WO2014065243A1 - 位相差板、円偏光板、及び画像表示装置 - Google Patents

位相差板、円偏光板、及び画像表示装置 Download PDF

Info

Publication number
WO2014065243A1
WO2014065243A1 PCT/JP2013/078487 JP2013078487W WO2014065243A1 WO 2014065243 A1 WO2014065243 A1 WO 2014065243A1 JP 2013078487 W JP2013078487 W JP 2013078487W WO 2014065243 A1 WO2014065243 A1 WO 2014065243A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituent
compound
aromatic
Prior art date
Application number
PCT/JP2013/078487
Other languages
English (en)
French (fr)
Inventor
将 相松
仁志 大石
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2014543286A priority Critical patent/JP6476862B2/ja
Priority to EP13848764.0A priority patent/EP2910986B1/en
Priority to US14/437,399 priority patent/US9995865B2/en
Priority to CN201380054984.5A priority patent/CN104737044B/zh
Priority to KR1020157010156A priority patent/KR102079276B1/ko
Publication of WO2014065243A1 publication Critical patent/WO2014065243A1/ja
Priority to US15/977,837 priority patent/US10830935B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F28/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur
    • C08F28/06Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur by a heterocyclic ring containing sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3833Polymers with mesogenic groups in the side chain
    • C09K19/3838Polyesters; Polyester derivatives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133633Birefringent elements, e.g. for optical compensation using mesogenic materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133637Birefringent elements, e.g. for optical compensation characterised by the wavelength dispersion

Definitions

  • the present invention relates to a retardation plate, a circularly polarizing plate, and an image display device, and particularly relates to a retardation plate, a circularly polarizing plate, and an image display device that can easily control reverse wavelength dispersion characteristics.
  • the retardation film is widely used as a component of a display device such as a liquid crystal display device.
  • the retardation plate used in the display device preferably exhibits a desired retardation such as 1 / 4 ⁇ or 1 / 2 ⁇ in all wavelength regions for display (usually the visible region).
  • the phase difference plate needs to have so-called reverse wavelength dispersion, that is, wavelength dispersion exhibiting high anisotropy with respect to light having a longer wavelength than a short wavelength.
  • reverse wavelength dispersion that is, wavelength dispersion exhibiting high anisotropy with respect to light having a longer wavelength than a short wavelength.
  • those described in Patent Documents 1 to 6 are known as retardation plates that exhibit reverse wavelength dispersion characteristics.
  • Japanese Patent Laid-Open No. 10-68816 Japanese Patent Laid-Open No. 10-90521 Japanese Patent Laid-Open No. 11-52131 JP 2000-284126 A (corresponding foreign publication: US Pat. No. 6,400,433 B1) JP 2001-4837 A International Publication No. 2000/026705 (corresponding foreign publication: European Patent Application Publication No. EP 1045261 (A1) and US Pat. No. 6,565,974 B1)
  • the retardation plate used in the display device needs to be adjusted to slightly increase or slightly decrease the reverse wavelength dispersion according to the design of the display device.
  • an object of the present invention is to provide a retardation plate having reverse wavelength dispersion characteristics and capable of easily performing precise control thereof.
  • a further object of the present invention is to provide a display device having a reverse wavelength dispersion characteristic and including a retardation plate that can be easily precisely controlled, thereby having low cost and good display performance, and components thereof. There is to do.
  • the present inventor used a reverse wavelength dispersion polymerizable liquid crystal compound having a predetermined plurality of mesogens in the molecule, and aligning it in combination with a polymerizable monomer.
  • the inventors have found that the above problems can be solved by forming an optically anisotropic layer having predetermined optical characteristics, and the present invention has been completed. That is, according to the present invention, the following is provided.
  • a retardation plate having an optically anisotropic layer obtained by curing a composition (A) containing a reverse wavelength dispersion polymerizable liquid crystal compound and a polymerizable monomer,
  • the reverse wavelength dispersion polymerizable liquid crystal compound has a main chain mesogen and a side chain mesogen bonded to the main chain mesogen in the molecule,
  • the main chain mesogen and the side chain mesogen of the reverse wavelength dispersion polymerizable liquid crystal compound are oriented in different directions, whereby the birefringence ⁇ n of the optically anisotropic layer has a reverse wavelength.
  • Re0 (650 nm) and retardations Re (450 nm), Re (550 nm) and Re (650 nm) at wavelengths of 450 nm, 550 nm and 650 nm of the optically anisotropic layer are represented by the following formulas (i) and (ii): Phase difference plate satisfying the relationship: Re0 (450 nm) / Re0 (550 nm)> Re (450 nm) / Re (550 nm) Formula (i) Re0 (650 nm) / Re0 (550 nm) ⁇ Re (650 nm) / Re (550 nm) Formula (ii).
  • a retardation plate having an optically anisotropic layer obtained by curing a composition (A) containing a reverse wavelength dispersion polymerizable liquid crystal compound and a polymerizable monomer,
  • the reverse wavelength dispersion polymerizable liquid crystal compound has a main chain mesogen and a side chain mesogen bonded to the main chain mesogen in the molecule,
  • the main chain mesogen and the side chain mesogen of the reverse wavelength dispersion polymerizable liquid crystal compound are oriented in different directions, whereby the birefringence ⁇ n of the optically anisotropic layer has a reverse wavelength.
  • Re0 (650 nm) and retardations Re (450 nm), Re (550 nm) and Re (650 nm) at wavelengths of 450 nm, 550 nm and 650 nm of the optically anisotropic layer are represented by the following formulas (iii) and (iv): Phase difference plate satisfying the relationship: Re0 (450 nm) / Re0 (550 nm) ⁇ Re (450 nm) / Re (550 nm) Formula (iii) Re0 (650 nm) / Re0 (550 nm)> Re (650 nm) / Re (550 nm) Formula (iv).
  • the reverse wavelength dispersion polymerizable liquid crystal compound has the following formula (I): [Wherein Y 1 to Y 6 are each independently a chemical single bond, —O—, —S—, —O—C ( ⁇ O) —, —C ( ⁇ O) —O—, — OC ( ⁇ O) —O—, —NR 1 —C ( ⁇ O) —, —C ( ⁇ O) —NR 1 —, —O—C ( ⁇ O) —NR 1 —, —NR 1 — C ( ⁇ O) —O—, —NR 1 —C ( ⁇ O) —NR 1 —, —O—NR 1 —, or —NR 1 —O— is represented.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • G 1 and G 2 each independently represent a divalent aliphatic group having 1 to 20 carbon atoms which may have a substituent [the aliphatic group includes one or more per one aliphatic group; —O—, —S—, —O—C ( ⁇ O) —, —C ( ⁇ O) —O—, —O—C ( ⁇ O) —O—, —NR 2 —C ( ⁇ O) —, —C ( ⁇ O) —NR 2 —, —NR 2 —, or —C ( ⁇ O) — may be present.
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • Z 1 and Z 2 each independently represents an alkenyl group having 2 to 10 carbon atoms which may be substituted with a halogen atom.
  • a x represents an organic group having 2 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring, and A y has a hydrogen atom and a substituent.
  • the aromatic ring of A x and A y may have a substituent.
  • a x and A y may be combined to form a ring.
  • R 3 has an optionally substituted alkyl group having 1 to 12 carbon atoms, an optionally substituted alkenyl group having 2 to 12 carbon atoms, and a substituent.
  • R 6 represents an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, a phenyl group, or a 4-methylphenyl group.
  • a 1 represents a trivalent aromatic group which may have a substituent.
  • a 2 and A 3 each independently represent a divalent aromatic group having 6 to 30 carbon atoms which may have a substituent.
  • Q 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
  • the reverse wavelength dispersion polymerizable liquid crystal compound has the following formula (V): [ Wherein Y 1w to Y 8w are each independently a chemical single bond, —O—, —S—, —O—C ( ⁇ O) —, —C ( ⁇ O) —O—, — OC ( ⁇ O) —O—, —NR 1 —C ( ⁇ O) —, —C ( ⁇ O) —NR 1 —, —O—C ( ⁇ O) —NR 1 —, —NR 1 — C ( ⁇ O) —O—, —NR 1 —C ( ⁇ O) —NR 1 —, —O—NR 1 —, or —NR 1 —O— is represented.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • G 1w and G 2w each independently represent a divalent chain aliphatic group having 1 to 20 carbon atoms which may have a substituent.
  • the chain aliphatic group includes one or more —O—, —S—, —O—C ( ⁇ O) —, —C ( ⁇ O) —O—, —O per one aliphatic group.
  • R 2w represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • Z 1w and Z 2w each independently represents an alkenyl group having 2 to 10 carbon atoms which may be substituted with a halogen atom.
  • a xw represents an organic group having 2 to 30 carbon atoms and having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
  • a yw has a hydrogen atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, and a substituent.
  • R 3w has an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkenyl group having 2 to 20 carbon atoms which may have a substituent, or a substituent.
  • R 4w represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, Represents a phenyl group or a 4-methylphenyl group
  • R 9w represents an optionally substituted alkyl group having 1 to 20 carbon atoms, and an optionally substituted alkenyl group having 2 to 20 carbon atoms.
  • a xw and A yw may have a substituent.
  • a xw and A yw may be combined to form a ring.
  • a 1w represents a trivalent aromatic group which may have a substituent.
  • a 2w and A 3w each independently represent a divalent alicyclic hydrocarbon group having 3 to 30 carbon atoms which may have a substituent,
  • a 4w and A 5w each independently represent a divalent aromatic group having 6 to 30 carbon atoms which may have a substituent.
  • Q 1w represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
  • G 1w and G 2w are each independently a divalent aliphatic group having 1 to 20 carbon atoms which may have a substituent [the aliphatic group includes one aliphatic group; One or more —O—, —O—C ( ⁇ O) —, —C ( ⁇ O) —O— or —C ( ⁇ O) — may be present per group. However, the case where two or more of —O— are adjacent to each other is excluded. ] The retardation plate.
  • the retardation plate wherein G 1w and G 2w are each independently an alkylene group having 1 to 12 carbon atoms.
  • the polymerizable monomer is represented by the following formula (III): (In formula (III), Y 1x to Y 6x , G 1x , G 2x , Z 1x , Z 2x , A xx , A ix , A 1x to A 3x , and Q 1x are each Y in formula (I).
  • the polymerizable monomer has a mesogen, and in the optically anisotropic layer, the mesogen of the polymerizable monomer is aligned in parallel with the main chain mesogen of the reverse wavelength dispersion polymerizable liquid crystal compound [1]
  • the polymerizable monomer has a mesogen, and in the optically anisotropic layer, the mesogen of the polymerizable monomer is aligned in parallel with the side chain mesogen of the reverse wavelength dispersion polymerizable liquid crystal compound [1]
  • the retardation plate according to any one of [5] to [5].
  • Any one of [1] to [7], wherein the blending ratio of the polymerizable monomer to 100 parts by weight of the reverse wavelength dispersion polymerizable liquid crystal compound in the composition (A) is 1 to 100 parts by weight.
  • a circularly polarizing plate comprising the retardation plate according to any one of [1] to [8] and a linear polarizer.
  • the retardation of the retardation plate at a wavelength of 550 nm is 100 to 150 nm, and the angle between the slow axis of the retardation plate and the transmission axis of the linear polarizer is 45 °.
  • the circularly polarizing plate as described.
  • An image display device comprising the retardation plate according to any one of [1] to [8].
  • the phase difference plate of the present invention has reverse wavelength dispersion characteristics and can be easily controlled precisely. Therefore, the circularly polarizing plate of the present invention and the image display device of the present invention including the retardation plate of the present invention can provide a display device and its constituent elements that have low cost and good display performance.
  • FIG. 1 is a graph showing the wavelength dispersion characteristics of the birefringence ⁇ n of the retardation plate measured in Comparative Example 1.
  • FIG. 2 is a graph showing the wavelength dispersion characteristics of the refractive index of the retardation plate measured in Comparative Example 1.
  • FIG. 3 is a graph showing the relationship between the azimuth angle of polarized light and the measured absorption measured in Reference Example 1.
  • FIG. 4 is a graph showing the wavelength dispersion characteristics of the birefringence ⁇ n of the retardation plate measured in Example 1 in comparison with Comparative Example 1.
  • FIG. 5 is a graph showing the wavelength dispersion characteristics of the refractive index of the phase difference plate measured in Example 1 in comparison with Comparative Example 1.
  • FIG. 6 is a graph showing the wavelength dispersion characteristics of the birefringence ⁇ n of the retardation plate measured in Example 2 in comparison with Comparative Example 1.
  • FIG. 7 is a graph showing the wavelength dispersion characteristic of the refractive index of the retardation plate measured in Example 2 in comparison with Comparative Example 1.
  • FIG. 8 is a graph showing the wavelength dispersion characteristics of the birefringence ⁇ n of the retardation plate measured in Example 3 in comparison with Comparative Example 1.
  • FIG. 9 is a graph showing the wavelength dispersion characteristics of the refractive index of the retardation plate measured in Example 3 in comparison with Comparative Example 1.
  • FIG. 10 is a graph showing the wavelength dispersion characteristics of the birefringence ⁇ n of the retardation plate measured in Example 4 in comparison with Comparative Example 1.
  • FIG. 11 is a graph showing the wavelength dispersion characteristics of the refractive index of the retardation plate measured in Example 4 in comparison with Comparative Example 1.
  • FIG. 12 is a graph showing the wavelength dispersion characteristics of the birefringence ⁇ n of the retardation plate measured in Example 5 in comparison with Comparative Example 1.
  • FIG. 13 is a graph showing the wavelength dispersion characteristics of the refractive index of the retardation plate measured in Example 5 in comparison with Comparative Example 1.
  • FIG. 14 is a graph showing the wavelength dispersion characteristics of the birefringence ⁇ n of the retardation plate measured in Comparative Example 2.
  • FIG. 15 is a graph showing the wavelength dispersion characteristic of the refractive index of the retardation plate measured in Comparative Example 2.
  • FIG. 16 is a graph showing the wavelength dispersion characteristics of the birefringence ⁇ n of the retardation plate measured in Example 6 in comparison with Comparative Example 2.
  • FIG. 17 is a graph showing the wavelength dispersion characteristics of the refractive index of the retardation plate measured in Example 6 in comparison with Comparative Example 2.
  • the retardation plate of the present invention has an optically anisotropic layer.
  • the optically anisotropic layer is a layer formed by curing a composition (A) containing a reverse wavelength dispersion polymerizable liquid crystal compound and a polymerizable monomer.
  • the liquid crystal compound as a component of the composition (A) is a compound that can exhibit a liquid crystal phase when blended and oriented in the composition (A).
  • the polymerizable liquid crystal compound is a liquid crystal compound that can be polymerized in the composition (A) in a state of exhibiting such a liquid crystal phase and can be a polymer while maintaining the molecular orientation in the liquid crystal phase.
  • the reverse wavelength dispersion polymerizable liquid crystal compound is a polymerizable liquid crystal compound in which, when such a polymer is used, the obtained polymer exhibits reverse wavelength dispersion.
  • compounds having a polymerizable property such as a polymerizable liquid crystal compound and other polymerizable compounds which are components of the composition (A) may be simply referred to as “polymerizable compound”. .
  • the reverse wavelength dispersion polymerizable liquid crystal compound has a main chain mesogen and a side chain mesogen bonded to the main chain mesogen in the molecule.
  • the side chain mesogen can be aligned in a different direction from the main chain mesogen. Therefore, in the optically anisotropic layer, the main chain mesogen and the side chain mesogen can be oriented in different directions. With such an orientation, the birefringence ⁇ n of the optically anisotropic layer can exhibit reverse wavelength dispersion characteristics.
  • Y 1 to Y 6 are each independently a chemical single bond, —O—, —S—, —O—C ( ⁇ O) —, —C ( ⁇ O) —O—, —O. —C ( ⁇ O) —O—, —NR 1 —C ( ⁇ O) —, —C ( ⁇ O) —NR 1 —, —O—C ( ⁇ O) —NR 1 —, —NR 1 —C ( ⁇ O) —O—, —NR 1 —C ( ⁇ O) —NR 1 —, —O—NR 1 —, or —NR 1 —O— is represented.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • alkyl group having 1 to 6 carbon atoms of R 1 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, t-butyl group, n-pentyl group, n- A hexyl group etc. are mentioned.
  • R 1 is preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • Y 1 to Y 6 are each independently a chemical single bond, —O—, —O—C ( ⁇ O) —, —C ( ⁇ O) —O—, or —O.
  • G 1 and G 2 each independently represent a divalent aliphatic group having 1 to 20 carbon atoms which may have a substituent.
  • the divalent aliphatic group having 1 to 20 carbon atoms includes an aliphatic group having a chain structure; an alicyclic structure such as a saturated cyclic hydrocarbon (cycloalkane) structure and an unsaturated cyclic hydrocarbon (cycloalkene) structure. And the like.
  • substituents include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, t-butoxy Group, an alkoxy group having 1 to 6 carbon atoms such as an n-pentyloxy group and an n-hexyloxy group; a fluorine atom, a methoxy group and an ethoxy group are preferable.
  • the aliphatic group includes one or more —O—, —S—, —O—C ( ⁇ O) —, —C ( ⁇ O) —O—, —O—C per aliphatic group.
  • ( ⁇ O) —O—, —NR 2 —C ( ⁇ O) —, —C ( ⁇ O) —NR 2 —, —NR 2 —, or —C ( ⁇ O) — may be present. Good (except when two or more of —O— or —S— are adjacent to each other). Among these, —O—, —O—C ( ⁇ O) —, —C ( ⁇ O) —O—, or —C ( ⁇ O) — is preferable.
  • R 2 represents the same hydrogen atom or alkyl group having 1 to 6 carbon atoms as R 1, and is preferably a hydrogen atom or a methyl group.
  • G 1 and G 2 are each independently an alkylene group having 1 to 20 carbon atoms, an alkenylene group having 2 to 20 carbon atoms, or the like, from the viewpoint of better expressing the desired effect of the present invention.
  • An aliphatic group having a chain structure is preferable, and an alkylene group having 1 to 12 carbon atoms such as a methylene group, an ethylene group, a trimethylene group, a propylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, and an octamethylene group.
  • a tetramethylene group [— (CH 2 ) 4 —] and a hexamethylene group [— (CH 2 ) 6 —] are particularly preferable.
  • Z 1 and Z 2 each independently represents an alkenyl group having 2 to 10 carbon atoms which may be substituted with a halogen atom.
  • the alkenyl group preferably has 2 to 6 carbon atoms.
  • Examples of the halogen atom that is a substituent of the alkenyl group of Z 1 and Z 2 include a fluorine atom, a chlorine atom, a bromine atom, and the like, and a chlorine atom is preferable.
  • alkenyl group having 2 to 10 carbon atoms of Z 1 and Z 2 include CH 2 ⁇ CH—, CH 2 ⁇ C (CH 3 ) —, CH 2 ⁇ CH—CH 2 —, CH 3 —CH ⁇ .
  • Z 1 and Z 2 are each independently CH 2 ⁇ CH 2 —, CH 2 ⁇ C (CH 3 ) —, CH 2 from the viewpoint of better expressing the desired effect of the present invention.
  • CH 2 ⁇ CH 2 —, CH 2 ⁇ C (CH 3 ) —, or CH 2 ⁇ C (Cl) — is more preferable, and CH 2 ⁇ CH 2 — is still more preferable.
  • a x represents an organic group having 2 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
  • the “aromatic ring” is a cyclic structure having a broad meaning of aromaticity according to the Huckle rule, that is, a cyclic conjugated structure having (4n + 2) ⁇ electrons and thiophene, furan, benzothiazole, and the like. It means that a pair of lone electrons of a hetero atom such as oxygen, nitrogen, etc. participates in the ⁇ -electron system and exhibits aromaticity.
  • the organic group having 2 to 30 carbon atoms and having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring of A x may have a plurality of aromatic rings. And having an aromatic hydrocarbon ring and an aromatic heterocycle.
  • aromatic hydrocarbon ring examples include a benzene ring, a naphthalene ring, and an anthracene ring.
  • aromatic heterocyclic ring examples include monocyclic aromatic heterocyclic rings such as a pyrrole ring, a furan ring, a thiophene ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a pyrazole ring, an imidazole ring, an oxazole ring, and a thiazole ring; Benzothiazole ring, benzoxazole ring, quinoline ring, phthalazine ring, benzimidazole ring, benzopyrazole ring, benzofuran ring, aromatic heterocycle such as benzothiophene ring;
  • the aromatic ring of A x may have a substituent.
  • substituents include halogen atoms such as fluorine atom and chlorine atom; cyano group; alkyl group having 1 to 6 carbon atoms such as methyl group, ethyl group and propyl group; and 2 to 6 carbon atoms such as vinyl group and allyl group.
  • An alkenyl group having 1 to 6 carbon atoms such as a trifluoromethyl group; a substituted amino group such as a dimethylamino group; an alkoxy group having 1 to 6 carbon atoms such as a methoxy group, an ethoxy group, and an isopropyl group; Group; aryl group such as phenyl group and naphthyl group; —C ( ⁇ O) —R 4 ; —C ( ⁇ O) —OR 4 ; —SO 2 R 4 ;
  • R 4 represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 14 carbon atoms.
  • the aromatic ring within A x may have a plurality of identical or different substituents, bonded two adjacent substituents together may form a ring.
  • the ring formed may be monocyclic or condensed polycyclic.
  • the “carbon number” of the organic group having 2 to 30 carbon atoms in A x means the total number of carbon atoms in the whole organic group not including the carbon atom of the substituent (the same applies to A y described later). .
  • an aromatic hydrocarbon ring group As the organic group having 2 to 30 carbon atoms and having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring of A x , an aromatic hydrocarbon ring group; an aromatic heterocyclic ring Group: an alkyl group having 3 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring group and an aromatic heterocyclic group; from an aromatic hydrocarbon ring group and an aromatic heterocyclic group An alkenyl group having 4 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of: a carbon number having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring group and an aromatic heterocyclic group 4-30 alkynyl groups; and the like.
  • a y may be a hydrogen atom, an alkyl group having 1 to 12 carbon atoms which may have a substituent, an alkenyl group having 2 to 12 carbon atoms which may have a substituent, or a substituent.
  • An organic group having a ring and having 2 to 30 carbon atoms is represented.
  • alkyl group having 1 to 12 carbon atoms which may have a substituent of A y include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and n-butyl.
  • R 4 represents the same meaning as described above.
  • alkenyl group having 2 to 12 carbon atoms which may have a substituent of A y include a vinyl group, a propenyl group, an isopropenyl group, a butenyl group, a pentenyl group, and the like. Can be mentioned.
  • Examples of the cycloalkyl group having 3 to 12 carbon atoms of the cycloalkyl group having 3 to 12 carbon atoms which may have a substituent include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group. Groups and the like.
  • Examples of the substituent for the alkenyl group having 2 to 12 carbon atoms that may have a substituent and the cycloalkyl group having 3 to 12 carbon atoms that may have a substituent for A y include a fluorine atom, Halogen atom such as chlorine atom; cyano group; substituted amino group such as dimethylamino group; alkoxy group having 1 to 6 carbon atoms such as methoxy group, ethoxy group and isopropyl group; nitro group; aryl group such as phenyl group and naphthyl group A cycloalkyl group having 3 to 8 carbon atoms such as a cyclopropyl group, a cyclopentyl group, a cyclohexyl group; —C ( ⁇ O) —R 4 ; —C ( ⁇ O) —OR 4 ; —SO 2 R 4 ; Can be mentioned.
  • R 4 represents the same meaning as described above.
  • R 3 may have an alkyl group having 1 to 12 carbon atoms which may have a substituent, or may have a substituent. It represents a good alkenyl group having 2 to 12 carbon atoms and a cycloalkyl group having 3 to 12 carbon atoms which may have a substituent. Specific examples thereof include the alkyl group having 1 to 12 carbon atoms which may have a substituent, the alkenyl group having 2 to 12 carbon atoms which may have a substituent, and a substituent of the above Ay. Examples of the cycloalkyl group having 3 to 12 carbon atoms which may be included are the same as those listed.
  • R 6 is an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, a phenyl group, or a 4-methylphenyl group To express.
  • Specific examples of the alkyl group having 1 to 12 carbon atoms and the alkenyl group having 2 to 12 carbon atoms in R 6 include the alkyl group having 1 to 12 carbon atoms and the alkenyl group having 2 to 12 carbon atoms in the above Ay . Examples are the same as those listed.
  • the aromatic ring of A x and A y may have a substituent.
  • a x and A y may be combined to form a ring.
  • Examples of the organic group having 2 to 30 carbon atoms and having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring for A y are the same as those exemplified for A x above. Is mentioned.
  • the aromatic ring which Ay has may have a substituent in arbitrary positions. As such a substituent include the same as those listed as the substituent of the aromatic ring wherein A x has.
  • aromatic ring of A x and A y are shown below.
  • a x, aromatic ring within A y is not intended to be limited to those shown below.
  • [-] represents a bond of an aromatic ring (the same applies hereinafter).
  • E represents NR 5 , an oxygen atom or a sulfur atom.
  • R 5 represents a hydrogen atom; or an alkyl group having 1 to 6 carbon atoms such as a methyl group or an ethyl group.
  • X, Y and Z each independently represent NR 5 , oxygen atom, sulfur atom, —SO— or —SO 2 — (provided that oxygen atom, sulfur atom, —SO—, — Except when SO 2 -is adjacent to each other).
  • R 5 represents the same meaning as described above.
  • aromatic rings of A x and A y are preferably the following among the aromatic rings described above.
  • aromatic rings are particularly preferable for A x and A y .
  • a x and A y may be combined to form a ring.
  • an unsaturated heterocyclic ring having 4 to 30 carbon atoms or an unsaturated carbocyclic ring having 6 to 30 carbon atoms which may have a substituent is preferably formed.
  • the unsaturated heterocyclic ring having 4 to 30 carbon atoms and the unsaturated carbocyclic ring having 6 to 30 carbon atoms are not particularly limited and may or may not have aromaticity.
  • the ring shown below is mentioned.
  • the ring shown below is the one in the formula (I).
  • X, Y and Z represent the same meaning as described above.
  • these rings may have a substituent.
  • substituents include a halogen atom, a cyano group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a nitro group, —C ( ⁇ O) —R 4 , —C ( ⁇ O) —OR. 4 , -SO 2 R 4 and the like.
  • R 4 represents the same meaning as described above.
  • the total number of ⁇ electrons contained in A x and A y is preferably 4 or more and 24 or less, and more preferably 6 or more and 18 or less, from the viewpoint of better expressing the desired effect of the present invention.
  • a preferred combination of A x and A y is a combination in which A x is an aromatic group having 4 to 30 carbon atoms, and A y is a hydrogen atom or an alkyl group which may have a substituent, and Ax and Ay are taken together to form an unsaturated heterocyclic ring or an unsaturated carbocyclic ring.
  • the substituent of the alkyl group which may have a substituent include a cycloalkyl group, a cyano group, and a halogen atom such as a fluorine atom.
  • a more preferable combination is a combination in which A x is the following structure, and A y is a hydrogen atom or an alkyl group which may have a substituent.
  • a x is the following structure
  • a y is a hydrogen atom or an alkyl group which may have a substituent.
  • substituent of the alkyl group which may have a substituent include a combination that is a halogen atom such as a cycloalkyl group, a cyano group, or a fluorine atom.
  • X and Y represent the same meaning as described above.
  • a 1 represents a trivalent aromatic group which may have a substituent.
  • the trivalent aromatic group may be a trivalent carbocyclic aromatic group or a trivalent heterocyclic aromatic group. From the viewpoint of better expressing the desired effect of the present invention, a trivalent carbocyclic aromatic group is preferable, and a trivalent benzene ring group or a trivalent naphthalene ring group represented by the following formula is more preferable.
  • the substituents Y 1 and Y 2 are described for convenience in order to clarify the bonding state (Y 1 and Y 2 represent the same meaning as described above, and the same applies hereinafter). .
  • a 1 groups represented by the following formulas (A11) to (A22) are more preferable, and a group represented by the formula (A11) is particularly preferable.
  • a 1 as a trivalent substituent which may be possessed by the aromatic group, the same ones as exemplified as the substituents of the aromatic groups of the A X and the like.
  • a 1 preferably has no substituent.
  • a 2 and A 3 each independently represent a divalent aromatic group having 6 to 30 carbon atoms which may have a substituent.
  • the aromatic groups of A 2 and A 3 may be monocyclic or polycyclic. Specific examples of A 2 and A 3 include the following.
  • the organic groups mentioned as specific examples of A 2 and A 3 may have a substituent at any position.
  • substituents include a halogen atom, a cyano group, a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a nitro group, and a —C ( ⁇ O) —OR group.
  • R is an alkyl group having 1 to 6 carbon atoms.
  • a halogen atom, an alkyl group, and an alkoxy group are preferable, a fluorine atom as the halogen atom, a methyl group, an ethyl group, and a propyl group as the alkyl group, and a methoxy group and an ethoxy group as the alkoxy group. preferable.
  • Q 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
  • the alkyl group which has 1 carbon atoms which may be ⁇ 6 have a substituent, the same ones as exemplified in the A X and the like.
  • Q 1 is preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, more preferably a hydrogen atom or a methyl group.
  • More specific examples of the compound (I) include compounds represented by the following formulas (I) -1 to (I) -3.
  • the compounds represented by the formula (I) are not all compounds that can exhibit a liquid crystal phase. However, for example, by preparing and actually aligning the composition (A), it can be easily identified whether or not a liquid crystal phase can be exhibited.
  • a hydrazine compound (hydrazine compound (3)) represented by formula (3) is converted into a carbonyl compound (carbonyl compound (4)) represented by formula (4) and [hydrazine compound (3): carbonyl compound ( 4)] at a molar ratio of 1: 2 to 2: 1, preferably 1: 1.5 to 1.5: 1.
  • a compound represented by I) can be produced.
  • the reaction can be carried out by adding an acid catalyst such as an organic acid such as ( ⁇ ) -10-camphorsulfonic acid and paratoluenesulfonic acid; an inorganic acid such as hydrochloric acid and sulfuric acid;
  • an acid catalyst By adding an acid catalyst, the reaction time may be shortened and the yield may be improved.
  • the addition amount of the acid catalyst is usually 0.001 to 1 mol with respect to 1 mol of the carbonyl compound (4). Further, the acid catalyst may be added as it is, or may be added as a solution dissolved in an appropriate solution.
  • the solvent used in this reaction is not particularly limited as long as it is inert to the reaction.
  • alcohol solvents such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol, t-butyl alcohol, n-pentyl alcohol, amyl alcohol; diethyl ether, Ether solvents such as tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane and cyclopentylmethyl ether; ester solvents such as ethyl acetate, propyl acetate and methyl propionate; aromatic hydrocarbons such as benzene, toluene and xylene Solvents; aliphatic hydrocarbon solvents such as n-pentane, n-hexane and n-heptane; amide solvents such as N, N-dimethylformamide,
  • the amount of the solvent used is not particularly limited and can be appropriately determined in consideration of the type of compound used, reaction scale, etc., but is usually 1 to 100 g with respect to 1 g of the hydrazine compound (3).
  • the reaction proceeds smoothly in the temperature range from ⁇ 10 ° C. to the boiling point of the solvent used.
  • the reaction time for each reaction is usually from several minutes to several hours depending on the reaction scale.
  • the hydrazine compound (3) can be produced as follows.
  • a x and A y represent the same meaning as described above.
  • X represents a leaving group such as a halogen atom, a methanesulfonyloxy group, and a p-toluenesulfonyloxy group.
  • the compound represented by the formula (2a) and hydrazine (1) are mixed in a suitable solvent in a molar ratio of (compound (2a): hydrazine (1)) of 1: 1 to 1:20, preferably 1 : 2 to 1:10 to obtain the corresponding hydrazine compound (3a). Further, by reacting the hydrazine compound (3a) with the compound represented by the formula (2b), the hydrazine compound ( 3) can be obtained.
  • hydrazine (1) a monohydrate is usually used.
  • hydrazine (1) a commercially available product can be used as it is.
  • the solvent used in this reaction is not particularly limited as long as it is inert to the reaction.
  • alcohol solvents such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol, t-butyl alcohol, n-pentyl alcohol, amyl alcohol; diethyl ether, Ether solvents such as tetrahydrofuran, 1,2-dimethoxyethane, 1,4-dioxane, cyclopentylmethyl ether; aromatic hydrocarbon solvents such as benzene, toluene, xylene; n-pentane, n-hexane, n-heptane, etc.
  • Aliphatic hydrocarbon solvents such as: N, N-dimethylformamide, N-methylpyrrolidone, amide solvents such as hexamethylphosphoric triamide; Sulfur-containing solvents such as dimethyl sulfoxide, sulfolane; and two or more of these And the like; a mixed solvent of.
  • alcohol solvents, ether solvents, and mixed solvents of alcohol solvents and ether solvents are preferable.
  • the amount of the solvent to be used is not particularly limited and can be appropriately determined in consideration of the type of compound used, reaction scale, etc., but is usually 1 to 100 g with respect to 1 g of hydrazine.
  • the reaction proceeds smoothly in a temperature range from ⁇ 10 ° C. to the boiling point of the solvent used.
  • the reaction time for each reaction is usually from several minutes to several hours depending on the reaction scale.
  • the hydrazine compound (3) can also be produced by reducing the diazonium salt (5) using a conventionally known method as follows.
  • X ⁇ represents an anion which is a counter ion for diazonium.
  • examples of X ⁇ include inorganic anions such as hexafluorophosphate ion, borofluoride ion, chloride ion, sulfate ion; polyfluoroalkylcarboxylate ion, polyfluoroalkylsulfonate ion, tetraphenylborate ion And organic anions such as aromatic carboxylate ions and aromatic sulfonate ions.
  • a metal salt reducing agent is generally a compound containing a low-valent metal or a compound consisting of a metal ion and a hydride source (“Organic Synthesis Experiment Handbook” 1990, page 810 issued by Maruzen Co., Ltd.) reference).
  • Examples of the metal salt reducing agent include NaAlH 4 , NaAlH n (OR) m , LiAlH 4 , iBu 2 AlH, LiBH 4 , NaBH 4 , SnCl 2 , CrCl 2 , TiCl 3 and the like.
  • the diazonium salt (5) can be produced from a compound such as aniline by a conventional method.
  • the carbonyl compound (4) typically has an ether bond (—O—), an ester bond (—C ( ⁇ O) —O—, —O—C ( ⁇ O) —), a carbonate bond (—O—).
  • C ( ⁇ O) —O—) and amide bond (—C ( ⁇ O) NH—, —NHC ( ⁇ O) —) can be arbitrarily combined to form a plurality of known compounds having a desired structure. It can be produced by appropriately binding and modifying.
  • the ether bond can be formed, for example, as follows.
  • D1-hal hal represents a halogen atom; the same shall apply hereinafter
  • D2-OMet Metal represents an alkali metal (mainly sodium). The same) is mixed and condensed (Williamson synthesis).
  • D1 and D2 represent arbitrary organic groups (the same applies hereinafter).
  • a compound represented by the formula: D1-hal and a compound represented by the formula: D2-OH are mixed and condensed in the presence of a base such as sodium hydroxide or potassium hydroxide.
  • a compound represented by the formula: D1-J J represents an epoxy group
  • a compound represented by the formula: D2-OH are mixed in the presence of a base such as sodium hydroxide or potassium hydroxide.
  • a base such as sodium hydroxide or potassium hydroxide.
  • D1-OFN OFN represents a group having an unsaturated bond
  • D2-OMet are mixed with a base such as sodium hydroxide or potassium hydroxide. In the presence, they are mixed and subjected to an addition reaction.
  • a compound represented by the formula: D1-hal and a compound represented by the formula: D2-OMet are mixed and condensed in the presence of copper or cuprous chloride (Ullman condensation).
  • Formation of an ester bond and an amide bond can be performed as follows, for example.
  • a compound represented by the formula: D1-COOH and a compound represented by the formula: D2-OH or D2-NH 2 are dehydrated in the presence of a dehydration condensing agent (N, N-dicyclohexylcarbodiimide or the like). Allow to condense.
  • a dehydration condensing agent N, N-dicyclohexylcarbodiimide or the like. Allow to condense.
  • a compound represented by the formula: D1-CO-hal is obtained by allowing a halogenating agent to act on the compound represented by the formula: D1-COOH, which is combined with the formula: D2-OH or D2-NH. The compound represented by 2 is reacted in the presence of a base.
  • Y 11 represents Y 11 —C ( ⁇ O) —O— is Y .Y 1 representing one and becomes group .L of the same meaning as above, a hydroxyl group, a halogen atom, a methanesulfonyloxy group, a leaving group such as a p- toluenesulfonyloxy group.
  • the compound (7) is a compound (carboxylic acid) in which L is a hydroxyl group in the formula (7), dehydration condensation of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, dicyclohexylcarbodiimide, etc.
  • the target product can be obtained by reacting in the presence of the agent.
  • the amount of the dehydrating condensing agent to be used is generally 1 to 3 mol per 1 mol of compound (7).
  • the desired product can be obtained by reacting in the presence of a base.
  • a base examples include organic bases such as triethylamine and pyridine; and inorganic bases such as sodium hydroxide, sodium carbonate and sodium hydrogen carbonate.
  • the amount of the base to be used is generally 1 to 3 mol per 1 mol of compound (7).
  • the compound (7) is a compound (mixed acid anhydride) in which L is a methanesulfonyloxy group or p-toluenesulfonyloxy group in the formula (7) is the same as in the case of a halogen atom.
  • solvent used in the above reaction examples include chlorine solvents such as chloroform and methylene chloride; amide solvents such as N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, and hexamethylphosphoric triamide.
  • Solvents such as 1,4-dioxane, cyclopentylmethyl ether, tetrahydrofuran, tetrahydropyran, 1,3-dioxolane; sulfur-containing solvents such as dimethyl sulfoxide and sulfolane; aromatic hydrocarbons such as benzene, toluene and xylene Solvents; aliphatic hydrocarbon solvents such as n-pentane, n-hexane and n-octane; alicyclic hydrocarbon solvents such as cyclopentane and cyclohexane; and mixed solvents composed of two or more of these solvents; etc. Is mentioned.
  • the amount of the solvent to be used is not particularly limited and can be appropriately determined in consideration of the type of compound used, reaction scale, etc., but is usually 1 to 50 g with respect to 1 g of hydroxy compound (6).
  • Many of the compounds (7) are known compounds, and include an ether bond (—O—), an ester bond (—C ( ⁇ O) —O—, —O—C ( ⁇ O) —), a carbonate bond (—O—).
  • C ( ⁇ O) —O—) and amide bond (—C ( ⁇ O) NH—, —NHC ( ⁇ O) —) can be arbitrarily combined to form a plurality of known compounds having a desired structure. It can be produced by appropriately binding and modifying.
  • any reaction after the completion of the reaction, the usual post-treatment operation in organic synthetic chemistry is performed, and if desired, by applying known separation / purification means such as column chromatography, recrystallization method, distillation method, etc. Product can be isolated.
  • separation / purification means such as column chromatography, recrystallization method, distillation method, etc.
  • the structure of the target compound can be identified by measurement of NMR spectrum, IR spectrum, mass spectrum, etc., elemental analysis and the like.
  • Compound (V) Another example of the reverse wavelength dispersion polymerizable liquid crystal compound is a compound represented by the following formula (V) (hereinafter sometimes referred to as “compound (V)”).
  • a yw is the side chain mesogen and the group A 1w is a property of both the main chain mesogen and the side chain mesogen Affects.
  • Y 1w to Y 8w are each independently a chemical single bond, —O—, —S—, —O—C ( ⁇ O) —, —C ( ⁇ O) —O—, —O. —C ( ⁇ O) —O—, —NR 1 —C ( ⁇ O) —, —C ( ⁇ O) —NR 1 —, —O—C ( ⁇ O) —NR 1 —, —NR 1 —C ( ⁇ O) —O—, —NR 1 —C ( ⁇ O) —NR 1 —, or —NR 1 —O— is represented.
  • R 1 and preferred examples of Y 1w to Y 8w are the same as those described for Y 1 to Y 6 in formula (I).
  • G 1w and G 2w each independently represent a divalent aliphatic group having 1 to 20 carbon atoms, which may have a substituent.
  • the divalent aliphatic group having 1 to 20 carbon atoms include a divalent aliphatic group having a chain structure such as an alkylene group having 1 to 20 carbon atoms and an alkenylene group having 2 to 20 carbon atoms; And divalent aliphatic groups such as a cycloalkanediyl group having 20 carbon atoms, a cycloalkenediyl group having 4 to 20 carbon atoms, and a divalent alicyclic fused ring group having 10 to 30 carbon atoms.
  • Examples of the substituent for the divalent aliphatic group of G 1w and G 2w include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n -Butoxy group, sec-butoxy group, t-butoxy group, n-pentyloxy group, n-hexyloxy group and the like, such as alkoxy groups having 1 to 6 carbon atoms; Of these, a fluorine atom, a methoxy group, and an ethoxy group are preferable.
  • the aliphatic group includes one or more —O—, —S—, —O—C ( ⁇ O) —, —C ( ⁇ O) —O—, —O—C per aliphatic group.
  • ( ⁇ O) —O—, —NR 2w —C ( ⁇ O) —, —C ( ⁇ O) —NR 2w —, —NR 2w —, or —C ( ⁇ O) — may be present. Good. However, the case where two or more of —O— or —S— are adjacent to each other is excluded.
  • R 2w represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms as in R 1, and is preferably a hydrogen atom or a methyl group.
  • the group intervening in the aliphatic group is preferably —O—, —O—C ( ⁇ O) —, —C ( ⁇ O) —O—, —C ( ⁇ O) —.
  • G 1w and G 2w are each independently an alkylene group having 1 to 20 carbon atoms, an alkenylene group having 2 to 20 carbon atoms, or the like, from the viewpoint of better expressing the desired effect of the present invention.
  • a divalent aliphatic group having a chain structure is preferable.
  • Z 1w and Z 2w each independently represent an alkenyl group having 2 to 10 carbon atoms which is unsubstituted or substituted with a halogen atom.
  • Preferred examples of Z 1w and Z 2w are the same as those described for Z 1 and Z 2 in the formula [I].
  • a xw represents an organic group having 2 to 30 carbon atoms and having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
  • the organic group having 2 to 30 carbon atoms and having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring of A xw may have a plurality of aromatic rings. And having an aromatic hydrocarbon ring and an aromatic heterocycle.
  • aromatic hydrocarbon ring examples include a benzene ring, a naphthalene ring, and an anthracene ring.
  • aromatic heterocyclic ring examples include monocyclic aromatic heterocyclic rings such as a pyrrole ring, a furan ring, a thiophene ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a pyrazole ring, an imidazole ring, an oxazole ring, and a thiazole ring; Benzothiazole ring, benzoxazole ring, quinoline ring, phthalazine ring, benzimidazole ring, benzopyrazole ring, benzofuran ring, benzothiophene ring, thiazolopyridine ring, oxazolopyridine ring, thiazolopyrazine ring,
  • the aromatic ring of A xw may have a substituent.
  • substituents include halogen atoms such as fluorine atom and chlorine atom; cyano group; alkyl group having 1 to 6 carbon atoms such as methyl group, ethyl group and propyl group; and 2 to 6 carbon atoms such as vinyl group and allyl group.
  • An alkyl group having 1 to 6 carbon atoms such as a trifluoromethyl group; a substituted amino group such as a dimethylamino group; an alkoxy group having 1 to 6 carbon atoms such as a methoxy group, an ethoxy group, and an isopropoxy group; Nitro group; aryl group such as phenyl group and naphthyl group; —C ( ⁇ O) —R 5w ; —C ( ⁇ O) —OR 5w ; —SO 2 R 6w ;
  • R 5w represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or a cycloalkyl group having 3 to 12 carbon atoms
  • R 6w is a carbon atom similar to R 4w described later. It represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a phenyl group, or a 4-methylphen
  • the aromatic ring of A xw may have a plurality of the same or different substituents, and two adjacent substituents may be bonded together to form a ring.
  • the ring formed may be a single ring or a condensed polycycle, and may be an unsaturated ring or a saturated ring.
  • the “carbon number” of the organic group having 2 to 30 carbon atoms in A xw means the total number of carbon atoms in the whole organic group not including the carbon atom of the substituent (the same applies to A yw described later). .
  • the organic group having 2 to 30 carbon atoms and having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring of A xw includes an aromatic hydrocarbon ring group; an aromatic heterocyclic ring Group: an alkyl group having 3 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring group and an aromatic heterocyclic group; from an aromatic hydrocarbon ring group and an aromatic heterocyclic group
  • a xw is not limited to the following.
  • “-” represents a bond extending from any position of the ring (the same applies hereinafter).
  • E w represents NR 6w , an oxygen atom or a sulfur atom.
  • R 6w represents a hydrogen atom; or an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, or a propyl group.
  • X w , Y w and Z w each independently represent NR 7w , an oxygen atom, a sulfur atom, —SO— or —SO 2 — (provided that an oxygen atom, a sulfur atom, — Except when SO— and —SO 2 — are adjacent to each other).
  • R 7w, said R 6w same and a hydrogen atom represents a or a methyl group, an ethyl group, an alkyl group having 1 to 6 carbon atoms such as a propyl group.
  • an aromatic hydrocarbon group having 6 to 30 carbon atoms or an aromatic heterocyclic group having 4 to 30 carbon atoms is preferable, and any of the following groups is more preferable.
  • the ring of A xw may have a substituent.
  • substituents include halogen atoms such as fluorine atom and chlorine atom; cyano group; alkyl group having 1 to 6 carbon atoms such as methyl group, ethyl group and propyl group; and 2 to 6 carbon atoms such as vinyl group and allyl group.
  • An alkyl group having 1 to 6 carbon atoms such as a trifluoromethyl group; a substituted amino group such as a dimethylamino group; an alkoxy group having 1 to 6 carbon atoms such as a methoxy group, an ethoxy group, and an isopropoxy group; Nitro group; aryl group such as phenyl group and naphthyl group; —C ( ⁇ O) —R 8w ; —C ( ⁇ O) —OR 8w ; —SO 2 R 6w ;
  • R 8w represents an alkyl group having 1 to 6 carbon atoms such as a methyl group or an ethyl group; or an aryl group having 6 to 14 carbon atoms such as a phenyl group.
  • a halogen atom, a cyano group, an alkyl group having 1 to 6 carbon atoms, and an alkoxy group having 1 to 6 carbon atoms are preferable.
  • the ring of A xw may have a plurality of the same or different substituents, and two adjacent substituents may be bonded together to form a ring.
  • the ring formed may be monocyclic or condensed polycyclic.
  • the “carbon number” of the organic group having 2 to 30 carbon atoms in A xw means the total number of carbon atoms in the whole organic group not including the carbon atom of the substituent (the same applies to A yw described later). .
  • a yw has a hydrogen atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, and a substituent.
  • a cycloalkyl group having 3 to 12 carbon atoms, an alkynyl group having 2 to 20 carbon atoms which may have a substituent, —C ( ⁇ O) —R 3w , —SO 2 —R 4w , —C ( S) NH-R 9w or an organic group having 2 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
  • R 3w has an alkyl group having 1 to 20 carbon atoms which may have a substituent, an alkenyl group having 2 to 20 carbon atoms which may have a substituent, and a substituent.
  • R 9w is an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, A cycloalkyl group having 3 to 12 carbon atoms which may have a substituent and an aromatic group having 5 to 20 carbon atoms which may have a substituent are represented.
  • alkyl group having 1 to 20 carbon atoms which may have a substituent in A yw include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and n-butyl.
  • alkenyl group having 2 to 20 carbon atoms that may have a substituent in A yw include a vinyl group, a propenyl group, an isopropenyl group, a butenyl group, an isobutenyl group, and a pentenyl group.
  • the carbon number of the alkenyl group having 2 to 20 carbon atoms which may have a substituent is preferably 2 to 12.
  • Examples of the cycloalkyl group having 3 to 12 carbon atoms of the cycloalkyl group having 3 to 12 carbon atoms which may have a substituent include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group. Groups and the like.
  • alkynyl group having 2 to 20 carbon atoms of the alkynyl group having 2 to 20 carbon atoms that may have a substituent examples include a ethynyl group, a propynyl group, a 2-propynyl group (propargyl group), and a butynyl group.
  • a substituent examples include a ethynyl group, a propynyl group, a 2-propynyl group (propargyl group), and a butynyl group.
  • Examples of the substituent of the alkyl group having 1 to 20 carbon atoms which may have a substituent and the alkenyl group having 2 to 20 carbon atoms which may have a substituent include a fluorine atom, chlorine Halogen atoms such as atoms; cyano groups; substituted amino groups such as dimethylamino groups; alkoxy groups having 1 to 20 carbon atoms such as methoxy groups, ethoxy groups, isopropoxy groups, butoxy groups; methoxymethoxy groups, methoxyethoxy groups, etc.
  • R 7w and R 10w are each independently an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or a 6 to 12 carbon atom.
  • R 8w represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a phenyl group, or a 4-methylphenyl group, similar to R 4w .
  • Examples of the substituent of the alkynyl group having 2 to 20 carbon atoms that may have a substituent of A yw include an alkyl group having 1 to 20 carbon atoms that may have a substituent and a substituent. And the same substituent as the substituent of the alkenyl group having 2 to 20 carbon atoms which may be used.
  • R 3w may have an optionally substituted alkyl group having 1 to 20 carbon atoms or a substituted group.
  • Preferred examples thereof include an alkenyl group having 2 to 20 carbon atoms, an optionally substituted cycloalkyl group having 3 to 12 carbon atoms, and an aromatic hydrocarbon group having 5 to 12 carbon atoms.
  • Specific examples thereof include the alkyl group having 1 to 20 carbon atoms which may have a substituent, the alkenyl group having 2 to 20 carbon atoms which may have a substituent, and the substituent of the above Ayw.
  • Examples of the cycloalkyl group having 3 to 12 carbon atoms which may be included are the same as those listed.
  • R 4w represents an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a phenyl group, or a 4-methylphenyl group To express.
  • Specific examples of the alkyl group having 1 to 20 carbon atoms and the alkenyl group having 2 to 20 carbon atoms in R 4w include the alkyl group having 1 to 20 carbon atoms and the alkenyl group having 2 to 20 carbon atoms in the above Ayw . Examples are the same as those listed.
  • Examples of the organic group having 2 to 30 carbon atoms and having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocycle of A yw are the same as those exemplified for A xw above. Is mentioned.
  • a yw includes a hydrogen atom, an optionally substituted alkyl group having 1 to 20 carbon atoms, an optionally substituted alkenyl group having 2 to 20 carbon atoms, and a substituent.
  • R 3w or —SO 2 —R 4w is more preferable.
  • R 3w and R 4w represent the same meaning as described above.
  • an optionally substituted alkyl group having 1 to 20 carbon atoms an optionally substituted alkenyl group having 2 to 20 carbon atoms, and an optionally substituted carbon
  • substituent of the alkynyl group having 2 to 20 carbon atoms include a halogen atom, a cyano group, an alkoxy group having 1 to 20 carbon atoms, an alkoxy group having 1 to 12 carbon atoms substituted with an alkoxy group having 1 to 12 carbon atoms, phenyl Group, cyclohexyl group, cyclic ether group having 2 to 12 carbon atoms, aryloxy group having 6 to 14 carbon atoms, hydroxyl group, benzodioxanyl group, phenylsulfonyl group, 4-methylphenylsulfonyl group, benzoyl group, -SR 10w Is preferred.
  • R 10w represents the same meaning as described above.
  • Ayw has an optionally substituted cycloalkyl group having 3 to 12 carbon atoms, an optionally substituted aromatic hydrocarbon group having 6 to 12 carbon atoms, and a substituent.
  • a substituent of the aromatic heterocyclic group having 3 to 9 carbon atoms a fluorine atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and a cyano group are preferable.
  • a xw and A yw may be combined to form a ring.
  • Examples of such a ring include an unsaturated heterocyclic ring having 4 to 30 carbon atoms and an unsaturated carbocyclic ring having 6 to 30 carbon atoms, which may have a substituent.
  • the unsaturated heterocyclic ring having 4 to 30 carbon atoms and the unsaturated carbocyclic ring having 6 to 30 carbon atoms are not particularly limited and may or may not have aromaticity.
  • the ring shown below is mentioned.
  • the ring shown below is the one in the formula (I).
  • X w , Y w and Z w represent the same meaning as described above.
  • these rings may have a substituent.
  • substituents include the same as those exemplified as the substituent of the aromatic ring of A xw .
  • the total number of ⁇ electrons contained in A xw and A yw is preferably 4 or more and 24 or less, more preferably 6 or more and 20 or less, from the viewpoint of better expressing the desired effect of the present invention. More preferably, it is 6 or more and 18 or less.
  • a xw is an aromatic hydrocarbon group or aromatic heterocyclic group having 4 to 30 carbon atoms
  • a yw is a hydrogen atom, a cycloalkyl group having 3 to 8 carbon atoms, (a halogen atom, a cyano group
  • An aromatic hydrocarbon group having 6 to 12 carbon atoms which may have a substituent of an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a cycloalkyl group having 3 to 8 carbon atoms)
  • (Halogen atom, alkyl group having 1 to 6 carbon atoms, alkoxy group having 1 to 6 carbon atoms, cyano group) which may have as a substituent a C 3-9 aromatic heterocyclic group or substituent
  • the substituent is a halogen atom, a cyano group, or from 1 to 20 carbon atoms.
  • An alkoxy group substituted with an alkoxy group having 1 to 12 carbon atoms, a phenyl group, a cyclohexyl group, a cyclic ether group having 2 to 12 carbon atoms, and an aryloxy group having 6 to 14 carbon atoms A combination of any one of a hydroxyl group, a benzodioxanyl group, a benzenesulfonyl group, a benzoyl group, -SR 10w , and ( ⁇ ) A xw and A yw together form an unsaturated heterocyclic ring or an unsaturated carbocyclic ring, Is mentioned.
  • R 10w represents the same meaning as described above.
  • a xw is any of the groups having the following structures
  • a yw is a hydrogen atom, a cycloalkyl group having 3 to 8 carbon atoms, (a halogen atom, a cyano group, an alkyl group having 1 to 6 carbon atoms, carbon
  • An aromatic hydrocarbon group having 6 to 12 carbon atoms which may have an alkoxy group having 1 to 6 carbon atoms or a cycloalkyl group having 3 to 8 carbon atoms as a substituent, (halogen atom, 1 to 6 carbon atoms)
  • R 10w represents the same meaning as described above.
  • a xw is any of the groups having the following structures
  • a yw is a hydrogen atom, a cycloalkyl group having 3 to 8 carbon atoms, (a halogen atom, a cyano group, an alkyl group having 1 to 6 carbon atoms, carbon
  • An aromatic hydrocarbon group having 6 to 12 carbon atoms which may have an alkoxy group having 1 to 6 carbon atoms or a cycloalkyl group having 3 to 8 carbon atoms as a substituent, (halogen atom, 1 to 6 carbon atoms)
  • Atom, cyano group, alkoxy group having 1 to 20 carbon atoms, carbon number 1 Alkoxy group having 1 to 12 carbon atoms, phenyl group, cyclohexyl group, cyclic ether group having 2 to 12 carbon atoms, aryloxy group having 6 to 14 carbon atoms, hydroxyl group, benzodioxanyl A combination of any one of a group, a benzenesulfonyl group, a benzoyl group, and —SR 10w .
  • X represents the same meaning as described above.
  • R 10w represents the same meaning as described above.
  • a 1w represents a trivalent aromatic group which may have a substituent.
  • the trivalent aromatic group may be a trivalent carbocyclic aromatic group or a trivalent heterocyclic aromatic group. From the viewpoint of better expressing the desired effect of the present invention, a trivalent carbocyclic aromatic group is preferable, a trivalent benzene ring group or a trivalent naphthalene ring group is more preferable, and a trivalent represented by the following formula: The benzene ring group or trivalent naphthalene ring group is more preferable.
  • the substituents Y 1w and Y 2w are described for convenience in order to clarify the bonding state (Y 1w and Y 2w represent the same meaning as described above, and the same applies hereinafter). .
  • a 1w groups represented by the following formulas (A w 11) to (A w 25) are more preferable, and formulas (A w 11), (A w 13), (A w 15) ), (A w 19), and groups represented by (A w 23) are more preferred, and groups represented by formulas (A w 11) and (A w 23) are particularly preferred.
  • Examples of the substituent that the trivalent aromatic group of A 1w may have include those exemplified as the substituent of the aromatic group of AXw .
  • a 1w preferably has no substituent.
  • a 2w and A 3w each independently represent a divalent alicyclic hydrocarbon group having 3 to 30 carbon atoms which may have a substituent.
  • Examples of the divalent alicyclic hydrocarbon group having 3 to 30 carbon atoms include a cycloalkanediyl group having 3 to 30 carbon atoms and a divalent alicyclic condensed ring group having 10 to 30 carbon atoms.
  • Examples of the cycloalkanediyl group having 3 to 30 carbon atoms include cyclopropanediyl group; cyclobutanediyl group such as cyclobutane-1,2-diyl group and cyclobutane-1,3-diyl group; cyclopentane-1,2-diyl group Cyclopentanediyl groups such as cyclopentane-1,3-diyl group; cyclohexanediyl groups such as cyclohexane-1,2-diyl group, cyclohexane-1,3-diyl group, cyclohexane-1,4-diyl group; Cycloheptanediyl groups such as cycloheptane-1,2-diyl group, cycloheptane-1,3-diyl group, cycloheptane-1,4-diyl group; cyclooc
  • Examples of the divalent alicyclic condensed ring group having 10 to 30 carbon atoms include decalin-2,5-diyl group, decalin-2,7-diyl group, etc .; adamantane-1,2-diyl group, adamantane Adamantanediyl group such as -1,3-diyl group; bicyclo [2.2.1] heptane-2,3-diyl group, bicyclo [2.2.1] heptane-2,5-diyl group, bicyclo And bicyclo [2.2.1] heptanediyl groups such as [2.2.1] heptane-2,6-diyl group.
  • These divalent alicyclic hydrocarbon groups may have a substituent at any position.
  • substituents include the same as those exemplified as the substituent of the aromatic group of AXw .
  • a 2w and A 3w a divalent alicyclic hydrocarbon group having 3 to 12 carbon atoms is preferable, a cycloalkanediyl group having 3 to 12 carbon atoms is more preferable, and the following formula (A w 31 ) ⁇ (A w 34)
  • a w 32 a group represented by the formula (A w 32) is particularly preferable.
  • the divalent alicyclic hydrocarbon group having 3 to 30 carbon atoms is a cis type or a trans type based on a difference in configuration of carbon atoms bonded to Y 1w , Y 3w (or Y 2w , Y 4w ).
  • Stereoisomers can exist.
  • a cis isomer (A w 32a) and a trans isomer (A w 32b) may exist as shown below.
  • it may be a cis type, a trans type, or a mixture of cis and trans isomers.
  • a trans type Preferably, there is a trans type.
  • a 4w and A 5w each independently represent a divalent aromatic group having 6 to 30 carbon atoms, which may have a substituent.
  • the aromatic group of A 4w and A 5w may be monocyclic or polycyclic.
  • Preferable specific examples of A 4w and A 5w include the following.
  • the divalent aromatic groups of A 4w and A 5w may have a substituent at any position.
  • substituents include a halogen atom, a cyano group, a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a nitro group, a —C ( ⁇ O) —OR 8w group, and the like. It is done.
  • R 8w is an alkyl group having 1 to 6 carbon atoms.
  • a halogen atom, an alkyl group having 1 to 6 carbon atoms, and an alkoxy group are preferable.
  • the halogen atom is preferably a fluorine atom
  • the alkyl group having 1 to 6 carbon atoms is preferably a methyl group, an ethyl group or a propyl group
  • the alkoxy group is more preferably a methoxy group or an ethoxy group.
  • a 4w and A 5w may each independently have a substituent, the following formulas (A w 41), ( The groups represented by A w 42) and (A w 43) are more preferable, and the group represented by the formula (A w 41) which may have a substituent is particularly preferable.
  • Q 1w represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
  • alkyl group having 1 to 6 carbon atoms which may have a substituent include the same as those exemplified for the above AXw .
  • Q 1w is preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, more preferably a hydrogen atom or a methyl group.
  • Compound (V) can be produced, for example, by the reaction shown below.
  • a hydrazine compound represented by formula (3w) (hydrazine compound (3w)) is converted into a carbonyl compound (carbonyl compound (4w)) represented by formula (4w) and [hydrazine compound (3w): carbonyl compound ( 4w)] at a molar ratio of 1: 2 to 2: 1, preferably 1: 1.5 to 1.5: 1.
  • V can be produced.
  • the reaction can be carried out by adding an acid catalyst such as an organic acid such as ( ⁇ ) -10-camphorsulfonic acid and paratoluenesulfonic acid; an inorganic acid such as hydrochloric acid and sulfuric acid;
  • an acid catalyst By adding an acid catalyst, the reaction time may be shortened and the yield may be improved.
  • the addition amount of the acid catalyst is usually 0.001 to 1 mol per 1 mol of the carbonyl compound (4w). Further, the acid catalyst may be added as it is, or may be added as a solution dissolved in an appropriate solution.
  • the solvent used in this reaction is not particularly limited as long as it is inert to the reaction.
  • alcohol solvents such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol, t-butyl alcohol; diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane Ether solvents such as 1,4-dioxane and cyclopentyl methyl ether; ester solvents such as ethyl acetate, propyl acetate and methyl propionate; aromatic hydrocarbon solvents such as benzene, toluene and xylene; n-pentane, n -Aliphatic hydrocarbon solvents such as hexane and n-heptane; Amides solvents such as N, N-dimethylformamide, N-methylpyrrolidone and hexamethyl
  • the amount of the solvent used is not particularly limited and can be appropriately determined in consideration of the type of compound used, reaction scale, etc., but is usually 1 to 100 g with respect to 1 g of the hydrazine compound (3w).
  • the reaction proceeds smoothly in the temperature range from ⁇ 10 ° C. to the boiling point of the solvent used.
  • the reaction time for each reaction is usually from several minutes to several hours depending on the reaction scale.
  • the hydrazine compound (3w) can be produced as follows.
  • a xw and A yw represent the same meaning as described above.
  • X w represents a leaving group such as a halogen atom, a methanesulfonyloxy group, and a p-toluenesulfonyloxy group.
  • the compound represented by the formula (2wa) and hydrazine (1w) are mixed in a suitable solvent in a molar ratio of (compound (2wa): hydrazine (1w)) of 1: 1 to 1:20, preferably 1 : 2 to 1:10 to obtain the corresponding hydrazine compound (3wa), and by reacting the hydrazine compound (3wa) with the compound represented by the formula (2wb), the hydrazine compound ( 3w) can be obtained.
  • hydrazine (1w) a monohydrate is usually used.
  • hydrazine (1w) a commercially available product can be used as it is.
  • the solvent used in this reaction is not particularly limited as long as it is inert to the reaction.
  • alcohol solvents such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, sec-butyl alcohol, t-butyl alcohol; diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane Ether solvents such as 1,4-dioxane and cyclopentyl methyl ether
  • aromatic hydrocarbon solvents such as benzene, toluene and xylene
  • aliphatic hydrocarbon solvents such as n-pentane, n-hexane and n-heptane
  • amide solvents such as N, N-dimethylformamide,
  • the amount of the solvent to be used is not particularly limited and can be appropriately determined in consideration of the type of compound used, reaction scale, etc., but is usually 1 to 100 g with respect to 1 g of hydrazine.
  • the reaction proceeds smoothly in a temperature range from ⁇ 10 ° C. to the boiling point of the solvent used.
  • the reaction time for each reaction is usually from several minutes to several hours depending on the reaction scale.
  • the hydrazine compound (3w) can also be produced by reducing the diazonium salt (5w) using a conventionally known method as follows.
  • a xw and A yw represent the same meaning as described above.
  • X w ⁇ represents an anion which is a counter ion for diazonium.
  • examples of X w- include inorganic anions such as hexafluorophosphate ion, borofluoride ion, chloride ion, sulfate ion; polyfluoroalkylcarboxylate ion, polyfluoroalkylsulfonate ion, tetraphenylborate And organic anions such as ions, aromatic carboxylate ions, and aromatic sulfonate ions.
  • a metal salt reducing agent is mentioned as a reducing agent used for the said reaction.
  • a metal salt reducing agent is generally a compound containing a low-valent metal or a compound comprising a metal ion and a hydride source (“Organic Synthesis Experiment Handbook”, 1990, published by Maruzen Co., Ltd., edited by the Society of Synthetic Organic Chemistry, Japan). See).
  • R is an alkyl group having 1 to 6 carbon atoms. LiAlH 4 , iBu 2 AlH, LiBH 4 , NaBH 4 , SnCl 2 , CrCl 2 , TiCl 3 and the like.
  • the diazonium salt (5 w ) can be produced from a compound such as aniline by a conventional method.
  • the carbonyl compound (4 w ) typically has an ether bond (—O—), an ester bond (—C ( ⁇ O) —O—, —O—C ( ⁇ O) —), a carbonate bond (—O—).
  • Formation of an ether bond can be performed as follows.
  • D1-hal hal represents a halogen atom; the same shall apply hereinafter
  • D2-OMet Metal represents an alkali metal (mainly sodium). The same) is mixed and condensed (Williamson synthesis).
  • D1 and D2 represent arbitrary organic groups (the same applies hereinafter).
  • a compound represented by the formula: D1-hal and a compound represented by the formula: D2-OH are mixed and condensed in the presence of a base such as sodium hydroxide or potassium hydroxide.
  • a compound represented by the formula: D1-J J represents an epoxy group
  • a compound represented by the formula: D2-OH are mixed in the presence of a base such as sodium hydroxide or potassium hydroxide.
  • a base such as sodium hydroxide or potassium hydroxide.
  • D1-OFN OFN represents a group having an unsaturated bond
  • D2-OMet are mixed with a base such as sodium hydroxide or potassium hydroxide. In the presence, they are mixed and subjected to an addition reaction.
  • a compound represented by the formula: D1-hal and a compound represented by the formula: D2-OMet are mixed and condensed in the presence of copper or cuprous chloride (Ullman condensation).
  • Formation of an ester bond and an amide bond can be performed as follows.
  • a compound represented by the formula: D1-COOH and a compound represented by the formula: D2-OH or D2-NH 2 are dehydrated in the presence of a dehydration condensing agent (N, N-dicyclohexylcarbodiimide or the like). Allow to condense.
  • a dehydration condensing agent N, N-dicyclohexylcarbodiimide or the like. Allow to condense.
  • a compound represented by the formula: D1-CO-hal is obtained by allowing a halogenating agent to act on the compound represented by the formula: D1-COOH, which is combined with the formula: D2-OH or D2-NH. The compound represented by 2 is reacted in the presence of a base.
  • carbonyl compound (4w) of the present invention can be produced by the method shown in the following reaction formula.
  • L 1w and L 2w are a hydroxyl group and a halogen atom. atom, methanesulfonyloxy group, represents a leaving group.
  • -Y 1aw is such p- toluenesulfonyloxy group, to react with -L 1 w, -Y 1 w - represent become group, -Y 2Aw is - This represents a group that reacts with L 2w to become —Y 2w —.
  • Y 1w is a group represented by Y 11w —C ( ⁇ O) —O—, and the formula: Z 2w —Y 8w —G 2w —Y 6w —A 5w —Y 4w —A 3w -Y 2w - group represented by the formula: Z 1w -Y 7w -G 1w -Y 5w -A 4w -Y 3w -A 2w -Y 1w - is identical to the group represented by the compound (4w The production method of ') is shown below.
  • Y 3w , Y 5w , Y 7w , G 1w , Z 1w , A 1w , A 2w , A 4w , Q 1w , and L 1w represent the same meaning as described above.
  • Y 1 w represents a group serving as Y 1 w as defined above.
  • the compound (7w) is a compound (carboxylic acid) in which L 1w is a hydroxyl group in the formula (7w), dehydration of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, dicyclohexylcarbodiimide, etc.
  • the target product can be obtained by reacting in the presence of a condensing agent.
  • the amount of the dehydrating condensing agent to be used is generally 1 to 3 mol per 1 mol of compound (7w).
  • the compound (7w) is a compound (carboxylic acid) in which L 1w is a hydroxyl group in the formula (7w), a sulfonyl halide such as methanesulfonyl chloride, p-toluenesulfonyl chloride, triethylamine, diisopropylethylamine,
  • a base such as pyridine or 4- (dimethylamino) pyridine.
  • the amount of the sulfonyl halide to be used is generally 1 to 3 mol per 1 mol of compound (7w).
  • the amount of the base to be used is generally 1 to 3 mol per 1 mol of compound (7w).
  • a compound (mixed acid anhydride) in which L 1w is a sulfonyloxy group may be isolated to perform the next reaction.
  • the desired product can be obtained by reacting in the presence of a base.
  • a base examples include organic bases such as triethylamine and pyridine; and inorganic bases such as sodium hydroxide, sodium carbonate and sodium hydrogen carbonate.
  • the amount of the base to be used is generally 1 to 3 mol per 1 mol of compound (7w).
  • Examples of the solvent used in the above reaction include chlorine solvents such as chloroform and methylene chloride; amide solvents such as N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, and hexamethylphosphoric triamide; Ethers such as 1,4-dioxane, cyclopentyl methyl ether, tetrahydrofuran, tetrahydropyran, 1,3-dioxolane; sulfur-containing solvents such as dimethyl sulfoxide and sulfolane; aromatic hydrocarbon solvents such as benzene, toluene and xylene; aliphatic hydrocarbon solvents such as n-pentane, n-hexane and n-octane; alicyclic hydrocarbon solvents such as cyclopentane and cyclohexane; and mixed solvents composed of two or more of these solvents; It is done.
  • the compound (6w) is a known substance and can be produced by a known method. For example, it can be produced by the method shown in the following reaction formula (see WO2009 / 042544 and The Journal of Organic Chemistry, 2011, 76, 8082-8087, etc.). What is marketed as a compound (6w) can also be refine
  • a 1w and Q 1w represent the same meaning as described above, A 1aw represents a divalent aromatic group that becomes A 1w by formylation or acylation, and R w ′ represents a methyl group. And represents a hydroxyl-protecting group such as an alkyl group having 1 to 6 carbon atoms such as an ethyl group, and an alkoxyalkyl group having 2 to 6 carbon atoms such as a methoxymethyl group.) That is, after the hydroxyl group of a dihydroxy compound represented by the formula (6wa) (1,4-dihydroxybenzene, 1,4-dihydroxynaphthalene, etc.) is alkylated to obtain a compound represented by the formula (6wb), OR The ortho-position of the w ′ group is formylated or acylated by a known method to obtain a compound represented by the formula (6wc), and this is deprotected (dealkylated) to obtain the objective
  • the compound (6w) to be obtained can
  • Y 12w represents —O—C ( ⁇ O) —Y 12w represents Y .
  • R w representing the become group 3w is an alkyl group such as a methyl group, an ethyl group, represents a); phenyl, p- aryl group which may have a substituent such as a methyl phenyl group.
  • the compound (9w ′) is reacted with a sulfonyl chloride represented by the formula (10w) in the presence of a base such as triethylamine or 4- (dimethylamino) pyridine.
  • a base such as triethylamine or 4- (dimethylamino) pyridine.
  • the reaction is carried out by adding the compound (8w) and a base such as triethylamine, 4- (dimethylamino) pyridine to the reaction mixture.
  • the amount of sulfonyl chloride to be used is generally 0.5-0.7 equivalent per 1 equivalent of compound (9w ′).
  • the amount of compound (8w) to be used is generally 0.5-0.6 equivalent per 1 equivalent of compound (9w ′).
  • the amount of the base to be used is generally 0.5-0.7 equivalent relative to 1 equivalent of compound (3w).
  • the reaction temperature is 20 to 30 ° C., and the reaction time is several minutes to several hours depending on the reaction scale and the like.
  • a solvent used for the said reaction what was illustrated as a solvent which can be used when manufacturing the said compound (4w ') is mentioned. Of these, ethers are preferred.
  • the amount of the solvent to be used is not particularly limited and can be appropriately determined in consideration of the type of compound used, reaction scale, etc., but is usually 1 to 50 g with respect to 1 g of compound (9w ′).
  • any reaction after the completion of the reaction, the usual post-treatment operation in organic synthetic chemistry is performed, and if desired, by applying known separation / purification means such as column chromatography, recrystallization method, distillation method, etc. Product can be isolated.
  • separation / purification means such as column chromatography, recrystallization method, distillation method, etc.
  • the structure of the target compound can be identified by measurement of NMR spectrum, IR spectrum, mass spectrum, etc., elemental analysis or the like.
  • the composition (A) contains a polymerizable monomer.
  • the “polymerizable monomer” refers to a compound other than the reverse wavelength dispersion polymerizable liquid crystal compound, among compounds having a polymerization ability and capable of functioning as a monomer.
  • the polymerizable monomer for example, one having one or more polymerizable groups per molecule can be used. By having such a polymerizable group, polymerization can be achieved in forming the optically anisotropic layer.
  • the polymerizable monomer is a crosslinkable monomer having two or more polymerizable groups per molecule, crosslinkable polymerization can be achieved.
  • polymerizable groups examples include the same groups as the groups Z 1 —Y 5 — and Z 2 —Y 6 — in the compound (I), and more specifically, for example, acryloyl group, methacryloyl Groups and epoxy groups.
  • the polymerizable monomer usually has one or more mesogens per molecule and can be polymerized together with the reverse wavelength dispersion polymerizable liquid crystal compound when forming the optically anisotropic layer.
  • the polymerizable monomer mesogen usually has a wavelength dispersion characteristic of birefringence ⁇ n different from that of the reverse dispersion polymerizable liquid crystal compound.
  • the polymerizable monomer mesogen can be aligned in parallel with either the main chain mesogen or the side chain mesogen of the reverse wavelength dispersion polymerizable liquid crystal compound.
  • the polymerizable monomer may have a mesogen having a structure close to one of a main chain mesogen and a side chain mesogen of the reverse dispersion wavelength polymerizable liquid crystal compound.
  • the polymerizable monomer has a wavelength dispersion characteristic of birefringence ⁇ n different from that of the reverse dispersion polymerizable liquid crystal compound, and the main chain mesogen or side chain mesogen of the reverse wavelength dispersion polymerizable liquid crystal compound. Can be oriented in parallel.
  • Examples of the polymerizable monomer include a compound represented by the following formula (II) and a compound represented by the following formula (III) (hereinafter referred to as “compound (II)” and “compound (III)”, respectively). .).
  • Y 1 to Y 6 , G 1 , G 2 , Z 1 , Z 2 , and A 1 to A 3 each have the same meaning as described in the description of formula (I).
  • R 10 represents a hydrogen atom or a methyl group.
  • Compound (II) is the same as the corresponding group in Compound (I) in which Y 1 to Y 6 , G 1 , G 2 , Z 1 , Z 2 , and A 1 to A 3 in the structure are used together It may be different or different. However, it is preferable to use the same compound (II) in which the mesogenic portion and the polymerizable group portion are the same as the compound (I) used together, in order to obtain a good orientation. More specifically, it is preferable that Y 1 to Y 6 , Z 1 , Z 2 , and A 1 to A 3 are common to the compound (I) and the compound (II).
  • Y 1x to Y 6x , G 1x , G 2x , Z 1x , Z 2x , A xx , A ix , A 1x to A 3x , and Q 1x are each represented by formula (I) Y 1 to Y 6 , G 1 , G 2 , Z 1 , Z 2 , A x , A y , A 1 to A 3 , and Q 1 represent the same meaning. However, at least one of these is different from the corresponding group in the compound (I) used together.
  • Y 1x to Y 6x , G 1x , G 2x , Z 1x , Z 2x , A xx , A yx , A 2x to A 3x , and Q 1x is the same as Y 1 to Y 6 , G 1 , G 2 , Z 1 , Z 2 , A x , A y , A 2 to A 3 , and Q 1 in the compound (I) used together.
  • a 1x may be different from A 1 in the compound (I) used together.
  • a 1 in compound (I) is a group represented by the following formula (A25), while in compound (III) A 1x is a group represented by the following formula (A26), and the other groups include the same combinations.
  • a 1 and A 1x are shown together with Y 1 and Y 2 for convenience of illustration.
  • the polymerizable monomer is compound (III)
  • the group -Y 3x -A 2x -Y 1x -A 1x -Y 2x -A 3x -Y 4x -and the group> A 1x -C (Q 1x ) NN ( Axx ) Ayx becomes a mesogen.
  • compound (IV) As a further example of the polymerizable monomer, a compound represented by the following formula (IV) (hereinafter sometimes referred to as “compound (IV)”) may be mentioned.
  • the polymerizable monomer itself may be liquid crystalline or non-liquid crystalline.
  • the polymerizable monomer is preferably non-liquid crystalline, and is particularly preferably compound (III) and non-liquid crystalline.
  • non-liquid crystalline per se means that the polymerizable monomer itself does not show orientation on a substrate subjected to orientation treatment even when placed at any temperature from room temperature to 200 ° C. Say things. Whether or not the orientation is indicated is determined by whether or not there is a contrast between light and dark when the rubbing direction is rotated by the surface phase in the crossed Nicol transmission observation of the polarizing microscope.
  • the blending ratio of the polymerizable monomer is usually 1 to 100 parts by weight, preferably 5 to 50 parts by weight with respect to 100 parts by weight of the reverse wavelength dispersion polymerizable liquid crystal compound. Within the above range, precise control of the reverse wavelength dispersion characteristic is facilitated by appropriately adjusting the blending ratio of the polymerizable monomer so as to exhibit the desired reverse wavelength dispersion characteristic.
  • the polymerizable monomer can be produced by a known production method. Or what has a structure similar to compound (I) can be manufactured according to the manufacturing method of compound (I).
  • composition (A) can contain arbitrary components such as those exemplified below as necessary, in addition to the reverse wavelength dispersion polymerizable liquid crystal compound and the polymerizable monomer.
  • composition (A) may contain any monomer that can be copolymerized with the reverse wavelength dispersion polymerizable liquid crystal compound.
  • the optional monomer examples include, for example, 4- (2-methacryloyloxyethyloxy) benzoic acid-4′-methoxyphenyl, 4- (6-methacryloyloxyhexyloxy) benzoic acid biphenyl, 4- (2 -Acryloyloxyethyloxy) benzoic acid-4'-cyanobiphenyl, 4- (2-methacrylolyloxyethyloxy) benzoic acid-4'-cyanobiphenyl, 4- (2-methacrylolyloxyethyloxy) benzoic acid -3 ′, 4′-difluorophenyl, 4- (2-methacryloyloxyethyloxy) benzoic acid naphthyl, 4-acryloyloxy-4′-decylbiphenyl, 4-acryloyloxy-4′-cyanobiphenyl, 4- (2 -Acryloyloxyethyloxy) -4'-cyanobiphenyl, 4- (2-methacryl
  • LC-242 commercial product; manufactured by BASF
  • Japanese Patent Application Laid-Open Nos. 2007-002208, 2009-173893, 2009-274984, and 2010- It is also possible to use compounds disclosed in JP030979, JP2010-031223A, JP2011006360A, and the like.
  • the ratio of the arbitrary monomer is 50% by weight with respect to the total of the reverse wavelength dispersion polymerizable liquid crystal compound, the polymerizable monomer, and the arbitrary monomer. Is preferably less than 30% by weight, and more preferably 30% by weight or less.
  • the lower limit of the proportion of any monomer can be 0% by weight. If it exists in this range, since the glass transition temperature (Tg) of the optically anisotropic layer obtained becomes high and high film
  • Composition (A) may contain a polymerization initiator.
  • a polymerization initiator it can select suitably according to the kind of polymeric group which a reverse wavelength dispersion polymerizable liquid crystal compound, a polymerizable monomer, and another polymerizable compound have in a composition (A).
  • a radical polymerization initiator can be used if the polymerizable group is radical polymerizable
  • an anionic polymerization initiator can be used if it is an anion polymerizable group
  • a cationic polymerization initiator can be used if it is a cationic polymerizable group.
  • a thermal radical generator which is a compound that generates an active species capable of initiating polymerization of a polymerizable compound by heating; and visible light, ultraviolet light (i-line, etc.), far ultraviolet light, electron beam
  • photoradical generators which are compounds that generate active species capable of initiating polymerization of a polymerizable compound upon exposure to exposure light such as X-rays, can be used, but photoradical generators are used. Is preferred.
  • Photoradical generators include acetophenone compounds, biimidazole compounds, triazine compounds, O-acyloxime compounds, onium salt compounds, benzoin compounds, benzophenone compounds, ⁇ -diketone compounds, polynuclear quinone compounds , Xanthone compounds, diazo compounds, imide sulfonate compounds, and the like. These compounds are components that generate active radicals or active acids or both active radicals and active acids upon exposure.
  • a photoradical generator can be used individually by 1 type or in combination of 2 or more types.
  • acetophenone compounds include 2-hydroxy-2-methyl-1-phenylpropan-1-one, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, Examples thereof include 1,2-octanedione, 2-benzyl-2-dimethylamino-4′-morpholinobutyrophenone, and the like.
  • biimidazole compound examples include 2,2′-bis (2-chlorophenyl) -4,4 ′, 5,5′-tetrakis (4-ethoxycarbonylphenyl) -1,2′-biimidazole, 2 , 2'-bis (2-bromophenyl) -4,4 ', 5,5'-tetrakis (4-ethoxycarbonylphenyl) -1,2'-biimidazole, 2,2'-bis (2-chlorophenyl) -4,4 ', 5,5'-tetraphenyl-1,2'-biimidazole, 2,2'-bis (2,4-dichlorophenyl) -4,4', 5,5'-tetraphenyl-1 , 2′-biimidazole, 2,2′-bis (2,4,6-trichlorophenyl) -4,4 ′, 5,5′-tetraphenyl-1,2′-biimi
  • a hydrogen donor means a compound that can donate a hydrogen atom to a radical generated from a biimidazole compound by exposure.
  • the hydrogen donor mercaptan compounds, amine compounds and the like defined below are preferable.
  • Examples of mercaptan compounds include 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, 2-mercaptobenzimidazole, 2,5-dimercapto-1,3,4-thiadiazole, 2-mercapto-2,5-dimethylaminopyridine and the like. Can be mentioned.
  • Examples of amine compounds include 4,4′-bis (dimethylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone, 4-diethylaminoacetophenone, 4-dimethylaminopropiophenone, ethyl-4-dimethylaminobenzoate, Examples include 4-dimethylaminobenzoic acid and 4-dimethylaminobenzonitrile.
  • triazine compounds examples include 2,4,6-tris (trichloromethyl) -s-triazine, 2-methyl-4,6-bis (trichloromethyl) -s-triazine, 2- [2- (5-methylfuran -2-yl) ethenyl] -4,6-bis (trichloromethyl) -s-triazine, 2- [2- (furan-2-yl) ethenyl] -4,6-bis (trichloromethyl) -s-triazine 2- [2- (4-diethylamino-2-methylphenyl) ethenyl] -4,6-bis (trichloromethyl) -s-triazine, 2- [2- (3,4-dimethoxyphenyl) ethenyl] -4 , 6-Bis (trichloromethyl) -s-triazine, 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -s-tri
  • O-acyloxime compounds include 1- [4- (phenylthio) phenyl] -heptane-1,2-dione 2- (O-benzoyloxime), 1- [4- (phenylthio) phenyl]- Octane-1,2-dione 2- (O-benzoyloxime), 1- [4- (benzoyl) phenyl] -octane-1,2-dione 2- (O-benzoyloxime), 1- [9-ethyl- 6- (2-Methylbenzoyl) -9H-carbazol-3-yl] -ethanone 1- (O-acetyloxime), 1- [9-ethyl-6- (3-methylbenzoyl) -9H-carbazole-3- Yl] -ethanone 1- (O-acetyloxime), 1- (9-ethyl-6-benzoyl-9H-carbazol-3-yl) -ethanone 1- (O-acetyl)
  • anionic polymerization initiator examples include alkyl lithium compounds; monolithium salts or monosodium salts such as biphenyl, naphthalene, and pyrene; polyfunctional initiators such as dilithium salts and trilithium salts; and the like.
  • the cationic polymerization initiator examples include proton acids such as sulfuric acid, phosphoric acid, perchloric acid, and trifluoromethanesulfonic acid; Lewis acids such as boron trifluoride, aluminum chloride, titanium tetrachloride, and tin tetrachloride.
  • These polymerization initiators can be used alone or in combination of two or more.
  • the blending ratio of the polymerization initiator is usually 0.1 to 30 parts by weight, preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the polymerizable compound.
  • Composition (A) may contain a surfactant for adjusting the surface tension.
  • the surfactant is not particularly limited, but a nonionic surfactant is usually preferable.
  • a commercially available product can be used as the nonionic surfactant.
  • a nonionic surfactant which is an oligomer having a molecular weight of about several thousand, for example, KH-40 manufactured by Seimi Chemical Co., Ltd. can be used.
  • the blending ratio of the surfactant is usually 0.01 to 10 parts by weight, preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of the polymerizable compound.
  • Composition (A) may contain a solvent such as an organic solvent.
  • organic solvents include ketones such as cyclopentanone, cyclohexanone, methyl ethyl ketone, acetone and methyl isobutyl ketone; acetate esters such as butyl acetate and amyl acetate; halogenated hydrocarbons such as chloroform, dichloromethane and dichloroethane; Examples include ethers such as 1,4-dioxane, cyclopentylmethyl ether, tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, and 1,2-dimethoxyethane; and aromatic hydrocarbons such as toluene, xylene, and mesitylene.
  • the boiling point of the solvent is preferably 60 to 250 ° C., more preferably 60 to 150 ° C., from the viewpoint of excellent handleability.
  • the amount of the solvent used is usually 100 to 1000 parts by weight with respect to 100 parts by weight of the polymerizable compound.
  • the composition (A) is further composed of metal, metal complex, dye, pigment, fluorescent material, phosphorescent material, leveling agent, thixotropic agent, gelling agent, polysaccharide, ultraviolet absorber, infrared absorber, antioxidant, ion.
  • An optional additive such as an exchange resin and a metal oxide such as titanium oxide may be included.
  • the ratio of such optional additives is usually 0.1 to 20 parts by weight per 100 parts by weight of the polymerizable compound.
  • Composition (A) can usually be prepared by mixing the components described above.
  • optically anisotropic layer is a layer formed by curing the composition (A).
  • composition (A) Upon curing, a part of the components constituting the composition (A) may be chemically changed or may be discharged out of the system and disappear. For example, usually, upon curing, all or most of the polymerizable compound is polymerized into a polymer, while all or most of the solvent volatilizes and disappears.
  • the composition (A) is usually cured by coating the composition (A) on the support or the surface of the alignment film provided on the support, and the polymerizable liquid crystal compound in the layer of the composition (A). Can be achieved by orienting in the desired direction, drying the layer of the composition (A) as necessary, and subsequently polymerizing the polymerizable compound.
  • the support and the alignment film used in this production process may be used as components of the retardation plate as they are. Alternatively, the support and the alignment film may be peeled off and only the optically anisotropic layer may be used as the retardation plate.
  • the support is not particularly limited, and may be a plate or film made of a known organic or inorganic material.
  • organic materials include polycycloolefins (for example, ZEONEX, ZEONOR (registered trademark; manufactured by ZEON CORPORATION), ARTON (registered trademark; manufactured by JSR), and APPEL (registered trademark; manufactured by Mitsui Chemicals)), polyethylene terephthalate , Polycarbonate, polyimide, polyamide, polymethyl methacrylate, polystyrene, polyvinyl chloride, polytetrafluoroethylene, cellulose, cellulose triacetate, and polyethersulfone.
  • inorganic materials include silicon, glass, and calcite. An organic material is preferable from the viewpoint of cost and good handleability.
  • An alignment film can be provided on the surface of the support. In that case, an optically anisotropic layer can be formed on the alignment film.
  • the alignment film can align the liquid crystal compound in the composition (A) in one direction in a plane.
  • the alignment film contains a polymer such as polyimide, polyvinyl alcohol, polyester, polyarylate, polyamideimide, or polyetherimide.
  • the alignment film can be obtained by applying a solution (composition for alignment film) containing such a polymer on the substrate in the form of a film, drying it, and rubbing it in one direction.
  • the thickness of the alignment film is preferably 0.001 to 5 ⁇ m, and more preferably 0.001 to 1 ⁇ m.
  • the surface of the support or the alignment film can be rubbed as necessary.
  • an orientation ability for orienting a compound capable of exhibiting liquid crystallinity in the composition (A) can be imparted to the surface.
  • the rubbing treatment method is not particularly limited, and examples thereof include a method of rubbing the surface of the support or the alignment film in a fixed direction with a roll made of a synthetic fiber such as nylon or a natural fiber such as cotton or a felt.
  • a synthetic fiber such as nylon or a natural fiber such as cotton or a felt.
  • the alignment film can be provided with a function of regulating the alignment of the cholesteric liquid crystal layer having cholesteric regularity in one direction in a plane by irradiating the surface of the alignment film with polarized ultraviolet rays. it can.
  • an ion beam alignment method in which an ion beam such as Ar + is obliquely incident on the support to impart alignment ability to the support can be used.
  • composition (A) examples include curtain coating method, extrusion coating method, roll coating method, spin coating method, dip coating method, bar coating method, spray coating method, slide coating method, print coating method, and gravure coating.
  • Method, die coating method, cap coating method, and dipping method examples include curtain coating method, extrusion coating method, roll coating method, spin coating method, dip coating method, bar coating method, spray coating method, slide coating method, print coating method, and gravure coating.
  • a layer of the composition (A) can be formed by such coating, and the liquid crystal compound in the layer can be aligned in a desired manner.
  • orientation may be achieved immediately by application, but may also be achieved by performing orientation treatment such as heating after application, if necessary.
  • the main chain mesogen and the side chain mesogen are aligned in different directions.
  • the angle formed by the orientation direction of the main chain mesogen and the orientation direction of the side chain mesogen can be any angle other than 0 °, but 70 to 110 ° achieves a good reverse dispersion wavelength. Preferred above.
  • Such orientation can be achieved by, for example, appropriately selecting a compound having a desired orientation from the compounds exemplified above as the reverse wavelength dispersion polymerizable liquid crystal compound.
  • the polymerizable monomer mesogen is preferably oriented. Furthermore, the mesogen of the polymerizable monomer is more preferably aligned in parallel with either the main chain mesogen or the side chain mesogen of the reverse wavelength dispersion polymerizable liquid crystal compound.
  • the drying of the layer of the composition (A) can be achieved by a drying method such as natural drying, heat drying, vacuum drying, and vacuum heat drying.
  • the solvent can be removed by such drying.
  • a method suitable for the properties of the components of the composition (A) such as the polymerizable compound and the polymerization initiator can be appropriately selected.
  • examples thereof include a method of irradiating active energy rays and a thermal polymerization method.
  • a method of irradiating active energy rays is preferable because the reaction proceeds at room temperature without requiring heating.
  • the irradiated active energy rays can include light such as visible light, ultraviolet light, and infrared light, and arbitrary energy rays such as electron beams.
  • a method of irradiating light such as ultraviolet rays is preferable because the operation is simple.
  • the temperature during ultraviolet irradiation is preferably 30 ° C. or lower.
  • the lower limit of the temperature during ultraviolet irradiation can be 15 ° C. or higher.
  • Ultraviolet irradiation intensity is usually, 0.1mW / cm 2 ⁇ 1000mW / cm 2 range, preferably in the range of 0.5mW / cm 2 ⁇ 200mW / cm 2.
  • the optically anisotropic layer In the optically anisotropic layer, the main chain mesogen and the side chain mesogen of the reverse wavelength dispersion polymerizable liquid crystal compound are aligned in different directions.
  • the “mesogen of the reverse wavelength dispersion polymerizable liquid crystal compound” in the optically anisotropic layer is a mesogen existing in the molecule of the reverse wavelength dispersion polymerizable liquid crystal compound, and the reverse wavelength dispersion polymerizable liquid crystal compound is polymerized. It is a mesogen in the polymer produced by this.
  • the main chain mesogen and the side chain mesogen are oriented in different directions, so that the birefringence ⁇ n of the optically anisotropic layer has the reverse wavelength dispersion characteristic. It can be expressed.
  • the fact that the birefringence ⁇ n of the optically anisotropic layer has an inverse wavelength dispersion characteristic is measured by using a phase difference analyzer (product name “AxoScan” manufactured by AXOMETRIC, etc.) to measure the birefringence ⁇ n at various wavelengths ⁇ . Can be confirmed.
  • the mesogen of the polymerizable monomer is preferably oriented.
  • the “polymerizable monomer mesogen” in the optically anisotropic layer is a mesogen present in the molecule of the polymerizable monomer, and is a mesogen in the polymer produced by polymerization of the polymerizable monomer. More preferably, the mesogen of the polymerizable monomer is aligned in parallel with either the main chain mesogen or the side chain mesogen of the reverse wavelength dispersion polymerizable liquid crystal compound.
  • the polymerizable monomer By orienting the polymerizable monomer in such an embodiment, good orientation can be obtained and precise adjustment of reverse wavelength dispersion can be achieved.
  • the polymerizable monomer has two or more mesogens per molecule, one of them is parallel to the main chain mesogen of the reverse wavelength dispersion polymerizable liquid crystal compound, and the other is reverse wavelength dispersion polymerizable. You may align in parallel with the side chain mesogen of a liquid crystal compound.
  • the retardation of the optically anisotropic layer satisfies the following relationship. That is, retardations Re0 (450 nm), Re0 (550 nm) and Re0 (650 nm) at wavelengths of 450 nm, 550 nm and 650 nm of the layer obtained by curing the composition (A0), and wavelengths of the optically anisotropic layer of 450 nm, 550 nm and 650 nm.
  • Retardation in Re (450 nm), Re (550 nm) and Re (650 nm) satisfy the relationship of the following formulas (i) and (ii), or satisfy the relationship of the following formulas (iii) and (iv) .
  • the composition (A0) is a composition obtained by replacing the polymerizable monomer in the composition (A) with a reverse dispersion polymerizable liquid crystal compound.
  • the composition (A) is composed of a reverse dispersion wavelength polymerizable liquid crystal compound, a polymerizable monomer, a photopolymerization initiator, a surfactant and a solvent, and the total proportion of the reverse dispersion wavelength polymerizable liquid crystal compound and the polymerizable monomer is
  • the composition (A0) is a composition comprising a reverse dispersion wavelength polymerizable liquid crystal compound, a photopolymerization initiator, a surfactant, and a solvent, and the ratio of the reverse dispersion wavelength polymerizable liquid crystal compound is x% by weight, and the composition ratio of the photopolymerization initiator, the surfactant and the solvent is the same as that of the composition (A).
  • the conditions for forming the layer formed by curing the composition (A0) are the same as the conditions for curing the composition (A) to form the optically anisotropic layer.
  • the optical characteristics of the layer obtained by curing the composition (A0) thus obtained satisfy the predetermined conditions described above, precise control of the inverse wavelength dispersion characteristics can be achieved. it can.
  • the thickness of the optically anisotropic layer is not particularly limited, and can be appropriately adjusted so that properties such as retardation can be within a desired range.
  • the lower limit of the thickness is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, while the upper limit of the thickness is preferably 10 ⁇ m or less, and is 5 ⁇ m or less. Is more preferable.
  • the retardation plate of the present invention may be composed of only the optically anisotropic layer described above, or may have other layers as necessary.
  • the layers other than the optically anisotropic layer can be usually optically isotropic layers.
  • optional layers include an adhesive layer that bonds each layer, a mat layer that improves the slipperiness of the film, a hard coat layer such as an impact-resistant polymethacrylate resin layer, an antireflection layer, and an antifouling layer. It is done.
  • the circularly polarizing plate of the present invention includes the retardation plate of the present invention and a linear polarizer.
  • linear polarizer a known polarizer used in an apparatus such as a liquid crystal display device can be used.
  • linear polarizers are those obtained by adsorbing iodine or dichroic dye on a polyvinyl alcohol film and then uniaxially stretching in a boric acid bath, and iodine or dichroic dye on a polyvinyl alcohol film.
  • examples thereof include those obtained by adsorbing and stretching and further modifying a part of the polyvinyl alcohol unit in the molecular chain into a polyvinylene unit.
  • linear polarizer examples include a polarizer having a function of separating polarized light into reflected light and transmitted light, such as a grid polarizer, a multilayer polarizer, and a cholesteric liquid crystal polarizer. Of these, a polarizer containing polyvinyl alcohol is preferred.
  • the polarization degree of the polarizer used for this invention is not specifically limited, Preferably it is 98% or more, More preferably, it is 99% or more.
  • the upper limit of the degree of polarization is ideally 100%.
  • the average thickness of the polarizer is preferably 5 to 80 ⁇ m.
  • the retardation at a wavelength of 550 nm is preferably 100 to 150 nm.
  • the angle formed by the slow axis of the retardation film and the transmission axis of the linear polarizer is preferably 45 ° or an angle close thereto, specifically 40 to 50 °. . By having such a phase difference and an angle, it can be set as a circularly-polarizing plate useful for the use of the component of a liquid crystal display device.
  • the retardation plate of the present invention may be composed of only an optically anisotropic layer, or may have an arbitrary layer such as a support or an alignment film in addition to the optically anisotropic layer.
  • the circularly polarizing plate may have an optional layer such as a support or an alignment film as an optional component.
  • the image display device of the present invention includes the retardation plate of the present invention.
  • the retardation plate may be combined with a linear polarizer and provided as a circularly polarizing plate.
  • Examples of the image display device of the present invention include a liquid crystal display device, an organic electroluminescence display device, a plasma display device, an FED (field emission) display device, and an SED (surface electric field) display device.
  • An apparatus is particularly preferred.
  • Liquid crystal cell driving methods include, for example, in-plane switching (IPS) method, vertical alignment (VA) method, multi-domain vertical alignment (MVA) method, continuous spin wheel alignment (CPA) method, hybrid alignment nematic (HAN) Examples thereof include a twisted nematic (TN) method, a super twisted nematic (STN) method, and an optically compensated bend (OCB) method.
  • IPS in-plane switching
  • VA vertical alignment
  • MVA multi-domain vertical alignment
  • CPA continuous spin wheel alignment
  • HAN hybrid alignment nematic
  • TN twisted nematic
  • STN super twisted nematic
  • OOB optically compensated bend
  • the in-plane switching method and the vertical alignment method are preferable, and the in-plane switching method is particularly preferable.
  • the in-plane switching type liquid crystal cell has a wide viewing angle, it is possible to further widen the viewing angle by applying a retardation plate.
  • the image display device of the present invention may include only one retardation plate of the present invention or two or more.
  • the retardation plate of the present invention can be provided by being attached to another component such as a liquid crystal cell via an adhesive.
  • the structure was identified by 1 H-NMR.
  • Step 2 Synthesis of Compound (I) -1>
  • 10.5 g (15.3 mmol) of the intermediate A synthesized in Step 1 above 3.0 g (18.3 mmol) of 2-hydrazinobenzothiazole in a nitrogen stream, And 80 ml of tetrahydrofuran (THF) were added to obtain a uniform solution.
  • 18 mg (0.08 mmol) of ( ⁇ ) -10-camphorsulfonic acid was added and stirred at 25 ° C. for 3 hours.
  • the reaction solution was poured into 800 ml of 10% sodium bicarbonate water and extracted twice with 100 ml of ethyl acetate.
  • the ethyl acetate layer was collected and dried over anhydrous sodium sulfate, and sodium sulfate was filtered off.
  • Ethyl acetate was distilled off from the filtrate under reduced pressure using a rotary evaporator to obtain a pale yellow solid.
  • the structure of the target product was identified by 1 H-NMR and mass spectrum.
  • composition (A0) (C1-1. Preparation of Composition (A0)) A mixture having the composition shown in Table 1 below was stirred uniformly and filtered through a 0.6 ⁇ m filter to obtain a composition (A0).
  • the multilayer was irradiated with ultraviolet rays using a metal halide lamp to polymerize the polymerizable liquid crystal compound.
  • the irradiation amount of the ultraviolet rays was an illuminance of 16 mW / cm 2 and the exposure amount was 100 mJ / cm 2 .
  • a retardation plate composed of a support and an optically anisotropic layer having a thickness of 1.4 ⁇ m provided thereon was obtained.
  • FIG. 2 shows the results of measuring the refractive index when the wavelength ⁇ is 407 nm, 532 nm, and 633 nm and performing Cauchy fitting from the measured values of the three wavelengths. Since the refractive index in the fast axis direction is smaller than the refractive index in the slow axis direction and the chromatic dispersion is large, it can be seen that the retardation plate exhibits reverse chromatic dispersion characteristics.
  • the relationship between the azimuth angle of polarized light and the measured absorption is shown in FIG.
  • the wavelength dispersion of the refractive index in the visible light region of the compound having a structure similar to the main chain mesogen of compound (I) -1 and the compound having a structure similar to the side chain mesogen of compound (I) -1 is examined, the latter
  • the chromatic dispersion is larger.
  • a compound having a larger visible light wavelength dispersion has an absorption peak closer to the visible light region.
  • the absorption peak becomes maximum when the polarization direction and the major axis direction of the mesogen are parallel.
  • the peak at 266 nm is derived from the main chain mesogen
  • the peak at 347 nm is derived from the side chain mesogen
  • the orientation direction of the main chain mesogen and the side chain mesogen It can be seen that it is orthogonal to the orientation direction.
  • Example 1 (1-1. Preparation of Composition (A)) A mixture having the composition shown in Table 2 below was stirred uniformly and filtered through a 0.6 ⁇ m filter to obtain a composition (A-1).
  • composition (A-1) Apart from the composition (A-1), a composition in which 20.0% by weight of the polymerizable monomer (II) -1 is added to cyclopentanone is prepared, applied onto the substrate subjected to orientation treatment, and once more. After drying the solvent, the temperature was changed in the range of room temperature to 200 ° C., and the presence or absence of liquid crystallinity was observed with a polarizing microscope. As a result, liquid crystallinity was exhibited at 122 ° C.
  • Step (C1-2) of Comparative Example 1 except that the composition (A-1) obtained in Step (1-1) was used instead of the composition (A0) obtained in Step (C1-1).
  • a retardation plate was produced.
  • the film thickness of the optically anisotropic layer of the obtained retardation plate was 1.2 ⁇ m.
  • the birefringence ⁇ n was measured at various wavelengths ⁇ in the same manner as in the step (C1-3) of Comparative Example 1, and the wavelength dispersion characteristic of ⁇ n was obtained.
  • the measured chromatic dispersion characteristics are shown in FIG. 4 in comparison with the results of Comparative Example 1.
  • Example 2 (2-1. Preparation of Composition (A-2)) A mixture having the composition shown in Table 3 below was stirred uniformly and filtered through a 0.6 ⁇ m filter to obtain a composition (A-2).
  • composition (A-2) Apart from the composition (A-2), a composition in which 20.0% by weight of the polymerizable monomer (IV) is added to cyclopentanone is prepared, applied onto the alignment-treated substrate, and once the solvent is added. After drying, the temperature was changed in the range of room temperature to 200 ° C., and the presence or absence of liquid crystallinity was observed with a polarizing microscope.
  • Example 3 (3-1. Preparation of Composition (A-3)) A mixture having the composition shown in Table 4 below was stirred uniformly and filtered through a 0.6 ⁇ m filter to obtain a composition (A-3).
  • composition (A-3) Apart from the composition (A-3), a composition obtained by adding 20.0% by weight of the polymerizable monomer (III) -4 to cyclopentanone was prepared and applied on the substrate subjected to the orientation treatment. After the solvent was dried, the temperature was changed in the range of room temperature to 200 ° C., and the presence or absence of liquid crystallinity was observed with a polarizing microscope.
  • Example 4 (4-1. Preparation of Composition (A-4)) A mixture having the composition shown in Table 3 below was stirred uniformly and filtered through a 0.6 ⁇ m filter to obtain a composition (A-4).
  • composition (A-4) Apart from the composition (A-4), a composition in which 20.0% by weight of the polymerizable monomer (III) -1 is added to cyclopentanone is prepared and applied onto the substrate subjected to the orientation treatment. After the solvent was dried, the temperature was changed in the range of room temperature to 200 ° C., and the presence or absence of liquid crystallinity was observed with a polarizing microscope.
  • Step (C1-2) of Comparative Example 1 except that the composition (A-4) obtained in Step (4-1) was used instead of the composition (A0) obtained in Step (C1-1).
  • a retardation plate was produced.
  • the film thickness of the optically anisotropic layer of the obtained retardation plate was 1.7 ⁇ m.
  • the birefringence ⁇ n was measured at various wavelengths ⁇ in the same manner as in the step (C1-3) of Comparative Example 1, and the wavelength dispersion characteristic of ⁇ n was obtained.
  • the measured wavelength dispersion characteristics are shown in FIG. 10 in comparison with the results of Comparative Example 1.
  • Example 5 (5-1. Preparation of Composition (A-5)) A mixture having the composition shown in Table 6 below was stirred uniformly and filtered through a 0.6 ⁇ m filter to obtain a composition (A-5).
  • composition (A-5) Apart from the composition (A-5), a composition in which 20.0% by weight of the polymerizable monomer (III) -2 is added to cyclopentanone is prepared and applied onto the substrate subjected to the orientation treatment. After the solvent was dried, the temperature was changed in the range of room temperature to 200 ° C., and the presence or absence of liquid crystallinity was observed with a polarizing microscope.
  • the organic layer was dried over anhydrous sodium sulfate, and sodium sulfate was filtered off. After the filtrate was concentrated on a rotary evaporator, the concentrate was dissolved in 15 ml of THF. 200 ml of methanol was added to the solution to precipitate crystals, and the precipitated crystals were collected by filtration. The obtained crystals were washed with methanol and vacuum-dried to obtain 2.85 g of intermediate K1 as a white solid (yield 72.3%). The structure of the target product was identified by 1 H-NMR.
  • a four-necked reactor equipped with a thermometer was charged with 2.00 g (12.1 mmol) of 2-hydrazinobenzothiazole and 20 ml of DMF in a nitrogen stream to obtain a uniform solution.
  • 8.36 g (60.5 mmol) of potassium carbonate and 3.08 g (14.5 mmol) of 1-iodohexane were added, and the whole volume was stirred at 50 ° C. for 7 hours.
  • the reaction solution was cooled to 20 ° C., poured into 200 ml of water, and extracted with 300 ml of ethyl acetate.
  • Step 6 Synthesis of Compound 25
  • composition (A0-1) A mixture having the composition shown in Table 7 below was stirred uniformly and filtered through a 0.6 ⁇ m filter to obtain a composition (A0-1).
  • FIG. 15 shows the results obtained by measuring the refractive index when the wavelength ⁇ is 407 nm, 532 nm, and 633 nm and performing Cauchy fitting from the measured values of the three wavelengths.
  • the broken line indicates the refractive index in the fast axis direction
  • the solid line indicates the refractive index in the slow axis direction. Since the refractive index in the fast axis direction is smaller than the refractive index in the slow axis direction and the chromatic dispersion is large, it can be seen that the retardation plate exhibits reverse chromatic dispersion characteristics.
  • Example 6 (6-1. Preparation of Composition (A-6)) A mixture having the composition shown in Table 8 below was stirred uniformly and filtered through a 0.6 ⁇ m filter to obtain a composition (A-6).
  • composition (A-6) Apart from the composition (A-6), a composition in which 20.0% by weight of the polymerizable monomer (IV) is added to cyclopentanone is prepared, applied onto the alignment-treated substrate, and once the solvent is added. After drying, the temperature was changed in the range of room temperature to 200 ° C., and the presence or absence of liquid crystallinity was observed with a polarizing microscope.
  • the wavelength dispersion of the refractive index in the slow axis direction was smaller than that in Comparative Example 2, and the wavelength dispersion of the refractive index in the fast axis direction was also smaller than that in Comparative Example 2.
  • the reverse wavelength dispersion characteristic of ⁇ n of the retardation plate is increased.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

 逆波長分散重合性液晶化合物と重合性モノマーとを含有する組成物(A)を硬化させてなる光学異方性層を有する位相差板であって、前記逆波長分散重合性液晶化合物は、分子中に主鎖メソゲンと前記主鎖メソゲンに結合した側鎖メソゲンとを有し、前記主鎖メソゲン及び前記側鎖メソゲンは、異なる方向に配向し、それにより、前記光学異方性層の複屈折Δnが逆波長分散特性を有し、前記組成物(A)における重合性モノマーを前記逆分散重合性液晶化合物に置換した組成物(A0)を硬化させてなる層のリタデーションと、前記光学異方性層のリタデーションとが所定の関係を満たす位相差板;及びそれを含む円偏光板及び表示装置。

Description

位相差板、円偏光板、及び画像表示装置
 本発明は、位相差板、円偏光板、及び画像表示装置に関し、特に、逆波長分散特性の制御が容易な位相差板、円偏光板、及び画像表示装置に関する。
 位相差板は、液晶表示装置等の表示装置の構成要素として、広く用いられている。表示装置に用いる位相差板は、表示のための全ての波長領域(通常は可視領域)において、1/4λ、1/2λ等の所望の位相差を発現することが好ましい。このような位相差を発現するためには、位相差板は、いわゆる逆波長分散、即ち短波長より長波長の光について高い異方性を示す波長分散を有する必要がある。逆波長分散特性を示す位相差板としては、例えば、特許文献1~6に記載されるものが知られている。
特開平10-68816号公報 特開平10-90521号公報 特開平11-52131号公報 特開2000-284126号公報(対応外国公報:米国特許明細書第6400433B1号) 特開2001-4837号公報 国際公開第2000/026705号(対応外国公報:欧州特許出願公開第EP1045261(A1)及び米国特許明細書第6565974B1号)
 表示装置に用いる位相差板は、表示装置の性能をより高めるため、表示装置の設計に応じて、逆波長分散を、僅かに高める、または僅かに低めるといった調整が必要となる。しかしながら、従来技術においては、位相差板を、光学性能及び機械的性能を損ねることなく、要求通りの逆波長分散特性に調整することは、困難であった。
 従って、本発明の目的は、逆波長分散特性を有し、かつその精密な制御が容易に行いうる位相差板を提供することにある。
 本発明のさらなる目的は、逆波長分散特性を有しかつその精密な制御が容易に行いうる位相差板を含み、それにより低コストで且つ良好な表示性能を有する表示装置及びその構成要素を提供することにある。
 本発明者は前記の課題を解決するべく検討した結果、逆波長分散重合性液晶化合物として、分子中に所定の複数のメソゲンを有するものを用い、これと、重合性モノマーとを組み合わせて配向させ、所定の光学特性を有する光学異方性層を形成することにより、上記課題を解決しうることを見出し、本発明を完成した。
 すなわち、本発明によれば、以下のものが提供される。
〔1〕 逆波長分散重合性液晶化合物と重合性モノマーとを含有する組成物(A)を硬化させてなる光学異方性層を有する位相差板であって、
 前記逆波長分散重合性液晶化合物は、分子中に主鎖メソゲンと前記主鎖メソゲンに結合した側鎖メソゲンとを有し、
 前記光学異方性層において、前記逆波長分散重合性液晶化合物の前記主鎖メソゲン及び前記側鎖メソゲンは、異なる方向に配向し、それにより、前記光学異方性層の複屈折Δnが逆波長分散特性を有し、
 前記組成物(A)における前記重合性モノマーを前記逆分散重合性液晶化合物に置換した組成物(A0)を硬化させてなる層の波長450nm、550nm及び650nmにおけるリタデーションRe0(450nm)、Re0(550nm)およびRe0(650nm)と、前記光学異方性層の波長450nm、550nm及び650nmにおけるリタデーションRe(450nm)、Re(550nm)およびRe(650nm)とが、以下の式(i)及び(ii)の関係を満たす位相差板:
 Re0(450nm)/Re0(550nm)>Re(450nm)/Re(550nm)  式(i)
 Re0(650nm)/Re0(550nm)<Re(650nm)/Re(550nm)  式(ii)。
〔2〕 逆波長分散重合性液晶化合物と重合性モノマーとを含有する組成物(A)を硬化させてなる光学異方性層を有する位相差板であって、
 前記逆波長分散重合性液晶化合物は、分子中に主鎖メソゲンと前記主鎖メソゲンに結合した側鎖メソゲンとを有し、
 前記光学異方性層において、前記逆波長分散重合性液晶化合物の前記主鎖メソゲン及び前記側鎖メソゲンは、異なる方向に配向し、それにより、前記光学異方性層の複屈折Δnが逆波長分散特性を有し、
 前記組成物(A)における前記重合性モノマーを前記逆分散重合性液晶化合物に置換した組成物(A0)を硬化させてなる層の波長450nm、550nm及び650nmにおけるリタデーションRe0(450nm)、Re0(550nm)およびRe0(650nm)と、前記光学異方性層の波長450nm、550nm及び650nmにおけるリタデーションRe(450nm)、Re(550nm)およびRe(650nm)とが、以下の式(iii)及び(iv)の関係を満たす位相差板:
 Re0(450nm)/Re0(550nm)<Re(450nm)/Re(550nm)  式(iii)
 Re0(650nm)/Re0(550nm)>Re(650nm)/Re(550nm)  式(iv)。
〔3〕 前記逆波長分散重合性液晶化合物が、下記式(I):
Figure JPOXMLDOC01-appb-C000004
 〔式中、Y~Yはそれぞれ独立して、化学的な単結合、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR-C(=O)-、-C(=O)-NR-、-O-C(=O)-NR-、-NR-C(=O)-O-、-NR-C(=O)-NR-、-O-NR-、又は、-NR-O-を表す。ここで、Rは、水素原子又は炭素数1~6のアルキル基を表す。
 G、Gはそれぞれ独立して、置換基を有していてもよい炭素数1~20の2価の脂肪族基を表す〔該脂肪族基には、1つの脂肪族基あたり1以上の-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR-C(=O)-、-C(=O)-NR-、-NR-、又は、-C(=O)-が介在していてもよい。ただし、-O-又は-S-がそれぞれ2以上隣接して介在する場合を除く。ここで、Rは、水素原子又は炭素数1~6のアルキル基を表す。〕。
 Z、Zはそれぞれ独立して、ハロゲン原子で置換されていてもよい炭素数2~10のアルケニル基を表す。
 Aは芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表し、Aは水素原子、置換基を有していてもよい炭素数1~12のアルキル基、置換基を有していてもよい炭素数2~12のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、-C(=O)-R、-SO-R、又は、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。前記A及びAが有する芳香環は置換基を有していてもよい。また、前記AとAは一緒になって、環を形成していてもよい。ここで、Rは、置換基を有していてもよい炭素数1~12のアルキル基、置換基を有していてもよい炭素数2~12のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基を表し、Rは、炭素数1~12のアルキル基、炭素数2~12のアルケニル基、フェニル基、又は、4-メチルフェニル基を表す。
 Aは、置換基を有していてもよい三価の芳香族基を表す。
 A、Aはそれぞれ独立して、置換基を有していてもよい炭素数6~30の二価の芳香族基を表す。
 Qは、水素原子、又は、置換基を有していてもよい炭素数1~6のアルキル基を表す。〕
 で示される化合物である、〔1〕又は〔2〕に記載の位相差板。
〔4〕前記逆波長分散重合性液晶化合物が、下記式(V):
Figure JPOXMLDOC01-appb-C000005
〔式中、Y1w~Y8wはそれぞれ独立して、化学的な単結合、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR-C(=O)-、-C(=O)-NR-、-O-C(=O)-NR-、-NR-C(=O)-O-、-NR-C(=O)-NR-、-O-NR-、又は、-NR-O-を表す。ここで、Rは、水素原子又は炭素数1~6のアルキル基を表す。
 G1w、G2wはそれぞれ独立して、置換基を有していてもよい炭素数1~20の二価の鎖状脂肪族基を表す。また、前記鎖状脂肪族基には、1つの脂肪族基あたり1以上の-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR2w-C(=O)-、-C(=O)-NR2w-、-NR2w-、又は、-C(=O)-が介在していてもよい。ただし、-O-又は-S-がそれぞれ2以上隣接して介在する場合を除く。ここで、R2wは、水素原子又は炭素数1~6のアルキル基を表す。
 Z1w、Z2wはそれぞれ独立して、ハロゲン原子で置換されていてもよい炭素数2~10のアルケニル基を表す。
 Axwは、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。
 Aywは、水素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数2~20のアルキニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、-C(=O)-R3w、-SO-R4w、-C(=S)NH-R9w、又は、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。ここで、R3wは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、又は、置換基を有していてもよい炭素数3~12のシクロアルキル基、炭素数5~12の芳香族炭化水素基を表し、R4wは、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、フェニル基、又は、4-メチルフェニル基を表し、R9wは置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、置換基を有していてもよい炭素数5~20の芳香族基を表す。前記Axw及びAywが有する芳香環は置換基を有していてもよい。また、前記AxwとAywは一緒になって、環を形成していてもよい。
 A1wは置換基を有していてもよい三価の芳香族基を表す。
 A2w、A3wはそれぞれ独立して、置換基を有していてもよい炭素数3~30の二価の脂環式炭化水素基を表し、
 A4w、A5wはそれぞれ独立して、置換基を有していてもよい炭素数6~30の二価の芳香族基を表す。
 Q1wは、水素原子、又は、置換基を有していてもよい炭素数1~6のアルキル基を表す。〕
で示される化合物である、〔1〕又は〔2〕に記載の位相差板。
〔4.1〕前記AxwとAywに含まれるπ電子の総数が4以上24以下である前記位相差板。
〔4.2〕前記A1wが、置換基を有していてもよい、三価のベンゼン環基又は三価のナフタレン環基である前記位相差板。
〔4.3〕前記Y1w~Y8wが、それぞれ独立して、化学的な単結合、-O-、-O-C(=O)-、-C(=O)-O-、又は、-O-C(=O)-O-である前記位相差板。
〔4.4〕前記Z1w、Z2wが、それぞれ独立して、CH=CH-、CH=C(CH)-、又は、CH=C(Cl)-である前記位相差板。
〔4.5〕前記G1w、G2wがそれぞれ独立して、置換基を有していてもよい炭素数1~20の二価の脂肪族基〔該脂肪族基には、1つの脂肪族基あたり1以上の-O-、-O-C(=O)-、-C(=O)-O-又は-C(=O)-が介在していてもよい。ただし、-O-が2以上隣接して介在する場合を除く。〕である前記位相差板。
〔4.6〕前記G1w、G2wがそれぞれ独立して、炭素数1~12のアルキレン基である前記位相差板。
〔5〕 前記重合性モノマーが、下記式(III):
Figure JPOXMLDOC01-appb-C000006
 (式(III)中、Y1x~Y6x、G1x、G2x、Z1x、Z2x、Axx、Ayx、A1x~A3x、及びQ1xは、それぞれ、式(I)のY~Y、G、G、Z、Z、A、A、A~A、及びQと同じ意味を表す。但し、これらのうちの少なくとも1つ以上が、共に用いる化合物(I)中の対応する基と異なるものである。)
 で表される非液晶性の化合物である、〔1〕~〔3〕のいずれか1項に記載の位相差板。
〔6〕 前記重合性モノマーがメソゲンを有し、前記光学異方性層において、前記重合性モノマーのメソゲンが前記逆波長分散重合性液晶化合物の主鎖メソゲンと平行に配向している〔1〕~〔5〕のいずれか1項に記載の位相差板。
〔7〕 前記重合性モノマーがメソゲンを有し、前記光学異方性層において、前記重合性モノマーのメソゲンが前記逆波長分散重合性液晶化合物の側鎖メソゲンと平行に配向している〔1〕~〔5〕のいずれか1項に記載の位相差板。
〔8〕 組成物(A)における、前記逆波長分散重合性液晶化合物100重量部に対する前記重合性モノマーの配合割合が1~100重量部である、〔1〕~〔7〕のいずれか1項に記載の位相差板。
〔9〕 〔1〕~〔8〕のいずれか1項に記載の位相差板と直線偏光子とを備える円偏光板。
〔10〕 前記位相差板の波長550nmにおける位相差が100~150nmであり、前記位相差板の遅相軸と前記直線偏光子の透過軸との間の角度が45°である〔9〕に記載の円偏光板。
〔11〕 〔1〕~〔8〕のいずれか1項に記載の位相差板を備える画像表示装置。
 本発明の位相差板は、逆波長分散特性を有し、かつその精密な制御が容易に行いうる。したがって、本発明の位相差板を含む、本発明の円偏光板及び本発明の画像表示装置は、低コストで且つ良好な表示性能を有する表示装置及びその構成要素を提供しうる。
図1は、比較例1において測定した、位相差板の複屈折Δnの波長分散特性を示すグラフである。 図2は、比較例1において測定した、位相差板の屈折率の波長分散特性を示すグラフである。 図3は、参考例1において測定した、偏光の方位角と測定された吸収との関係を示すグラフである。 図4は、実施例1において測定した、位相差板の複屈折Δnの波長分散特性を、比較例1と対比して示すグラフである。 図5は、実施例1において測定した、位相差板の屈折率の波長分散特性を、比較例1と対比して示すグラフである。 図6は、実施例2において測定した、位相差板の複屈折Δnの波長分散特性を、比較例1と対比して示すグラフである。 図7は、実施例2において測定した、位相差板の屈折率の波長分散特性を、比較例1と対比して示すグラフである。 図8は、実施例3において測定した、位相差板の複屈折Δnの波長分散特性を、比較例1と対比して示すグラフである。 図9は、実施例3において測定した、位相差板の屈折率の波長分散特性を、比較例1と対比して示すグラフである。 図10は、実施例4において測定した、位相差板の複屈折Δnの波長分散特性を、比較例1と対比して示すグラフである。 図11は、実施例4において測定した、位相差板の屈折率の波長分散特性を、比較例1と対比して示すグラフである。 図12は、実施例5において測定した、位相差板の複屈折Δnの波長分散特性を、比較例1と対比して示すグラフである。 図13は、実施例5において測定した、位相差板の屈折率の波長分散特性を、比較例1と対比して示すグラフである。 図14は、比較例2において測定した、位相差板の複屈折Δnの波長分散特性を示すグラフである。 図15は、比較例2において測定した、位相差板の屈折率の波長分散特性を示すグラフである。 図16は、実施例6において測定した、位相差板の複屈折Δnの波長分散特性を、比較例2と対比して示すグラフである。 図17は、実施例6において測定した、位相差板の屈折率の波長分散特性を、比較例2と対比して示すグラフである。
 以下、例示物及び実施形態を挙げて本発明について詳細に説明するが、本発明は以下に挙げる例示物及び実施形態に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施してもよい。
 本明細書において、位相差板における光学異方性層の「リターデーション」は、別に断らない限り面内方向のリターデーションReであり、リターデーション及び複屈折Δnは、Re=Δn×d(dは光学異方性層の厚み)の関係を有する。
 〔1.位相差板〕
 本発明の位相差板は、光学異方性層を有する。光学異方性層は、逆波長分散重合性液晶化合物と重合性モノマーとを含有する組成物(A)を硬化させてなる層である。
 〔1.1.逆波長分散重合性液晶化合物〕
 本願において、組成物(A)の成分としての液晶化合物とは、組成物(A)に配合し配向させた際に、液晶相を呈しうる化合物である。重合性液晶化合物とは、かかる液晶相を呈した状態で組成物(A)中で重合し、液晶相における分子の配向を維持したまま重合体となりうる液晶化合物である。さらに、逆波長分散重合性液晶化合物とは、そのように重合体とした場合、得られた重合体が逆波長分散を示す重合性液晶化合物である。
 また、本願において、組成物(A)の成分であって、重合性を有する化合物(重合性液晶化合物及びその他の重合性を有する化合物等)を総称して単に「重合性化合物」ということがある。
 本発明において、逆波長分散重合性液晶化合物は、その分子中に主鎖メソゲンと、主鎖メソゲンに結合した側鎖メソゲンとを有する。逆波長分散重合性液晶化合物が配向した状態において、側鎖メソゲンは、主鎖メソゲンと異なる方向に配向しうる。したがって、光学異方性層において、主鎖メソゲン及び側鎖メソゲンは異なる方向に配向しうる。そのような配向により、前記光学異方性層の複屈折Δnが逆波長分散特性を呈しうる。
 〔1.2.化合物(I)〕
 逆波長分散重合性液晶化合物の例としては、下記式(I)で示される化合物(以下において「化合物(I)」という場合がある。)を挙げることができる。
Figure JPOXMLDOC01-appb-C000007
 逆波長分散重合性液晶化合物が化合物(I)である場合、基-Y-A-Y-A-Y-A-Y-が主鎖メソゲンとなり、一方基>A-C(Q)=N-N(A)Aが側鎖メソゲンとなり、基Aは、主鎖メソゲン及び側鎖メソゲンの両方の性質に影響する。
 式中、Y~Yはそれぞれ独立して、化学的な単結合、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR-C(=O)-、-C(=O)-NR-、-O-C(=O)-NR-、-NR-C(=O)-O-、-NR-C(=O)-NR-、-O-NR-、又は、-NR-O-を表す。
 ここで、Rは水素原子又は炭素数1~6のアルキル基を表す。
 Rの炭素数1~6のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、n-へキシル基等が挙げられる。
 Rとしては、水素原子又は炭素数1~4のアルキル基が好ましい。
 これらの中でも、Y~Yは、それぞれ独立して、化学的な単結合、-O-、-O-C(=O)-、-C(=O)-O-、又は、-O-C(=O)-O-であるのが好ましい。
 G、Gはそれぞれ独立して、置換基を有していてもよい炭素数1~20の2価の脂肪族基を表す。
 炭素数1~20の2価の脂肪族基としては、鎖状構造を有する脂肪族基;飽和環状炭化水素(シクロアルカン)構造、不飽和環状炭化水素(シクロアルケン)構造等の脂環式構造を有する脂肪族基;等が挙げられる。
 その置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、n-へキシルオキシ基等の炭素数1~6のアルコキシ基;等が挙げられ、フッ素原子、メトキシ基、エトキシ基が好ましい。
 また、該脂肪族基には、1つの脂肪族基あたり1以上の-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR-C(=O)-、-C(=O)-NR-、-NR-、又は、-C(=O)-が介在していてもよい(ただし、-O-又は-S-がそれぞれ2以上隣接して介在する場合を除く。)。
 これらの中でも、-O-、-O-C(=O)-、-C(=O)-O-、又は、-C(=O)-が好ましい。
 ここで、Rは、前記Rと同様の、水素原子又は炭素数1~6のアルキル基を表し、水素原子又はメチル基であることが好ましい。
 これらの基が介在する脂肪族基の具体例としては、-CH-CH-O-CH-CH-、-CH-CH-S-CH-CH-、-CH-CH-O-C(=O)-CH-CH-、-CH-CH-C(=O)-O-CH-CH-、-CH-CH-C(=O)-O-CH-、-CH-O-C(=O)-O-CH-CH-、-CH-CH-NR-C(=O)-CH-CH-、-CH-CH-C(=O)-NR-CH-、-CH-NR-CH-CH-、-CH-C(=O)-CH-等が挙げられる。
 これらの中でも、本発明の所望の効果をより良好に発現させる観点から、G、Gは、それぞれ独立して、炭素数1~20のアルキレン基、炭素数2~20のアルケニレン基等の鎖状構造を有する脂肪族基が好ましく、メチレン基、エチレン基、トリメチレン基、プロピレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、オクタメチレン基等の、炭素数1~12のアルキレン基がより好ましく、テトラメチレン基〔-(CH-〕、及び、ヘキサメチレン基〔-(CH-〕が特に好ましい。
 Z、Zはそれぞれ独立して、ハロゲン原子で置換されていてもよい炭素数2~10のアルケニル基を表す。
 該アルケニル基の炭素数としては、2~6が好ましい。Z及びZのアルケニル基の置換基であるハロゲン原子としては、フッ素原子、塩素原子、臭素原子等が挙げられ、塩素原子が好ましい。
 Z及びZの炭素数2~10のアルケニル基の具体例としては、CH=CH-、CH=C(CH)-、CH=CH-CH-、CH-CH=CH-、CH=CH-CH-CH-、CH=C(CH)-CH-CH-、(CHC=CH-CH-、(CHC=CH-CH-CH-、CH=C(Cl)-、CH=C(CH)-CH-、CH-CH=CH-CH-等が挙げられる。
 なかでも、Z及びZとしては、本発明の所望の効果をより良好に発現させる観点から、それぞれ独立して、CH=CH-、CH=C(CH)-、CH=C(Cl)-、CH=CH-CH-、CH=C(CH)-CH-、又は、CH=C(CH)-CH-CH-であるのが好ましく、CH=CH-、CH=C(CH)-、又は、CH=C(Cl)-であるのがより好ましく、CH=CH-であるのが更に好ましい。
 Aは、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。
 本発明において、「芳香環」は、Huckel則に従う広義の芳香族性を有する環状構造、すなわち、π電子を(4n+2)個有する環状共役構造及びチオフェン、フラン、ベンゾチアゾール等に代表される、硫黄、酸素、窒素等のヘテロ原子の孤立電子対がπ電子系に関与して芳香族性を示すものを意味する。
 Aの、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基は、芳香環を複数個有するものであってもよく、芳香族炭化水素環及び芳香族複素環を有するものであってもよい。
 前記芳香族炭化水素環としては、ベンゼン環、ナフタレン環、アントラセン環等が挙げられる。前記芳香族複素環としては、ピロール環、フラン環、チオフェン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ピラゾール環、イミダゾール環、オキサゾール環、チアゾール環等の単環の芳香族複素環;ベンゾチアゾール環、ベンゾオキサゾール環、キノリン環、フタラジン環、ベンゾイミダゾール環、ベンゾピラゾール環、ベンゾフラン環、ベンゾチオフェン環等の縮合環の芳香族複素環;等が挙げられる。
 Aが有する芳香環は置換基を有していてもよい。かかる置換基としては、フッ素原子、塩素原子等のハロゲン原子;シアノ基;メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基;ビニル基、アリル基等の炭素数2~6のアルケニル基;トリフルオロメチル基等の炭素数1~6のハロゲン化アルキル基;ジメチルアミノ基等の置換アミノ基;メトキシ基、エトキシ基、イソプロピル基等の炭素数1~6のアルコキシ基;ニトロ基;フェニル基、ナフチル基等のアリール基;-C(=O)-R;-C(=O)-OR;-SO;等が挙げられる。ここでRは、炭素数1~6のアルキル基、又は炭素数6~14のアリール基を表す。
 また、Aが有する芳香環は、同一又は相異なる置換基を複数有していてもよく、隣り合った二つの置換基が一緒になって結合して環を形成していてもよい。形成される環は単環であっても、縮合多環であってもよい。
 なお、Aの炭素数2~30の有機基の「炭素数」は、置換基の炭素原子を含まない有機基全体の総炭素数を意味する(後述するAにて同じである。)。
 Aの、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基としては、芳香族炭化水素環基;芳香族複素環基;芳香族炭化水素環基及び芳香族複素環基からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数3~30のアルキル基;芳香族炭化水素環基及び芳香族複素環基からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数4~30のアルケニル基;芳香族炭化水素環基及び芳香族複素環基からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数4~30のアルキニル基;等が挙げられる。
 Aは水素原子、置換基を有していてもよい炭素数1~12のアルキル基、置換基を有していてもよい炭素数2~12のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、-C(=O)-R、-SO-R、又は、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。
 Aの、置換基を有していてもよい炭素数1~12のアルキル基の炭素数1~12のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、n-へキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等が挙げられる。
 Aの、置換基を有していてもよい炭素数1~12のアルキル基の置換基としては、フッ素原子、塩素原子等のハロゲン原子;シアノ基;ジメチルアミノ基等の置換アミノ基;メトキシ基、エトキシ基、イソプロピル基等の炭素数1~6のアルコキシ基;ニトロ基;フェニル基、ナフチル基等のアリール基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の炭素数3~8のシクロアルキル基;-C(=O)-R;-C(=O)-OR;-SO;等が挙げられる。ここでRは前記と同じ意味を表す。
 Aの、置換基を有していてもよい炭素数2~12のアルケニル基の炭素数2~12のアルケニル基としては、ビニル基、プロペニル基、イソプロペニル基、ブテニル基、ペンテニル基等が挙げられる。
 Aの、置換基を有していてもよい炭素数3~12のシクロアルキル基の炭素数3~12のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等が挙げられる。
 Aの、置換基を有していてもよい炭素数2~12のアルケニル基、及び置換基を有していてもよい炭素数3~12のシクロアルキル基の置換基としては、フッ素原子、塩素原子等のハロゲン原子;シアノ基;ジメチルアミノ基等の置換アミノ基;メトキシ基、エトキシ基、イソプロピル基等の炭素数1~6のアルコキシ基;ニトロ基;フェニル基、ナフチル基等のアリール基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の炭素数3~8のシクロアルキル基;-C(=O)-R;-C(=O)-OR;-SO;等が挙げられる。ここでRは前記と同じ意味を表す。
 Aの、-C(=O)-Rで表される基において、Rは、置換基を有していてもよい炭素数1~12のアルキル基、置換基を有していてもよい炭素数2~12のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基を表す。これらの具体例は、前記Aの、置換基を有していてもよい炭素数1~12のアルキル基、置換基を有していてもよい炭素数2~12のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基の例として列記したものと同様のものが挙げられる。
 Aの、-SO-Rで表される基において、Rは、炭素数1~12のアルキル基、炭素数2~12のアルケニル基、フェニル基、又は、4-メチルフェニル基を表す。
 Rの、炭素数1~12のアルキル基、及び炭素数2~12のアルケニル基の具体例は、前記Aの、炭素数1~12のアルキル基、炭素数2~12のアルケニル基の例として列記したものと同様のものが挙げられる。
 前記A及びAが有する芳香環は置換基を有していてもよい。また、前記AとAは一緒になって、環を形成していてもよい。
 Aの、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基としては、前記Aで例示したのと同様のものが挙げられる。
 また、Aが有する芳香環は、任意の位置に置換基を有していてもよい。かかる置換基としては、前記Aが有する芳香環の置換基として列記したものと同様のものが挙げられる。
 A、Aが有する芳香環の具体例を以下に示す。但し、本発明においては、A、Aが有する芳香環は以下に示すものに限定されるものではない。なお、下記化合物中、[-]は芳香環の結合手を示す(以下にて同じである。)。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 上記式中、Eは、NR、酸素原子又は硫黄原子を表す。ここで、Rは、水素原子;又は、メチル基、エチル基等の炭素数1~6のアルキル基;を表す。
Figure JPOXMLDOC01-appb-C000012
 上記式中、X、Y、Zは、それぞれ独立して、NR、酸素原子、硫黄原子、-SO-又は、-SO-を表す(ただし、酸素原子、硫黄原子、-SO-、-SO-が、それぞれ隣接する場合を除く。)。Rは前記と同じ意味を表す。
 A、Aが有する芳香環は、上記した芳香環の中でも、下記のものが好ましい。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 A、Aが有する芳香環は、下記のものが特に好ましい。
Figure JPOXMLDOC01-appb-C000015
 また、AとAは一緒になって、環を形成していてもよい。その中でも、置換基を有していてもよい炭素数4~30の不飽和複素環、又は、炭素数6~30の不飽和炭素環を形成していることが好ましい。
 炭素数4~30の不飽和複素環、炭素数6~30の不飽和炭素環としては、特に制約はなく、芳香族性を有していても有していなくてもよい。例えば、下記に示す環が挙げられる。なお、下記に示す環は、式(I)中の
Figure JPOXMLDOC01-appb-C000016
 として表される部分を示すものである。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 式中、X、Y、Zは、前記と同じ意味を表す。
 また、これらの環は置換基を有していてもよい。
 置換基としては、ハロゲン原子、シアノ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、ニトロ基、-C(=O)-R、-C(=O)-OR、-SO等が挙げられる。ここで、Rは前記と同じ意味を表す。
 AとAに含まれるπ電子の総数は、本発明の所望の効果をより良好に発現させる観点から、4以上24以下であるのが好ましく、6以上18以下であるのがより好ましい。
 A、Aの好ましい組合わせとしては、Aが炭素数4~30の芳香族基で、Aが水素原子又は置換基を有していてもよいアルキル基である組合わせ、及び、AとAが一緒になって不飽和複素環又は不飽和炭素環を形成しているものが挙げられる。置換基を有していてもよいアルキル基の置換基として好ましいものは、シクロアルキル基、シアノ基、フッ素原子などのハロゲン原子が挙げられる。
 更に好ましい組み合わせとしては、Aが下記構造でありAが水素原子、置換基を有していてもよいアルキル基である組合わせである。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 特に好ましい組み合わせとしては、Aが下記構造であり、Aが水素原子、置換基を有していてもよいアルキル基である。置換基を有していてもよいアルキル基の置換基として好ましいものは、シクロアルキル基、シアノ基、フッ素原子などのハロゲン原子である組み合わせである。式中、X、Yは、前記と同じ意味を表す。
Figure JPOXMLDOC01-appb-C000022
 Aは置換基を有していてもよい三価の芳香族基を表す。三価の芳香族基としては、三価の炭素環式芳香族基であっても、三価の複素環式芳香族基であってもよい。本発明の所望の効果をより良好に発現させる観点から、三価の炭素環式芳香族基が好ましく、下記式に示す三価のベンゼン環基又は三価のナフタレン環基がより好ましい。なお、下記式においては、結合状態をより明確にすべく、置換基Y、Yを便宜上記載している(Y、Yは、前記と同じ意味を表す。以下にて同じ。)。
Figure JPOXMLDOC01-appb-C000023
 なかでも、Aとしては、下記に示す式(A11)~(A22)で表される基がさらに好ましく、式(A11)で表される基が特に好ましい。
Figure JPOXMLDOC01-appb-C000024
 Aの、三価の芳香族基が有していてもよい置換基としては、前記Aの芳香族基の置換基として例示したのと同様のものが挙げられる。Aとしては、置換基を有さないものが好ましい。
 A、Aはそれぞれ独立して、置換基を有していてもよい炭素数6~30の二価の芳香族基を表す。
 A、Aの芳香族基は単環のものであっても、多環のものであってもよい。
 A、Aの具体例としては、下記のものが挙げられる。
Figure JPOXMLDOC01-appb-C000025
 上記A、Aの具体例として挙げた有機基は、任意の位置に置換基を有していてもよい。当該置換基としては、ハロゲン原子、シアノ基、ヒドロキシル基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、ニトロ基、-C(=O)-OR基;等が挙げられる。ここでRは、炭素数1~6のアルキル基である。これらの中でも、ハロゲン原子、アルキル基、アルコキシ基が好ましく、ハロゲン原子としてはフッ素原子が、アルキル基としては、メチル基、エチル基、プロピル基が、アルコキシ基としては、メトキシ基、エトキシ基がより好ましい。
 これらの中でも、A、Aとしては、本発明の所望の効果をより良好に発現させる観点から、それぞれ独立して、置換基を有していてもよい、下記式(A23)及び(A24)で表される基が好ましく、置換基を有していてもよい式(A23)で表される基がより好ましい。
Figure JPOXMLDOC01-appb-C000026
 Qは、水素原子、又は、置換基を有していてもよい炭素数1~6のアルキル基を示す。
 置換基を有していてもよい炭素数1~6のアルキル基としては、前記Aで例示したのと同様のものが挙げられる。
 これらの中でも、Qは、水素原子又は炭素数1~6のアルキル基が好ましく、水素原子及びメチル基がより好ましい。
 化合物(I)のより具体的な例としては、下記式(I)-1~(I)-3で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000027
 式(I)で示される化合物は、その全てが液晶相を呈しうる化合物であるとは限らない。しかしながら、例えば組成物(A)を調製して実際に配向させてみることにより、液晶相を呈しうるか否かを容易に識別することができる。
 〔1.3.化合物(I)の製造方法〕
 化合物(I)は、例えば、下記に示す反応により製造することができる。
Figure JPOXMLDOC01-appb-C000028
 (式中、Y~Y、G、G、Z、Z、A、A、A~A、Qは、前記と同じ意味を表す。)
 すなわち、式(3)で表されるヒドラジン化合物(ヒドラジン化合物(3))を、式(4)で表されるカルボニル化合物(カルボニル化合物(4))と、〔ヒドラジン化合物(3):カルボニル化合物(4)〕のモル比で、1:2~2:1、好ましくは1:1.5~1.5:1の割合で反応させることにより、高選択的かつ高収率で目的とする式(I)で示される化合物を製造することができる。
 この場合、(±)-10-カンファースルホン酸、パラトルエンスルホン酸等の有機酸;塩酸、硫酸等の無機酸;等の酸触媒を添加して反応を行うことができる。酸触媒を添加することで反応時間が短縮され、収率が向上する場合がある。酸触媒の添加量は、カルボニル化合物(4)1モルに対して、通常0.001~1モルである。また、酸触媒はそのまま添加してもよいし、適当な溶液に溶解させた溶液として添加してもよい。
 この反応に用いる溶媒としては、反応に不活性なものであれば特に限定されない。例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルルコール、sec-ブチルアルコール、t-ブチルアルコール、n-ペンチルアルコール、アミルアルコール等のアルコール系溶媒;ジエチルエーテル、テトラヒドロフラン、1,2-ジメトキシエタン、1,4-ジオキサン、シクロペンチルメチルエーテル等のエーテル系溶媒;酢酸エチル、酢酸プロピル、プロピオン酸メチル等のエステル系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;n-ペンタン、n-ヘキサン、n-ヘプタン等の脂肪族炭化水素系溶媒;N,N-ジメチルホルムアミド、N-メチルピロリドン、ヘキサメチルリン酸トリアミド等のアミド系溶媒;ジメチルスルホキシド、スルホラン等の含硫黄系溶媒;及びこれらの2種以上からなる混合溶媒;等が挙げられる。
 これらの中でも、アルコール系溶媒、エーテル系溶媒、及びアルコール系溶媒とエーテル系溶媒の混合溶媒が好ましい。
 溶媒の使用量は、特に限定されず、用いる化合物の種類や反応規模等を考慮して適宜定めることができるが、ヒドラジン化合物(3)1gに対し、通常1~100gである。
 反応は、-10℃から用いる溶媒の沸点までの温度範囲で円滑に進行する。各反応の反応時間は、反応規模にもよるが、通常、数分から数時間である。
 ヒドラジン化合物(3)は、次のようにして製造することができる。
Figure JPOXMLDOC01-appb-C000029
 (式中、A、Aは、前記と同じ意味を表す。Xは、ハロゲン原子、メタンスルホニルオキシ基、p-トルエンスルホニルオキシ基等の脱離基を表す。)
 すなわち、式(2a)で表される化合物とヒドラジン(1)を、適当な溶媒中、(化合物(2a):ヒドラジン(1))のモル比で、1:1~1:20、好ましくは1:2~1:10で反応させて、対応するヒドラジン化合物(3a)を得ることができ、さらに、ヒドラジン化合物(3a)と式(2b)で表される化合物を反応させることで、ヒドラジン化合物(3)を得ることができる。
 ヒドラジン(1)としては、通常1水和物のものを用いる。ヒドラジン(1)は、市販品をそのまま使用することができる。
 この反応に用いる溶媒としては、反応に不活性なものであれば特に限定されない。例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルルコール、sec-ブチルアルコール、t-ブチルアルコール、n-ペンチルアルコール、アミルアルコール等のアルコール系溶媒;ジエチルエーテル、テトラヒドロフラン、1,2-ジメトキシエタン、1,4-ジオキサン、シクロペンチルメチルエーテル等のエーテル系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;n-ペンタン、n-ヘキサン、n-ヘプタン等の脂肪族炭化水素系溶媒;N,N-ジメチルホルムアミド、N-メチルピロリドン、ヘキサメチルリン酸トリアミド等のアミド系溶媒;ジメチルスルホキシド、スルホラン等の含硫黄系溶媒;及びこれらの2種以上からなる混合溶媒;等が挙げられる。
 これらの中でも、アルコール系溶媒、エーテル系溶媒、及びアルコール系溶媒とエーテル系溶媒の混合溶媒が好ましい。
 溶媒の使用量は、特に限定されず、用いる化合物の種類や反応規模等を考慮して適宜定めることができるが、ヒドラジン1gに対し、通常1~100gである。
 反応は、-10℃から用いる溶媒の沸点までの温度範囲で円滑に進行する。各反応の反応時間は、反応規模にもよるが、通常、数分から数時間である。
 また、ヒドラジン化合物(3)は、次のように、従来公知の方法を用いて、ジアゾニウム塩(5)を還元することによっても製造することができる。
Figure JPOXMLDOC01-appb-C000030
 式(5)中、A、Aは、前記と同じ意味を表す。Xは、ジアゾニウムに対する対イオンである陰イオンを示す。Xとしては、例えば、ヘキサフルオロリン酸イオン、ホウフッ化水素酸イオン、塩化物イオン、硫酸イオン等の無機陰イオン;ポリフルオロアルキルカルボン酸イオン、ポリフルオロアルキルスルホン酸イオン、テトラフェニルホウ酸イオン、芳香族カルボン酸イオン、芳香族スルホン酸イオン等の有機陰イオン;等が挙げられる。
 上記反応に用いる還元剤としては、例えば、金属塩還元剤が挙げられる。
 金属塩還元剤とは一般に低原子価金属を含む化合物、もしくは金属イオンとヒドリド源からなる化合物である(「有機合成実験法ハンドブック」1990年社団法人有機合成化学協会編 丸善株式会社発行810ページを参照)。
 金属塩還元剤としては、例えば、NaAlH、NaAlH(OR)、LiAlH、iBuAlH、LiBH、NaBH、SnCl、CrCl、TiCl等が挙げられる。
 還元反応においては公知の反応条件を採用することができる。例えば、特開2005-336103号公報、新実験化学講座 1978年 丸善株式会社発行 14巻、実験化学講座 1992年 丸善株式会社発行 20巻、等の文献に記載の条件で反応を行うことができる。
 また、ジアゾニウム塩(5)は、アニリン等の化合物から常法により製造することができる。
 カルボニル化合物(4)は、典型的には、エーテル結合(-O-)、エステル結合(-C(=O)-O-、-O-C(=O)-)、カーボネート結合(-O-C(=O)-O-)及びアミド結合(-C(=O)NH-、-NHC(=O)-)の形成反応を任意に組合わせて、所望の構造を有する複数の公知化合物を適宜結合・修飾することにより製造することができる。
 エーテル結合の形成は、例えば、以下のようにして行うことができる。
 (i)式:D1-hal(halはハロゲン原子を表す。以下にて同じ。)で表される化合物と、式:D2-OMet(Metはアルカリ金属(主にナトリウム)を表す。以下にて同じ。)で表される化合物とを混合して縮合させる(ウイリアムソン合成)。なお、式中、D1及びD2は任意の有機基を表す(以下にて同じ。)。
 (ii)式:D1-halで表される化合物と、式:D2-OHで表される化合物とを水酸化ナトリウム、水酸化カリウム等の塩基存在下、混合して縮合させる。
 (iii)式:D1-J(Jはエポキシ基を表す。)で表される化合物と、式:D2-OHで表される化合物とを水酸化ナトリウム、水酸化カリウム等の塩基存在下、混合して縮合させる。
 (iv)式:D1-OFN(OFNは不飽和結合を有する基を表す。)で表される化合物と、式:D2-OMetで表される化合物を、水酸化ナトリウム、水酸化カリウム等の塩基存在下、混合して付加反応させる。
 (v)式:D1-halで表される化合物と、式:D2-OMetで表される化合物とを、銅あるいは塩化第一銅存在下、混合して縮合させる(ウルマン縮合)。
 エステル結合及びアミド結合の形成は、例えば、以下のようにして行うことができる。
 (vi)式:D1-COOHで表される化合物と、式:D2-OH又はD2-NHで表される化合物とを、脱水縮合剤(N,N-ジシクロヘキシルカルボジイミド等)の存在下に脱水縮合させる。
 (vii)式:D1-COOHで表される化合物にハロゲン化剤を作用させることにより、式:D1-CO-halで表される化合物を得、このものと式:D2-OH又はD2-NHで表される化合物とを、塩基の存在下に反応させる。
 (viii)式:D1-COOHで表される化合物に酸無水物を作用させることにより、混合酸無水物を得た後、このものに、式:D2-OH又はD2-NHで表される化合物を反応させる。
 (ix)式:D1-COOHで表される化合物と、式:D2-OH又はD2-NHで表される化合物とを、酸触媒あるいは塩基触媒の存在下に脱水縮合させる。
 より具体的には、例えば、カルボニル化合物(4)のうち、前記式(4)中、式:Z-Y-G-Y-A-Y-で表される基が、式:Z-Y-G-Y-A-Y-で表される基と同一であり、Yが、Y11-C(=O)-O-で表される基である化合物(4’)は、以下に示す反応により製造することができる。
Figure JPOXMLDOC01-appb-C000031
 (式中、Y、Y、G、Z、A、A、Qは、前記と同じ意味を表す。Y11は、Y11-C(=O)-O-がYとなる基を表す。Yは前記と同じ意味を表す。Lは、水酸基、ハロゲン原子、メタンスルホニルオキシ基、p-トルエンスルホニルオキシ基等の脱離基を表す。)
 上記反応においては、式(6)で表されるジヒドロキシ化合物(化合物(6))と式(7)で表される化合物(化合物(7))とを、(化合物(6):化合物(7))のモル比で、1:2~1:4、好ましくは1:2~1:3の割合で反応させることにより、高選択的かつ高収率で目的とする化合物(4’)を得ることができる。
 化合物(7)が、式(7)中、Lが水酸基の化合物(カルボン酸)である場合には、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、ジシクロヘキシルカルボジイミド等の脱水縮合剤の存在下に反応させることにより、目的物を得ることができる。
 脱水縮合剤の使用量は、化合物(7)1モルに対し、通常1~3モルである。
 また、化合物(7)が、式(7)中、Lがハロゲン原子の化合物(酸ハライド)である場合には、塩基の存在下に反応させることにより、目的物を得ることができる。
 用いる塩基としては、トリエチルアミン、ピリジン等の有機塩基;水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム等の無機塩基が挙げられる。
 塩基の使用量は、化合物(7)1モルに対し、通常1~3モルである。
 化合物(7)が、式(7)中、Lがメタンスルホニルオキシ基、又はp-トルエンスルホニルオキシ基の化合物(混合酸無水物)である場合もハロゲン原子の場合と同様である。
 上記反応に用いる溶媒としては、例えば、クロロホルム、塩化メチレン等の塩素系溶媒;N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセタミド、ヘキサメチルリン酸トリアミド等のアミド系溶媒;1,4-ジオキサン、シクロペンチルメチルエーテル、テトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン等のエーテル類;ジメチルスルホキシド、スルホラン等の含硫黄系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;n-ペンタン、n-ヘキサン、n-オクタン等の脂肪族炭化水素系溶媒;シクロペンタン、シクロヘキサン等の脂環式炭化水素系溶媒;及びこれらの溶媒の2種以上からなる混合溶媒;等が挙げられる。
 溶媒の使用量は、特に限定されず、用いる化合物の種類や反応規模等を考慮して適宜定めることができるが、ヒドロキシ化合物(6)1gに対し、通常1~50gである。
 化合物(7)の多くは公知化合物であり、エーテル結合(-O-)、エステル結合(-C(=O)-O-、-O-C(=O)-)、カーボネート結合(-O-C(=O)-O-)及びアミド結合(-C(=O)NH-、-NHC(=O)-)の形成反応を任意に組合わせて、所望の構造を有する複数の公知化合物を適宜結合・修飾することにより製造することができる。
 いずれの反応においても、反応終了後は、有機合成化学における通常の後処理操作を行い、所望により、カラムクロマトグラフィー、再結晶法、蒸留法等の公知の分離・精製手段を施すことにより、目的物を単離することができる。
 目的とする化合物の構造は、NMRスペクトル、IRスペクトル、マススペクトル等の測定、元素分析等により、同定することができる。
 〔1.4.化合物(V)〕
 逆波長分散重合性液晶化合物の別の例としては、下記式(V)で示される化合物(以下において「化合物(V)」という場合がある。)を挙げることができる。
Figure JPOXMLDOC01-appb-C000032
 逆波長分散重合性液晶化合物が化合物(V)である場合、基-Y5w-A4w-Y3w-A2w-Y1w-A1w-Y2w-A3w-Y4w-A5w-Y6w-が主鎖メソゲンとなり、一方基>A1w-C(Q1w)=N-N(Axw)Aywが側鎖メソゲンとなり、基A1wは、主鎖メソゲン及び側鎖メソゲンの両方の性質に影響する。
 式中、Y1w~Y8wはそれぞれ独立して、化学的な単結合、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR-C(=O)-、-C(=O)-NR-、-O-C(=O)-NR-、-NR-C(=O)-O-、-NR-C(=O)-NR-、-O-NR-、又は、-NR-O-を表す。
 ここで、Rの定義、及びY1w~Y8wの好ましい例は、式(I)中のY~Yについて述べたものと同様である。
 G1w、G2wはそれぞれ独立して、置換基を有していてもよい、炭素数1~20の二価の脂肪族基を表す。
 炭素数1~20の二価の脂肪族基としては、炭素数1~20のアルキレン基、炭素数2~20のアルケニレン基等の鎖状構造を有する二価の脂肪族基;炭素数3~20のシクロアルカンジイル基、炭素数4~20のシクロアルケンジイル基、炭素数10~30の二価の脂環式縮合環基等の二価の脂肪族基;等が挙げられる。
 G1w、G2wの二価の脂肪族基の置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、n-へキシルオキシ基等の炭素数1~6のアルコキシ基;等が挙げられる。なかでも、フッ素原子、メトキシ基、エトキシ基が好ましい。
 また、前記脂肪族基には、1つの脂肪族基あたり1以上の-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR2w-C(=O)-、-C(=O)-NR2w-、-NR2w-、又は、-C(=O)-が介在していてもよい。ただし、-O-又は-S-がそれぞれ2以上隣接して介在する場合を除く。ここで、R2wは、前記Rと同様の、水素原子又は炭素数1~6のアルキル基を表し、水素原子又はメチル基であることが好ましい。
 前記脂肪族基に介在する基としては、-O-、-O-C(=O)-、-C(=O)-O-、-C(=O)-が好ましい。
 これらの基が介在する脂肪族基の具体例としては、-CH-CH-O-CH-CH-、-CH-CH-S-CH-CH-、-CH-CH-O-C(=O)-CH-CH-、-CH-CH-C(=O)-O-CH-CH-、-CH-CH-C(=O)-O-CH-、-CH-O-C(=O)-O-CH-CH-、-CH-CH-NR-C(=O)-CH-CH-、-CH-CH-C(=O)-NR-CH-、-CH-NR-CH-CH-、-CH-C(=O)-CH-等が挙げられる。
 これらの中でも、本発明の所望の効果をより良好に発現させる観点から、G1w、G2wは、それぞれ独立して、炭素数1~20のアルキレン基、炭素数2~20のアルケニレン基等の鎖状構造を有する二価の脂肪族基が好ましく、メチレン基、エチレン基、トリメチレン基、プロピレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、オクタメチレン基、デカメチレン基〔-(CH10-〕等の、炭素数1~12のアルキレン基がより好ましく、テトラメチレン基〔-(CH-〕、ヘキサメチレン基〔-(CH-〕、オクタメチレン基〔-(CH-〕、及び、デカメチレン基〔-(CH10-〕が特に好ましい。
 Z1w、Z2wはそれぞれ独立して、無置換又はハロゲン原子で置換された炭素数2~10のアルケニル基を表す。
 Z1w、Z2wの好ましい例は、式〔I〕のZ及びZについて述べたものと同様である。
 Axwは、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。
 Axwの、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基は、芳香環を複数個有するものであってもよく、芳香族炭化水素環及び芳香族複素環を有するものであってもよい。
 前記芳香族炭化水素環としては、ベンゼン環、ナフタレン環、アントラセン環等が挙げられる。前記芳香族複素環としては、ピロール環、フラン環、チオフェン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ピラゾール環、イミダゾール環、オキサゾール環、チアゾール環等の単環の芳香族複素環;ベンゾチアゾール環、ベンゾオキサゾール環、キノリン環、フタラジン環、ベンゾイミダゾール環、ベンゾピラゾール環、ベンゾフラン環、ベンゾチオフェン環、チアゾロピリジン環、オキサゾロピリジン環、チアゾロピラジン環、オキサゾロピラジン環、チアゾロピリダジン環、オキサゾロピリダジン環、チアゾロピリミジン環、オキサゾロピリミジン環等の縮合環の芳香族複素環;等が挙げられる。
 Axwが有する芳香環は置換基を有していてもよい。かかる置換基としては、フッ素原子、塩素原子等のハロゲン原子;シアノ基;メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基;ビニル基、アリル基等の炭素数2~6のアルケニル基;トリフルオロメチル基等の炭素数1~6のハロゲン化アルキル基;ジメチルアミノ基等の置換アミノ基;メトキシ基、エトキシ基、イソプロポキシ基等の炭素数1~6のアルコキシ基;ニトロ基;フェニル基、ナフチル基等のアリール基;-C(=O)-R5w;-C(=O)-OR5w;-SO6w;等が挙げられる。ここで、R5wは炭素数1~20のアルキル基、炭素数2~20のアルケニル基、又は、炭素数3~12のシクロアルキル基を表し、R6wは後述するR4wと同様の、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、フェニル基、又は、4-メチルフェニル基を表す。
 また、Axwが有する芳香環は、同一又は相異なる置換基を複数有していてもよく、隣り合った二つの置換基が一緒になって結合して環を形成していてもよい。形成される環は単環であっても、縮合多環であってもよく、不飽和環であっても、飽和環であってもよい。
 なお、Axwの炭素数2~30の有機基の「炭素数」は、置換基の炭素原子を含まない有機基全体の総炭素数を意味する(後述するAywにて同じである。)。
 Axwの、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基としては、芳香族炭化水素環基;芳香族複素環基;芳香族炭化水素環基及び芳香族複素環基からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数3~30のアルキル基;芳香族炭化水素環基及び芳香族複素環基からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数4~30のアルケニル基;芳香族炭化水素環基及び芳香族複素環基からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数4~30のアルキニル基;等が挙げられる。
 Axwの好ましい具体例を以下に示す。但し、本発明においては、Axwは以下に示すものに限定されるものではない。なお、下記式中、「-」は環の任意の位置からのびる結合手を表す(以下にて同じである。)。
 (1)芳香族炭化水素環基
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
 (2)芳香族複素環基
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
 上記式中、Eは、NR6w、酸素原子又は硫黄原子を表す。ここで、R6wは、水素原子;又は、メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基を表す。
Figure JPOXMLDOC01-appb-C000037
 上記式中、X、Y、Zは、それぞれ独立して、NR7w、酸素原子、硫黄原子、-SO-、又は、-SO-を表す(ただし、酸素原子、硫黄原子、-SO-、-SO-が、それぞれ隣接する場合を除く。)。R7wは、前記R6wと同様の、水素原子;又は、メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基を表す。
Figure JPOXMLDOC01-appb-C000038
 (上記式中、Xは前記と同じ意味を表す。)
 (3)芳香族炭化水素環基及び芳香族複素環基からなる群から選ばれる少なくとも一つの芳香環を有する、アルキル基
Figure JPOXMLDOC01-appb-C000039
 (4)芳香族炭化水素環基及び芳香族複素環基からなる群から選ばれる少なくとも一つの芳香環を有する、アルケニル基
Figure JPOXMLDOC01-appb-C000040
 (5)芳香族炭化水素環基及び芳香族複素環基からなる群から選ばれる少なくとも一つの芳香環を有する、アルキニル基
Figure JPOXMLDOC01-appb-C000041
 上記したAxwの中でも、炭素数6~30の芳香族炭化水素基、又は炭素数4~30の芳香族複素環基であることが好ましく、下記に示すいずれかの基であることがより好ましく、
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
 下記に示すいずれかの基であることが更に好ましい。
Figure JPOXMLDOC01-appb-C000044
 Axwが有する環は置換基を有していてもよい。かかる置換基としては、フッ素原子、塩素原子等のハロゲン原子;シアノ基;メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基;ビニル基、アリル基等の炭素数2~6のアルケニル基;トリフルオロメチル基等の炭素数1~6のハロゲン化アルキル基;ジメチルアミノ基等の置換アミノ基;メトキシ基、エトキシ基、イソプロポキシ基等の炭素数1~6のアルコキシ基;ニトロ基;フェニル基、ナフチル基等のアリール基;-C(=O)-R8w;-C(=O)-OR8w;-SO6w;等が挙げられる。ここでR8wは、メチル基、エチル基等の炭素数1~6のアルキル基;又は、フェニル基等の炭素数6~14のアリール基;を表す。なかでも、ハロゲン原子、シアノ基、炭素数1~6のアルキル基、及び炭素数1~6のアルコキシ基が好ましい。
 また、Axwが有する環は、同一又は相異なる置換基を複数有していてもよく、隣り合った二つの置換基が一緒になって結合して環を形成していてもよい。形成される環は単環であっても、縮合多環であってもよい。
 なお、Axwの炭素数2~30の有機基の「炭素数」は、置換基の炭素原子を含まない有機基全体の総炭素数を意味する(後述するAywにて同じである。)。
 Aywは、水素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、置換基を有していてもよい炭素数2~20のアルキニル基、-C(=O)-R3w、-SO-R4w、-C(=S)NH-R9w又は、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。ここで、R3wは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、炭素数5~12の芳香族炭化水素基を表し、R4wは、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、フェニル基、又は、4-メチルフェニル基を表し、R9wは置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、置換基を有していてもよい炭素数5~20の芳香族基を表す。
 Aywの、置換基を有していてもよい炭素数1~20のアルキル基の炭素数1~20のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、1-メチルペンチル基、1-エチルペンチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-へキシル基、イソヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、n-イコシル基等が挙げられる。置換基を有してもよい炭素数1~20のアルキル基の炭素数は、1~12であることが好ましく、4~10であることが更に好ましい。
 Aywの、置換基を有していてもよい炭素数2~20のアルケニル基の炭素数2~20のアルケニル基としては、ビニル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、デセニル基、ウンデセニル基、ドデセニル基、トリデセニル基、テトラデセニル基、ペンタデセニル基、ヘキサデセニル基、ヘプタデセニル基、オクタデセニル基、ノナデセニル基、イコセニル基等が挙げられる。
 置換基を有していてもよい炭素数2~20のアルケニル基の炭素数は、2~12であることが好ましい。
 Aywの、置換基を有していてもよい炭素数3~12のシクロアルキル基の炭素数3~12のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基等が挙げられる。
 Aywの、置換基を有していてもよい炭素数2~20のアルキニル基の炭素数2~20のアルキニル基としては、エチニル基、プロピニル基、2-プロピニル基(プロパルギル基)、ブチニル基、2-ブチニル基、3-ブチニル基、ペンチニル基、2-ペンチニル基、ヘキシニル基、5-ヘキシニル基、ヘプチニル基、オクチニル基、2-オクチニル基、ノナニル基、デカニル基、7-デカニル基等が挙げられる。
 Aywの、置換基を有していてもよい炭素数1~20のアルキル基、及び置換基を有していてもよい炭素数2~20のアルケニル基の置換基としては、フッ素原子、塩素原子等のハロゲン原子;シアノ基;ジメチルアミノ基等の置換アミノ基;メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基等の炭素数1~20のアルコキシ基;メトキシメトキシ基、メトキシエトキシ基等の、炭素数1~12のアルコキシ基で置換された炭素数1~12のアルコキシ基;ニトロ基;フェニル基、ナフチル基等のアリール基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の炭素数3~8のシクロアルキル基;シクロペンチルオキシ基、シクロヘキシルオキシ基等の炭素数3~8のシクロアルキルオキシ基;テトラヒドロフラニル基、テトラヒドロピラニル基、ジオキソラニル基、ジオキサニル基等の炭素数2~12の環状エーテル基;フェノキシ基、ナフトキシ基等の炭素数6~14のアリールオキシ基;トリフルオロメチル基、ペンタフルオロエチル基、-CHCF等の、少なくとも1個がフッ素原子で置換された炭素数1~12のフルオロアルコキシ基;ベンゾフリル基;ベンゾピラニル基;ベンゾジオキソリル基;ベンゾジオキサニル基;-C(=O)-R7w;-C(=O)-OR7w;-SO8w;-SR10w;-SR10wで置換された炭素数1~12のアルコキシ基;水酸基;等が挙げられる。ここで、R7w及びR10wはそれぞれ独立して、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数3~12のシクロアルキル基、又は、炭素数6~12の芳香族炭化水素基を表し、R8wは前記R4wと同様の、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、フェニル基、又は、4-メチルフェニル基を表す。
 Aywの、置換基を有していてもよい炭素数3~12のシクロアルキル基の置換基としては、フッ素原子、塩素原子等のハロゲン原子;シアノ基;ジメチルアミノ基等の置換アミノ基;メチル基、エチル基、プロピル基等の炭素数1~6のアルキル基;メトキシ基、エトキシ基、イソプロポキシ基等の炭素数1~6のアルコキシ基;ニトロ基;フェニル基、ナフチル基等のアリール基;シクロプロピル基、シクロペンチル基、シクロヘキシル基等の炭素数3~8のシクロアルキル基;-C(=O)-R7w;-C(=O)-OR7w;-SO8w;水酸基;等が挙げられる。ここでR7w、R8wは前記と同じ意味を表す。
 Aywの、置換基を有していてもよい炭素数2~20のアルキニル基の置換基としては、置換基を有していてもよい炭素数1~20のアルキル基、及び置換基を有していてもよい炭素数2~20のアルケニル基の置換基と同様な置換基が挙げられる。
 Aywの、-C(=O)-R3wで表される基において、R3wは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、炭素数5~12の芳香族炭化水素基を表す。これらの具体例は、前記Aywの、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基の例として列記したものと同様のものが挙げられる。
 Aywの、-SO-R4wで表される基において、R4wは、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、フェニル基、又は、4-メチルフェニル基を表す。
 R4wの、炭素数1~20のアルキル基、及び炭素数2~20のアルケニル基の具体例は、前記Aywの、炭素数1~20のアルキル基、炭素数2~20のアルケニル基の例として列記したものと同様のものが挙げられる。
 Aywの、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基としては、前記Axwで例示したのと同様のものが挙げられる。
 これらの中でも、Aywとしては、水素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、置換基を有していてもよい炭素数2~20のアルキニル基、-C(=O)-R3w、-SO-R4w、又は、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基で表される基が好ましく、水素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、置換基を有していてもよい炭素数2~20のアルキニル基、置換基を有してもよい炭素数6~12の芳香族炭化水素基、置換基を有していてもよい炭素数3~9の芳香族複素環基、-C(=O)-R3w、-SO-R4wで表される基が更に好ましい。ここで、R3w、R4wは前記と同じ意味を表す。
 Aywの、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数2~20のアルキニル基の置換基としては、ハロゲン原子、シアノ基、炭素数1~20のアルコキシ基、炭素数1~12のアルコキシ基で置換された炭素数1~12のアルコキシ基、フェニル基、シクロヘキシル基、炭素数2~12の環状エーテル基、炭素数6~14のアリールオキシ基、水酸基、ベンゾジオキサニル基、フェニルスルホニル基、4-メチルフェニルスルホニル基、ベンゾイル基、-SR10wが好ましい。ここで、R10wは前記と同じ意味を表す。
 Aywの、置換基を有していてもよい炭素数3~12のシクロアルキル基、置換基を有してもよい炭素数6~12の芳香族炭化水素基、置換基を有していてもよい炭素数3~9の芳香族複素環基の置換基としては、フッ素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基が好ましい。
 また、AxwとAywは一緒になって、環を形成していてもよい。かかる環としては、置換基を有していてもよい、炭素数4~30の不飽和複素環、炭素数6~30の不飽和炭素環が挙げられる。
 前記炭素数4~30の不飽和複素環、炭素数6~30の不飽和炭素環としては、特に制約はなく、芳香族性を有していても有していなくてもよい。例えば、下記に示す環が挙げられる。なお、下記に示す環は、式(I)中の
Figure JPOXMLDOC01-appb-C000045
 として表される部分を示すものである。
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
 (式中、X、Y、Zは、前記と同じ意味を表す。)
 また、これらの環は置換基を有していてもよい。かかる置換基としては、Axwが有する芳香環の置換基として例示したのと同様のものが挙げられる。
 AxwとAywに含まれるπ電子の総数は、本発明の所望の効果をより良好に発現させる観点から、4以上24以下であるのが好ましく、6以上20以下であるのがより好ましく、6以上18以下であるのが更により好ましい。
 AxwとAywの好ましい組み合わせとしては、
 (α)Axwが炭素数4~30の、芳香族炭化水素基又は芳香族複素環基であり、Aywが水素原子、炭素数3~8のシクロアルキル基、(ハロゲン原子、シアノ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、若しくは炭素数3~8のシクロアルキル基)を置換基として有していてもよい炭素数6~12の芳香族炭化水素基、(ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基)を置換基として有していてもよい炭素数3~9の芳香族複素環基、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルケニル基、置換基を有していてもよい炭素数2~20のアルキニル基であり、当該置換基が、ハロゲン原子、シアノ基、炭素数1~20のアルコキシ基、炭素数1~12のアルコキシ基で置換された炭素数1~12のアルコキシ基、フェニル基、シクロヘキシル基、炭素数2~12の環状エーテル基、炭素数6~14のアリールオキシ基、水酸基、ベンゾジオキサニル基、ベンゼンスルホニル基、ベンゾイル基、-SR10wのいずれかである組み合わせ、及び、
 (β)AxwとAywが一緒になって不飽和複素環又は不飽和炭素環を形成しているもの、
 が挙げられる。ここで、R10wは前記と同じ意味を表す。
 AxwとAywのより好ましい組み合わせとしては、
 (γ)Axwが下記構造を有する基のいずれかであり、Aywが水素原子、炭素数3~8のシクロアルキル基、(ハロゲン原子、シアノ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、若しくは炭素数3~8のシクロアルキル基)を置換基として有していてもよい炭素数6~12の芳香族炭化水素基、(ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基)を置換基として有していてもよい炭素数3~9の芳香族複素環基、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルケニル基、置換基を有していてもよい炭素数2~20のアルキニル基であり、当該置換基が、ハロゲン原子、シアノ基、炭素数1~20のアルコキシ基、炭素数1~12のアルコキシ基で置換された炭素数1~12のアルコキシ基、フェニル基、シクロヘキシル基、炭素数2~12の環状エーテル基、炭素数6~14のアリールオキシ基、水酸基、ベンゾジオキサニル基、ベンゼンスルホニル基、ベンゾイル基、-SR10wのいずれかである組み合わせである。ここで、R10wは前記と同じ意味を表す。
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
 (式中、X、Yは、前記と同じ意味を表す。)
 AxwとAywの特に好ましい組み合わせとしては、
 (δ)Axwが下記構造を有する基のいずれかであり、Aywが水素原子、炭素数3~8のシクロアルキル基、(ハロゲン原子、シアノ基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、若しくは炭素数3~8のシクロアルキル基)を置換基として有していてもよい炭素数6~12の芳香族炭化水素基、(ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基)を置換基として有していてもよい炭素数3~9の芳香族複素環基、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数1~20のアルケニル基、置換基を有していてもよい炭素数2~20のアルキニル基であり、当該置換基が、ハロゲン原子、シアノ基、炭素数1~20のアルコキシ基、炭素数1~12のアルコキシ基で置換された炭素数1~12のアルコキシ基、フェニル基、シクロヘキシル基、炭素数2~12の環状エーテル基、炭素数6~14のアリールオキシ基、水酸基、ベンゾジオキサニル基、ベンゼンスルホニル基、ベンゾイル基、-SR10wのいずれかである組合せである。下記式中、Xは前記と同じ意味を表す。ここで、R10wは前記と同じ意味を表す。
Figure JPOXMLDOC01-appb-C000051
 A1wは置換基を有していてもよい三価の芳香族基を表す。三価の芳香族基としては、三価の炭素環式芳香族基であっても、三価の複素環式芳香族基であってもよい。本発明の所望の効果をより良好に発現させる観点から、三価の炭素環式芳香族基が好ましく、三価のベンゼン環基又は三価のナフタレン環基がより好ましく、下記式に示す三価のベンゼン環基又は三価のナフタレン環基がさらに好ましい。
 なお、下記式においては、結合状態をより明確にすべく、置換基Y1w、Y2wを便宜上記載している(Y1w、Y2wは、前記と同じ意味を表す。以下にて同じ。)。
Figure JPOXMLDOC01-appb-C000052
 これらの中でも、A1wとしては、下記に示す式(A11)~(A25)で表される基がより好ましく、式(A11)、(A13)、(A15)、(A19)、(A23)で表される基がさらに好ましく、式(A11)、(A23)で表される基が特に好ましい。
Figure JPOXMLDOC01-appb-C000053
 A1wの、三価の芳香族基が有していてもよい置換基としては、前記AXwの芳香族基の置換基として例示したのと同様のものが挙げられる。A1wとしては、置換基を有さないものが好ましい。
 A2w、A3wはそれぞれ独立して、置換基を有していてもよい炭素数3~30の二価の脂環式炭化水素基を表す。
 炭素数3~30の二価の脂環式炭化水素基としては、炭素数3~30のシクロアルカンジイル基、炭素数10~30の二価の脂環式縮合環基等が挙げられる。
 炭素数3~30のシクロアルカンジイル基としては、シクロプロパンジイル基;シクロブタン-1,2-ジイル基、シクロブタン-1,3-ジイル基等のシクロブタンジイル基;シクロペンタン-1,2-ジイル基、シクロペンタン-1,3-ジイル基等のシクロペンタンジイル基;シクロヘキサン-1,2-ジイル基、シクロヘキサン-1,3-ジイル基、シクロヘキサン-1,4-ジイル基等のシクロへキサンジイル基;シクロヘプタン-1,2-ジイル基、シクロヘプタン-1,3-ジイル基、シクロヘプタン-1,4-ジイル基等のシクロへプタンジイル基;シクロオクタン-1,2-ジイル基、シクロオクタン-1,3-ジイル基、シクロオクタン-1,4-ジイル基、シクロオクタン-1,5-ジイル基等のシクロオクタンジイル基;シクロデカン-1,2-ジイル基、シクロデカン-1,3-ジイル基、シクロデカン-1,4-ジイル基、シクロデカン-1,5-ジイル基等のシクロデカンジイル基;シクロドデカン-1,2-ジイル基、シクロドデカン-1,3-ジイル基、シクロドデカン-1,4-ジイル基、シクロドデカン-1,5-ジイル基等のシクロドデカンジイル基;シクロテトラデカン-1,2-ジイル基、シクロテトラデカン-1,3-ジイル基、シクロテトラデカン-1,4-ジイル基、シクロテトラデカン-1,5-ジイル基、シクロテトラデカン-1,7-ジイル基等のシクロテトラデカンジイル基;シクロエイコサン-1,2-ジイル基、シクロエイコサン-1,10-ジイル基等のシクロエイコサンジイル基;等が挙げられる。
 炭素数10~30の二価の脂環式縮合環基としては、デカリン-2,5-ジイル基、デカリン-2,7-ジイル基等のデカリンジイル基;アダマンタン-1,2-ジイル基、アダマンタン-1,3-ジイル基等のアダマンタンジイル基;ビシクロ[2.2.1]へプタン-2,3-ジイル基、ビシクロ[2.2.1]へプタン-2,5-ジイル基、ビシクロ[2.2.1]へプタン-2,6-ジイル基等のビシクロ[2.2.1]へプタンジイル基;等が挙げられる。
 これらの二価の脂環式炭化水素基は、任意の位置に置換基を有していてもよい。置換基としては、前記AXwの芳香族基の置換基として例示したのと同様のものが挙げられる。
 これらの中でも、A2w、A3wとしては、炭素数3~12の二価の脂環式炭化水素基が好ましく、炭素数3~12のシクロアルカンジイル基がより好ましく、下記式(A31)~(A34)
Figure JPOXMLDOC01-appb-C000054
 で表される基がさらに好ましく、前記式(A32)で表される基が特に好ましい。
 前記炭素数3~30の二価の脂環式炭化水素基は、Y1w、Y3w(又はY2w、Y4w)と結合する炭素原子の立体配置の相違に基づく、シス型、トランス型の立体異性体が存在し得る。例えば、シクロヘキサン-1,4-ジイル基の場合には、下記に示すように、シス型の異性体(A32a)とトランス型の異性体(A32b)が存在し得る。
Figure JPOXMLDOC01-appb-C000055
 本発明においては、シス型であってもトランス型であっても、あるいはシス型とトランス型の異性体混合物であってもよいが、配向性が良好であることから、トランス型あるいはシス型であるのが好ましく、トランス型がより好ましい。
 A4w、A5wはそれぞれ独立して、置換基を有していてもよい、炭素数6~30の二価の芳香族基を表す。
 A4w、A5wの芳香族基は単環のものであっても、多環のものであってもよい。
 A4w、A5wの好ましい具体例としては、下記のものが挙げられる。
Figure JPOXMLDOC01-appb-C000056
 上記A4w、A5wの二価の芳香族基は、任意の位置に置換基を有していてもよい。当該置換基としては、ハロゲン原子、シアノ基、ヒドロキシル基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、ニトロ基、-C(=O)-OR8w基;等が挙げられる。ここでR8wは、炭素数1~6のアルキル基である。なかでも、ハロゲン原子、炭素数1~6のアルキル基、アルコキシ基が好ましい。また、ハロゲン原子としてはフッ素原子が、炭素数1~6のアルキル基としては、メチル基、エチル基、プロピル基が、アルコキシ基としては、メトキシ基、エトキシ基がより好ましい。
 これらの中でも、本発明の所望の効果をより良好に発現させる観点から、A4w、A5wは、それぞれ独立して、置換基を有していてもよい、下記式(A41)、(A42)及び(A43)で表される基がより好ましく、置換基を有していてもよい式(A41)で表される基が特に好ましい。
Figure JPOXMLDOC01-appb-C000057
 Q1wは、水素原子、置換基を有していてもよい炭素数1~6のアルキル基を示す。
 置換基を有していてもよい炭素数1~6のアルキル基としては、前記AXwで例示したのと同様のものが挙げられる。
 これらの中でも、Q1wは、水素原子又は炭素数1~6のアルキル基が好ましく、水素原子及びメチル基がより好ましい。
 化合物(V)は、例えば、下記に示す反応により製造することができる。
Figure JPOXMLDOC01-appb-C000058
 (式中、Y1w~Y8w、G1w、G2w、Z1w、Z2w、Axw、Ayw、A1w~A5w、Q1wは、前記と同じ意味を表す。)
 すなわち、式(3w)で表されるヒドラジン化合物(ヒドラジン化合物(3w))を、式(4w)で表されるカルボニル化合物(カルボニル化合物(4w))と、〔ヒドラジン化合物(3w):カルボニル化合物(4w)〕のモル比で、1:2~2:1、好ましくは1:1.5~1.5:1の割合で反応させることにより、高選択的かつ高収率で目的とする化合物(V)を製造することができる。
 この場合、(±)-10-カンファースルホン酸、パラトルエンスルホン酸等の有機酸;塩酸、硫酸等の無機酸;等の酸触媒を添加して反応を行うことができる。酸触媒を添加することで反応時間が短縮され、収率が向上する場合がある。酸触媒の添加量は、カルボニル化合物(4w)1モルに対して、通常0.001~1モルである。また、酸触媒はそのまま添加してもよいし、適当な溶液に溶解させた溶液として添加してもよい。
 この反応に用いる溶媒としては、反応に不活性なものであれば特に限定されない。例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、sec-ブチルアルコール、t-ブチルアルコール等のアルコール系溶媒;ジエチルエーテル、テトラヒドロフラン、1,2-ジメトキシエタン、1,4-ジオキサン、シクロペンチルメチルエーテル等のエーテル系溶媒;酢酸エチル、酢酸プロピル、プロピオン酸メチル等のエステル系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;n-ペンタン、n-ヘキサン、n-ヘプタン等の脂肪族炭化水素系溶媒;N,N-ジメチルホルムアミド、N-メチルピロリドン、ヘキサメチルリン酸トリアミド等のアミド系溶媒;ジメチルスルホキシド、スルホラン等の含硫黄系溶媒;及びこれらの2種以上からなる混合溶媒;等が挙げられる。
 これらの中でも、アルコール系溶媒、エーテル系溶媒、及びアルコール系溶媒とエーテル系溶媒の混合溶媒が好ましい。
 溶媒の使用量は、特に限定されず、用いる化合物の種類や反応規模等を考慮して適宜定めることができるが、ヒドラジン化合物(3w)1gに対し、通常1~100gである。
 反応は、-10℃から用いる溶媒の沸点までの温度範囲で円滑に進行する。各反応の反応時間は、反応規模にもよるが、通常、数分から数時間である。
 ヒドラジン化合物(3w)は、次のようにして製造することができる。
Figure JPOXMLDOC01-appb-C000059
 (式中、Axw、Aywは前記と同じ意味を表す。Xは、ハロゲン原子、メタンスルホニルオキシ基、p-トルエンスルホニルオキシ基等の脱離基を表す。)
 すなわち、式(2wa)で表される化合物とヒドラジン(1w)を、適当な溶媒中、(化合物(2wa):ヒドラジン(1w))のモル比で、1:1~1:20、好ましくは1:2~1:10で反応させて、対応するヒドラジン化合物(3wa)を得ることができ、さらに、ヒドラジン化合物(3wa)と式(2wb)で表される化合物を反応させることで、ヒドラジン化合物(3w)を得ることができる。
 ヒドラジン(1w)としては、通常1水和物のものを用いる。ヒドラジン(1w)は、市販品をそのまま使用することができる。
 この反応に用いる溶媒としては、反応に不活性なものであれば特に限定されない。例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、sec-ブチルアルコール、t-ブチルアルコール等のアルコール系溶媒;ジエチルエーテル、テトラヒドロフラン、1,2-ジメトキシエタン、1,4-ジオキサン、シクロペンチルメチルエーテル等のエーテル系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;n-ペンタン、n-ヘキサン、n-ヘプタン等の脂肪族炭化水素系溶媒;N,N-ジメチルホルムアミド、N-メチルピロリドン、ヘキサメチルリン酸トリアミド等のアミド系溶媒;ジメチルスルホキシド、スルホラン等の含硫黄系溶媒;及びこれらの2種以上からなる混合溶媒;等が挙げられる。
 これらの中でも、アルコール系溶媒、エーテル系溶媒、及びアルコール系溶媒とエーテル系溶媒の混合溶媒が好ましい。
 溶媒の使用量は、特に限定されず、用いる化合物の種類や反応規模等を考慮して適宜定めることができるが、ヒドラジン1gに対し、通常1~100gである。
 反応は、-10℃から用いる溶媒の沸点までの温度範囲で円滑に進行する。各反応の反応時間は、反応規模にもよるが、通常、数分から数時間である。
 また、ヒドラジン化合物(3w)は、次のように、従来公知の方法を用いて、ジアゾニウム塩(5w)を還元することによって製造することもできる。
Figure JPOXMLDOC01-appb-C000060
 式(5)中、Axw、Aywは、前記と同じ意味を表す。Xw-は、ジアゾニウムに対する対イオンである陰イオンを示す。Xw-としては、例えば、ヘキサフルオロリン酸イオン、ホウフッ化水素酸イオン、塩化物イオン、硫酸イオン等の無機陰イオン;ポリフルオロアルキルカルボン酸イオン、ポリフルオロアルキルスルホン酸イオン、テトラフェニルホウ酸イオン、芳香族カルボン酸イオン、芳香族スルホン酸イオン等の有機陰イオン;等が挙げられる。
 上記反応に用いる還元剤としては、金属塩還元剤が挙げられる。
 金属塩還元剤とは、一般に低原子価金属を含む化合物、もしくは金属イオンとヒドリド源からなる化合物である(「有機合成実験法ハンドブック」1990年社団法人有機合成化学協会編 丸善株式会社発行810ページを参照)。
 金属塩還元剤としては、NaAlH、NaAlH(Or)(p、qはそれぞれ独立して1~3の整数を表し、p+q=4である。rは炭素数1~6のアルキル基を表す。)、LiAlH、iBuAlH、LiBH、NaBH、SnCl、CrCl、TiCl等が挙げられる。
 還元反応においては公知の反応条件を採用することができる。例えば、特開2005-336103号公報、新実験化学講座 1978年 丸善株式会社発行 14巻、実験化学講座 1992年 丸善株式会社発行 20巻、等の文献に記載の条件で反応を行うことができる。
 また、ジアゾニウム塩(5)は、アニリン等の化合物から常法により製造することができる。
 カルボニル化合物(4)は、典型的には、エーテル結合(-O-)、エステル結合(-C(=O)-O-、-O-C(=O)-)、カーボネート結合(-O-C(=O)-O-)及びアミド結合(-C(=O)-NH-、-NH-C(=O)-)の形成反応を任意に組み合わせて、所望の構造を有する複数の公知化合物を適宜結合・修飾することにより製造することができる。
 エーテル結合の形成は、以下のようにして行うことができる。
 (i)式:D1-hal(halはハロゲン原子を表す。以下にて同じ。)で表される化合物と、式:D2-OMet(Metはアルカリ金属(主にナトリウム)を表す。以下にて同じ。)で表される化合物とを混合して縮合させる(ウイリアムソン合成)。なお、式中、D1及びD2は任意の有機基を表す(以下にて同じ。)。
 (ii)式:D1-halで表される化合物と、式:D2-OHで表される化合物とを水酸化ナトリウム、水酸化カリウム等の塩基存在下、混合して縮合させる。
 (iii)式:D1-J(Jはエポキシ基を表す。)で表される化合物と、式:D2-OHで表される化合物とを水酸化ナトリウム、水酸化カリウム等の塩基存在下、混合して縮合させる。
 (iv)式:D1-OFN(OFNは不飽和結合を有する基を表す。)で表される化合物と、式:D2-OMetで表される化合物を、水酸化ナトリウム、水酸化カリウム等の塩基存在下、混合して付加反応させる。
 (v)式:D1-halで表される化合物と、式:D2-OMetで表される化合物とを、銅あるいは塩化第一銅存在下、混合して縮合させる(ウルマン縮合)。
 エステル結合及びアミド結合の形成は、以下のようにして行うことができる。
 (vi)式:D1-COOHで表される化合物と、式:D2-OH又はD2-NHで表される化合物とを、脱水縮合剤(N,N-ジシクロヘキシルカルボジイミド等)の存在下に脱水縮合させる。
 (vii)式:D1-COOHで表される化合物にハロゲン化剤を作用させることにより、式:D1-CO-halで表される化合物を得、このものと式:D2-OH又はD2-NHで表される化合物とを、塩基の存在下に反応させる。
 (viii)式:D1-COOHで表される化合物に酸無水物を作用させることにより、混合酸無水物を得た後、このものに、式:D2-OH又はD2-NHで表される化合物を反応させる。
 (ix)式:D1-COOHで表される化合物と、式:D2-OH又はD2-NHで表される化合物とを、酸触媒あるいは塩基触媒の存在下に脱水縮合させる。
 本発明のカルボニル化合物(4w)は、より具体的には、下記反応式に示す方法により製造することができる。
Figure JPOXMLDOC01-appb-C000061
 (式中、Y1w~Y8w、G1w、G2w、Z1w、Z2w、A1w~A5w、及びQ1wは、前記と同じ意味を表す。L1w、L2wは、水酸基、ハロゲン原子、メタンスルホニルオキシ基、p-トルエンスルホニルオキシ基等の脱離基を表す。-Y1awは、-L1wと反応して、-Y1w-となる基を表し、-Y2awは、-L2wと反応して、-Y2w-となる基を表す。)
 すなわち、従来公知の、エーテル結合(-O-)、エステル結合(-C(=O)-O-、-O-C(=O)-)、又は、カーボネート結合(-O-C(=O)-O-)の形成反応を用いることにより、式(6wd)で表される化合物に、式(7wa)で表される化合物、次いで、式(7wb)で表される化合物を反応させて、本発明のカルボニル化合物(4w)を製造することができる。
 より具体的に、Y1wが、Y11w-C(=O)-O-で表される基であり、式:Z2w-Y8w-G2w-Y6w-A5w-Y4w-A3w-Y2w-で表される基が、式:Z1w-Y7w-G1w-Y5w-A4w-Y3w-A2w-Y1w-で表される基と同一である、化合物(4w’)の製造方法を以下に示す。
Figure JPOXMLDOC01-appb-C000062
 (式中、Y3w、Y5w、Y7w、G1w、Z1w、A1w、A2w、A4w、Q1w、及びL1wは前記と同じ意味を表す。Y11wは、Y11w-C(=O)-O-がY1wとなる基を表す。Y1wは前記と同じ意味を表す。)
 上記反応においては、式(6w)で表されるジヒドロキシ化合物(化合物(6w))と式(7w)で表される化合物(化合物(7w))とを、(化合物(6w):化合物(7w))のモル比で、1:2~1:4、好ましくは1:2~1:3の割合で反応させることにより、高選択的かつ高収率で目的とする化合物(4w’)を得ることができる。
 化合物(7w)が、式(7w)中、L1wが水酸基の化合物(カルボン酸)である場合には、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、ジシクロヘキシルカルボジイミド等の脱水縮合剤の存在下に反応させることにより、目的物を得ることができる。
 脱水縮合剤の使用量は、化合物(7w)1モルに対し、通常1~3モルである。
 また、化合物(7w)が、式(7w)中、L1wが水酸基の化合物(カルボン酸)である場合には、メタンスルホニルクロリド、p-トルエンスルホニルクロリド等のスルホニルハライド、及びトリエチルアミン、ジイソプロピルエチルアミン、ピリジン、4-(ジメチルアミノ)ピリジン等の塩基の存在下に反応させることによっても、目的物を得ることができる。
 スルホニルハライドの使用量は、化合物(7w)1モルに対し、通常1~3モルである。
 塩基の使用量は、化合物(7w)1モルに対し、通常1~3モルである。
 この場合、前記式(7w)中、L1wがスルホニルオキシ基の化合物(混合酸無水物)を単離して次の反応を行ってもよい。
 さらに、化合物(7w)が、式(7w)中、L1wがハロゲン原子の化合物(酸ハライド)である場合には、塩基の存在下に反応させることにより、目的物を得ることができる。
 用いる塩基としては、トリエチルアミン、ピリジン等の有機塩基;水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム等の無機塩基が挙げられる。
 塩基の使用量は、化合物(7w)1モルに対し、通常1~3モルである。
 上記反応に用いる溶媒としては、例えば、クロロホルム、塩化メチレン等の塩素系溶媒;N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ヘキサメチルリン酸トリアミド等のアミド系溶媒;1,4-ジオキサン、シクロペンチルメチルエーテル、テトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン等のエーテル類;ジメチルスルホキシド、スルホラン等の含硫黄系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;n-ペンタン、n-ヘキサン、n-オクタン等の脂肪族炭化水素系溶媒;シクロペンタン、シクロヘキサン等の脂環式炭化水素系溶媒;及びこれらの溶媒の2種以上からなる混合溶媒;等が挙げられる。
 溶媒の使用量は、特に限定されず、用いる化合物の種類や反応規模等を考慮して適宜定めることができるが、ヒドロキシ化合物(6)1gに対し、通常1~50gである。
 化合物(6w)の多くは公知物質であり、公知の方法により製造することができる。
 例えば、下記反応式に示す方法により製造することができる(WO2009/042544号、及び、The Journal of Organic Chemistry,2011,76,8082-8087等参照。)。化合物(6w)として市販されているものを、所望により精製して用いることもできる。
Figure JPOXMLDOC01-appb-C000063
 (式中、A1w、Q1wは前記と同じ意味を表し、A1awは、ホルミル化又はアシル化されることによりA1wになる2価の芳香族基を表し、R’は、メチル基、エチル基等の炭素数1~6のアルキル基、メトキシメチル基等の炭素数2~6のアルコキシアルキル基等の水酸基の保護基を表す。)
 すなわち、式(6wa)で表されるジヒドロキシ化合物(1,4-ジヒドロキシベンゼン、1,4-ジヒドロキシナフタレン等)の水酸基をアルキル化して、式(6wb)で表される化合物を得た後、OR’基のオルト位を、公知の方法により、ホルミル化又はアシル化することにより、式(6wc)で表される化合物を得、このものを脱保護(脱アルキル化)することにより、目的とする化合物(6w)を得ることができる。
 また、化合物(6w)として、市販されているものをそのまま、又は所望により精製して用いることもできる。
 化合物(7w)の多くは公知化合物であり、エーテル結合(-O-)、エステル結合(-C(=O)-O-、-O-C(=O)-)、カーボネート結合(-O-C(=O)-O-)及びアミド結合(-C(=O)-NH-、-NH-C(=O)-)の形成反応を任意に組み合わせて、所望の構造を有する複数の公知化合物を適宜結合・修飾することにより製造することができる。
 例えば、化合物(7w)が、下記式(7w’)で表される化合物(化合物(7w’))である場合には、式(9w’)で表されるジカルボン酸(化合物(9w’))を用いて、下記のようにして製造することができる。
Figure JPOXMLDOC01-appb-C000064
 (式中、Y5w、Y7w、G1w、Z1w、A2w、A4w、Y11wは、前記と同じ意味を表す。Y12wは、-O-C(=O)-Y12wがY3wとなる基を表す。Rは、メチル基、エチル基等のアルキル基;フェニル基、p-メチルフェニル基等の置換基を有していてもよいアリール基;を表す。)
 先ず、化合物(9w’)に、式(10w)で表されるスルホニルクロライドを、トリエチルアミン、4-(ジメチルアミノ)ピリジン等の塩基存在下で反応させる。
 次いで、反応混合物に、化合物(8w)と、トリエチルアミン、4-(ジメチルアミノ)ピリジン等の塩基を加えて反応を行う。
 スルホニルクロライドの使用量は、化合物(9w’)1当量に対して、通常0.5~0.7当量である。
 化合物(8w)の使用量は、化合物(9w’)1当量に対して、通常0.5~0.6当量である。
 塩基の使用量は、化合物(3w)1当量に対して、通常0.5~0.7当量である。
 反応温度は、20~30℃であり、反応時間は反応規模等にもよるが、数分から数時間である。
 上記反応に用いる溶媒としては、前記化合物(4w’)を製造する際に用いることができる溶媒として例示したものが挙げられる。なかでも、エーテル類が好ましい。
 溶媒の使用量は、特に限定されず、用いる化合物の種類や反応規模等を考慮して適宜定めることができるが、化合物(9w’)1gに対し、通常1~50gである。
 いずれの反応においても、反応終了後は、有機合成化学における通常の後処理操作を行い、所望により、カラムクロマトグラフィー、再結晶法、蒸留法等の公知の分離・精製手段を施すことにより、目的物を単離することができる。
 目的とする化合物の構造は、NMRスペクトル、IRスペクトル、マススペクトル等の測定、元素分析等により、同定することができる。
 〔1.5.重合性モノマー〕
 組成物(A)は、重合性モノマーを含有する。本願において、「重合性モノマー」とは、重合能を有しモノマーとして働きうる化合物のうち、特に、逆波長分散重合性液晶化合物以外の化合物をいう。
 重合性モノマーとしては、例えば、1分子当たり1以上の重合性基を有するものを用いうる。そのような重合性基を有することにより、光学異方性層の形成に際し重合を達成することができる。重合性モノマーが1分子当たり2以上の重合性基を有する架橋性モノマーである場合、架橋的な重合を達成することができる。かかる重合性基の例としては、化合物(I)中の基Z-Y-及びZ-Y-と同様の基を挙げることができ、より具体的には例えば、アクリロイル基、メタクリロイル基、及びエポキシ基を挙げることができる。
 重合性モノマーは、通常、1分子あたり1以上のメソゲンを有し、且つ、光学異方性層の形成に際して逆波長分散重合性液晶化合物と共に重合しうる。そのような重合の結果形成された光学異方性層において、重合性モノマーのメソゲンは、通常、逆分散重合性液晶化合物のそれとは異なる複屈折Δnの波長分散特性を有する。
 好ましい態様において、重合性モノマーのメソゲンは、逆波長分散重合性液晶化合物の主鎖メソゲン又は側鎖メソゲンのどちらか一方と平行に配向しうるものとしうる。例えば、重合性モノマーは、逆分散波長重合性液晶化合物の主鎖メソゲン及び側鎖メソゲンのうちの一方と近い構造のメソゲンを有するものとしうる。そのようなメソゲンを有することにより、重合性モノマーは、逆分散重合性液晶化合物とは異なる複屈折Δnの波長分散特性を有し、且つ逆波長分散重合性液晶化合物の主鎖メソゲン又は側鎖メソゲンと平行に配向しうる。
 重合性モノマーの例としては、下記式(II)で示される化合物及び下記式(III)で表される化合物(それぞれ、以下において「化合物(II)」及び「化合物(III)」という場合がある。)を挙げることができる。
Figure JPOXMLDOC01-appb-C000065
 式(II)中、Y~Y、G、G、Z、Z、及びA~Aは、それぞれ、式(I)の説明で述べたものと同じ意味を表す。また、R10は、水素原子、又はメチル基を表す。化合物(II)は、その構造中のY~Y、G、G、Z、Z、及びA~Aが、共に用いる化合物(I)中の対応する基と同じものであってもよく、異なっているものであってもよい。
 ただし、化合物(II)は、そのメソゲン部分と重合性基の部分が、共に用いる化合物(I)と同じものを用いることが、良好な配向を得る上で好ましい。より具体的には、Y~Y、Z、Z、及びA~Aが、化合物(I)と化合物(II)とで共通していることが好ましい。
 一方、式(III)中、Y1x~Y6x、G1x、G2x、Z1x、Z2x、Axx、Ayx、A1x~A3x、及びQ1xは、それぞれ、式(I)のY~Y、G、G、Z、Z、A、A、A~A、及びQと同じ意味を表す。但し、これらのうちの少なくとも1つ以上が、共に用いる化合物(I)中の対応する基と異なるものである。
 化合物(III)のより具体的な例として、式(III)中、Y1x~Y6x、G1x、G2x、Z1x、Z2x、Axx、Ayx、A2x~A3x、及びQ1xが、それぞれ共に用いる化合物(I)中のY~Y、G、G、Z、Z、A、A、A~A、及びQと同じものであり、A1xが、共に用いる化合物(I)中のAと異なるものを挙げることができる。より具体的な化合物(I)と化合物(III)との組み合わせの例としては、化合物(I)中のAが下記式(A25)で表される基であり、一方化合物(III)中のA1xが下記式(A26)で表される基であり、その他の基は同一であるものの組み合わせを挙げることができる。
 下記において、A及びA1xは、図示の便宜のため、Y及びYと共に示している。
Figure JPOXMLDOC01-appb-C000066
 重合性モノマーが化合物(II)である場合、基-Y-A-Y-A(R10)-Y-A-Y-がメソゲンとなる。重合性モノマーが化合物(III)である場合、基-Y3x-A2x-Y1x-A1x-Y2x-A3x-Y4x-及び基>A1x-C(Q1x)=N-N(Axx)Ayxがメソゲンとなる。
 化合物(II)のより具体的な例としては、下記式(II)-1で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000067
 化合物(III)のより具体的な例としては、下記式(III)-1~(III)-4で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000068
 重合性モノマーのさらなる例としては、下記式(IV)で示される化合物(以下において「化合物(IV)」という場合がある。)を挙げることができる。
Figure JPOXMLDOC01-appb-C000069
 重合性モノマーは、それ自体が液晶性のものであってもよく、非液晶性のものであってもよい。重合性モノマーは、非液晶性であることが好ましく、特に化合物(III)であって且つ非液晶性であるものが好ましい。
 ここで、それ自体が「非液晶性」であるとは、当該重合性モノマーそのものを、室温から200℃のいずれの温度に置いた場合にも、配向処理をした基材上で配向を示さないものをいう。配向を示すかどうかは、偏光顕微鏡のクロスニコル透過観察にてラビング方向を面相で回転させた場合に、明暗のコントラストがあるかどうかで判断する。
 組成物(A)において、重合性モノマーの配合割合は、逆波長分散重合性液晶化合物100重量部に対し、通常、1~100重量部、好ましくは5~50重量部である。当該範囲内で、重合性モノマーの配合割合を、所望の逆波長分散特性を示すように適宜調整することにより、逆波長分散特性の精密な制御が容易となる。
 重合性モノマーは、既知の製造方法により製造することができる。または、化合物(I)と類似の構造を持つものについては、化合物(I)の製造方法に準じて製造することができる。
 〔1.6.組成物(A)のその他の成分〕
 組成物(A)は、逆波長分散重合性液晶化合物及び重合性モノマーに加えて、必要に応じて、以下に例示するもの等の任意の成分を含みうる。
 組成物(A)は、逆波長分散重合性液晶化合物と共重合しうる任意の単量体を含みうる。
 前記任意の単量体の例としては、例えば、4-(2-メタクリロイルオキシエチルオキシ)安息香酸-4’-メトキシフェニル、4-(6-メタクリロイルオキシヘキシルオキシ)安息香酸ビフェニル、4-(2-アクリロイルオキシエチルオキシ)安息香酸-4’-シアノビフェニル、4-(2-メタクリロリルオキシエチルオキシ)安息香酸-4’-シアノビフェニル、4-(2-メタクリロリルオキシエチルオキシ)安息香酸-3’,4’-ジフルオロフェニル、4-(2-メタクリロイルオキシエチルオキシ)安息香酸ナフチル、4-アクリロイルオキシ-4’-デシルビフェニル、4-アクリロイルオキシ-4’-シアノビフェニル、4-(2-アクリロイルオキシエチルオキシ)-4’-シアノビフェニル、4-(2-メタクリロイルオキシエチルオキシ)-4’-メトキシビフェニル、4-(2-メタクリロイルオキシエチルオキシ)-4’-(4”-フルオロベンジルオキシ)-ビフェニル、4-アクリロイルオキシ-4’-プロピルシクロヘキシルフェニル、4-メタクリロイル-4’-ブチルビシクロヘキシル、4-アクリロイル-4’-アミルトラン、4-アクリロイル-4’-(3,4-ジフルオロフェニル)ビシクロヘキシル、4-(2-アクリロイルオキシエチル)安息香酸(4-アミルフェニル)、4-(2-アクリロイルオキシエチル)安息香酸(4-(4’-プロピルシクロヘキシル)フェニル)等が挙げられる。
 市販品としては、LC-242(商品;BASF社製)等を用いることができ、特開2007-002208号公報、特開2009-173893号公報、特開2009-274984号公報、特開2010-030979号公報、特開2010-031223号公報、特開2011-006360号公報等に開示されている化合物を用いることもできる。
 組成物(A)が任意の単量体を含む場合、当該任意の単量体の割合は、逆波長分散重合性液晶化合物、重合性モノマー及び任意の単量体の合計に対して50重量%未満であることが好ましく、30重量%以下であることがより好ましい。任意の単量体の割合の下限は0重量%としうる。かかる範囲にあれば、得られる光学異方性層のガラス転移温度(Tg)が高くなり、高い膜硬度が得られるため好ましい。
 組成物(A)は、重合開始剤を含みうる。重合開始剤としては、組成物(A)中の、逆波長分散重合性液晶化合物、重合性モノマー及びその他の重合性化合物が有する重合性基の種類に応じて適宜選択しうる。例えば、重合性基がラジカル重合性であればラジカル重合開始剤を、アニオン重合性の基であればアニオン重合開始剤を、カチオン重合性の基であればカチオン重合開始剤を、それぞれ使用しうる。
 ラジカル重合開始剤としては、加熱することにより、重合性化合物の重合を開始しえる活性種が発生する化合物である熱ラジカル発生剤;及び可視光線、紫外線(i線など)、遠紫外線、電子線、X線等の露光光の露光により、重合性化合物の重合を開始しえる活性種が発生する化合物である光ラジカル発生剤;のいずれも使用可能であるが、光ラジカル発生剤を使用するのが好適である。
 光ラジカル発生剤としては、アセトフェノン系化合物、ビイミダゾール系化合物、トリアジン系化合物、O-アシルオキシム系化合物、オニウム塩系化合物、ベンゾイン系化合物、ベンゾフェノン系化合物、α-ジケトン系化合物、多核キノン系化合物、キサントン系化合物、ジアゾ系化合物、イミドスルホナート系化合物等を挙げることができる。これらの化合物は、露光によって活性ラジカルまたは活性酸、あるいは活性ラジカルと活性酸の両方を発生する成分である。光ラジカル発生剤は、一種単独で、あるいは2種以上を組み合わせて用いることができる。
 アセトフェノン系化合物の具体例としては、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタン-1-オン、1-ヒドロキシシクロヘキシル・フェニルケトン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1,2-オクタンジオン、2-ベンジル-2-ジメチルアミノ-4’-モルフォリノブチロフェノン等を挙げることができる。
 ビイミダゾール系化合物の具体例としては、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラキス(4-エトキシカルボニルフェニル)-1,2’-ビイミダゾール、2,2’-ビス(2-ブロモフェニル)-4,4’,5,5’-テトラキス(4-エトキシカルボニルフェニル)-1,2’-ビイミダゾール、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4-ジクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4,6-トリクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2-ブロモフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4-ジブロモフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4,6-トリブロモフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール等を挙げることができる。
 光重合開始剤としてビイミダゾール系化合物を用いる場合、水素供与体を併用することが、感度をさらに改良することができる点で好ましい。
 「水素供与体」とは、露光によりビイミダゾール系化合物から発生したラジカルに対して、水素原子を供与することができる化合物を意味する。水素供与体としては、下記で定義するメルカプタン系化合物、アミン系化合物等が好ましい。
 メルカプタン系化合物としては、2-メルカプトベンゾチアゾール、2-メルカプトベンゾオキサゾール、2-メルカプトベンゾイミダゾール、2,5-ジメルカプト-1,3,4-チアジアゾール、2-メルカプト-2,5-ジメチルアミノピリジン等を挙げることができる。アミン系化合物としては、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4-ジエチルアミノアセトフェノン、4-ジメチルアミノプロピオフェノン、エチル-4-ジメチルアミノベンゾエート、4-ジメチルアミノ安息香酸、4-ジメチルアミノベンゾニトリル等を挙げることができる。
 トリアジン系化合物としては、2,4,6-トリス(トリクロロメチル)-s-トリアジン、2-メチル-4,6-ビス(トリクロロメチル)-s-トリアジン、2-〔2-(5-メチルフラン-2-イル)エテニル〕-4,6-ビス(トリクロロメチル)-s-トリアジン、2-〔2-(フラン-2-イル)エテニル〕-4,6-ビス(トリクロロメチル)-s-トリアジン、2-〔2-(4-ジエチルアミノ-2-メチルフェニル)エテニル〕-4,6-ビス(トリクロロメチル)-s-トリアジン、2-〔2-(3,4-ジメトキシフェニル)エテニル〕-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-メトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-エトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-n-ブトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン等のハロメチル基を有するトリアジン系化合物を挙げることができる。
 O-アシルオキシム系化合物の具体例としては、1-〔4-(フェニルチオ)フェニル〕-ヘプタン-1,2-ジオン 2-(O-ベンゾイルオキシム)、1-〔4-(フェニルチオ)フェニル〕-オクタン-1,2-ジオン 2-(O-ベンゾイルオキシム)、1-〔4-(ベンゾイル)フェニル〕-オクタン-1,2-ジオン 2-(O-ベンゾイルオキシム)、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-エタノン 1-(O-アセチルオキシム)、1-[9-エチル-6-(3-メチルベンゾイル)-9H-カルバゾール-3-イル]-エタノン 1-(O-アセチルオキシム)、1-(9-エチル-6-ベンゾイル-9H-カルバゾール-3-イル)-エタノン 1-(O-アセチルオキシム)、エタノン-1-[9-エチル-6-(2-メチル-4-テトラヒドロフラニルベンゾイル)-9.H.-カルバゾール-3-イル]-1-(O-アセチルオキシム)、エタノン-1-〔9-エチル-6-(2-メチル-4-テトラヒドロピラニルベンゾイル)-9.H.-カルバゾール-3-イル〕-1-(O-アセチルオキシム)、エタノン-1-〔9-エチル-6-(2-メチル-5-テトラヒドロフラニルベンゾイル)-9.H.-カルバゾール-3-イル〕-1-(O-アセチルオキシム)、エタノン-1-〔9-エチル-6-(2-メチル-5-テトラヒドロピラニルベンゾイル)-9.H.-カルバゾール-3-イル〕-1-(O-アセチルオキシム)、エタノン-1-〔9-エチル-6-{2-メチル-4-(2,2-ジメチル-1,3-ジオキソラニル)ベンゾイル}-9.H.-カルバゾール-3-イル〕-1-(O-アセチルオキシム)、エタノン-1-[9-エチル-6-(2-メチル-4-テトラヒドロフラニルメトキシベンゾイル)-9.H.-カルバゾール-3-イル]-1-(O-アセチルオキシム)、エタノン-1-〔9-エチル-6-(2-メチル-4-テトラヒドロピラニルメトキシベンゾイル)-9.H.-カルバゾール-3-イル〕-1-(O-アセチルオキシム)、エタノン-1-〔9-エチル-6-(2-メチル-5-テトラヒドロフラニルメトキシベンゾイル)-9.H.-カルバゾール-3-イル〕-1-(O-アセチルオキシム)、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)、エタノン-1-〔9-エチル-6-(2-メチル-5-テトラヒドロピラニルメトキシベンゾイル)-9.H.-カルバゾール-3-イル〕-1-(O-アセチルオキシム)、エタノン-1-〔9-エチル-6-{2-メチル-4-(2,2-ジメチル-1,3-ジオキソラニル)メトキシベンゾイル}-9.H.-カルバゾール-3-イル〕-1-(O-アセチルオキシム)等を挙げることができる。
 光ラジカル発生剤としては、市販品をそのまま用いることもできる。具体例としては、BASF社製の、商品名:Irgacure907、商品名:Irgacure184、商品名:Irgacure369、品名:Irgacure651、品名:Irgacure819、品名:Irgacure907、及び商品名:Irgacure OXE02、ADEKA社製の、商品名:アデカオプトマーN1919等が挙げられる。
 前記アニオン重合開始剤としては、例えば、アルキルリチウム化合物;ビフェニル、ナフタレン、ピレン等の、モノリチウム塩又はモノナトリウム塩;ジリチウム塩やトリリチウム塩等の多官能性開始剤;等が挙げられる。
 また、前記カチオン重合開始剤としては、例えば、硫酸、リン酸、過塩素酸、トリフルオロメタンスルホン酸等のプロトン酸;三フッ化ホウ素、塩化アルミニウム、四塩化チタン、四塩化スズのようなルイス酸;芳香族オニウム塩又は芳香族オニウム塩と、還元剤との併用系;が挙げられる。
 これらの重合開始剤は一種単独で、又は二種以上を組合わせて用いることができる。
 組成物(A)において、重合開始剤の配合割合は、重合性化合物100重量部に対し、通常、0.1~30重量部、好ましくは0.5~10重量部である。
 組成物(A)は、表面張力を調整するための、界面活性剤を含みうる。当該界面活性剤としては、特に限定はないが、通常、ノニオン系界面活性剤が好ましい。当該ノニオン系界面活性剤としては、市販品を用いうる。例えば、分子量が数千程度のオリゴマーであるノニオン系界面活性剤、例えば、セイミケミカル(株)製KH-40等が挙げられる。組成物(A)において、界面活性剤の配合割合は、重合性化合物100重量部に対し、通常、0.01~10重量部、好ましくは0.1~2重量部である。
 組成物(A)は、有機溶媒等の溶媒を含みうる。かかる有機溶媒の例としては、シクロペンタノン、シクロヘキサノン、メチルエチルケトン、アセトン、メチルイソブチルケトン等のケトン類;酢酸ブチル、酢酸アミル等の酢酸エステル類;クロロホルム、ジクロロメタン、ジクロロエタン等のハロゲン化炭化水素類;1,4-ジオキサン、シクロペンチルメチルエーテル、テトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン、1,2-ジメトキシエタン等のエーテル類;及びトルエン、キシレン、メシチレン等の芳香族炭化水素が挙げられる。溶媒の沸点は、取り扱い性に優れる観点から、60~250℃であることが好ましく、60~150℃であることがより好ましい。溶媒の使用量は、重合性化合物100重量部に対し、通常、100~1000重量部である。
 組成物(A)は、さらに、金属、金属錯体、染料、顔料、蛍光材料、燐光材料、レベリング剤、チキソ剤、ゲル化剤、多糖類、紫外線吸収剤、赤外線吸収剤、抗酸化剤、イオン交換樹脂、酸化チタン等の金属酸化物等の任意の添加剤を含みうる。本発明の重合性組成物において、かかる任意の添加剤の配合割合は、重合性化合物100重量部に対し、通常、各々0.1~20重量部である。
 組成物(A)は、通常、上に述べた成分を混合することにより、調製することができる。
 〔1.7.光学異方性層の製造方法〕
 光学異方性層は、組成物(A)を硬化させてなる層である。
 硬化に際し、組成物(A)を構成する成分の一部が化学的に変化してもよく、系外に排出されて消失してもよい。例えば、通常、硬化に際して、重合性化合物の全て又は大部分は重合して重合体となり、一方、溶媒の全て又は大部分は揮発して消失する。
 組成物(A)の硬化は、通常、支持体又は支持体上に設けられた配向膜の面上に、組成物(A)を塗布し、組成物(A)の層内の重合性液晶化合物を所望の方向に配向させ、必要に応じて組成物(A)の層を乾燥させ、続いて重合性化合物を重合させることにより達成しうる。この製造工程に用いた支持体及び配向膜は、そのまま位相差板の構成要素となってもよい。または、支持体及び配向膜を剥離し、光学異方性層のみを位相差板として用いてもよい。
 支持体は、特に限定されず、有機又は無機の公知の材料からなる板又はフィルムとしうる。有機材料の例としてはポリシクロオレフィン〔例えば、ゼオネックス、ゼオノア(登録商標;日本ゼオン社製)、アートン(登録商標;JSR社製)、及びアペル(登録商標;三井化学社製)〕、ポリエチレンテレフタレート、ポリカーボネート、ポリイミド、ポリアミド、ポリメタクリル酸メチル、ポリスチレン、ポリ塩化ビニル、ポリテトラフルオロエチレン、セルロース、三酢酸セルロース、及びポリエーテルスルホンが挙げられる。無機材料の例としてはシリコン、ガラス、及び方解石が挙げられる。コスト及び取り扱い性の良好さから、有機材料が好ましい。
 支持体の面上には、配向膜を設けうる。その場合、かかる配向膜上に、光学異方性層を形成しうる。配向膜は、組成物(A)中の液晶化合物を、面内で一方向に配向させうる。
 配向膜は、例えば、ポリイミド、ポリビニルアルコール、ポリエステル、ポリアリレート、ポリアミドイミド、ポリエーテルイミド等のポリマーを含有するものである。配向膜は、このようなポリマーを含有する溶液(配向膜用組成物)を基板上に膜状に塗布し、乾燥させ、そして一方向にラビング処理等することで、得ることができる。
 配向膜の厚さは0.001~5μmであることが好ましく、0.001~1μmであることがさらに好ましい。
 支持体又は配向膜の面に、必要に応じてラビング処理を施すことができる。かかるラビング処理を施すことにより、組成物(A)中の液晶性を呈しうる化合物を配向させる配向能を、かかる面に賦与することができる。
 ラビング処理の方法は、特に制限されないが、例えばナイロン等の合成繊維、木綿等の天然繊維からなる布やフェルトを巻き付けたロールで一定方向に支持体又は配向膜の面を擦る方法が挙げられる。ラビング処理した時に発生する微粉末(異物)を除去して処理された面を清浄な状態とするために、ラビング処理後に、処理された面をイソプロピルアルコール等によって洗浄することが好ましい。
 また、ラビング処理する方法以外に、配向膜の表面に偏光紫外線を照射する方法によっても、配向膜にコレステリック規則性を持つコレステリック液晶層を面内で一方向に配向規制する機能を持たせることができる。
 また、それ以外の方法としてArなどのイオンビームを支持体に対して斜めに入射させることにより、支持体に配向能を賦与させるイオンビーム配向法を使用することもできる。
 組成物(A)の塗布の例としては、カーテンコーティング法、押し出しコーティング法、ロールコーティング法、スピンコーティング法、ディップコーティング法、バーコーティング法、スプレーコーティング法、スライドコーティング法、印刷コーティング法、グラビアコーティング法、ダイコーティング法、キャップコーティング法、及びディッピング法が挙げられる。
 かかる塗布により組成物(A)の層を形成し、層内の液晶化合物を、所望の態様に配向させうる。かかる配向は、塗布により直ちに達成される場合もあるが、必要に応じて、塗布の後に、加温などの配向処理を施すことにより達成される場合もある。
 かかる所望の態様の配向を呈した組成物(A)の層においては、逆波長分散重合性液晶化合物は、主鎖メソゲンと側鎖メソゲンとが、異なる方向に配向する。主鎖メソゲンの配向方向と側鎖メソゲンの配向方向とがなす角は、0°で無い任意の角度とすることができるが、70~110°であることが、良好の逆分散波長を達成する上で好ましい。このような配向は、例えば、逆波長分散重合性液晶化合物として、上に例示した化合物から所望の配向をなす化合物を適宜選択することにより達成しうる。
 かかる塗布により形成された組成物(A)の層においては、逆波長分散重合性液晶化合物に加えて、重合性モノマーのメソゲンも配向していることが好ましい。さらには、重合性モノマーのメソゲンは、逆波長分散重合性液晶化合物の主鎖メソゲン又は側鎖メソゲンのどちらか一方と平行に配向していることがより好ましい。重合性モノマーがかかる態様に配向することにより、良好な配向を得、且つ、精密な逆波長分散の調整を達成することができる。このような配向は、例えば、重合性モノマーとして、上に例示した化合物から所望の配向をなす化合物を適宜選択することにより達成しうる。
 組成物(A)の層の乾燥は、自然乾燥、加熱乾燥、減圧乾燥、減圧加熱乾燥等の乾燥方法で達成しうる。かかる乾燥により、溶媒を除去することができる。
 組成物(A)の層中の重合性化合物の重合の方法としては、重合性化合物及び重合開始剤等の、組成物(A)の成分の性質に適合した方法を適宜選択しうる。例えば、活性エネルギー線を照射する方法、及び熱重合法が挙げられる。加熱を必要とせず、室温で反応が進行することから活性エネルギー線を照射する方法が好ましい。ここで、照射される活性エネルギー線には、可視光線、紫外線、及び赤外線等の光、並びに電子線等の任意のエネルギー線が含まれうる。なかでも、操作が簡便なことから、紫外線等の光を照射する方法が好ましい。紫外線照射時の温度は、30℃以下とすることが好ましい。紫外線照射時の温度の下限は、15℃以上としうる。紫外線照射強度は、通常、0.1mW/cm~1000mW/cmの範囲、好ましくは0.5mW/cm~200mW/cmの範囲である。
 〔1.8.光学異方性層〕
 光学異方性層において、逆波長分散重合性液晶化合物の主鎖メソゲン及び側鎖メソゲンは、異なる方向に配向する。光学異方性層における「逆波長分散重合性液晶化合物のメソゲン」とは、逆波長分散重合性液晶化合物の分子内に存在していたメソゲンであって、逆波長分散重合性液晶化合物が重合することにより生成した重合体内のメソゲンである。このように、主鎖メソゲン及び側鎖メソゲンが異なる方向に配向することにより、光学異方性層の複屈折Δnが逆波長分散特性を有し、それにより、良好な位相差板としての特性を発現しうる。
 光学異方性層の複屈折Δnが逆波長分散特性を有することは、位相差解析装置(AXOMETRICS社製の製品名「AxoScan」等)を用いて、様々な波長λにおいて複屈折Δnを測定することにより確認しうる。
 光学異方性層においては、逆波長分散重合性液晶化合物のメソゲンに加えて、重合性モノマーのメソゲンも配向していることが好ましい。光学異方性層における「重合性モノマーのメソゲン」とは、重合性モノマーの分子内に存在していたメソゲンであって、重合性モノマーが重合することにより生成した重合体内のメソゲンである。
 重合性モノマーのメソゲンは、逆波長分散重合性液晶化合物の主鎖メソゲン又は側鎖メソゲンのどちらか一方と平行に配向していることがより好ましい。重合性モノマーがかかる態様に配向することにより、良好な配向を得、且つ、精密な逆波長分散の調整を達成することができる。重合性モノマーが、1分子当たり2以上のメソゲンを有している場合、それらのうち一つが、逆波長分散重合性液晶化合物の主鎖メソゲンに平行に、他のもう一つが逆波長分散重合性液晶化合物の側鎖メソゲンに平行に配向していてもよい。
 本願の位相差板においては、光学異方性層のリターデーションが、下記の関係を満たす。即ち、組成物(A0)を硬化させてなる層の波長450nm、550nm及び650nmにおけるリタデーションRe0(450nm)、Re0(550nm)およびRe0(650nm)と、光学異方性層の波長450nm、550nm及び650nmにおけるリタデーションRe(450nm)、Re(550nm)およびRe(650nm)とが、以下の式(i)及び(ii)の関係を満たすか、又は以下の式(iii)及び(iv)の関係を満たす。
 Re0(450nm)/Re0(550nm)>Re(450nm)/Re(550nm)  式(i)
 Re0(650nm)/Re0(550nm)<Re(650nm)/Re(550nm)  式(ii)
 Re0(450nm)/Re0(550nm)<Re(450nm)/Re(550nm)  式(iii)
 Re0(650nm)/Re0(550nm)>Re(650nm)/Re(550nm)  式(iv)
 ここで、組成物(A0)は、組成物(A)における重合性モノマーを逆分散重合性液晶化合物に置換した組成物である。例えば、組成物(A)が、逆分散波長重合性液晶化合物、重合性モノマー、光重合開始剤、界面活性剤及び溶媒からなり、逆分散波長重合性液晶化合物及び重合性モノマーの合計の割合がx重量%である場合、組成物(A0)は、逆分散波長重合性液晶化合物、光重合開始剤、界面活性剤及び溶媒からなる組成物であって、逆分散波長重合性液晶化合物の割合がx重量%であり、光重合開始剤、界面活性剤及び溶媒の配合割合が組成物(A)と同一である組成物である。
 組成物(A0)を硬化させてなる層を形成する際の条件は、組成物(A)を硬化させて光学異方性層を形成する条件と同一とする。このようにして得られた組成物(A0)を硬化させてなる層との光学的特性が、上に述べた所定の条件を満たすことにより、精密な逆波長分散特性の制御を達成することができる。
 光学異方性層の厚さは、特に限定されず、リターデーションなどの特性を所望の範囲とできるよう適宜調整することができる。具体的には、厚さの下限は0.1μm以上であることが好ましく、0.5μm以上であることがより好ましく、一方厚さの上限は10μm以下であることが好ましく、5μm以下であることがより好ましい。
 〔1.9.位相差板:その他の構成要素〕
 本発明の位相差板は、上に述べた光学異方性層のみからなってもよく、又は必要に応じてその他の層を有していてもよい。例えば、光学異方性層の製造に用いた支持体、配向膜等の部材を、剥離せずそのまま備えた状態で、位相差板として用いてもよい。この場合、光学異方性層以外の層は、通常は光学的に等方な層とすることができる。任意の層のさらなる例としては、各層間を接着する接着層、フィルムの滑り性を良くするマット層、耐衝撃性ポリメタクリレート樹脂層などのハードコート層、反射防止層、防汚層等が挙げられる。
 〔2.円偏光板〕
 本発明の円偏光板は、前記本発明の位相差板と、直線偏光子とを備える。
 直線偏光子としては、液晶表示装置等の装置に用いられている公知の偏光子を用いうる。直線偏光子の例としては、ポリビニルアルコールフィルムにヨウ素又は二色性染料を吸着させた後、ホウ酸浴中で一軸延伸することによって得られるもの、及びポリビニルアルコールフィルムにヨウ素又は二色性染料を吸着させ延伸しさらに分子鎖中のポリビニルアルコール単位の一部をポリビニレン単位に変性することによって得られるものが挙げられる。直線偏光子の他の例としては、グリッド偏光子、多層偏光子、コレステリック液晶偏光子などの偏光を反射光と透過光に分離する機能を有する偏光子が挙げられる。これらのうちポリビニルアルコールを含有する偏光子が好ましい。
 本発明に用いる偏光子に自然光を入射させると一方の偏光だけが透過する。本発明に用いる偏光子の偏光度は特に限定されないが、好ましくは98%以上、より好ましくは99%以上である。偏光度の上限は、理想的には100%である。偏光子の平均厚みは好ましくは5~80μmである。
 本発明の位相差板を本発明の円偏光板において用いる場合、その波長550nmにおける位相差は、100~150nmであることが好ましい。また、本発明の円偏光板において、位相差板の遅相軸と直線偏光子の透過軸とがなす角は、45°またはそれに近い角度、具体的には40~50°であることが好ましい。かかる位相差及び角度を有することにより、液晶表示装置の構成要素などの用途に有用に用いうる円偏光板としうる。
 本発明の位相差板は、光学異方性層のみからなってもよく、又は光学異方性層に加えて支持体、配向膜等の任意の層を有していてもよいので、本発明の円偏光板も、同様に、任意の構成要素として、支持体、配向膜等の任意の層を有していてもよい。
 〔3.画像表示装置〕
 本発明の画像表示装置は、前記本発明の位相差板を備える。本発明の画像装置において、位相差板は、直線偏光子と組み合わされ、円偏光板として設けられていてもよい。
 本発明の画像表示装置の例としては、液晶表示装置、有機エレクトロルミネッセンス表示装置、プラズマ表示装置、FED(電界放出)表示装置、及びSED(表面電界)表示装置を挙げることができるが、液晶表示装置が特に好ましい。
 液晶セルの駆動方式としては、例えば、インプレーンスイッチング(IPS)方式、バーチカルアラインメント(VA)方式、マルチドメインバーチカルアラインメント(MVA)方式、コンティニュアスピンホイールアラインメント(CPA)方式、ハイブリッドアラインメントネマチック(HAN)方式、ツイステッドネマチック(TN)方式、スーパーツイステッドネマチック(STN)方式、オプチカルコンペンセイテッドベンド(OCB)方式などが挙げられる。中でもインプレーンスイッチング方式及びバーチカルアラインメント方式が好ましく、インプレーンスイッチング方式が特に好ましい。インプレーンスイッチング方式の液晶セルは視野角が広いが、位相差板を適用することにより視野角を更に広げることが可能である。
 本発明の画像表示装置は、前記本発明の位相差板を1枚のみ備えてもよく2枚以上を備えてもよい。本発明の画像表示装置において、前記本発明の位相差板は、液晶セル等の、他の構成要素に、接着剤を介して貼付することにより設けうる。
 以下、実施例を示して本発明について具体的に説明するが、本発明は以下に説明する実施例に限定されるものではなく、本発明の特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施してもよい。
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り重量基準である。また、以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。
 (製造例1) 化合物(I)-1の合成
Figure JPOXMLDOC01-appb-C000070
 〈ステップ1:中間体Aの合成〉
Figure JPOXMLDOC01-appb-C000071
 温度計を備えた4つ口反応器に、窒素気流中、2,5-ジヒドロキシベンズアルデヒド 20g(144.8mmol)、4-(6-アクリロイル-ヘクス-1-イルオキシ)安息香酸(DKSH社製) 105.8g(362.0mmol)、4-(ジメチルアミノ)ピリジン 5.3g(43.4mmol)、及びN-メチルピロリドン200mlを加え、均一な溶液とした。この溶液に、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(WSC) 83.3g(434.4mmol)を加え、25℃にて12時間攪拌した。反応終了後、反応液を水1.5リットルに投入し、酢酸エチル500mlで抽出した。酢酸エチル層を無水硫酸ナトリウムで乾燥した後、硫酸ナトリウムをろ別した。ろ液からロータリーエバポレーターにて酢酸エチルを減圧留去して、淡黄色固体を得た。この淡黄色固体をシリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=9:1(体積比))により精製し、白色固体として中間体Aを75g得た(収率:75.4%)。
 構造はH-NMRで同定した。
 H-NMR(400MHz,CDCl,TMS,δppm):10.20(s,1H)、8.18-8.12(m,4H)、7.78(d,1H,J=2.8Hz)、7.52(dd,1H,J=2.8Hz,8.7Hz)、7.38(d,1H,J=8.7Hz)、7.00-6.96(m,4H)、6.40(dd,2H,J=1.4Hz,17.4Hz)、6.12(dd,2H,J=10.6Hz,17.4Hz)、5.82(dd,2H,J=1.4Hz,10.6Hz)、4.18(t,4H,J=6.4Hz)、4.08-4.04(m,4H)、1.88-1.81(m,4H)、1.76-1.69(m,4H)、1.58-1.42(m,8H)
 〈ステップ2:化合物(I)-1の合成〉
 温度計を備えた4つ口反応器に、窒素気流中、先のステップ1で合成した中間体A 10.5g(15.3mmol)、2-ヒドラジノベンゾチアゾール3.0g(18.3mmol)、及びテトラヒドロフラン(THF)80mlを加え、均一な溶液とした。この溶液に、(±)-10-カンファースルホン酸 18mg(0.08mmol)を加え、25℃にて3時間撹拌した。反応終了後、反応液を10%重曹水800mlに投入し、酢酸エチル100mlで2回抽出した。酢酸エチル層を集め、無水硫酸ナトリウムで乾燥し、硫酸ナトリウムをろ別した。ろ液からロータリーエバポレーターにて酢酸エチルを減圧留去して、淡黄色固体を得た。この淡黄色固体をシリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=8:2(体積比))により精製し、淡黄色固体として化合物(I)-1を8.0g得た(収率:62.7%)。目的物の構造はH-NMR、マススペクトルで同定した。
 H-NMR(500MHz,DMSO-d,TMS,δppm):12.30(br,1H)、8.19(s,1H)、8.17-8.12(m,4H)、7.76(d,1H,J=3.0Hz)、7.68(d,1H,J=7.5Hz)、7.45-7.39(m,3H)、7.28(t,1H,J=8.0Hz)、7.18-7.14(m,4H)、7.09(t,1H、J=8.0Hz)、6.33(dd,2H,J=1.5Hz,17.5Hz)、6.18(dd,2H,J=10.5Hz,17.5Hz)、5.944(dd,1H,J=1.5Hz,10.5Hz)、5.941(dd,1H,J=1.5Hz,10.5Hz)、4.14-4.10(m,8H)、1.80-1.75(m,4H)、1.69-1.63(m,4H)、1.53-1.38(m,8H)
 LCMS(APCI):calcd for C464710S:833[M];Found:833
 〈相転移温度の測定〉
 化合物(I)-1を10mg計量し、固体状態のままで、ラビング処理を施したポリイミド配向膜付きのガラス基板2枚に挟んだ。この基板をホットプレート上に載せ、50℃から200℃まで昇温した後、再び50℃まで降温した。昇温、降温する際の組織構造の変化を偏向光学顕微鏡(ニコン社製、ECLIPSE LV100POL型)で観察した。その結果、昇温の過程において、102℃において固相からネマチック液晶相に転移し、165℃においてさらに等方性液体相に転移した。一方降温の過程において、140℃で等方性液体相からネマチック液晶相に転移し、50℃以下においてさらに固層に転移した。
 〔比較例1〕
 (C1-1.組成物(A0)の調製)
 下記表1に示す組成の混合物を均一になるように攪拌し、0.6μmのフィルタで濾過して、組成物(A0)を得た。
Figure JPOXMLDOC01-appb-T000072
 (C1-2.位相差板の製造)
 支持体(ゼオノアフィルム、商品名「ZF16」、日本ゼオン株式会社製)の一方の面を、ラビングすることにより配向処理を行った。かかる面上に、工程(C1-1)で得た組成物(A0)を、スピンコーターで乾燥膜厚が1.4μmになるように塗布した。オーブンにて130℃で2分間加熱することにより、組成物(A0)の層を乾燥させた。これにより、支持体、及びその上に形成された乾燥した組成物(A0)の層からなる複層物を得た。
 次に当該複層物にメタルハライドランプを用いて紫外線を照射し、重合性液晶化合物を重合させた。紫外線の照射量は、照度16mW/cmで露光量を100mJ/cmとした。これにより、支持体、及びその上に設けられた膜厚1.4μmの光学異方性層からなる位相差板を得た。
 (C1-3.波長分散測定)
 工程(C1-2)で作製した位相差板について、AXOMETRICS社製の位相差解析装置(製品名:AxoScan)を用いて、様々な波長λにおいて複屈折Δnを測定し、Δnの波長分散特性を求めた。測定した波長分散特性を、図1に示す。
 測定結果より、Re0(450nm)/Re0(550nm)=0.918、Re0(650nm)/Re0(550nm)=0.982であった。
 (C1-4.屈折率波長分散測定)
 工程(C1-2)で作製した位相差板について、Metricon社製の屈折率測定装置:プリズムカプラを用いて屈折率測定を行った。波長λが407nm、532nm、及び633nmである場合における屈折率を測定し、3波長の測定値からコーシーフィッティングを行った結果を図2に示す。進相軸方向の屈折率は遅相軸方向の屈折率と比較して、値が小さく波長分散が大きいことから、本位相差板が逆波長分散特性を示すことがわかる。
 〔参考例1〕
 比較例1の工程(C1-2)で得た位相差板に、偏光紫外線を入射させ、吸収スペクトルを測定した。測定には、分光光度計(日本分光株式会社製、本体製品名「V7200」、受光部製品名「VAR7020」)を用いた。
 その結果、266nm及び347nmに頂点を有する2つの吸収のピークが観察され、かかるピークは、偏光方向を回転させることにより高さが変化した。位相差板の面に平行な様々な方向のうち、ラビング方向を0°とすると、347nmにおける吸収が極大となる偏光の方位角は90°であった。偏光の方位角と測定された吸収との関係を図3に示す。
 化合物(I)-1の主鎖メソゲンに類似する構造を有する化合物及び化合物(I)-1の側鎖メソゲンに類似する構造を有する化合物の可視光領域における屈折率の波長分散を調べると、後者の波長分散のほうが大きい。また、一般的に、可視光波長分散が大きい化合物ほど吸収のピークが可視光領域に近い。また、一般的に、偏光方向とメソゲンの長軸方向とが平行の場合に吸収ピークは最大となる。これらのことから、266nmのピークが主鎖メソゲンに由来するものであり、347nmにおけるピークが側鎖メソゲンに由来するものであると帰属を決定でき、且つ、主鎖メソゲンの配向方向と側鎖メソゲンの配向方向とは直交していることが分かる。
 〔実施例1〕
 (1-1.組成物(A)の調製)
 下記表2に示す組成の混合物を均一になるように攪拌し、0.6μmのフィルタで濾過して、組成物(A-1)を得た。
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-C000074
 組成物(A-1)とは別に、重合性モノマー(II)-1をシクロペンタノンに20.0重量%添加した組成物を調製し、配向処理をした基材上に塗布し、さらに一度溶剤を乾燥させた後、温度を室温~200℃の範囲で変化させ、液晶性の有無を偏光顕微鏡にて観察したところ、122℃にて液晶性を示した。
 (1-2.位相差板の製造及び評価)
 工程(C1-1)で得た組成物(A0)の代わりに、工程(1-1)で得た組成物(A-1)を用いた他は、比較例1の工程(C1-2)と同様にして、位相差板を製造した。得られた位相差板の光学異方性層の膜厚は1.2μmであった。
 得られた位相差板について、比較例1の工程(C1-3)と同様にして、様々な波長λにおいて複屈折Δnを測定し、Δnの波長分散特性を求めた。測定した波長分散特性を、図4に、比較例1の結果と対比させて示す。
 測定結果より、Re(450nm)/Re(550nm)=0.99、Re(650nm)/Re(550nm)=0.97となり、比較例1と比べ逆分散性が小さくなった。
 また、得られた位相差板について、比較例1の工程(C1-4)と同様にして、屈折率を測定した。測定された3波長の測定値からコーシーフィッティングを行った結果を、図5に、比較例1の結果と対比させて示す。遅相軸方向の屈折率の波長分散は比較例1と大きな差はないが、進相軸方向の屈折率の波長分散は比較例1と比べて小さくなった。この結果、位相差板のΔnの逆波長分散特性が小さくなった。
 〔実施例2〕
 (2-1.組成物(A-2)の調製)
 下記表3に示す組成の混合物を均一になるように攪拌し、0.6μmのフィルタで濾過して、組成物(A-2)を得た。
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-C000076
 組成物(A-2)とは別に、重合性モノマー(IV)をシクロペンタノンに20.0重量%添加した組成物を調製し、配向処理をした基材上に塗布し、さらに一度溶剤を乾燥させた後、温度を室温~200℃の範囲で変化させ、液晶性の有無を偏光顕微鏡にて観察したところ、非液晶性であった。
 (2-2.位相差板の製造及び評価)
 工程(C1-1)で得た組成物(A0)の代わりに、工程(2-1)で得た組成物(A-2)を用いた他は、比較例1の工程(C1-2)と同様にして、位相差板を製造した。得られた位相差板の光学異方性層の膜厚は1.5μmであった。
 得られた位相差板について、比較例1の工程(C1-3)と同様にして、様々な波長λにおいて複屈折Δnを測定し、Δnの波長分散特性を求めた。測定した波長分散特性を、図6に、比較例1の結果と対比させて示す。
 測定結果より、Re(450nm)/Re(550nm)=0.963、Re(650nm)/Re(550nm)=0.979となり、比較例1と比べ逆分散性が小さくなった。
 また、得られた位相差板について、比較例1の工程(C1-4)と同様にして、屈折率を測定した。測定された3波長の測定値からコーシーフィッティングを行った結果を、図7に、比較例1の結果と対比させて示す。遅相軸方向の屈折率の波長分散は比較例1と大きくなり、進相軸方向の屈折率の波長分散は比較例1と比べて大きな変化はなかった。この結果、位相差板のΔnの逆波長分散特性が小さくなった。
 〔実施例3〕
 (3-1.組成物(A-3)の調製)
 下記表4に示す組成の混合物を均一になるように攪拌し、0.6μmのフィルタで濾過して、組成物(A-3)を得た。
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-C000078
 組成物(A-3)とは別に、重合性モノマー(III)-4をシクロペンタノンに20.0重量%添加した組成物を調製し、配向処理をした基材上に塗布し、さらに一度溶剤を乾燥させた後、温度を室温~200℃の範囲で変化させ、液晶性の有無を偏光顕微鏡にて観察したところ、非液晶性であった。
 (3-2.位相差板の製造及び評価)
 工程(C1-1)で得た組成物(A0)の代わりに、工程(3-1)で得た組成物(A-3)を用いた他は、比較例1の工程(C1-2)と同様にして、位相差板を製造した。得られた位相差板の光学異方性層の膜厚は1.3μmであった。
 得られた位相差板について、比較例1の工程(C1-3)と同様にして、様々な波長λにおいて複屈折Δnを測定し、Δnの波長分散特性を求めた。測定した波長分散特性を、図8に、比較例1の結果と対比させて示す。
 測定結果より、Re(450nm)/Re(550nm)=0.969、Re(650nm)/Re(550nm)=0.980となり、比較例1と比べ逆分散性が小さくなった。
 また、得られた位相差板について、比較例1の工程(C1-4)と同様にして、屈折率を測定した。測定された3波長の測定値からコーシーフィッティングを行った結果を、図9に、比較例1の結果と対比させて示す。遅相軸方向の屈折率の波長分散は比較例1と大きな差はないが、進相軸方向の屈折率の波長分散は比較例1と比べて小さくなった。この結果、位相差板のΔnの逆波長分散特性が小さくなった。
 〔実施例4〕
 (4-1.組成物(A-4)の調製)
 下記表3に示す組成の混合物を均一になるように攪拌し、0.6μmのフィルタで濾過して、組成物(A-4)を得た。
Figure JPOXMLDOC01-appb-T000079
Figure JPOXMLDOC01-appb-C000080
 組成物(A-4)とは別に、重合性モノマー(III)-1をシクロペンタノンに20.0重量%添加した組成物を調製し、配向処理をした基材上に塗布し、さらに一度溶剤を乾燥させた後、温度を室温~200℃の範囲で変化させ、液晶性の有無を偏光顕微鏡にて観察したところ、非液晶性であった。
 (4-2.位相差板の製造及び評価)
 工程(C1-1)で得た組成物(A0)の代わりに、工程(4-1)で得た組成物(A-4)を用いた他は、比較例1の工程(C1-2)と同様にして、位相差板を製造した。得られた位相差板の光学異方性層の膜厚は1.7μmであった。
 得られた位相差板について、比較例1の工程(C1-3)と同様にして、様々な波長λにおいて複屈折Δnを測定し、Δnの波長分散特性を求めた。測定した波長分散特性を、図10に、比較例1の結果と対比させて示す。
 測定結果より、Re(450nm)/Re(550nm)=0.761、Re(650nm)/Re(550nm)=1.019となり、比較例1と比べ逆分散性が大きくなった。
 また、得られた位相差板について、比較例1の工程(C1-4)と同様にして、屈折率を測定した。測定された3波長の測定値からコーシーフィッティングを行った結果を、図11に、比較例1の結果と対比させて示す。遅相軸方向の屈折率の波長分散は比較例1と大きな差はないが、進相軸方向の屈折率の波長分散は比較例1と比べて大きくなった。この結果、位相差板のΔnの逆波長分散特性が大きくなった。
 〔実施例5〕
 (5-1.組成物(A-5)の調製)
 下記表6に示す組成の混合物を均一になるように攪拌し、0.6μmのフィルタで濾過して、組成物(A-5)を得た。
Figure JPOXMLDOC01-appb-T000081
Figure JPOXMLDOC01-appb-C000082
 組成物(A-5)とは別に、重合性モノマー(III)-2をシクロペンタノンに20.0重量%添加した組成物を調製し、配向処理をした基材上に塗布し、さらに一度溶剤を乾燥させた後、温度を室温~200℃の範囲で変化させ、液晶性の有無を偏光顕微鏡にて観察したところ、非液晶性であった。
 (5-2.位相差板の製造及び評価)
 工程(C1-1)で得た組成物(A0)の代わりに、工程(5-1)で得た組成物(A-5)を用いた他は、比較例1の工程(C1-2)と同様にして、位相差板を製造した。得られた位相差板の光学異方性層の膜厚は1.3μmであった。
 得られた位相差板について、比較例1の工程(C1-3)と同様にして、様々な波長λにおいて複屈折Δnを測定し、Δnの波長分散特性を求めた。測定した波長分散特性を、図12に、比較例1の結果と対比させて示す。
 測定結果より、Re(450nm)/Re(550nm)=0.916、Re(650nm)/Re(550nm)=1.010となり、比較例1と比べ逆分散性が大きくなった。
 また、得られた位相差板について、比較例1の工程(C1-4)と同様にして、屈折率を測定した。測定された3波長の測定値からコーシーフィッティングを行った結果を、図13に、比較例1の結果と対比させて示す。遅相軸方向の屈折率の波長分散は比較例1と大きな差はないが、進相軸方向の屈折率の波長分散は比較例1と比べて大きくなった。この結果、位相差板のΔnの逆波長分散特性が大きくなった。
 (製造例2)化合物25の合成
Figure JPOXMLDOC01-appb-C000083
 (ステップ1:中間体H1の合成)
Figure JPOXMLDOC01-appb-C000084
 温度計を備えた3口反応器に、窒素気流中、ヒドロキノン7.28g(66.1mmol)、水酸化ナトリウム2.38g(59.5mmol)、及び蒸留水50mlを加えた。この溶液に、8-クロロ-1-n-オクタノール 9.90g(60.1mmol)を30分間かけて滴下し、滴下終了後、全容を5時間還流した。反応終了後、反応液を25℃まで冷却し、析出した白色固体をろ取し、得られた固体をトルエン120mlから再結晶することで、白色固体として中間体H1を7.93g得た(収率56.1%)。
 目的物の構造はH-NMRで同定した。
 H-NMR(500MHz,DMSO-d,TMS,δppm):8.86(s,1H)、6.72(dd,2H,J=2.5Hz,8.0Hz)、6.65(dd,2H,J=2.5Hz,8.0Hz)、4.33(t,1H,J=5.0Hz)、3.82(t,2H,J=6.5Hz)、3.37(dt,2H,J=5.0Hz,6.5Hz)、1.65(tt,2H,J=6.5Hz,6.5Hz)、1.28-1.42(m,10H)
 (ステップ2:中間体I1の合成)
Figure JPOXMLDOC01-appb-C000085
 温度計を備えた3口反応器に、窒素気流中、前記ステップ1で合成した中間体H1 7.84g(32.9mmol)、アクリル酸 2.61g(36.2mmol)、4-メトキシフェノール 40.8mg(0.329mmol)、メタンスルホン酸316mg(3.29mmol)及びトルエン40mlを加え、全容を6時間還流した。反応液を25℃まで冷却した後、水200mlに投入し、酢酸エチル100mlで抽出した。酢酸エチル層を無水硫酸ナトリウムで乾燥し、硫酸ナトリウムをろ別した。ロータリーエバポレーターにてろ液から酢酸エチルを減圧留去して、褐色固体を得た。この褐色固体をシリカゲルカラムクロマトグラフィー(トルエン:THF=95:5)により精製し、白色固体として中間体I1:を6.95g得た(収率:71.9%)。
 目的物の構造はH-NMRで同定した。
 H-NMR(500MHz,DMSO-d,TMS,δppm):8.86(s,1H)、6.72(dd,2H,J=2.5Hz,9.0Hz)、6.65(dd,2H,J=2.5Hz,8.0Hz)、6.31(dd,1H,J=1.5Hz,17.5Hz)、6.17(dd,1H,J=10.5Hz,17.5Hz)、5.93(dd,1H,J=1.5Hz,10.5Hz)、4.10(t,2H,J=6.5Hz)、3.83(t,2H,J=6.5Hz)、1.58-1.68(m,4H)、1.30-1.39(m,8H)
 (ステップ3:中間体J1の合成)
Figure JPOXMLDOC01-appb-C000086
 温度計を備えた3口反応器に、窒素気流中、trans-1,4-シクロヘキサンジカルボン酸 6.86g(39.8mmol)、THF70ml、及びDMF14mlを加えた。そこへ、メタンスルホニルクロリド2.28g(19.9mmol)を加え、反応器を水浴に浸して、反応液内温を20℃とした。次いで、トリエチルアミン2.20g(21.7mmol)を、反応液内温を20~30℃に保持しながら、5分間かけて滴下し、滴下終了後、全容を25℃で2時間さらに攪拌した。得られた反応混合物に、4-(ジメチルアミノ)ピリジン 221mg(1.81mmol)、前記ステップ2で合成した中間体I1 5.30g(18.1mmol)を加え、再度反応器を水浴に浸して反応液内温を15℃とした。さらに、トリエチルアミン2.20g(21.7mmol)を、反応液内温を20~30℃に保持しながら、5分間かけて滴下し、滴下終了後、全容を25℃で2時間攪拌した。反応終了後、反応液に蒸留水300mlと飽和食塩水100mlを加え、酢酸エチル100mlで2回抽出した。有機層を無水硫酸ナトリウムで乾燥し、硫酸ナトリウムをろ別した、ろ液をロータリーエバポレーターで濃縮した後、濃縮物をシリカゲルカラムクロマトグラフィー(トルエン:THF=85:15)により精製することで、白色固体として中間体J1を5.23g得た(収率64.6%)。
 目的物の構造はH-NMRで同定した。
 H-NMR(500MHz,DMSO-d,TMS,δppm):12.1(s,1H)、6.98(dd,2H,J=2.5Hz,9.0Hz)、6.92(dd,2H,J=2.5Hz,8.0Hz)、6.31(dd,1H,J=1.5Hz,17.5Hz)、6.17(dd,1H,J=10.5Hz,17.5Hz)、5.92(dd,1H,J=1.5Hz,10.5Hz)、4.10(t,2H,J=6.5Hz)、3.93(t,2H,J=6.5Hz)、2.19-2.25(m,1H)、2.04-2.10(m,2H)、1.94-1.98(m,2H)、1.69(tt,2H,J=6.5Hz,6.5Hz)、1.57-1.64(m,2H)、1.31-1.52(m,13H)
 (ステップ4:中間体K1の合成)
Figure JPOXMLDOC01-appb-C000087
 温度計を備えた3口反応器内において、窒素気流中、前記ステップ3で合成した中間体J1 4.00g(8.96mmol)をTHF60mlに溶解させた。この溶液に、メタンスルホニルクロリド 1.07g(9.32mmol)を加え、反応器を水浴に浸して反応液内温を20℃とした。そこへ、トリエチルアミン 944mg(9.32mmol)を、反応液内温を20~30℃に保持しながら5分間かけて滴下した後、全容を25℃でさらに2時間攪拌した。次いで、反応混合物に4-(ジメチルアミノ)ピリジン 92.0mg(0.748mmol)、2,5-ジヒドロキシベンズアルデヒド 548mg(3.97mmol)を加え、再度反応器を水浴に浸して反応液内温を15℃とし、トリエチルアミン944mg(9.32mmol)を、反応液内温を20~30℃に保持しながら5分間かけて滴下し、滴下終了後、全容を25℃でさらに2時間攪拌した。反応終了後、反応液に蒸留水350mlと飽和食塩水50mlを加え、クロロホルム150mlで2回抽出した。有機層を無水硫酸ナトリウムで乾燥し、硫酸ナトリウムをろ別した。ろ液をロータリーエバポレーターで濃縮した後、濃縮物をTHF15mlに溶解させた。その溶液にメタノール200mlを加えて結晶を析出させ、析出結晶をろ取した。得られた結晶をメタノールで洗浄後、真空乾燥させて、白色固体として中間体K1を2.85g得た(収率72.3%)。
 目的物の構造はH-NMRで同定した。
 H-NMR(500MHz,CDCl,TMS,δppm):10.1(s,1H)、7.61(d,1H,J=2.5Hz)、7.37(dd,1H,J=2.5Hz,8.5Hz)、7.20(d,1H,J=8.5Hz)、6.97(dd,4H,J=2.0Hz,9.0Hz)、6.88(dd,4H,J=2.0Hz,9.0Hz)、6.40(dd,2H,J=1.5Hz,17.5Hz)、6.12(dd,2H,J=10.5Hz,17.5Hz)、5.82(dd,2H,J=1.5Hz,10.5Hz)、4.16(t,4H,J=6.5Hz)、3.93(t,4H,J=6.5Hz)、2.57-2.74(m,4H)、2.26-2.37(m,8H)、1.65-1.80(m,16H)、1.35-1.48(m,16H)
 (ステップ5:中間体Jの合成)
Figure JPOXMLDOC01-appb-C000088
 温度計を備えた4つ口反応器に、窒素気流中、2-ヒドラジノベンゾチアゾール2.00g(12.1mmol)、及びDMF20mlを入れ、均一な溶液とした。この溶液に、炭酸カリウム8.36g(60.5mmol)、1-ヨードヘキサン3.08g(14.5mmol)を加え、全容を50℃で7時間撹拌した。反応終了後、反応液を20℃まで冷却し、反応液を水200mlに投入し、酢酸エチル300mlで抽出した。酢酸エチル層を無水硫酸ナトリウムで乾燥し、硫酸ナトリウムを濾別した。ロータリーエバポレーターにて、ろ液から酢酸エチルを減圧留去して、黄色固体を得た。この黄色固体をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=75:25)により精製し、中間体Jを白色固体として2.10g得た(収率:69.6%)。
 目的物の構造はH-NMRで同定した。
 H-NMR(500MHz,CDCl,TMS,δppm):7.60(dd,1H,J=1.0Hz,8.0Hz)、7.53(dd,1H,J=1.0Hz,8.0Hz)、7.27(ddd,1H,J=1.0Hz,8.0Hz,8.0Hz)、7.06(ddd,1H,J=1.0Hz,8.0Hz,8.0Hz)、4.22(s,2H)、3.74(t,2H,J=7.5Hz)、1.69-1.76(m,2H)、1.29-1.42(m,6H)、0.89(t,3H,J=7.0Hz)
 (ステップ6:化合物25の合成)
 温度計を備えた3つ口反応器に、窒素気流中、前記ステップ4で合成した中間体K1 1.95g(1.96mmol)、前記ステップ5で合成した中間体J 441mg(1.76mmol)、(±)-10-カンファスルホン酸 45.6mg(0.196mmol)、THF24ml、及びエタノール6mlを加え、均一な溶液とした。その後、全容を40℃にて5時間攪拌した。反応終了後、反応液を水100mlに投入し、クロロホルム200mlで抽出した。クロロホルム層を無水硫酸ナトリウムで乾燥し、硫酸ナトリウムをろ別した。ロータリーエバポレーターにてろ液からクロロホルムを減圧留去して、黄色固体を得た。この黄色固体をシリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=95:5)により精製し、淡黄色固体として化合物25を1.56g得た(収率:64.9%)。
 目的物の構造はH-NMRで同定した。
 H-NMR(500MHz,CDCl,TMS,δppm):7.75(d,1H,J=1.5Hz)、7.66-7.70(m,3H)、7.34(dd,1H,J=1.5Hz,7.8Hz)、7.09-7.18(m,3H)、6.96-7.00(m,4H)、6.86-6.90(m,4H)、6.41(dd,2H,J=1.5Hz,17.5Hz)、6.12(dd,2H,J=10.5Hz,17.5Hz)、5.81(dd,2H,J=1.5Hz,10.5Hz)、4.30(t,2H,J=7.5Hz)、4.16(t,4H,J=6.5Hz)、3.94(t,4H,J=6.5Hz)、2.56-2.72(m,4H)、2.27-2.38(m,8H)、1.65-1.81(m,18H)、1.32-1.49(m,22H)、0.90(t,3H,J=7.5Hz)
 〔比較例2〕
 (C2-1.組成物(A0-1)の調製)
 下記表7に示す組成の混合物を均一になるように攪拌し、0.6μmのフィルタで濾過して、組成物(A0-1)を得た。
Figure JPOXMLDOC01-appb-T000089
 (C2-2.位相差板の製造)
 組成物(A0)に代えて組成物(A0-1)を使用した以外は、比較例1の(C1-2)と同様に行い、組成物(A0-1)の層からなる複層物を得て、さらに、支持体、及びその上に設けられた膜厚1.5μmの光学異方性層からなる位相差板を得た。
 (C2-3.波長分散測定)
 工程(C2-2)で作製した位相差板について、比較例1(C1-3)と同様に、様々な波長λにおいて複屈折Δnを測定し、Δnの波長分散特性を求めた。測定した波長分散特性を、図14に示す。
 測定結果より、Re0(450nm)/Re0(550nm)=0.824、Re0(650nm)/Re0(550nm)=1.031であった。
 (C2-4.屈折率波長分散測定)
 工程(C2-2)で作製した位相差板について、比較例1(C1-4)と同様に屈折率測定を行った。波長λが407nm、532nm、及び633nmである場合における屈折率を測定し、3波長の測定値からコーシーフィッティングを行った結果を図15に示す。図15中、破線は進相軸方向の屈折率、実線は遅相軸方向の屈折率を示す。進相軸方向の屈折率は遅相軸方向の屈折率と比較して、値が小さく波長分散が大きいことから、本位相差板が逆波長分散特性を示すことがわかる。
 〔実施例6〕
 (6-1.組成物(A-6)の調製)
 下記表8に示す組成の混合物を均一になるように攪拌し、0.6μmのフィルタで濾過して、組成物(A-6)を得た。
Figure JPOXMLDOC01-appb-T000090
 組成物(A-6)とは別に、重合性モノマー(IV)をシクロペンタノンに20.0重量%添加した組成物を調製し、配向処理をした基材上に塗布し、さらに一度溶剤を乾燥させた後、温度を室温~200℃の範囲で変化させ、液晶性の有無を偏光顕微鏡にて観察したところ、非液晶性であった。
 (6-2.位相差板の製造及び評価)
 工程(C2-1)で得た組成物(A0-1)の代わりに、工程(6-1)で得た組成物(A-6)を用いた他は、比較例2の工程(C2-2)と同様にして、位相差板を製造した。得られた位相差板の光学異方性層の膜厚は1.3μmであった。
 得られた位相差板について、比較例2の工程(C2-3)と同様にして、様々な波長λにおいて複屈折Δnを測定し、Δnの波長分散特性を求めた。測定した波長分散特性を、図16に、比較例2の結果と対比させて示す。図16中、実線は実施例6の結果を示し、破線は比較例2の結果を示す。
 測定結果より、Re(450nm)/Re(550nm)=0.918、Re(650nm)/Re(550nm)=0.982となり、比較例2と比べ逆分散性が小さくなった。
 また、得られた位相差板について、比較例2の工程(C2-4)と同様にして、屈折率を測定した。測定された3波長の測定値からコーシーフィッティングを行った結果を、図17に、比較例2の結果と対比させて示す。図17中実線は実施例6の結果を示し、破線は比較例2の結果を示す。遅相軸方向の屈折率の波長分散は比較例2より小さくなり、進相軸方向の屈折率の波長分散も比較例2と比べて小さくなった。この結果、位相差板のΔnの逆波長分散特性が大きくなった。

Claims (11)

  1.  逆波長分散重合性液晶化合物と重合性モノマーとを含有する組成物(A)を硬化させてなる光学異方性層を有する位相差板であって、
     前記逆波長分散重合性液晶化合物は、分子中に主鎖メソゲンと前記主鎖メソゲンに結合した側鎖メソゲンとを有し、
     前記光学異方性層において、前記逆波長分散重合性液晶化合物の前記主鎖メソゲン及び前記側鎖メソゲンは、異なる方向に配向し、それにより、前記光学異方性層の複屈折Δnが逆波長分散特性を有し、
     前記組成物(A)における前記重合性モノマーを前記逆分散重合性液晶化合物に置換した組成物(A0)を硬化させてなる層の波長450nm、550nm及び650nmにおけるリタデーションRe0(450nm)、Re0(550nm)およびRe0(650nm)と、前記光学異方性層の波長450nm、550nm及び650nmにおけるリタデーションRe(450nm)、Re(550nm)およびRe(650nm)とが、以下の式(i)及び(ii)の関係を満たす位相差板:
     Re0(450nm)/Re0(550nm)>Re(450nm)/Re(550nm)  式(i)
     Re0(650nm)/Re0(550nm)<Re(650nm)/Re(550nm)  式(ii)。
  2.  逆波長分散重合性液晶化合物と重合性モノマーとを含有する組成物(A)を硬化させてなる光学異方性層を有する位相差板であって、
     前記逆波長分散重合性液晶化合物は、分子中に主鎖メソゲンと前記主鎖メソゲンに結合した側鎖メソゲンとを有し、
     前記光学異方性層において、前記逆波長分散重合性液晶化合物の前記主鎖メソゲン及び前記側鎖メソゲンは、異なる方向に配向し、それにより、前記光学異方性層の複屈折Δnが逆波長分散特性を有し、
     前記組成物(A)における前記重合性モノマーを前記逆分散重合性液晶化合物に置換した組成物(A0)を硬化させてなる層の波長450nm、550nm及び650nmにおけるリタデーションRe0(450nm)、Re0(550nm)およびRe0(650nm)と、前記光学異方性層の波長450nm、550nm及び650nmにおけるリタデーションRe(450nm)、Re(550nm)およびRe(650nm)とが、以下の式(iii)及び(iv)の関係を満たす位相差板:
     Re0(450nm)/Re0(550nm)<Re(450nm)/Re(550nm)  式(iii)
     Re0(650nm)/Re0(550nm)>Re(650nm)/Re(550nm)  式(iv)。
  3.  前記逆波長分散重合性液晶化合物が、下記式(I):
    Figure JPOXMLDOC01-appb-C000001
     〔式中、Y~Yはそれぞれ独立して、化学的な単結合、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR-C(=O)-、-C(=O)-NR-、-O-C(=O)-NR-、-NR-C(=O)-O-、-NR-C(=O)-NR-、-O-NR-、又は、-NR-O-を表す。ここで、Rは、水素原子又は炭素数1~6のアルキル基を表す。
     G、Gはそれぞれ独立して、置換基を有していてもよい炭素数1~20の2価の脂肪族基を表す〔該脂肪族基には、1つの脂肪族基あたり1以上の-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR-C(=O)-、-C(=O)-NR-、-NR-、又は、-C(=O)-が介在していてもよい。ただし、-O-又は-S-がそれぞれ2以上隣接して介在する場合を除く。ここで、Rは、水素原子又は炭素数1~6のアルキル基を表す。〕。
     Z、Zはそれぞれ独立して、ハロゲン原子で置換されていてもよい炭素数2~10のアルケニル基を表す。
     Aは芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表し、Aは水素原子、置換基を有していてもよい炭素数1~12のアルキル基、置換基を有していてもよい炭素数2~12のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、-C(=O)-R、-SO-R、又は、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。前記A及びAが有する芳香環は置換基を有していてもよい。また、前記AとAは一緒になって、環を形成していてもよい。ここで、Rは、置換基を有していてもよい炭素数1~12のアルキル基、置換基を有していてもよい炭素数2~12のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基を表し、Rは、炭素数1~12のアルキル基、炭素数2~12のアルケニル基、フェニル基、又は、4-メチルフェニル基を表す。
     Aは、置換基を有していてもよい三価の芳香族基を表す。
     A、Aはそれぞれ独立して、置換基を有していてもよい炭素数6~30の二価の芳香族基を表す。
     Qは、水素原子、又は、置換基を有していてもよい炭素数1~6のアルキル基を表す。〕
     で示される化合物である、請求項1又は2に記載の位相差板。
  4.  前記逆波長分散重合性液晶化合物が、下記式(V):
    Figure JPOXMLDOC01-appb-C000002
     〔式中、Y1w~Y8wはそれぞれ独立して、化学的な単結合、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR-C(=O)-、-C(=O)-NR-、-O-C(=O)-NR-、-NR-C(=O)-O-、-NR-C(=O)-NR-、-O-NR-、又は、-NR-O-を表す。ここで、Rは、水素原子又は炭素数1~6のアルキル基を表す。
     G1w、G2wはそれぞれ独立して、置換基を有していてもよい炭素数1~20の二価の鎖状脂肪族基を表す。また、前記鎖状脂肪族基には、1つの脂肪族基あたり1以上の-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR2w-C(=O)-、-C(=O)-NR2w-、-NR2w-、又は、-C(=O)-が介在していてもよい。ただし、-O-又は-S-がそれぞれ2以上隣接して介在する場合を除く。ここで、R2wは、水素原子又は炭素数1~6のアルキル基を表す。
     Z1w、Z2wはそれぞれ独立して、ハロゲン原子で置換されていてもよい炭素数2~10のアルケニル基を表す。
     Axwは、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。
     Aywは、水素原子、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数2~20のアルキニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、-C(=O)-R3w、-SO-R4w、-C(=S)NH-R9w、又は、芳香族炭化水素環及び芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。ここで、R3wは、置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、又は、置換基を有していてもよい炭素数3~12のシクロアルキル基、炭素数5~12の芳香族炭化水素基を表し、R4wは、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、フェニル基、又は、4-メチルフェニル基を表し、R9wは置換基を有していてもよい炭素数1~20のアルキル基、置換基を有していてもよい炭素数2~20のアルケニル基、置換基を有していてもよい炭素数3~12のシクロアルキル基、置換基を有していてもよい炭素数5~20の芳香族基を表す。前記Axw及びAywが有する芳香環は置換基を有していてもよい。また、前記AxwとAywは一緒になって、環を形成していてもよい。
     A1wは置換基を有していてもよい三価の芳香族基を表す。
     A2w、A3wはそれぞれ独立して、置換基を有していてもよい炭素数3~30の二価の脂環式炭化水素基を表し、
     A4w、A5wはそれぞれ独立して、置換基を有していてもよい炭素数6~30の二価の芳香族基を表す。
     Q1wは、水素原子、又は、置換基を有していてもよい炭素数1~6のアルキル基を表す。〕
     で示される化合物である、請求項1又は2に記載の位相差板。
  5.  前記重合性モノマーが、下記式(III):
    Figure JPOXMLDOC01-appb-C000003
    (式(III)中、Y1x~Y6x、G1x、G2x、Z1x、Z2x、Axx、Ayx、A1x~A3x、及びQ1xは、それぞれ、式(I)のY~Y、G、G、Z、Z、A、A、A~A、及びQと同じ意味を表す。但し、これらのうちの少なくとも1つ以上が、共に用いる化合物(I)中の対応する基と異なるものである。)
     で表される非液晶性の化合物である、請求項3に記載の位相差板。
  6.  前記重合性モノマーがメソゲンを有し、前記光学異方性層において、前記重合性モノマーのメソゲンが前記逆波長分散重合性液晶化合物の主鎖メソゲンと平行に配向している請求項1~5のいずれか1項に記載の位相差板。
  7.  前記重合性モノマーがメソゲンを有し、前記光学異方性層において、前記重合性モノマーのメソゲンが前記逆波長分散重合性液晶化合物の側鎖メソゲンと平行に配向している請求項1~5のいずれか1項に記載の位相差板。
  8.  組成物(A)における、前記逆波長分散重合性液晶化合物100重量部に対する前記重合性モノマーの配合割合が1~100重量部である、請求項1~7のいずれか1項に記載の位相差板。
  9.  請求項1~8のいずれか1項に記載の位相差板と直線偏光子とを備える円偏光板。
  10.  前記位相差板の波長550nmにおける位相差が100~150nmであり、前記位相差板の遅相軸と前記直線偏光子の透過軸との間の角度が45°である請求項9に記載の円偏光板。
  11.  請求項1~8のいずれか1項に記載の位相差板を備える画像表示装置。
PCT/JP2013/078487 2012-10-22 2013-10-21 位相差板、円偏光板、及び画像表示装置 WO2014065243A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014543286A JP6476862B2 (ja) 2012-10-22 2013-10-21 位相差板、円偏光板、及び画像表示装置
EP13848764.0A EP2910986B1 (en) 2012-10-22 2013-10-21 Retarder, circularly polarising plate, and image display device
US14/437,399 US9995865B2 (en) 2012-10-22 2013-10-21 Phase difference plate, circularly polarizing plate, and image display device
CN201380054984.5A CN104737044B (zh) 2012-10-22 2013-10-21 相位差板、圆偏振片及图像显示装置
KR1020157010156A KR102079276B1 (ko) 2012-10-22 2013-10-21 위상차판, 원편광판, 및 화상 표시 장치
US15/977,837 US10830935B2 (en) 2012-10-22 2018-05-11 Phase difference plate, circularly polarizing plate, and image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012233076 2012-10-22
JP2012-233076 2012-10-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/437,399 A-371-Of-International US9995865B2 (en) 2012-10-22 2013-10-21 Phase difference plate, circularly polarizing plate, and image display device
US15/977,837 Division US10830935B2 (en) 2012-10-22 2018-05-11 Phase difference plate, circularly polarizing plate, and image display device

Publications (1)

Publication Number Publication Date
WO2014065243A1 true WO2014065243A1 (ja) 2014-05-01

Family

ID=50544623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078487 WO2014065243A1 (ja) 2012-10-22 2013-10-21 位相差板、円偏光板、及び画像表示装置

Country Status (7)

Country Link
US (2) US9995865B2 (ja)
EP (1) EP2910986B1 (ja)
JP (2) JP6476862B2 (ja)
KR (1) KR102079276B1 (ja)
CN (1) CN104737044B (ja)
TW (1) TWI589938B (ja)
WO (1) WO2014065243A1 (ja)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025793A1 (ja) * 2013-08-22 2015-02-26 日本ゼオン株式会社 重合性化合物、重合性組成物、高分子、及び光学異方体
WO2015141784A1 (ja) * 2014-03-19 2015-09-24 日本ゼオン株式会社 重合性化合物の製造方法
WO2016002816A1 (ja) * 2014-06-30 2016-01-07 日本ゼオン株式会社 重合性化合物の製造中間体、その製造方法、組成物及び安定化方法
WO2016114066A1 (ja) * 2015-01-16 2016-07-21 Dic株式会社 重合性組成物及びそれを用いた光学異方体
WO2016114348A1 (ja) * 2015-01-16 2016-07-21 Dic株式会社 重合性組成物及び光学異方体
WO2016114211A1 (ja) * 2015-01-16 2016-07-21 Dic株式会社 重合性化合物及び光学異方体
WO2016136533A1 (ja) * 2015-02-24 2016-09-01 Dic株式会社 重合性化合物及び光学異方体
JP2016183132A (ja) * 2015-03-26 2016-10-20 日本ゼオン株式会社 シクロヘキサンジカルボン酸モノエステル化合物の製造方法
WO2016171041A1 (ja) * 2015-04-24 2016-10-27 日本ゼオン株式会社 複層フィルムの製造方法及び複層フィルム
JP6090514B1 (ja) * 2016-05-18 2017-03-08 日本ゼオン株式会社 重合性化合物の製造方法
WO2017057005A1 (ja) * 2015-09-30 2017-04-06 日本ゼオン株式会社 光学フィルム及びその製造方法
JPWO2016114346A1 (ja) * 2015-01-16 2017-04-27 Dic株式会社 重合性組成物及びそれを用いた光学異方体
WO2017090418A1 (ja) * 2015-11-25 2017-06-01 Dic株式会社 重合性組成物及びそれを用いた光学異方体
KR20170105000A (ko) * 2015-01-16 2017-09-18 디아이씨 가부시끼가이샤 중합성 조성물 및 광학 이방체
JPWO2016136901A1 (ja) * 2015-02-26 2017-12-07 日本ゼオン株式会社 光学フィルム用転写体、光学フィルム、有機エレクトロルミネッセンス表示装置、及び光学フィルムの製造方法
JPWO2016148047A1 (ja) * 2015-03-19 2017-12-28 日本ゼオン株式会社 液晶性組成物、位相差層の製造方法及び円偏光板
WO2018012579A1 (ja) * 2016-07-15 2018-01-18 Dic株式会社 重合性組成物、及び、それを用いた光学異方体
WO2018096938A1 (ja) * 2016-11-22 2018-05-31 日本ゼオン株式会社 重合性化合物、重合性組成物、高分子、光学フィルム、光学異方体、偏光板、フラットパネル表示装置、有機エレクトロルミネッセンス表示装置、反射防止フィルム、および化合物
WO2018101122A1 (ja) * 2016-11-29 2018-06-07 Dic株式会社 重合性組成物及びそれを用いた光学異方体
KR20180096615A (ko) 2015-12-25 2018-08-29 니폰 제온 가부시키가이샤 광학 이방성층 및 그 제조 방법, 광학 이방성 적층체 그리고 원 편광판
JPWO2017154598A1 (ja) * 2016-03-08 2019-01-10 日本ゼオン株式会社 液晶性組成物、液晶硬化層及びその液晶硬化層の製造方法
US10633353B2 (en) 2014-12-04 2020-04-28 Dic Corporation Polymerizable compound, composition, polymer, optically anisotropic body, liquid crystal display element, and organic EL display
US10723952B2 (en) 2014-10-09 2020-07-28 Dic Corporation Polymerizable compound and optically anisotropic body
KR20200115494A (ko) 2018-01-31 2020-10-07 니폰 제온 가부시키가이샤 조성물, 위상차 필름, 및 위상차 필름의 제조 방법
US11046889B2 (en) 2015-12-08 2021-06-29 Dic Corporation Polymerizable compound and optically anisotropic body
US11186669B2 (en) 2015-01-16 2021-11-30 Dic Corporation Polymerizable composition and optically anisotropic body using same
US11261378B2 (en) 2014-12-25 2022-03-01 Dic Corporation Polymerizable compound and optically anisotropic object
US11697695B2 (en) 2015-01-16 2023-07-11 Dic Corporation Polymerizable composition and optically anisotropic body using same

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107253935B (zh) * 2012-07-09 2020-10-09 日本瑞翁株式会社 肼化合物、聚合性化合物的制备方法及将肼化合物作为聚合性化合物的制造原料使用的方法
US9995865B2 (en) * 2012-10-22 2018-06-12 Zeon Corporation Phase difference plate, circularly polarizing plate, and image display device
JP6428265B2 (ja) * 2012-10-30 2018-11-28 日本ゼオン株式会社 液晶組成物、位相差板、画像表示装置、および光学異方性層の波長分散制御方法
JPWO2017110638A1 (ja) * 2015-12-22 2018-10-11 日本ゼオン株式会社 液晶性組成物、液晶硬化層及びその製造方法、並びに、光学フィルム
KR102671094B1 (ko) * 2015-12-28 2024-05-30 스미또모 가가꾸 가부시끼가이샤 위상차 필름
CN109564322B (zh) * 2016-08-19 2022-08-02 日本瑞翁株式会社 识别用显示介质及其制造方法
JPWO2018123622A1 (ja) * 2016-12-26 2019-11-14 日本ゼオン株式会社 混合物、高分子、光学フィルム、光学異方体、偏光板、表示装置および反射防止フィルム、並びに、混合物の製造方法
KR102589809B1 (ko) * 2017-06-30 2023-10-13 니폰 제온 가부시키가이샤 광학 이방성층 및 그 제조 방법, 광학 이방성 적층체, 전사용 복층물, 편광판, 그리고 화상 표시 장치
CN110832365B (zh) * 2017-07-10 2022-07-05 株式会社Lg化学 圆偏光板
WO2019124964A1 (ko) * 2017-12-22 2019-06-27 주식회사 엘지화학 액정 조성물 및 이의 용도
WO2019160033A1 (ja) * 2018-02-14 2019-08-22 富士フイルム株式会社 画像表示装置および感光性接着剤付き円偏光板
US11447700B2 (en) * 2018-02-20 2022-09-20 Zeon Corporation Liquid crystal cured layer, production method therefor, optical film, polarizing plate, and display device
JP2019159010A (ja) * 2018-03-09 2019-09-19 シャープ株式会社 液晶表示装置、液晶表示装置の製造方法、及び、位相差層用モノマー材料
CN108640833A (zh) * 2018-04-13 2018-10-12 上海皓元医药股份有限公司 4-(6-(丙烯酰氧基)已氧基)苯酚及其系列化合物的制备方法
KR102196632B1 (ko) 2018-05-03 2020-12-30 주식회사 엘지화학 중합성 액정 화합물, 광학 소자용 액정 조성물, 중합체, 광학 이방체 및 디스플레이 장치용 광학 소자
KR20200102579A (ko) 2019-02-21 2020-09-01 삼성디스플레이 주식회사 편광 필름 및 이를 채용하는 표시 장치
CN113687544A (zh) * 2020-05-18 2021-11-23 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置
WO2023243864A1 (ko) * 2022-06-15 2023-12-21 주식회사 클랩 위상차 필름용 액정 화합물, 이를 포함하는 위상차 필름, 이를 포함하는 디스플레이 장치 및 이의 제조방법
KR20240028118A (ko) * 2022-08-24 2024-03-05 삼성에스디아이 주식회사 편광판 및 광학표시장치

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068816A (ja) 1996-08-29 1998-03-10 Sharp Corp 位相差板及び円偏光板
JPH1090521A (ja) 1996-07-24 1998-04-10 Sumitomo Chem Co Ltd 偏光軸回転積層位相差板およびこれを用いた投射型液晶表示装置
JPH1152131A (ja) 1997-08-01 1999-02-26 Sumitomo Bakelite Co Ltd 位相差板及びそれを用いた偏光素子
WO2000026705A1 (fr) 1998-10-30 2000-05-11 Teijin Limited Film a differences de phase et dispositif optique dans lequel il est utilise
JP2000284126A (ja) 1999-01-27 2000-10-13 Fuji Photo Film Co Ltd 位相差板、円偏光板および反射型液晶表示装置
JP2001004837A (ja) 1999-06-22 2001-01-12 Fuji Photo Film Co Ltd 位相差板および円偏光板
US6400433B1 (en) 1998-11-06 2002-06-04 Fuji Photo Film Co., Ltd. Circularly polarizing plate comprising linearly polarizing membrane and quarter wave plate
JP2005208415A (ja) * 2004-01-23 2005-08-04 Nitto Denko Corp 逆波長分散位相差フィルム、それを用いた偏光板及びディスプレイ装置
JP2005336103A (ja) 2004-05-27 2005-12-08 Fuji Photo Film Co Ltd フェニルヒドラジン類の製造方法
JP2007002208A (ja) 2004-11-11 2007-01-11 Sumitomo Chemical Co Ltd 光学フィルム
WO2009042544A1 (en) 2007-09-26 2009-04-02 Indiana University Research And Technology Corporation Quinone derivatives, pharmaceutical compositions, and uses thereof
JP2009173893A (ja) 2007-12-28 2009-08-06 Sumitomo Chemical Co Ltd 化合物、光学フィルムおよび光学フィルムの製造方法
JP2009274984A (ja) 2008-05-14 2009-11-26 Sumitomo Chemical Co Ltd 化合物、光学フィルムおよび光学フィルムの製造方法
JP2010031223A (ja) 2007-12-28 2010-02-12 Sumitomo Chemical Co Ltd 化合物、光学フィルム及び光学フィルムの製造方法
JP2010070505A (ja) * 2008-09-19 2010-04-02 Nippon Zeon Co Ltd 重合性液晶化合物、重合性液晶組成物、液晶性高分子及び光学異方体
JP2010084032A (ja) * 2008-09-30 2010-04-15 Fujifilm Corp 液晶化合物、光学異方性膜、位相差板及び偏光板
JP2011006360A (ja) 2009-06-26 2011-01-13 Sumitomo Chemical Co Ltd 化合物、光学フィルム及び光学フィルムの製造方法
WO2012147904A1 (ja) * 2011-04-27 2012-11-01 日本ゼオン株式会社 重合性化合物、重合性組成物、高分子、及び光学異方体

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005062673A (ja) 2003-08-19 2005-03-10 Fuji Photo Film Co Ltd 光学異方性層、その製造方法、それを用いた位相差板、楕円偏光板及び液晶表示装置
JP4681334B2 (ja) 2005-03-31 2011-05-11 帝人株式会社 積層位相差フィルム
JP5401032B2 (ja) * 2006-12-15 2014-01-29 富士フイルム株式会社 光学異方性膜、輝度向上フィルム、位相差板および液晶表示装置
JP2009062508A (ja) * 2007-08-14 2009-03-26 Fujifilm Corp 液晶組成物、及び光学異方性膜
JP5899607B2 (ja) * 2009-03-16 2016-04-06 住友化学株式会社 化合物、光学フィルム及び光学フィルムの製造方法
JP5364943B2 (ja) 2009-03-26 2013-12-11 日東電工株式会社 位相差フィルム、その製造方法、及び画像表示装置
JP2011150314A (ja) * 2009-12-22 2011-08-04 Sumitomo Chemical Co Ltd 複合位相差板及びその製造方法
JP4963732B2 (ja) 2010-06-22 2012-06-27 富士フイルム株式会社 光学フィルム、その製造方法、並びにそれを用いた偏光板、画像表示装置及び立体画像表示システム
EP2698388B1 (en) * 2011-04-15 2015-12-09 Zeon Corporation Polymerizable compound, polymerizable composition, polymer, and optically anisotropic body
JP5387725B2 (ja) 2012-05-18 2014-01-15 三菱化学株式会社 位相差フィルム
US9995865B2 (en) * 2012-10-22 2018-06-12 Zeon Corporation Phase difference plate, circularly polarizing plate, and image display device
JP6428265B2 (ja) * 2012-10-30 2018-11-28 日本ゼオン株式会社 液晶組成物、位相差板、画像表示装置、および光学異方性層の波長分散制御方法
CN107963997A (zh) * 2013-08-22 2018-04-27 日本瑞翁株式会社 化合物、混合物、以及聚合性化合物的制造方法

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090521A (ja) 1996-07-24 1998-04-10 Sumitomo Chem Co Ltd 偏光軸回転積層位相差板およびこれを用いた投射型液晶表示装置
JPH1068816A (ja) 1996-08-29 1998-03-10 Sharp Corp 位相差板及び円偏光板
JPH1152131A (ja) 1997-08-01 1999-02-26 Sumitomo Bakelite Co Ltd 位相差板及びそれを用いた偏光素子
WO2000026705A1 (fr) 1998-10-30 2000-05-11 Teijin Limited Film a differences de phase et dispositif optique dans lequel il est utilise
EP1045261A1 (en) 1998-10-30 2000-10-18 Teijin Limited Phase difference film and optical device using it
US6565974B1 (en) 1998-10-30 2003-05-20 Teijin Limited Retardation film and optical device employing it
US6400433B1 (en) 1998-11-06 2002-06-04 Fuji Photo Film Co., Ltd. Circularly polarizing plate comprising linearly polarizing membrane and quarter wave plate
JP2000284126A (ja) 1999-01-27 2000-10-13 Fuji Photo Film Co Ltd 位相差板、円偏光板および反射型液晶表示装置
JP2001004837A (ja) 1999-06-22 2001-01-12 Fuji Photo Film Co Ltd 位相差板および円偏光板
JP2005208415A (ja) * 2004-01-23 2005-08-04 Nitto Denko Corp 逆波長分散位相差フィルム、それを用いた偏光板及びディスプレイ装置
JP2005336103A (ja) 2004-05-27 2005-12-08 Fuji Photo Film Co Ltd フェニルヒドラジン類の製造方法
JP2007002208A (ja) 2004-11-11 2007-01-11 Sumitomo Chemical Co Ltd 光学フィルム
WO2009042544A1 (en) 2007-09-26 2009-04-02 Indiana University Research And Technology Corporation Quinone derivatives, pharmaceutical compositions, and uses thereof
JP2009173893A (ja) 2007-12-28 2009-08-06 Sumitomo Chemical Co Ltd 化合物、光学フィルムおよび光学フィルムの製造方法
JP2010031223A (ja) 2007-12-28 2010-02-12 Sumitomo Chemical Co Ltd 化合物、光学フィルム及び光学フィルムの製造方法
JP2010030979A (ja) 2007-12-28 2010-02-12 Sumitomo Chemical Co Ltd 化合物、光学フィルム及び光学フィルムの製造方法
JP2009274984A (ja) 2008-05-14 2009-11-26 Sumitomo Chemical Co Ltd 化合物、光学フィルムおよび光学フィルムの製造方法
JP2010070505A (ja) * 2008-09-19 2010-04-02 Nippon Zeon Co Ltd 重合性液晶化合物、重合性液晶組成物、液晶性高分子及び光学異方体
JP2010084032A (ja) * 2008-09-30 2010-04-15 Fujifilm Corp 液晶化合物、光学異方性膜、位相差板及び偏光板
JP2011006360A (ja) 2009-06-26 2011-01-13 Sumitomo Chemical Co Ltd 化合物、光学フィルム及び光学フィルムの製造方法
WO2012147904A1 (ja) * 2011-04-27 2012-11-01 日本ゼオン株式会社 重合性化合物、重合性組成物、高分子、及び光学異方体

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Jikken Kagaku Koza (Course of experimental chemistry", vol. 20, 1992, MARUZEN CO., LTD.
"Shin Jikken Kagaku Koza (New course of experimental chemistry", vol. 14, 1978, MARUZEN CO., LTD.
"Yuki Gosei Jikken-hou Handbook (Organic synthesis experimental method handbook", 1990, MARUZEN CO., LTD., pages: 810
"Yuki Gosei Jikkenhou Handbook", 1990, MARUZEN CO., LTD., pages: 810
JOURNAL OF ORGANIC CHEMISTRY, vol. 76, 2011, pages 8082 - 8087

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015025793A1 (ja) * 2013-08-22 2017-03-02 日本ゼオン株式会社 重合性化合物、重合性組成物、高分子、及び光学異方体
JP2019116483A (ja) * 2013-08-22 2019-07-18 日本ゼオン株式会社 重合性化合物、重合性組成物、高分子、及び光学異方体
US10273322B2 (en) 2013-08-22 2019-04-30 Zeon Corporation Polymerizable compound, polymerizable composition, polymer, and optical anisotropic body
WO2015025793A1 (ja) * 2013-08-22 2015-02-26 日本ゼオン株式会社 重合性化合物、重合性組成物、高分子、及び光学異方体
WO2015141784A1 (ja) * 2014-03-19 2015-09-24 日本ゼオン株式会社 重合性化合物の製造方法
US10059679B2 (en) 2014-03-19 2018-08-28 Zeon Corporation Method for producing polymerizable compound
WO2016002816A1 (ja) * 2014-06-30 2016-01-07 日本ゼオン株式会社 重合性化合物の製造中間体、その製造方法、組成物及び安定化方法
US10723952B2 (en) 2014-10-09 2020-07-28 Dic Corporation Polymerizable compound and optically anisotropic body
US10633353B2 (en) 2014-12-04 2020-04-28 Dic Corporation Polymerizable compound, composition, polymer, optically anisotropic body, liquid crystal display element, and organic EL display
US11261378B2 (en) 2014-12-25 2022-03-01 Dic Corporation Polymerizable compound and optically anisotropic object
JPWO2016114348A1 (ja) * 2015-01-16 2017-04-27 Dic株式会社 重合性組成物及び光学異方体
US10647662B2 (en) 2015-01-16 2020-05-12 Dic Corporation Polymerizable compound and optically anisotropic body
US11697695B2 (en) 2015-01-16 2023-07-11 Dic Corporation Polymerizable composition and optically anisotropic body using same
JPWO2016114066A1 (ja) * 2015-01-16 2017-04-27 Dic株式会社 重合性組成物及びそれを用いた光学異方体
JP6066252B2 (ja) * 2015-01-16 2017-01-25 Dic株式会社 重合性化合物及び光学異方体
JPWO2016114211A1 (ja) * 2015-01-16 2017-04-27 Dic株式会社 重合性化合物及び光学異方体
JPWO2016114346A1 (ja) * 2015-01-16 2017-04-27 Dic株式会社 重合性組成物及びそれを用いた光学異方体
KR102552212B1 (ko) * 2015-01-16 2023-07-06 디아이씨 가부시끼가이샤 중합성 조성물 및 광학 이방체
WO2016114066A1 (ja) * 2015-01-16 2016-07-21 Dic株式会社 重合性組成物及びそれを用いた光学異方体
CN107108473A (zh) * 2015-01-16 2017-08-29 Dic株式会社 聚合性化合物和光学各向异性体
KR20170105000A (ko) * 2015-01-16 2017-09-18 디아이씨 가부시끼가이샤 중합성 조성물 및 광학 이방체
US11186669B2 (en) 2015-01-16 2021-11-30 Dic Corporation Polymerizable composition and optically anisotropic body using same
JP2017203168A (ja) * 2015-01-16 2017-11-16 Dic株式会社 重合性組成物及びそれを用いた光学異方体
WO2016114348A1 (ja) * 2015-01-16 2016-07-21 Dic株式会社 重合性組成物及び光学異方体
WO2016114211A1 (ja) * 2015-01-16 2016-07-21 Dic株式会社 重合性化合物及び光学異方体
JP2018009188A (ja) * 2015-01-16 2018-01-18 Dic株式会社 重合性化合物及び光学異方体
JPWO2016136533A1 (ja) * 2015-02-24 2017-04-27 Dic株式会社 重合性化合物及び光学異方体
WO2016136533A1 (ja) * 2015-02-24 2016-09-01 Dic株式会社 重合性化合物及び光学異方体
CN107207419A (zh) * 2015-02-24 2017-09-26 Dic株式会社 聚合性化合物和光学各向异性体
US10597371B2 (en) 2015-02-24 2020-03-24 Dic Corporation Polymerizable compound and optical isomer
JPWO2016136901A1 (ja) * 2015-02-26 2017-12-07 日本ゼオン株式会社 光学フィルム用転写体、光学フィルム、有機エレクトロルミネッセンス表示装置、及び光学フィルムの製造方法
US11067731B2 (en) 2015-02-26 2021-07-20 Zeon Corporation Transfer body for optical film, optical film, organic electroluminescent display device, and method for manufacturing optical film
JPWO2016148047A1 (ja) * 2015-03-19 2017-12-28 日本ゼオン株式会社 液晶性組成物、位相差層の製造方法及び円偏光板
JP2016183132A (ja) * 2015-03-26 2016-10-20 日本ゼオン株式会社 シクロヘキサンジカルボン酸モノエステル化合物の製造方法
JPWO2016171041A1 (ja) * 2015-04-24 2018-02-15 日本ゼオン株式会社 複層フィルムの製造方法及び複層フィルム
WO2016171041A1 (ja) * 2015-04-24 2016-10-27 日本ゼオン株式会社 複層フィルムの製造方法及び複層フィルム
CN107533179A (zh) * 2015-04-24 2018-01-02 日本瑞翁株式会社 多层膜的制造方法及多层膜
JPWO2017057005A1 (ja) * 2015-09-30 2018-07-19 日本ゼオン株式会社 光学フィルム及びその製造方法
WO2017057005A1 (ja) * 2015-09-30 2017-04-06 日本ゼオン株式会社 光学フィルム及びその製造方法
JPWO2017090418A1 (ja) * 2015-11-25 2018-03-29 Dic株式会社 重合性組成物及びそれを用いた光学異方体
WO2017090418A1 (ja) * 2015-11-25 2017-06-01 Dic株式会社 重合性組成物及びそれを用いた光学異方体
US11046889B2 (en) 2015-12-08 2021-06-29 Dic Corporation Polymerizable compound and optically anisotropic body
KR20180096615A (ko) 2015-12-25 2018-08-29 니폰 제온 가부시키가이샤 광학 이방성층 및 그 제조 방법, 광학 이방성 적층체 그리고 원 편광판
JPWO2017154598A1 (ja) * 2016-03-08 2019-01-10 日本ゼオン株式会社 液晶性組成物、液晶硬化層及びその液晶硬化層の製造方法
JP7052718B2 (ja) 2016-03-08 2022-04-12 日本ゼオン株式会社 液晶性組成物、液晶硬化層及びその液晶硬化層の製造方法
JP2017206461A (ja) * 2016-05-18 2017-11-24 日本ゼオン株式会社 重合性化合物の製造方法
JP6090514B1 (ja) * 2016-05-18 2017-03-08 日本ゼオン株式会社 重合性化合物の製造方法
WO2017199862A1 (ja) * 2016-05-18 2017-11-23 日本ゼオン株式会社 重合性化合物の製造方法、ハロゲン化体および混合物
US10927263B2 (en) 2016-07-15 2021-02-23 Dic Corporation Polymerizable composition and optically anisotropic body produced using the same
JPWO2018012579A1 (ja) * 2016-07-15 2018-12-27 Dic株式会社 重合性組成物、及び、それを用いた光学異方体
WO2018012579A1 (ja) * 2016-07-15 2018-01-18 Dic株式会社 重合性組成物、及び、それを用いた光学異方体
JPWO2018096938A1 (ja) * 2016-11-22 2019-10-17 日本ゼオン株式会社 重合性化合物、重合性組成物、高分子、光学フィルム、光学異方体、偏光板、フラットパネル表示装置、有機エレクトロルミネッセンス表示装置、反射防止フィルム、および化合物
WO2018096938A1 (ja) * 2016-11-22 2018-05-31 日本ゼオン株式会社 重合性化合物、重合性組成物、高分子、光学フィルム、光学異方体、偏光板、フラットパネル表示装置、有機エレクトロルミネッセンス表示装置、反射防止フィルム、および化合物
WO2018101122A1 (ja) * 2016-11-29 2018-06-07 Dic株式会社 重合性組成物及びそれを用いた光学異方体
KR20200115494A (ko) 2018-01-31 2020-10-07 니폰 제온 가부시키가이샤 조성물, 위상차 필름, 및 위상차 필름의 제조 방법

Also Published As

Publication number Publication date
TWI589938B (zh) 2017-07-01
JP2019105851A (ja) 2019-06-27
JP6787416B2 (ja) 2020-11-18
US20180259699A1 (en) 2018-09-13
JPWO2014065243A1 (ja) 2016-09-08
CN104737044B (zh) 2017-09-01
KR20150073177A (ko) 2015-06-30
KR102079276B1 (ko) 2020-02-19
EP2910986A4 (en) 2016-06-22
US9995865B2 (en) 2018-06-12
EP2910986B1 (en) 2019-03-13
US20150277010A1 (en) 2015-10-01
US10830935B2 (en) 2020-11-10
CN104737044A (zh) 2015-06-24
TW201418802A (zh) 2014-05-16
JP6476862B2 (ja) 2019-03-06
EP2910986A1 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
JP6787416B2 (ja) 位相差板、円偏光板、及び画像表示装置
JP6822502B2 (ja) 重合性化合物、重合性組成物、高分子、及び光学異方体
JP6544400B2 (ja) 化合物の製造方法
JP6439825B2 (ja) 重合性化合物、重合性組成物、高分子、光学フィルム、光学異方体、フラットパネル表示装置および反射防止フィルム
KR102208206B1 (ko) 액정 조성물, 위상차판, 화상 표시 장치, 및 광학 이방성층의 파장 분산 제어 방법
KR102128555B1 (ko) 중합성 화합물, 중합성 조성물, 고분자, 및 광학 이방체
JP6206481B2 (ja) 重合性化合物、重合性組成物、高分子、及び光学異方体
JPWO2015122384A1 (ja) 重合性化合物、重合性組成物、高分子、及び光学異方体
WO2017154598A1 (ja) 液晶性組成物、液晶硬化層及びその液晶硬化層の製造方法
JP2022056258A (ja) 重合性化合物、重合性組成物、高分子、光学フィルム、光学異方体、偏光板、表示装置、および反射防止フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848764

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014543286

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157010156

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14437399

Country of ref document: US

Ref document number: 2013848764

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE