WO2016152262A1 - 全固体二次電池 - Google Patents

全固体二次電池 Download PDF

Info

Publication number
WO2016152262A1
WO2016152262A1 PCT/JP2016/053185 JP2016053185W WO2016152262A1 WO 2016152262 A1 WO2016152262 A1 WO 2016152262A1 JP 2016053185 W JP2016053185 W JP 2016053185W WO 2016152262 A1 WO2016152262 A1 WO 2016152262A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
active material
solid
electrode active
secondary battery
Prior art date
Application number
PCT/JP2016/053185
Other languages
English (en)
French (fr)
Inventor
耕一郎 前田
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015062298A external-priority patent/JP2016181472A/ja
Priority claimed from JP2015062297A external-priority patent/JP6459691B2/ja
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to PL16768165T priority Critical patent/PL3276734T3/pl
Priority to CN201680008768.0A priority patent/CN107210482B/zh
Priority to EP16768165.9A priority patent/EP3276734B1/en
Priority to KR1020177021927A priority patent/KR20170129691A/ko
Priority to KR1020237006257A priority patent/KR20230034420A/ko
Priority to US15/556,981 priority patent/US10797304B2/en
Publication of WO2016152262A1 publication Critical patent/WO2016152262A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4228Leak testing of cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an all solid state secondary battery such as an all solid state lithium ion secondary battery.
  • secondary batteries such as lithium-ion batteries have been used in various applications such as small-sized electric power storage devices for home use, electric motorcycles, electric vehicles, and hybrid electric vehicles in addition to portable terminals such as portable information terminals and portable electronic devices.
  • Demand is increasing.
  • Patent Document 1 a polymer solid electrolyte using polyethylene oxide or the like is known (Patent Document 1), but the polymer solid electrolyte is a combustible material.
  • Patent Document 2 an inorganic solid electrolyte made of an inorganic material has also been proposed (Patent Document 2, etc.).
  • an inorganic solid electrolyte is a solid electrolyte made of an inorganic substance and is a nonflammable substance, and has a very high safety compared to a commonly used organic solvent electrolyte.
  • Patent Document 2 development of an all-solid secondary battery having high safety using an inorganic solid electrolyte is progressing.
  • the all solid state secondary battery has an inorganic solid electrolyte layer as an electrolyte layer between a positive electrode and a negative electrode.
  • Patent Document 3 and Patent Document 4 all the solid electrolyte layers formed by a method (coating method) in which a slurry composition for a solid electrolyte layer containing solid electrolyte particles and a solvent is applied on a positive electrode or a negative electrode and dried.
  • a solid lithium secondary battery is described.
  • an electrode or an electrolyte layer is formed by a coating method, it is necessary that the viscosity and fluidity of a slurry composition containing an active material and an electrolyte are within the range of conditions that can be applied.
  • additives such as a binder other than the active material and the electrolyte are important for the electrode and the electrolyte layer formed by applying the slurry composition and then drying the solvent in order to develop the characteristics as a battery. Therefore, in patent document 5, it is proposed to use an acrylate polymer for a binder.
  • Patent Document 5 proposes an all-solid secondary battery with good battery characteristics, but a battery with higher characteristics is demanded.
  • An object of the present invention is to provide an all-solid secondary battery having good battery characteristics.
  • the present inventor has found that the above object can be achieved by using a binder containing a particulate polymer having a specific particle diameter, and has completed the present invention.
  • An all-solid secondary battery having a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and a solid electrolyte layer between these positive and negative electrode active material layers, wherein the thickness of the solid electrolyte layer
  • the solid electrolyte layer contains an all-solid secondary battery containing a binder containing a particulate polymer having an average particle size of 0.1 to 1 ⁇ m
  • the all-solid-state secondary battery according to (1) obtained by using a binder composition in which the particulate polymer is dispersed in an organic solvent
  • the solid electrolyte layer includes solid electrolyte particles, and the solid electrolyte particles have a particle diameter of 10 to 40 wt%, a particle diameter of 1.0 ⁇ m or more, and 20 ⁇ m.
  • a solid electrolyte battery with good charge / discharge performance can be obtained. This is because the use of a binder having a specific particle diameter increases the number of contact points and the contact area between the solid electrolyte particles, thereby providing an all-solid-state secondary battery having a low internal resistance. I think that the.
  • the all solid state secondary battery of the present invention includes a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and a solid electrolyte layer between these positive and negative electrode active material layers.
  • the thickness of the solid electrolyte layer is 2 to 20 ⁇ m, and the solid electrolyte layer contains a binder containing a particulate polymer having an average particle diameter of 0.1 to 1 ⁇ m.
  • the positive electrode has a positive electrode active material layer on the current collector, and the negative electrode has a negative electrode active material layer on the current collector.
  • (1) the solid electrolyte layer, (2) the positive electrode active material layer, and (3) the negative electrode active material layer will be described in this order.
  • the solid electrolyte layer is formed by applying and drying a slurry composition for a solid electrolyte layer containing solid electrolyte particles and a binder on a positive electrode active material layer or a negative electrode active material layer described later.
  • the binder includes a particulate polymer having an average particle size of 0.1 to 1 ⁇ m.
  • the slurry composition for a solid electrolyte layer is produced by mixing solid electrolyte particles, a binder, an organic solvent, and other components added as necessary.
  • Solid electrolyte particles The solid electrolyte is in the form of particles because it has been subjected to a pulverization process, but is not a perfect sphere but an indefinite shape.
  • the size of the fine particles is measured by a method of measuring the scattered light by irradiating the laser light to the particles.
  • the particle diameter is a value assuming that the shape of one particle is spherical.
  • the proportion of particles having a corresponding particle size can be expressed as a particle size distribution.
  • the solid electrolyte particles forming the solid electrolyte layer are often shown as an average particle diameter as measured by this method.
  • the average particle diameter of the solid electrolyte particles is preferably from 0.3 to 10 ⁇ m, more preferably from 0.5 to 10 ⁇ m, from the viewpoint of obtaining a slurry composition for a solid electrolyte layer having good dispersibility and coating properties. More preferably, it is 0.5 to 1.3 ⁇ m.
  • the average particle diameter of the solid electrolyte particles is a number average particle diameter that can be obtained by measuring the particle size distribution by laser diffraction.
  • solid electrolyte particles including two kinds of particles having different particle diameter ranges may be used as the solid electrolyte particles.
  • solid electrolyte particles having a particle size of 0.1 ⁇ m or more and less than 1.0 ⁇ m are combined in a proportion of 10 to 40 wt%
  • solid electrolyte particles having a particle size of 1.0 ⁇ m or more and less than 20 ⁇ m are combined in a proportion of 90 to 60 wt%. It is preferable.
  • the particle size distribution of the solid electrolyte particles may be unimodal or multimodal.
  • the solid electrolyte particles having a multimodal particle size distribution are 10 to 40 wt% of particles having a particle diameter of 0.1 ⁇ m or more and less than 1.0 ⁇ m, Particles having a size of 1.0 ⁇ m or more and less than 20 ⁇ m may be 90 to 60 wt%.
  • the solid electrolyte particles are not particularly limited as long as they have lithium ion conductivity, but preferably contain a crystalline inorganic lithium ion conductor or an amorphous inorganic lithium ion conductor.
  • Examples of the crystalline inorganic lithium ion conductor include Li 3 N, LIICON (Li 14 Zn (GeO 4 ) 4 ), perovskite type Li 0.5 La 0.5 TiO 3 , LIPON (Li 3 + y PO 4-x N x ), And Thio-LISICON (Li 3.25 Ge 0.25 P 0.75 S 4 ).
  • the amorphous inorganic lithium ion conductor is not particularly limited as long as it contains S (sulfur atom) and has ion conductivity (sulfide solid electrolyte material).
  • S sulfur atom
  • Li 2 S and a group 13 to group 15 element sulfide are used as a sulfide solid electrolyte material to be used.
  • What uses the raw material composition containing this can be mentioned.
  • Examples of a method for synthesizing a sulfide solid electrolyte material using such a raw material composition include an amorphization method.
  • the amorphization method include a mechanical milling method and a melt quenching method, and among them, the mechanical milling method is preferable. This is because according to the mechanical milling method, processing at room temperature is possible, and the manufacturing process can be simplified.
  • Examples of the Group 13 to Group 15 elements include Al, Si, Ge, P, As, and Sb.
  • Specific examples of the sulfides of elements belonging to Group 13 to Group 15 include Al 2 S 3 , SiS 2 , GeS 2 , P 2 S 3 , P 2 S 5 , As 2 S 3 , and Sb 2. S 3 etc. can be mentioned.
  • a sulfide solid electrolyte material using a raw material composition containing Li 2 S and a sulfide of an element belonging to Group 13 to Group 15 is Li 2 SP—P 2 S 5.
  • the material is preferably a Li 2 S—SiS 2 material, a Li 2 S—GeS 2 material or a Li 2 S—Al 2 S 3 material, and more preferably a Li 2 S—P 2 S 5 material. This is because Li ion conductivity is excellent.
  • the sulfide solid electrolyte material in the present invention preferably has bridging sulfur. It is because ion conductivity becomes high by having bridge
  • the molar fraction of Li 2 S in the Li 2 S—P 2 S 5 material or the Li 2 S—Al 2 S 3 material is, for example, from the viewpoint of obtaining a sulfide solid electrolyte material having bridging sulfur more reliably. It is preferably in the range of 50 to 74%, more preferably in the range of 60 to 74%.
  • the sulfide solid electrolyte material in the present invention may be sulfide glass, or may be crystallized sulfide glass obtained by heat-treating the sulfide glass.
  • the sulfide glass can be obtained, for example, by the above-described amorphization method. Crystallized sulfide glass can be obtained, for example, by heat-treating sulfide glass.
  • the sulfide solid electrolyte material is preferably a crystallized sulfide glass represented by Li 7 P 3 S 11 .
  • a sulfide glass is synthesized by mixing Li 2 S and P 2 S 5 at a molar ratio of 70:30 and amorphizing with a ball mill.
  • Li 7 P 3 S 11 can be synthesized by heat-treating the obtained sulfide glass at 150 ° C. to 360 ° C.
  • the binder is for binding solid electrolyte particles to form a solid electrolyte layer.
  • a binder it is known from Patent Document 5 that an acrylate polymer is suitable.
  • an acrylate-based polymer it is preferable to use an acrylate-based polymer as a binder from the viewpoint that the withstand voltage can be increased and the energy density of the all-solid-state secondary battery can be increased, but there is a demand for higher performance.
  • the acrylate polymer can be obtained by a solution polymerization method or an emulsion polymerization method.
  • the polymer usually obtained is a linear polymer and is soluble in an organic solvent. When such a polymer is used as a binder, it is dissolved in an organic solvent.
  • the binder uses a linear polymer in order to obtain a high binding force.
  • the binder completely covers the surface of the solid electrolyte particles, the ionic conductivity at the contact point is lowered. Therefore, in the present invention, a binder containing a particulate polymer is used.
  • an acrylate polymer is preferable.
  • An acrylate-based polymer is a polymer containing an acrylate or methacrylate (hereinafter sometimes abbreviated as “(meth) acrylate”) and a repeating unit (polymerized unit) obtained by polymerizing these derivatives, and (meth) acrylate.
  • a copolymer with a monomer a monomer unit derived from (a) a homopolymer of (meth) acrylate, a copolymer of (meth) acrylate, and other monomers copolymerizable with (meth) acrylate and the (meth) acrylate.
  • (meth) acrylates include acrylic acid such as methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, and benzyl acrylate.
  • Alkyl esters acrylic acid alkoxyalkyl esters such as 2-methoxyethyl acrylate and 2-ethoxyethyl acrylate; acrylics such as 2- (perfluorobutyl) ethyl acrylate and 2- (perfluoropentyl) ethyl acrylate 2- (perfluoroalkyl) ethyl acid; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, and t-butyl methacrylate, 2-ethylhexyl methacrylate Methacrylic acid alkyl esters such as methacrylic acid, lauryl methacrylate, tridecyl methacrylate, stearyl methacrylate and benzyl methacrylate; 2-methacrylic acid such as 2- (perfluorobutyl) ethyl methacrylate
  • acrylic acid alkyl esters such as -2-ethylhexyl and benzyl acrylate
  • acrylic acid alkoxyalkyl esters such as 2-methoxyethyl acrylate and 2-ethoxyethyl acrylate.
  • the content ratio of the monomer unit derived from (meth) acrylate in the acrylate polymer is usually 40% by mass or more, preferably 50% by mass or more, more preferably 60% by mass or more.
  • the upper limit of the content ratio of the monomer unit derived from (meth) acrylate in the acrylate polymer is usually 100% by mass or less, preferably 95% by mass or less.
  • the acrylate polymer can be a copolymer of (meth) acrylate and a monomer copolymerizable with the (meth) acrylate.
  • the copolymerizable monomer include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, and fumaric acid; two or more carbon-carbons such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, and trimethylolpropane triacrylate.
  • Carboxylic acid esters having a double bond Carboxylic acid esters having a double bond; styrene monomers such as styrene, vinyltoluene, t-butylstyrene, vinylbenzoic acid, methyl vinylbenzoate, vinylnaphthalene, hydroxymethylstyrene, ⁇ -methylstyrene, divinylbenzene Amide monomers such as acrylamide, methacrylamide, N-methylolacrylamide, and acrylamide-2-methylpropanesulfonic acid; ⁇ , ⁇ -unsaturated nitrile compounds such as acrylonitrile and methacrylonitrile Olefins such as ethylene and propylene; Diene monomers such as butadiene and isoprene; Vinyl esters such as vinyl acetate, vinyl propionate, vinyl butyrate and vinyl benzoate; Vinyl ethers such as methyl vinyl ether, ethyl vinyl ether and butyl
  • the content of the copolymerizable monomer unit in the acrylate polymer is usually 40% by mass or less, preferably 30% by mass or less, and more preferably 20% by mass or less.
  • the particulate polymer of the present invention is a polymer that is particulate in a state of being dispersed in an organic solvent and that is also particulate when dried.
  • the particulate polymer those having a gel structure are preferable.
  • An indicator of having a gel structure is the gel fraction.
  • the gel fraction is a value indicating a weight ratio with respect to the whole component insoluble in the organic solvent because the polymer chains are bonded or entangled.
  • the gel structure is defined as a particulate polymer.
  • the gel fraction is preferably 50 to 95%, more preferably 70 to 85%.
  • a method for obtaining a particulate polymer there is a method in which a monomer is polymerized together with a crosslinking agent when the polymer is subjected to emulsion polymerization or dispersion polymerization in an aqueous or solvent system. Moreover, in order to obtain a particulate polymer, it is preferable to copolymerize a crosslinking agent when polymerizing.
  • a method of generally copolymerizing a compound capable of functioning as a crosslinking agent or a monomer capable of forming a self-crosslinking structure at the time of polymerizing the polymer In order to adjust the gel fraction to a predetermined range, it is preferable to copolymerize a crosslinking agent during polymerization.
  • crosslinking agent examples include monomers containing a plurality of double bonds.
  • examples thereof include polyfunctional acrylate compounds such as polyethylene glycol diacrylate, polypropylene glycol diacrylate, trimethylolpropane trimethacrylate, pentaerythritol tetraacrylate, and ethylene glycol dimethacrylate, and polyfunctional aromatic compounds such as divinylbenzene. Preferred are ethylene glycol dimethacrylate and divinylbenzene.
  • the amount of the crosslinking agent to be used varies depending on the type, but is preferably 0.01 to 8 parts by mass, more preferably 0.01 to 5 parts by mass, and still more preferably 0.8 to 100 parts by mass of the total amount of monomers. 05 to 5 parts by mass, particularly preferably 0.05 to 1 part by mass.
  • the amount of the crosslinking agent is in the above range, the amount of the crosslinking agent added is excessively small, so when dried on the substrate, it spreads in a hemispherical shape on the surface of the substrate, and the area of the adhered portion is the particle size. It is possible to suppress the phenomenon that it spreads 10 times or more and becomes in the same state as the case where the surface of the solid electrolyte particles is coated, and the amount of the crosslinking agent added is excessively large, so that the adhesion of the polymer is reduced. The phenomenon that the function as a binder is not exhibited can be suppressed.
  • Examples of monomers capable of forming a self-crosslinking structure include diene monomers such as butadiene and isoprene, and unsaturated nitrile compounds such as acrylonitrile. A method of copolymerizing acrylonitrile is preferable.
  • the average particle diameter of the particulate polymer is 0.1 to 1 ⁇ m, preferably 0.15 to 0.70 ⁇ m.
  • the average particle diameter of the particulate polymer is in the above range, a solid electrolyte battery having good charge / discharge performance can be obtained. This is presumably because the use of a particulate polymer having an average particle diameter in the above range increases the number of contact points and the contact area between the solid electrolyte particles, resulting in a decrease in internal resistance.
  • the average particle size of the particulate polymer is a number average particle size that can be determined by measuring the particle size distribution by laser diffraction.
  • the binder used in the present invention may contain a binder component other than the particulate polymer.
  • the content of the particulate polymer in the binder used in the present invention is preferably 10 to 90 wt%, more preferably 20 to 80 wt%, from the viewpoint of obtaining a solid electrolyte battery with good charge / discharge performance.
  • a particulate polymer having the gel structure and a polymer having no gel structure may be used in combination.
  • a compound that can function as a crosslinking agent or a monomer that can form a self-crosslinking structure is not copolymerized at the time of polymerization of the polymer, that is, Those having no gel structure can be used.
  • any method of polymerization in a dispersion system such as a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used.
  • the polymerization method any method such as ionic polymerization, radical polymerization, and living radical polymerization can be used.
  • the polymerization initiator used for the polymerization include lauroyl peroxide, diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, t-butyl peroxypivalate, 3,3,5-trimethylhexanoyl peroxide, and the like.
  • Organic peroxides, azo compounds such as ⁇ , ⁇ ′-azobisisobutyronitrile, ammonium persulfate, potassium persulfate, and the like.
  • the glass transition temperature (Tg) of the binder is preferably ⁇ 50 to 25 ° C., more preferably ⁇ 45 from the viewpoint of obtaining an all-solid secondary battery having excellent strength and flexibility and high output characteristics. -15 ° C, particularly preferably -40-5 ° C.
  • the glass transition temperature of the binder can be adjusted by combining various monomers.
  • the amount is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 7 parts by mass, and particularly preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the solid electrolyte particles.
  • organic solvent examples include cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as toluene and xylene; ethers such as dimethyl ether, methyl ethyl ether, diethyl ether, and cyclopentyl methyl ether; ethyl acetate and acetic acid And esters such as butyl.
  • cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane
  • aromatic hydrocarbons such as toluene and xylene
  • ethers such as dimethyl ether, methyl ethyl ether, diethyl ether, and cyclopentyl methyl ether
  • ethyl acetate and acetic acid And esters such as butyl.
  • the content of the organic solvent in the solid electrolyte layer slurry composition is determined from the viewpoint of obtaining good coating properties while maintaining the dispersibility of the solid electrolyte particles in the solid electrolyte layer slurry composition.
  • the amount is preferably 10 to 700 parts by mass, and more preferably 30 to 500 parts by mass with respect to 100 parts by mass of the particles.
  • the slurry composition for a solid electrolyte layer may contain, in addition to the above components, components having functions of a dispersant, a leveling agent, and an antifoaming agent as other components added as necessary. These components are not particularly limited as long as they do not affect the battery reaction.
  • Dispersant examples include an anionic compound, a cationic compound, a nonionic compound, and a polymer compound.
  • a dispersing agent is selected according to the solid electrolyte particle to be used.
  • the content of the dispersant in the slurry composition for the solid electrolyte layer is preferably within a range that does not affect the battery characteristics. Specifically, the content is 10 parts by mass or less with respect to 100 parts by mass of the solid electrolyte particles.
  • Leveling agent examples include surfactants such as alkyl surfactants, silicone surfactants, fluorine surfactants, and metal surfactants. By mixing the surfactant, it is possible to prevent the repelling that occurs when the slurry composition for the solid electrolyte layer is applied to the surface of the positive electrode active material layer or the negative electrode active material layer, which will be described later. Can be improved.
  • the content of the leveling agent in the solid electrolyte layer slurry composition is preferably in a range that does not affect the battery characteristics, and specifically, is 10 parts by mass or less with respect to 100 parts by mass of the solid electrolyte particles.
  • Examples of the antifoaming agent include mineral oil antifoaming agents, silicone antifoaming agents, and polymer antifoaming agents.
  • An antifoaming agent is selected according to the solid electrolyte particle to be used.
  • the content of the antifoaming agent in the solid electrolyte layer slurry composition is preferably in a range that does not affect the battery characteristics, and specifically, 10 parts by mass or less with respect to 100 parts by mass of the solid electrolyte particles.
  • the positive electrode active material layer is formed by applying a slurry composition for a positive electrode active material layer containing a positive electrode active material, solid electrolyte particles, and a positive electrode binder to the surface of a current collector, which will be described later, and drying. It is formed.
  • the positive electrode active material layer slurry composition is produced by mixing a positive electrode active material, solid electrolyte particles, a positive electrode binder, an organic solvent, and other components added as necessary.
  • the positive electrode active material is a compound that can occlude and release lithium ions.
  • the positive electrode active material is roughly classified into those made of inorganic compounds and those made of organic compounds.
  • the positive electrode active material made of an inorganic compound examples include transition metal oxides, composite oxides of lithium and transition metals, and transition metal sulfides.
  • transition metal Fe, Co, Ni, Mn and the like are used.
  • inorganic compounds used for the positive electrode active material include lithium-containing composite metal oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiFePO 4 , LiFeVO 4 ; TiS 2 , TiS 3 , non- Transition metal sulfides such as crystalline MoS 2 ; transition metal oxides such as Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O 13 It is done. These compounds may be partially element-substituted.
  • Examples of the positive electrode active material made of an organic compound include polyaniline, polypyrrole, polyacene, disulfide compounds, polysulfide compounds, and N-fluoropyridinium salts.
  • the positive electrode active material may be a mixture of the above inorganic compound and organic compound.
  • the average particle size of the positive electrode active material used in the present invention is such that the all-solid-state secondary battery having a large charge / discharge capacity can be obtained from the viewpoint of improving battery characteristics such as load characteristics and cycle characteristics, and the positive electrode active material layer From the viewpoint of easy handling of the slurry composition for use and easy handling during production of the positive electrode, the thickness is usually 0.1 to 50 ⁇ m, preferably 1 to 20 ⁇ m.
  • the average particle size can be determined by measuring the particle size distribution by laser diffraction.
  • Solid electrolyte particles The same solid electrolyte particles as those exemplified in the solid electrolyte layer can be used.
  • Binder for positive electrode As the binder for the positive electrode, those exemplified for the solid electrolyte layer can be used.
  • the content of the positive electrode binder in the positive electrode active material layer slurry composition is 100 mass parts of the positive electrode active material from the viewpoint of preventing the positive electrode active material from falling off the electrode without inhibiting the battery reaction. On the other hand, it is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 4 parts by mass.
  • the organic solvent in the positive electrode active material layer slurry composition and other components added as necessary may be the same as those exemplified for the solid electrolyte layer.
  • the content of the organic solvent in the positive electrode active material layer slurry composition is preferably based on 100 parts by mass of the positive electrode active material from the viewpoint of obtaining good coating properties while maintaining the dispersibility of the solid electrolyte. Is 20 to 80 parts by mass, more preferably 30 to 70 parts by mass.
  • the slurry composition for the positive electrode active material layer may contain, in addition to the above components, additives that exhibit various functions such as a conductive agent and a reinforcing material as other components added as necessary. These are not particularly limited as long as they do not affect the battery reaction.
  • the conductive agent is not particularly limited as long as it can impart conductivity, and usually includes carbon powders such as acetylene black, carbon black and graphite, and fibers and foils of various metals.
  • reinforcing material various inorganic and organic spherical, plate-like, rod-like or fibrous fillers can be used.
  • Negative electrode active material layer contains a negative electrode active material.
  • the negative electrode active material examples include carbon allotropes such as graphite and coke.
  • the negative electrode active material composed of the allotrope of carbon can also be used in the form of a mixture with a metal, a metal salt, an oxide, or the like or a cover.
  • oxides and sulfates such as silicon, tin, zinc, manganese, iron, and nickel
  • lithium alloys such as lithium metal, Li—Al, Li—Bi—Cd, and Li—Sn—Cd, Lithium transition metal nitride, silicon, etc.
  • a metal material a metal foil or a metal plate can be used as an electrode as it is, but may be in the form of particles.
  • the negative electrode active material layer is formed by applying a slurry composition for a negative electrode active material layer containing a negative electrode active material, solid electrolyte particles and a negative electrode binder to the surface of a current collector, which will be described later, and drying.
  • the slurry composition for a negative electrode active material layer is produced by mixing a negative electrode active material, solid electrolyte particles, a negative electrode binder, an organic solvent, and other components added as necessary.
  • the solid electrolyte particles, the organic solvent, and other components added as necessary in the slurry composition for the negative electrode active material layer can be the same as those exemplified for the positive electrode active material layer. .
  • the average particle size of the negative electrode active material is usually 1 to 50 ⁇ m, preferably 15 to 30 ⁇ m, from the viewpoint of improving battery characteristics such as initial efficiency, load characteristics, and cycle characteristics.
  • the weight ratio of the negative electrode active material is within the above range, the amount of the negative electrode active material in the battery is reduced because the weight ratio of the negative electrode active material is excessively small, thereby suppressing the phenomenon that the battery capacity is reduced.
  • the weight ratio of the solid electrolyte particles is within the above range, the weight ratio of the solid electrolyte particles is excessively small, so that sufficient conductivity cannot be obtained, and the negative electrode active material can be effectively used. Since this is not possible, it is possible to suppress the phenomenon that the battery capacity is reduced.
  • Binder for negative electrode When the negative electrode active material is in the form of particles, those exemplified for the solid electrolyte layer can be used as the negative electrode binder.
  • the content of the negative electrode binder in the slurry composition for the negative electrode active material layer is determined from the viewpoint of preventing the electrode active material from dropping from the electrode without inhibiting the battery reaction.
  • the amount is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 4 parts by mass with respect to 100 parts by mass of the active material.
  • the current collector used for forming the positive electrode active material layer and the negative electrode active material layer is not particularly limited as long as it has electrical conductivity and is electrochemically durable, but from the viewpoint of heat resistance, for example, Metal materials such as iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, and platinum are preferable. Among these, aluminum is particularly preferable for the positive electrode, and copper is particularly preferable for the negative electrode.
  • the shape of the current collector is not particularly limited, but a sheet shape having a thickness of about 0.001 to 0.5 mm is preferable. In order to increase the adhesive strength between the current collector and the positive and negative electrode active material layers described above, the current collector is preferably used after being subjected to a roughening treatment.
  • Examples of the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method.
  • a mechanical polishing method an abrasive cloth paper with a fixed abrasive particle, a grindstone, an emery buff, a wire brush provided with a steel wire or the like is used.
  • an intermediate layer may be formed on the surface of the current collector in order to increase the adhesive strength and conductivity between the current collector and the positive / negative electrode active material layer.
  • the solid electrolyte layer slurry composition is obtained by mixing the above-described solid electrolyte particles, a binder, an organic solvent, and other components added as necessary.
  • the slurry composition for the positive electrode active material layer is obtained by mixing the positive electrode active material, the solid electrolyte particles, the positive electrode binder, the organic solvent, and other components added as necessary.
  • the slurry composition for the negative electrode active material layer is obtained by mixing the negative electrode active material, the solid electrolyte particles, the negative electrode binder, the organic solvent, and other components added as necessary.
  • the method of mixing the slurry composition is not particularly limited, and examples thereof include a method using a mixing apparatus such as a stirring type, a shaking type, and a rotary type.
  • a method using a dispersion kneader such as a homogenizer, a ball mill, a bead mill, a planetary mixer, a sand mill, a roll mill, and a planetary kneader can be mentioned. From the viewpoint that aggregation of solid electrolyte particles can be suppressed, a planetary mixer, a ball mill Alternatively, a method using a bead mill is preferable.
  • the all solid state secondary battery of the present invention includes a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and a solid electrolyte layer between these positive and negative electrode active material layers.
  • the thickness of the solid electrolyte layer is 2 to 20 ⁇ m, preferably 3 to 15 ⁇ m, more preferably 5 to 12 ⁇ m. When the thickness of the solid electrolyte layer is in the above range, the internal resistance of the all-solid secondary battery can be reduced. If the thickness of the solid electrolyte layer is too thin, the all-solid secondary battery is likely to be short-circuited. Moreover, when the thickness of the solid electrolyte layer is too thick, the internal resistance of the battery increases.
  • the positive electrode in the all-solid-state secondary battery of the present invention is manufactured by applying the positive electrode active material layer slurry composition onto a current collector and drying to form a positive electrode active material layer.
  • the negative electrode in the all-solid-state secondary battery of this invention can be used as it is, when using metal foil.
  • the negative electrode active material is in the form of particles
  • the negative electrode active material layer slurry composition is applied onto a current collector different from the positive electrode current collector and dried to form a negative electrode active material layer.
  • the solid electrolyte layer slurry composition is applied on the formed positive electrode active material layer or negative electrode active material layer and dried to form a solid electrolyte layer.
  • an all-solid-state secondary battery element is manufactured by bonding together the electrode which did not form a solid electrolyte layer, and the electrode which formed said solid electrolyte layer.
  • the method for applying the slurry composition for the positive electrode active material layer and the slurry composition for the negative electrode active material layer to the current collector is not particularly limited.
  • the doctor blade method, the dip method, the reverse roll method, the direct roll method, the gravure method It is applied by the extrusion method, brush coating or the like.
  • the amount to be applied is not particularly limited, but is such an amount that the thickness of the active material layer formed after removing the organic solvent is usually 5 to 300 ⁇ m, preferably 10 to 250 ⁇ m.
  • the drying method is not particularly limited, and examples thereof include drying with warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams.
  • the drying conditions are usually adjusted so that the organic solvent volatilizes as quickly as possible within a speed range in which stress concentration occurs and the active material layer cracks or the active material layer does not peel from the current collector. Furthermore, you may stabilize an electrode by pressing the electrode after drying. Examples of the pressing method include, but are not limited to, a mold press and a calendar press.
  • the drying temperature is a temperature at which the organic solvent is sufficiently volatilized. Specifically, it is preferably 50 to 250 ° C., more preferably 80 to 200 ° C., from the viewpoint that a good active material layer can be formed without thermal decomposition of the positive / negative electrode binder.
  • the drying time is not particularly limited, but is usually in the range of 10 to 60 minutes.
  • the method for applying the slurry composition for the solid electrolyte layer to the positive electrode active material layer or the negative electrode active material layer is not particularly limited, and the current collection of the slurry composition for the positive electrode active material layer and the slurry composition for the negative electrode active material layer described above is performed.
  • the gravure method is preferable from the viewpoint that a thin solid electrolyte layer can be formed.
  • the amount to be applied is not particularly limited, but is an amount such that the thickness of the solid electrolyte layer formed after removing the organic solvent is usually 2 to 20 ⁇ m, preferably 3 to 15 ⁇ m.
  • the drying method, drying conditions, and drying temperature are also the same as those of the positive electrode active material layer slurry composition and the negative electrode active material layer slurry composition described above.
  • the pressurizing method is not particularly limited, and examples thereof include a flat plate press, a roll press, and CIP (Cold Isostatic Press).
  • the pressure for pressing is preferably from 5 to 700 MPa, more preferably from the viewpoint of exhibiting good battery characteristics since resistance at each interface between the electrode and the solid electrolyte layer, and further, contact resistance between particles in each layer is reduced. Is 7 to 500 MPa.
  • the solid electrolyte layer and the active material layer may be compressed by pressing, and may be thinner than before pressing. When pressing is performed, the thickness of the solid electrolyte layer and the active material layer in the present invention may be such that the thickness after pressing is in the above range.
  • the positive electrode active material layer or the negative electrode active material layer is coated with the slurry composition for the solid electrolyte layer, but the solid electrolyte layer slurry is applied to the active material layer having the larger particle diameter of the electrode active material to be used. It is preferable to apply the composition.
  • the particle diameter of the electrode active material is large, irregularities are formed on the surface of the active material layer. Therefore, the irregularities on the surface of the active material layer can be reduced by applying the slurry composition. Therefore, when the electrode formed with the solid electrolyte layer and the electrode not formed with the solid electrolyte layer are bonded and laminated, the contact area between the solid electrolyte layer and the electrode is increased, and the interface resistance can be suppressed. .
  • the obtained all-solid-state secondary battery element is put into a battery container as it is or wound or folded according to the shape of the battery, and sealed to obtain an all-solid-state secondary battery.
  • an expanded metal, an overcurrent prevention element such as a fuse or a PTC element, a lead plate or the like can be placed in the battery container to prevent an increase in pressure inside the battery and overcharge / discharge.
  • the shape of the battery may be any of a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like.
  • ⁇ Particle size measurement> According to JIS Z8825-1: 2001, a 50% cumulative particle size from the fine particle side of the cumulative particle size distribution (number average particle size) by a laser analyzer (Laser diffraction particle size distribution measuring device SALD-3100 manufactured by Shimadzu Corporation) was measured.
  • a laser analyzer Laser diffraction particle size distribution measuring device SALD-3100 manufactured by Shimadzu Corporation
  • a 5-cell all-solid-state secondary battery was charged to 4.3 V by a constant current method of 0.1 C, then discharged to 3.0 V at 0.1 C, and a 0.1 C discharge capacity a Asked. Thereafter, the battery was charged to 4.3 V at 0.1 C, and then discharged to 3.0 V at 10 C to obtain a 10 C discharge capacity c.
  • the capacity retention represented by the ratio (c / a (%)) of the electric capacity between 10C discharge capacity c and 0.1C discharge capacity a was determined.
  • Example 1 Manufacture of particulate polymer>
  • ethyl acrylate In a 5 MPa pressure vessel with a stirrer, 30 parts of ethyl acrylate, 70 parts of butyl acrylate, 1 part of ethylene glycol dimethacrylate (EGDMA) as a crosslinking agent, 1 part of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water, and After adding 0.5 parts of potassium persulfate as a polymerization initiator and stirring sufficiently, the polymerization was started by heating to 70 ° C. When the polymerization conversion rate reached 96%, cooling was started and the reaction was stopped to obtain an aqueous dispersion of particulate polymer. The average particle size was 0.24 ⁇ m. And pH was adjusted to 7 using 10 wt% NaOH aqueous solution to the obtained aqueous dispersion.
  • the solid content concentration of the obtained aqueous dispersion of particulate polymer was 38 wt%. 500 parts by mass of cyclopentyl methyl ether was added to 100 parts by mass of the obtained aqueous dispersion, and the temperature of the water bath was reduced at 80 ° C. with a rotary evaporator to perform solvent exchange and dehydration operations. An organic solvent dispersion of a particulate polymer having a water concentration of 38 ppm and a solid content concentration of 7.5 wt% was obtained by dehydration.
  • the positive electrode active material layer slurry composition was applied to the current collector surface and dried (110 ° C., 20 minutes) to form a positive electrode active material layer having a thickness of 50 ⁇ m to produce a positive electrode. Further, the negative electrode active material layer slurry composition was applied to another current collector surface and dried (110 ° C., 20 minutes) to form a negative electrode active material layer having a thickness of 30 ⁇ m to produce a negative electrode.
  • the solid electrolyte layer slurry composition was applied to the surface of the positive electrode active material layer and dried (110 ° C., 10 minutes) to form a solid electrolyte layer having a thickness of 18 ⁇ m.
  • the solid electrolyte layer laminated on the surface of the positive electrode active material layer and the negative electrode active material layer of the negative electrode were bonded together and pressed to obtain an all-solid secondary battery.
  • the thickness of the solid electrolyte layer of the all-solid secondary battery after pressing was 11 ⁇ m. Using this battery, output characteristics and charge / discharge cycle characteristics were evaluated. The results are shown in Table 1.
  • Example 2 An all-solid secondary battery was produced and evaluated in the same manner as in Example 1 except that the following solid electrolyte particles were used. The results are shown in Table 1.
  • the thickness of the solid electrolyte layer before pressing was 20 ⁇ m, and the thickness after pressing was 13 ⁇ m.
  • Example 3 The measurement was performed in the same manner as in Example 1 except that the following polymer was used as the particulate polymer. The results are shown in Table 1.
  • the solid content concentration of the obtained aqueous dispersion of particulate polymer was 38 wt%. 500 parts by mass of cyclopentyl methyl ether was added to 100 parts by mass of the obtained aqueous dispersion, and the temperature of the water bath was reduced at 80 ° C. with a rotary evaporator to perform solvent exchange and dehydration operations.
  • an organic solvent dispersion of particulate polymer having a water concentration of 21 ppm and a solid content concentration of 8.5 wt% was obtained.
  • a solid electrolyte layer was produced in the same manner as in Example 1 using the particulate polymer.
  • the thickness of the solid electrolyte layer before pressing was 20 ⁇ m, and the thickness after pressing was 18 ⁇ m.
  • Example 1 The particulate polymer of Example 1 was polymerized in the same manner without adding a crosslinking agent. The average particle diameter of the obtained particulate polymer was 0.32 ⁇ m. The particulate polymer was subjected to solvent exchange with cyclopentyl methyl ether to obtain a polymer solution containing no particulates, in which the particulate polymer was dissolved. A solid electrolyte layer was prepared using this polymer solution. The thickness of the solid electrolyte layer before pressing was 33 ⁇ m, and the thickness after pressing was 25 ⁇ m. A battery was prepared and tested in the same manner as in Example 1 using the above polymer. The results are shown in Table 1.
  • Example 2 The particulate polymer of Example 3 was polymerized in the same manner without adding a crosslinking agent. The average particle diameter of the obtained particulate polymer was 0.28 ⁇ m. The particulate polymer was subjected to solvent exchange with cyclopentyl methyl ether to obtain a polymer solution containing no particulates, in which the particulate polymer was dissolved. A solid electrolyte layer was prepared using this polymer solution. The thickness of the solid electrolyte layer before pressing was 33 ⁇ m, and the thickness after pressing was 12 ⁇ m. A battery was prepared in the same manner as in Example 3 using the polymer, and the test was performed. The results are shown in Table 1.
  • Example 4 ⁇ Production of particulate polymer having gel structure>
  • a glass container with a stirrer 55 parts of ethyl acrylate, 45 parts of butyl acrylate, 1 part of ethylene glycol dimethacrylate as a crosslinking agent, 1 part of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water, and as a polymerization initiator
  • the mixture was heated to 70 ° C. to initiate polymerization.
  • the polymerization conversion rate reached 96%
  • cooling was started to stop the reaction, and an aqueous dispersion of a particulate polymer having a gel structure was obtained.
  • the average particle size was 0.26 ⁇ m.
  • pH was adjusted to 7 using 10 wt% NaOH aqueous solution to the obtained aqueous dispersion.
  • the obtained polymer aqueous dispersion was dried using a PTFE petri dish to produce a film.
  • the obtained film was immersed in THF for 24 hours and then filtered through a 200 mesh SUS wire mesh.
  • the filtered wire mesh was dried at 100 ° C. for 1 hour, and the value obtained by dividing the weight of the wire mesh by the weight of the film was the gel fraction, and the gel fraction was 95 wt%.
  • xylene is added to 100 parts by mass of the solid content of the polymer in order to exchange the unreacted monomer and solvent from water to an organic solvent. 500 parts by mass was added and distillation under reduced pressure was performed to obtain a xylene dispersion of a particulate polymer having a gel structure.
  • the particle diameter is 0.1 ⁇ m or more, the ratio of less than 1.0 ⁇ m is 35%, the particle diameter is 1.0 ⁇ m or more, the ratio of less than 20 ⁇ m is 65%, the average particle diameter is 2.2 ⁇ m) and 150 parts 13 parts of acetylene black as a conductive agent, 2 parts of a xylene dispersion of a particulate polymer having the above-mentioned gel structure as a positive electrode binder in a solid content equivalent, and 2 parts of a xylene solution of a polymer having no gel structure in a solid content 1 part was added, and further, the solid content concentration was adjusted to 78% with xylene as an organic solvent, and then mixed for 60 minutes with a planetary mixer. Further, the solid content concentration was adjusted to 74% with xylene, and then mixed for 10 minutes to prepare a slurry composition for a positive electrode active material layer.
  • As a negative electrode binder 50 parts of particles having a particle diameter of 0.1 ⁇ m or more and less than 1.0 ⁇ m are 35%, the particle diameter is 1.0 ⁇ m or more and the ratio of less than 20 ⁇ m is 65%, and the average particle diameter is 2.2 ⁇ m.
  • the positive electrode active material layer slurry composition was applied to the current collector surface and dried (110 ° C., 20 minutes) to form a positive electrode active material layer having a thickness of 50 ⁇ m to produce a positive electrode. Further, the negative electrode active material layer slurry composition was applied to another current collector surface and dried (110 ° C., 20 minutes) to form a negative electrode active material layer having a thickness of 30 ⁇ m to produce a negative electrode.
  • the solid electrolyte layer slurry composition was applied to the surface of the positive electrode active material layer and dried (110 ° C., 10 minutes) to form a solid electrolyte layer having a thickness of 11 ⁇ m.
  • the solid electrolyte layer laminated on the surface of the positive electrode active material layer and the negative electrode active material layer of the negative electrode were bonded together and pressed to obtain an all-solid secondary battery.
  • the thickness of the solid electrolyte layer of the all-solid secondary battery after pressing was 9 ⁇ m. Using this battery, output characteristics and charge / discharge cycle characteristics were evaluated. The results are shown in Table 2.
  • Example 5 An all-solid secondary battery was produced and evaluated in the same manner as in Example 4 except that the solid electrolyte layer slurry composition obtained below was used. In addition, the thickness of the solid electrolyte layer of the all-solid-state secondary battery after pressing was 7 ⁇ m. The results are shown in Table 2.
  • Example 5 by adding a xylene solution of a polymer having no gel structure and 1 part corresponding to the solid content, further adjusting the solid content concentration to 30% by adding xylene as an organic solvent, and mixing with a planetary mixer A slurry composition for a solid electrolyte layer was prepared.
  • the viscosity of the solid electrolyte layer slurry composition was 100 mPa ⁇ s.
  • Example 6 The all-solid-state secondary battery was manufactured in the same manner as in Example 4 except that the solid-electrolyte slurry composition obtained below was used to produce an all-solid-state secondary battery, and a solid electrolyte layer having a thickness of 18 ⁇ m was formed. Manufactured and evaluated. In addition, the thickness of the solid electrolyte layer of the all-solid-state secondary battery after pressing was 14 ⁇ m. The results are shown in Table 2.
  • ⁇ Manufacture of slurry composition for solid electrolyte layer> Sulfide glass composed of Li 2 S and P 2 S 5 as solid electrolyte particles (Li 2 S / P 2 S 5 70 mol% / 30 mol%, the ratio of particle diameter is 0.1 ⁇ m or more and less than 1.0 ⁇ m is 20 %, 1.0 ⁇ m or more and a ratio of less than 20 ⁇ m is 80%, and the average particle size is 3.3 ⁇ m), and a xylene dispersion of a particulate polymer having the gel structure of Example 4 as a binder is 2
  • Example 6 by adding 5 parts of a xylene solution of a polymer having no gel structure corresponding to the solid content, further adjusting the solid content concentration to 35% by adding xylene as an organic solvent, and mixing with a planetary mixer A slurry composition for a solid electrolyte layer was prepared.
  • Example 7 In the production of the particulate polymer having a gel structure, a particulate polymer having a gel structure was produced in the same manner as in Example 4 except that the monomer was changed to 70 parts of 2-ethylhexyl acrylate and 30 parts of styrene. The average particle size was 0.25 ⁇ m. The gel fraction of this polymer was 93 wt%. Further, in the production of the slurry composition for the solid electrolyte layer, as a binder, the xylene dispersion of the particulate polymer having this gel structure is 2 parts in terms of solid content, and the same gel structure as that used in Example 4 is used.
  • a slurry composition for a solid electrolyte layer was prepared in the same manner as in Example 6 except that 1 part of the xylene solution of the polymer not having the solid content was used and that the solid content concentration was adjusted to 30%.
  • an all-solid secondary battery was produced in the same manner as in Example 6 and evaluated.
  • the thickness of the solid electrolyte layer of the all-solid-state secondary battery after pressing was 12 ⁇ m. The results are shown in Table 2.
  • Example 8 In the production of the slurry composition for the solid electrolyte layer, 2 parts of a xylene dispersion of a particulate polymer having a gel structure similar to that used in Example 7 was used as the binder in Example 4, corresponding to the solid content. A slurry composition for a solid electrolyte layer was prepared in the same manner as in Example 7 except that 3 parts of a xylene solution of a polymer having no gel structure similar to that of the solid was used in an amount corresponding to the solid content. Using the obtained slurry composition for a solid electrolyte layer, an all-solid secondary battery was produced in the same manner as in Example 7 and evaluated. In addition, the thickness of the solid electrolyte layer of the all-solid-state secondary battery after pressing was 11 ⁇ m. The results are shown in Table 2.
  • An all-solid secondary battery having a positive electrode having a positive electrode active material layer as shown in Table 1 and Table 2, a negative electrode having a negative electrode active material layer, and a solid electrolyte layer between these positive and negative electrode active material layers,
  • the solid electrolyte layer has a thickness of 2 to 20 ⁇ m, and the solid electrolyte layer contains a binder containing a particulate polymer having an average particle diameter of 0.1 to 1 ⁇ m, and the output characteristics of an all-solid secondary battery The charge / discharge cycle characteristics were good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 正極活物質層を有する正極と、負極活物質層を有する負極と、これらの正負極活物質層間に固体電解質層とを有する全固体二次電池であって、前記固体電解質層の厚さは、2~20μmであり、前記固体電解質層は、平均粒子径が0.1~1μmである粒子状ポリマーを含むバインダーを含有する。

Description

全固体二次電池
 本発明は、全固体リチウムイオン二次電池等の全固体二次電池に関する。
 近年、リチウムイオン電池等の二次電池は、携帯情報端末や携帯電子機器などの携帯端末に加えて、家庭用小型電力貯蔵装置、電動二輪車、電気自動車、ハイブリッド電気自動車など、様々な用途での需要が増加している。
 用途が広がるに伴い、二次電池の更なる安全性の向上が要求されている。安全性を確保するために、液漏れを防止する方法や、可燃性の有機溶媒電解質に代えて、固体電解質を用いる方法が有効である。
 固体電解質としては、ポリエチレンオキサイドなどを用いる高分子固体電解質が知られている(特許文献1)が、高分子固体電解質は可燃性材料である。固体電解質として、無機材料からなる無機固体電解質も提案されている(特許文献2など)。高分子固体電解質に比べ、無機固体電解質は、無機物からなる固体電解質であって不燃性物質であり、通常使用される有機溶媒電解質と比較し安全性が非常に高い。特許文献2に記載されているように、無機固体電解質を用いた高い安全性を備えた全固体二次電池の開発が進んでいる。
 全固体二次電池は、正極及び負極の間に、電解質層として無機固体電解質層を有する。特許文献3及び特許文献4には、固体電解質粒子と溶媒とを含む固体電解質層用スラリー組成物を、正極又は負極の上に塗布し乾燥する方法(塗布法)により固体電解質層を形成した全固体リチウム二次電池が記載されている。塗布法で電極や電解質層を形成する場合には、活物質や電解質を含むスラリー組成物の粘度や、流動性が塗布可能な条件の範囲にあることが必要である。一方、スラリー組成物を塗布したのち溶剤を乾燥してなる電極および電解質層には、電池としての特性を発現させるために活物質や電解質以外のバインダーなどの添加剤が重要である。そのために、特許文献5では、アクリレート系ポリマーをバインダーに使用することが提案されている。
特許第4134617号公報 特開昭59-151770号公報 特開2009-176484号公報 特開2009-211950号公報 国際公開第2011/105574号
 しかしながら、本発明者らの検討によれば、特許文献3や4に記載の全固体リチウム二次電池では、固体電解質層内部や、活物質層内部のイオン伝導性が十分ではないために、電池の容量特性やサイクル特性が不十分な場合があり、また、特許文献5では電池特性の良好な全固体二次電池が提案されているが、より特性の高い電池が求められている。
 本発明は、電池特性の良い全固体二次電池を提供することを目的とする。
 本発明者は、鋭意検討の結果、特定の粒子径を有する粒子状ポリマーを含むバインダーを用いることにより、上記目的を達成できることを見出し、本発明を完成するに至った。
 即ち、本発明によれば、
(1) 正極活物質層を有する正極と、負極活物質層を有する負極と、これらの正負極活物質層間に固体電解質層とを有する全固体二次電池であって、前記固体電解質層の厚さは、2~20μmであり、前記固体電解質層は、平均粒子径が0.1~1μmである粒子状ポリマーを含むバインダーを含有する、全固体二次電池、
(2) 前記粒子状ポリマーが有機溶媒に分散してなるバインダー組成物を用いることにより得られる(1)に記載の全固体二次電池、
(3) 前記固体電解質層は、固体電解質粒子を含み、前記固体電解質粒子は、粒子径が0.1μm以上、1.0μm未満の粒子を10~40wt%、粒子径が1.0μm以上、20μm未満の粒子を60~90wt%含む(1)または(2)に記載の全固体二次電池、
(4) 前記粒子状ポリマーは、ゲル構造を有する(1)~(3)の何れかに記載の全固体二次電池、
(5) 前記固体電解質粒子が、Li2SとP25とからなる硫化物ガラスである(3)に記載の全固体二次電池、
(6) 前記バインダーは、前記粒子状ポリマーを10~90wt%含む(1)~(5)の何れかに記載の全固体二次電池、
(7) 前記粒子状ポリマーが、(メタ)アクリレートから導かれるモノマー単位を含むアクリレート系ポリマーである(1)~(6)の何れかに記載の全固体二次電池
が提供される。
 本発明によれば、特定の粒子径を有する粒子状ポリマーをバインダーとして用いることにより、充放電性能の良い固体電解質電池を得ることができる。これは、特定の粒子径のバインダーを用いることで、固体電解質粒子同士の接触点の数や接触面積が増加し、その結果内部抵抗の小さい全固体二次電池を提供することができるためであると思われる。
 (全固体二次電池)
 本発明の全固体二次電池は、正極活物質層を有する正極と、負極活物質層を有する負極と、これらの正負極活物質層間に固体電解質層とを有する。また、固体電解質層の厚さは、2~20μmであり、固体電解質層は、平均粒子径が0.1~1μmである粒子状ポリマーを含むバインダーを含有する。正極は集電体上に正極活物質層を有し、負極は集電体上に負極活物質層を有する。以下において、(1)固体電解質層、(2)正極活物質層、(3)負極活物質層の順に説明する。
 (1)固体電解質層
 固体電解質層は、固体電解質粒子及びバインダーを含む固体電解質層用スラリー組成物を、後述する正極活物質層または負極活物質層の上に塗布し、乾燥することにより形成される。ここで、バインダーは平均粒子径が0.1~1μmである粒子状ポリマーを含む。固体電解質層用スラリー組成物は、固体電解質粒子、バインダー、有機溶媒及び必要に応じて添加される他の成分を混合することにより製造される。
 (固体電解質粒子)
 固体電解質は粉砕工程を経たものを用いるため粒子状であるが、完全な球形ではなく不定形である。一般に微粒子の大きさは、レーザー光を粒子に照射し散乱光を測定する方法などにより測定されるが、この場合の粒子径は1個の粒子としては形状を球形と仮定した値である。複数の粒子をまとめて測定した場合、相当する粒子径の粒子の存在割合を粒度分布としてあらわすことができる。固体電解質層を形成する固体電解質粒子は、この方法で測定した値で、平均粒子径として示されることが多い。
 固体電解質粒子の平均粒子径は、分散性及び塗工性の良好な固体電解質層用スラリー組成物を得ることができる観点から、好ましくは0.3~10μm、より好ましくは0.5~10μm、さらに好ましくは0.5~1.3μmである。なお、固体電解質粒子の平均粒子径は、レーザー回折で粒度分布を測定することにより求めることができる個数平均粒子径である。
 なお、固体電解質粒子として、粒子径の範囲が異なる2種の粒子を含む固体電解質粒子を用いてもよい。この場合には、粒子径が0.1μm以上、1.0μm未満の固体電解質粒子を10~40wt%、粒子径が1.0μm以上、20μm未満の固体電解質粒子を90~60wt%の割合で組み合わせることが好ましい。
 粒子径の範囲が異なる2種の粒子を含む固体電解質粒子を用いる場合には、固体電解質粒子の粒度分布は単峰性であっても良いし、多峰性であってもよい。例えば、平均粒子径の異なる複数種類の固体電解質粒子を混合し、多峰性の粒度分布を持つ固体電解質粒子として、粒子径が0.1μm以上、1.0μm未満の粒子を10~40wt%、1.0μm以上、20μm未満の粒子を90~60wt%にすることもできる。
 固体電解質粒子は、リチウムイオンの伝導性を有していれば特に限定されないが、結晶性の無機リチウムイオン伝導体、又は非晶性の無機リチウムイオン伝導体を含むことが好ましい。
 結晶性の無機リチウムイオン伝導体としては、Li3N、LISICON(Li14Zn(GeO44)、ペロブスカイト型Li0.5La0.5TiO3、LIPON(Li3+yPO4-xx)、Thio-LISICON(Li3.25Ge0.250.754)などが挙げられる。
 非晶性の無機リチウムイオン伝導体としては、S(硫黄原子)を含有し、かつ、イオン伝導性を有するもの(硫化物固体電解質材料)であれば特に限定されるものではない。ここで、本発明における全固体二次電池が、全固体リチウム二次電池である場合、用いられる硫化物固体電解質材料として、Li2Sと、第13族~第15族の元素の硫化物とを含有する原料組成物を用いてなるものを挙げることができる。このような原料組成物を用いて硫化物固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法および溶融急冷法を挙げることができ、中でもメカニカルミリング法が好ましい。メカニカルミリング法によれば、常温での処理が可能になり、製造工程の簡略化を図ることができるからである。
 上記第13族~第15族の元素としては、例えばAl、Si、Ge、P、As、Sb等を挙げることができる。また、第13族~第15族の元素の硫化物としては、具体的には、Al23、SiS2、GeS2、P23、P25、As23、Sb23等を挙げることができる。中でも、本発明においては、第14族または第15族の硫化物を用いることが好ましい。特に、本発明においては、Li2Sと、第13族~第15族の元素の硫化物とを含有する原料組成物を用いてなる硫化物固体電解質材料は、Li2S-P25材料、Li2S-SiS2材料、Li2S-GeS2材料またはLi2S-Al23材料であることが好ましく、Li2S-P25材料であることがより好ましい。これらは、Liイオン伝導性が優れているからである。
 また、本発明における硫化物固体電解質材料は、架橋硫黄を有することが好ましい。架橋硫黄を有することで、イオン伝導性が高くなるからである。さらに、硫化物固体電解質材料が架橋硫黄を有する場合、通常、正極活物質との反応性が高く、高抵抗層が生じやすい。しかし、本発明においては、特定の粒子径を有する粒子状ポリマーを含むバインダーを用いるため、高抵抗層の発生を抑制できるという本発明の効果を充分に発揮することができる。なお、「架橋硫黄を有する」ことは、例えば、ラマン分光スペクトルによる測定結果、原料組成比、NMRによる測定結果等を考慮することでも判断することができる。
 Li2S-P25材料またはLi2S-Al23材料におけるLi2Sのモル分率は、より確実に架橋硫黄を有する硫化物固体電解質材料を得ることができる観点から、例えば50~74%の範囲内、中でも60~74%の範囲内であることが好ましい。
 また、本発明における硫化物固体電解質材料は、硫化物ガラスであっても良く、その硫化物ガラスを熱処理して得られる結晶化硫化物ガラスであっても良い。硫化物ガラスは、例えば、上述した非晶質化法により得ることができる。結晶化硫化物ガラスは、例えば、硫化物ガラスを熱処理することにより得ることができる。
 特に、本発明においては、硫化物固体電解質材料が、Li7311で表される結晶化硫化物ガラスであることが好ましい。Liイオン伝導度が特に優れているからである。Li7311を合成する方法としては、例えば、Li2SおよびP25を、モル比70:30で混合し、ボールミルで非晶質化することで、硫化物ガラスを合成し、得られた硫化物ガラスを150℃~360℃で熱処理することにより、Li7311を合成することができる。
 (バインダー)
 バインダーは、固体電解質粒子同士を結着して固体電解質層を形成するためのものである。バインダーとしては、アクリレート系ポリマーが好適であることが特許文献5などで知られている。ここで、アクリレート系ポリマーをバインダーとして用いることが、耐電圧を高くでき、かつ全固体二次電池のエネルギー密度を高くすることができる点で好ましいが、より高性能化することが求められている。
 アクリレート系ポリマーは溶液重合法あるいは乳化重合法などにより得ることができる。通常得られるポリマーは、直鎖状のポリマーであり、有機溶媒に可溶である。このようなポリマーをバインダーとして用いる場合は、有機溶媒に溶解させて用いる。
 一般にバインダーは高い結着力を得るために、直鎖状のポリマーを用いている。しかし、固体電解質粒子表面をバインダーが完全に被覆してしまうと、接触点におけるイオン伝導性が低下してしまうため、本発明においては、粒子状ポリマーを含むバインダーを用いる。
 バインダーに用いるポリマーの種類としては、アクリレート系ポリマーが好ましい。アクリレート系ポリマーは、アクリレートまたはメタクリレート(以降、「(メタ)アクリレート」と略記することがある)およびこれらの誘導体を重合して得られる繰り返し単位(重合単位)を含むポリマーであり、(メタ)アクリレートから導かれるモノマー単位を含むポリマーであり、具体的には、(メタ)アクリレートのホモポリマー、(メタ)アクリレートのコポリマー、並びに(メタ)アクリレートと該(メタ)アクリレートと共重合可能な他の単量体とのコポリマーが挙げられる。
 (メタ)アクリレートとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸t-ブチル、アクリル酸-2-エチルヘキシル、ベンジルアクリレートなどのアクリル酸アルキルエステル;アクリル酸-2-メトキシエチル、アクリル酸-2-エトキシエチルなどのアクリル酸アルコキシアルキルエステル;アクリル酸2-(パーフルオロブチル)エチル、アクリル酸2-(パーフルオロペンチル)エチルなどのアクリル酸2-(パーフルオロアルキル)エチル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、およびメタクリル酸t-ブチル、メタクリル酸-2-エチルヘキシル、メタクリル酸ラウリル、メタクリル酸トリデシル、メタクリル酸ステアリル、ベンジルメタクリレートなどのメタクリル酸アルキルエステル;メタクリル酸2-(パーフルオロブチル)エチル、メタクリル酸2-(パーフルオロペンチル)エチルなどのメタクリル酸2-(パーフルオロアルキル)エチル;が挙げられる。これらの中でも、本発明においては固体電解質との密着性の高さからアクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸t-ブチル、アクリル酸-2-エチルヘキシル、ベンジルアクリレートなどのアクリル酸アルキルエステル;アクリル酸-2-メトキシエチル、アクリル酸-2-エトキシエチルなどのアクリル酸アルコキシアルキルエステルが好ましい。
 アクリレート系ポリマーにおける(メタ)アクリレートから導かれるモノマー単位の含有割合は、通常40質量%以上、好ましくは50質量%以上、より好ましくは60質量%以上である。なお、アクリレート系ポリマーにおける(メタ)アクリレートから導かれるモノマー単位の含有割合の上限は、通常100質量%以下、好ましくは95質量%以下である。
 また、アクリレート系ポリマーとしては、(メタ)アクリレートと、該(メタ)アクリレートと共重合可能な単量体とのコポリマーとすることが可能である。前記共重合可能なモノマーとしては、アクリル酸、メタクリル酸、イタコン酸、フマル酸などの不飽和カルボン酸類;エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリメチロールプロパントリアクリレートなどの2つ以上の炭素-炭素二重結合を有するカルボン酸エステル類;スチレン、ビニルトルエン、t-ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、ヒドロキシメチルスチレン、α-メチルスチレン、ジビニルベンゼン等のスチレン系単量体;アクリルアミド、メタクリルアミド、N-メチロールアクリルアミド、アクリルアミド-2-メチルプロパンスルホン酸などのアミド系単量体;アクリロニトリル、メタクリロニトリルなどのα,β-不飽和ニトリル化合物;エチレン、プロピレン等のオレフィン類;ブタジエン、イソプレン等のジエン系単量体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類;N-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物が挙げられる。その中でも、有機溶媒への溶解性の観点から、スチレン系単量体、アミド系単量体、α,β-不飽和ニトリル化合物が好ましい。アクリレート系ポリマーにおける、前記共重合可能な単量体単位の含有割合は、通常40質量%以下、好ましくは30質量%以下、より好ましくは20質量%以下である。
 本発明の粒子状ポリマーとは、有機溶媒に分散した状態で粒子状であり、かつ乾燥時にも粒子状であるポリマーである。
 粒子状ポリマーとしては、ゲル構造を有するものが好ましい。ゲル構造を有していることの指標はゲル分率である。ゲル分率は、ポリマー鎖同志が結合していたり、絡みあったり等しているために有機溶媒に不溶な成分の全体に対する重量比を示す値であり、本発明において粒子状ポリマーとしてゲル構造を有するものを用いる場合、ゲル分率は好ましくは50~95%であり、より好ましくは70~85%である。ゲル分率が上記範囲であると、ゲル分率が過度に小さいために高温時に流動しやすくなる、という現象を抑えることができ、また、ゲル分率が過度に高いためにバインダーとしての結着力が低下する、という現象を抑えることができる。
 粒子状ポリマーを得る方法としては、ポリマーを水系あるいは溶媒系で乳化重合または分散重合する際にモノマーを架橋剤とともに重合する方法がある。また、粒子状ポリマーを得るためには、重合する際に架橋剤を共重合させることが好ましい。
 また、粒子状ポリマーにゲル構造を持たせるためには、一般的に架橋剤として機能し得る化合物や自己架橋構造を形成し得るモノマーを、ポリマーの重合の際に共重合する方法が挙げられる。また、ゲル分率を所定の範囲に調整するためには、重合する際に架橋剤を共重合させることが好ましい。
 架橋剤としては、二重結合を複数個含むモノマーが挙げられる。たとえば、ポリエチレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールテトラアクリレート、エチレングリコールジメタクリレートなどの多官能アクリレート化合物、ジビニルベンゼンなどの多官能芳香族化合物があげられる。好ましくはエチレングリコールジメタクリレート、ジビニルベンゼンなどである。
 架橋剤の使用量は、その種類によって異なるが、モノマーの合計量100質量部に対して、好ましくは0.01~8質量部、より好ましくは0.01~5質量部、さらに好ましくは0.05~5質量部、特に好ましくは0.05~1質量部である。
 架橋剤の添加量が上記範囲であると、架橋剤の添加量が過度に少ないために基材上で乾燥させた際に、基材表面に半球状に広がり、付着部分の面積が粒径の10倍以上に広がり、固体電解質粒子表面を被覆するのと同じ状態になってしまう、という現象を抑えることができ、また、架橋剤の添加量が過度に多いためにポリマーの密着力が低下しバインダーとしての機能を示さなくなる、という現象を抑えることができる。
 自己架橋構造を形成し得るモノマーとしては、ブタジエン、イソプレン等のジエン系単量体や、アクリロニトリルなどの不飽和ニトリル化合物がある。好ましくは、アクリロニトリルを共重合する方法である。
 粒子状ポリマーの平均粒子径は、0.1~1μm、好ましくは0.15~0.70μmである。粒子状ポリマーの平均粒子径が上記範囲にあることにより、充放電性能の良い固体電解質電池を得ることができる。これは、上記範囲の平均粒子径を有する粒子状ポリマーを用いることにより、固体電解質粒子同士の接触点の数や接触面積が増加し、その結果内部抵抗が小さくなるためであると考えられる。なお、粒子状ポリマーの平均粒子径は、レーザー回折で粒度分布を測定することにより求めることができる個数平均粒子径である。
 また、本発明に用いるバインダーは、粒子状ポリマー以外の結着成分を含んでいてもよい。本発明に用いるバインダー中における粒子状ポリマーの含有量は、充放電性能の良い固体電解質電池が得られる観点から、好ましくは10~90wt%、より好ましくは20~80wt%である。
 本発明においては、バインダーとして、前記ゲル構造を有する粒子状ポリマーと、ゲル構造を有しないポリマーとを併用してもよい。
 なお、ゲル構造を有しないポリマーとしては、上記したアクリレート系ポリマーにおいて、架橋剤として機能し得る化合物や自己架橋構造を形成し得るモノマーを、ポリマーの重合の際に共重合していないポリマー、即ち、ゲル構造を持たせていないものを用いることができる。
 アクリレート系ポリマーの製造方法は、懸濁重合法、塊状重合法、乳化重合法などの分散系で重合する方法のいずれの方法も用いることができる。重合方法としては、イオン重合、ラジカル重合、リビングラジカル重合などいずれの方法も用いることができる。重合に用いる重合開始剤としては、たとえば過酸化ラウロイル、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、t-ブチルパーオキシピバレート、3,3,5-トリメチルヘキサノイルパーオキサイドなどの有機過酸化物、α,α'-アゾビスイソブチロニトリルなどのアゾ化合物、または過硫酸アンモニウム、過硫酸カリウムなどがあげられる。
 バインダーのガラス転移温度(Tg)は、優れた強度と柔軟性を有し、高い出力特性の全固体二次電池を得ることができる観点から、好ましくは-50~25℃、より好ましくは-45~15℃、特に好ましくは-40~5℃である。なお、バインダーのガラス転移温度は、様々な単量体を組み合わせることによって調整可能である。
 固体電解質層用スラリー組成物中のバインダーの含有量は、固体電解質粒子同士の結着性を維持しながら、リチウムの移動を阻害して固体電解質層の抵抗が増大することを抑制できる観点から、固体電解質粒子100質量部に対して、好ましくは0.1~10質量部、より好ましくは0.5~7質量部、特に好ましくは0.5~5質量部である。
 (有機溶媒)
 有機溶媒としては、シクロペンタン、シクロヘキサンなどの環状脂肪族炭化水素類;トルエン、キシレンなどの芳香族炭化水素類;ジメチルエーテル、メチルエチルエーテル、ジエチルエーテル、シクロペンチルメチルエーテルなどのエーテル類;酢酸エチル、酢酸ブチル、などのエステル類が挙げられる。これらの溶媒は、単独または2種以上を混合して、乾燥速度や環境上の観点から適宜選択して用いることができる。
 固体電解質層用スラリー組成物中の有機溶媒の含有量は、固体電解質層用スラリー組成物中の固体電解質粒子の分散性を保持しながら、良好な塗料特性を得ることができる観点から、固体電解質粒子100質量部に対して、好ましくは10~700質量部、より好ましくは30~500質量部である。
 固体電解質層用スラリー組成物は、上記成分の他に、必要に応じて添加される他の成分として、分散剤、レベリング剤及び消泡剤の機能を有する成分を含んでいてもよい。これらの成分は、電池反応に影響を及ぼさないものであれば、特に制限されない。
 (分散剤)
 分散剤としてはアニオン性化合物、カチオン性化合物、非イオン性化合物、高分子化合物が例示される。分散剤は、用いる固体電解質粒子に応じて選択される。固体電解質層用スラリー組成物中の分散剤の含有量は、電池特性に影響が及ばない範囲が好ましく、具体的には、固体電解質粒子100質量部に対して10質量部以下である。
 (レベリング剤)
 レベリング剤としてはアルキル系界面活性剤、シリコーン系界面活性剤、フッ素系界面活性剤、金属系界面活性剤などの界面活性剤が挙げられる。上記界面活性剤を混合することにより、固体電解質層用スラリー組成物を後述する正極活物質層又は負極活物質層の表面に塗工する際に発生するはじきを防止でき、正負極の平滑性を向上させることができる。固体電解質層用スラリー組成物中のレベリング剤の含有量は、電池特性に影響が及ばない範囲が好ましく、具体的には、固体電解質粒子100質量部に対して10質量部以下である。
 (消泡剤)
 消泡剤としてはミネラルオイル系消泡剤、シリコーン系消泡剤、ポリマー系消泡剤が例示される。消泡剤は、用いる固体電解質粒子に応じて選択される。固体電解質層用スラリー組成物中の消泡剤の含有量は、電池特性に影響が及ばない範囲が好ましく、具体的には、固体電解質粒子100質量部に対して10質量部以下である。
 (2)正極活物質層
 正極活物質層は、正極活物質、固体電解質粒子及び正極用バインダーを含む正極活物質層用スラリー組成物を、後述する集電体表面に塗布し、乾燥することにより形成される。正極活物質層用スラリー組成物は、正極活物質、固体電解質粒子、正極用バインダー、有機溶媒及び必要に応じて添加される他の成分を混合することにより製造される。
 (正極活物質)
 正極活物質は、リチウムイオンを吸蔵および放出可能な化合物である。正極活物質は、無機化合物からなるものと有機化合物からなるものとに大別される。
 無機化合物からなる正極活物質としては、遷移金属酸化物、リチウムと遷移金属との複合酸化物、遷移金属硫化物などが挙げられる。上記の遷移金属としては、Fe、Co、Ni、Mn等が使用される。正極活物質に使用される無機化合物の具体例としては、LiCoO2、LiNiO2、LiMnO2、LiMn24、LiFePO4、LiFeVO4などのリチウム含有複合金属酸化物;TiS2、TiS3、非晶質MoS2等の遷移金属硫化物;Cu223、非晶質V2O-P25、MoO3、V25、V613などの遷移金属酸化物が挙げられる。これらの化合物は、部分的に元素置換したものであってもよい。
 有機化合物からなる正極活物質としては、例えば、ポリアニリン、ポリピロール、ポリアセン、ジスルフィド系化合物、ポリスルフィド系化合物、N-フルオロピリジニウム塩などが挙げられる。正極活物質は、上記の無機化合物と有機化合物の混合物であってもよい。
 本発明で用いる正極活物質の平均粒子径は、負荷特性、サイクル特性などの電池特性の向上の観点、また、充放電容量が大きい全固体二次電池を得ることができ、かつ正極活物質層用スラリー組成物の取扱い、および正極を製造する際の取扱いが容易である観点から、通常0.1~50μm、好ましくは1~20μmである。平均粒子径は、レーザー回折で粒度分布を測定することにより求めることができる。
 (固体電解質粒子)
 固体電解質粒子は、固体電解質層において例示したものと同じものを用いることができる。
 正極活物質と固体電解質粒子との重量比率は、好ましくは正極活物質:固体電解質粒子=90:10~50:50、より好ましくは正極活物質:固体電解質粒子=60:40~80:20である。正極活物質の重量比率が上記範囲であると、正極活物質の重量比率が過度に少ないために、電池内の正極活物質量が低減し、電池としての容量低下につながる、という現象を抑えることができ、また、固体電解質粒子の重量比率が上記範囲であると、固体電解質粒子の重量比率が過度に少ないために、導電性が十分に得られず、正極活物質を有効に利用することができない為、電池としての容量低下につながる、という現象を抑えることができる。
 (正極用バインダー)
 正極用バインダーとしては、固体電解質層で例示したものを用いることができる。
 正極活物質層用スラリー組成物中の正極用バインダーの含有量は、電池反応を阻害せずに、電極から正極活物質が脱落するのを防ぐことができる観点から、正極活物質100質量部に対して、好ましくは0.1~5質量部、より好ましくは0.2~4質量部である。
 正極活物質層用スラリー組成物中の有機溶媒及び必要に応じて添加される他の成分は、上記の固体電解質層で例示するものと同様のものを用いることができる。正極活物質層用スラリー組成物中の有機溶媒の含有量は、固体電解質の分散性を保持しながら、良好な塗料特性を得ることができる観点から、正極活物質100質量部に対して、好ましくは20~80質量部、より好ましくは30~70質量部である。
 正極活物質層用スラリー組成物は、上記成分の他に、必要に応じて添加される他の成分として、導電剤、補強材などの各種の機能を発現する添加剤を含んでいてもよい。これらは電池反応に影響を及ぼさないものであれば特に限られない。
 (導電剤)
 導電剤は、導電性を付与できるものであれば特に制限されないが、通常、アセチレンブラック、カーボンブラック、黒鉛などの炭素粉末、各種金属のファイバーや箔などが挙げられる。
 (補強材)
 補強材としては、各種の無機および有機の球状、板状、棒状または繊維状のフィラーが使用できる。
 (3)負極活物質層
 負極活物質層は負極活物質を含む。
 (負極活物質)
 負極活物質としては、グラファイトやコークス等の炭素の同素体が挙げられる。前記炭素の同素体からなる負極活物質は、金属、金属塩、酸化物などとの混合体や被覆体の形態で利用することも出来る。また、負極活物質としては、ケイ素、錫、亜鉛、マンガン、鉄、ニッケル等の酸化物や硫酸塩、金属リチウム、Li-Al、Li-Bi-Cd、Li-Sn-Cd等のリチウム合金、リチウム遷移金属窒化物、シリコン等を使用できる。金属材料の場合は金属箔または金属板をそのまま電極として用いることができるが、粒子状でも良い。
 この場合、負極活物質層は、負極活物質、固体電解質粒子及び負極用バインダーを含む負極活物質層用スラリー組成物を、後述する集電体表面に塗布し、乾燥することにより形成される。負極活物質層用スラリー組成物は、負極活物質、固体電解質粒子、負極用バインダー、有機溶媒及び必要に応じて添加される他の成分を混合することにより製造される。なお、負極活物質層用スラリー組成物中の固体電解質粒子、有機溶媒及び必要に応じて添加される他の成分は、上記の正極活物質層で例示するものと同様のものを用いることができる。
 負極活物質が粒子状の場合、負極活物質の平均粒子径は、初期効率、負荷特性、サイクル特性などの電池特性の向上の観点から、通常1~50μm、好ましくは15~30μmである。
 負極活物質と固体電解質粒子との重量比率は、好ましくは負極活物質:固体電解質粒子=90:10~50:50、より好ましくは負極活物質:固体電解質粒子=60:40~80:20である。負極活物質の重量比率が上記範囲であると、負極活物質の重量比率が過度に少ないために、電池内の負極活物質量が低減し、電池としての容量低下につながる、という現象を抑えることができ、また、固体電解質粒子の重量比率が上記範囲であると、固体電解質粒子の重量比率が過度に少ないために、導電性が十分に得られず、負極活物質を有効に利用することができない為、電池としての容量低下につながる、という現象を抑えることができる。
 (負極用バインダー)
 負極活物質が粒子状の場合、負極用バインダーとしては、固体電解質層で例示したものを用いることができる。
 負極活物質が粒子状の場合、負極活物質層用スラリー組成物中の負極用バインダーの含有量は、電池反応を阻害せずに、電極から電極活物質が脱落するのを防ぐ観点から、負極活物質100質量部に対して、好ましくは0.1~5質量部、より好ましくは0.2~4質量部である。
 (集電体)
 正極活物質層及び負極活物質層の形成に用いる集電体は、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されないが、耐熱性を有する観点から、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などの金属材料が好ましい。中でも、正極用としてはアルミニウムが特に好ましく、負極用としては銅が特に好ましい。集電体の形状は特に制限されないが、厚さ0.001~0.5mm程度のシート状のものが好ましい。集電体は、上述した正・負極活物質層との接着強度を高めるため、予め粗面化処理して使用するのが好ましい。粗面化方法としては、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用される。また、集電体と正・負極活物質層との接着強度や導電性を高めるために、集電体表面に中間層を形成してもよい。
 (固体電解質層用スラリー組成物の製造)
 固体電解質層用スラリー組成物は、上述した固体電解質粒子、バインダー、有機溶媒及び必要に応じて添加される他の成分を混合して得られる。
 (正極活物質層用スラリー組成物の製造)
 正極活物質層用スラリー組成物は、上述した正極活物質、固体電解質粒子、正極用バインダー、有機溶媒及び必要に応じて添加される他の成分を混合して得られる。
 (負極活物質層用スラリー組成物の製造)
 負極活物質層用スラリー組成物は、上述した負極活物質、固体電解質粒子、負極用バインダー、有機溶媒及び必要に応じて添加される他の成分を混合して得られる。
 上記のスラリー組成物の混合法は特に限定はされないが、例えば、撹拌式、振とう式、および回転式などの混合装置を使用した方法が挙げられる。また、ホモジナイザー、ボールミル、ビーズミル、プラネタリーミキサー、サンドミル、ロールミル、および遊星式混練機などの分散混練装置を使用した方法が挙げられ、固体電解質粒子の凝集を抑制できるという観点からプラネタリーミキサー、ボールミル又はビーズミルを使用した方法が好ましい。
 (全固体二次電池)
 本発明の全固体二次電池は、正極活物質層を有する正極と、負極活物質層を有する負極と、これらの正負極活物質層間に固体電解質層とを有する。固体電解質層の厚さが2~20μm、好ましくは3~15μm、より好ましくは5~12μmである。固体電解質層の厚さが上記範囲にあることで、全固体二次電池の内部抵抗を小さくすることができる。固体電解質層の厚さが薄すぎると、全固体二次電池がショートしやすくなる。また、固体電解質層の厚さが厚すぎると、電池の内部抵抗が大きくなる。
 本発明の全固体二次電池における正極は、上記の正極活物質層用スラリー組成物を集電体上に塗布、乾燥して正極活物質層を形成して製造される。また、本発明の全固体二次電池における負極は、金属箔を用いる場合はそのまま用いることができる。負極活物質が粒子状である場合は、上記の負極活物質層用スラリー組成物を、正極の集電体とは別の集電体上に塗布、乾燥して負極活物質層を形成して製造される。次いで、形成した正極活物質層または負極活物質層の上に、固体電解質層用スラリー組成物を塗布し、乾燥して固体電解質層を形成する。そして、固体電解質層を形成しなかった電極と、上記の固体電解質層を形成した電極とを貼り合わせることで、全固体二次電池素子を製造する。
 正極活物質層用スラリー組成物および負極活物質層用スラリー組成物の集電体への塗布方法は特に限定されず、例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗りなどによって塗布される。塗布する量も特に制限されないが、有機溶媒を除去した後に形成される活物質層の厚さが通常5~300μm、好ましくは10~250μmになる程度の量である。乾燥方法も特に制限されず、例えば温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥が挙げられる。乾燥条件は、通常は応力集中が起こって活物質層に亀裂が入ったり、活物質層が集電体から剥離しない程度の速度範囲の中で、できるだけ早く有機溶媒が揮発するように調整する。更に、乾燥後の電極をプレスすることにより電極を安定させてもよい。プレス方法は、金型プレスやカレンダープレスなどの方法が挙げられるが、限定されるものではない。
 乾燥温度は、有機溶媒が十分に揮発する温度で行う。具体的には、正・負極用バインダーの熱分解なく良好な活物質層を形成することが可能となる観点から、50~250℃が好ましく、さらには80~200℃が好ましい。乾燥時間については、特に限定されることはないが、通常10~60分の範囲で行われる。
 固体電解質層用スラリー組成物を、正極活物質層又は負極活物質層へ塗布する方法は特に限定されず、上述した正極活物質層用スラリー組成物および負極活物質層用スラリー組成物の集電体への塗布方法と同様の方法により行われるが、薄膜の固体電解質層を形成できるという観点からグラビア法が好ましい。塗布する量も特に制限されないが、有機溶媒を除去した後に形成される固体電解質層の厚さが通常2~20μm、好ましくは3~15μmになる程度の量である。乾燥方法、乾燥条件及び乾燥温度も、上述の正極活物質層用スラリー組成物および負極活物質層用スラリー組成物と同様である。
 更に、上記の固体電解質層を形成した電極と固体電解質層を形成しなかった電極とを貼り合わせた積層体を、加圧してもよい。加圧方法としては特に限定されず、例えば、平板プレス、ロールプレス、CIP(Cold Isostatic Press)などが挙げられる。加圧プレスする圧力としては、電極と固体電解質層との各界面における抵抗、更には各層内の粒子間の接触抵抗が低くなり良好な電池特性を示す観点から、好ましくは5~700MPa、より好ましくは7~500MPaである。なお、プレスにより固体電解質層および活物質層は圧縮され、プレス前よりも厚みが薄くなることがある。プレスを行う場合、本発明における固体電解質層および活物質層の厚みは、プレス後の厚みが前記範囲にあればよい。
 正極活物質層または負極活物質層のどちらに固体電解質層用スラリー組成物を塗布するかは特に限定されないが、使用する電極活物質の粒子径が大きい方の活物質層に固体電解質層用スラリー組成物を塗布することが好ましい。電極活物質の粒子径が大きいと、活物質層表面に凹凸が形成されるため、スラリー組成物を塗布することで、活物質層表面の凹凸を緩和することができる。そのため、固体電解質層を形成した電極と固体電解質層を形成しなかった電極とを貼り合わせて積層する際に、固体電解質層と電極との接触面積が大きくなり、界面抵抗を抑制することができる。
 得られた全固体二次電池素子を、電池形状に応じてそのままの状態又は巻く、折るなどして電池容器に入れ、封口して全固体二次電池が得られる。また、必要に応じてエキスパンドメタルや、ヒューズ、PTC素子などの過電流防止素子、リード板などを電池容器に入れ、電池内部の圧力上昇、過充放電の防止をする事もできる。電池の形状は、コイン型、ボタン型、シート型、円筒型、角形、扁平型など何れであってもよい。
 以下に、実施例を挙げて本発明を説明するが、本発明はこれらの実施例によりなんら限定されるものではない。各特性は、以下の方法により評価する。なお、本実施例における「部」および「%」は、特に断りのない限り、それぞれ、「質量部」および「質量%」である。
 <固体電解質層の厚さ測定>
 JIS K5600-1-7:1999に準じて、プレス後の全固体二次電池固体電解質層断面を走査型電子顕微鏡(日立ハイテクフィールディング社製 S-4700)を用いて5000倍で電解質層膜厚をランダムに10点計測し、その平均値から算出した。
 <粒子径測定>
 JIS Z8825-1:2001に準じて、レーザー解析装置(島津製作所社製 レーザー回折式粒度分布測定装置 SALD-3100)により累積粒度分布の微粒側からの累積50%の粒子径(個数平均粒子径)を測定した。
 <電池特性:出力特性>
 実施例1~3、比較例1および比較例2については、5セルの全固体二次電池を0.1Cの定電流法によって4.3Vまで充電しその後0.1Cにて3.0Vまで放電し、0.1C放電容量aを求めた。その後0.1Cにて4.3Vまで充電しその後5Cにて3.0Vまで放電し、5C放電容量bを求めた。5セルの平均値を測定値とし、5C放電容量bと0.1C放電容量aの電気容量の比(b/a(%))で表される容量保持率を求めた。
 実施例4~8については、5セルの全固体二次電池を0.1Cの定電流法によって4.3Vまで充電しその後0.1Cにて3.0Vまで放電し、0.1C放電容量aを求めた。その後0.1Cにて4.3Vまで充電しその後10Cにて3.0Vまで放電し10C放電容量cを求めた。5セルの平均値を測定値とし、10C放電容量cと0.1C放電容量aの電気容量の比(c/a(%))で表される容量保持率を求めた。
 <電池特性:充放電サイクル特性>
 得られた全固体二次電池を用いて、それぞれ25℃で0.5Cの定電流定電圧充電法という方式で、4.2Vになるまで定電流で充電、その後定電圧で充電し、また0.5Cの定電流で3.0Vまで放電する充放電サイクルを行った。充放電サイクルは50サイクルまで行い、初期放電容量に対する50サイクル目の放電容量の比を容量維持率として求めた。この値が大きいほど繰り返し充放電による容量減が少ない、すなわち、内部抵抗が小さいことにより活物質、バインダーの劣化が抑制でき、充放電サイクル特性に優れることを示す。
 (実施例1)
 <粒子状ポリマーの製造>
 攪拌機付き5MPa耐圧容器に、エチルアクリレート30部、ブチルアクリレート70部、架橋剤としてのエチレングリコールジメタクリレート(EGDMA)1部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム1部、イオン交換水150部、および、重合開始剤としての過硫酸カリウム0.5部を添加し、十分に攪拌した後、70℃に加温して重合を開始した。重合転化率が96%になった時点で冷却を開始し反応を停止して、粒子状ポリマーの水分散液を得た。平均粒子径は0.24μmであった。
 そして、得られた水分散液に10wt%のNaOH水溶液を用いてpHを7に調整した。
 得られた粒子状ポリマーの水分散液の固形分濃度は38wt%であった。得られた水分散液100質量部に、シクロペンチルメチルエーテルを500質量部添加し、ロータリーエバポレーターで、ウオーターバスの温度を80℃で減圧し、溶媒交換及び脱水操作を行った。
 脱水操作により、水分濃度38ppm、固形分濃度7.5wt%の粒子状ポリマーの有機溶媒分散液を得た。
 <正極活物質層用スラリー組成物の製造>
 正極活物質としてコバルト酸リチウム(平均粒子径:11.5μm)100部と、固体電解質粒子としてLi2SとP25とからなる硫化物ガラス(Li2S/P25=70mol%/30mol%、個数平均粒子径:0.4μm)150部と、導電剤としてアセチレンブラック13部と、粒子状ポリマーのシクロペンチルメチルエーテル分散液を固形分相当で3部、ブチルアクリレートとエチルアクリレートを60/40で共重合したMw=150000のポリマー1部とを加え、さらに有機溶媒としてシクロペンチルメチルエーテルで固形分濃度78%に調整した後にプラネタリーミキサーで60分間混合した。さらにシクロペンチルメチルエーテルで固形分濃度74%に調整した後に10分間混合して正極活物質層用スラリー組成物を調製した。
 <負極活物質層用スラリー組成物の製造>
 負極活物質としてグラファイト(平均粒子径:20μm)100部と、固体電解質粒子としてLi2SとP25とからなる硫化物ガラス(Li2S/P25=70mol%/30mol%、個数平均粒子径:0.4μm)50部と、粒子状ポリマーのシクロペンチルメチルエーテル分散液を固形分相当で3部、ブチルアクリレートとエチルアクリレートを60/40で共重合したMw=150000のポリマー1部を混合し、さらに有機溶媒としてシクロペンチルメチルエーテルを加えて固形分濃度60%に調整した後にプラネタリーミキサーで混合して負極活物質層用スラリー組成物を調製した。
 <固体電解質層用スラリー組成物の製造>
 固体電解質粒子としてLi2SとP25とからなる硫化物ガラス(Li2S/P25=70mol%/30mol%、個数平均粒子径:1.2μm、累積90%の粒子径:2.1μm)100部と、粒子状ポリマーのシクロペンチルメチルエーテル分散液を固形分相当で3部と、ブチルアクリレートとエチルアクリレートを60/40で共重合したMw=150000のポリマー1部とを混合し、さらに有機溶媒としてシクロペンチルメチルエーテルを加えて固形分濃度30%に調整した後にプラネタリーミキサーで混合して固体電解質層用スラリー組成物を調製した。
 <全固体二次電池の製造>
 集電体表面に上記正極活物質層用スラリー組成物を塗布し、乾燥(110℃、20分)させて厚さが50μmの正極活物質層を形成して正極を製造した。また、別の集電体表面に上記負極活物質層用スラリー組成物を塗布し、乾燥(110℃、20分)させて厚さが30μmの負極活物質層を形成して負極を製造した。
 次いで、上記正極活物質層の表面に、上記固体電解質層用スラリー組成物を塗布し、乾燥(110℃、10分)させて厚さが18μmの固体電解質層を形成した。
 正極活物質層の表面に積層された固体電解質層と、上記負極の負極活物質層とを貼り合わせ、プレスして全固体二次電池を得た。プレス後の全固体二次電池の固体電解質層の厚さは11μmであった。この電池を用いて出力特性及び充放電サイクル特性を評価した。結果を表1に示す。
 (実施例2)
 下記の固体電解質粒子を用いたこと以外は、実施例1と同様に全固体二次電池を製造し、評価を行った。結果を表1に示す。
 実施例2においては、固体電解質粒子としてLi2SとP25とからなる硫化物ガラス(Li2S/P25=70mol%/30mol%、個数平均粒子径:0.8μm、累積90%の粒子径:1.8μm)を用いた。プレス前の固体電解質層の厚さは20μmでありプレス後の厚さは13μmであった。
 (実施例3)
 粒子状ポリマーとして、以下のポリマーを用いたこと以外は、実施例1と同様に測定した。結果を表1に示す。
 攪拌機付き5MPa耐圧容器に、ブチルアクリレート20部、2-エチルヘキシルアクリレート60部、スチレン20部、架橋剤としてのジビニルベンゼン(DVB)1部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム1部、イオン交換水150部、および、重合開始剤としての過硫酸カリウム0.5部を添加し、十分に攪拌した後、70℃に加温して重合を開始した。重合転化率が96%になった時点で冷却を開始し反応を停止して、粒子状ポリマーの水分散液を得た。平均粒子径は0.28μmであった。
 そして、得られた水分散液に10wt%のNaOH水溶液を用いてpHを7に調整した。
 得られた粒子状ポリマーの水分散液の固形分濃度は38wt%であった。得られた水分散液100質量部に、シクロペンチルメチルエーテルを500質量部添加し、ロータリーエバポレーターで、ウオーターバスの温度を80℃で減圧し、溶媒交換及び脱水操作を行った。
 脱水操作により、水分濃度21ppm、固形分濃度8.5wt%の粒子状ポリマーの有機溶媒分散液を得た。上記粒子状ポリマーを用い、実施例1と同様に固体電解質層を作製した。プレス前の固体電解質層の厚さは20μmでありプレス後の厚さは18μmであった。
 (比較例1)
 実施例1の粒子状ポリマーについて、架橋剤を添加しないで同様に重合した。得られた粒子状ポリマーの平均粒子径は0.32μmであった。この粒子状ポリマーをシクロペンチルメチルエーテルに溶媒交換し、粒子状ポリマーが溶解した、粒子を含まないポリマー溶液を得た。このポリマー溶液を用いて固体電解質層を作製した。プレス前の固体電解質層の厚さは33μmでありプレス後の厚さは25μmであった。上記ポリマーを用いて実施例1と同様に電池を作製し、試験を行った。結果を表1に示す。
 (比較例2)
 実施例3の粒子状ポリマーについて、架橋剤を添加しないで同様に重合した。得られた粒子状ポリマーの平均粒子径は0.28μmであった。この粒子状ポリマーをシクロペンチルメチルエーテルに溶媒交換し、粒子状ポリマーが溶解した、粒子を含まないポリマー溶液を得た。このポリマー溶液を用いて固体電解質層を作製した。プレス前の固体電解質層の厚さは33μmでありプレス後の厚さは12μmであった。上記ポリマーを用いて実施例3と同様に電池を作製し、試験を行った。結果を表1に示す。
 (実施例4)
 <ゲル構造を有する粒子状ポリマーの製造>
 攪拌機付きガラス容器に、エチルアクリレート55部、ブチルアクリレート45部、架橋剤としてのエチレングリコールジメタクリレート1部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム1部、イオン交換水150部、および、重合開始剤としての過硫酸カリウム0.5部を添加し、十分に攪拌した後、70℃に加温して重合を開始した。重合転化率が96%になった時点で冷却を開始し反応を停止して、ゲル構造を有する粒子状ポリマーの水分散液を得た。平均粒子径は0.26μmであった。
 そして、得られた水分散液に10wt%のNaOH水溶液を用いてpHを7に調整した。
 得られたポリマーの水分散液を、PTFE製シャーレを用いて乾燥させて、フィルムを作製した。得られたフィルムをTHFに24時間浸漬したのち、200メッシュのSUS金網で濾過した。濾過後の金網を100℃で1時間乾燥し、金網の重量増加分のフィルムの重量で割った値をゲル分率とすると、ゲル分率は95wt%であった。
 重合反応終了後、pHを7に調整したポリマーの水分散液に対しては、未反応単量体及び溶媒を水から有機溶媒に交換するため、キシレンをポリマーの固形分100質量部に対して500質量部添加して加熱減圧蒸留を行い、ゲル構造を有する粒子状ポリマーのキシレン分散液を得た。
 <ゲル構造を有しないポリマーの製造>
 攪拌機付き5MPa耐圧容器に、エチルアクリレート55部、ブチルアクリレート45部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム1部、イオン交換水150部、および、重合開始剤としての過硫酸カリウム0.5部を添加し、十分に攪拌した後、70℃に加温して重合を開始した。重合転化率が97%になった時点で冷却を開始し反応を停止して、ポリマーの水分散液を得た。
 そして、得られた水分散液に10wt%のNaOH水溶液を用いてpHを7に調整した。
 次いで、未反応単量体及び溶媒を水から有機溶媒に交換するため、キシレンをポリマーの固形分100質量部に対して500質量部添加して加熱減圧蒸留を行い、ゲル構造を有しないポリマーのキシレン溶液を得た。
 <正極活物質層用スラリー組成物の製造>
 正極活物質としてコバルト酸リチウム(平均粒子径:11.5μm)100部と、固体電解質粒子としてLi2SとP25とからなる硫化物ガラス(Li2S/P25=70 mol%/30mol%、粒子径が0.1μm以上、1.0μm未満の割合が35%、粒子径が1.0μm以上、20μm未満の割合が65%、平均粒子径が2.2μm)150部と、導電剤としてアセチレンブラック13部と、正極用バインダーとして上述のゲル構造を有する粒子状ポリマーのキシレン分散液を固形分相当で2部と、ゲル構造を有しないポリマーのキシレン溶液を固形分相当で1部とを加え、さらに有機溶媒としてキシレンで固形分濃度78%に調整した後にプラネタリーミキサーで60分混合した。さらにキシレンで固形分濃度74%に調整した後に10分間混合して正極活物質層用スラリー組成物を調製した。
 <負極活物質層用スラリー組成物の製造>
 負極活物質としてグラファイト(平均粒子径:20μm)100部と、固体電解質粒子としてLi2SとP25とからなる硫化物ガラス(Li2S/P25=70mol%/30mol%、粒子径が0.1μm以上、1.0μm未満の割合が35%、粒子径が1.0μm以上、20μm未満の割合が65%、平均粒子径が2.2μm)50部と、負極用バインダーとして上述のゲル構造を有する粒子状ポリマーのキシレン分散液を固形分相当で2部と、ゲル構造を有しないポリマーのキシレン溶液を固形分相当で1部とを加え、さらに有機溶媒としてキシレンを加えて固形分濃度60%に調整した後にプラネタリーミキサーで混合して負極活物質層用スラリー組成物を調製した。
 <固体電解質層用スラリー組成物の製造>
 固体電解質粒子として、Li2SとP25とからなる硫化物ガラス(Li2S/P25=70mol%/30mol%、粒子径が0.1μm以上、1.0μm未満の割合が35%、1.0μm以上、20μm未満の割合が65%、平均粒子径が2.2μm)100部と、バインダーとして上述のゲル構造を有する粒子状ポリマーのキシレン分散液を固形分相当で2部と、ゲル構造を有しないポリマーのキシレン溶液を固形分相当で1部とを加え、さらに有機溶媒としてキシレンを加えて固形分濃度30%に調整した後にプラネタリーミキサーで混合して固体電解質層用スラリー組成物を調製した。
 <全固体二次電池の製造>
 集電体表面に上記正極活物質層用スラリー組成物を塗布し、乾燥(110℃、20分)させて厚さが50μmの正極活物質層を形成して正極を製造した。また、別の集電体表面に上記負極活物質層用スラリー組成物を塗布し、乾燥(110℃、20分)させて厚さが30μmの負極活物質層を形成して負極を製造した。
 次いで、上記正極活物質層の表面に、上記固体電解質層用スラリー組成物を塗布し、乾燥(110℃、10分)させて厚さが11μmの固体電解質層を形成した。
 正極活物質層の表面に積層された固体電解質層と、上記負極の負極活物質層とを貼り合わせ、プレスして全固体二次電池を得た。プレス後の全固体二次電池の固体電解質層の厚さは9μmであった。この電池を用いて出力特性及び充放電サイクル特性を評価した。結果を表2に示す。
 (実施例5)
 以下で得られた固体電解質層用スラリー組成物を用いたこと以外は、実施例4と同様に全固体二次電池を製造し、評価を行った。なお、プレス後の全固体二次電池の固体電解質層の厚さは7μmであった。結果を表2に示す。
 <固体電解質層用スラリー組成物の製造>
 固体電解質粒子としてLi2SとP25とからなる硫化物ガラス(Li2S/P25=70mol%/30mol%、粒子径が0.1μm以上、1.0μm未満の割合が15%、1.0μm以上、20μm未満の割合が85%、平均粒子径が3.5μm)100部と、バインダーとして実施例4のゲル構造を有する粒子状ポリマーのキシレン分散液を固形分相当で2部と、ゲル構造を有しないポリマーのキシレン溶液を固形分相当で1部とを加え、さらに有機溶媒としてキシレンを加えて固形分濃度30%に調整した後にプラネタリーミキサーで混合して実施例5の固体電解質層用スラリー組成物を調製した。固体電解質層用スラリー組成物の粘度は、100mPa・sであった。
 (実施例6)
 以下で得られた固体電解質用スラリー組成物を用い、全固体二次電池の製造において、厚さが18μmの固体電解質層を形成したこと以外は、実施例4と同様に全固体二次電池を製造し、評価を行った。なお、プレス後の全固体二次電池の固体電解質層の厚さは14μmであった。結果を表2に示す。
 <固体電解質層用スラリー組成物の製造>
 固体電解質粒子としてLi2SとP25とからなる硫化物ガラス(Li2S/P25=70mol%/30mol%、粒子径が0.1μm以上、1.0μm未満の割合が20%、1.0μm以上、20μm未満の割合が80%、平均粒子径が3.3μm)100部と、バインダーとして実施例4のゲル構造を有する粒子状ポリマーのキシレン分散液を固形分相当で2部と、ゲル構造を有しないポリマーのキシレン溶液を固形分相当で5部とを加え、さらに有機溶媒としてキシレンを加えて固形分濃度35%に調整した後にプラネタリーミキサーで混合して実施例6の固体電解質層用スラリー組成物を調製した。
 (実施例7)
 ゲル構造を有する粒子状ポリマーの製造において、モノマーを2-エチルヘキシルアクリレート70部およびスチレン30部に変更したこと以外は実施例4同様にゲル構造を有する粒子状ポリマーを製造した。平均粒子径は0.25μmであった。なお、このポリマーのゲル分率は93wt%であった。また、固体電解質層用スラリー組成物の製造において、バインダーとして、このゲル構造を有する粒子状ポリマーのキシレン分散液を固形分相当で2部と、実施例4に用いたものと同様のゲル構造を有しないポリマーのキシレン溶液を固形分相当で1部とを用いたこと、および固形分濃度を30%に調整したこと以外は実施例6と同様に固体電解質層用スラリー組成物を調製した。得られた固体電解質層用スラリー組成物を用いて、実施例6と同様に全固体二次電池を製造し、評価を行った。なお、プレス後の全固体二次電池の固体電解質層の厚さは12μmであった。結果を表2に示す。
 (実施例8)
 固体電解質層用スラリー組成物の製造において、バインダーとして、実施例7に用いたものと同様のゲル構造を有する粒子状ポリマーのキシレン分散液を固形分相当で2部と、実施例4に用いたものと同様のゲル構造を有しないポリマーのキシレン溶液を固形分相当で3部とを用いたこと以外は実施例7と同様に固体電解質層用スラリー組成物を調製した。得られた固体電解質層用スラリー組成物を用いて、実施例7と同様に全固体二次電池を製造し、評価を行った。なお、プレス後の全固体二次電池の固体電解質層の厚さは11μmであった。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表1および表2に示すように正極活物質層を有する正極と、負極活物質層を有する負極と、これらの正負極活物質層間に固体電解質層とを有する全固体二次電池であって、前記固体電解質層の厚さは、2~20μmであり、前記固体電解質層は、平均粒子径が0.1~1μmである粒子状ポリマーを含むバインダーを含有する、全固体二次電池の出力特性および充放電サイクル特性は良好であった。

Claims (7)

  1.  正極活物質層を有する正極と、負極活物質層を有する負極と、これらの正負極活物質層間に固体電解質層とを有する全固体二次電池であって、
     前記固体電解質層の厚さは、2~20μmであり、
     前記固体電解質層は、平均粒子径が0.1~1μmである粒子状ポリマーを含むバインダーを含有する、全固体二次電池。
  2.  前記粒子状ポリマーが有機溶媒に分散してなるバインダー組成物を用いることにより得られる請求項1に記載の全固体二次電池。
  3.  前記固体電解質層は、固体電解質粒子を含み、前記固体電解質粒子は、粒子径が0.1μm以上、1.0μm未満の粒子を10~40wt%、粒子径が1.0μm以上、20μm未満の粒子を60~90wt%含む請求項1または2に記載の全固体二次電池。
  4.  前記粒子状ポリマーは、ゲル構造を有する請求項1~3の何れかに記載の全固体二次電池。
  5.  前記固体電解質粒子が、Li2SとP25とからなる硫化物ガラスである請求項3に記載の全固体二次電池。
  6.  前記バインダーは、前記粒子状ポリマーを10~90wt%含む請求項1~5の何れかに記載の全固体二次電池。
  7.  前記粒子状ポリマーが、(メタ)アクリレートから導かれるモノマー単位を含むアクリレート系ポリマーである請求項1~6の何れかに記載の全固体二次電池。
PCT/JP2016/053185 2015-03-25 2016-02-03 全固体二次電池 WO2016152262A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PL16768165T PL3276734T3 (pl) 2015-03-25 2016-02-03 Bateria wtórna typu all solid
CN201680008768.0A CN107210482B (zh) 2015-03-25 2016-02-03 全固体二次电池
EP16768165.9A EP3276734B1 (en) 2015-03-25 2016-02-03 All-solid secondary battery
KR1020177021927A KR20170129691A (ko) 2015-03-25 2016-02-03 전고체 이차전지
KR1020237006257A KR20230034420A (ko) 2015-03-25 2016-02-03 전고체 이차전지
US15/556,981 US10797304B2 (en) 2015-03-25 2016-02-03 All-solid-state secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015062298A JP2016181472A (ja) 2015-03-25 2015-03-25 全固体二次電池
JP2015-062298 2015-03-25
JP2015-062297 2015-03-25
JP2015062297A JP6459691B2 (ja) 2015-03-25 2015-03-25 全固体二次電池

Publications (1)

Publication Number Publication Date
WO2016152262A1 true WO2016152262A1 (ja) 2016-09-29

Family

ID=56977075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053185 WO2016152262A1 (ja) 2015-03-25 2016-02-03 全固体二次電池

Country Status (7)

Country Link
US (1) US10797304B2 (ja)
EP (1) EP3276734B1 (ja)
KR (2) KR20170129691A (ja)
CN (1) CN107210482B (ja)
HU (1) HUE051861T2 (ja)
PL (1) PL3276734T3 (ja)
WO (1) WO2016152262A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019097906A1 (ja) * 2017-11-17 2019-05-23 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート、全固体二次電池用電極シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
WO2019097903A1 (ja) * 2017-11-17 2019-05-23 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
CN110226255A (zh) * 2017-01-24 2019-09-10 日立造船株式会社 全固态电池及其制造方法
WO2020045306A1 (ja) 2018-08-31 2020-03-05 日本ゼオン株式会社 全固体二次電池用スラリー組成物、固体電解質含有層および全固体二次電池
WO2020066952A1 (ja) 2018-09-28 2020-04-02 日本ゼオン株式会社 全固体二次電池用バインダー組成物、全固体二次電池用スラリー組成物、固体電解質含有層および全固体二次電池
WO2020066951A1 (ja) 2018-09-28 2020-04-02 日本ゼオン株式会社 全固体二次電池用バインダー組成物、全固体二次電池用スラリー組成物、固体電解質含有層および全固体二次電池
CN111213275A (zh) * 2017-11-17 2020-05-29 富士胶片株式会社 固体电解质组合物、全固态二次电池用片材、全固态二次电池用电极片及全固态二次电池、以及全固态二次电池用片材及全固态二次电池的制造方法
WO2020241691A1 (ja) 2019-05-28 2020-12-03 株式会社クレハ 全固体電池及びその製造方法
EP3696886A4 (en) * 2017-10-12 2020-12-23 FUJIFILM Corporation SOLID ELECTROLYTE COMPOSITION, SHEET CONTAINING SOLID ELECTROLYTE, FULLY SOLID SECONDARY BATTERY, AND PROCESSES FOR THE PRODUCTION OF SHEET CONTAINING SOLID ELECTROLYTE AND FULLY SOLID SECONDARY BATTERY
CN113479074A (zh) * 2021-06-22 2021-10-08 东风柳州汽车有限公司 电池包结构、检测系统及车辆
WO2021210315A1 (ja) * 2020-04-16 2021-10-21 古河機械金属株式会社 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
US20220085376A1 (en) * 2019-01-30 2022-03-17 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
WO2023053929A1 (ja) * 2021-09-30 2023-04-06 Agc株式会社 固体電解質粉末、固体電解質層、及びリチウムイオン全固体電池

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11145866B2 (en) * 2016-09-06 2021-10-12 Zeon Corporation Binder composition for all-solid-state battery, slurry composition for all-solid-state battery, electrode for all-solid-state battery, and all-solid-state battery
CN111433961B (zh) 2017-12-15 2023-08-08 日本瑞翁株式会社 全固体二次电池用粘结剂组合物、功能层和二次电池
KR102484902B1 (ko) * 2017-12-27 2023-01-04 현대자동차주식회사 전고체 전지
CN111512487B (zh) * 2018-02-05 2024-03-26 富士胶片株式会社 含固体电解质的片材、全固态二次电池、电极片、电子设备及电动汽车及这些的制造方法
CN108336402B (zh) * 2018-05-13 2020-07-07 清陶(昆山)能源发展有限公司 一种陶瓷基复合固态电解质及其制备方法
JP7132327B2 (ja) * 2018-05-31 2022-09-06 富士フイルム株式会社 易接着層付集電体を用いた電極、全固体二次電池、電子機器及び電気自動車、並びに、電極及び全固体二次電池の製造方法
EP3846264A4 (en) * 2018-08-31 2022-06-15 Zeon Corporation Binding composition for a solid -state sectoral battery, inflammation composition for an electrode mixing layer of a solid -colored sectoral battery, inflammation composition for a solid electrolyyday layer of a solid -colored salary battery, electrode for solid -colored salicry, fixed electrolystic layer for solid body older battery
WO2021081394A1 (en) * 2019-10-24 2021-04-29 Urban Electric Power Inc. Dual electrolyte approach for high voltage batteries
US20220037649A1 (en) * 2020-07-29 2022-02-03 Samsung Electronics Co., Ltd. All solid-state lithium-ion cathode
CN112803064B (zh) * 2021-02-02 2022-08-30 中国科学院青岛生物能源与过程研究所 一种硫化物复合固态电解质膜、制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099315A (ja) * 2010-11-01 2012-05-24 Sumitomo Electric Ind Ltd 全固体リチウム電池用正極とその製造方法および全固体リチウム電池
WO2012173089A1 (ja) * 2011-06-17 2012-12-20 日本ゼオン株式会社 全固体二次電池
JP2013008611A (ja) * 2011-06-27 2013-01-10 Nippon Zeon Co Ltd 全固体二次電池
JP2013157084A (ja) * 2012-01-26 2013-08-15 Toyota Motor Corp 全固体電池

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670906B2 (ja) 1983-02-16 1994-09-07 三洋電機株式会社 固体電解質電池
CA2215849A1 (en) * 1997-09-11 1999-03-11 Christophe Michot New solvent and electrolytic composition with high conductivity and wide stability range
JP3959915B2 (ja) * 1999-12-27 2007-08-15 ソニー株式会社 非水電解液電池
CN1529917A (zh) * 2001-04-10 2004-09-15 三菱麻铁里亚尔株式会社 锂离子聚合物二次电池、该电池用电极及用于该电池的粘合层的粘结剂中的高分子化合物的合成方法
JP4134617B2 (ja) 2001-07-23 2008-08-20 日本ゼオン株式会社 高分子固体電解質用組成物の製造方法、高分子固体電解質の製造方法および電池の製造方法
JP2009176484A (ja) 2008-01-22 2009-08-06 Idemitsu Kosan Co Ltd 全固体リチウム二次電池用正極及び負極、並びに全固体リチウム二次電池
JP5403925B2 (ja) 2008-03-04 2014-01-29 出光興産株式会社 固体電解質及びその製造方法
WO2011105574A1 (ja) 2010-02-26 2011-09-01 日本ゼオン株式会社 全固体二次電池及び全固体二次電池の製造方法
KR20110105574A (ko) 2010-03-19 2011-09-27 삼성전자주식회사 휴대용 단말기의 표시 장치 및 방법
US8519525B2 (en) * 2010-07-29 2013-08-27 Alpha & Omega Semiconductor, Inc. Semiconductor encapsulation and method thereof
KR101953399B1 (ko) * 2010-09-13 2019-05-22 더 리전츠 오브 더 유니버시티 오브 캘리포니아 이온성 겔 전해질, 에너지 저장 장치, 및 이의 제조 방법
US8735001B2 (en) * 2011-04-08 2014-05-27 Empire Technology Development Llc Gel formed battery
US9455471B2 (en) * 2012-03-28 2016-09-27 Zeon Corporation Electrode for all solid-state secondary battery and method for producing same
EP3352278A4 (en) 2015-09-16 2019-02-13 Zeon Corporation SOLID SECONDARY BATTERY

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099315A (ja) * 2010-11-01 2012-05-24 Sumitomo Electric Ind Ltd 全固体リチウム電池用正極とその製造方法および全固体リチウム電池
WO2012173089A1 (ja) * 2011-06-17 2012-12-20 日本ゼオン株式会社 全固体二次電池
JP2013008611A (ja) * 2011-06-27 2013-01-10 Nippon Zeon Co Ltd 全固体二次電池
JP2013157084A (ja) * 2012-01-26 2013-08-15 Toyota Motor Corp 全固体電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3276734A4 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110226255A (zh) * 2017-01-24 2019-09-10 日立造船株式会社 全固态电池及其制造方法
US11876171B2 (en) 2017-01-24 2024-01-16 Hitachi Zosen Corporation All-solid-state battery and production method of the same
EP3696886A4 (en) * 2017-10-12 2020-12-23 FUJIFILM Corporation SOLID ELECTROLYTE COMPOSITION, SHEET CONTAINING SOLID ELECTROLYTE, FULLY SOLID SECONDARY BATTERY, AND PROCESSES FOR THE PRODUCTION OF SHEET CONTAINING SOLID ELECTROLYTE AND FULLY SOLID SECONDARY BATTERY
US11552331B2 (en) 2017-11-17 2023-01-10 Fujifilm Corporation Solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, method of manufacturing solid electrolyte-containing sheet, and method of manufacturing all-solid state secondary
WO2019097903A1 (ja) * 2017-11-17 2019-05-23 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
CN111213275B (zh) * 2017-11-17 2023-12-22 富士胶片株式会社 固体电解质组合物、电池、片材、电极片及相关制造方法
CN111213275A (zh) * 2017-11-17 2020-05-29 富士胶片株式会社 固体电解质组合物、全固态二次电池用片材、全固态二次电池用电极片及全固态二次电池、以及全固态二次电池用片材及全固态二次电池的制造方法
JPWO2019097906A1 (ja) * 2017-11-17 2020-10-22 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート、全固体二次電池用電極シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
US11563235B2 (en) * 2017-11-17 2023-01-24 Fujifilm Corporation Solid electrolyte composition, sheet for all-solid state secondary battery, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, method of manufacturing sheet for all-solid state secondary battery, and method of manufacturing all-solid state secondary battery
WO2019097906A1 (ja) * 2017-11-17 2019-05-23 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート、全固体二次電池用電極シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
US11552332B2 (en) 2017-11-17 2023-01-10 Fujifilm Corporation Solid electrolyte composition, solid electrolyte-containing sheet, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, method of manufacturing solid electrolyte-containing sheet, and method of manufacturing all-solid state secondary battery
WO2020045306A1 (ja) 2018-08-31 2020-03-05 日本ゼオン株式会社 全固体二次電池用スラリー組成物、固体電解質含有層および全固体二次電池
KR20210060481A (ko) 2018-09-28 2021-05-26 니폰 제온 가부시키가이샤 전고체 이차 전지용 바인더 조성물, 전고체 이차 전지용 슬러리 조성물, 고체 전해질 함유층 및 전고체 이차 전지
KR20210062008A (ko) 2018-09-28 2021-05-28 니폰 제온 가부시키가이샤 전고체 이차 전지용 바인더 조성물, 전고체 이차 전지용 슬러리 조성물, 고체 전해질 함유층 및 전고체 이차 전지
WO2020066951A1 (ja) 2018-09-28 2020-04-02 日本ゼオン株式会社 全固体二次電池用バインダー組成物、全固体二次電池用スラリー組成物、固体電解質含有層および全固体二次電池
WO2020066952A1 (ja) 2018-09-28 2020-04-02 日本ゼオン株式会社 全固体二次電池用バインダー組成物、全固体二次電池用スラリー組成物、固体電解質含有層および全固体二次電池
US20220085376A1 (en) * 2019-01-30 2022-03-17 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
WO2020241691A1 (ja) 2019-05-28 2020-12-03 株式会社クレハ 全固体電池及びその製造方法
WO2021210315A1 (ja) * 2020-04-16 2021-10-21 古河機械金属株式会社 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
JP7477602B2 (ja) 2020-04-16 2024-05-01 古河機械金属株式会社 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
CN113479074B (zh) * 2021-06-22 2022-12-13 东风柳州汽车有限公司 电池包结构、检测系统及车辆
CN113479074A (zh) * 2021-06-22 2021-10-08 东风柳州汽车有限公司 电池包结构、检测系统及车辆
WO2023053929A1 (ja) * 2021-09-30 2023-04-06 Agc株式会社 固体電解質粉末、固体電解質層、及びリチウムイオン全固体電池

Also Published As

Publication number Publication date
CN107210482A (zh) 2017-09-26
PL3276734T3 (pl) 2020-11-16
CN107210482B (zh) 2020-05-01
EP3276734A1 (en) 2018-01-31
KR20230034420A (ko) 2023-03-09
KR20170129691A (ko) 2017-11-27
US10797304B2 (en) 2020-10-06
EP3276734B1 (en) 2020-07-08
US20180062162A1 (en) 2018-03-01
EP3276734A4 (en) 2018-11-14
HUE051861T2 (hu) 2021-03-29

Similar Documents

Publication Publication Date Title
CN107210482B (zh) 全固体二次电池
JP5644851B2 (ja) 全固体二次電池及び全固体二次電池の製造方法
JP6834963B2 (ja) 全固体二次電池および全固体二次電池の製造方法
JP6459691B2 (ja) 全固体二次電池
JP5768815B2 (ja) 全固体二次電池
JP7017081B2 (ja) 全固体二次電池用バインダー、全固体二次電池用バインダーの製造方法および全固体二次電池
JP6384476B2 (ja) リチウムイオン二次電池用バインダー組成物、リチウムイオン二次電池用スラリー組成物、リチウムイオン二次電池用電極、リチウムイオン二次電池、並びにリチウムイオン二次電池用バインダー組成物の製造方法
CN109155414B (zh) 固体电解质电池用粘结剂组合物、及固体电解质电池用浆料组合物
WO2014051032A1 (ja) 全固体二次電池用スラリー、全固体二次電池用電極の製造方法、全固体二次電池用電解質層の製造方法及び全固体二次電池
WO2017033600A1 (ja) 全固体電池用バインダ組成物
WO2015111663A1 (ja) リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP2016181472A (ja) 全固体二次電池
CN111213254B (zh) 蓄电装置用粘接剂组合物、蓄电装置用功能层、蓄电装置和蓄电装置的制造方法
JPWO2020137435A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768165

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177021927

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15556981

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016768165

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE