WO2012173089A1 - 全固体二次電池 - Google Patents

全固体二次電池 Download PDF

Info

Publication number
WO2012173089A1
WO2012173089A1 PCT/JP2012/064914 JP2012064914W WO2012173089A1 WO 2012173089 A1 WO2012173089 A1 WO 2012173089A1 JP 2012064914 W JP2012064914 W JP 2012064914W WO 2012173089 A1 WO2012173089 A1 WO 2012173089A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode active
active material
solid
secondary battery
material layer
Prior art date
Application number
PCT/JP2012/064914
Other languages
English (en)
French (fr)
Inventor
吉田 直樹
耕一郎 前田
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to US14/126,718 priority Critical patent/US9276263B2/en
Priority to JP2013520546A priority patent/JP5987828B2/ja
Publication of WO2012173089A1 publication Critical patent/WO2012173089A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an all solid state secondary battery such as an all solid state lithium ion secondary battery.
  • secondary batteries such as lithium secondary batteries have been used in various applications such as portable power terminals such as portable information terminals and portable electronic devices, as well as small household electric power storage devices, motorcycles, electric vehicles, and hybrid electric vehicles.
  • Demand is increasing.
  • further improvements in the safety of secondary batteries are required.
  • a method of preventing liquid leakage and a method of using a solid electrolyte instead of an organic solvent electrolyte having high flammability and extremely high ignition risk at the time of leakage are effective.
  • Patent Document 1 discloses an all-solid secondary battery using sulfide glass and / or sulfide glass ceramics made of Li 2 S and P 2 S 5 as a solid electrolyte.
  • An object of the present invention is to provide an all solid state secondary battery excellent in rate characteristics and charge / discharge cycle characteristics. Another object of the present invention is to provide a slurry for an all solid state secondary battery used for producing such an all solid state secondary battery.
  • the present inventors have used an inorganic solid electrolyte in combination with a binder composed of a particulate polymer having an average particle size of 30 to 300 nm, and an all-solid secondary
  • an all-solid secondary battery excellent in rate characteristics and charge / discharge cycle characteristics can be obtained by allowing the particulate polymer to exist in a state in which the particulate state is maintained in the battery. It came.
  • an all-solid secondary battery having a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer, the positive electrode active material layer, the negative electrode active material layer, and the solid electrolyte layer At least one of them includes an inorganic solid electrolyte and a binder composed of a particulate polymer having an average particle size of 30 to 300 nm, and the particulate polymer includes the positive electrode active material layer, the negative electrode active material layer, and the solid electrolyte.
  • An all-solid-state secondary battery is provided, wherein the solid-state battery exists in a state in which a particle state is maintained in the layer.
  • the particulate polymer has a core-shell structure.
  • the shell part of the particulate polymer is composed of a polymer having a (meth) acrylic acid ester monomer unit having an ethylene oxide skeleton.
  • the core of the particulate polymer is composed of a polymer having a crosslinkable monomer unit.
  • the ratio of the core part to the shell part of the particulate polymer is 70:30 to 10:90 in terms of the weight ratio of “core part: shell part”.
  • the difference (Tg c ⁇ Tg s ) between the glass transition temperature (Tg c ) of the core part of the particulate polymer and the glass transition temperature (Tg s ) of the shell part. Is 30 ° C. or higher.
  • the inorganic solid electrolyte is a sulfide glass containing Li, P and S and / or a sulfide glass ceramic containing Li, P and S.
  • a slurry for a secondary battery is provided.
  • the SP value of the nonpolar solvent is 14 to 20 MPa 1/2 .
  • the slurry for all-solid-state secondary batteries for manufacturing the all-solid-state secondary battery excellent in a rate characteristic and charging / discharging cycling characteristics, and such an all-solid-state secondary battery can be provided. .
  • the all solid state secondary battery of the present invention has a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer, and at least one of the positive electrode active material layer, the negative electrode active material layer, and the solid electrolyte layer is A binder composed of an inorganic solid electrolyte and a particulate polymer having an average particle size of 30 to 300 nm, and the particulate polymer is contained in the positive electrode active material layer, the negative electrode active material layer, and the solid electrolyte layer. , Characterized by existing in a state in which the particle state is maintained.
  • the inorganic solid electrolyte is not particularly limited as long as it has lithium ion conductivity, sulfide glass containing Li, P and S, sulfide glass ceramics containing Li, P and S, and Li 3 N.
  • LISON Li 14 Zn (GeO 4 ) 4
  • perovskite type Li 0.5 La 0.5 TiO 3 LIPON (Li 3 + y PO 4 ⁇ x N x )
  • Thio-LISON Li 3.25 Ge 0.25 P Examples include crystalline inorganic lithium ion conductors such as 0.75 S 4 ), and among these, sulfide glass containing Li, P and S and / or Li, P and S are contained. Sulfide glass ceramics are preferred.
  • Li—PS glass is a glass containing Li 2 S and P 2 S 5 , and Li 2 S and It can be manufactured by mixing P 2 S 5 at a predetermined ratio.
  • sulfide glass ceramics containing Li, P and S are glass ceramics containing Li 2 S and P 2 S 5 .
  • Li—PS glass obtained by mixing Li 2 S and P 2 S 5 at a predetermined ratio can be produced by firing at 150 to 360 ° C.
  • the ratio of Li 2 S to P 2 S 5 in the Li—PS system glass and the Li—PS system glass ceramic is a molar ratio of Li 2 S: P 2 S 5 , preferably 65:35 to 75:25, more preferably 68:32 to 74:26.
  • the lithium ion conductivity can be increased.
  • the lithium ion conductivity can be preferably 1 ⁇ 10 ⁇ 4 S / cm or more, more preferably 1 ⁇ 10 ⁇ 3 S / cm or more.
  • the Li-PS-based glass and the Li-PS-based glass ceramic are selected from the group consisting of Al 2 S 3 , B 2 S 3 and SiS 2 as long as they do not cause a decrease in ionic conductivity. Or at least one lithium orthooxoate selected from the group consisting of Li 3 PO 4 , Li 4 SiO 4 , Li 4 GeO 4 , Li 3 BO 3 and Li 3 AlO 3. Good. By including such a sulfide and lithium orthooxo acid, the glass component in the Li—PS glass and the Li—PS glass ceramics can be stabilized.
  • the average particle size of the Li—PS—S glass and Li—PS—S glass ceramic is preferably 0.1 to 50 ⁇ m, more preferably 0.1 to 20 ⁇ m. If the average particle size is too small, the handling may be difficult. On the other hand, if the average particle size is too large, the dispersibility may be deteriorated.
  • the binder used in the present invention is a particulate polymer having an average particle size of 30 to 300 nm.
  • an all-solid secondary battery that can exist in a state in which the particle state is maintained, that is, on the inorganic solid electrolyte particles, on the positive electrode active material particles, and / or on the negative electrode active material particles, Any material can be used as long as it can exist in a state in which the particle state is maintained, but those having a core-shell structure are preferable.
  • the “state in which the particle state is maintained” does not have to be a state in which the particle shape is completely maintained, and may be in a state in which the particle shape is maintained to some extent.
  • inorganic solid electrolyte particles As a result of binding each other (or between the positive electrode active material particles and between the negative electrode active material particles), the particles may be crushed to some extent by these particles.
  • the core part is preferably composed of a polymer having a crosslinkable monomer unit.
  • crosslinkable monomer forming the crosslinkable monomer unit constituting the polymer constituting the core part examples include aromatic divinyl compounds such as divinylbenzene, divinylnaphthalene, and derivatives thereof; allyl methacrylate, ethylene glycol dimethacrylate And ethylenically unsaturated carboxylic acid esters such as diethylene glycol dimethacrylate; divinyl compounds such as N, N-divinylaniline and divinyl ether; and compounds having three or more vinyl groups.
  • aromatic divinyl compounds such as divinylbenzene, divinylnaphthalene, and derivatives thereof
  • allyl methacrylate ethylene glycol dimethacrylate
  • ethylenically unsaturated carboxylic acid esters such as diethylene glycol dimethacrylate
  • divinyl compounds such as N, N-divinylaniline and divinyl ether
  • compounds having three or more vinyl groups examples include aromatic divinyl compounds such as divinylbenz
  • the content ratio of the crosslinkable monomer unit in the polymer constituting the core part is preferably 0.1 to 10% by weight, more preferably 0.3 to 7% by weight, still more preferably 0.5 to 4% by weight. Further, the content ratio of the crosslinkable monomer unit in the particulate polymer (content ratio relative to the whole particulate polymer including the core portion and the shell portion) is preferably 0.01 to 15% by weight, more preferably. 0.05 to 10% by weight, more preferably 0.1 to 5% by weight. If the content of the crosslinkable monomer unit is too small, the strength of the particulate polymer may be reduced. On the other hand, if the content is too large, the core-shell structure may not be formed satisfactorily.
  • the polymer constituting the core portion may contain another monomer unit copolymerizable with the crosslinkable monomer.
  • copolymerizable monomers include styrene; styrene derivatives such as vinyltoluene and ⁇ -methylstyrene; acrylic acid, methacrylic acid; methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, acrylic acid Acrylic esters such as 2-ethylhexyl and dimethylaminoethyl acrylate; methacrylic esters such as methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, dimethylaminoethyl methacrylate; acrylamide, Amide compounds such as methacrylamide; olefins such as ethylene, propylene, butylene;
  • the content of other copolymerizable monomer units in the polymer constituting the core part is preferably 90 to 99.9% by weight, more preferably 93 to 99.7% by weight, still more preferably 96 to 99.5% by weight.
  • the shell portion has a (meth) acrylic acid ester monomer unit (acrylic acid ester monomer unit and / or methacrylic acid ester monomer) having an ethylene oxide skeleton. It is preferable that it is comprised from the polymer which has the meaning of a unit. Lithium ion conductivity can be improved by making the shell part contain a (meth) acrylic acid ester monomer unit having an ethylene oxide skeleton.
  • the ethylene oxide skeleton is a polymerized unit of ethylene oxide and may be referred to as an oxyethylene skeleton.
  • the (meth) acrylate monomer having an ethylene oxide skeleton forming a (meth) acrylate monomer unit having an ethylene oxide skeleton includes polyethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, ethoxypolyethylene Glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, nonylphenoxypolyethylene glycol (meth) acrylate, diethylene glycol (meth) acrylate, methoxydiethylene glycol (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, polyethylene glycol di (meth) acrylate Etc.
  • the content of the (meth) acrylic acid ester monomer having an ethylene oxide skeleton in the polymer constituting the shell part is preferably 30 to 100% by weight, more preferably 40 to 100% by weight.
  • the content ratio of the (meth) acrylic acid ester monomer unit having an ethylene oxide skeleton is too small, it is difficult to obtain an effect of improving lithium ion conductivity.
  • the polymer constituting the shell portion includes other monomers that can be copolymerized with the (meth) acrylic acid ester monomer having an ethylene oxide skeleton.
  • a monomer unit may be contained.
  • other copolymerizable monomers those similar to the above-described core part can be used.
  • the content ratio of the other copolymerizable monomer units in the polymer constituting the shell part is preferably 70% by weight or less, more preferably 60% by weight or less.
  • the particulate polymer has a core-shell structure
  • the core portion is composed of a polymer having a crosslinkable monomer unit
  • the shell portion is a (meth) acryl having an ethylene oxide skeleton.
  • the ratio of the core part to the shell part is preferably 70:30 to 10:90, more preferably 60:40 to the weight ratio of the core part to the shell part. 15:85, more preferably 50:50 to 20:80. If the ratio of the core part is too low, the strength may be reduced. On the other hand, if the ratio of the shell part is too low, the binding force as the binder may be reduced.
  • the difference between the glass transition temperature (Tg c ) of the core part and the glass transition temperature (Tg s ) of the shell part (Tg c ⁇ Tg s ) is preferably 30 ° C. It is above, More preferably, it is 50 degreeC or more.
  • the glass transition temperature (Tg c ) of the core is preferably 30 to 220 ° C., more preferably 40 to 210 ° C., and further preferably 50 to 200 ° C. If the difference in glass transition temperature (Tg c -Tg s ) is too small, the binding force as a binder may be reduced.
  • the upper limit of the difference in glass transition temperature (Tg c ⁇ Tg s ) is not particularly limited, but is usually 180 ° C.
  • the average particle size of the particulate polymer is 30 to 300 nm, preferably 50 to 250 m, and more preferably 70 to 200 nm. If the average particle size of the particulate polymer is too small, the stability in the case of the slurry may be deteriorated. On the other hand, if the average particle size is too large, the inorganic solid electrolyte particles (or the positive electrode active material particles, When the negative electrode active material particles) are bound together, the distance between these particles increases, and the internal resistance may increase when an all-solid secondary battery is obtained.
  • the average particle size of the particulate polymer can be controlled, for example, by adjusting the type and amount of the emulsifier used when producing the particulate polymer by emulsion polymerization. Moreover, the average particle diameter of a particulate polymer can be measured by the method using a laser diffraction type particle size distribution measuring apparatus, for example.
  • the production method of the particulate polymer was obtained by first polymerizing the core monomer by an emulsion polymerization method using water as a dispersion medium.
  • a method in which a polymer is used as seed particles and a shell monomer is polymerized by an emulsion polymerization method using water as a dispersion medium is simple and preferable.
  • the shell monomer may be added and polymerized to form a core-shell structure, or in another reactor.
  • a core-shell structure may be formed by polymerizing a shell monomer in another reactor using the formed seed particles as a core.
  • the polymerization conversion rate in the polymerization reaction of the core monomer is usually 70% by weight or more, preferably 90% by weight or more. If the polymerization conversion rate is too low, it becomes difficult to form a core-shell structure.
  • a method for adding the monomer for the shell a method in which the whole amount is added at once and polymerized, a part of the monomer is added for polymerization, and the remainder is added continuously or intermittently. Or a method in which a monomer is continuously added from the start of the polymerization reaction of the shell portion.
  • the polymerization conversion rate in the polymerization reaction of the shell monomer is usually 70% by weight or more, preferably 90% by weight or more.
  • the polymerization temperature is usually 30 to 90 ° C., preferably 40 to 80 ° C. for both polymerization of the core part and shell part, and the polymerization time is usually 0.5 to 10 hours, preferably 1 to 8 hours. It's time.
  • the resulting aqueous dispersion of the particulate polymer has a boiling point of 100 to 220 ° C. It is preferable to carry out solvent substitution with a polar solvent to obtain a nonpolar solvent solution or dispersion having a boiling point of 100 to 220 ° C. By replacing the solvent with a nonpolar solvent having a boiling point of 100 to 220 ° C., it is possible to efficiently remove moisture by heating and drying in the production process. The amount of moisture can be reduced.
  • the nonpolar solvent used for solvent substitution is desirably one having a boiling point of 100 to 220 ° C, preferably 120 to 210 ° C, more preferably 140 to 200 ° C. If a nonpolar solvent having a boiling point too low is used, it may be difficult to remove moisture in the production process. On the other hand, if a nonpolar solvent having a boiling point too high is used, it may take too much time for drying in the production process. There is.
  • the nonpolar solvent used for solvent replacement preferably has an SP value (solubility parameter) of 14 to 20 MPa 1/2 , more preferably 15 to 19 MPa 1/2 , and even more preferably 16 to 18 MPa 1/2 . is there. If a nonpolar solvent having an SP value that is too low, the dispersibility of the polymer particles may be reduced. On the other hand, if a nonpolar solvent having an SP value that is too high is used, the nonpolar solvent tends to react with the inorganic solid electrolyte. The properties of the obtained all-solid-state secondary battery may be adversely affected.
  • SP value solubility parameter
  • nonpolar solvent used for such solvent substitution examples include n-octane (boiling point 125 ° C., SP value 15.6), isooctane (boiling point 117 ° C., SP value 14.1), toluene (boiling point 111 ° C., SP value 18.2), o-xylene (boiling point 144 ° C., SP value 18.5), m-xylene (boiling point 139 ° C., SP value 18.0), p-xylene (boiling point 138 ° C., SP value 18.0) ), Styrene (boiling point 145 ° C., SP value 19.0), ethylbenzene (boiling point 136 ° C., SP value 18.0), decalin (boiling point 185 ° C., SP value 18.0), and the like.
  • the solid electrolyte layer constituting the all solid state secondary battery of the present invention contains a solid electrolyte.
  • the solid electrolyte layer preferably contains the inorganic solid electrolyte described above and the particulate polymer as the binder described above, and is obtained by adopting such a configuration.
  • the all-solid-state secondary battery can be excellent in rate characteristics and charge / discharge cycle characteristics.
  • the content of the particulate polymer in the solid electrolyte layer is preferably 0.05 to 8 parts by weight, more preferably 0.1 to 6 parts by weight, still more preferably 100 parts by weight of the inorganic solid electrolyte. 0.2 to 4 parts by weight.
  • the content of the particulate polymer in the solid electrolyte layer is preferably 0.05 to 8 parts by weight, more preferably 0.1 to 6 parts by weight, still more preferably 100 parts by weight of the inorganic solid electrolyte. 0.2 to 4 parts by weight.
  • Examples of the method for forming the solid electrolyte layer include a method in which a solid electrolyte layer slurry containing an inorganic solid electrolyte, a particulate polymer, and an organic solvent is prepared, the prepared solid electrolyte layer slurry is applied to a substrate, and dried. .
  • the particulate polymer As the particulate polymer, as described above, it is preferable to use a solution or dispersion dissolved or dispersed in a nonpolar solvent having a boiling point of 100 to 220 ° C. In this case, it is contained in the solid electrolyte layer slurry.
  • the organic solvent to be used it is preferable to use a nonpolar solvent having a boiling point of 100 to 220 ° C. as described above. That is, the solid electrolyte layer slurry preferably contains an inorganic solid electrolyte, a particulate polymer, and a nonpolar solvent having a boiling point of 100 to 220 ° C.
  • the method of mixing the above-described components in preparing the solid electrolyte layer slurry is not particularly limited, but for example, dispersion kneading such as a homogenizer, ball mill, bead mill, planetary mixer, sand mill, roll mill, and planetary kneader
  • dispersion kneading such as a homogenizer, ball mill, bead mill, planetary mixer, sand mill, roll mill, and planetary kneader
  • the method using an apparatus is mentioned, The method using a planetary mixer, a ball mill, or a bead mill from a viewpoint that aggregation of an inorganic solid electrolyte can be suppressed is preferable.
  • the content of the nonpolar solvent having a boiling point of 100 to 220 ° C. in the solid electrolyte layer slurry is preferably 5 to 70 parts by weight, more preferably 10 to 60 parts by weight with respect to 100 parts by weight of the inorganic solid electrolyte. More preferably, it is 20 to 50 parts by weight. If the content of the nonpolar solvent is too small, it may be difficult to form a film with a desired film thickness. On the other hand, if the content is too large, it may take time to remove the solvent.
  • the solid electrolyte layer slurry may further contain other components such as a dispersant, a leveling agent, and an antifoaming agent. These are not particularly limited as long as they do not affect the battery reaction.
  • the dispersant examples include anionic compounds, cationic compounds, nonionic compounds, and polymer compounds.
  • the content of the dispersing agent in the solid electrolyte layer slurry is preferably within a range that does not affect the battery characteristics. Specifically, it is preferably 10 parts by weight or less with respect to 100 parts by weight of the inorganic solid electrolyte.
  • leveling agent examples include surfactants such as alkyl surfactants, silicone surfactants, fluorine surfactants, and metal surfactants.
  • surfactants such as alkyl surfactants, silicone surfactants, fluorine surfactants, and metal surfactants.
  • the content of the leveling agent in the solid electrolyte layer slurry is preferably in a range that does not affect the battery characteristics. Specifically, it is preferably 10 parts by weight or less with respect to 100 parts by weight of the inorganic solid electrolyte.
  • antifoaming agents examples include mineral oil antifoaming agents, silicone antifoaming agents, and polymer antifoaming agents.
  • the content of the leveling agent in the solid electrolyte layer slurry is preferably in a range that does not affect the battery characteristics. Specifically, it is preferably 10 parts by weight or less with respect to 100 parts by weight of the inorganic solid electrolyte.
  • the positive electrode active material layer constituting the all solid state secondary battery of the present invention contains a positive electrode active material.
  • the positive electrode active material layer preferably contains the inorganic solid electrolyte described above and the particulate polymer as the binder described above in addition to the positive electrode active material.
  • the positive electrode active material is a compound that can occlude and release lithium ions.
  • the positive electrode active material is roughly classified into those made of inorganic compounds and those made of organic compounds.
  • Examples of the positive electrode active material made of an inorganic compound include transition metal oxides, composite oxides of lithium and transition metals, and transition metal sulfides.
  • Examples of the transition metal include Fe, Co, Ni, Mn, and the like.
  • Specific examples of the positive electrode active material made of an inorganic compound include lithium-containing composite metal oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiFePO 4 , LiFeVO 4 ; TiS 2 , TiS 3 , amorphous Transition metal sulfides such as MoS 2 ; transition metal oxides such as Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O 13 ; It is done. These compounds may be partially element-substituted.
  • Examples of the positive electrode active material made of an organic compound include polyaniline, polypyrrole, polyacene, disulfide compounds, polysulfide compounds, and N-fluoropyridinium salts. Moreover, as a positive electrode active material, the mixture of the inorganic compound mentioned above and an organic compound may be sufficient.
  • the average particle diameter of the positive electrode active material is preferably 0.1 to 50 ⁇ m, more preferably 1 to 20 ⁇ m, from the viewpoint of improving battery characteristics such as rate characteristics and charge / discharge cycle characteristics.
  • the average particle size of the positive electrode active material can be obtained by measuring the particle size distribution by laser diffraction.
  • the content of the inorganic solid electrolyte in the positive electrode active material layer is preferably 5 to 95 parts by weight, more preferably 10 to 90 parts by weight, and still more preferably 20 to 80 parts by weight with respect to 100 parts by weight of the positive electrode active material. Part. If the content of the inorganic solid electrolyte is too small, the ionic conductivity in the positive electrode active material layer becomes insufficient, the positive electrode active material is not effectively used, and the capacity of the obtained all-solid secondary battery may be reduced. There is.
  • the content of the particulate polymer in the positive electrode active material layer is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 8 parts by weight with respect to a total of 100 parts by weight of the positive electrode active material and the inorganic solid electrolyte. Part by weight, more preferably 1 to 5 parts by weight.
  • the content of the particulate polymer in the positive electrode active material layer is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 8 parts by weight with respect to a total of 100 parts by weight of the positive electrode active material and the inorganic solid electrolyte. Part by weight, more preferably 1 to 5 parts by weight.
  • the positive electrode active material layer further includes other components such as a conductivity imparting material, a reinforcing material, a dispersant, a leveling agent, an antioxidant, a thickener, and an electrolyte decomposition inhibitor. It may be.
  • Examples of the conductivity imparting material include conductive carbon such as acetylene black, ketjen black, carbon black and graphite, and fibers and foils of various metals.
  • conductive carbon such as acetylene black, ketjen black, carbon black and graphite
  • fibers and foils of various metals By including a conductivity-imparting material in the positive electrode active material layer, the rate characteristics of the obtained all-solid-state secondary battery can be improved.
  • the content of the conductivity imparting material in the positive electrode active material layer is preferably 0.01 to 20 parts by weight, more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the positive electrode active material.
  • a positive electrode active material layer slurry containing a positive electrode active material, an inorganic solid electrolyte, a particulate polymer, an organic solvent, and other components such as a conductivity-imparting material added as necessary As a method for forming a positive electrode active material layer, a positive electrode active material layer slurry containing a positive electrode active material, an inorganic solid electrolyte, a particulate polymer, an organic solvent, and other components such as a conductivity-imparting material added as necessary And a method of applying the prepared positive electrode active material layer slurry on a current collector and drying it.
  • the particulate polymer As the particulate polymer, as described above, it is preferable to use a solution or dispersion dissolved or dispersed in a nonpolar solvent having a boiling point of 100 to 220 ° C.
  • a nonpolar solvent having a boiling point of 100 to 220 ° C. As the organic solvent contained, it is preferable to use a nonpolar solvent having a boiling point of 100 to 220 ° C. as described above. That is, the positive electrode active material layer slurry is added to other materials such as a positive electrode active material, an inorganic solid electrolyte, a particulate polymer, a nonpolar solvent having a boiling point of 100 to 220 ° C., and a conductivity-imparting material added as necessary. It is preferable to contain a component.
  • the method of mixing the above-described components is not particularly limited.
  • dispersion such as a homogenizer, a ball mill, a bead mill, a planetary mixer, a sand mill, a roll mill, and a planetary kneader
  • a method using a kneading apparatus can be mentioned, and a method using a planetary mixer, a ball mill or a bead mill is preferable from the viewpoint that aggregation of the positive electrode active material and the inorganic solid electrolyte can be suppressed.
  • the content of the nonpolar solvent having a boiling point of 100 to 220 ° C. in the positive electrode active material layer slurry is preferably 5 to 70 parts by weight, more preferably 100 parts by weight in total of the positive electrode active material and the inorganic solid electrolyte. Is 10 to 60 parts by weight, more preferably 20 to 50 parts by weight. If the content of the nonpolar solvent is too small, it may be difficult to form a film with a desired film thickness. On the other hand, if the content is too large, it may take time to remove the solvent.
  • the positive electrode active material layer slurry may contain other components such as a dispersant, a leveling agent, and an antifoaming agent in the same manner as the above-described solid electrolyte layer slurry. These are not particularly limited as long as they do not affect the battery reaction.
  • the negative electrode active material layer constituting the all solid state secondary battery of the present invention contains a negative electrode active material.
  • the negative electrode active material layer preferably contains the inorganic solid electrolyte described above and the particulate polymer as the binder described above in addition to the negative electrode active material.
  • the negative electrode active material is a carbonaceous material such as amorphous carbon, graphite, natural graphite, mesocarbon microbeads, pitch-based carbon fiber; conductive polymer such as polyacene; metal such as silicon, tin, zinc, manganese, iron, nickel Or alloys thereof; oxides or sulfates of the above metals or alloys; lithium metal; lithium alloys such as Li—Al, Li—Bi—Cd, Li—Sn—Cd; lithium transition metal nitrides; silicon; be able to.
  • a negative electrode active material having a conductivity imparting material attached to the surface by a mechanical modification method can also be used.
  • the average particle diameter of the negative electrode active material is preferably 1 to 50 ⁇ m, more preferably 15 to 30 ⁇ m, from the viewpoint of improving battery characteristics such as initial charge / discharge efficiency, rate characteristics, and charge / discharge cycle characteristics.
  • the average particle size of the negative electrode active material can be determined by measuring the particle size distribution by laser diffraction.
  • the content of the inorganic solid electrolyte in the negative electrode active material layer is preferably 5 to 95 parts by weight, more preferably 10 to 90 parts by weight, and still more preferably 20 to 80 parts by weight with respect to 100 parts by weight of the negative electrode active material. Part. If the content of the inorganic solid electrolyte is too small, the ionic conductivity in the negative electrode active material layer becomes insufficient, the negative electrode active material is not effectively used, and the capacity of the obtained all-solid secondary battery may be reduced. There is.
  • the content of the particulate polymer in the negative electrode active material layer is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 8 parts, with respect to 100 parts by weight of the total of the negative electrode active material and the inorganic solid electrolyte. Part by weight, more preferably 1 to 5 parts by weight.
  • the content of the particulate polymer in the negative electrode active material layer is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 8 parts, with respect to 100 parts by weight of the total of the negative electrode active material and the inorganic solid electrolyte. Part by weight, more preferably 1 to 5 parts by weight.
  • the negative electrode active material layer is further provided with a conductivity imparting material, a reinforcing material, a dispersant, a leveling agent, an antioxidant, a thickener, and an electrolytic solution decomposition inhibitor.
  • a conductivity imparting material e.g., a conductivity imparting material, a reinforcing material, a dispersant, a leveling agent, an antioxidant, a thickener, and an electrolytic solution decomposition inhibitor.
  • a conductivity imparting material e.g., a reinforcing material, a dispersant, a leveling agent, an antioxidant, a thickener, and an electrolytic solution decomposition inhibitor.
  • a negative electrode active material layer slurry containing a negative electrode active material, an inorganic solid electrolyte, a particulate polymer, an organic solvent, and other components such as a conductivity imparting agent added as necessary As a method for forming the negative electrode active material layer, a negative electrode active material layer slurry containing a negative electrode active material, an inorganic solid electrolyte, a particulate polymer, an organic solvent, and other components such as a conductivity imparting agent added as necessary And a method of applying the prepared negative electrode active material layer slurry onto a negative electrode current collector and drying it.
  • the particulate polymer As the particulate polymer, as described above, it is preferable to use a solution or dispersion dissolved or dispersed in a nonpolar solvent having a boiling point of 100 to 220 ° C. In this case, the negative electrode active material layer slurry is used.
  • the organic solvent contained it is preferable to use a nonpolar solvent having a boiling point of 100 to 220 ° C. as described above. That is, the negative electrode active material layer slurry is added to other materials such as a negative electrode active material, an inorganic solid electrolyte, a particulate polymer, a nonpolar solvent having a boiling point of 100 to 220 ° C., and a conductivity-imparting material added as necessary. It is preferable to contain a component.
  • the method of mixing the above-described components is not particularly limited.
  • dispersion such as a homogenizer, a ball mill, a bead mill, a planetary mixer, a sand mill, a roll mill, and a planetary kneader
  • a method using a kneading apparatus can be mentioned, and a method using a planetary mixer, a ball mill or a bead mill is preferable from the viewpoint that aggregation of the negative electrode active material layer and the inorganic solid electrolyte can be suppressed.
  • the content of the nonpolar solvent having a boiling point of 100 to 220 ° C. in the negative electrode active material layer slurry is preferably 5 to 70 parts by weight, more preferably 100 parts by weight in total of the negative electrode active material and the inorganic solid electrolyte. Is 10 to 60 parts by weight, more preferably 20 to 50 parts by weight. If the content of the nonpolar solvent is too small, it may be difficult to form a film with a desired film thickness. On the other hand, if the content is too large, it may take time to remove the solvent.
  • the negative electrode active material layer slurry may contain other components such as a dispersant, a leveling agent, and an antifoaming agent, in addition to the above-described components, in the same manner as the solid electrolyte layer slurry described above. These are not particularly limited as long as they do not affect the battery reaction.
  • the all solid state secondary battery of the present invention has the above-described positive electrode active material layer, negative electrode active material layer, and solid electrolyte layer.
  • the thickness of the solid electrolyte layer is preferably 1 to 15 ⁇ m, more preferably 2 to 13 ⁇ m, and further preferably 3 to 10 ⁇ m.
  • the internal resistance of the all-solid secondary battery can be reduced. If the thickness of the solid electrolyte layer is too thin, a short circuit may occur. On the other hand, if the thickness of the solid electrolyte layer is too thick, the internal resistance of the all-solid secondary battery may be increased.
  • the all-solid-state secondary battery of the present invention forms the positive electrode active material layer and the negative electrode active material layer by separately applying the positive electrode active material layer slurry and the negative electrode active material layer slurry on the current collector and drying them. And applying the solid electrolyte layer slurry to the surface of one of the obtained positive electrode active material layer and negative electrode active material layer and drying to form the solid electrolyte layer, and the active material layer having the solid electrolyte layer formed thereon, In addition, the active material layer in which the solid electrolyte layer is not formed can be manufactured by pasting together through the solid electrolyte layer.
  • the method of applying the positive electrode active material layer slurry and the negative electrode active material layer slurry onto the current collector is not particularly limited.
  • the doctor blade method, the dip method, the reverse roll method, the direct roll method, the gravure method, the extrusion It is applied by the method or brushing.
  • the coating amount of the positive electrode active material layer slurry and the negative electrode active material layer slurry is not particularly limited, but the thickness of the positive electrode active material layer and the negative electrode active material layer formed after removing the solvent is preferably 5 to 300 ⁇ m. More preferably, the amount is about 10 to 250 ⁇ m.
  • drying by warm air, a hot air, low-humidity air, vacuum drying, irradiation by irradiation of (far) infrared rays, an electron beam, etc. is mentioned.
  • the drying temperature is preferably 50 to 250 ° C., more preferably 80 to 200 ° C.
  • the drying time is preferably in the range of 10 to 60 minutes.
  • the current collector is not particularly limited as long as it is an electrically conductive and electrochemically durable material. From the viewpoint of having heat resistance, for example, iron, copper, aluminum, nickel, stainless steel, etc. Metal materials such as steel, titanium, tantalum, gold, and platinum are preferable. In particular, aluminum is suitably used for the positive electrode and copper is suitably used for the negative electrode.
  • the shape of the current collector is not particularly limited, but a sheet shape having a thickness of about 0.001 to 0.5 mm is preferable.
  • the current collector is preferably used after roughening in advance. Examples of the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method. In the mechanical polishing method, an abrasive cloth paper with a fixed abrasive particle, a grindstone, an emery buff, a wire brush provided with a steel wire or the like is used.
  • the laminate obtained by bonding them is pressurized. May be.
  • the pressurizing method is not particularly limited, and examples thereof include a flat plate press, a roll press, and CIP (Cold Isostatic Press).
  • the pressure at the time of pressing is preferably 5 to 700 MPa, more preferably 7 to 500 MPa.
  • the all-solid-state secondary battery of the present invention may be put in a battery container by being wound or folded and sealed in accordance with a desired battery shape.
  • the all-solid-state secondary battery of this invention may attach an expanded metal, an overcurrent prevention element, such as a fuse and a PTC element, a lead board, etc. as needed.
  • the shape of the battery may be any of a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like.
  • the water content in the all solid state secondary battery is preferably 300 ppm or less, more preferably 200 ppm or less, and even more preferably 100 ppm or less. If the amount of water is too high, the inorganic solid electrolyte reacts due to the action of water, and the battery characteristics may deteriorate.
  • a nonpolar boiling point 100 to 220 ° C. By using the solvent, water can be appropriately removed in the production process, and thereby the amount of water contained in the all-solid secondary battery can be reduced.
  • the all solid state secondary battery of the present invention contains the above-mentioned particulate polymer having an average particle size of 30 to 300 nm as a binder, and such a particulate polymer having an average particle size of 30 to 300 nm is In the all-solid-state secondary battery (in the positive electrode active material layer, in the negative electrode active material layer, in the solid electrolyte layer), the particle state is maintained. And, by maintaining the particle state, the components constituting the all-solid-state secondary battery are well bound without hindering ion conduction and electron conduction in the all-solid-state secondary battery. is there.
  • the thus obtained all solid state secondary battery of the present invention is excellent in rate characteristics and charge / discharge cycle characteristics. Therefore, it can be suitably used for various applications such as portable terminals such as portable information terminals and portable electronic devices, small household electric power storage devices, motorcycles, electric vehicles, and hybrid electric vehicles.
  • the same measurement is performed on 10 cells, and the average value of the battery capacity at the time of 0.1 C discharge and at the time of 5 C discharge is obtained for 10 cells, and the average battery capacity at the time of 0.1 C discharge Cap 0.1 C And 5C discharge capacity retention ratio, which is a ratio ((Cap 5C / Cap 0.1C ) ⁇ 100%) to the average battery capacity Cap 5C during 5C discharge.
  • the rate characteristics were evaluated according to the following criteria. In addition, since it is judged that the capacity maintenance rate at the time of 5C discharge is high, the discharge capacity at the time of high rate (5C) discharge is high, and it can be judged that it is excellent in a rate characteristic, It is preferable.
  • Capacity maintenance ratio during 5C discharge is 80% or more
  • B: Capacity maintenance ratio during 5C discharge is 70% or more and less than 80%
  • C: Capacity maintenance ratio during 5C discharge is 50% or more and less than 70%
  • D: Capacity during 5C discharge Maintenance rate is 30% or more and less than 50%
  • Capacity maintenance ratio at 50 cycles is 60% or more
  • B: Capacity maintenance ratio at 50 cycles is 55% or more and less than 60%
  • C: Capacity maintenance ratio at 50 cycles is 50% or more and less than 55%
  • D: Capacity at 50 cycles Maintenance rate is 45% or more and less than 50%
  • E: Capacity maintenance rate at 50 cycles is less than 45%
  • Example 1 Production of core-shell polymer particles A
  • a pressure-resistant autoclave of 50 kgf / cm 2 with a stirrer 200 parts of methyl methacrylate, 50 parts of styrene, 5 parts of divinylbenzene as a crosslinkable monomer, 10 parts of sodium dodecylbenzenesulfonate, ion exchange 400 parts of water and 10 parts of azobisbutyronitrile as a polymerization initiator were charged, stirred sufficiently, and then heated to 80 ° C. for polymerization.
  • the average particle size of the core-shell type polymer particles A was 120 nm.
  • Table 1 shows the difference (Tg c -Tg s ) between the glass transition temperature (Tg c ) of the core part of the core-shell polymer particle A and the glass transition temperature (Tg s ) of the shell part, the core part and the shell part in the particle And the content ratio of divinylbenzene units as crosslinkable monomer units in the particles.
  • decalin dispersion 15,000 parts of decalin is added to the latex of the core-shell type polymer particles A obtained above, and after sufficiently dispersing, moisture is removed by drying under reduced pressure to obtain a decalin dispersion of the core-shell type polymer particles A. It was. The solid content concentration of the obtained dispersion was 5%. In addition, it was 72 ppm when the moisture content was measured about the decalin dispersion liquid of the obtained core-shell type polymer particle A.
  • decalin dispersion of A 5 parts in terms of solid content
  • the positive electrode active material layer slurry obtained above was applied to the surface of the aluminum current collector, dried at 120 ° C. for 20 minutes, and a positive electrode having a positive electrode active material layer having a thickness of 50 ⁇ m was obtained. Obtained.
  • the negative electrode active material layer slurry obtained above was applied to the surface of the copper current collector, dried at 120 ° C. for 20 minutes, and a negative electrode having a negative electrode active material layer having a thickness of 30 ⁇ m was obtained. Obtained.
  • the solid electrolyte layer slurry obtained above is applied to the surface of the positive electrode active material layer of the positive electrode obtained above, and dried at 120 ° C. for 20 minutes to obtain a solid electrolyte layer having a thickness of 11 ⁇ m. It was. Then, the solid electrolyte layer formed on the surface of the positive electrode active material layer and the negative electrode active material layer of the negative electrode obtained above were bonded together and pressed at 10 MPa to obtain an all-solid secondary battery. In addition, the thickness of the solid electrolyte layer of the all-solid-state secondary battery after pressing was 9 ⁇ m. Then, using the obtained all solid state secondary battery, the rate characteristics and the charge / discharge cycle characteristics were evaluated according to the method described above. The results are shown in Table 1.
  • Example 2 A decalin dispersion of core-shell polymer particles B was obtained in the same manner as in Example 1 except that the amount of sodium dodecylbenzenesulfonate used for polymerization was changed from 10 parts to 40 parts.
  • the obtained core-shell polymer particles B had an average particle size of 60 nm.
  • each slurry was prepared like Example 1 except having used the decalin dispersion liquid of the obtained core-shell type polymer particle B as a binder, manufacturing an all-solid-state secondary battery, and carrying out. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 A decalin dispersion of core-shell polymer particles C was obtained in the same manner as in Example 1 except that the amount of sodium dodecylbenzenesulfonate used for polymerization was changed from 10 parts to 4 parts.
  • the obtained core-shell polymer particles C had an average particle size of 250 nm.
  • each slurry was prepared like Example 1 except having used the decalin dispersion liquid of the obtained core-shell type polymer particle C as a binder, and an all-solid-state secondary battery was manufactured, and it carried out. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 4 When preparing the positive electrode active material layer slurry, the blending amount of the decalin dispersion of the core-shell type polymer particles A is changed from 100 parts (5 parts in terms of solids) to 350 parts (17.5 parts in terms of solids). Except for the changes, each slurry was prepared in the same manner as in Example 1 to produce an all-solid secondary battery, and evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 5 When preparing the negative electrode active material layer slurry, the blending amount of the decalin dispersion of the core-shell polymer particles A is changed from 60 parts (3 parts in terms of solids) to 210 parts (10.5 parts in terms of solids). Except for the changes, each slurry was prepared in the same manner as in Example 1 to produce an all-solid secondary battery, and evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 6 In a pressure-resistant autoclave of 50 kgf / cm 2 with a stirrer, 200 parts of methyl methacrylate, 150 parts of styrene, 5 parts of divinylbenzene as a crosslinkable monomer, 10 parts of sodium dodecylbenzenesulfonate, 1200 parts of ion-exchanged water, polymerization initiator was charged with 10 parts of azobisbutyronitrile and sufficiently stirred, and then heated to 80 ° C. for polymerization. Then, after the start of polymerization, when the consumption amount of the monomer reached 99.8%, the polymerization reaction was stopped by cooling to obtain latex of polymer particles D.
  • the resulting polymer particle D had a latex solid content concentration of 39%.
  • the polymer particles D are particles that do not have a core-shell structure. Moreover, the average particle diameter of the obtained polymer particle D was 190 nm.
  • 15,000 parts of decalin was added to the latex of the obtained polymer particles D, sufficiently dispersed, and then water was removed by drying under reduced pressure to obtain a decalin dispersion of polymer particles D.
  • the solid content concentration of the obtained dispersion was 5%.
  • Example 7 As a monomer constituting the shell part, instead of 400 parts of nonylphenoxypolyethylene glycol acrylate, polyethylene glycol dimethacrylate (polyethylene glycol # 200 dimethacrylate (manufactured by Hitachi Chemical Co., Ltd., functional acrylate funkril “FA-220M”)) 300 A decalin dispersion of core-shell polymer particles E was obtained in the same manner as in Example 1 except that the parts were used. The average particle diameter of the obtained core-shell polymer particles E was 150 nm.
  • each slurry was prepared like Example 1 except having used the decalin dispersion liquid of the obtained core shell type polymer particle E as a binder, and an all-solid-state secondary battery was manufactured, and it carried out. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 8 A decalin dispersion of core-shell polymer particles F was prepared in the same manner as in Example 1 except that 400 parts of 2-ethylhexyl acrylate was used instead of 400 parts of nonylphenoxypolyethylene glycol acrylate as the monomer constituting the shell part. Obtained.
  • the obtained core-shell polymer particles F had an average particle size of 130 nm.
  • each slurry was prepared in the same manner as in Example 1 except that the decalin dispersion of the obtained core-shell type polymer particles F was used as a binder, and an all-solid secondary battery was manufactured. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 9 A decalin dispersion of core-shell polymer particles G was obtained in the same manner as in Example 1, except that 200 parts of 2-ethylhexyl acrylate was used in place of 200 parts of methyl methacrylate as a monomer constituting the core part. .
  • the obtained core-shell polymer particles G had an average particle size of 170 nm.
  • each slurry was prepared like Example 1 except having used the decalin dispersion liquid of the obtained core-shell type polymer particle G as a binder, and an all-solid-state secondary battery was manufactured, and it carried out. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 10 A decalin dispersion of core-shell polymer particles H is obtained in the same manner as in Example 1 except that divinylbenzene is not used as the monomer constituting the core part, but only 200 parts of methyl methacrylate and 50 parts of styrene are used. It was. The average particle diameter of the obtained core-shell type polymer particles H was 120 nm. And each slurry was prepared like Example 1 except having used the decalin dispersion liquid of the obtained core-shell type polymer particle H as a binder, and an all-solid-state secondary battery was manufactured, and it carried out. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 11 The xylene of the core-shell type polymer particles A was used in the same manner as in Example 1 except that 15,000 parts of xylene was used instead of 15,000 parts of decalin as the solvent used for solvent substitution of the latex of the core-shell type polymer particles A. A dispersion was obtained. Each slurry was prepared in the same manner as in Example 1 except that the xylene dispersion of the obtained core-shell polymer particles A was used as a binder, and an all-solid secondary battery was manufactured. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 12 Toluene of the core-shell type polymer particle A is obtained in the same manner as in Example 1 except that 15,000 parts of toluene is used instead of 15,000 parts of decalin as a solvent used for solvent substitution of the latex of the core-shell type polymer particles A. A dispersion was obtained. Then, each slurry was prepared in the same manner as in Example 1 except that the toluene dispersion of the obtained core-shell type polymer particles A was used as a binder, and an all-solid secondary battery was manufactured. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 1 Each slurry was treated in the same manner as in Example 1 except that the dehydrated methyl acrylate-n-butyl acrylate-acrylonitrile copolymer I obtained above was used as the binder. was prepared, and an all-solid secondary battery was produced and evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • the content of the binder in the positive electrode active material layer is the content when the total of the positive electrode active material and the inorganic solid electrolyte particles is 100 parts. Moreover, content of the binder in a negative electrode active material layer showed content when the sum total of a negative electrode active material and an inorganic solid electrolyte particle was 100 parts. Furthermore, the content of the binder in the solid electrolyte layer indicates the content when the inorganic solid electrolyte particles are 100 parts.
  • the obtained all-solid-state secondary battery has excellent rate characteristics and charge / discharge cycle characteristics. (Examples 1 to 12).
  • these particulate polymers are contained in the all-solid secondary battery (in the positive electrode active material layer, in the negative electrode active material layer, And in the solid electrolyte layer) both existed in a state of maintaining the particle state.
  • the binder coats the positive electrode active material particles, the negative electrode active material particles, and the solid electrolyte particles, and the electronic conductivity and the ionic conductivity are reduced. Inhibition occurred, and the obtained all-solid-state secondary battery was inferior in rate characteristics and charge / discharge cycle characteristics (Comparative Example 1).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 正極活物質層、負極活物質層、および固体電解質層を有する全固体二次電池であって、前記正極活物質層、前記負極活物質層、および前記固体電解質層のうち少なくとも1つが、無機固体電解質および平均粒径30~300nmの粒子状ポリマーからなる結着剤を含み、前記粒子状ポリマーは、前記正極活物質層、前記負極活物質層、および前記固体電解質層内において、粒子状態を保持した状態で存在していることを特徴とする全固体二次電池を提供する。

Description

全固体二次電池
 本発明は、全固体リチウムイオン二次電池等の全固体二次電池に関する。
 近年、リチウム二次電池等の二次電池は、携帯情報端末や携帯電子機器などの携帯端末に加えて、家庭用小型電力貯蔵装置、自動二輪車、電気自動車、ハイブリッド電気自動車など、様々な用途で需要が増加している。用途が広がるに伴い、二次電池のさらなる安全性の向上が要求されている。安全性を確保するために、液漏れを防止する方法や、引火性が高く漏洩時の発火危険性が非常に高い有機溶媒電解質に代えて、固体電解質を用いる方法が有効である。
 たとえば、特許文献1では、固体電解質として、LiSとPとからなる硫化物ガラスおよび/または硫化物ガラスセラミックスを用いてなる全固体二次電池が開示されている。
特開2009-176484号公報
 しかしながら、上記特許文献1では、固体電解質を保持するための結着剤として、熱可塑性エラストマーまたはエチレンオキシド骨格を有する樹脂を用いるものであるため、結着剤が固体電解質を被覆してしまい、これにより電子伝導が阻害され、全固体二次電池とした場合に内部抵抗が高くなってしまうという問題があった。
 本発明は、レート特性および充放電サイクル特性に優れた全固体二次電池を提供することを目的とする。また、本発明は、このような全固体二次電池を製造するために用いられる全固体二次電池用スラリーを提供することも目的とする。
 本発明者等は、上記目的を達成するために鋭意研究した結果、無機固体電解質と、平均粒径30~300nmの粒子状ポリマーからなる結着剤とを組み合わせて用い、かつ、全固体二次電池内において、粒子状ポリマーを、粒子状態を保持した状態で存在させることにより、レート特性および充放電サイクル特性に優れた全固体二次電池を得ることができることを見出し、本発明を完成させるに至った。
 すなわち、本発明によれば、正極活物質層、負極活物質層、および固体電解質層を有する全固体二次電池であって、前記正極活物質層、前記負極活物質層、および前記固体電解質層のうち少なくとも1つが、無機固体電解質および平均粒径30~300nmの粒子状ポリマーからなる結着剤を含み、前記粒子状ポリマーは、前記正極活物質層、前記負極活物質層、および前記固体電解質層内において、粒子状態を保持した状態で存在していることを特徴とする全固体二次電池が提供される。
 本発明の全固体二次電池において、好ましくは、前記粒子状ポリマーは、コアシェル構造を有する。
 本発明の全固体二次電池において、好ましくは、前記粒子状ポリマーのシェル部が、エチレンオキシド骨格を有する(メタ)アクリル酸エステル単量体単位を有するポリマーから構成されるものである。
 本発明の全固体二次電池において、好ましくは、前記粒子状ポリマーのコア部が、架橋性単量体単位を有するポリマーから構成されるものである。
 本発明の全固体二次電池において、好ましくは、前記粒子状ポリマーのコア部とシェル部との割合が、「コア部:シェル部」の重量比率で、70:30~10:90である。
 本発明の全固体二次電池において、好ましくは、前記粒子状ポリマーのコア部のガラス転移温度(Tg)と、シェル部のガラス転移温度(Tg)との差(Tg-Tg)が30℃以上である。
 本発明の全固体二次電池において、好ましくは、前記無機固体電解質が、Li、PおよびSを含有する硫化物ガラスおよび/またはLi、PおよびSを含有する硫化物ガラスセラミックスである。
 また、本発明によれば、無機固体電解質、および平均粒径30~300nmの粒子状ポリマーからなる結着剤を、沸点が100~220℃である非極性溶媒に溶解または分散してなる全固体二次電池用スラリーが提供される。
本発明の全固体二次電池用スラリーにおいて、好ましくは、前記非極性溶媒のSP値が14~20MPa1/2である。
 本発明によれば、レート特性および充放電サイクル特性に優れた全固体二次電池、および、このような全固体二次電池を製造するための全固体二次電池用スラリーを提供することができる。
 本発明の全固体二次電池は、正極活物質層、負極活物質層、および固体電解質層を有し、前記正極活物質層、前記負極活物質層、および前記固体電解質層のうち少なくとも1つが、無機固体電解質および平均粒径30~300nmの粒子状ポリマーからなる結着剤を含み、かつ、前記粒子状ポリマーは、前記正極活物質層、前記負極活物質層、および前記固体電解質層内において、粒子状態を保持した状態で存在していることを特徴とする。
(無機固体電解質)
 まず、本発明で用いる無機固体電解質について説明する。
 無機固体電解質としては、リチウムイオンの伝導性を有するものであれば特に限定されず、Li、PおよびSを含有する硫化物ガラス、Li、PおよびSを含有する硫化物ガラスセラミックス、LiN、LISICON(Li14Zn(GeO、ペロブスカイト型Li0.5La0.5TiO、LIPON(Li3+yPO4-x)、Thio-LISICON(Li3.25Ge0.250.75)などの結晶性の無機リチウムイオン伝導体などが挙げられるが、これらのなかでも、Li、PおよびSを含有する硫化物ガラス、および/またはLi、PおよびSを含有する硫化物ガラスセラミックスが好ましい。
 Li、PおよびSを含有する硫化物ガラス(以下、適宜、「Li-P-S系ガラス」とする)は、LiSとPとを含有するガラスであり、LiSとPとを所定の比率で混合することにより製造することができる。また、Li、PおよびSを含有する硫化物ガラスセラミックス(以下、適宜、「Li-P-S系ガラスセラミックス」とする)は、LiSとPとを含有するガラスセラミックスであり、LiSとPとを所定の比率で混合することで得られたLi-P-S系ガラスを、150~360℃で焼成することにより製造することができる。
 Li-P-S系ガラスおよびLi-P-S系ガラスセラミックスにおける、LiSとPとの比率は、LiS:Pのモル比で、好ましくは65:35~75:25、より好ましくは68:32~74:26である。LiSとPとの比率をこの範囲にすることにより、リチウムイオン伝導度を高いものとすることができる。具体的には、リチウムイオン伝導度を好ましくは1×10-4S/cm以上、より好ましくは1×10-3S/cm以上とすることができる。
 なお、Li-P-S系ガラスおよびLi-P-S系ガラスセラミックスには、イオン導電性の低下を引き起こさせない範囲において、Al、BおよびSiSからなる群より選ばれる少なくとも1種の硫化物、LiPO、LiSiO、LiGeO、LiBOおよびLiAlOからなる群より選ばれる少なくとも1種のオルトオキソ酸リチウムを含有させてもよい。このような硫化物やオルトオキソ酸リチウムを含有させることにより、Li-P-S系ガラスおよびLi-P-S系ガラスセラミックス中のガラス成分を安定化させることができる。
 また、Li-P-S系ガラスおよびLi-P-S系ガラスセラミックスの平均粒径は、好ましくは0.1~50μmであり、より好ましくは0.1~20μmである。平均粒径が小さすぎると、取り扱いが困難となるおそれがあり、一方、平均粒径が大きすぎると、分散性が悪化するおそれがある。
(結着剤)
 次いで、本発明で用いる結着剤について説明する。
 本発明で用いる結着剤は、平均粒径30~300nmの粒子状ポリマーである。粒子状ポリマーとしては、全固体二次電池内において、粒子状態を保持した状態で存在可能なもの、すなわち、無機固体電解質粒子上、正極活物質粒子上、および/または負極活物質粒子上に、粒子状態を保持した状態で存在可能なものであればよいが、コアシェル構造を有するものが好ましい。
 なお、本発明において、“粒子状態を保持した状態”とは、完全に粒子形状を保持した状態である必要はなく、その粒子形状をある程度保持した状態であればよく、たとえば、無機固体電解質粒子同士(あるいは、正極活物質粒子同士、負極活物質粒子同士)を結着した結果、これら粒子同士によりある程度押しつぶされたような形状となっていてもよい。
 本発明において、粒子状ポリマーをコアシェル構造を有するものとする場合、コア部は、架橋性単量体単位を有するポリマーから構成されるものとすることが好ましい。
 コア部を構成するポリマーを構成する架橋性単量体単位を形成する架橋性単量体としては、ジビニルベンゼン、ジビニルナフタレン、およびこれらの誘導体などの芳香族ジビニル化合物;アリルメタクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレートなどのエチレン性不飽和カルボン酸エステル;N,N-ジビニルアニリン、ジビニルエーテルなどのジビニル化合物;3個以上のビニル基を有する化合物などが挙げられる。これらの架橋性単量体は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。これらのなかでも、ジビニルベンゼン、アリルメタクリレートが好ましく、ジビニルベンゼンがより好ましい。コア部を構成するポリマー中における、架橋性単量体単位の含有割合は、好ましくは0.1~10重量%であり、より好ましくは0.3~7重量%、さらに好ましくは0.5~4重量%である。また、粒子状ポリマー中における、架橋性単量体単位の含有割合(コア部およびシェル部を含む粒子状ポリマー全体に対する含有割合)は、好ましくは0.01~15重量%であり、より好ましくは0.05~10重量%、さらに好ましくは0.1~5重量%である。架橋性単量体単位の含有割合が少なすぎると、粒子状ポリマーの強度が低下してしまうおそれがあり、一方、多すぎると、コアシェル構造を良好に形成できない場合がある。
 また、コア部を構成するポリマーには、架橋性単量体単位に加えて、架橋性単量体と共重合可能な他の単量体単位が含有されていてもよい。共重合可能な他の単量体としては、スチレン;ビニルトルエン、α-メチルスチレン等のスチレン誘導体;アクリル酸、メタクリル酸;アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸ジメチルアミノエチル等のアクリル酸エステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸ジメチルアミノエチル等のメタクリル酸エステル;アクリルアミド、メタクリルアミド等のアミド化合物;エチレン、プロピレン、ブチレン等のオレフィン;等が挙げられる。これらの共重合可能な他の単量体は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。コア部を構成するポリマー中における、共重合可能な他の単量体単位の含有割合は、好ましくは90~99.9重量%であり、より好ましくは93~99.7重量%、さらに好ましくは96~99.5重量%である。
 さらに、粒子状ポリマーをコアシェル構造を有するものとする場合、シェル部は、エチレンオキシド骨格を有する(メタ)アクリル酸エステル単量体単位(アクリル酸エステル単量体単位および/またはメタクリル酸エステル単量体単位の意。以下、同様)を有するポリマーから構成されるものとすることが好ましい。シェル部に、エチレンオキシド骨格を有する(メタ)アクリル酸エステル単量体単位を含有させることで、リチウムイオン伝導度を向上させることができる。なお、エチレンオキシド骨格とは、エチレンオキシドの重合単位のことであり、オキシエチレン骨格と称することもある。エチレンオキシド骨格を有する(メタ)アクリル酸エステル単量体単位を形成するエチレンオキシド骨格を有する(メタ)アクリル酸エステル単量体としては、ポリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ジエチレングリコール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレートなどが挙げられる。これらのエチレンオキシド骨格を有する(メタ)アクリル酸エステル単量体は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。シェル部を構成するポリマー中における、エチレンオキシド骨格を有する(メタ)アクリル酸エステル単量体の含有割合は、好ましくは30~100重量%であり、より好ましくは40~100重量%である。エチレンオキシド骨格を有する(メタ)アクリル酸エステル単量体単位の含有割合が少なすぎると、リチウムイオン伝導性の向上効果が得難くなる。
 また、シェル部を構成するポリマーには、エチレンオキシド骨格を有する(メタ)アクリル酸エステル単量体単位に加えて、エチレンオキシド骨格を有する(メタ)アクリル酸エステル単量体と共重合可能な他の単量体単位が含有されていてもよい。共重合可能な他の単量体としては、上述したコア部と同様なものを用いることができる。また、シェル部を構成するポリマー中における、共重合可能な他の単量体単位の含有割合は、好ましくは70重量%以下であり、より好ましくは60重量%以下である。
 本発明においては、粒子状ポリマーをコアシェル構造を有するものとし、かつ、コア部を、架橋性単量体単位を有するポリマーから構成されるものとし、シェル部を、エチレンオキシド骨格を有する(メタ)アクリル酸エステル単量体単位を有するポリマーから構成されるものとすることで、強度を高く保ちながら、結着剤としての結着力を良好なものとすることができ、これにより、得られる全固体二次電池のレート特性および充放電サイクル特性をより向上させることができる。
 粒子状ポリマーをコアシェル構造を有するものとする場合における、コア部とシェル部の割合は、コア部:シェル部の重量比率で、好ましくは70:30~10:90、より好ましくは60:40~15:85、さらに好ましくは50:50~20:80である。コア部の比率が低すぎると、強度が低下するおそれがあり、一方、シェル部の比率が低すぎると、結着剤としての結着力が低下するおそれがある。
 粒子状ポリマーをコアシェル構造を有するものとする場合における、コア部のガラス転移温度(Tg)と、シェル部のガラス転移温度(Tg)の差(Tg-Tg)は、好ましく30℃以上であり、より好ましくは50℃以上である。また、コア部のガラス転移温度(Tg)は、好ましくは30~220℃であり、より好ましくは40~210℃、さらに好ましくは50~200℃である。ガラス転移温度の差(Tg-Tg)が小さすぎると、結着剤としての結着力が低下するおそれがある。なお、ガラス転移温度の差(Tg-Tg)の上限は特に限定されないが、通常、180℃である。
 また、粒子状ポリマーの平均粒径は、30~300nmであり、好ましくは50~250m、さらに好ましくは70~200nmである。粒子状ポリマーの平均粒径が小さすぎると、スラリーとした場合における安定性が悪化するおそれがあり、一方、平均粒径が大きすぎると、無機固体電解質粒子同士(あるいは、正極活物質粒子同士、負極活物質粒子同士)を結着した際に、これらの粒子間の距離が大きくなってしまい、全固体二次電池とした際に、内部抵抗が高くなってしまうおそれがある。なお、粒子状ポリマーの平均粒径は、たとえば、乳化重合により粒子状ポリマーを製造する際に用いる乳化剤の種類や添加量を調整することにより、制御することができる。また、粒子状ポリマーの平均粒径は、たとえば、レーザー回折式粒度分布測定装置を用いた方法により測定することができる。
 粒子状ポリマーをコアシェル構造を有するものとする場合における、粒子状ポリマーの製造方法としては、まず、コア用の単量体を、水を分散媒とする乳化重合法等により重合し、得られた重合体をシード粒子として、シェル用の単量体を水を分散媒とする乳化重合法等により重合する方法が簡便であり好ましい。この場合、同一反応器において、コア用の単量体を重合した後に、シェル用の単量体を添加して重合し、コアシェル構造を形成してもよいし、あるいは、別の反応器にて形成したシード粒子をコアとして用いて、他の反応器にてシェル用の単量体を重合することで、コアシェル構造を形成してもよい。
 コア用の単量体の重合反応における重合転化率は、通常70重量%以上、好ましくは90重量%以上である。重合転化率が低すぎると、コアシェル構造を形成することが困難となる。なお、シェル用の単量体を添加する方法としては、全量一括で添加して重合する方法、単量体の一部を添加して重合し、その残りを連続的にあるいは断続的に添加する方法;あるいは、単量体をシェル部の重合反応開始時から連続的に添加する方法などが挙げられる。また、シェル用の単量体の重合反応における重合転化率は、通常70重量%以上、好ましくは90重量%以上である。重合温度は、コア部の重合、シェル部の重合のいずれも通常30~90℃、好ましくは40~80℃であり、重合時間は、いずれも通常0.5~10時間、好ましくは1~8時間である。
 なお、粒子状ポリマーを、水を分散媒とする乳化重合により重合し、水分散液として得た場合には、得られた粒子状ポリマーの水分散液について、沸点が100~220℃である非極性溶媒にて溶媒置換を行い、沸点が100~220℃である非極性溶媒の溶液または分散液とすることが好ましい。沸点が100~220℃である非極性溶媒で溶媒置換を行なうことにより、製造工程において、加熱乾燥による水分の除去を効率的に行なうことができ、これにより、全固体二次電池とした際における水分量の低減を図ることができる。なお、溶媒置換に用いる非極性溶媒としては、沸点が100~220℃のものが望ましく、好ましくは120~210℃、より好ましくは140~200℃である。沸点が低すぎる非極性溶媒を用いると、製造工程において水分の除去が困難となるおそれがあり、一方、沸点が高すぎる非極性溶媒を用いると、製造工程において、加熱乾燥に時間が掛かりすぎるおそれがある。
 また、溶媒置換に用いる非極性溶媒は、SP値(溶解度パラメータ)が14~20MPa1/2であることが好ましく、より好ましくは15~19MPa1/2、さらに好ましくは16~18MPa1/2である。SP値が低すぎる非極性溶媒を用いると、ポリマー粒子の分散性が低下するおそれがあり、一方、SP値が高すぎる非極性溶媒を用いると、非極性溶媒が無機固体電解質と反応しやすくなり、得られる全固体二次電池の特性に悪影響を及ぼすおそれがある。
 このような溶媒置換に用いる非極性溶媒の具体例としては、n-オクタン(沸点125℃、SP値15.6)、イソオクタン(沸点117℃、SP値14.1)、トルエン(沸点111℃、SP値18.2)、o-キシレン(沸点144℃、SP値18.5)、m-キシレン(沸点139℃、SP値18.0)、p-キシレン(沸点138℃、SP値18.0)、スチレン(沸点145℃、SP値19.0)、エチルベンゼン(沸点136℃、SP値18.0)、デカリン(沸点185℃、SP値18.0)などが挙げられる。
(固体電解質層)
 本発明の全固体二次電池を構成する固体電解質層は、固体電解質を含有するものである。本発明においては、固体電解質層としては、上述した無機固体電解質と、上述した結着剤としての粒子状ポリマーとを含有するものであることが好ましく、このような構成とすることで、得られる全固体二次電池をレート特性および充放電サイクル特性に優れたものとすることができる。
 固体電解質層中における、粒子状ポリマーの含有量は、無機固体電解質100重量部に対して、好ましくは0.05~8重量部であり、より好ましくは0.1~6重量部、さらに好ましくは0.2~4重量部である。粒子状ポリマーの含有量が少なすぎると、固体電解質層中における結着力が低下してしまい、充放電サイクル特性が低下するおそれがある。一方、含有量が多すぎると、得られる全固体二次電池の内部抵抗が高くなるおそれがある。
 固体電解質層の形成方法としては、無機固体電解質、粒子状ポリマー、および有機溶媒を含む固体電解質層スラリーを調製し、調製した固体電解質層スラリーを基材へ塗布し、乾燥する方法などが挙げられる。
 なお、粒子状ポリマーとしては、上述したように、沸点が100~220℃である非極性溶媒に溶解または分散した溶液または分散液を用いることが好ましく、この場合には、固体電解質層スラリーに含有される有機溶媒としては、上述した沸点が100~220℃である非極性溶媒を用いることが好ましい。すなわち、固体電解質層スラリーを、無機固体電解質、粒子状ポリマー、および沸点が100~220℃である非極性溶媒を含有するものとすることが好ましい。
 固体電解質層スラリーを調製する際における、上述した各成分を混合する方法としては特に限定されないが、たとえば、ホモジナイザー、ボールミル、ビーズミル、プラネタリーミキサー、サンドミル、ロールミル、および遊星式混練機などの分散混練装置を使用する方法が挙げられ、無機固体電解質の凝集を抑制できるという観点からプラネタリーミキサー、ボールミルまたはビーズミルを使用する方法が好ましい。
 固体電解質層スラリー中における、沸点が100~220℃である非極性溶媒の含有量は、無機固体電解質100重量部に対して、好ましくは5~70重量部、より好ましくは10~60重量部、さらに好ましくは20~50重量部である。非極性溶媒の含有量が少なすぎると、所望の膜厚にて製膜することが困難となる場合があり、一方、含有量が多すぎると、溶媒の除去に時間が掛かるおそれがある。
 また、固体電解質層スラリーには、上記各成分のほかに、さらに分散剤、レベリング剤、消泡剤などの他の成分が含まれていてもよい。これらは電池反応に影響を及ぼさないものであれば特に限定はされない。
 分散剤としては、アニオン性化合物、カチオン性化合物、非イオン性化合物、高分子化合物が例示される。固体電解質層スラリー中における、分散剤の含有量は、電池特性に影響が及ばない範囲が好ましく、具体的には、無機固体電解質100重量部に対して、10重量部以下とすることが好ましい。
 レベリング剤としては、アルキル系界面活性剤、シリコーン系界面活性剤、フッ素系界面活性剤、金属系界面活性剤などの界面活性剤が挙げられる。レベリング剤を含有させることにより、固体電解質層スラリーを、正極活物質層または負極活物質層の表面に塗工した際に、発生するはじきを防止できる。固体電解質層スラリー中における、レベリング剤の含有量は、電池特性に影響が及ばない範囲が好ましく、具体的には、無機固体電解質100重量部に対して、10重量部以下とすることが好ましい。
 消泡剤としては、ミネラルオイル系消泡剤、シリコーン系消泡剤、ポリマー系消泡剤などが挙げられる。固体電解質層スラリー中における、レベリング剤の含有量は、電池特性に影響が及ばない範囲が好ましく、具体的には、無機固体電解質100重量部に対して、10重量部以下とすることが好ましい。
(正極活物質層)
 本発明の全固体二次電池を構成する正極活物質層は、正極活物質を含有するものである。本発明においては、正極活物質層としては、正極活物質に加え、上述した無機固体電解質と、上述した結着剤としての粒子状ポリマーとを含有するものであることが好ましく、このような構成とすることで、得られる全固体二次電池をレート特性および充放電サイクル特性に優れたものとすることができる。
 正極活物質は、リチウムイオンを吸蔵および放出可能な化合物である。正極活物質は、無機化合物からなるものと有機化合物からなるものとに大別される。
 無機化合物からなる正極活物質としては、遷移金属酸化物、リチウムと遷移金属との複合酸化物、遷移金属硫化物などが挙げられる。遷移金属としては、たとえば、Fe、Co、Ni、Mn等が挙げられる。無機化合物からなる正極活物質の具体例としては、LiCoO、LiNiO、LiMnO、LiMn、LiFePO、LiFeVOなどのリチウム含有複合金属酸化物;TiS、TiS、非晶質MoS等の遷移金属硫化物;Cu、非晶質VO-P、MoO、V、V13などの遷移金属酸化物;などが挙げられる。これらの化合物は、部分的に元素置換したものであってもよい。
 有機化合物からなる正極活物質としては、たとえば、ポリアニリン、ポリピロール、ポリアセン、ジスルフィド系化合物、ポリスルフィド系化合物、N-フルオロピリジニウム塩などが挙げられる。また、正極活物質としては、上述した無機化合物と有機化合物との混合物であってもよい。
 正極活物質の平均粒径は、レート特性、充放電サイクル特性などの電池特性を向上させるという観点から、好ましくは0.1~50μm、より好ましくは1~20μmである。平均粒子径が上記範囲であると、得られる全固体二次電池の充放電容量を大きくすることができ、かつ、正極活物質層を製造する際の取扱いが容易となる。なお、正極活物質の平均粒径は、レーザー回折で粒度分布を測定することにより求めることができる。
 正極活物質層中における無機固体電解質の含有量は、正極活物質100重量部に対して、好ましくは5~95重量部であり、より好ましくは10~90重量部、さらに好ましくは20~80重量部である。無機固体電解質の含有量が少なすぎると、正極活物質層内におけるイオン伝導性が不十分となり、正極活物質が有効に利用されず、得られる全固体二次電池の容量が低下してしまうおそれがある。
 正極活物質層中における粒子状ポリマーの含有量は、正極活物質および無機固体電解質の合計100重量部に対して、好ましくは0.1~10重量部であり、より好ましくは0.5~8重量部、さらに好ましくは1~5重量部である。粒子状ポリマーの含有量が少なすぎると、正極活物質層中における結着力が低下してしまい、得られる全固体二次電池の充放電サイクル特性が低下するおそれがある。一方、含有量が多すぎると、得られる全固体二次電池の内部抵抗が高くなるおそれがある。
 また、正極活物質層には、上記成分のほかに、さらに導電性付与材、補強材、分散剤、レベリング剤、酸化防止剤、増粘剤、電解液分解抑制等の他の成分が含まれていてもよい。
 導電性付与材としては、アセチレンブラック、ケッチェンブラック、カーボンブラック、グラファイト等の導電性カーボンや、各種金属のファイバーや箔などが挙げられる。正極活物質層中に導電性付与材を含有させることにより、得られる全固体二次電池のレート特性を向上させることができる。正極活物質層中おける導電性付与材の含有量は、正極活物質100重量部に対して、好ましくは0.01~20重量部、より好ましくは1~10重量部である。
 正極活物質層の形成方法としては、正極活物質、無機固体電解質、粒子状ポリマー、および有機溶媒、ならびに必要に応じて添加される導電性付与材などの他の成分を含む正極活物質層スラリーを調製し、調製した正極活物質層スラリーを集電体上に塗布し、乾燥する方法などが挙げられる。
 なお、粒子状ポリマーとしては、上述したように、沸点が100~220℃である非極性溶媒に溶解または分散した溶液または分散液を用いることが好ましく、この場合には、正極活物質層スラリーに含有される有機溶媒としては、上述した沸点が100~220℃である非極性溶媒を用いることが好ましい。すなわち、正極活物質層スラリーを、正極活物質、無機固体電解質、粒子状ポリマー、および沸点が100~220℃である非極性溶媒、ならびに必要に応じて添加される導電性付与材などの他の成分を含有するものとすることが好ましい。
 正極活物質層スラリーを調製する際における、上述した各成分を混合する方法としては特に限定されないが、たとえば、ホモジナイザー、ボールミル、ビーズミル、プラネタリーミキサー、サンドミル、ロールミル、および遊星式混練機などの分散混練装置を使用する方法が挙げられ、正極活物質および無機固体電解質の凝集を抑制できるという観点からプラネタリーミキサー、ボールミルまたはビーズミルを使用する方法が好ましい。
 正極活物質層スラリー中における、沸点が100~220℃である非極性溶媒の含有量は、正極活物質および無機固体電解質の合計100重量部に対して、好ましくは5~70重量部、より好ましくは10~60重量部、さらに好ましくは20~50重量部である。非極性溶媒の含有量が少なすぎると、所望の膜厚にて製膜することが困難となる場合があり、一方、含有量が多すぎると、溶媒の除去に時間が掛かるおそれがある。
 また、正極活物質層スラリーには、上記各成分のほかに、上述した固体電解質層スラリーと同様に、分散剤、レベリング剤、消泡剤などの他の成分が含まれていてもよい。これらは電池反応に影響を及ぼさないものであれば特に限定はされない。
(負極活物質層)
 本発明の全固体二次電池を構成する負極活物質層は、負極活物質を含有するものである。本発明においては、負極活物質層としては、負極活物質に加え、上述した無機固体電解質と、上述した結着剤としての粒子状ポリマーとを含有するものであることが好ましく、このような構成とすることで、得られる全固体二次電池をレート特性および充放電サイクル特性に優れたものとすることができる。
 負極活物質は、アモルファスカーボン、グラファイト、天然黒鉛、メソカーボンマイクロビーズ、ピッチ系炭素繊維などの炭素質材料;ポリアセン等の導電性高分子;ケイ素、錫、亜鉛、マンガン、鉄、ニッケル等の金属やこれらの合金;前記金属又は合金の酸化物や硫酸塩;金属リチウム;Li-Al、Li-Bi-Cd、Li-Sn-Cd等のリチウム合金;リチウム遷移金属窒化物;シリコン;などを用いることができる。また、本発明においては、負極活物質として、機械的改質法により表面に導電性付与材を付着させたものも使用できる。
 負極活物質の平均粒径は、初期充放電効率、レート特性、充放電サイクル特性などの電池特性を向上させるという観点から、好ましくは1~50μm、より好ましくは15~30μmである。平均粒子径が上記範囲であると、得られる全固体二次電池の充放電容量を大きくすることができ、かつ、負極活物質層を製造する際の取扱いが容易となる。なお、負極活物質の平均粒径は、レーザー回折で粒度分布を測定することにより求めることができる。
 負極活物質層中における無機固体電解質の含有量は、負極活物質100重量部に対して、好ましくは5~95重量部であり、より好ましくは10~90重量部、さらに好ましくは20~80重量部である。無機固体電解質の含有量が少なすぎると、負極活物質層内におけるイオン伝導性が不十分となり、負極活物質が有効に利用されず、得られる全固体二次電池の容量が低下してしまうおそれがある。
 負極活物質層中における粒子状ポリマーの含有量は、負極活物質および無機固体電解質の合計100重量部に対して、好ましくは0.1~10重量部であり、より好ましくは0.5~8重量部、さらに好ましくは1~5重量部である。粒子状ポリマーの含有量が少なすぎると、負極活物質層中における結着力が低下してしまい、得られる全固体二次電池の充放電サイクル特性が低下するおそれがある。一方、含有量が多すぎると、得られる全固体二次電池の内部抵抗が高くなるおそれがある。
 また、負極活物質層には、正極活物質層と同様に、上記成分のほかに、さらに導電性付与材、補強材、分散剤、レベリング剤、酸化防止剤、増粘剤、電解液分解抑制等の他の成分が含まれていてもよい。
 負極活物質層の形成方法としては、負極活物質、無機固体電解質、粒子状ポリマー、および有機溶媒、ならびに必要に応じて添加される導電性付与材などの他の成分を含む負極活物質層スラリーを調製し、調製した負極活物質層スラリーを負極用集電体上に塗布し、乾燥する方法などが挙げられる。
 なお、粒子状ポリマーとしては、上述したように、沸点が100~220℃である非極性溶媒に溶解または分散した溶液または分散液を用いることが好ましく、この場合には、負極活物質層スラリーに含有される有機溶媒としては、上述した沸点が100~220℃である非極性溶媒を用いることが好ましい。すなわち、負極活物質層スラリーを、負極活物質、無機固体電解質、粒子状ポリマー、および沸点が100~220℃である非極性溶媒、ならびに必要に応じて添加される導電性付与材などの他の成分を含有するものとすることが好ましい。
 負極活物質層スラリーを調製する際における、上述した各成分を混合する方法としては特に限定されないが、たとえば、ホモジナイザー、ボールミル、ビーズミル、プラネタリーミキサー、サンドミル、ロールミル、および遊星式混練機などの分散混練装置を使用する方法が挙げられ、負極活物質層および無機固体電解質の凝集を抑制できるという観点からプラネタリーミキサー、ボールミルまたはビーズミルを使用する方法が好ましい。
 負極活物質層スラリー中における、沸点が100~220℃である非極性溶媒の含有量は、負極活物質および無機固体電解質の合計100重量部に対して、好ましくは5~70重量部、より好ましくは10~60重量部、さらに好ましくは20~50重量部である。非極性溶媒の含有量が少なすぎると、所望の膜厚にて製膜することが困難となる場合があり、一方、含有量が多すぎると、溶媒の除去に時間が掛かるおそれがある。
 また、負極活物質層スラリーには、上記各成分のほかに、上述した固体電解質層スラリーと同様に、分散剤、レベリング剤、消泡剤などの他の成分が含まれていてもよい。これらは電池反応に影響を及ぼさないものであれば特に限定はされない。
(全固体二次電池)
 本発明の全固体二次電池は、上述した正極活物質層と、負極活物質層と、固体電解質層とを有する。
 本発明の全固体二次電池において、固体電解質層の厚さは、好ましくは1~15μm、より好ましくは2~13μm、さらに好ましくは3~10μmである。固体電解質層の厚さを上記範囲とすることで、全固体二次電池の内部抵抗を小さくすることができる。固体電解質層の厚さが薄すぎると、短絡が発生するおそれがある。一方、固体電解質層の厚さが厚すぎると、全固体二次電池の内部抵抗が大きくなるおそれがある。
 本発明の全固体二次電池は、上述した正極活物質層スラリーおよび負極活物質層スラリーをそれぞれ別々に集電体上に塗布し、乾燥することで正極活物質層および負極活物質層を形成し、得られた正極活物質層および負極活物質層のいずれか一方の表面に、固体電解質層スラリーを塗布し、乾燥して固体電解質層を形成し、固体電解質層を形成した活物質層と、固体電解質層を形成しなかった活物質層とを固体電解質層を介して貼り合わせることで製造することができる。
 正極活物質層スラリーおよび負極活物質層スラリーを、集電体上へ塗布する方法としては特に限定されず、たとえば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗りなどによって塗布される。また、正極活物質層スラリーおよび負極活物質層スラリーの塗布量は、特に限定されないが、溶媒を除去した後に形成される正極活物質層および負極活物質層の厚さが、好ましくは5~300μm、より好ましくは10~250μmになる程度の量とすればよい。乾燥方法としては、特に限定されないが、たとえば、温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥が挙げられる。乾燥温度は、好ましくは50~250℃、より好ましくは80~200℃であり、乾燥時間は、好ましくは10~60分の範囲である。さらに、乾燥後の正極活物質層および負極活物質層を、金型プレスやカレンダープレスなどの方法によりプレスしてもよい。
 集電体としては、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されないが、耐熱性を有するとの観点から、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などの金属材料が好ましく、特に、正極用としてはアルミニウムが、負極用としては銅が好適に用いられる。集電体の形状は特に制限されないが、厚さ0.001~0.5mm程度のシート状のものが好ましい。集電体は、正極活物質層、負極活物質層との接着強度を高めるため、予め粗面化処理して使用することが好ましい。粗面化方法としては、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用される。
 また、固体電解質層を形成した活物質層と、固体電解質層を形成しなかった活物質層とを固体電解質層を介して貼り合わせる際には、これらを貼り合わせて得られる積層体を加圧してもよい。加圧方法としては特に限定されず、たとえば、平板プレス、ロールプレス、CIP(Cold  Isostatic  Press)などが挙げられる。加圧プレスする際の圧力としては、好ましくは5~700MPa、より好ましくは7~500MPaである。加圧プレスの圧力を上記範囲とすることにより、正極活物質層および負極活物質層と固体電解質層との各界面における抵抗、更には各層内の粒子間の接触抵抗が低くすることができ、これにより電池特性の向上が可能となる。
 なお、正極活物質層および負極活物質層のいずれか一方の表面に固体電解質層スラリーを塗布する際には、正極活物質層および負極活物質層のいずれに塗布してもよいが、使用する活物質の粒子径が大きい方の活物質層に、固体電解質層スラリーを塗布することが好ましい。活物質の粒子径が大きいと、活物質層表面に凹凸が形成されるため、スラリー組成物を塗布することで、活物質層表面の凹凸を緩和することができる。そのため、固体電解質層を形成した活物質層と固体電解質層を形成しなかった活物質層とを貼り合わせて積層する際に、固体電解質層と活物質層との接触面積が大きくなり、界面抵抗を抑制することができる。
 また、本発明の全固体二次電池は、所望の電池形状に応じて、巻く、折るなどして電池容器に入れ、封口された状態としてもよい。また、本発明の全固体二次電池は、必要に応じてエキスパンドメタルや、ヒューズ、PTC素子などの過電流防止素子、リード板などを取り付けてもよい。電池の形状は、コイン型、ボタン型、シート型、円筒型、角形、扁平型などいずれであってもよい。
 なお、本発明の全固体二次電池は、全固体二次電池内における水分量が300ppm以下であることが好ましく、より好ましくは200ppm以下、さらに好ましくは100ppm以下である。水分量が高すぎると、水の作用により無機固体電解質が反応してしまい、電池特性が低下するおそれがある。なお、本発明においては、全固体二次電池を製造するために用いられる、正極活物質層スラリー、負極活物質層スラリーおよび固体電解質層スラリーの溶媒として、沸点が100~220℃である非極性溶媒を用いることで、製造工程において水を適切に除去することができ、これにより、全固体二次電池内に含まれる水分量を低減することができる。
 また、本発明の全固体二次電池は、結着剤として、上述した平均粒径30~300nmの粒子状ポリマーを含有するものであり、このような平均粒径30~300nmの粒子状ポリマーは、全固体二次電池内(正極活物質層内、負極活物質層内、固体電解質層内)において、粒子状態を保持した状態で存在するものである。そして、粒子状態を保持した状態で存在することにより、全固体二次電池内におけるイオン伝導や電子伝導を阻害することなく、全固体二次電池を構成する各成分を良好に結着するものである。
 このようにして得られる本発明の全固体二次電池は、レート特性および充放電サイクル特性に優れたものである。そのため、携帯情報端末や携帯電子機器などの携帯端末、家庭用小型電力貯蔵装置、自動二輪車、電気自動車、ハイブリッド電気自動車など様々な用途に好適に用いることができる。
 以下に、実施例および比較例を挙げて、本発明についてより具体的に説明する。各例中の部および%は、特に断りのない限り、重量基準である。
 なお、各特性の定義および評価方法は、以下のとおりである。
<レート特性>
 各実施例および比較例で得られた二次電池について、充電レート0.1Cとした定電流法により、4.2Vまで充電を行なった後、放電レート0.1Cにて、3.0Vまで放電することにより、0.1C放電時の電池容量を求めた。次いで、充電レート0.1Cとした定電流法により、4.2Vまで充電を行なった後、放電レート5Cにて、3.0Vまで放電することにより、5C放電時の電池容量を求めた。そして、同様の測定を10個のセルについて行い、10個のセルについて、0.1C放電時および5C放電時の電池容量の平均値を求め、0.1C放電時の平均電池容量Cap0.1Cと、5C放電時の平均電池容量Cap5Cとの比((Cap5C/Cap0.1C)×100%)である5C放電時容量維持率を求めた。そして、得られた5C放電時容量維持率に基づき、以下の基準にて、レート特性を評価した。なお、5C放電時容量維持率が高いほど、ハイレート(5C)放電時の放電容量が高く、レート特性に優れると判断できるため、好ましい。
  A:5C放電時容量維持率が80%以上
  B:5C放電時容量維持率が70%以上、80%未満
  C:5C放電時容量維持率が50%以上、70%未満
  D:5C放電時容量維持率が30%以上、50%未満
  E:5C放電時容量維持率が30%未満
<充放電サイクル特性>
 各実施例および比較例で得られた二次電池について、温度25℃の条件にて、充電レート0.1Cとした定電流法により、4.2Vまで充電を行なった後、放電レート0.5Cにて、3.0Vまで放電する充放電試験を50回繰り返した。そして、1回目の充放電試験における放電容量Cap1stと、50回目の充放電試験における放電容量Cap50thとの比((Cap50th/Cap1st)×100%)である50サイクル時容量維持率を求めた。そして、得られた50サイクル時容量維持率に基づき、以下の基準にて、充放電サイクル特性を評価した。なお、50サイクル時容量維持率が高いほど、サイクル試験を行った際の50サイクル目における劣化が少なく、充放電サイクル特性に優れると判断できるため、好ましい。
  A:50サイクル時容量維持率が60%以上
  B:50サイクル時容量維持率が55%以上、60%未満
  C:50サイクル時容量維持率が50%以上、55%未満
  D:50サイクル時容量維持率が45%以上、50%未満
  E:50サイクル時容量維持率が45%未満
(実施例1)
 コアシェル型ポリマー粒子Aの製造
 攪拌機付き50kgf/cmの耐圧オートクレーブに、メタクリル酸メチル200部、スチレン50部、架橋性単量体としてのジビニルベンゼン5部、ドデシルベンゼンスルホン酸ナトリウム10部、イオン交換水400部、重合開始剤としてのアゾビスブチロニトリル10部を仕込み、十分攪拌した後、80℃に加温して重合を行なった。そして、重合開始後、モノマーの消費量が98%となった時点で、ノニルフェノキシポリエチレングリコールアクリレート(日立化成工業社製、機能性アクリレートファンクリル「FA-314A」)400部、およびスチレン100部、イオン交換水800部、および重合開始剤としてのアゾビスブチロニトリル10部を添加し、十分に混合して、80℃にて重合を行なった。そして、重合開始後、モノマーの消費量が99.8%となった時点で、冷却して重合反応を停止することで、コアシェル型ポリマー粒子Aのラテックスを得た。得られたコアシェル型ポリマー粒子Aのラテックスの固形分濃度は39%であった。また、コアシェル型ポリマー粒子Aの平均粒径は120nmであった。表1に、コアシェル型ポリマー粒子Aのコア部のガラス転移温度(Tg)とシェル部のガラス転移温度(Tg)との差(Tg-Tg)、粒子中のコア部およびシェル部の割合、ならびに、架橋性単量体単位としてのジビニルベンゼン単位の粒子中における含有割合を示す。
 次いで、上記にて得られたコアシェル型ポリマー粒子Aのラテックスにデカリン15,000部加え、十分に分散した後、減圧乾燥により水分を除去することによって、コアシェル型ポリマー粒子Aのデカリン分散液を得た。得られた分散液の固形分濃度は5%であった。なお、得られたコアシェル型ポリマー粒子Aのデカリン分散液について、水分量を測定したところ72ppmであった。
 正極活物質層スラリーの調製
 攪拌槽に、正極活物質としてのコバルト酸リチウム(平均粒径:11.5μm)100部、無機固体電解質粒子としてのLiSとPとからなる硫化物ガラス(LiS/P=70mol%/30mol%、平均粒径:5μm)150部、導電剤としてのアセチレンブラック13部、上記にて得られた結着剤としてのコアシェル型ポリマー粒子Aのデカリン分散液100部(固形分換算で5部)を添加し、ここに固形分濃度が78%となるようにデカリンを加え、プラネタリーミキサーで60分間混合し、次いで、固形分濃度が74%となるようにデカリンをさらに加えて、10分間混合することで、正極活物質層スラリーを得た。
 負極活物質層スラリーの調製
 攪拌槽に、負極活物質としてのグラファイト(平均粒径:20μm)100部と、固体電解質粒子としてのLiSとPとからなる硫化物ガラス(LiS/P=70mol%/30mol%、平均粒径:5μm)50部と、上記にて得られた結着剤としてのコアシェル型ポリマー粒子Aのデカリン分散液60部(固形分換算で3部)を添加し、ここに固形分濃度が60%となるようにデカリンを加え、プラネタリーミキサーで60分間混合することで、負極活物質層スラリーを得た。
 固体電解質層スラリーの調製
 攪拌槽に、固体電解質粒子としてのLiSとPとからなる硫化物ガラス(LiS/P=70mol%/30mol%、平均粒径:5μm)100部と、上記にて得られた結着剤としてのコアシェル型ポリマー粒子Aのデカリン分散液20部(固形分換算で1部)を添加し、ここに固形分濃度が30%となるようにデカリンを加え、プラネタリーミキサーで60分間混合することで、固体電解質層スラリーを得た。 
 全固体二次電池の製造
 アルミニウム集電体表面に、上記にて得られた正極活物質層スラリーを塗布し、120℃、20分間乾燥を行い、厚さ50μmの正極活物質層を有する正極を得た。また、これとは別に、銅集電体表面に、上記にて得られた負極活物質層スラリーを塗布し、120℃、20分間乾燥を行い、厚さ30μmの負極活物質層を有する負極を得た。
 次いで、上記にて得られた正極の正極活物質層の表面に、上記にて得られた固体電解質層スラリーを塗布し、120℃、20分間乾燥を行い、厚さ11μmの固体電解質層を得た。そして、正極活物質層の表面に形成された固体電解質層と、上記にて得られた負極の負極活物質層とを貼り合わせ、10MPaでプレスすることにより、全固体二次電池を得た。なお、プレス後の全固体二次電池の固体電解質層の厚さは9μmであった。そして、得られた全固体二次電池を用いて、上記した方法にしたがって、レート特性および充放電サイクル特性の評価を行った。結果を表1に示す。
(実施例2)
 重合を行なう際に使用するドデシルベンゼンスルホン酸ナトリウムの添加量を10部から40部に変更した以外は、実施例1と同様にして、コアシェル型ポリマー粒子Bのデカリン分散液を得た。得られたコアシェル型ポリマー粒子Bの平均粒径は60nmであった。そして、結着剤として、得られたコアシェル型ポリマー粒子Bのデカリン分散液を用いた以外は、実施例1と同様にして、各スラリーを調製し、全固体二次電池を製造して、実施例1と同様に評価を行った。結果を表1に示す。
(実施例3)
 重合を行なう際に使用するドデシルベンゼンスルホン酸ナトリウムの添加量を10部から4部に変更した以外は、実施例1と同様にして、コアシェル型ポリマー粒子Cのデカリン分散液を得た。得られたコアシェル型ポリマー粒子Cの平均粒径は250nmであった。そして、結着剤として、得られたコアシェル型ポリマー粒子Cのデカリン分散液を用いた以外は、実施例1と同様にして、各スラリーを調製し、全固体二次電池を製造して、実施例1と同様に評価を行った。結果を表1に示す。
(実施例4)
 正極活物質層スラリーを調製する際に、コアシェル型ポリマー粒子Aのデカリン分散液の配合量を、100部(固形分換算で5部)から、350部(固形分換算で17.5部)に変更した以外は、実施例1と同様にして、各スラリーを調製し、全固体二次電池を製造して、実施例1と同様に評価を行った。結果を表1に示す。
(実施例5)
 負極活物質層スラリーを調製する際に、コアシェル型ポリマー粒子Aのデカリン分散液の配合量を、60部(固形分換算で3部)から、210部(固形分換算で10.5部)に変更した以外は、実施例1と同様にして、各スラリーを調製し、全固体二次電池を製造して、実施例1と同様に評価を行った。結果を表1に示す。
(実施例6)
 攪拌機付き50kgf/cmの耐圧オートクレーブに、メタクリル酸メチル200部、スチレン150部、架橋性単量体としてのジビニルベンゼン5部、ドデシルベンゼンスルホン酸ナトリウム10部、イオン交換水1200部、重合開始剤としてのアゾビスブチロニトリル10部を仕込み、十分攪拌した後、80℃に加温して重合を行なった。そして、重合開始後、モノマーの消費量が99.8%となった時点で、冷却して重合反応を停止することで、ポリマー粒子Dのラテックスを得た。得られたポリマー粒子Dのラテックスの固形分濃度は39%であった。なお、ポリマー粒子Dは、コアシェル構造を有しない粒子である。また、得られたポリマー粒子Dの平均粒径は190nmであった。次いで、得られたポリマー粒子Dのラテックスにデカリン15,000部加え、十分に分散した後、減圧乾燥により水分を除去することによって、ポリマー粒子Dのデカリン分散液を得た。得られた分散液の固形分濃度は5%であった。
 そして、結着剤として、上記にて得られたコアシェル構造を有しないポリマー粒子Dのデカリン分散液を用いた以外は、実施例1と同様にして、各スラリーを調製し、全固体二次電池を製造して、実施例1と同様に評価を行った。結果を表1に示す。
(実施例7)
 シェル部を構成するモノマーとして、ノニルフェノキシポリエチレングリコールアクリレート400部の代わりに、ポリエチレングリコールジメタクリレート(ポリエチレングリコール#200ジメタクリレート(日立化成工業社製、機能性アクリレートファンクリル「FA-220M」))300部を使用した以外は、実施例1と同様にして、コアシェル型ポリマー粒子Eのデカリン分散液を得た。得られたコアシェル型ポリマー粒子Eの平均粒径は150nmであった。そして、結着剤として、得られたコアシェル型ポリマー粒子Eのデカリン分散液を用いた以外は、実施例1と同様にして、各スラリーを調製し、全固体二次電池を製造して、実施例1と同様に評価を行った。結果を表1に示す。
(実施例8)
 シェル部を構成するモノマーとして、ノニルフェノキシポリエチレングリコールアクリレート400部の代わりに、アクリル酸2-エチルヘキシル400部を使用した以外は、実施例1と同様にして、コアシェル型ポリマー粒子Fのデカリン分散液を得た。得られたコアシェル型ポリマー粒子Fの平均粒径は130nmであった。そして、結着剤として、得られたコアシェル型ポリマー粒子Fのデカリン分散液を用いた以外は、実施例1と同様にして、各スラリーを調製し、全固体二次電池を製造して、実施例1と同様に評価を行った。結果を表1に示す。
(実施例9)
 コア部を構成するモノマーとして、メタクリル酸メチル200部の代わりに、アクリル酸2-エチルヘキシル200部を使用した以外は、実施例1と同様にして、コアシェル型ポリマー粒子Gのデカリン分散液を得た。得られたコアシェル型ポリマー粒子Gの平均粒径は170nmであった。そして、結着剤として、得られたコアシェル型ポリマー粒子Gのデカリン分散液を用いた以外は、実施例1と同様にして、各スラリーを調製し、全固体二次電池を製造して、実施例1と同様に評価を行った。結果を表1に示す。
(実施例10)
 コア部を構成するモノマーとして、ジビニルベンゼンを使用せず、メタクリル酸メチル200部およびスチレン50部のみを使用した以外は、実施例1と同様にして、コアシェル型ポリマー粒子Hのデカリン分散液を得た。得られたコアシェル型ポリマー粒子Hの平均粒径は120nmであった。そして、結着剤として、得られたコアシェル型ポリマー粒子Hのデカリン分散液を用いた以外は、実施例1と同様にして、各スラリーを調製し、全固体二次電池を製造して、実施例1と同様に評価を行った。結果を表1に示す。
(実施例11)
 コアシェル型ポリマー粒子Aのラテックスの溶媒置換に用いる溶媒として、デカリン15,000部に代えて、キシレン15,000部を使用した以外は、実施例1と同様にして、コアシェル型ポリマー粒子Aのキシレン分散液を得た。そして、結着剤として、得られたコアシェル型ポリマー粒子Aのキシレン分散液を用いた以外は、実施例1と同様にして、各スラリーを調製し、全固体二次電池を製造して、実施例1と同様に評価を行った。結果を表1に示す。
(実施例12)
 コアシェル型ポリマー粒子Aのラテックスの溶媒置換に用いる溶媒として、デカリン15,000部に代えて、トルエン15,000部を使用した以外は、実施例1と同様にして、コアシェル型ポリマー粒子Aのトルエン分散液を得た。そして、結着剤として、得られたコアシェル型ポリマー粒子Aのトルエン分散液を用いた以外は、実施例1と同様にして、各スラリーを調製し、全固体二次電池を製造して、実施例1と同様に評価を行った。結果を表1に示す。
(比較例1)
 攪拌機付き50kgf/cmの耐圧オートクレーブに、アクリル酸メチル100部、アクリル酸n-ブチル100部、アクリロニトリル30部、デカリン400部および重合開始剤としての過酸化ベンゾイル0.1部を仕込み、80℃で5時間保持し、溶液重合を行なうことで、アクリル酸メチル-アクリル酸n-ブチル-アクリロニトリル共重合体Iのデカリン溶液を得た。なお、得られたアクリル酸メチル-アクリル酸n-ブチル-アクリロニトリル共重合体Iはデカリンに溶解しており、粒子形状を有さないものであった。次いで、得られた溶液にデカリンを添加して、固形分濃度5%に調製し、モレキュラシーブにて脱水を行なった。
 そして、結着剤として、上記にて得られた脱水後のアクリル酸メチル-アクリル酸n-ブチル-アクリロニトリル共重合体Iのデカリン溶液を用いた以外は、実施例1と同様にして、各スラリーを調製し、全固体二次電池を製造して、実施例1と同様に評価を行った。結果を表1に示す。
(比較例2)
 重合を行なう際に、スチレンの配合量を150部から100部に変更するとともに、ドデシルベンゼンスルホン酸ナトリウムを使用しなかった以外は、実施例6と同様にして、コアシェル構造を有しないポリマー粒子Jのデカリン分散液を得た。得られたポリマー粒子Jの平均粒径は500nmであった。そして、得られたコアシェル構造を有しないポリマー粒子Jのデカリン分散液を用いた以外は、実施例1と同様にして、各スラリーを調製し、全固体二次電池を製造して、実施例1と同様に評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1中、正極活物質層中の結着剤の含有量は、正極活物質と無機固体電解質粒子との合計を100部とした場合における含有量を示した。また、負極活物質層中の結着剤の含有量は、負極活物質と無機固体電解質粒子との合計を100部とした場合における含有量を示した。さらに、固体電解質層中の結着剤の含有量は、無機固体電解質粒子100部とした場合における含有量を示した。
 表1に示すように、結着剤として、平均粒径が30~300nmの粒子状ポリマーを用いた場合には、得られる全固体二次電池は、レート特性および充放電サイクル特性に優れたものであった(実施例1~12)。また、結着剤として、平均粒径が30~300nmの粒子状ポリマーを用いた場合には、これら粒子状ポリマーは、全固体二次電池内(正極活物質層内、負極活物質層内、および固体電解質層内)において、いずれも粒子状態を保持した状態で存在していた。
 一方、結着剤として、粒子状でないポリマーを用いた場合には、結着剤が正極活物質粒子、負極活物質粒子、および固体電解質粒子を被覆してしまい、電子伝導性およびイオン導電性の阻害が起こり、得られる全固体二次電池は、レート特性および充放電サイクル特性に劣るものとなった(比較例1)。
 同様に、結着剤として、平均粒径が500nmの粒子状ポリマーを用いた場合には、全固体二次電池を構成する、正極活物質粒子、負極活物質粒子、および固体電解質粒子において、粒子間の距離が大きくなってしまい、得られる全固体二次電池は、レート特性および充放電サイクル特性に劣るものとなった(比較例2)。

Claims (9)

  1.  正極活物質層、負極活物質層、および固体電解質層を有する全固体二次電池であって、
     前記正極活物質層、前記負極活物質層、および前記固体電解質層のうち少なくとも1つが、無機固体電解質および平均粒径30~300nmの粒子状ポリマーからなる結着剤を含み、
     前記粒子状ポリマーは、前記正極活物質層、前記負極活物質層、および前記固体電解質層内において、粒子状態を保持した状態で存在していることを特徴とする全固体二次電池。
  2.  前記粒子状ポリマーは、コアシェル構造を有することを特徴とする請求項1に記載の全固体二次電池。
  3.  前記粒子状ポリマーのシェル部が、エチレンオキシド骨格を有する(メタ)アクリル酸エステル単量体単位を有するポリマーから構成されることを特徴とする請求項2に記載の全固体二次電池。
  4.  前記粒子状ポリマーのコア部が、架橋性単量体単位を有するポリマーから構成されることを特徴とする請求項2または3に記載の全固体二次電池。
  5.  前記粒子状ポリマーのコア部とシェル部との割合が、「コア部:シェル部」の重量比率で、70:30~10:90であることを特徴とする請求項2~4のいずれかに記載の全固体二次電池。
  6.  前記粒子状ポリマーのコア部のガラス転移温度(Tg)と、シェル部のガラス転移温度(Tg)との差(Tg-Tg)が30℃以上であることを特徴とする請求項2~5のいずれかに記載の全固体二次電池。
  7.  前記無機固体電解質が、Li、PおよびSを含有する硫化物ガラスおよび/またはLi、PおよびSを含有する硫化物ガラスセラミックスであることを特徴とする請求項1~6のいずれかに記載の全固体二次電池。
  8.  無機固体電解質、および平均粒径30~300nmの粒子状ポリマーからなる結着剤を、沸点が100~220℃である非極性溶媒に溶解または分散してなる全固体二次電池用スラリー。
  9.  前記非極性溶媒のSP値が14~20MPa1/2である請求項8に記載の全固体二次電池用スラリー。
PCT/JP2012/064914 2011-06-17 2012-06-11 全固体二次電池 WO2012173089A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/126,718 US9276263B2 (en) 2011-06-17 2012-06-11 All-solid state secondary cell
JP2013520546A JP5987828B2 (ja) 2011-06-17 2012-06-11 全固体二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011135292 2011-06-17
JP2011-135292 2011-06-17

Publications (1)

Publication Number Publication Date
WO2012173089A1 true WO2012173089A1 (ja) 2012-12-20

Family

ID=47357076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064914 WO2012173089A1 (ja) 2011-06-17 2012-06-11 全固体二次電池

Country Status (3)

Country Link
US (1) US9276263B2 (ja)
JP (1) JP5987828B2 (ja)
WO (1) WO2012173089A1 (ja)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046312A1 (ja) * 2013-09-25 2015-04-02 富士フイルム株式会社 固体電解質組成物、電池用電極シート、電池用電極シートの製造方法、全固体二次電池、および全固体二次電池の製造方法
WO2015046313A1 (ja) * 2013-09-25 2015-04-02 富士フイルム株式会社 固体電解質組成物および全固体二次電池用のバインダー、ならびにこれらを用いた電池用電極シートおよび全固体二次電池
WO2015046314A1 (ja) * 2013-09-25 2015-04-02 富士フイルム株式会社 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池
JP2015103451A (ja) * 2013-11-26 2015-06-04 三星電子株式会社Samsung Electronics Co.,Ltd. 全固体二次電池および全固体二次電池の製造方法
JP2015159067A (ja) * 2014-02-25 2015-09-03 富士フイルム株式会社 複合固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびに電池用電極シートおよび全固体二次電池の製造方法
WO2015133424A1 (ja) * 2014-03-03 2015-09-11 日本ゼオン株式会社 二次電池用バインダー組成物
WO2016075946A1 (ja) * 2014-11-14 2016-05-19 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
WO2016152262A1 (ja) * 2015-03-25 2016-09-29 日本ゼオン株式会社 全固体二次電池
JP2016181472A (ja) * 2015-03-25 2016-10-13 日本ゼオン株式会社 全固体二次電池
JP2016181471A (ja) * 2015-03-25 2016-10-13 日本ゼオン株式会社 全固体二次電池
JP2016212991A (ja) * 2015-04-30 2016-12-15 富士フイルム株式会社 全固体二次電池、全固体二次電池用電極シート、および全固体二次電池の製造方法
JP2016212990A (ja) * 2015-04-30 2016-12-15 富士フイルム株式会社 全固体二次電池、電極活物質層用組成物および全固体二次電池用電極シートならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法
WO2017047379A1 (ja) * 2015-09-16 2017-03-23 日本ゼオン株式会社 全固体二次電池用バインダーおよび全固体二次電池
WO2017099247A1 (ja) 2015-12-11 2017-06-15 富士フイルム株式会社 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シート及びその製造方法、並びに、全固体二次電池及びその製造方法
WO2017099248A1 (ja) * 2015-12-11 2017-06-15 富士フイルム株式会社 固体電解質組成物、バインダー粒子、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池、並びに、これらの製造方法
WO2017110901A1 (ja) * 2015-12-21 2017-06-29 株式会社大阪ソーダ 電池電極用バインダー、電極、及び電池
JPWO2016129428A1 (ja) * 2015-02-12 2017-08-03 富士フイルム株式会社 全固体二次電池、これに用いる固体電解質組成物および電池用電極シートならびに電池用電極シートおよび全固体二次電池の製造方法
WO2017141735A1 (ja) * 2016-02-19 2017-08-24 富士フイルム株式会社 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、全固体二次電池用電極シートおよび全固体二次電池の製造方法
JPWO2016136090A1 (ja) * 2015-02-27 2017-09-21 富士フイルム株式会社 固体電解質組成物、電極活物質及びその製造方法、電池用電極シート及びその製造方法、並びに全固体二次電池及びその製造方法
WO2018012380A1 (ja) * 2016-07-12 2018-01-18 日本ゼオン株式会社 固体電解質電池用バインダー組成物
KR20180041091A (ko) * 2015-08-27 2018-04-23 니폰 제온 가부시키가이샤 전고체 전지용 바인더 조성물
KR20180093092A (ko) 2016-01-27 2018-08-20 후지필름 가부시키가이샤 고체 전해질 조성물, 전고체 이차 전지용 시트, 전고체 이차 전지용 전극 시트 및 전고체 이차 전지와, 전고체 이차 전지용 시트, 전고체 이차 전지용 전극 시트 및 전고체 이차 전지의 제조 방법
WO2018169359A1 (ko) * 2017-03-16 2018-09-20 주식회사 엘지화학 전고체 전지용 전극 조립체 및 이를 제조하는 방법
WO2019054455A1 (ja) 2017-09-15 2019-03-21 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
WO2019074076A1 (ja) * 2017-10-12 2019-04-18 富士フイルム株式会社 全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用電極シート及び全固体二次電池の製造方法
WO2019074074A1 (ja) 2017-10-12 2019-04-18 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
JP6516076B1 (ja) * 2017-08-23 2019-05-22 宇部興産株式会社 電極合剤ペースト
WO2019131771A1 (ja) * 2017-12-26 2019-07-04 株式会社大阪ソーダ 電極用バインダー、電極、及び蓄電デバイス
CN110098408A (zh) * 2018-01-31 2019-08-06 松下知识产权经营株式会社 电极合剂、电池、以及电极的制造方法
WO2020004332A1 (ja) * 2018-06-29 2020-01-02 日本ゼオン株式会社 電気化学素子電極用バインダー組成物、電気化学素子電極用スラリー組成物、電気化学素子用電極、および電気化学素子
WO2020067003A1 (ja) * 2018-09-28 2020-04-02 富士フイルム株式会社 電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用電極シート若しくは全固体二次電池の製造方法
WO2020075749A1 (ja) 2018-10-11 2020-04-16 富士フイルム株式会社 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池
CN111213213A (zh) * 2017-11-17 2020-05-29 富士胶片株式会社 固体电解质组合物、含固体电解质的片材及全固态二次电池、以及含固体电解质的片材及全固态二次电池的制造方法
WO2020110994A1 (ja) * 2018-11-26 2020-06-04 株式会社大阪ソーダ 複合固体電解質、および複合固体電解質二次電池
WO2021085141A1 (ja) * 2019-10-31 2021-05-06 日本ゼオン株式会社 全固体二次電池用バインダー組成物、全固体二次電池用スラリー組成物、固体電解質含有層および全固体二次電池
WO2021085044A1 (ja) * 2019-10-31 2021-05-06 日本ゼオン株式会社 二次電池用バインダー組成物、二次電池用スラリー組成物、二次電池用機能層および二次電池
KR20220041887A (ko) 2019-08-30 2022-04-01 후지필름 가부시키가이샤 무기 고체 전해질 함유 조성물, 전고체 이차 전지용 시트 및 전고체 이차 전지, 전고체 이차 전지용 시트 및 전고체 이차 전지의 제조 방법, 및, 복합 폴리머 입자
WO2022230908A1 (ja) * 2021-04-28 2022-11-03 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用接着層およびその製造方法、非水系二次電池用積層体およびその製造方法、ならびに、非水系二次電池
WO2023282333A1 (ja) * 2021-07-07 2023-01-12 富士フイルム株式会社 電極組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用電極シート及び全固体二次電池の製造方法
US11563235B2 (en) 2017-11-17 2023-01-24 Fujifilm Corporation Solid electrolyte composition, sheet for all-solid state secondary battery, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, method of manufacturing sheet for all-solid state secondary battery, and method of manufacturing all-solid state secondary battery
KR20230019084A (ko) 2020-05-29 2023-02-07 니폰 제온 가부시키가이샤 전고체 이차 전지용 슬러리 조성물, 고체 전해질 함유층 및 전고체 이차 전지

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6059743B2 (ja) * 2014-02-17 2017-01-11 富士フイルム株式会社 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびにそれらの製造方法
JP6415008B2 (ja) * 2015-02-20 2018-10-31 富士フイルム株式会社 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびに電池用電極シートおよび全固体二次電池の製造方法
CN109155162B (zh) * 2016-05-23 2021-06-11 富士胶片株式会社 固体电解质组合物、含固体电解质的片材及全固态二次电池以及含固体电解质的片材及全固态二次电池的制造方法
JP6615337B2 (ja) * 2016-05-23 2019-12-04 富士フイルム株式会社 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法
CN109155414B (zh) * 2016-06-09 2021-08-13 日本瑞翁株式会社 固体电解质电池用粘结剂组合物、及固体电解质电池用浆料组合物
JP6878059B2 (ja) * 2017-03-15 2021-05-26 トヨタ自動車株式会社 硫化物固体電解質及びその製造方法
US11631839B2 (en) * 2017-03-22 2023-04-18 Lg Energy Solution, Ltd. Electrode for solid state battery and method for manufacturing the same
KR20200044805A (ko) * 2017-08-31 2020-04-29 니폰 제온 가부시키가이샤 전기 화학 소자 기능층용 조성물, 전기 화학 소자용 기능층, 및 전기 화학 소자
JPWO2020137435A1 (ja) * 2018-12-28 2021-11-11 日本ゼオン株式会社 全固体二次電池電極用導電材ペースト
WO2020241322A1 (ja) * 2019-05-31 2020-12-03 日本ゼオン株式会社 全固体二次電池用スラリー組成物、固体電解質含有層および全固体二次電池、並びに全固体二次電池用スラリー組成物の製造方法
KR20220042169A (ko) * 2019-08-30 2022-04-04 후지필름 가부시키가이샤 무기 고체 전해질 함유 조성물, 전고체 이차 전지용 시트 및 전고체 이차 전지 및, 전고체 이차 전지용 시트 및 전고체 이차 전지의 제조 방법
CN112687959B (zh) * 2020-12-26 2021-12-10 维达力实业(深圳)有限公司 固态电解质的制备方法、固态电解质及固态电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166756A (ja) * 2003-11-28 2005-06-23 Nippon Zeon Co Ltd 電気化学素子用バインダー
WO2006080259A1 (ja) * 2005-01-27 2006-08-03 Kureha Corporation フッ化ビニリデン系コア/シェル型重合体およびその非水系電気化学素子における利用
JP2008537841A (ja) * 2005-04-07 2008-09-25 エルジー・ケム・リミテッド 優れた速度特性及び寿命特性を有するリチウム二次電池用バインダー
JP2008546135A (ja) * 2005-05-17 2008-12-18 エルジー・ケム・リミテッド 多重積層電気化学セルを含む電気化学素子用のバインダー
JP2009080999A (ja) * 2007-09-25 2009-04-16 Seiko Epson Corp 電気化学素子
JP2011076981A (ja) * 2009-10-01 2011-04-14 Nippon Zeon Co Ltd 二次電池用正極の製造方法、二次電池正極用スラリー及び二次電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4473967B2 (ja) * 1997-03-04 2010-06-02 日本ゼオン株式会社 電池用バインダー、電池用バインダー組成物、電池電極用スラリー、リチウム二次電池用電極およびリチウム二次電池
US8124277B2 (en) * 2006-08-29 2012-02-28 Unitika Ltd. Binder for electrode formation, slurry for electrode formation using the binder, electrode using the slurry, rechargeable battery using the electrode, and capacitor using the electrode
JP2009176484A (ja) 2008-01-22 2009-08-06 Idemitsu Kosan Co Ltd 全固体リチウム二次電池用正極及び負極、並びに全固体リチウム二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166756A (ja) * 2003-11-28 2005-06-23 Nippon Zeon Co Ltd 電気化学素子用バインダー
WO2006080259A1 (ja) * 2005-01-27 2006-08-03 Kureha Corporation フッ化ビニリデン系コア/シェル型重合体およびその非水系電気化学素子における利用
JP2008537841A (ja) * 2005-04-07 2008-09-25 エルジー・ケム・リミテッド 優れた速度特性及び寿命特性を有するリチウム二次電池用バインダー
JP2008546135A (ja) * 2005-05-17 2008-12-18 エルジー・ケム・リミテッド 多重積層電気化学セルを含む電気化学素子用のバインダー
JP2009080999A (ja) * 2007-09-25 2009-04-16 Seiko Epson Corp 電気化学素子
JP2011076981A (ja) * 2009-10-01 2011-04-14 Nippon Zeon Co Ltd 二次電池用正極の製造方法、二次電池正極用スラリー及び二次電池

Cited By (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11440986B2 (en) 2013-09-25 2022-09-13 Fujifilm Corporation Solid electrolyte composition, binder for all-solid-state secondary batteries, and electrode sheet for batteries and all-solid-state secondary battery each using said solid electrolyte
WO2015046313A1 (ja) * 2013-09-25 2015-04-02 富士フイルム株式会社 固体電解質組成物および全固体二次電池用のバインダー、ならびにこれらを用いた電池用電極シートおよび全固体二次電池
WO2015046314A1 (ja) * 2013-09-25 2015-04-02 富士フイルム株式会社 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池
JP2015088486A (ja) * 2013-09-25 2015-05-07 富士フイルム株式会社 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池
US10654963B2 (en) 2013-09-25 2020-05-19 Fujifilm Corporation Solid electrolyte composition, binder for all-solid-state secondary batteries, and electrode sheet for batteries and all-solid-state secondary battery each using said solid electrolyte composition
WO2015046312A1 (ja) * 2013-09-25 2015-04-02 富士フイルム株式会社 固体電解質組成物、電池用電極シート、電池用電極シートの製造方法、全固体二次電池、および全固体二次電池の製造方法
JP2015103451A (ja) * 2013-11-26 2015-06-04 三星電子株式会社Samsung Electronics Co.,Ltd. 全固体二次電池および全固体二次電池の製造方法
WO2015129704A1 (ja) * 2014-02-25 2015-09-03 富士フイルム株式会社 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびに電池用電極シートおよび全固体二次電池の製造方法
JP2015159067A (ja) * 2014-02-25 2015-09-03 富士フイルム株式会社 複合固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびに電池用電極シートおよび全固体二次電池の製造方法
US10062923B2 (en) 2014-02-25 2018-08-28 Fujifilm Corporation Solid electrolyte composition, electrode sheet for battery and all-solid secondary battery using the same, and method for manufacturing electrode sheet for battery and all-solid secondary battery
WO2015133424A1 (ja) * 2014-03-03 2015-09-11 日本ゼオン株式会社 二次電池用バインダー組成物
JPWO2015133424A1 (ja) * 2014-03-03 2017-04-06 日本ゼオン株式会社 二次電池用バインダー組成物
WO2016075946A1 (ja) * 2014-11-14 2016-05-19 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
JPWO2016075946A1 (ja) * 2014-11-14 2017-08-24 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
US10411292B2 (en) 2015-02-12 2019-09-10 Fujifilm Corporation All solid state secondary battery, solid electrolyte composition used therefor, electrode sheet for battery, and method for manufacturing electrode sheet for battery and all solid state secondary battery
KR101973304B1 (ko) * 2015-02-12 2019-04-26 후지필름 가부시키가이샤 전고체 이차 전지, 이것에 이용하는 고체 전해질 조성물 및 전지용 전극 시트와, 전지용 전극 시트 및 전고체 이차 전지의 제조 방법
JPWO2016129428A1 (ja) * 2015-02-12 2017-08-03 富士フイルム株式会社 全固体二次電池、これに用いる固体電解質組成物および電池用電極シートならびに電池用電極シートおよび全固体二次電池の製造方法
KR20170089910A (ko) * 2015-02-12 2017-08-04 후지필름 가부시키가이샤 전고체 이차 전지, 이것에 이용하는 고체 전해질 조성물 및 전지용 전극 시트와, 전지용 전극 시트 및 전고체 이차 전지의 제조 방법
JPWO2016136090A1 (ja) * 2015-02-27 2017-09-21 富士フイルム株式会社 固体電解質組成物、電極活物質及びその製造方法、電池用電極シート及びその製造方法、並びに全固体二次電池及びその製造方法
JP2016181471A (ja) * 2015-03-25 2016-10-13 日本ゼオン株式会社 全固体二次電池
US10797304B2 (en) 2015-03-25 2020-10-06 Zeon Corporation All-solid-state secondary battery
WO2016152262A1 (ja) * 2015-03-25 2016-09-29 日本ゼオン株式会社 全固体二次電池
JP2016181472A (ja) * 2015-03-25 2016-10-13 日本ゼオン株式会社 全固体二次電池
JP2016212991A (ja) * 2015-04-30 2016-12-15 富士フイルム株式会社 全固体二次電池、全固体二次電池用電極シート、および全固体二次電池の製造方法
JP2016212990A (ja) * 2015-04-30 2016-12-15 富士フイルム株式会社 全固体二次電池、電極活物質層用組成物および全固体二次電池用電極シートならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法
KR102587752B1 (ko) * 2015-08-27 2023-10-10 니폰 제온 가부시키가이샤 전고체 전지용 바인더 조성물
KR20180041091A (ko) * 2015-08-27 2018-04-23 니폰 제온 가부시키가이샤 전고체 전지용 바인더 조성물
JPWO2017047379A1 (ja) * 2015-09-16 2018-06-28 日本ゼオン株式会社 全固体二次電池用バインダーおよび全固体二次電池
JP7017081B2 (ja) 2015-09-16 2022-02-08 日本ゼオン株式会社 全固体二次電池用バインダー、全固体二次電池用バインダーの製造方法および全固体二次電池
US10797343B2 (en) 2015-09-16 2020-10-06 Zeon Corporation Binder for all-solid-state secondary batteries, and all-solid-state secondary battery
WO2017047379A1 (ja) * 2015-09-16 2017-03-23 日本ゼオン株式会社 全固体二次電池用バインダーおよび全固体二次電池
CN108370061B (zh) * 2015-12-11 2021-12-31 富士胶片株式会社 固体电解质组合物、粘合剂粒子、全固态二次电池、片、电极片及它们的制造方法
JPWO2017099247A1 (ja) * 2015-12-11 2018-08-30 富士フイルム株式会社 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シート及びその製造方法、並びに、全固体二次電池及びその製造方法
KR20200051849A (ko) 2015-12-11 2020-05-13 후지필름 가부시키가이샤 고체 전해질 조성물, 바인더 입자, 전고체 이차 전지용 시트, 전고체 이차 전지용 전극 시트 및 전고체 이차 전지와, 이들의 제조 방법
JPWO2017099248A1 (ja) * 2015-12-11 2018-10-18 富士フイルム株式会社 固体電解質組成物、バインダー粒子、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池、並びに、これらの製造方法
CN108370061A (zh) * 2015-12-11 2018-08-03 富士胶片株式会社 固体电解质组合物、粘合剂粒子、全固态二次电池用片、全固态二次电池用电极片及全固态二次电池以及它们的制造方法
US10892515B2 (en) 2015-12-11 2021-01-12 Fujifilm Corporation Solid electrolyte composition, binder particles, sheet for all-solid state secondary battery, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, and methods for manufacturing same
US11870031B2 (en) 2015-12-11 2024-01-09 Fujifilm Corporation Solid electrolyte composition, sheet for all-solid state secondary battery, electrode sheet for all-solid state secondary battery and method for manufacturing same, all-solid state secondary battery and method for manufacturing same
WO2017099247A1 (ja) 2015-12-11 2017-06-15 富士フイルム株式会社 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シート及びその製造方法、並びに、全固体二次電池及びその製造方法
US11456482B2 (en) 2015-12-11 2022-09-27 Fujifilm Corporation Solid electrolyte composition, binder particles, sheet for all-solid state secondary battery, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, and methods for manufacturing same
WO2017099248A1 (ja) * 2015-12-11 2017-06-15 富士フイルム株式会社 固体電解質組成物、バインダー粒子、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池、並びに、これらの製造方法
KR20180083945A (ko) 2015-12-11 2018-07-23 후지필름 가부시키가이샤 고체 전해질 조성물, 전고체 이차 전지용 시트, 전고체 이차 전지용 전극 시트 및 그 제조 방법과, 전고체 이차 전지 및 그 제조 방법
JPWO2017110901A1 (ja) * 2015-12-21 2018-10-11 株式会社大阪ソーダ 電池電極用バインダー、電極、及び電池
WO2017110901A1 (ja) * 2015-12-21 2017-06-29 株式会社大阪ソーダ 電池電極用バインダー、電極、及び電池
KR20180093092A (ko) 2016-01-27 2018-08-20 후지필름 가부시키가이샤 고체 전해질 조성물, 전고체 이차 전지용 시트, 전고체 이차 전지용 전극 시트 및 전고체 이차 전지와, 전고체 이차 전지용 시트, 전고체 이차 전지용 전극 시트 및 전고체 이차 전지의 제조 방법
US10854914B2 (en) 2016-01-27 2020-12-01 Fujifilm Corporation Solid electrolyte composition, sheet for all-solid state secondary battery, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, and methods for manufacturing sheet for all-solid state secondary battery, electrode sheet for all-solid state secondary battery, and all-solid state secondary battery
JPWO2017141735A1 (ja) * 2016-02-19 2018-11-22 富士フイルム株式会社 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、全固体二次電池用電極シートおよび全固体二次電池の製造方法
WO2017141735A1 (ja) * 2016-02-19 2017-08-24 富士フイルム株式会社 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、全固体二次電池用電極シートおよび全固体二次電池の製造方法
US10818967B2 (en) 2016-02-19 2020-10-27 Fujifilm Corporation Solid electrolyte composition, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, and methods for manufacturing electrode sheet for all-solid state secondary battery and all-solid state secondary battery
KR102126144B1 (ko) 2016-02-19 2020-06-23 후지필름 가부시키가이샤 고체 전해질 조성물, 전고체 이차 전지용 전극 시트 및 전고체 이차 전지와, 전고체 이차 전지용 전극 시트 및 전고체 이차 전지의 제조 방법
KR20180093091A (ko) * 2016-02-19 2018-08-20 후지필름 가부시키가이샤 고체 전해질 조성물, 전고체 이차 전지용 전극 시트 및 전고체 이차 전지와, 전고체 이차 전지용 전극 시트 및 전고체 이차 전지의 제조 방법
US10862128B2 (en) 2016-07-12 2020-12-08 Zeon Corporation Binder composition for solid electrolyte battery
JP7003917B2 (ja) 2016-07-12 2022-02-04 日本ゼオン株式会社 固体電解質電池用バインダー組成物
CN109314243A (zh) * 2016-07-12 2019-02-05 日本瑞翁株式会社 固体电解质电池用粘结剂组合物
WO2018012380A1 (ja) * 2016-07-12 2018-01-18 日本ゼオン株式会社 固体電解質電池用バインダー組成物
KR20190029520A (ko) * 2016-07-12 2019-03-20 니폰 제온 가부시키가이샤 고체 전해질 전지용 바인더 조성물
JPWO2018012380A1 (ja) * 2016-07-12 2019-05-09 日本ゼオン株式会社 固体電解質電池用バインダー組成物
KR102369486B1 (ko) 2016-07-12 2022-03-02 니폰 제온 가부시키가이샤 고체 전해질 전지용 바인더 조성물
CN109314243B (zh) * 2016-07-12 2022-08-05 日本瑞翁株式会社 固体电解质电池用粘结剂组合物
US11069895B2 (en) 2017-03-16 2021-07-20 Lg Chem, Ltd. Electrode assembly for solid state battery and method for manufacturing the same
WO2018169359A1 (ko) * 2017-03-16 2018-09-20 주식회사 엘지화학 전고체 전지용 전극 조립체 및 이를 제조하는 방법
JP6516076B1 (ja) * 2017-08-23 2019-05-22 宇部興産株式会社 電極合剤ペースト
JPWO2019054455A1 (ja) * 2017-09-15 2019-12-12 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
WO2019054455A1 (ja) 2017-09-15 2019-03-21 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
KR20200039741A (ko) 2017-09-15 2020-04-16 후지필름 가부시키가이샤 고체 전해질 조성물, 고체 전해질 함유 시트와 전고체 이차 전지, 및, 고체 전해질 함유 시트와 전고체 이차 전지의 제조 방법
JPWO2019074074A1 (ja) * 2017-10-12 2020-10-22 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
JPWO2019074076A1 (ja) * 2017-10-12 2020-10-22 富士フイルム株式会社 全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用電極シート及び全固体二次電池の製造方法
US11552330B2 (en) 2017-10-12 2023-01-10 Fujifilm Corporation Electrode sheet for all-solid state secondary battery, all-solid state secondary battery, method of manufacturing electrode sheet for all-solid state secondary battery, and method of manufacturing all-solid state secondary battery
WO2019074074A1 (ja) 2017-10-12 2019-04-18 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
CN111194492A (zh) * 2017-10-12 2020-05-22 富士胶片株式会社 固体电解质组合物、含固体电解质的片材及全固态二次电池、以及含固体电解质的片材及全固态二次电池的制造方法
WO2019074076A1 (ja) * 2017-10-12 2019-04-18 富士フイルム株式会社 全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用電極シート及び全固体二次電池の製造方法
CN111194492B (zh) * 2017-10-12 2023-11-14 富士胶片株式会社 固体电解质组合物以及含固体电解质片材、全固态二次电池和两者的制造方法
EP3712903A4 (en) * 2017-11-17 2020-12-30 FUJIFILM Corporation SOLID ELECTROLYTE COMPOSITION, SOLID ELECTROLYTE-CONTAINING LAYER, SOLID STATE SECONDARY BATTERY, METHOD OF MANUFACTURING A SOLID ELECTROLYTE LAYER, AND SOLID STATE SECONDARY BATTERY
US11552331B2 (en) 2017-11-17 2023-01-10 Fujifilm Corporation Solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, method of manufacturing solid electrolyte-containing sheet, and method of manufacturing all-solid state secondary
US11563235B2 (en) 2017-11-17 2023-01-24 Fujifilm Corporation Solid electrolyte composition, sheet for all-solid state secondary battery, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, method of manufacturing sheet for all-solid state secondary battery, and method of manufacturing all-solid state secondary battery
CN111213213A (zh) * 2017-11-17 2020-05-29 富士胶片株式会社 固体电解质组合物、含固体电解质的片材及全固态二次电池、以及含固体电解质的片材及全固态二次电池的制造方法
CN111213213B (zh) * 2017-11-17 2021-11-12 富士胶片株式会社 固体电解质组合物、含固体电解质的片材及全固态二次电池、以及含固体电解质的片材及全固态二次电池的制造方法
CN111566858B (zh) * 2017-12-26 2023-11-21 株式会社大阪曹達 电极用粘合剂、电极以及蓄电器件
CN111566858A (zh) * 2017-12-26 2020-08-21 株式会社大阪曹達 电极用粘合剂、电极以及蓄电器件
WO2019131771A1 (ja) * 2017-12-26 2019-07-04 株式会社大阪ソーダ 電極用バインダー、電極、及び蓄電デバイス
JP2019133923A (ja) * 2018-01-31 2019-08-08 パナソニックIpマネジメント株式会社 電極合剤、電池及び電極の製造方法
CN110098408A (zh) * 2018-01-31 2019-08-06 松下知识产权经营株式会社 电极合剂、电池、以及电极的制造方法
JP7117568B2 (ja) 2018-01-31 2022-08-15 パナソニックIpマネジメント株式会社 電極合剤、電池及び電極の製造方法
JPWO2020004332A1 (ja) * 2018-06-29 2021-08-05 日本ゼオン株式会社 電気化学素子電極用バインダー組成物、電気化学素子電極用スラリー組成物、電気化学素子用電極、および電気化学素子
JP7327398B2 (ja) 2018-06-29 2023-08-16 日本ゼオン株式会社 電気化学素子電極用バインダー組成物、電気化学素子電極用スラリー組成物、電気化学素子用電極、および電気化学素子
WO2020004332A1 (ja) * 2018-06-29 2020-01-02 日本ゼオン株式会社 電気化学素子電極用バインダー組成物、電気化学素子電極用スラリー組成物、電気化学素子用電極、および電気化学素子
CN112640161A (zh) * 2018-09-28 2021-04-09 富士胶片株式会社 电极用组合物、全固态二次电池用电极片及全固态二次电池、以及全固态二次电池用电极片或全固态二次电池的制造方法
WO2020067003A1 (ja) * 2018-09-28 2020-04-02 富士フイルム株式会社 電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用電極シート若しくは全固体二次電池の製造方法
WO2020075749A1 (ja) 2018-10-11 2020-04-16 富士フイルム株式会社 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池
KR20210058946A (ko) 2018-10-11 2021-05-24 후지필름 가부시키가이샤 고체 전해질 조성물, 전고체 이차 전지용 시트, 전고체 이차 전지용 전극 시트 및 전고체 이차 전지
US12034115B2 (en) 2018-10-11 2024-07-09 Fujifilm Corporation Solid electrolyte composition, sheet for all-solid state secondary battery, electrode sheet for all-solid state secondary battery, and all-solid state secondary battery
JPWO2020110994A1 (ja) * 2018-11-26 2021-12-16 株式会社大阪ソーダ 複合固体電解質、および複合固体電解質二次電池
WO2020110994A1 (ja) * 2018-11-26 2020-06-04 株式会社大阪ソーダ 複合固体電解質、および複合固体電解質二次電池
KR20220041887A (ko) 2019-08-30 2022-04-01 후지필름 가부시키가이샤 무기 고체 전해질 함유 조성물, 전고체 이차 전지용 시트 및 전고체 이차 전지, 전고체 이차 전지용 시트 및 전고체 이차 전지의 제조 방법, 및, 복합 폴리머 입자
WO2021085044A1 (ja) * 2019-10-31 2021-05-06 日本ゼオン株式会社 二次電池用バインダー組成物、二次電池用スラリー組成物、二次電池用機能層および二次電池
WO2021085141A1 (ja) * 2019-10-31 2021-05-06 日本ゼオン株式会社 全固体二次電池用バインダー組成物、全固体二次電池用スラリー組成物、固体電解質含有層および全固体二次電池
KR20230019084A (ko) 2020-05-29 2023-02-07 니폰 제온 가부시키가이샤 전고체 이차 전지용 슬러리 조성물, 고체 전해질 함유층 및 전고체 이차 전지
WO2022230908A1 (ja) * 2021-04-28 2022-11-03 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用接着層およびその製造方法、非水系二次電池用積層体およびその製造方法、ならびに、非水系二次電池
WO2023282333A1 (ja) * 2021-07-07 2023-01-12 富士フイルム株式会社 電極組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用電極シート及び全固体二次電池の製造方法

Also Published As

Publication number Publication date
US20140127579A1 (en) 2014-05-08
JPWO2012173089A1 (ja) 2015-02-23
JP5987828B2 (ja) 2016-09-07
US9276263B2 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
JP5987828B2 (ja) 全固体二次電池
JP5652344B2 (ja) 全固体二次電池
CN107210482B (zh) 全固体二次电池
JP6384476B2 (ja) リチウムイオン二次電池用バインダー組成物、リチウムイオン二次電池用スラリー組成物、リチウムイオン二次電池用電極、リチウムイオン二次電池、並びにリチウムイオン二次電池用バインダー組成物の製造方法
JP5644851B2 (ja) 全固体二次電池及び全固体二次電池の製造方法
KR101819067B1 (ko) 이차 전지용 정극 및 그 제조 방법, 슬러리 조성물, 그리고 이차 전지
JP6048070B2 (ja) リチウムイオン二次電池負極用スラリー組成物及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
JP7017081B2 (ja) 全固体二次電池用バインダー、全固体二次電池用バインダーの製造方法および全固体二次電池
KR102340874B1 (ko) 고체 전해질 전지용 바인더 조성물 및 고체 전해질 전지용 슬러리 조성물
JP6287862B2 (ja) 二次電池セパレーターの多孔膜用スラリー、二次電池セパレーター用多孔膜及びその製造方法、二次電池用セパレーター並びに二次電池
KR20180052558A (ko) 전고체 2차 전지
JP6459691B2 (ja) 全固体二次電池
KR102425398B1 (ko) 전고체 전지용 바인더 조성물, 전고체 전지용 슬러리 조성물, 전고체 전지용 전극, 및 전고체 전지
KR102384939B1 (ko) 집전체 코트용 접착제 도공액
KR20160013867A (ko) 전기 화학 소자 전극용 바인더, 전기 화학 소자 전극용 입자 복합체, 전기 화학 소자 전극, 전기 화학 소자 및 전기 화학 소자 전극의 제조 방법
WO2019065416A1 (ja) 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
JPWO2015174036A1 (ja) 二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極およびその製造方法、並びに、二次電池
JP7409311B2 (ja) 全固体二次電池用バインダー組成物、全固体二次電池電極合材層用スラリー組成物、全固体二次電池固体電解質層用スラリー組成物、全固体二次電池用電極、全固体二次電池用固体電解質層、および全固体二次電池
JP2014165108A (ja) リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極の製造方法、リチウムイオン二次電池用正極、及び、リチウムイオン二次電池
JP2016181472A (ja) 全固体二次電池
WO2014103791A1 (ja) 二次電池セパレーターの多孔膜用スラリー、二次電池セパレーター用多孔膜及びその製造方法、二次電池用セパレーター並びに二次電池
WO2020137435A1 (ja) 全固体二次電池電極用導電材ペースト
JPWO2020137435A5 (ja)
KR20220161300A (ko) 전기 화학 소자 기능층용 조성물, 전기 화학 소자용 적층체, 및 전기 화학 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800600

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013520546

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14126718

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12800600

Country of ref document: EP

Kind code of ref document: A1