrophilic compounds:biocompatible polymer ratio is between about 0.1 :1 and 1 :1 ; such as between about 0.2:1 and 1 :1 , for example between about 0.3:1 and 1 :1 , such as between about 0.4:1 and 1 :1 .
  • the hydrophilic compounds:biocompatible polymer ratio is between about 0.1 :1 and 0.8:1 ; such as between about 0.1 :1 and 0.7:1 , for example between about 0.1 :1 and 0.6:1 , such as between about 0.1 :1 and 0.5:1 , for example between 0.1 :1 and 0.45:1 .
  • Trehalose Tris base cyclodextrin ( ⁇ ⁇ - ⁇ -CD)
  • the dry composition of the present disclosure comprises one or more antimicrobial agents, such as one or more antibacterial agents.
  • the dry composition of the present disclosure does not comprise an antimicrobial agent.
  • the dry composition further comprises an extrusion enhancer, i.e. a compound capable of facilitating extrusion of a paste from a syringe.
  • extrusion enhancers such as albumin in an appropriate amount
  • the amounts are preferably high enough so as to obtain the extrusion effect, i.e. to enable a flowable paste even for relatively high amounts of the biocompatible polymer, e.g. cross-linked gelatine, so that the haemostatic paste composition can be accurately applied by a surgeon using e.g. a syringe comprising an applicator tip; on the other hand, the amounts shall be as low as to prevent negative functional properties of the haemostatic composition.
  • the extrusion enhancer is preferably albumin, especially human serum albumin.
  • the reconstituted wet paste compositions according to the present invention have a mean extrusion force (e.g. by employing the test method described in example 1 of WO 2013/060770) of 40 N or below, preferably below 35 N, especially preferred below 30 N or even below 20 N.
  • a mean extrusion force e.g. by employing the test method described in example 1 of WO 2013/060770
  • phospholipids such as phosphatidylcholine and -serine, or complex mixtures such as lecithins or soy bean oils.
  • the dry composition comprises one or more bioactive agents, i.e. one or more bioactive agents are included in the paste prior to expansion and drying. It is essential that the bioactive agent retains its bioactivity throughout the process, i.e. that the agent has retained its biological function in the final reconstituted paste. Many bioactive agents are unstable in solution, particularly enzymes and other proteins that may be degraded or lose their secondary structure when water is present.
  • the bioactive agent stimulates wound healing and/or haemostasis, such as thrombin.
  • Thrombin may be added to the paste of the present disclosure prior to drying in an amount sufficient to ensure effective haemostasis of the reconstituted dry composition.
  • thrombin is added at a concentration in the range of about 100 lU/ml paste to about 500 lU/ml paste, such as about 150 lU/ml paste to about 450 lU/ml paste, for example about 200 lU/ml paste to about 400 lU/ml paste, such as about 250 lU/ml paste to about 350 lU/ml paste.
  • the dry composition comprises one or more bioactive agents that stimulate bone and/or tendon and/or tissue healing such as one or more growth factors selected from the group consisting of matrix metalloproteinases (MMPs), insulin-like growth factor 1 (IGF-I), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and transforming growth factor beta (TGF- ⁇ ).
  • MMPs matrix metalloproteinases
  • IGF-I insulin-like growth factor 1
  • PDGF platelet-derived growth factor
  • VEGF vascular endothelial growth factor
  • bFGF basic fibroblast growth factor
  • TGF- ⁇ transforming growth factor beta
  • the dry composition comprises one or more Bone Morphogenetic Proteins (BMPs). Bone morphogenetic proteins (BMPs) are a subgroup of the TGF- ⁇ superfamily.
  • IGF-1 increases collagen and proteoglycan production during the first stage of inflammation
  • PDGF is also present during the early stages after injury and promotes the synthesis of other growth factors along with the synthesis of DNA and the proliferation of cells.
  • the three isoforms of TGF- ⁇ (TGF- ⁇ , TGF ⁇ 2, TGF ⁇ 3) are known to play a role in wound healing and scar formation.
  • VEGF is well known to promote TGF- ⁇
  • sympathomimetics xanthine derivatives
  • cardiovascular preparations including calcium channel blockers and beta-blockers such as pindolol and antiarrhythmics;
  • the obtained paste is then transferred into a container suitable for vacuum expansion, freezing and drying of the paste.
  • the container into which the paste is transferred is also suitable for reconstituting and applying the reconstituted paste composition, e.g. to a site requiring hemostasis.
  • the containers may be made from any suitable material such as plastic, glass, ceramic or metal, such as stainless steel.
  • a product chamber comprising a dry composition capable of forming a paste upon addition of an aqueous medium, wherein the pressure within the product chamber is less than the pressure outside the product chamber, and b. a valve.
  • the dry composition reconstitutes spontaneously upon addition of an aqueous medium to the dry composition being present in the container.
  • the container does not comprise a bypass, gaseous
  • One embodiment of the present disclosure relates to a syringe for retaining a freeze- dried paste, such as the presently disclosed dry paste composition, in a vacuum comprising a barrel comprising a vacuum chamber for containing the paste having an open proximal end and a distal end having a first fluid opening, a connector portion having a second fluid opening and adapted for connection to a liquid receptacle, and a pressure chamber connecting the connector portion and the distal end of the vacuum chamber, a pressure valve located in the pressure chamber and adapted to seal the first and/or second fluid openings in a first position and form a fluid passageway between the first and second fluid openings in a second position, a plunger configured to be axially displaced in the vacuum chamber through the open proximal end, and one or more vacuum bypass channels.
  • a syringe for retaining a freeze- dried paste, such as the presently disclosed dry paste composition
  • the barrel may be provided with a flange at the proximal end of the vacuum chamber in order to ease handling of the syringe when operating the plunger. Furthermore, he inside volume of the vacuum chamber and/or the pressure chamber may
  • the pressure chamber comprises a proximal end abutting the distal end of the vacuum chamber and a distal end abutting a proximal end of the connector portion.
  • the connector portion may comprise a proximal end abutting a distal end of the pressure chamber and a distal end adapted for connection to a liquid receptacle.
  • the second fluid opening may form an elongated channel through the connector portion, e.g. as illustrated in figs. 18 and 20.
  • the second fluid opening may comprise a proximal end abutting a distal end of the pressure chamber and a distal end for inlet and outlet of fluid.
  • the pressure valve may be adapted to seal a distal end of the first fluid opening and a proximal end of the second fluid opening in said first position.
  • the liquid for reconstitution of a paste in the vacuum chamber can be provided from the distal end of the syringe, via the second fluid opening in the connector portion and through the pressure chamber and into the vacuum chamber. Delivery of the reconstituted paste is also provided through the distal end of the syringe.
  • an external liquid receptacle may be connected to the connector portion of the syringe while the pressure valve is in the first position, i.e. the fluid passageway is blocked (sealed). Switching the pressure valve to the second position opens the fluid passageway and liquid can pass from the liquid receptacle to the vacuum chamber of the syringe for reconstitution of the paste.
  • the presently disclosed syringe is therefore safe, easy and quick to use when reconstituting a dry paste, such as a haemostatic paste.
  • the limitation may also be provided by means of a narrowing of an inner side wall of the pressure chamber and this narrowing may be adapted to limit a radial displacement of the pressure valve in the first position, e.g. this narrowing may be adapted to match one or more protrusions of the pressure valve, such that this or these protrusions abuts the narrowing in the first position of the pressure valve.
  • a narrowing may be provided by means of one or more "shoulders" of an inner side wall of the pressure chamber, as exemplary illustrated in figs. 19c and 19d.
  • the presently disclosed syringe is preferably configured such that the dry paste composition may be freeze dried inside the vacuum chamber.
  • Said one or more vacuum bypass channels may be configured to provide a fluid, such as a gaseous, communication between the vacuum chamber and the surroundings / the ambient atmosphere, i.e. the vacuum bypass channel(s) may function as the lyophilisation bypass channel as described herein.
  • the syringe is configured such that the plunger sealably engages the vacuum chamber in at least a first axial position of the plunger inside the vacuum chamber, and such that fluid communication is established across the plunger in at least a second axial position of the plunger inside the vacuum chamber via said one or more vacuum bypass channels. I.e.
  • a vacuum can be established and the composition can be freeze dried in the second position of the plunger, whereas the vacuum in the vacuum chamber can be retained in the first position of the plunger.
  • said one or more vacuum bypass channels are configured such that a fluid communication can be provided directly between the vacuum chamber and the ambient atmosphere independent of the position of the plunger, e.g. via a (second) pressure valve located directly at the vacuum chamber.
  • said one or more vacuum bypass channels may be formed in the plunger.
  • the one or more vacuum bypass channels may be configured to break the sealing between the vacuum chamber and the plunger at a predefined axial position of the plunger inside the vacuum chamber.
  • said one or more vacuum bypass channels may be formed in the vacuum chamber.
  • said one or more vacuum bypass channels may be one or more longitudinal grooves formed in the inner surface, e.g. at the proximal end of the vacuum chamber.
  • the vacuum chamber, the pressure chamber and the connector portion may be formed as separate elements and configured to be assembled during manufacture of the syringe.
  • the pressure chamber and the connector portion may be formed as one element and configured to be assembled with the vacuum chamber during manufacture of the syringe.
  • the vacuum chamber and the pressure chamber may be formed as one element and configured to be assembled with the connector portion during manufacture of the syringe.
  • a barrel 1 , 1 ' of the presently disclosed syringe is exemplified in figs. 16-18.
  • the barrel 1 in fig. 16a is provided with a vacuum chamber, a pressure chamber 3, a connector portion 4 and a flange 8 formed in a single piece and suitable for manufacture by single cycle injection moulding.
  • the pressure valve 5 inserted in the pressure chamber 3 is provided with a valve flange 6.
  • fig. 16a the pressure valve is located in a first position whereas in fig. 16b the pressure valve has been displaced to a second position. This is more clearly seen in figs. 16c (first position of pressure valve) and 16d (second position). In the second position of the pressure valve 5 the valve flange 6 abuts the pressure chamber 3.
  • FIG. 18a The cut-through illustrations in fig. 18a and 18b more clearly shows the configuration of the pressure valve 5.
  • the pressure valve blocks the fluid communication between the outlet 1 1 of the internal volume 2' of vacuum chamber 2 and the outlet 7 of the connector portion 4.
  • a fluid communication is provided (as illustrated by the dotted line / arrow) between the surroundings and the internal volume 2' of the vacuum chamber 2 via the pressure chamber 3 and the outlet 7 of the connector portion 4, i.e. liquid can enter the vacuum chamber 2' to mix with a dry composition, e.g. to form a wet paste that subsequently can be controllably released via the outlet 7 by operating a plunger (not shown) arranged in the barrel 1 , 1 '.
  • the barrel 1 ' in fig. 17a does not have a flange.
  • the pressure valve 5 is formed like a cylinder with a circumferential groove 12 that forms the fluid opening in the second position of the pressure valve.
  • the pressure valve 5 is formed like two hollow cylinders that are attached to each other by means of the centrally located rod 13. Even though the rod 13 is located centrally in the fluid passageway, liquid that enters the vacuum chamber 2 via the outlet 7, and paste that is released from the barrel 1 , 1 ' through the outlet 7 can easily pass the rod 13.
  • the pressure valve 5 as illustrated in fig. 18 is rotation symmetric.
  • the connector portion 4 is provided with an internal thread 10, most clearly seen in fig. 18. This may help to provide a secure, tight and tamper-free connection with an external liquid container (having a connector portion with a matching thread) prior to suction of liquid into the vacuum chamber when the (wet) paste is to be formed.
  • Vacuum bypass channels 9 are provided in figs. 16-18 as longitudinally extending grooves in the proximal end of the vacuum chamber 2.
  • the plunger When the plunger (not shown) is arranged in the barrel 1 , 1 ' below these vacuum channels the plunger sealably engages the vacuum chamber.
  • this sealing is not tight, because a fluid, and in particular air, connection is established between the vacuum chamber 2' and the surrounding atmosphere across the plunger via the vacuum bypass channels 9. I.e. during free-drying of paste inside the vacuum chamber 2' suction applied at the proximal end of the barrel can establish a vacuum inside the pressure chamber 2' and thereby expand the dry paste.
  • the plunger can be displaced to a position below the vacuum bypass channels, thereby sealably engaging the vacuum chamber 2 and subsequently retaining the freeze-dried paste in a vacuum.
  • Another exemplary barrel 1 " of the presently disclosed syringe is exemplified in fig. 20 having another embodiment of the pressure valve 5' and the pressure chamber 3' as illustrated in greater detail in fig. 19, with fig. 19a showing a close-up of the pressure valve alone.
  • This pressure valve 5' is slim and provided in a substantially rectangular shape.
  • An aperture 17 forms the fluid passageway in the second position of pressure valve inside the pressure chamber 3'.
  • the outside shape of the pressure valve 5' matches the inside shape of the pressure chamber 3'.
  • 19b shows the pressure valve 5' inside the pressure chamber 3' in the first position of the pressure valve 5', where the fluid passageway is blocked and a vacuum can be retained inside the vacuum chamber 2.
  • the pressure valve 5' is seen to protrude upwards from the pressure chamber 3', i.e. it protrudes radially from the pressure chamber 3' with respect to the longitudinal axis of the barrel 2.
  • the pressure chamber 3' has been cut-through such that the configuration of the pressure valve 5' inside the pressure chamber 3' can be seen.
  • the pressure valve 5' is in the first position, i.e. extending radially from the pressure chamber 3'.
  • the pressure valve 5' and the pressure chamber 3' are configured such that the pressure valve is radially limited in this first position by means of protrusions 14 on the pressure valve 5' that abuts a narrowing 15 of the inner side wall of the pressure chamber 3', i.e. the pressure valve 5' cannot extend further outwards when in the first position. This helps to ensure that the pressure valve 5' is not accidentally removed from the pressure chamber 3' thereby possibly breaking a vacuum sealing inside the vacuum chamber 2.
  • the pressure valve 5' is in the second position.
  • the pressure valve 5' is now completely submerged in the pressure chamber 3'.
  • the rounded top surface of the pressure valve 5' matches a corresponding rounded top surface of the pressure chamber 3' such that the upper surfaces of the pressure valve 5' and the pressure chamber 3' are flush with each other.
  • a stippled arrow in fig. 20a indicates the opening 16 where through the pressure valve 5' can be inserted into the pressure chamber 3'.
  • the barrel 1 " is also suitable for single cycle injection molding. After manufacture the pressure valve 5' can be inserted through the opening 16.
  • the pressure valve 5' in itself is also suitable for single cycle injection molding.
  • the three top holes 18 indicated in figs. 19a and 20c are provided to make the pressure valve 5' suitable for injection molding.
  • the dry composition is in the form of a sheet, i.e. a substantially flat composition.
  • the invention relates to a dry composition in the form of a sheet for use in haemostasis and/or wound healing.
  • the sheet is not pre-wetted before use, i.e. before application to a wound.
  • the sheet will reconstitute in situ on the bleeding wound upon contact with blood, wound exudate, and/or other bodily fluids.
  • the height of the dry sheet composition is in one embodiment between about 0.5 mm and about 10 mm, preferably between about 1 mm and 5 mm, more preferred between about 1 mm and 3 mm, such as about 2 mm.
  • the size (width and depth) of the dry sheet composition depends on the intended use of the sheet and can be selected by the skilled person.
  • the dry sheet material may e.g. be rectangular, square or circular.
  • the dry sheet composition may e.g. be in the form of a rectangle of approximately 5 cm x 10 cm, 2 cm x 6 cm, 6 cm x 8 cm or 8 cm x 12 cm.
  • the dry sheet composition is cut into the desired shape prior to use.
  • the paste is expanded by subjecting the paste to a reduced pressure, i.e. to pressures below ambient pressure, i.e. usually less than 1000 mbar (a low vacuum).
  • a reduced pressure i.e. to pressures below ambient pressure, i.e. usually less than 1000 mbar (a low vacuum).
  • Vacuum expansion results in an increase in the total volume of the paste by expansion of entrapped air or another gas within interstitial pores or compartments of the wet paste.
  • the pressure of the vacuum is selected so that the paste expands to a sufficient degree without collapsing. Thus, the pressure must not be too low, which will result in the paste collapsing. Vacuum expansion of the paste may e.g. be performed in a freeze-dryer.
  • the density of the paste is decreased by about a factor 0.75 as a result of the vacuum expansion.
  • the density of the wet paste may e.g. be in the range of about 0.5 g/ml to about 1 g/ml, such as between about 0.6 g/ml to about 0.9 g/ml, for example between about 0.7 g/ml to about 0.8 g/ml.
  • the density of a gelatine paste prior to expansion is usually within the range of about 0.60 g/ml to about 0.80 g/ml, such as about 0.65 g/ml to about 0.75 g/ml, such as about 0.7 g/ml.
  • the density of the wet paste may e.g. be in the range of about 0.1 g/ml to about 0.8 g/ml, more preferred between about 0.2 g/ml to about 0.7 g/ml, for example about 0.2 g/ml to about 0.6 g/ml, such as about 0.2 g/ml to about 0.5 g/ml.
  • the density of a gelatine paste after expansion is usually within the range of about 0.2 g/ml to about 0.6 g/ml, more preferred between about 0.3 g/ml to about 0.6 g/ml, such as between about 0.4 g/ml to about 0.5 g/ml.
  • the volume of the paste, by subjecting the paste to a reduced pressure, is
  • a factor 1 .05 such as at least a factor 1 .1 , for example at least a factor 1 .2, such as at least a factor 1 .3, for example at least a factor 1 .4, such as at least a factor 1 .5, for example at least a factor 1 .6, such as at least a factor 1 .7, for example at least a factor 1 .8, such as at least a factor 1 .9, for example at least a factor 2.0.
  • a dry vacuum expanded composition comprising gelatine prepared by the method of the present disclosure usually has a density of between about 1 mg/ml to about 40 mg/ml, such as between about 5 mg/ml to about 35 mg/ml, for example between about 10 mg/ml to about 35 mg/ml.
  • the paste is subjected to a reduced pressure of at least 10 mbar less than ambient pressure, for example at least 50 mbar less than ambient pressure, such as at least 100 mbar less than ambient pressure, for example at least 150 mbar less than ambient pressure, such as at least 200 mbar less than ambient pressure, for example at least 250 mbar less than ambient pressure, such as at least 300 mbar less than ambient pressure, for example at least 350 mbar less than ambient pressure, such as at least 400 mbar less than ambient pressure, for example at least 450 mbar less ambient pressure, such as at least 500 mbar less than ambient pressure, for example at least 550 mbar less ambient pressure, such as at least 600 mbar less than ambient pressure, for example at least 650 mbar less ambient pressure, such as at least 700 mbar less than ambient pressure, for example at least 750 mbar less than ambient pressure, such as at least 800 mbar less than ambient pressure, for example at least 850 mbar less than ambient pressure, such as at least 10 mbar
  • the pressure of the vacuum is between less than 1000 mbar and 200 mbar, such as between 1000 mbar and 250 mbar, for example between 1000 mbar and 300 mbar, such as between 1000 mbar and 350 mbar, for example between 1000 mbar and 400 mbar, such as between 1000 mbar and 450 mbar, for example between 1000 mbar and 500 mbar, such as between 1000 mbar and 550 mbar, for example between 1000 mbar and 600 mbar, such as between 1000 mbar and 650 mbar, for example between 1000 mbar and 700 mbar, such as between 1000 mbar and 750 mbar, for example between 1000 mbar and 800 mbar, such as between 1000 mbar and 850 mbar, for example between 1000 mbar and 900 mbar, such as between 1000 mbar and 950 mbar.
  • 1000 mbar and 250 mbar for example between 1000 mbar and 300 mbar, such as between 1000 mbar and 350
  • the expansion rate depends on the vacuum pump and the size of the vacuum chamber, i.e. how fast pressure in the chamber can be decreased to the desired level.
  • the low vacuum levels according to the present disclosure are achieved almost instantaneously, thus expansion of the paste occurs essentially instantaneously after starting the vacuum pump.
  • Vacuum expansion is usually performed at a temperature above the freezing point of the paste.
  • vacuum expansion is performed at ambient temperature or at temperatures below ambient temperature, such as at temperatures of about 0°C to about 25°C, such as at about 2°C to about 20°C, for example about 2°C to about 15°C, such as at about 2°C to about 10°C, such as about 4°C to about 20°C, for example about 4°C to about 15°C, such as at about 4°C to about 10°C.
  • vacuum expansion is preferably performed at temperatures below ambient temperatures. Freezing of the paste
  • the temperature selected for freezing the paste depends on the freezing point of the paste and/or the glass transition temperature of the paste and can be determined by the skilled person.
  • the desired temperature of the frozen paste is approximately 5°C less than the lowest of the freezing point of the paste and the glass transition temperature. E.g. if the freezing point of a paste is -35°C, the paste should be cooled to about -40°C.
  • the haemostatic paste is dried to obtain the dry haemostatic composition.
  • the paste may be dried by any suitable methods known to a person of skill.
  • the paste is freeze-dried. Any suitable freeze-drying technique and equipment known to the person of skill may be used. When freeze- drying is used to prepare the dried paste composition of the present invention, expansion, freezing and drying can advantageously be performed as a continuous process in a single apparatus. Freeze-drying (also known as lyophilisation and cryodesiccation) is a dehydration process typically used to preserve a perishable material or make the material more convenient for transport. Freeze-drying works by freezing the material and then reducing the surrounding pressure to allow the frozen water in the material to sublimate directly from the solid phase to the gas phase.
  • Freeze-drying also known as lyophilisation and cryodesiccation
  • freeze-dryers There are essentially three categories of freeze-dryers: the manifold freeze-dryer, the rotary freeze-dryer and the tray style freeze-dryer. Two components are common to all types of freeze-dryers: a vacuum pump to reduce the ambient gas pressure in a vessel containing the substance to be dried and a condenser to remove the moisture by condensation on a surface cooled to -40 to -80 ' ⁇ .
  • the manifold, rotary and tray type freeze-dryers differ in the method by which the dried substance is interfaced with a condenser. In manifold freeze-dryers a short usually circular tube is used to connect multiple containers with the dried product to a condenser.
  • the rotary and tray freeze- dryers have a single large reservoir for the dried substance.
  • compositions and tissue extracts can be placed in trays, vials and other containers.
  • Manifold freeze-dryers are usually used in a laboratory setting when drying liquid substances in small containers and when the product will be used in a short period of time.
  • a manifold dryer will dry the product to less than 5% moisture content. Without heat, only primary drying (removal of the unbound water) can be achieved.
  • a heater must be added for secondary drying, which will remove the bound water and will produce a lower moisture content.
  • freezing is often done by placing the material in a freeze-drying flask and rotating the flask in a bath, called a shell freezer, which is cooled by mechanical refrigeration, dry ice and methanol, or liquid nitrogen.
  • a freeze-drying machine On a larger scale, freezing is usually done using a freeze-drying machine. In this step, it is important to cool the material below its triple point, the lowest temperature at which the solid and liquid phases of the material can coexist. This ensures that sublimation rather than melting will occur in the following steps. Larger crystals are easier to freeze-dry. To produce larger crystals, the product should be frozen slowly or can be cycled up and down in temperature. This cycling process is called annealing.
  • the freezing is done rapidly, in order to lower the material to below its eutectic point quickly, thus avoiding the formation of ice crystals.
  • the freezing temperatures are between -40 °C and -80 °C.
  • the freezing phase is the most critical in the whole freeze-drying process, because the product can be spoiled if badly done.
  • Amorphous materials do not have a eutectic point, but they do have a critical point, below which the product must be maintained to prevent melt-back or collapse during primary and secondary drying.
  • the pressure is lowered (to the range of a few millibars or less), and enough heat is supplied to the material for the water to sublime.
  • the amount of heat necessary can be calculated using the sublimating molecules' latent heat of sublimation.
  • This phase may be slow (can be several days in the industry), because, if too much heat is added, the material's structure could be altered.
  • pressure is controlled through the application of a medium vacuum. The vacuum speeds sublimation, making it useful as a deliberate drying process.
  • the vapour pressure of water is the pressure at which water vapour is saturated. At higher pressures water would condense.
  • the water vapour pressure is the partial pressure of water vapour in any gas mixture saturated with water.
  • the secondary drying phase aims to remove unfrozen water molecules, since the ice was removed in the primary drying phase.
  • This part of the freeze-drying process is governed by the material's adsorption isotherms.
  • the temperature is raised higher than in the primary drying phase, and can even be above 0 ' ⁇ , to break any physico-chemical interactions that have formed between the water molecules and the frozen material.
  • the pressure is also lowered in this stage to encourage desorption (typically in the range of microbars). However, there are products that benefit from increased pressure as well.
  • the vacuum may be broken with an inert gas, such as nitrogen, before the material is sealed.
  • an inert gas such as nitrogen
  • the vacuum is retained in the product chamber to allow for easy addition of liquid for reconstitution.
  • the final residual water content in the freeze-dried product is in general very low, such as around 2% or lower.
  • the freeze-drying process transforms the paste into a "cake-like" dry composition, which upon addition of an adequate amount of an aqueous medium, such as water, will form a ready-to use paste spontaneously, i.e. no mechanical mixing/reconstitution is required for said paste to form.
  • an aqueous medium such as water
  • the expanded paste is not frozen prior to drying of the paste. Neither is the paste dried by freeze-drying. Rather the low vacuum is upheld while the paste is dried by subjecting the expanded paste to an increased temperature until the paste is dry.
  • the increased temperature is typically in the range of about 30-200°C, such as about 50°C to about 150°C.
  • the method of the present disclosure is a method for preparing a dry composition comprising the steps of:
  • a paste which has been expanded by low vacuum reconstitutes faster than a comparable dry paste composition, which has not been expanded by low vacuum.
  • a paste that has been expanded by vacuum and dried reconstitutes spontaneously to form a substantially homogenous flowable paste without any mechanical mixing.
  • composition being present in a medical delivery device will reconstitute to a ready-to- use paste suitable for direct delivery to a patient without any mechanical mixing required upon addition of an amount of an aqueous medium to the medical delivery device having the dried gelatine paste composition disposed therein.
  • Vacuum expansion expands entrapped air pockets within the paste and such expanded air pockets are retained in the dried paste composition.
  • the presence of larger air pockets in the dry composition enables the wetting of the dry composition due to a larger contact surface area between the dried composition and the liquid. It also facilitates unhindered distribution of the liquid into the dry composition due to the formed channels.
  • the inventors have also discovered that the volume of a paste aliquot is generally higher in samples being aliquoted first as opposed to last from a single batch of paste. This is thought to be due to a partial collapse of the paste occurring over time causing variations in paste density. Such variations in density can lead to undesirable variations in the reconstitution time. Vacuum expansion of the paste prior to drying is able to reduce or even eliminate such "intra-batch" variations in paste density and thus lead to consistently fast reconstitution of the dried pastes. Thus, vacuum expansion provides a higher degree of reproducibility with regards to the reconstitution time.
  • the dry composition may be reconstituted by adding a suitable aqueous medium.
  • the aqueous medium may be added by any suitable mechanism.
  • the aqueous medium is sterile.
  • the aqueous medium is added in an amount sufficient to obtain a wet paste of a desired consistency.
  • the volume of liquid added to the dry composition corresponds essentially to the volume of liquid which was removed by the drying procedure. In case a thinner paste composition is desired, more liquid can be added to the dried paste than was initially removed by the drying procedure.
  • the paste is reconstituted by adding an amount of liquid to a container, such as a medical delivery device, having the dried paste composition disposed therein, even more preferred to the same container which held the paste during the vacuum expansion, freezing and drying steps.
  • the container comprising the reconstitution liquid is essentially free from air or another gas.
  • the advantage of this is that reconstitution is independent of how the containers are oriented in space in relation to each other.
  • there is a vacuum inside the product chamber of the first container i.e. the pressure inside the product chamber of the first container is less than that of the surroundings, i.e. less than atmospheric pressure.
  • the present disclosure relates to a method for reconstituting a dry paste composition comprising the steps of:
  • the second container is a collapsible container such as a plastic bag.
  • the bag collapses due to the pressure difference, thus allowing for liquid flow from the bag to the product chamber and reconstitution of the paste as illustrated in figures 12-13.
  • the second container is a non-collapsible container comprising a plunger, such as a rigid- or semi-rigid plastic container.
  • a plunger such as a rigid- or semi-rigid plastic container.
  • the plunger allows for liquid flow from the aqueous medium container to the product chamber and reconstitution of the paste without exerting manual pressure upon the plunger as illustrated in figures 12-13.
  • a ready-to-use paste forms spontaneously upon addition of liquid to the dry composition disposed within the container within less than about 30 seconds, preferably within less than about 20 seconds, more preferred within less than about 10 seconds, even more preferred within less than about 5 seconds, such as less than about 3 seconds, for example less than about 2 seconds.
  • the reconstituted paste usually requires no further mixing or other forms of manipulations before use.
  • a ready-to-use paste forms within less than about 5 seconds, such as less than about 3 seconds, for example less than about 2 seconds.
  • the container for example a syringe, such as the herein disclosed syringe, may be fitted with an applicator tip suitable for administering the paste in a more precise manner as illustrated in figure 14.
  • the applicator tip is bendable or malleable and will maintain a desired configuration chosen by the user so that it stays at an optimum angle for easy access and exact product placement. Further, it can be cut to a desired length with a pair of nurses dressing scissors or similar type of scissors. These features allow for accurate and convenient application of the paste.
  • the applicator tip is essentially as described in WO 201 1/047753.
  • the dry composition contained within e.g. a syringe, such as the herein disclosed syringe, or other containment unit is further contained within an outer packaging so that the product is kept sterile until use. This will allow the user to remove the outer packaging and transfer the haemostatic composition into a sterile field.
  • a suitable amount of aqueous medium can be added, whereupon a ready-to-use haemostatic paste forms spontaneously within seconds without any need for mechanical agitation, stirring or mixing.
  • the outer packaging is usually made from a flexible, semi-rigid or rigid material and typically consists of materials such as plastic, aluminium foil and/or plastic laminate, where the plastic may be selected from the group consisting of PET, PETG, PE, LLDPE, CPP, PA, PETP, METPET, Tyvek and optionally bonded with an adhesive, such as polyurethane, or co-extruded.
  • the outer packaging is an aluminium foil outer packaging.
  • the outer packaging preferably forms a complete barrier to moisture.
  • the outer packaging is preferably able to endure sterilisation treatment such as by radiation.
  • the dry composition of the present disclosure is preferably sterile. Any suitable sterilisation technique known in the art may be utilised.
  • the sterilisation preferably occurs after the packaging step, i.e. when the dry composition is contained within an outer packaging. Thus, in a preferred embodiment sterilisation is terminal sterilisation.
  • Sterilisation refers to any process that effectively kills or eliminates transmissible agents (such as fungi, bacteria, viruses, prions and spore forms etc.). Sterilisation of the dry composition can be achieved through e.g. application of heat, chemicals, and irradiation.
  • Heat sterilization include autoclaving (uses steam at high temperatures) and dry heat;
  • radiation sterilisation include X-rays, gamma and beta rays, UV light and subatomic particles;
  • chemical sterilisation include using ethylene oxide gas, ozone, chlorine bleach, glutaraldehyde, formaldehyde, ortho phthalaldehyde, hydrogen peroxide and peracetic acid.
  • the dry composition is sterilised by irradiation, e.g. ionizing irradiation, so as to provide sterility to the composition.
  • irradiation may include e- beam (beta irradiation) or gamma irradiation.
  • the level of irradiation and conditions for sterilisation, including the time that the composition is irradiated, are those that provide sterile compositions. Sterilisation conditions are similar to those currently utilized in the preparation of haemostatic loose powders currently available. Once having the benefit of this disclosure, one skilled in the art will be able to readily determine the level of irradiation necessary to provide sterile compositions.
  • sterilisation is usually performed as terminal sterilisation with about 25 kGy or less of beta or gamma irradiation.
  • sterilisation is performed with ethylene oxide.
  • Sterilisation with dry heat may typically be carried out by heating the dry haemostatic composition to a temperature between 100°C and 250°C, such as about 1 10°C to about 200°C.
  • the temperature may be in the range of 1 10-160°C, e.g. in the range of 1 10-140°C, or in the range of 120-180 °C, or in the range of 130-170°C, or in the range of 130-160°C, or in the range of 120-150°C.
  • Heat sterilisation is usually not utilised when the dry composition contains thrombin, since heat treatment would inactivate the thrombin.
  • the dry haemostatic composition is not sterilised after packaging.
  • the product is already sterile when placed in the outer packaging and no further sterilisation is required.
  • the present disclosure relates to a composition produced by aseptic techniques.
  • the present disclosure further relates to use of the paste obtained from the dry composition for promoting haemostasis and/or wound healing.
  • the paste of the present disclosure may e.g. be used in an array of surgical procedures wherein bleeding control is desired.
  • a haemostatic paste conforms to irregular surfaces to stop bleeding fast and it is therefore useful for providing rapid haemostasis on rough or uneven surfaces where haemostatic sponges are not efficient.
  • Haemostatic pastes are prepared directly at the surgical site at the time of need by the medical practitioner, i.e. the doctors or nurses by addition of liquid to a container, such as a syringe, containing an amount of a biocompatible polymer.
  • the biocompatible polymer may be pre-wetted with the liquid or be essentially dry (free-flowing powder).
  • the paste is thus often prepared under extremely stressful conditions and it is therefore essential that the process for preparing the paste is simple and fast to ensure that the bleeding is arrested as quickly as possible and that no mistakes are made while preparing the paste such that the nurse can keep focus on the needs of the surgeon instead of on preparing the haemostat. It is also important that the consistency of the paste is suitable for use as a haemostatic paste and that the consistency of the product is independent from preparation to preparation and over time.
  • the paste of the present disclosure is superior to the currently available flowable products as it reduces or obviates the need for mechanical mixing steps.
  • the paste of the present disclosure may be prepared simply by adding an amount of an aqueous medium to a container comprising the dry composition, whereupon a ready-to-use haemostatic paste forms spontaneously, i.e.
  • the dry composition of the present invention is contained within a medical delivery device under vacuum as described herein, the aqueous medium is automatically drawn into the product chamber due to the pressure difference and the dry composition reconstitutes spontaneously to a ready-to-use flowable composition.
  • the flowable paste can be extruded from the medical delivery device and applied to a patient, e.g. to a bleeding wound, within seconds of coming into contact with the aqueous medium.
  • the quantity of liquid to be added to the dry composition may be adjusted by the skilled person.
  • dry composition of the present invention Another notable advantage of the dry composition of the present invention is that a kit consisting of fewer components can be prepared as compared to e.g. current haemostatic flowable kits. All there is required to prepare a flowable paste composition in the OR is the dry composition as described herein comprised within a medical delivery device and a container comprising an aqueous medium for reconstitution. Upon connection of the two, a ready-to-use flowable paste containing all necessary agents for effective haemostasis including thrombin is formed spontaneously when the aqueous medium is automatically drawn into the vacuum expanded dry composition. Thus, no extra syringes, vial adapters, needles and mixing bowls are required with the product prepared according to the methods of the present disclosure.
  • the present disclosure relates to a method for arresting
  • the paste of the present disclosure may be used for any type of surgery including general surgery, cardiothoracic surgery, vascular surgery, plastic surgery, paediatric surgery, colorectal surgery, transplant surgery, surgical oncology, trauma surgery, endocrine surgery, breast surgery, skin surgery, otolaryngology, gynaecology, oral and maxillofacial surgery, dental Surgery, orthopaedic surgery, neurosurgery,
  • wound refers broadly to injuries to the skin and/or underlying (subcutaneous) tissue initiated in different ways (e.g., pressure sores from extended bed rest and wounds induced by trauma) and with varying characteristics.
  • Wounds may be classified into one of four grades depending on the depth of the wound: i) Grade I: wounds limited to the epithelium; ii) Grade II: wounds extending into the dermis; iii) Grade III: wounds extending into the subcutaneous tissue; and iv) Grade IV (or full-thickness wounds): wounds wherein bones are exposed (e.g., a bony pressure point such as the greater trochanter or the sacrum).
  • the present disclosure relates to treatment of any type of wound mentioned above using the paste of the present disclosure.
  • the treatment of a wound can in principle result in healing of the wound or in accelerated healing of the wound.
  • the accelerated healing can be a result of e.g. administration of a wound-healing promoting substance.
  • the wound healing can be promoted by preventing bacterial or viral infection, or by reducing the risk of such an infection which would otherwise have prolonged the wound treatment process.
  • the present disclosure relates to a method for promoting bone and/or tendon healing in an individual in need thereof by application of the paste of the present disclosure to the injured bone/tendon.
  • the "individual” referred to herein may be any mammal, including, but not limited to, mammals of the order Rodentia, such as mice and hamsters, and mammals of the order Logomorpha, such as rabbits. It is preferred that the mammals are from the order Carnivora, including Felines (cats) and Canines (dogs). It is more preferred that the mammals are from the order Artiodactyla, including Bovines (cows) and Swines (pigs) or of the order Perssodactyla, including Equines (horses). It is most preferred that the mammals are of the order Primates, Ceboids, or Simoids (monkeys) or of the order Anthropoids (humans and apes).
  • an especially preferred mammal is the human.
  • the present disclosure relates to a vacuum expanded, freeze-dried paste, such as the presently disclosed dry composition, for use in the treatment of a wound, e.g. for arresting bleeding or for promoting wound healing.
  • the present disclosure further relates to a haemostatic kit comprising the dry composition of the present disclosure and an amount of aqueous medium matched to the amount of the dry composition so that upon addition of the aqueous medium, a haemostatic paste of a consistency suitable for use as a haemostatic paste will form spontaneously, i.e. within seconds.
  • the present disclosure relates to a haemostatic kit comprising:
  • the present disclosure relates to a haemostatic kit comprising: a) the presently disclosed syringe comprising a dry composition
  • the aqueous medium used to reconstitute the paste may e.g. be selected from water, saline, a calcium chloride solution or a buffered aqueous solution.
  • the aqueous medium used to reconstitute the dry composition is water.
  • the isotonicity of the aqueous medium is selected so that an isotonic paste will form upon addition of the aqueous medium to the dry composition.
  • the aqueous medium used to reconstitute the dry composition is saline or a calcium chloride solution.
  • the dry composition comprises thrombin.
  • the kit further comprises one or more applicator tips.
  • the kit may optionally contain instructions for use of the kit.
  • the resulting paste was filled into 10 ml single use plastic syringes (5.5 ml per syringe) comprising a lyophilisation bypass channel and placed at -30 ⁇ for minimum 4 h.
  • the frozen paste was transferred to the freeze-dryer and freeze-dried until dry for approximately 15 h.
  • the shelves of the lyophiliser were collapsed, thereby moving the plunger and closing the lyo bypass channel.
  • the pressure in the lyophiliser chamber was then brought to ambient pressure leaving a vacuum in the product chamber.
  • the dry haemostatic composition was reconstituted by connecting the syringe comprising the dry composition to a collapsible plastic bag containing water (8 ml ). No mechanical mixing or stirring was used.
  • the water was added to the dry composition by utilising the vacuum inside the product chamber, and the composition was left untouched until a paste was re-formed.
  • the vacuum inside the product chamber of the syringe causes the water to be automatically drawn into the syringe from the container holding the water.
  • Pastes comprising different polyols were made, dried and reconstituted according to the directions above. The contents of the pastes are shown in the tables below.
  • the polyohgelatine ratio in the dry compositions was approximately 0.4:1 .
  • the experiment shows that different kinds of polyols can be used for making a freeze- dried gelatine paste that will reconstitute spontaneously upon addition of an aqueous medium within less than about 30 seconds.
  • the reconstituted paste has a consistency suitable for direct use as a haemostatic paste.
  • the dried paste had a spontaneous reconstitution time of about 5 seconds.
  • the contents of the paste formulation are specified in the table below in the paste (wet) and the dried composition (dry) respectively.
  • the total polyol concentration, i.e. mannitol and glycerol, in the paste was 13.56% and after drying 42.27%.
  • the polyohgelatine ratio in the dry composition was approximately 0.75:1 .
  • the paste was dried by freeze-drying and reconstituted as described in Example 1 .
  • the thrombin activity was measured in the reconstituted paste. The results are shown in the table below.
  • Example 1 The prepared pastes were either freeze dried directly as described in Example 1 (standard lyophilisation) or subjected to a low vacuum of about 850 mbar, followed by a freezing step to - 40°C without releasing the vacuum and finally freeze dried essentially as described in Example 1 (vacuum expanded lyophilisation). Vacuum expansion was performed at ambient temperature, i.e. about 20°C. Upon exposure of the pastes to the decreased pressure, i.e. vacuum, the pastes expanded in volume almost
  • the lyophilised products were reconstituted essentially as described in Example 1 by adding 5.5 ml saline to the lyophilised product and the amount of time for the paste to fully absorb the saline was measured.
  • the vacuum inside the product chamber of the syringes automatically draws in the liquid.
  • Both vacuum expanded and standard pastes were soft and moist after reconstitution and exhibited comparable absorption capacities.
  • the consistency of the reconstituted pastes was considered suitable for direct use on a patient.
  • the reconstituted pastes had a slightly off white/ yellowish colour.
  • Gelatine pastes comprising mannitol were prepared as described in Examples 1 and 3.
  • the pastes were vacuum expanded using different vacuum levels (1000 mbar (no vacuum), 850 mbar and 600 mbar) and then frozen and freeze-dried as described in Example 3.
  • the dry compositions reconstituted spontaneously to form soft and moist pastes suitable for haemostatic and/or wound healing use.
  • Example 5 Effect of vacuum expansion and polyol concentration Gelatine pastes comprising different amounts of mannitol (no mannitol, medium mannitol (approx. 3.9%) or high mannitol (approx.. 7.4%)) were prepared essentially as described in Example 1 with the exception that a Virtis Genesis 35 freeze-dryer was used. Portions of paste were aliquoted into 10 ml single-use syringes having vacumm bypass, each syringe receiving 4 g of the paste. The contents of the paste formulation are specified in the table below in the paste (wet) and the dried composition (dry) respectively.
  • Example 1 The prepared pastes were either freeze dried directly as described in Example 1 (no expansion) or vacuum expanded by exposure to a low vacuum of about 850 mbar, followed by a freezing step to - 40°C without releasing the vacuum and finally freeze dried essentially as described in Example 1 (vacuum expansion). Vacuum expansion was performed at ambient temperature, i.e. about 20°C.
  • Dried vacuum-expanded gelatine pastes containing PEG reconstituted about 1 .7 times faster than control (vacuum expanded gelatine paste without any hydrophilic compounds added) and had a superior consistency. The results are shown in figure 22.
  • the inventors have also discovered that the volume of a paste aliquot is generally higher in samples being aliquoted first as opposed to last from a single batch of paste. This is thought to be due to a partial collapse of the paste over time causing undesirable variations in paste density. Such variations in density can lead to undesirable variations in the reconstitution time. Vacuum expansion of the paste prior to drying is believed to be able to reduce or even eliminate such differences in paste density which can occur between the first and the last portions of pastes being aliquoted from a single paste batch.
  • the results show that vacuum expansion before drying greatly improves the reconstitution rate and is able to provide more consistent results with regards to the reconstitution time.
  • the spontaneous reconstitution rate can be further improved by inclusion of increasing amounts of polyols in the dried paste compositions.
  • inclusion of hydrophilic compounds, such as polyols, in the dried paste compositions also improved the consistency of the reconstituted pastes.
  • a method for preparing a dry composition comprising the sequential steps of:
  • the reduced pressure is a pressure of at least 50 mbar less than ambient pressure, such as at least 100 mbar less than ambient pressure, for example at least 150 mbar less than ambient pressure, such as at least 200 mbar less than ambient pressure, for example at least 250 mbar less than ambient pressure, such as at least 300 mbar less than ambient pressure, for example at least 350 mbar less than ambient pressure, such as at least 400 mbar less than ambient pressure, for example at least 450 mbar less ambient pressure, such as at least 500 mbar less than ambient pressure, for example at least 550 mbar less ambient pressure, such as at least 600 mbar less than ambient pressure, for example at least 650 mbar less ambient pressure, such as at least
  • 700 mbar less than ambient pressure for example at least 750 mbar less than ambient pressure, such as at least 800 mbar less than ambient pressure, for example at least 850 mbar less than ambient pressure, such as at least 900 mbar less ambient pressure.
  • the density of the paste is decreased by at least a factor 0.95 as a result of the vacuum expansion, such as at least a factor 0.90, for example at least a factor 0.85, such as at least a factor 0.80, for example at least a factor 0.75, such as at least a factor 0.70, for example at least a factor 0.65, such as at least a factor 0.60, for example at least a factor 0.55, such as at least a factor 0.50 as a result of the vacuum expansion.
  • the agent in powder form is a biocompatible polymer.
  • the method according to any of the preceding items, wherein the agent in powder form is cross-linked.
  • the method according to any of the preceding items, wherein the agent in powder form is biologically absorbable.
  • the method according to any of the preceding items, wherein the agent in powder form is gelatine.
  • the method according to any of the preceding items, wherein the drying is freeze- drying.
  • the method according to any of the preceding items, wherein the drying results in a dry composition comprising less than about 5% water, preferably less than about 2% water.
  • the method according to any of the preceding items, wherein the agent in powder form and the aqueous medium is mixed with one or more hydrophilic compounds.
  • hydrophilic compounds are one or more polyols.
  • glycol selected from the group consisting of glycol, glycerol, erythritol, threitol, arabitol, xylitol, ribitol, mannitol, sorbitol, dulcitol, fucitol, iditol, inositol, volemitol, isomalt, maltitol, lactitol and polyglycitol. 18. The method according to any items 15 to 17, wherein the one or more polyols is mannitol and optionally one or more further hydrophilic compounds.
  • dry composition further comprises one or more bioactive agents capable of stimulating
  • aqueous medium is selected from the group consisting of water, saline, a calcium chloride solution and a buffered aqueous medium.
  • the method comprises a further step of placing the dry composition into an outer packaging, such as an aluminium foil packaging.
  • the method comprises a further step of sterilising the dry composition.
  • a wet paste composition being a vacuum expanded wet paste having a density of between about 0.2 g/ml to about 0.6 g/ml, more preferred between about 0.3 g/ml to about 0.6 g/ml, such as between about 0.4 g/ml to about 0.5 g/ml.
  • a dry composition obtainable by the method of any of items 1 to 24.
  • a vacuum chamber for containing the paste having an open proximal end and a distal end having a first fluid opening
  • a connector portion having a second fluid opening and adapted for connection to a liquid receptacle
  • a pressure valve located in the pressure chamber and adapted to seal the first and second fluid openings in a first position and form/create a fluid passageway between the first and second fluid openings in a second position, - a plunger configured to be axially displaced in the vacuum chamber through the open proximal end, and
  • the pressure valve comprises an aperture
  • the aperture forms at least a part of the fluid passageway in the second position of the pressure valve, said aperture preferably extending in the longitudinal direction of the barrel.
  • a container comprising:
  • a product chamber comprising a dry composition capable of forming a paste upon addition of an aqueous medium, wherein the pressure within the product chamber is less than the pressure outside the product chamber, and
  • the container according to item 74 being a syringe, such as a single-use plastic syringe, such as the syringe according to any of items 29 to 73.
  • a method for reconstituting a dry composition comprising the steps of:
  • a method for reconstituting a dry composition comprising the steps of:
  • syringe of any of items 29 to 73 comprising a dry composition capable of forming a paste upon addition of an aqueous medium, wherein the dry composition is located in the vacuum chamber and wherein the pressure within the vacuum chamber is less than the pressure outside the vacuum chamber, and wherein the pressure valve of the syringe is arranged in the first position,
  • the second container comprising the aqueous medium is selected from i) a collapsible container, such a plastic bag, and ii) a non-collapsible container comprising a plunger.
  • a haemostatic kit comprising:
  • a syringe according to any of items 29 to 73 comprising a dry composition b) a container comprising an aqueous medium, and
  • the haemostatic kit according to item 80 wherein the dry composition is a dry composition that is configured to form a haemostatic paste of a consistency suitable for use as a haemostatic paste upon addition of the aqueous medium, such as form spontaneously within seconds.
  • haemostatic kit according to any of items 80 to 81 , wherein the dry composition is obtained by the method of any of items 1 to 24. 83.
  • a haemostatic kit comprising:

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Anesthesiology (AREA)
  • Epidemiology (AREA)
  • Vascular Medicine (AREA)
  • Materials Engineering (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Pulmonology (AREA)
  • Dermatology (AREA)
  • Diabetes (AREA)
  • Rheumatology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Materials For Medical Uses (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Polymers & Plastics (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Drying Of Solid Materials (AREA)
PCT/EP2014/063041 2013-06-21 2014-06-20 Vacuum expanded dry composition and syringe for retaining same WO2014202760A2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2016520511A JP6390873B2 (ja) 2013-06-21 2014-06-20 減圧膨張させた乾燥組成物およびそれを保持するためのシリンジ
US14/895,674 US9724078B2 (en) 2013-06-21 2014-06-20 Vacuum expanded dry composition and syringe for retaining same
AU2014283170A AU2014283170B2 (en) 2013-06-21 2014-06-20 Vacuum expanded dry composition and syringe for retaining same
CN201480035341.0A CN105358071B (zh) 2013-06-21 2014-06-20 真空膨胀的干组合物和用于保留该干组合物的注射器
EP14734064.0A EP3010419B1 (en) 2013-06-21 2014-06-20 Vacuum expanded dry composition and syringe for retaining same
BR112015030612-8A BR112015030612B1 (pt) 2013-06-21 2014-06-20 método para preparar uma composição seca
RU2016101631A RU2700162C2 (ru) 2013-06-21 2014-06-20 Расширенная под вакуумом сухая композиция и шприц для ее сохранения
CA2912357A CA2912357C (en) 2013-06-21 2014-06-20 Vacuum expanded dry composition and syringe for retaining same
HK16109479.3A HK1221388A1 (zh) 2013-06-21 2016-08-09 真空膨脹的干組合物和用於保留該幹干組合物的注射器
US15/639,237 US10595837B2 (en) 2013-06-21 2017-06-30 Vacuum expanded dry composition and syringe for retaining same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DKPA201370342 2013-06-21
DKPA201370342 2013-06-21
EP13193427.5 2013-11-19
EP13193427 2013-11-19
EP14154117.7 2014-02-06
EP14154117 2014-02-06

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/895,674 A-371-Of-International US9724078B2 (en) 2013-06-21 2014-06-20 Vacuum expanded dry composition and syringe for retaining same
US15/639,237 Division US10595837B2 (en) 2013-06-21 2017-06-30 Vacuum expanded dry composition and syringe for retaining same

Publications (2)

Publication Number Publication Date
WO2014202760A2 true WO2014202760A2 (en) 2014-12-24
WO2014202760A3 WO2014202760A3 (en) 2015-02-26

Family

ID=51033169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/063041 WO2014202760A2 (en) 2013-06-21 2014-06-20 Vacuum expanded dry composition and syringe for retaining same

Country Status (10)

Country Link
US (2) US9724078B2 (pt)
EP (1) EP3010419B1 (pt)
JP (1) JP6390873B2 (pt)
CN (1) CN105358071B (pt)
AU (1) AU2014283170B2 (pt)
BR (1) BR112015030612B1 (pt)
CA (1) CA2912357C (pt)
HK (1) HK1221388A1 (pt)
RU (1) RU2700162C2 (pt)
WO (1) WO2014202760A2 (pt)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016058612A1 (en) 2014-10-13 2016-04-21 Ferrosan Medical Devices A/S Dry composition for use in haemostasis and wound healing
JP2018008031A (ja) * 2016-05-25 2018-01-18 テレフレックス、ライフ、サイエンシーズ、アンリミテッド、カンパニーTeleflex Life Sciences Unlimited Company すぐに使える(ready to use)カテーテル・アセンブリの製造方法およびすぐに使えるカテーテル・アセンブリ
US9999703B2 (en) 2012-06-12 2018-06-19 Ferrosan Medical Devices A/S Dry haemostatic composition
US10111980B2 (en) 2013-12-11 2018-10-30 Ferrosan Medical Devices A/S Dry composition comprising an extrusion enhancer
US10653837B2 (en) 2014-12-24 2020-05-19 Ferrosan Medical Devices A/S Syringe for retaining and mixing first and second substances
US10918796B2 (en) 2015-07-03 2021-02-16 Ferrosan Medical Devices A/S Syringe for mixing two components and for retaining a vacuum in a storage condition
US11109849B2 (en) 2012-03-06 2021-09-07 Ferrosan Medical Devices A/S Pressurized container containing haemostatic paste
WO2023042146A1 (en) * 2021-09-16 2023-03-23 Ethicon, Inc. Kit for composition for tissue tract sealing
US11801324B2 (en) 2018-05-09 2023-10-31 Ferrosan Medical Devices A/S Method for preparing a haemostatic composition

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105358071B (zh) 2013-06-21 2018-07-31 弗罗桑医疗设备公司 真空膨胀的干组合物和用于保留该干组合物的注射器
US10596069B2 (en) * 2015-12-22 2020-03-24 Ethicon, Inc. Syringes with mixing chamber in a removable cap
US11052172B2 (en) * 2016-08-12 2021-07-06 Biom'up France SAS Hemostatic flowable
US11698344B2 (en) * 2018-09-05 2023-07-11 University Of South Carolina PH indicator swabs for biomonitoring and diagnostics
JP7389418B2 (ja) * 2019-02-18 2023-11-30 青葉化成株式会社 止血剤
EP3943126A4 (en) * 2019-03-20 2022-12-07 Astellas Pharma Inc. THROMBIN-LOADED HEMOSTATIC SHEET
CN109821059A (zh) * 2019-04-16 2019-05-31 大连医科大学附属第一医院 一种可吸收流体明胶止血材料的制备方法
CA3205655A1 (en) 2020-12-23 2022-06-30 Tolmar International Limited Systems and methods for mixing syringe valve assemblies
USD1029245S1 (en) 2022-06-22 2024-05-28 Tolmar International Limited Syringe connector

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6066325A (en) 1996-08-27 2000-05-23 Fusion Medical Technologies, Inc. Fragmented polymeric compositions and methods for their use
WO2003055531A2 (en) 2001-12-21 2003-07-10 Ferrosan A/S A hemostatic kit, a method of preparing a hemostatic agent and a method of promoting hemostasis
US20050284809A1 (en) 2004-06-29 2005-12-29 Looney Dwayne L Hemostatic compositions and devices
WO2011047753A1 (en) 2009-10-19 2011-04-28 Ferrosan Medical Devices A/S Malleable tip for agent applicator to a target site
WO2011151400A1 (en) 2010-06-01 2011-12-08 Baxter International Inc. Process for making dry and stable hemostatic compositions
WO2013060770A1 (en) 2011-10-27 2013-05-02 Baxter International Inc. Hemostatic compositions
WO2013185776A1 (en) 2012-06-12 2013-12-19 Ferrosan Medical Devices A/S Dry haemostatic composition

Family Cites Families (500)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2899362A (en) 1959-08-11 Hemostatic sponges and method of
US41913A (en) 1864-03-15 Joseph s
US2465357A (en) 1944-08-14 1949-03-29 Upjohn Co Therapeutic sponge and method of making
US2465860A (en) 1945-10-13 1949-03-29 Standard Manifold Company Inc Carbon holder
GB648619A (en) 1947-03-19 1951-01-10 Ferrosan As Process of producing sponges of gelatine and the like proteins
US2507244A (en) 1947-04-14 1950-05-09 Upjohn Co Surgical gelatin dusting powder and process for preparing same
CH264752A (de) 1947-06-03 1949-10-31 Hoffmann La Roche Verfahren zur Herstellung von Trägern für Arzneimittel.
GB697603A (en) 1948-10-06 1953-09-23 Sydney Arthur Gladstone Improvements in or relating to method of and devices for obtaining tissue from a tumour carried by a patient
US3089815A (en) 1951-10-11 1963-05-14 Lieb Hans Injectable pharmaceutical preparation, and a method of making same
US3224434A (en) 1962-11-06 1965-12-21 Waldemar Medical Res Foundatio Cell collector
GB1037937A (en) 1963-06-26 1966-08-03 Colgate Palmolive Co Pressurized dispensing containers
US3405712A (en) 1966-02-07 1968-10-15 Richard L. Pierick Desiccative syringe
US3869539A (en) 1966-12-01 1975-03-04 Ferrosan As Preparations containing fat-soluble vitamins in dry, particulate, free-flowing form dispersible in cold water and method of producing such preparations
US3514518A (en) 1967-12-19 1970-05-26 Pierre Charier Vadrot Process for preparation of gelatinous material from animal collagen
US3470109A (en) 1968-01-31 1969-09-30 Aloe Creme Lab Inc Method of making reconstitutable aloe gel in crystalline form
US3608593A (en) 1970-02-27 1971-09-28 Lilly Co Eli Method of filling powders into containers
US3678933A (en) 1970-07-17 1972-07-25 Moore Perk Corp Surgical sponge or bandage
US3892876A (en) 1971-11-30 1975-07-01 Leiner & Sons Wales Limited P Process of preparing freeze-dried gelatin
FR2167197B1 (fr) 1972-01-10 1974-06-21 Pont Brule Sa Compositions ameliorees contenant de la gelatine
US3899606A (en) * 1972-03-31 1975-08-12 Pillsbury Co Process for the treatment of coconut and food products resulting therefrom
US3815580A (en) 1972-08-31 1974-06-11 C Oster Apparatus for and method of collecting and preserving cytologic samples
US3946732A (en) 1973-08-08 1976-03-30 Ampoules, Inc. Two-chamber mixing syringe
SE420565B (sv) 1974-06-06 1981-10-19 Pharmacia Ab Hjelpmedel for intravaskuler administraring for anvendning i samband med intravaskuler administrering av en losning eller en suspension av ett diagnostiseringsmedel
US4002173A (en) 1974-07-23 1977-01-11 International Paper Company Diester crosslinked polyglucan hydrogels and reticulated sponges thereof
US4107288A (en) 1974-09-18 1978-08-15 Pharmaceutical Society Of Victoria Injectable compositions, nanoparticles useful therein, and process of manufacturing same
US4013078A (en) 1974-11-25 1977-03-22 Feild James Rodney Intervertebral protector means
JPS5823410B2 (ja) 1974-11-12 1983-05-14 株式会社クラレ ヒドロゲルヨウキザイ
US4006220A (en) 1975-06-04 1977-02-01 Gottlieb Sheldon K Compositions and methods useful for repairing depressed cutaneous scars
US4280954A (en) 1975-07-15 1981-07-28 Massachusetts Institute Of Technology Crosslinked collagen-mucopolysaccharide composite materials
US4160022A (en) * 1975-09-15 1979-07-03 Colgate Palmolive Company Toothpaste
US4098728A (en) 1976-01-02 1978-07-04 Solomon Rosenblatt Medical surgical sponge and method of making same
US4150744A (en) 1976-02-27 1979-04-24 Smith & Nephew Pharmaceuticals Ltd. Packaging
JPS5329936A (en) 1976-08-31 1978-03-20 Takeda Chem Ind Ltd Antibiotic composition
SE430609B (sv) 1976-12-21 1983-11-28 Sca Development Ab Sett att ur cellulosaderivat framstella absorberande material
DE2816130A1 (de) 1977-06-10 1978-12-21 Ato Chimie Verfahren und vorrichtung zur messung des haftvermoegens eines haftklebers
US4164559A (en) 1977-09-21 1979-08-14 Cornell Research Foundation, Inc. Collagen drug delivery device
US4208439A (en) 1977-10-25 1980-06-17 Societe D'assistance Technique Pour Produits Nestle S.A. Preparation of pasta
GB1584080A (en) 1977-12-05 1981-02-04 Ethicon Inc Absorbable hemostatic composition
DE2843963A1 (de) 1978-10-09 1980-04-24 Merck Patent Gmbh Im koerper resorbierbare geformte masse auf basis von kollagen und ihre verwendung in der medizin
US4265233A (en) 1978-04-12 1981-05-05 Unitika Ltd. Material for wound healing
US4179400A (en) 1978-05-09 1979-12-18 W. R. Grace & Co. Process for preparing catalytic solutions of sulfonium salts
AT359652B (de) 1979-02-15 1980-11-25 Immuno Ag Verfahren zur herstellung eines gewebekleb- stoffes
AT359653B (de) 1979-02-15 1980-11-25 Immuno Ag Verfahren zur herstellung eines gewebekleb- stoffes
DE3036033A1 (de) 1980-09-24 1982-05-06 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., 3400 Göttingen Wundbehandlungsmittel in pulverform und verfahren zu seiner herstellung
US4300494A (en) 1979-09-26 1981-11-17 Shell Oil Company Thermal insulated intake ports
DE2943520C2 (de) 1979-10-27 1982-05-19 Fa. Carl Freudenberg, 6940 Weinheim Verfahren zur Herstellung von Kollagenschwamm für medizinische oder kosmetische Zwecke
US4292972A (en) 1980-07-09 1981-10-06 E. R. Squibb & Sons, Inc. Lyophilized hydrocolloio foam
DE3105624A1 (de) 1981-02-16 1982-09-02 Hormon-Chemie München GmbH, 8000 München Material zum abdichten und heilen von wunden
DE3267499D1 (en) 1981-03-18 1986-01-02 Fujirebio Kk Support material for use in serological testing and process for the production thereof
EP0089971B1 (en) 1981-10-06 1985-08-07 Rocep-Lusol Holdings Limited Pressurized dispensing apparatus
DE3146841A1 (de) 1981-11-26 1983-06-01 Beiersdorf Ag, 2000 Hamburg "neue wundbehandlungsmittel"
US4424208A (en) 1982-01-11 1984-01-03 Collagen Corporation Collagen implant material and method for augmenting soft tissue
DE3360633D1 (en) 1982-02-12 1985-10-03 Unitika Ltd Anti-cancer device
US4482386A (en) 1982-03-26 1984-11-13 Warner-Lambert Company Method of conditioning a water swellable hydrocolloid
US4543332A (en) 1982-03-29 1985-09-24 Miles Laboratories, Inc. Method for the preparation of spherical microorganism cell aggregates
JPS5928472A (ja) 1982-08-09 1984-02-15 Koken:Kk 細胞培養用基質およびこの基質を用いた細胞培養・分離法
GB2128576B (en) 1982-10-16 1987-04-08 Johnsen Jorgensen Jaypak Making compartmented bags
US4540410A (en) 1982-11-16 1985-09-10 Serono Pharmaceutical Partners Lyophilized compositions, preparation and use thereof
JPS59113889A (ja) 1982-12-17 1984-06-30 Sumitomo Chem Co Ltd 固定化酵素もしくは固定化微生物菌体の製造方法
US4492305A (en) 1983-07-08 1985-01-08 Marion Laboratories, Inc. Package for collecting cultures
EP0132983B2 (en) 1983-07-14 1991-06-12 Hitachi Chemical Co., Ltd. Production of gelatin spherical gels and their use
JPS60100516A (ja) 1983-11-04 1985-06-04 Takeda Chem Ind Ltd 徐放型マイクロカプセルの製造法
JPS60110669A (ja) 1983-11-12 1985-06-17 株式会社林原生物化学研究所 圧出容器とその製造方法
US4515637A (en) 1983-11-16 1985-05-07 Seton Company Collagen-thrombin compositions
US4549554A (en) 1984-01-03 1985-10-29 Markham Charles W Aspiration biopsy device
US4522302A (en) 1984-03-05 1985-06-11 Sterling Drug Inc. Pre-sterilized medical procedure kit packages
AT389815B (de) 1984-03-09 1990-02-12 Immuno Ag Verfahren zur inaktivierung von vermehrungsfaehigen filtrierbaren krankheitserregern in blutprodukten
US4600574A (en) 1984-03-21 1986-07-15 Immuno Aktiengesellschaft Fur Chemisch-Medizinische Produkte Method of producing a tissue adhesive
US4837285A (en) 1984-03-27 1989-06-06 Medimatrix Collagen matrix beads for soft tissue repair
ZA851661B (en) 1984-03-29 1986-10-29 Minnesota Mining & Mfg Sorbent sheet material
JPS60214728A (ja) 1984-04-06 1985-10-28 Unitika Ltd 生理活性物質徐放性材料
SE456346B (sv) 1984-07-23 1988-09-26 Pharmacia Ab Gel for att forhindra adhesion mellan kroppsvevnader och sett for dess framstellning
JPS6144825A (ja) 1984-08-09 1986-03-04 Unitika Ltd 止血剤
GB8422950D0 (en) 1984-09-11 1984-10-17 Warne K J Hydrogel
JPS61122222A (ja) 1984-11-19 1986-06-10 Koken:Kk コラ−ゲン又はゼラチンとプロタミンとよりなる止血剤
US5178883A (en) 1984-11-29 1993-01-12 Regents Of The University Of Minnesota Method for promoting hair growth
US5165938A (en) 1984-11-29 1992-11-24 Regents Of The University Of Minnesota Wound healing agents derived from platelets
US4600533A (en) 1984-12-24 1986-07-15 Collagen Corporation Collagen membranes for medical use
JPS61209590A (ja) 1985-03-13 1986-09-17 Asama Kasei Kk 新規な固定化細胞およびそれを利用する醗酵生産法
US4861714A (en) 1985-04-04 1989-08-29 Verax Corporation Weighted collagen microsponge for immobilizing bioactive material
US4997753A (en) 1985-04-04 1991-03-05 Verax Corporation Weighted collagen microsponge for immobilizing bioactive material
US4863856A (en) 1985-04-04 1989-09-05 Verax Corporation Weighted collagen microsponge for immobilizing bioactive materials
AT382783B (de) 1985-06-20 1987-04-10 Immuno Ag Vorrichtung zur applikation eines gewebeklebstoffes
US5112750A (en) 1985-06-25 1992-05-12 Asama Chemical Co., Ltd. Immobilized cells and culture method utilizing the same
US4851521A (en) 1985-07-08 1989-07-25 Fidia, S.P.A. Esters of hyaluronic acid
US5007916A (en) 1985-08-22 1991-04-16 Johnson & Johnson Medical, Inc. Method and material for prevention of surgical adhesions
JPS6270318A (ja) 1985-09-25 1987-03-31 Nippon Kayaku Co Ltd 止血及び創傷保護剤
US4696812A (en) 1985-10-28 1987-09-29 Warner-Lambert Company Thrombin preparations
US20020192271A1 (en) 1985-11-26 2002-12-19 Hedner Ulla Karin Elisabeth Method for causing local hemostasis and hemostatic composition for local hemostasis
US5180583A (en) 1985-11-26 1993-01-19 Hedner Ulla K E Method for the treatment of bleeding disorders
IE59361B1 (en) 1986-01-24 1994-02-09 Akzo Nv Pharmaceutical preparation for obtaining a highly viscous hydrogel or suspension
JPS62221357A (ja) 1986-03-20 1987-09-29 ジエクス株式会社 生物体表面への塗布剤
IL78826A (en) 1986-05-19 1991-05-12 Yissum Res Dev Co Precursor composition for the preparation of a biodegradable implant for the sustained release of an active material and such implants prepared therefrom
US4946870A (en) 1986-06-06 1990-08-07 Union Carbide Chemicals And Plastics Company Inc. Delivery systems for pharmaceutical or therapeutic actives
US5300494A (en) 1986-06-06 1994-04-05 Union Carbide Chemicals & Plastics Technology Corporation Delivery systems for quaternary and related compounds
US4832686A (en) 1986-06-24 1989-05-23 Anderson Mark E Method for administering interleukin-2
US4803075A (en) 1986-06-25 1989-02-07 Collagen Corporation Injectable implant composition having improved intrudability
US4702737A (en) 1986-07-14 1987-10-27 Pizzino Joanne L Dual dose syringe
US4743229A (en) 1986-09-29 1988-05-10 Collagen Corporation Collagen/mineral mixing device and method
US4965203A (en) 1987-01-28 1990-10-23 Warner-Lambert Company Purified thrombin preparations
US4885161A (en) 1987-03-11 1989-12-05 Medi-Tech International Corporation Wound dressings in gelled paste form
CA1305069C (en) 1987-03-11 1992-07-14 John Cornell Wound dressings in sheet or gelled paste form
US5080893A (en) 1988-05-31 1992-01-14 University Of Florida Method for preventing surgical adhesions using a dilute solution of polymer
US5690954A (en) 1987-05-22 1997-11-25 Danbiosyst Uk Limited Enhanced uptake drug delivery system having microspheres containing an active drug and a bioavailability improving material
US4887743A (en) 1987-06-10 1989-12-19 Blake William S Aerosol valve
US4752466A (en) 1987-08-31 1988-06-21 Johnson & Johnson Products, Inc. Thrombin aerosol
US5017229A (en) 1990-06-25 1991-05-21 Genzyme Corporation Water insoluble derivatives of hyaluronic acid
JPS6485653A (en) 1987-09-28 1989-03-30 Terumo Corp Drug receiving container
JPH01130519A (ja) 1987-11-16 1989-05-23 Mitsubishi Electric Corp Mocvd結晶成長装置
EP0341007B1 (en) 1988-05-02 1994-09-14 Project Hear Surgical adhesive material
IT1219587B (it) 1988-05-13 1990-05-18 Fidia Farmaceutici Polisaccaridi carbossiilici autoreticolati
US4936835A (en) 1988-05-26 1990-06-26 Haaga John R Medical needle with bioabsorbable tip
US5350573A (en) 1988-05-31 1994-09-27 University Of Florida Research Foundation, Inc. Method and composition for preventing surgical adhesions
US5140016A (en) 1988-05-31 1992-08-18 University Of Florida Method and composition for preventing surgical adhesions using a dilute solution of polymer
US5024841A (en) 1988-06-30 1991-06-18 Collagen Corporation Collagen wound healing matrices and process for their production
US5447966A (en) 1988-07-19 1995-09-05 United States Surgical Corporation Treating bioabsorbable surgical articles by coating with glycerine, polalkyleneoxide block copolymer and gelatin
US4920158A (en) 1989-10-11 1990-04-24 Medipro Sciences Limited Hydrogel-forming wound dressing or skin coating material
BG51589A1 (en) 1988-08-26 1993-07-15 Bg Min Na Narodnata Otbrana Method for the production of haemostatic layer material
US4925677A (en) 1988-08-31 1990-05-15 Theratech, Inc. Biodegradable hydrogel matrices for the controlled release of pharmacologically active agents
US5041292A (en) 1988-08-31 1991-08-20 Theratech, Inc. Biodegradable hydrogel matrices for the controlled release of pharmacologically active agents
EP0365705A1 (de) 1988-10-26 1990-05-02 Zentralna Problemna Laboratoria Po Kryobiologia I Lyophilisazia Biopräparat zur Behandlung von Wunden
US5126141A (en) 1988-11-16 1992-06-30 Mediventures Incorporated Composition and method for post-surgical adhesion reduction with thermo-irreversible gels of polyoxyalkylene polymers and ionic polysaccharides
US5135751A (en) 1988-11-16 1992-08-04 Mediventures Incorporated Composition for reducing postsurgical adhesions
US5510418A (en) 1988-11-21 1996-04-23 Collagen Corporation Glycosaminoglycan-synthetic polymer conjugates
US5162430A (en) 1988-11-21 1992-11-10 Collagen Corporation Collagen-polymer conjugates
US5614587A (en) 1988-11-21 1997-03-25 Collagen Corporation Collagen-based bioadhesive compositions
US4891359A (en) 1988-12-08 1990-01-02 Johnson & Johnson Patient Care, Inc. Hemostatic collagen paste composition
US4948575A (en) 1989-01-24 1990-08-14 Minnesota Mining And Manufacturing Company Alginate hydrogel foam wound dressing
DE3903672C1 (pt) 1989-02-08 1990-02-01 Lohmann Gmbh & Co Kg
US5062834A (en) 1989-02-24 1991-11-05 Product Development (S.G.Z.) Ltd Device for dispensing a liquid particularly useful for delivering medicaments at a predetermined rate
DK223389D0 (da) 1989-05-05 1989-05-05 Ferrosan As Saarsvamp
US5356883A (en) 1989-08-01 1994-10-18 Research Foundation Of State University Of N.Y. Water-insoluble derivatives of hyaluronic acid and their methods of preparation and use
JPH05501814A (ja) 1989-08-10 1993-04-08 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド 組織接着剤成分の医療用送り出しシステム
US5196185A (en) 1989-09-11 1993-03-23 Micro-Collagen Pharmaceutics, Ltd. Collagen-based wound dressing and method for applying same
FR2652573B1 (fr) 1989-10-03 1991-12-13 Atochem Procede de fabrication du 1,1,1-chlorodifluoroethane.
US5061274A (en) 1989-12-04 1991-10-29 Kensey Nash Corporation Plug device for sealing openings and method of use
US5350581A (en) 1989-12-14 1994-09-27 Pharmetrix Corporation Method for manufacturing transdermal devices
US5281528A (en) 1989-12-18 1994-01-25 Warner-Lambert Company Process for purified thromboplastin for ultra-pure thrombin preparation
US5219328A (en) 1990-01-03 1993-06-15 Cryolife, Inc. Fibrin sealant delivery method
US5134229A (en) 1990-01-12 1992-07-28 Johnson & Johnson Medical, Inc. Process for preparing a neutralized oxidized cellulose product and its method of use
US4982769A (en) 1990-02-21 1991-01-08 Survival Technology, Inc. Package
JPH0813750B2 (ja) 1990-03-01 1996-02-14 持田製薬株式会社 経口用トロンビン製剤
US5306501A (en) 1990-05-01 1994-04-26 Mediventures, Inc. Drug delivery by injection with thermoreversible gels containing polyoxyalkylene copolymers
US5595735A (en) 1990-05-23 1997-01-21 Johnson & Johnson Medical, Inc. Hemostatic thrombin paste composition
US5634943A (en) 1990-07-12 1997-06-03 University Of Miami Injectable polyethylene oxide gel implant and method for production
US5209776A (en) 1990-07-27 1993-05-11 The Trustees Of Columbia University In The City Of New York Tissue bonding and sealing composition and method of using the same
US5292362A (en) 1990-07-27 1994-03-08 The Trustees Of Columbia University In The City Of New York Tissue bonding and sealing composition and method of using the same
US5192300A (en) 1990-10-01 1993-03-09 Quinton Instrument Company Insertion assembly and method of inserting a vessel plug into the body of a patient
US5108421A (en) 1990-10-01 1992-04-28 Quinton Instrument Company Insertion assembly and method of inserting a vessel plug into the body of a patient
DE59005286D1 (de) 1990-10-04 1994-05-11 Kallies Import Export Vertrieb Stabilisiertes Thrombin, seine Herstellung und seine Verwendung als Thrombinzeitreagens.
ZA918168B (en) 1990-10-16 1993-04-14 Takeda Chemical Industries Ltd Prolonged release preparation and polymers thereof.
RU1805876C (ru) 1990-12-26 1993-03-30 И.Ю.Алексан н, А,А.Буйное и Е.Д.Кром- ский Способ получени сухих томатных продуктов
US5129882A (en) 1990-12-27 1992-07-14 Novoste Corporation Wound clotting device and method of using same
US6391343B1 (en) 1991-01-15 2002-05-21 Hemosphere, Inc. Fibrinogen-coated particles for therapeutic use
US5749895A (en) 1991-02-13 1998-05-12 Fusion Medical Technologies, Inc. Method for bonding or fusion of biological tissue and material
US5669934A (en) 1991-02-13 1997-09-23 Fusion Medical Technologies, Inc. Methods for joining tissue by applying radiofrequency energy to performed collagen films and sheets
US5690675A (en) 1991-02-13 1997-11-25 Fusion Medical Technologies, Inc. Methods for sealing of staples and other fasteners in tissue
AU1444292A (en) 1991-02-13 1992-09-15 Interface Biomedical Laboratories Corp. Filler material for use in tissue welding
EP0525132B1 (en) 1991-02-14 1996-01-03 Baxter International Inc. Binding of recognizing substances to liposomes
US5605938A (en) 1991-05-31 1997-02-25 Gliatech, Inc. Methods and compositions for inhibition of cell invasion and fibrosis using dextran sulfate
DE4119140C2 (de) 1991-06-11 1994-05-11 Merz & Co Gmbh & Co Poröser, in Körperflüssigkeiten und Sekreten löslicher, spongoider Formkörper, dessen Herstellung und Verwendung
WO1992022304A1 (en) 1991-06-14 1992-12-23 Amgen Inc. Collagen film drug delivery for proteins
NL9101051A (nl) 1991-06-18 1993-01-18 Ashridge Ag Sluitinrichting voor een bloedvat of dergelijke.
FR2679772B1 (fr) 1991-08-02 1995-05-19 Peters Sa Emboles en particules non resorbables enrobees de materiau hemostatique.
IT1251151B (it) 1991-08-05 1995-05-04 Fidia Spa Materiale spugnoso essenzialmente costituito da acido ialuronico,o suoi derivati
EP0625894A1 (en) 1991-10-09 1994-11-30 LecTec Corporation Aqueous gel wound dressing and package
US6620436B1 (en) 1991-10-09 2003-09-16 Lectec Corporation Mixing and dispensing package for a wound dressing
WO1993006855A1 (en) 1991-10-11 1993-04-15 Novo Nordisk A/S Hemostatic composition for local hemostasis
AT398079B (de) 1991-11-04 1994-09-26 Immuno Ag Präparation mit thrombinaktivität sowie verfahren zu ihrer herstellung
AU671965B2 (en) 1991-12-05 1996-09-19 Alfatec-Pharma Gmbh Pharmaceutically Applicable Nanosol and Process for Preparing The Same
US5468505A (en) 1992-02-28 1995-11-21 Board Of Regents, The University Of Texas System Local delivery of fibrinolysis enhancing agents
US5204382A (en) 1992-02-28 1993-04-20 Collagen Corporation Injectable ceramic compositions and methods for their preparation and use
JP3267972B2 (ja) 1992-02-28 2002-03-25 コラーゲン コーポレイション 高濃度均質化コラーゲン組成物
WO1993016657A1 (en) 1992-02-28 1993-09-02 Collagen Corporation Injectable ceramic compositions and methods for their preparation and use
US5384333A (en) 1992-03-17 1995-01-24 University Of Miami Biodegradable injectable drug delivery polymer
GB2266239B (en) 1992-03-25 1996-03-06 Jevco Ltd Wound healing compositions containing chondroitin sulphate oligosaccharides
GB9206509D0 (en) 1992-03-25 1992-05-06 Jevco Ltd Heteromorphic sponges containing active agents
JPH07506991A (ja) 1992-04-23 1995-08-03 シメッド ライフ システムズ インコーポレイテッド 血管穿刺を密封するための装置及び方法
IL105529A0 (en) 1992-05-01 1993-08-18 Amgen Inc Collagen-containing sponges as drug delivery for proteins
JPH05308969A (ja) 1992-05-13 1993-11-22 Japan Vilene Co Ltd 酵素保持体及びその製造方法
WO1993024476A1 (en) 1992-06-04 1993-12-09 Clover Consolidated, Limited Water-soluble polymeric carriers for drug delivery
US5547376A (en) 1992-06-18 1996-08-20 Harrel; Stephen K. Methods and apparatus for containing and recovering abrasive powders from an abrasive polisher
US5385606A (en) 1992-07-06 1995-01-31 Kowanko; Nicholas Adhesive composition and method
US5413571A (en) 1992-07-16 1995-05-09 Sherwood Medical Company Device for sealing hemostatic incisions
US5443481A (en) 1992-07-27 1995-08-22 Lee; Benjamin I. Methods and device for percutaneous sealing of arterial puncture sites
US5428022A (en) 1992-07-29 1995-06-27 Collagen Corporation Composition of low type III content human placental collagen
US5514379A (en) 1992-08-07 1996-05-07 The General Hospital Corporation Hydrogel compositions and methods of use
DE4227681C2 (de) 1992-08-21 1995-05-18 Becker & Co Naturinwerk Wundabdeckungsmaterial auf der Basis von Kollagenfasern und Verfahren zu seiner Herstellung
WO1994006460A1 (en) 1992-09-21 1994-03-31 Vitaphore Corporation Embolization plugs for blood vessels
SK279327B6 (sk) 1992-10-19 1998-10-07 Dura Pharmaceuticals Zariadenie na vytváranie aerosolu z práškového lie
CA2149221C (en) 1992-11-12 2005-02-08 Neville Alleyne Cardiac protection device
US5334216A (en) 1992-12-10 1994-08-02 Howmedica Inc. Hemostatic plug
US5688485A (en) * 1992-12-31 1997-11-18 The Dupont Merck Pharmaceutical Company Radiolabelled complexes of ester-substituted diaminethiols
US5667839A (en) 1993-01-28 1997-09-16 Collagen Corporation Human recombinant collagen in the milk of transgenic animals
IT1263144B (it) 1993-02-04 1996-08-01 Lanfranco Callegaro Composizioni farmaceutiche comprendenti materiale spugnoso costituito da derivati esterei dell'acido ialuronico in associazione con altre sostanze farmacologicamente attive
JPH08131B2 (ja) 1993-03-05 1996-01-10 新田ゼラチン株式会社 止血用パッド
JP2950520B2 (ja) 1993-04-02 1999-09-20 アンティキャンサー インコーポレーテド 毛胞に有益な配合物を送達する方法
US5951531A (en) 1993-04-20 1999-09-14 Medchem Products, Inc. Apparatus and method for applying a particulate hemostatic agent to living tissue
US5723308A (en) 1993-05-14 1998-03-03 Minnesota Mining And Manufacturing Company Culture medium for rapid count of coliform bacteria
US5951583A (en) 1993-05-25 1999-09-14 Vascular Solutions, Inc. Thrombin and collagen procoagulant and process for making the same
JP3639593B2 (ja) 1993-05-31 2005-04-20 科研製薬株式会社 塩基性線維芽細胞増殖因子含有架橋ゼラチンゲル製剤
US5387208A (en) 1993-07-26 1995-02-07 The Procter & Gamble Co. Absorbent core having improved dry/wet integrity
US5798091A (en) 1993-07-30 1998-08-25 Alliance Pharmaceutical Corp. Stabilized gas emulsion containing phospholipid for ultrasound contrast enhancement
US6861046B1 (en) 1993-08-18 2005-03-01 Dow Corning France Device for dispensing a therapeutic or cosmetic substance onto the skin and a method of skin treatment
US5394886A (en) 1993-09-20 1995-03-07 Nabai; Hossein Skin biopsy plug and method
JPH0790241A (ja) 1993-09-22 1995-04-04 Menicon Co Ltd 眼用レンズ材料用仮接着剤
JPH09504719A (ja) 1993-11-03 1997-05-13 クラリオン、ファーマシューティカルズ、インコーポレイテッド 止血パッチ
EP0691400B1 (en) 1993-12-30 2002-03-06 Nitta Gelatin Inc. Process for embedding culture of animal cells
FR2715309B1 (fr) 1994-01-24 1996-08-02 Imedex Composition adhésive, à usage chirurgical, à base de collagène modifié par coupure oxydative et non réticulé.
US5441491A (en) 1994-02-04 1995-08-15 Verschoor; Jacob Method and composition for treating biopsy wounds
DE4407875C2 (de) 1994-03-04 1996-04-04 Ankerpharm Gmbh Ankerwerk Rudo Medizinischer Schwamm aus biologisch resorbierbaren Materialien, Verfahren und Vorrichtung zu dessen Herstellung
AU695266B2 (en) 1994-03-18 1998-08-13 Baxter International Inc. Topical fibrinogen complex
ITPD940054A1 (it) 1994-03-23 1995-09-23 Fidia Advanced Biopolymers Srl Polisaccaridi solfatati
US5674275A (en) 1994-04-06 1997-10-07 Graphic Controls Corporation Polyacrylate and polymethacrylate ester based hydrogel adhesives
US5531759A (en) 1994-04-29 1996-07-02 Kensey Nash Corporation System for closing a percutaneous puncture formed by a trocar to prevent tissue at the puncture from herniating
CA2146090C (en) 1994-05-10 1998-11-24 Mark E. Mitchell Apparatus and method of mixing materials in a sterile environment
JP3107726B2 (ja) 1994-05-13 2000-11-13 株式会社クラレ 水膨潤性高分子ゲル
WO1995031223A1 (fr) 1994-05-13 1995-11-23 Kuraray Co., Ltd. Gel polymere a usage medical
EP0760644B1 (en) 1994-05-23 1998-07-22 The Liposome Company, Inc. Formulation preparation device
US5462860A (en) 1994-06-06 1995-10-31 Minnesota Mining And Manufacturing Company Conditioned culture medium for rapid growth and detection of microbes
GB9415739D0 (en) 1994-07-30 1994-09-21 Scimat Ltd Gel wound dressing
US5599735A (en) 1994-08-01 1997-02-04 Texas Instruments Incorporated Method for doped shallow junction formation using direct gas-phase doping
US5516532A (en) 1994-08-05 1996-05-14 Children's Medical Center Corporation Injectable non-immunogenic cartilage and bone preparation
US5588745A (en) 1994-09-02 1996-12-31 Howmedica Methods and apparatus for mixing bone cement components using an evacuated mixing chamber
US5931165A (en) 1994-09-06 1999-08-03 Fusion Medical Technologies, Inc. Films having improved characteristics and methods for their preparation and use
JP2858087B2 (ja) 1994-09-19 1999-02-17 グンゼ株式会社 組織培養用基材及び組織培養法
AU1287895A (en) 1994-10-03 1996-04-26 Otogen Corporation Differentially biodegradable biomedical implants
FR2726571B1 (fr) 1994-11-03 1997-08-08 Izoret Georges Colle biologique, procede de preparation et dispositif d'application pour colle biologique, et durcisseurs pour colle biologique
US5660854A (en) 1994-11-28 1997-08-26 Haynes; Duncan H Drug releasing surgical implant or dressing material
US5804203A (en) 1994-12-21 1998-09-08 Cosmederm Technologies Topical product formulations containing strontium for reducing skin irritation
EP0804257B1 (en) 1995-01-16 2003-07-09 Baxter International Inc. Self-supporting sheet-like material of cross-linked fibrin for preventing post operative adhesions
US20030039695A1 (en) 2001-08-10 2003-02-27 Ed. Geistlich Soehne Ag Fuer Chemische Industrie Collagen carrier of therapeutic genetic material, and method
US5698213A (en) 1995-03-06 1997-12-16 Ethicon, Inc. Hydrogels of absorbable polyoxaesters
US5580923A (en) 1995-03-14 1996-12-03 Collagen Corporation Anti-adhesion films and compositions for medical use
US5876372A (en) 1995-03-22 1999-03-02 Abbott Laboratories Syringe system accomodating seperate prefilled barrels for two constituents
US5779668A (en) * 1995-03-29 1998-07-14 Abbott Laboratories Syringe barrel for lyophilization, reconstitution and administration
DE19513666C1 (de) 1995-04-11 1996-11-28 Behringwerke Ag Vorrichtung zum Zusammenführen einer ersten flüssigen und einer zweiten festen oder flüssigen Komponente mittels Unterdruck unter sterilen Bedingungen
JP3799626B2 (ja) 1995-04-25 2006-07-19 有限会社ナイセム 心臓血管修復材及びその製造方法
US5677284A (en) 1995-06-06 1997-10-14 Regen Biologics, Inc. Charged collagen particle-based delivery matrix
AU5638096A (en) 1995-06-07 1996-12-30 Clarion Pharmaceuticals, Inc. Non-biological patch for hemostasis
US6129761A (en) 1995-06-07 2000-10-10 Reprogenesis, Inc. Injectable hydrogel compositions
DE19521324C1 (de) 1995-06-12 1996-10-31 Immuno Ag Gewebeklebstoff und Verwendung desselben als Hämostyptikum
BG99900A (en) 1995-09-04 1997-03-31 Bildireva Absorbent sponge of haemostatic application and method for its preparation
WO1997013461A1 (en) 1995-10-11 1997-04-17 Fusion Medical Technologies, Inc. Device and method for sealing tissue
WO1997017025A1 (en) 1995-11-07 1997-05-15 Fusion Medical Technologies, Inc. Methods and articles for fusing matrix layers containing non-collagenous proteins to tissue
EP0865255A1 (en) 1995-11-07 1998-09-23 Fusion Medical Technologies, Inc. Methods and articles for fusing polysaccharide-containing matrix layers to tissue
AU7723396A (en) 1995-11-07 1997-05-29 Fusion Medical Technologies, Inc. Methods and articles for fusing matrix layers containing non-biologic polymers to tissue
US6464111B2 (en) 1995-11-13 2002-10-15 L'oreal Dispenser containing a product and dispensing method
US5752974A (en) 1995-12-18 1998-05-19 Collagen Corporation Injectable or implantable biomaterials for filling or blocking lumens and voids of the body
US6458889B1 (en) 1995-12-18 2002-10-01 Cohesion Technologies, Inc. Compositions and systems for forming crosslinked biomaterials and associated methods of preparation and use
PT2111876E (pt) 1995-12-18 2011-12-23 Angiodevice Internat Gmbh Composições de polímero reticulado e seus métodos de utilização
US5748318A (en) 1996-01-23 1998-05-05 Brown University Research Foundation Optical stress generator and detector
EP0885020A1 (en) 1996-02-20 1998-12-23 Cohesion Corporation Tissue sealant compositions and methods of use thereof
US5782917A (en) 1996-02-26 1998-07-21 Sunmed, Inc. Intramedullary bone plug
DK0796623T3 (da) 1996-03-20 2005-08-01 Baxter Ag Farmaceutisk præparat til behandling af blodkoagulationslidelser
HUP9903586A3 (en) 1996-04-04 2003-02-28 Baxter Ag Hemostatic sponge based on collagen
US5948427A (en) 1996-04-25 1999-09-07 Point Medical Corporation Microparticulate surgical adhesive
EP0914168A1 (en) 1996-05-03 1999-05-12 Innogenetics N.V. New medicaments containing gelatin cross-linked with oxidized polysaccharides
EP0914096B1 (en) 1996-05-17 2003-08-13 Elan Drug Delivery Limited Microparticles and their use in wound therapy
FR2749759B1 (fr) 1996-06-17 1999-11-26 Adir Utilisation de sels de strontium pour l'obtention de compositions pharmaceutiques destinees au traitement de l'arthrose
US5791352A (en) 1996-06-19 1998-08-11 Fusion Medical Technologies, Inc. Methods and compositions for inhibiting tissue adhesion
EP0917444A1 (en) 1996-07-12 1999-05-26 Baxter Travenol Laboratories, Inc. A fibrin delivery device and method for forming fibrin on a surface
US5902832A (en) 1996-08-20 1999-05-11 Menlo Care, Inc. Method of synthesizing swollen hydrogel for sphincter augmentation
US7320962B2 (en) 1996-08-27 2008-01-22 Baxter International Inc. Hemoactive compositions and methods for their manufacture and use
US8603511B2 (en) 1996-08-27 2013-12-10 Baxter International, Inc. Fragmented polymeric compositions and methods for their use
US6706690B2 (en) 1999-06-10 2004-03-16 Baxter Healthcare Corporation Hemoactive compositions and methods for their manufacture and use
US8303981B2 (en) 1996-08-27 2012-11-06 Baxter International Inc. Fragmented polymeric compositions and methods for their use
US7871637B2 (en) 1996-08-27 2011-01-18 Baxter International Inc. Dry hemostatic compositions and methods for their preparation
US7435425B2 (en) 2001-07-17 2008-10-14 Baxter International, Inc. Dry hemostatic compositions and methods for their preparation
US6063061A (en) 1996-08-27 2000-05-16 Fusion Medical Technologies, Inc. Fragmented polymeric compositions and methods for their use
CA2211629A1 (en) 1996-09-17 1998-03-17 Bernard Sams Vial connector assembly for a medicament container
WO1998012274A1 (en) 1996-09-23 1998-03-26 Chandrashekar Pathak Methods and devices for preparing protein concentrates
US5795330A (en) 1996-10-10 1998-08-18 Etex Corporation Mixing device
US7341598B2 (en) 1999-01-13 2008-03-11 Boston Scientific Scimed, Inc. Stent with protruding branch portion for bifurcated vessels
US5863496A (en) 1996-11-25 1999-01-26 Prepared Media Laboratory, Inc. Sterile packaging
AU716137B2 (en) 1997-01-16 2000-02-17 Cohesion Corporation Lyophilized collagen-based biomaterials, process of preparation and uses thereof
US6045570A (en) 1997-02-11 2000-04-04 Biointerventional Corporation Biological sealant mixture and system for use in percutaneous occlusion of puncture sites and tracts in the human body and method
US5782860A (en) 1997-02-11 1998-07-21 Biointerventional Corporation Closure device for percutaneous occlusion of puncture sites and tracts in the human body and method
US6193670B1 (en) 1997-02-14 2001-02-27 Tricardia, Llc Hemostatic agent delivery device having built-in pressure sensor
US5905029A (en) 1997-02-19 1999-05-18 Fritz Berthold Method for rapid hygiene testing
KR100526913B1 (ko) 1997-02-20 2005-11-09 쿡 인코포레이티드 코팅된 이식가능한 의료 장치
FR2759980A1 (fr) 1997-02-25 1998-08-28 Bras Michel Conditionnement de deux substances destinees a etre melangees
US5965377A (en) 1997-03-24 1999-10-12 Baystate Medical Center Method for determining the presence of mutated BRCA protein
US5939259A (en) 1997-04-09 1999-08-17 Schleicher & Schuell, Inc. Methods and devices for collecting and storing clinical samples for genetic analysis
US6117444A (en) 1997-04-10 2000-09-12 Brigham & Women's Hospital Polyethylene glycol/microfibrillar collagen composite serves as a resorbable hemostatic agent
US6716435B1 (en) 1997-04-18 2004-04-06 Ganeden Biotech, Inc. Absorbent product containing absorbent structure and Bacillus coagulans
US20020039594A1 (en) 1997-05-13 2002-04-04 Evan C. Unger Solid porous matrices and methods of making and using the same
DE69830166T2 (de) 1997-06-03 2006-01-26 Innogenetics N.V. Neue arzneimittel auf der basis von polymeren aus mit methacrylamid modifizierter gelatine
US5908054A (en) 1997-06-16 1999-06-01 Fusion Medical Technologies, Inc. Fluid dispersion and delivery assembly and method
US5957166A (en) 1997-06-16 1999-09-28 Fusion Medical Technologies, Inc. Method and apparatus for dispersing fluid into a material
US6096309A (en) 1997-06-18 2000-08-01 Cohesion Technologies, Inc. Compositions containing thrombin and microfibrillar nanometer collagen, and methods for preparation and use thereof
IT1294797B1 (it) 1997-07-28 1999-04-15 Fidia Advanced Biopolymers Srl Uso dei derivati dell'acido ialuronico nella preparazione di biomateriali aventi attivita' emostatica fisica e tamponante
US6042262A (en) 1997-07-29 2000-03-28 Stryker Technologies Corportion Apparatus for storing, mixing, and dispensing two-component bone cement
ZA987019B (en) 1997-08-06 1999-06-04 Focal Inc Hemostatic tissue sealants
EP1005874B1 (en) 1997-08-22 2005-05-18 Denki Kagaku Kogyo Kabushiki Kaisha Hyaluronic acid gel, process for producing the same and medical material containing the same
WO1999012032A1 (en) 1997-09-04 1999-03-11 Pharmacia & Upjohn Company A method for the evaluation of antiviral drugs
US5997895A (en) 1997-09-16 1999-12-07 Integra Lifesciences Corporation Dural/meningeal repair product using collagen matrix
EP1017415B1 (en) 1997-09-16 2005-10-19 Integra Lifesciences Corporation Product for promoting dural or meningeal tissue growth comprising collagen
US6168788B1 (en) 1997-09-26 2001-01-02 Leon Wortham Fibrin glue without fibrinogen and biosealant compositions and methods
GB2329840C (en) 1997-10-03 2007-10-05 Johnson & Johnson Medical Biopolymer sponge tubes
US6303323B1 (en) 1997-10-21 2001-10-16 Cancer Research Campaign Technology Limited Detection of dysplastic or neoplastic cells using anti-MCM5 antibodies
GB9727102D0 (en) 1997-12-22 1998-02-25 Andaris Ltd Microparticles and their therapeutic use
JP3483753B2 (ja) 1997-12-29 2004-01-06 タキロン株式会社 生体内分解吸収性可塑性粘着物
US6099952A (en) 1998-02-18 2000-08-08 Xomed Surgical Products, Inc. Medical sponge having mucopolysaccharide coating
DE69936982T2 (de) 1998-03-06 2008-05-15 Baxter International Inc., Deerfield Turbulenz-mischkopf für gewebeklebstoff-applikator und sprühkopf für selbigen
AUPP223498A0 (en) 1998-03-06 1998-04-02 Southcorp Australia Pty Ltd A container
EP1061931A2 (en) 1998-03-10 2000-12-27 Baxter International Inc. Thrombin preparation and products and fibrin sealant methods employing same
US6179872B1 (en) 1998-03-17 2001-01-30 Tissue Engineering Biopolymer matt for use in tissue repair and reconstruction
US20020025921A1 (en) 1999-07-26 2002-02-28 Petito George D. Composition and method for growing, protecting, and healing tissues and cells
JP4533531B2 (ja) 1998-04-03 2010-09-01 ビーエム リサーチ エイ/エス 制御放出組成物
US20020061842A1 (en) 1998-04-10 2002-05-23 Octapharma Ag Method for sterilizing a native collagen in liquid medium, sterile native collagen obtained, compositions containing it and uses
US6200328B1 (en) 1998-05-01 2001-03-13 Sub Q, Incorporated Device and method for facilitating hemostasis of a biopsy tract
US6056970A (en) 1998-05-07 2000-05-02 Genzyme Corporation Compositions comprising hemostatic compounds and bioabsorbable polymers
ITPD980169A1 (it) 1998-07-06 2000-01-06 Fidia Advanced Biopolymers Srl Ammidi dell'acido ialuronico e dei suoi derivati e processo per la loro preparazione.
US6334865B1 (en) 1998-08-04 2002-01-01 Fusion Medical Technologies, Inc. Percutaneous tissue track closure assembly and method
JP2003521270A (ja) 1998-08-04 2003-07-15 フュージョン メディカル テクノロジーズ, インコーポレイテッド 経皮組織路閉塞アセンブリおよび方法
US6613070B2 (en) 1998-08-04 2003-09-02 Baxter International Inc. System and method for sealing vascular penetrations with hemostatic gels
US6274090B1 (en) 1998-08-05 2001-08-14 Thermogenesis Corp. Apparatus and method of preparation of stable, long term thrombin from plasma and thrombin formed thereby
US20020015724A1 (en) 1998-08-10 2002-02-07 Chunlin Yang Collagen type i and type iii hemostatic compositions for use as a vascular sealant and wound dressing
CA2339575A1 (en) 1998-08-10 2000-02-24 James W. Polarek Collagen type i and type iii hemostatic compositions for use as a vascular sealant and wound dressing
WO2000027327A1 (en) 1998-11-12 2000-05-18 Polymer Biosciences, Inc. Hemostatic polymer useful for rapid blood coagulation and hemostasis
US6110484A (en) 1998-11-24 2000-08-29 Cohesion Technologies, Inc. Collagen-polymer matrices with differential biodegradability
US6361551B1 (en) 1998-12-11 2002-03-26 C. R. Bard, Inc. Collagen hemostatic fibers
US6454787B1 (en) 1998-12-11 2002-09-24 C. R. Bard, Inc. Collagen hemostatic foam
US6328229B1 (en) 1998-12-18 2001-12-11 Cohesion Technologies, Inc. Low volume mixing spray head for mixing and dispensing of two reactive fluid components
CA2363916C (en) 1998-12-23 2010-12-07 Aventis Behring Gmbh Fibrin adhesive granulate and method for its preparation
US6283933B1 (en) 1998-12-23 2001-09-04 Closure Medical Corporation Applicator for dispensable liquids
US6977231B1 (en) 1999-01-21 2005-12-20 Nipro Corporation Suturable adhesion-preventing membrane
US6862470B2 (en) 1999-02-02 2005-03-01 Senorx, Inc. Cavity-filling biopsy site markers
EP1174463A4 (en) 1999-02-19 2008-04-16 Denki Kagaku Kogyo Kk HYALURONIC ACID-BASED GELIFIED COMPOSITION, PROCESS FOR THE PRODUCTION THEREOF, AND MEDICAL MATERIAL CONTAINING THE SAME
AU780367B2 (en) 1999-04-14 2005-03-17 Ganeden Biotech, Inc. Methods for inhibiting microbial infections associated with sanitary products
US6312725B1 (en) 1999-04-16 2001-11-06 Cohesion Technologies, Inc. Rapid gelling biocompatible polymer composition
EP1053758A1 (de) 1999-05-19 2000-11-22 Resorba Chirurgisches Nahtmaterial Franz Hiltner GmbH & Co. Bioabsorbierbares Implantat
US6544541B1 (en) 1999-06-02 2003-04-08 Cardiovascular Solutions, Inc. Devices and compounds for treating arterial restenosis
US6472162B1 (en) 1999-06-04 2002-10-29 Thermogenesis Corp. Method for preparing thrombin for use in a biological glue
US20020019062A1 (en) 1999-06-18 2002-02-14 Peter Lea Assay devices
ATE270558T1 (de) 1999-08-26 2004-07-15 Ganeden Biotech Inc Verwendung von emu-öl als träger für fungizide, antibakterielle und antivirale arzneien
WO2001016210A1 (en) 1999-08-27 2001-03-08 Cohesion Technologies, Inc. Compositions that form interpenetrating polymer networks for use as high strength medical sealants
US6221109B1 (en) 1999-09-15 2001-04-24 Ed. Geistlich Söhne AG fur Chemische Industrie Method of protecting spinal area
US6312474B1 (en) 1999-09-15 2001-11-06 Bio-Vascular, Inc. Resorbable implant materials
ES2233469T3 (es) 1999-10-15 2005-06-16 Genetics Institute, Llc Formulaciones para la administracion de proteinas osteogenicas.
JP2001199903A (ja) 1999-11-09 2001-07-24 Eizo Mori 核酸含有複合体
AU2351601A (en) 1999-12-28 2001-07-09 Asger Lau Dalmose Dual chamber syringe with a dual function piston
US20030095993A1 (en) 2000-01-28 2003-05-22 Hanne Bentz Gel-infused sponges for tissue repair and augmentation
WO2001054735A2 (en) 2000-01-28 2001-08-02 Orthogene, Inc. Gel-infused sponges for tissue repair and augmentation
IT1317832B1 (it) 2000-02-15 2003-07-15 Eurores S R L Procedimento per la preparazione di collagene micronizzato e sueapplicazioni terapeutiche.
JP2003535620A (ja) 2000-02-18 2003-12-02 リジェネレーション テクノロジーズ インク. 増殖因子および他の添加物を注入した移植用組織
US7220276B1 (en) 2000-03-06 2007-05-22 Surmodics, Inc. Endovascular graft coatings
EP1193487A4 (en) 2000-04-04 2011-10-26 Lintec Corp APPARATUS AND METHOD FOR MEASURING ADHESIVE THICKNESS
CN1114728C (zh) 2000-04-21 2003-07-16 中国石油化工集团公司 止血纤维及其制造方法
EP1149906A1 (en) 2000-04-25 2001-10-31 Pliva, Farmaceutska, Industrija, Dionicko Drustvo Thrombopoietin receptor modulating peptide
JP2003531682A (ja) 2000-04-28 2003-10-28 フジオメッド インコーポレイテッド ポリ酸及びポリアルキレンオキシドの止血性組成物、並びにその使用方法
AU2001266926A1 (en) 2000-06-16 2002-01-02 University Of Medicine And Dentistry Of New Jersey Hemostatic compositions, devices and methods
AT412445B (de) 2000-06-20 2005-03-25 Biering Wolfgang Flüssiges collagen-hämostatikum
AT411326B (de) 2000-06-20 2003-12-29 Biering Wolfgang Hämostatische collagen-pellets
US20020012982A1 (en) 2000-07-13 2002-01-31 Invitrogen Corporation Methods and compositions for rapid protein and peptide extraction and isolation using a lysis matrix
US6554903B1 (en) 2000-07-19 2003-04-29 Nylok Corporation Unitary spray nozzle
US20030032143A1 (en) 2000-07-24 2003-02-13 Neff Thomas B. Collagen type I and type III compositions for use as an adhesive and sealant
AU2001265400A1 (en) 2000-07-28 2002-02-13 Anika Therapeutics, Inc. Bioabsorbable composites of derivatized hyaluronic acid
US6890342B2 (en) 2000-08-02 2005-05-10 Loma Linda University Method and apparatus for closing vascular puncture using hemostatic material
IT1317358B1 (it) 2000-08-31 2003-06-16 Fidia Advanced Biopolymers Srl Derivati cross-linkati dell'acido ialuronico.
WO2002022059A1 (en) 2000-09-12 2002-03-21 Virginia Commonwealth University Treatment for high pressure bleeding
MXPA03002414A (es) 2000-09-18 2004-07-08 Organogenesis Inc Protesis con injerto de hoja plana tratada por bioingenieria y su uso.
US6364519B1 (en) 2000-09-26 2002-04-02 Smith & Nephew, Inc. Bone cement system
US6635272B2 (en) 2000-11-09 2003-10-21 Richard N. Leaderman Wound dressing and drug delivery system
US6458380B1 (en) 2000-11-09 2002-10-01 Richard Leaderman Dressing and preparation delivery system
US20030009194A1 (en) 2000-12-07 2003-01-09 Saker Mark B. Tissue tract sealing device
US20020082620A1 (en) 2000-12-27 2002-06-27 Elaine Lee Bioactive materials for aneurysm repair
US7041868B2 (en) 2000-12-29 2006-05-09 Kimberly-Clark Worldwide, Inc. Bioabsorbable wound dressing
US6733774B2 (en) 2001-01-25 2004-05-11 Nycomed Pharma As Carrier with solid fibrinogen and solid thrombin
SI1343542T1 (en) 2001-01-25 2005-10-31 Nycomed Pharma As Carrier with solid fibrinogen and solid thrombin
US20020164322A1 (en) 2001-01-25 2002-11-07 Alfred Schaufler Suspension comprising fibrinogen, thrombin and alcohol, a method for preparing such a suspension, a method for coating a carrier with such a suspension, a method of drying a coating of a carrier, and a coated collagen sponge
US7052713B2 (en) 2001-02-13 2006-05-30 Nycomed Pharma As Carrier with solid fibrinogen and solid thrombin
CA2438047A1 (en) 2001-02-14 2002-08-22 Hildegard M. Kramer Biocompatible fleece for hemostasis and tissue engineering
US8187625B2 (en) 2001-03-12 2012-05-29 Boston Scientific Scimed, Inc. Cross-linked gelatin composition comprising a wetting agent
US6685745B2 (en) 2001-05-15 2004-02-03 Scimed Life Systems, Inc. Delivering an agent to a patient's body
BR0102637A (pt) 2001-05-17 2003-02-25 Johnson & Johnson Ind Com Curativo adesivo
US20050271737A1 (en) 2001-06-07 2005-12-08 Chinea Vanessa I Application of a bioactive agent to a substrate
US6962715B2 (en) 2001-10-24 2005-11-08 Hewlett-Packard Development Company, L.P. Method and dosage form for dispensing a bioactive substance
US7371403B2 (en) 2002-06-14 2008-05-13 Providence Health System-Oregon Wound dressing and method for controlling severe, life-threatening bleeding
US6676987B2 (en) 2001-07-02 2004-01-13 Scimed Life Systems, Inc. Coating a medical appliance with a bubble jet printing head
US20040234602A1 (en) 2001-09-21 2004-11-25 Gina Fischer Polymer release system
DE60224293T2 (de) 2001-09-21 2008-12-11 Egalet A/S Feste dispersionen mit kontrollierter freisetzung von carvedilol
JP4668510B2 (ja) 2001-09-29 2011-04-13 持田製薬株式会社 可撓性容器入り局所止血用医薬組成物
JP4112851B2 (ja) 2001-11-27 2008-07-02 テルモ株式会社 2室型プレフィルドシリンジ
US7923431B2 (en) 2001-12-21 2011-04-12 Ferrosan Medical Devices A/S Haemostatic kit, a method of preparing a haemostatic agent and a method of promoting haemostatis
US20060189516A1 (en) 2002-02-19 2006-08-24 Industrial Technology Research Institute Method for producing cross-linked hyaluronic acid-protein bio-composites
JP4474165B2 (ja) 2002-02-20 2010-06-02 株式会社ネクスト21 噴射用薬剤の調製方法
DE60323943D1 (de) 2002-02-21 2008-11-20 Encelle Inc Immobilisierte bioaktive hydrogel matrizen für oberflächenbeschichtungen
WO2003079985A2 (en) 2002-03-18 2003-10-02 Carnegie Mellon University Method and apparatus for preparing biomimetic scaffold
US20030225378A1 (en) 2002-04-26 2003-12-04 Surgical Sealants, Inc. Mixing device for surgical sealants, and method thereof
EP1501558A1 (de) 2002-05-08 2005-02-02 Rheinisch-Westfälische Technische Hochschule Aachen (RWTH) Resorbierbare pharmazeutische formulierung zur kontinuierlichen thrombinfreisetzung
US7670623B2 (en) 2002-05-31 2010-03-02 Materials Modification, Inc. Hemostatic composition
US20050137512A1 (en) 2003-12-23 2005-06-23 Campbell Todd D. Wound dressing and method for controlling severe, life-threatening bleeding
US20040101546A1 (en) 2002-11-26 2004-05-27 Gorman Anne Jessica Hemostatic wound dressing containing aldehyde-modified polysaccharide and hemostatic agents
US20040120993A1 (en) 2002-12-20 2004-06-24 Guanghui Zhang Hemostatic wound dressing and fabric and methods of making and using same
ES2355723T3 (es) 2002-09-11 2011-03-30 Elan Pharma International Limited Composiciones de agente activo en nanopartículas estabilizadas en gel.
GB2393120A (en) 2002-09-18 2004-03-24 Johnson & Johnson Medical Ltd Compositions for wound treatment
BR0314743A (pt) 2002-09-26 2005-07-26 Angiotech Int Ag Envoltórios perivasculares
GB2393655B (en) 2002-09-27 2005-08-24 Johnson & Johnson Medical Ltd Wound treatment device
IL152030A0 (en) 2002-09-30 2003-05-29 Nvr Labs Ltd Neural & Vascular Cohesive biopolymers comprising sulfated polysaccharides and fibrillar proteins and use thereof for tissue repair
US20060258560A1 (en) 2002-09-30 2006-11-16 Chunlin Yang Dry tissue sealant compositions
GB2393656B (en) 2002-10-01 2005-11-16 Johnson & Johnson Medical Ltd Enzyme-sensitive therapeutic wound dressings
US7135027B2 (en) 2002-10-04 2006-11-14 Baxter International, Inc. Devices and methods for mixing and extruding medically useful compositions
ITPD20020271A1 (it) 2002-10-18 2004-04-19 Fidia Farmaceutici Composti chimico-farmaceutici costituiti da derivati dei taxani legati covalentemente all'acido ialuronico o ai suoi derivati.
US20040079763A1 (en) 2002-10-29 2004-04-29 Powell Cindy Hagood Duplex storage pouch
JP2004147959A (ja) 2002-10-31 2004-05-27 Nipro Corp 2成分混合型プレフィルドシリンジ
IL152574A (en) 2002-10-31 2009-09-22 Transpharma Medical Ltd A system for passing through the skin of dry items or dried medicines
US20060121080A1 (en) 2002-11-13 2006-06-08 Lye Whye K Medical devices having nanoporous layers and methods for making the same
BR0317237A (pt) 2002-12-11 2005-11-01 Ferrosan As Dispositivo para amostragem ou coleta, kit, usos de um dispositivo e de um kit, e, métodos para diminuir a quantidade de um marcador em uma área de amostra, para amostrar de modo qualitativo ou quantitativo uma área quanto ao teor de um marcador e para cultivar microorganismos ou células de mamìferos coletados
US7699804B2 (en) 2003-01-31 2010-04-20 Creare Inc. Fluid ejection system
GB0304716D0 (en) 2003-02-28 2003-04-02 Uws Ventures Ltd Method for producing partially frozen ice-water-air mixtures
US7112713B2 (en) 2003-03-12 2006-09-26 Gelsus Research And Consulting, Inc. Dressing based on the Teorell-Meyer gradient
US20040181183A1 (en) 2003-03-12 2004-09-16 Sceusa Nicholas A. Bandage based on the teorell-meyer gradient
ATE454886T1 (de) 2003-03-26 2010-01-15 Egalet As Matrixzubereitungen für die kontrollierte darreichung von arzneistoffen
US7051654B2 (en) 2003-05-30 2006-05-30 Clemson University Ink-jet printing of viable cells
ES2258255T3 (es) 2003-06-05 2006-08-16 Baxter International Inc. Composiciones destinadas a la reparacion y la regeneracion de la duramadre humana.
US8834864B2 (en) 2003-06-05 2014-09-16 Baxter International Inc. Methods for repairing and regenerating human dura mater
AU2004285406B2 (en) 2003-06-16 2010-06-17 Loma Linda University Medical Center Deployable hemostatic agent
CN1835723B (zh) 2003-06-16 2011-06-22 洛马林达大学医学中心 可展开的多功能止血剂
US7129210B2 (en) 2003-07-23 2006-10-31 Covalent Medical, Inc. Tissue adhesive sealant
US20060019868A1 (en) 2004-01-30 2006-01-26 Pendharkar Sanyog M Hemostatic compositions and devices
US7927626B2 (en) 2003-08-07 2011-04-19 Ethicon, Inc. Process of making flowable hemostatic compositions and devices containing such compositions
KR100588614B1 (ko) 2003-11-10 2006-06-13 주식회사 바이오레인 기포를 포함하는 유착방지제
EP1682196A2 (en) 2003-11-10 2006-07-26 Angiotech International Ag Medical implants and anti-scarring agents
JP2005169008A (ja) 2003-12-15 2005-06-30 Nipro Corp 生体適合性材料の滅菌方法
US20050136112A1 (en) 2003-12-19 2005-06-23 Pediamed Pharmaceuticals, Inc. Oral medicament delivery system
US7109163B2 (en) 2004-01-30 2006-09-19 Ethicon, Inc. Hemostatic compositions and devices
AR054637A1 (es) 2004-01-30 2007-07-11 Ferrosan As Aerosoles y composiciones hemostaticas
EP1602365A1 (en) 2004-03-03 2005-12-07 Switch Biotech Aktiengesellschaft Pharmaceutical composition for topical use in form of xerogels or films and methods for production
US20050218541A1 (en) 2004-04-02 2005-10-06 Peng Henry T Method of producing interpenetrating polymer network
US20050245905A1 (en) 2004-04-30 2005-11-03 Schmidt Steven P Local drug-delivery system
GB2414021A (en) 2004-05-10 2005-11-16 Johnson & Johnson Medical Ltd Absorbable haemostatic materials
DK2258349T3 (da) 2004-05-11 2014-10-13 Egalet Ltd Kvældbar doseringsform omfattende gellangummi
ES2395466T3 (es) 2004-06-22 2013-02-12 Zymogenetics, Inc. Composiciones de trombina
US7968085B2 (en) 2004-07-05 2011-06-28 Ascendis Pharma A/S Hydrogel formulations
EP1786480B1 (en) 2004-07-09 2016-09-21 Ferrosan Medical Devices A/S Haemostatic composition comprising hyaluronic acid
US20080091277A1 (en) 2004-08-13 2008-04-17 Kai Deusch Surgical prosthesis having biodegradable and nonbiodegradable regions
WO2006031358A2 (en) 2004-08-13 2006-03-23 Hyperbranch Medical Technology, Inc. Dendritic polymers, crosslinked gels, and their uses as ophthalmic sealants and lenses
WO2007011385A2 (en) 2004-09-28 2007-01-25 Atrium Medical Corporation Heat cured gel and method of making
US8361501B2 (en) 2004-09-30 2013-01-29 Covalon Technologies, Inc. Non-adhesive elastic gelatin matrices
ES2226587B1 (es) 2004-10-22 2005-12-16 Probitas Pharma, S.A. Composicion de trombina estable.
CA2590783A1 (en) 2004-12-14 2006-06-22 Fidia Advanced Biopolymers S.R.L. Process for the preparation of two and three dimensional polymer scaffolds
JP2006296896A (ja) 2005-04-22 2006-11-02 Tohoku Univ コラーゲン薄膜シート、その製造方法、それを用いた再建方法、および自己組織再生誘導型人工皮膚・粘膜
US20060255053A1 (en) 2005-05-16 2006-11-16 Empire Industrial Corp. Sealable container
AU2006254554B2 (en) 2005-06-03 2011-11-24 Egalet Ltd A solid pharmaceutical composition with a first fraction of a dispersion medium and a second fraction of a matrix, the latter being at least partially first exposed to gastrointestinal fluids
US20060282138A1 (en) 2005-06-10 2006-12-14 Ohshin Mlp Co., Ltd. Exothermic structure that is directly applied to skin
WO2007001926A2 (en) 2005-06-24 2007-01-04 Hyperbranch Medical Technology, Inc. Low-swelling hydrogel sealants for wound repair
JP4520431B2 (ja) 2005-09-06 2010-08-04 株式会社永谷園 凍結乾燥ブロック状味噌の製造方法
US20070086958A1 (en) 2005-10-14 2007-04-19 Medafor, Incorporated Formation of medically useful gels comprising microporous particles and methods of use
WO2007059144A1 (en) 2005-11-15 2007-05-24 Surmodics, Inc. Ultrasonic nozzles for applying two-component coatings
US7997304B2 (en) 2005-12-02 2011-08-16 Baxa Corporation Automated medical liquid filling system and method
US20070264130A1 (en) 2006-01-27 2007-11-15 Phluid, Inc. Infusion Pumps and Methods for Use
CN104162201A (zh) 2006-02-09 2014-11-26 德卡产品有限公司 外围系统
US9456860B2 (en) 2006-03-14 2016-10-04 Kci Licensing, Inc. Bioresorbable foaming tissue dressing
US20070250007A1 (en) 2006-04-23 2007-10-25 Nilimedix Ltd. Drug Delivery Device With Air Pressure Spring And Safety Valve
ES2623602T3 (es) 2006-05-12 2017-07-11 W. L. Gore & Associates, Inc. Entidades biológicamente activas inmovilizadas que tienen un alto grado de actividad biológica después de manipulación mecánica o esterilización
US9114194B2 (en) 2006-05-12 2015-08-25 W. L. Gore & Associates, Inc. Immobilized biologically active entities having high biological activity following mechanical manipulation
US8496953B2 (en) 2006-05-12 2013-07-30 W. L. Gore & Associates, Inc. Immobilized biologically active entities having a high degree of biological activity following sterilization
EP2040724B1 (en) 2006-05-18 2011-10-05 Biobalance Llc Biotherapeutic compositions comprising probiotic escherichia coli and metronidazole and uses thereof
MX2008014847A (es) 2006-05-31 2009-04-30 Baxter Int Metodo para crecimiento interno en la celula dirigido y regeneracion controlada de los tejidos en la cirugia espinal.
KR100751046B1 (ko) 2006-07-21 2007-08-21 이가식품(주) 수용성 키토산을 함유하는 당면의 제조방법
TWI436793B (zh) 2006-08-02 2014-05-11 Baxter Int 快速作用之乾密封膠及其使用和製造方法
US20080095830A1 (en) 2006-10-20 2008-04-24 Van Holten Robert W Method for making a dressing
US9017664B2 (en) 2006-12-15 2015-04-28 Lifebond Ltd. Gelatin-transglutaminase hemostatic dressings and sealants
US20100143447A1 (en) 2006-12-19 2010-06-10 Ferrosan A/S Wound or tissue dressing comprising lactic acid bacteria
WO2008090555A2 (en) 2007-01-22 2008-07-31 Elutex Ltd. Medical devices having a matrix adhered thereof
WO2008127497A2 (en) 2007-02-21 2008-10-23 The Regents Of The University Of California Hemostatic compositions and methods of use
US20080311172A1 (en) 2007-04-25 2008-12-18 Schapira Jay N Programmed-release, nanostructured biological construct
CA2687968C (en) 2007-06-15 2016-09-27 Zymogenetics, Inc. Stabilized thrombin compositions
WO2009020612A1 (en) 2007-08-06 2009-02-12 Stb Lifesaving Technologies, Inc. Methods and dressing for sealing internal injuries
US20090087569A1 (en) 2007-09-27 2009-04-02 Fenchem Enterprises Ltd. Methods for Preparing Highly Stable Hyaluronic Acid
CN101842122B (zh) 2007-10-30 2013-12-25 巴克斯特国际公司 再生性生物功能胶原生物基质用于治疗内脏或腔壁缺损的应用
JP5569398B2 (ja) 2008-02-29 2014-08-13 フェッローサン メディカル ディバイス エー/エス 止血および/または創傷治癒を促進するための装置
US8475812B2 (en) 2008-03-03 2013-07-02 Omrix Biopharmaceuticals Ltd. Gelatin sponge comprising an active ingredient, its preparation and use
CA2716010C (en) 2008-04-03 2019-10-01 Zymogenetics, Inc. Hemostatic microspheres
CN102083412A (zh) 2008-04-25 2011-06-01 杰伊·N·沙皮拉 编程释放的用于刺激组织再生用细胞植入的纳米结构生物构建体
US8940539B2 (en) 2008-05-14 2015-01-27 Biolyph, L.L.C. Reagent preparation and dispensing device and methods for the same
US20100048758A1 (en) 2008-08-22 2010-02-25 Boston Scientific Scimed, Inc. Lubricious coating composition for devices
DE102009004828B4 (de) 2009-01-13 2010-12-09 Lts Lohmann Therapie-Systeme Ag Injektor mit verdrängbarem Stopfenteil
JP5088342B2 (ja) 2009-03-25 2012-12-05 三菱マテリアル株式会社 多孔質焼結体の製造方法
US20100256671A1 (en) 2009-04-07 2010-10-07 Biomedica Management Corporation Tissue sealant for use in noncompressible hemorrhage
US9039783B2 (en) 2009-05-18 2015-05-26 Baxter International, Inc. Method for the improvement of mesh implant biocompatibility
PT2442835E (pt) 2009-06-16 2015-03-23 Baxter Healthcare Sa Esponja hemostática
US8429831B2 (en) 2009-09-04 2013-04-30 Abbott Cardiovascular Systems Inc. Drug-eluting coatings applied to medical devices by spraying and drying to remove solvent
US8846105B2 (en) 2010-01-08 2014-09-30 Profibrix, B.V. Dry powder fibrin sealant
JP2011212182A (ja) 2010-03-31 2011-10-27 Terumo Corp プレフィルドシリンジ
KR101957625B1 (ko) 2010-06-01 2019-03-12 백스터 인터내셔널 인코포레이티드 건조 및 안정한 지혈 조성물의 제조 방법
US9084728B2 (en) 2010-06-01 2015-07-21 Baxter International Inc. Process for making dry and stable hemostatic compositions
BR122021017027B1 (pt) 2011-04-27 2022-05-17 Biom'up France SAS Composição hemostática, método para preparar uma composição hemostática, composição e kit
CA2851338C (en) 2011-10-11 2019-11-05 Baxter International Inc. Hemostatic compositions
ES2938541T3 (es) 2011-10-11 2023-04-12 Baxter Int Composición hemostática
JP6195569B2 (ja) 2011-10-11 2017-09-13 バクスター・インターナショナル・インコーポレイテッドBaxter International Incorp0Rated 止血組成物
CA2865349C (en) 2012-03-06 2021-07-06 Ferrosan Medical Devices A/S Pressurized container containing haemostatic paste
KR102199092B1 (ko) 2012-12-07 2021-01-07 백스터 인터내셔널 인코포레이티드 지혈 폼
CN105358071B (zh) 2013-06-21 2018-07-31 弗罗桑医疗设备公司 真空膨胀的干组合物和用于保留该干组合物的注射器
CA2928963C (en) 2013-12-11 2020-10-27 Ferrosan Medical Devices A/S Dry composition comprising an extrusion enhancer
EP3237041B1 (en) 2014-12-24 2020-01-29 Ferrosan Medical Devices A/S Syringe for retaining and mixing first and second substances
BR112017027695A2 (pt) 2015-07-03 2018-09-04 Ferrosan Medical Devices As seringa para retenção e mistura de primeira e segunda substâncias
IL242984A0 (en) 2015-12-08 2016-02-29 Omrix Biopharmaceuticals Ltd Thrombin microcapsules, their preparation and how to use them

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6066325A (en) 1996-08-27 2000-05-23 Fusion Medical Technologies, Inc. Fragmented polymeric compositions and methods for their use
WO2003055531A2 (en) 2001-12-21 2003-07-10 Ferrosan A/S A hemostatic kit, a method of preparing a hemostatic agent and a method of promoting hemostasis
US20050284809A1 (en) 2004-06-29 2005-12-29 Looney Dwayne L Hemostatic compositions and devices
WO2011047753A1 (en) 2009-10-19 2011-04-28 Ferrosan Medical Devices A/S Malleable tip for agent applicator to a target site
WO2011151400A1 (en) 2010-06-01 2011-12-08 Baxter International Inc. Process for making dry and stable hemostatic compositions
WO2013060770A1 (en) 2011-10-27 2013-05-02 Baxter International Inc. Hemostatic compositions
WO2013185776A1 (en) 2012-06-12 2013-12-19 Ferrosan Medical Devices A/S Dry haemostatic composition

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11109849B2 (en) 2012-03-06 2021-09-07 Ferrosan Medical Devices A/S Pressurized container containing haemostatic paste
US9999703B2 (en) 2012-06-12 2018-06-19 Ferrosan Medical Devices A/S Dry haemostatic composition
US10799611B2 (en) 2012-06-12 2020-10-13 Ferrosan Medical Devices A/S Dry haemostatic composition
US10111980B2 (en) 2013-12-11 2018-10-30 Ferrosan Medical Devices A/S Dry composition comprising an extrusion enhancer
US11103616B2 (en) 2013-12-11 2021-08-31 Ferrosan Medical Devices A/S Dry composition comprising an extrusion enhancer
WO2016058612A1 (en) 2014-10-13 2016-04-21 Ferrosan Medical Devices A/S Dry composition for use in haemostasis and wound healing
US11046818B2 (en) 2014-10-13 2021-06-29 Ferrosan Medical Devices A/S Dry composition for use in haemostasis and wound healing
US10653837B2 (en) 2014-12-24 2020-05-19 Ferrosan Medical Devices A/S Syringe for retaining and mixing first and second substances
US10918796B2 (en) 2015-07-03 2021-02-16 Ferrosan Medical Devices A/S Syringe for mixing two components and for retaining a vacuum in a storage condition
JP2018008031A (ja) * 2016-05-25 2018-01-18 テレフレックス、ライフ、サイエンシーズ、アンリミテッド、カンパニーTeleflex Life Sciences Unlimited Company すぐに使える(ready to use)カテーテル・アセンブリの製造方法およびすぐに使えるカテーテル・アセンブリ
US11801324B2 (en) 2018-05-09 2023-10-31 Ferrosan Medical Devices A/S Method for preparing a haemostatic composition
WO2023042146A1 (en) * 2021-09-16 2023-03-23 Ethicon, Inc. Kit for composition for tissue tract sealing

Also Published As

Publication number Publication date
US10595837B2 (en) 2020-03-24
RU2700162C2 (ru) 2019-09-13
US20170311939A1 (en) 2017-11-02
WO2014202760A3 (en) 2015-02-26
JP6390873B2 (ja) 2018-09-19
EP3010419A2 (en) 2016-04-27
BR112015030612B1 (pt) 2020-07-21
US20160120527A1 (en) 2016-05-05
RU2016101631A (ru) 2017-07-26
BR112015030612A2 (pt) 2017-07-25
US9724078B2 (en) 2017-08-08
JP2016536042A (ja) 2016-11-24
BR112015030612A8 (pt) 2020-01-07
EP3010419B1 (en) 2020-05-20
HK1221388A1 (zh) 2017-06-02
CA2912357C (en) 2019-12-31
CN105358071B (zh) 2018-07-31
AU2014283170A1 (en) 2015-11-12
CA2912357A1 (en) 2014-12-24
CN105358071A (zh) 2016-02-24
AU2014283170B2 (en) 2017-11-02

Similar Documents

Publication Publication Date Title
US10595837B2 (en) Vacuum expanded dry composition and syringe for retaining same
AU2015333206B2 (en) Dry composition for use in haemostasis and wound healing
US10799611B2 (en) Dry haemostatic composition
US11103616B2 (en) Dry composition comprising an extrusion enhancer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480035341.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14734064

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2016520511

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014283170

Country of ref document: AU

Date of ref document: 20140620

Kind code of ref document: A

Ref document number: 2912357

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14895674

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015030612

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2014734064

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016101631

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015030612

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151207