WO2019131771A1 - 電極用バインダー、電極、及び蓄電デバイス - Google Patents

電極用バインダー、電極、及び蓄電デバイス Download PDF

Info

Publication number
WO2019131771A1
WO2019131771A1 PCT/JP2018/047876 JP2018047876W WO2019131771A1 WO 2019131771 A1 WO2019131771 A1 WO 2019131771A1 JP 2018047876 W JP2018047876 W JP 2018047876W WO 2019131771 A1 WO2019131771 A1 WO 2019131771A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
binder
meth
structural unit
mass
Prior art date
Application number
PCT/JP2018/047876
Other languages
English (en)
French (fr)
Inventor
大明 進藤
一博 高橋
松尾 孝
Original Assignee
株式会社大阪ソーダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大阪ソーダ filed Critical 株式会社大阪ソーダ
Priority to CN201880083973.2A priority Critical patent/CN111566858B/zh
Priority to CN202311455432.7A priority patent/CN117638075A/zh
Priority to JP2019562111A priority patent/JP7497979B2/ja
Publication of WO2019131771A1 publication Critical patent/WO2019131771A1/ja
Priority to JP2023106438A priority patent/JP2023121816A/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • C08F283/065Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals on to unsaturated polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention is used for storage devices such as secondary batteries such as lithium ion secondary batteries and nickel hydrogen secondary batteries, electrochemical capacitors, etc., particularly non-aqueous electrolyte storage devices using non-aqueous electrolytes such as organic solvents as electrolytes.
  • the present invention relates to a binder for an electrode, an electrode including the binder for an electrode, and a storage device including the electrode.
  • BACKGROUND Storage devices such as lithium ion secondary batteries and electrochemical capacitors are used in electronic devices such as mobile phones, notebook computers, camcorders and the like.
  • application to car applications such as electric vehicles and hybrid electric vehicles and storage batteries for household power storage has also been progressing due to rising awareness of environmental protection and maintenance of related laws.
  • An electrode used for such a storage device is usually obtained by applying and drying an electrode material composed of an active material, a conductive support agent, a binder, and a solvent on a current collector.
  • the binder is required to be excellent in binding property when used in an electrode and capable of imparting excellent electrical characteristics to an electricity storage device.
  • Patent Document 1 proposes a new binder.
  • binders having particularly excellent binding properties are required, and further studies are required.
  • the present invention provides a binder that is excellent in binding property when used in an electrode, has excellent flexibility (flexibility), and is excellent in charge and discharge efficiency when used in an electric storage device. Intended to provide.
  • the polymer contains a structural unit derived from a (meth) acrylic acid alkyl ester monomer and a structural unit derived from an ester monomer having an aromatic group.
  • the present invention relates to the following.
  • Item 1 Structural unit (A) derived from (meth) acrylic acid alkyl ester monomer
  • the following general formula (1) (Wherein, R 1 is hydrogen or an alkyl group having 1 to 4 carbon atoms, and R 2 is an aromatic group which may have a substituent.)
  • a polymer comprising a constituent unit (B) derived from the monomer represented by A binder for an electrode, comprising a polymer having a molar ratio of the constituent unit (A) to the constituent unit (B) in the polymer of 0.5 to 2.5.
  • the structural unit (B) is represented by the following general formula (2) (Wherein, R 1 is hydrogen, or an alkyl group having 1 to 4 carbon atoms, R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 is hydrogen And R 13 is an alkylene group having 1 to 3 carbon atoms, or a carbonyl group, R 14 is a hydroxyl group, an alkyl group having 1 to 3 carbon atoms, or an aromatic group which may have a substituent.
  • the binder for an electrode according to item 1 which is a constitutional unit derived from the monomer represented by Item 3 Furthermore, the following general formula (3): (Wherein, R 15 is a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms, x is an integer of 2 to 8 and n is an integer of 2 to 30)
  • item 1 or 2 containing the polymer containing the structural unit (C) derived from the monomer which has a hydroxyl group represented by these.
  • Item 4 The binder for an electrode according to any one of Items 1 to 3, further comprising a polymer containing a structural unit (D) derived from a polyfunctional (meth) acrylate monomer having a functionality of 5 or less.
  • Item 5 In the structural unit (D), the pentafunctional or lower polyfunctional (meth) acrylate monomer is represented by the following general formula (5): Wherein R 16 is the same or different and is a hydrogen atom or a methyl group, R 17 is a pentavalent or less organic group having 2 to 100 carbon atoms, and m is an integer of 5 or less. 5.
  • the constituent unit (A) derived from a (meth) acrylic acid alkyl ester monomer is a constituent unit derived from a (meth) acrylic acid alkyl ester monomer having an alkyl group having 1 to 12 carbon atoms
  • An electrode material comprising the binder for an electrode according to any one of items 1 to 6.
  • Item 10 The electrode material according to Item 9, wherein activated carbon is used as the active material.
  • Item 11 The electrode material according to Item 9, wherein a silicon-based compound is used as the active material.
  • a storage device comprising
  • a binder for an electrode having excellent binding property when used for an electrode and having excellent flexibility and having excellent charge and discharge efficiency when used for an electricity storage device.
  • a binder composition for an electrode including the binder for an electrode, an electrode material, an electrode, and an electricity storage device provided with the electrode.
  • the binder for an electrode of the present invention has excellent binding properties.
  • the binder for an electrode of the present invention is useful because excellent binding can be obtained when activated carbon is used as an active material in an electrode material.
  • the binder for an electrode of the present invention can obtain particularly remarkable effects when a silicon-based compound is used as the active material used for the negative electrode.
  • the volume change in charge and discharge is about 10% when using a carbon material, whereas when using a silicon-based compound, the capacity change by about 200% is accompanied by a capacity change due to charge and discharge cycles. It has the problem that the decline is large.
  • the present invention has high bondability, excellent flexibility (flexibility), and high charge / discharge efficiency without losing the effect even when using a silicon compound as the active material used for the negative electrode. And low DC internal resistance, which is useful.
  • the electricity storage device includes a secondary battery (a lithium ion secondary battery, a nickel hydrogen secondary battery, and the like) and an electrochemical capacitor.
  • a secondary battery a lithium ion secondary battery, a nickel hydrogen secondary battery, and the like
  • electrochemical capacitor a lithium ion secondary battery, a nickel hydrogen secondary battery, and the like
  • (meth) acrylate means “acrylate or methacrylate”, and the same applies to expressions similar thereto.
  • the binder for an electrode of the present invention is a structural unit (A) derived from a (meth) acrylic acid alkyl ester monomer, The following general formula (1) (Wherein, R 1 is hydrogen or an alkyl group having 1 to 4 carbon atoms, and R 2 is an aromatic group which may have a substituent.)
  • a polymer comprising a constituent unit (B) derived from the monomer represented by A polymer is characterized in that the molar ratio of the structural unit (A) to the structural unit (B) in the polymer is 0.5 to 2.5.
  • the structural unit (A) is a structural unit derived from a (meth) acrylic acid alkyl ester monomer.
  • the structural unit (A) is preferably a structural unit derived from a (meth) acrylic acid alkyl ester monomer having an alkyl group having 1 to 12 carbon atoms, and a (meth) acrylic having an alkyl group having 1 to 8 carbon atoms
  • a structural unit derived from an acid alkyl ester monomer is more preferable, and a structural unit derived from a (meth) acrylic acid alkyl ester monomer having an alkyl group having 1 to 6 carbon atoms is further preferable, and a carbon number of 2 to 6
  • the structural unit is derived from a (meth) acrylic acid alkyl ester monomer having an alkyl group of 4.
  • the preferred structural unit (A) include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, (Meth) acrylic acid isobutyl, (meth) acrylic acid n-pentyl, (meth) acrylic acid isopentyl, (meth) acrylic acid n-hexyl, (meth) acrylic acid isohexyl, (meth) acrylic acid n-heptyl, (meth) Examples include structural units derived from (meth) acrylic acid alkyl esters such as n-octyl acrylate, 2-ethylhexyl (meth) acrylate, and lauryl (meth) acrylate.
  • the structural unit (A) may be of one type or of two or more types.
  • the ratio of the structural unit (A) in the polymer is not particularly limited as long as the molar ratio of the structural unit (A) to the structural unit (B) in the polymer is in the range of 0.5 to 2.5.
  • the lower limit of the proportion of the structural unit (A) in the polymer is preferably 30 mol% or more, more preferably 35 mol% or more, and particularly preferably 40 mol% or more.
  • the upper limit of the ratio of the structural unit (A) in the polymer is preferably 75 mol% or less, more preferably 70 mol% or less, and particularly preferably 60 mol% or less. It is preferable at the point which the stability of an emulsion improves by setting it as this range.
  • the structural unit (B) is represented by the following general formula (1) (Wherein, R 1 is hydrogen or an alkyl group having 1 to 4 carbon atoms, and R 2 is an aromatic group which may have a substituent.) Is a constitutional unit derived from
  • the structural unit (B) is represented by the following general formula (2) (Wherein, R 1 is hydrogen, or an alkyl group having 1 to 4 carbon atoms, R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 is hydrogen And R 13 is an alkylene group having 1 to 3 carbon atoms, or a carbonyl group, R 14 is a hydroxyl group, an alkyl group having 1 to 3 carbon atoms, or an aromatic group which may have a substituent. It is preferable that it is an aromatic group which may have a substituent, q, r is an integer of 0 to 3, and s is an integer of 0 to 1. It is a constitutional unit derived from a monomer .
  • R 1 is hydrogen or an alkyl group having 1 to 4 carbon atoms, preferably hydrogen or an alkyl group having 1 to 2 carbon atoms, and particularly preferably hydrogen or a methyl group.
  • R 2 is an aromatic group which may have a substituent. Examples of substituents include alkyl groups, alkyl groups such as methyl, ethyl and isopropyl, unsaturated hydrocarbon groups such as vinyl, fluoro groups, halogeno groups such as chloro, bromo and iodo groups, amino groups, nitro groups and carboxyls. Groups and the like.
  • the aromatic ring may have two or more.
  • R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 each have hydrogen, a hydroxyl group, an alkyl group having 1 to 3 carbon atoms, and a substituent It is preferably any one of an aromatic group which may be substituted, and is any one of hydrogen, a hydroxyl group, an alkyl group having 1 to 2 carbon atoms, and an aromatic group which may have a substituent.
  • R 13 is an alkylene group having 1 to 3 carbon atoms, or a carbonyl group, and is preferably an alkylene group having 1 to 2 carbon atoms, or a carbonyl group.
  • R 14 is an aromatic group which may have a substituent, and the aromatic group is preferably an aryl group, a benzyl group or a phenoxy group.
  • substituents include alkyl groups, alkyl groups such as methyl, ethyl and isopropyl, unsaturated hydrocarbon groups such as vinyl, fluoro groups, halogeno groups such as chloro, bromo and iodo groups, amino groups, nitro groups and carboxyls. Groups and the like.
  • the aromatic ring may have two or more.
  • Each of q and r is an integer of 0 to 3, preferably an integer of 0 to 2, and preferably satisfies q + r ⁇ 1.
  • s is an integer of 0 to 1.
  • the preferred structural unit (B) include benzyl (meth) acrylate, phenoxymethyl (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxypropyl (meth) acrylate, 2- (meth) acrylate
  • structural units derived from hydroxy-3-phenoxypropyl (meth) acrylic acid phenoxydiethylene glycol, neopentyl glycol- (meth) acrylic acid-benzoic acid ester, 2- (meth) acryloyloxyethyl-phthalic acid, etc.
  • the structural unit (B) may be of one type or of two or more types.
  • the ratio of the structural unit (B) in the polymer is not particularly limited as long as the molar ratio of the structural unit (A) to the structural unit (B) in the polymer is in the range of 0.5 to 2.5.
  • the lower limit of the ratio of the structural unit (B) in the polymer is preferably 20 mol% or more, more preferably 24 mol% or more, and particularly preferably 27 mol% or more.
  • the upper limit of the ratio of the structural unit (B) in the polymer is preferably 60 mol% or less, more preferably 55 mol% or less, and particularly preferably 50 mol% or less.
  • the molar ratio of the structural unit (A) to the structural unit (B) in the polymer (structural unit (A) mol / structural unit (B) mol) is preferably 0.5 or more, and 0.75
  • the number is particularly preferably 1 or more, the number is preferably 2.5 or less, more preferably 2.2 or less, and particularly preferably 2 or less.
  • the binder of the present invention has excellent binding property when used in an electrode, has excellent flexibility, and has excellent charge and discharge efficiency when used in an electricity storage device.
  • R 15 include a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group and an isobutyl group.
  • R 15 is a hydrogen atom or a methyl group.
  • the monomer having a hydroxyl group is preferably a (meth) acrylate monomer (R 15 is a hydrogen atom or a methyl group).
  • (C x H 2 x O) is a linear or branched alkyl ether group
  • x is an integer of 2 to 8, preferably an integer of 2 to 7, and more preferably Is an integer of 2 to 6.
  • n is an integer of 2 to 30, preferably an integer of 2 to 25, and more preferably an integer of 2 to 20.
  • the structural unit (C) is preferably derived from the monomer having a hydroxyl group represented by the general formula (4) below.
  • R 15 is a straight-chain or branched alkyl group having a hydrogen atom or a C 1 ⁇ 4
  • o is an integer of 0 ⁇
  • p is an integer of 0 ⁇ 30, o + p Is 2-30.
  • o and p only represent the compositional ratio of the constituent unit, and it is possible to use a block of repeating units of (C 2 H 4 O) and a block of repeating units of (C 3 H 6 O).
  • the repeating unit of (C 2 H 4 O) and the repeating unit of (C 3 H 6 O) are alternately or randomly arranged, or the random part and the block part are mixed. It may be a compound.
  • R 15 include a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group and an isobutyl group. Preferably it is a hydrogen atom or a methyl group. That is, in the structural unit (C), the monomer having a hydroxyl group is preferably a (meth) acrylate monomer (R 15 is a hydrogen atom or a methyl group).
  • o is an integer of 0 to 30
  • p is an integer of 0 to 30
  • o + p is 2 to 30
  • o is an integer of 0 to 25
  • p is 0 to 25
  • o is preferably an integer of 2 to 25
  • o is an integer of 0 to 20
  • p is an integer of 0 to 20
  • o + p is particularly preferably 2 to 20.
  • hydroxyl group-containing monomer represented by the general formula (3) examples include diethylene glycol mono (meth) acrylate, triethylene glycol mono (meth) acrylate, tetraethylene glycol mono (meth) acrylate, and polyethylene glycol mono (meth) acrylate.
  • tetraethylene glycol mono (meth) acrylate tetraethylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, tetrapropylene glycol mono (meth) acrylate and polypropylene glycol mono (meth) acrylate are preferable.
  • the structural unit (C) may be of one type or of two or more types.
  • the ratio is limited so that the molar ratio of the structural unit (A) to the structural unit (B) in the polymer is in the range of 0.5 to 2.5. It is not particularly limited.
  • the lower limit of the molar ratio of the structural unit (C) is preferably 0.5 mol% or more, more preferably 1.0 mol% or more, and 2.0 mol% or more Particularly preferred.
  • the upper limit of the ratio of the structural unit (C) in the polymer is preferably 15 mol% or less, more preferably 12 mol% or less, and particularly preferably 10 mol% or less.
  • the structural unit (D) is preferably a structural unit derived from the following general formula (5).
  • R 16 is the same or different and each is a hydrogen atom or a methyl group
  • R 17 is an organic group having 2 to 100 carbon atoms having a valence of 5 or less
  • m is an integer of 5 or less It is.
  • m is preferably 2 to 5 (that is, a structural unit derived from a bifunctional to pentafunctional (meth) acrylate as the structural unit (D)), and 3 to 5 (that is, a structural unit More preferably, (D) is a structural unit derived from trifunctional to pentafunctional (meth) acrylate, and 3 to 4 (that is, structural unit (D) is derived from trifunctional to tetrafunctional (meth) acrylate) Particularly preferred is the structural unit).
  • the structural unit derived from bifunctional (meth) acrylate in the structural unit (D) include triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, Tripropylene glycol di (meth) acrylate, tetrapropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, dioxane glycol di (meth) acrylate, bis (meth) acryloyloxy
  • the structural unit derived from bifunctional (meth) acrylates, such as ethyl phosphate, is mentioned.
  • the structural unit derived from trifunctional (meth) acrylate in the structural unit (D) include trimethylolpropane tri (meth) acrylate, trimethylolpropane EO-added tri (meth) acrylate, and trimethylolpropane PO-added tri (Meth) acrylate, pentaerythritol tri (meth) acrylate, 2,2,2-tris (meth) acryloyloxymethylethyl succinic acid, ethoxylated isocyanurate tri (meth) acrylate, ⁇ -caprolactone modified tris- (2-) Derived from trifunctional (meth) acrylates such as (meth) acryloxyethyl) isocyanurate, glycerin EO addition tri (meth) acrylate, glycerin PO addition tri (meth) acrylate and tris (meth) acryloyloxyethyl phosphate
  • They include structural units that.
  • structural units derived from a trifunctional (meth) acrylate selected from trimethylolpropane tri (meth) acrylate, trimethylolpropane EO-added tri (meth) acrylate, and pentaerythritol tri (meth) acrylate are preferable.
  • structural unit derived from tetrafunctional (meth) acrylate in the structural unit (D) include ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate and pentaerythritol EO-added tetra (meth) acrylate And structural units derived from tetrafunctional (meth) acrylates such as
  • structural units derived from pentafunctional (meth) acrylate include structural units derived from dipentaerythritol penta (meth) acrylate.
  • the ratio is limited so that the molar ratio of the structural unit (A) to the structural unit (B) in the polymer is in the range of 0.5 to 2.5. It is not particularly limited.
  • the lower limit of the molar ratio of the structural unit (D) in the polymer is preferably 0.05 mol% or more, more preferably 0.1 mol% or more, and particularly preferably 0.2 mol% or more preferable.
  • the upper limit of the ratio of the structural unit (D) is preferably 10 mol% or less, more preferably 5 mol% or less, and particularly preferably 3 mol% or less.
  • the structural unit (E) derived from the (meth) acrylic acid monomer in view of the improvement of the affinity to the active material when it is used for the electrode.
  • the structural unit (E) which a polymer has may be one type, and may be two or more types.
  • the ratio is limited so that the molar ratio of the structural unit (A) to the structural unit (B) in the polymer is in the range of 0.5 to 2.5 It is not particularly limited.
  • the lower limit of the proportion of the structural unit (E) in the polymer is preferably 3 mol% or more, more preferably 4 mol% or more, and particularly preferably 5 mol% or more.
  • the upper limit of the proportion of the structural unit (E) is preferably 15 mol% or less, more preferably 13 mol% or less, and particularly preferably 12 mol% or less.
  • the polymer as structural units derived from other monomers besides the above, fumaric acid, maleic acid, itaconic acid, citraconic acid, mesaconic acid, glutaconic acid, acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, crotononitrile It can have a structural unit derived from a monomer selected from ⁇ -ethylacrylonitrile, ⁇ -cyanoacrylate, vinylidene cyanide and fumaronitrile.
  • a general emulsion polymerization method As a method of obtaining a polymer, a general emulsion polymerization method, a soap-free emulsion polymerization method, etc. can be used. Specifically, a closed container equipped with a stirrer and a heating device is inert at room temperature and is inert to a composition containing a monomer, an emulsifier, a polymerization initiator, water, if necessary, a dispersant, a chain transfer agent, a pH adjuster, etc. The monomers and the like are emulsified in water by stirring under a gas atmosphere.
  • a method of emulsification methods such as stirring, shearing, ultrasonic waves and the like can be applied, and a stirring blade, a homogenizer and the like can be used. Then, the temperature is raised while stirring to initiate polymerization, whereby a spherical polymer latex in which the polymer is dispersed in water can be obtained.
  • the monomer addition method during polymerization may be monomer dropping, pre-emulsion dropping, etc. in addition to batch feeding, and two or more of these methods may be used in combination.
  • pre-emulsion dropping refers to an addition method in which a monomer, an emulsifying agent, water and the like are previously emulsified in advance and the emulsion is dropped.
  • the emulsifier used in the present invention is not particularly limited.
  • the emulsifying agent is a surfactant, and the surfactant includes a reactive surfactant having a reactive group.
  • Nonionic surfactants and anionic surfactants which are generally used in the emulsion polymerization method can be used.
  • nonionic surfactant for example, polyoxyethylene alkyl ether, polyoxyethylene alcohol ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene polycyclic phenyl ether, polyoxyalkylene alkyl ether, sorbitan fatty acid ester, polyoxyethylene
  • examples thereof include fatty acid esters and polyoxyethylene sorbitan fatty acid esters
  • examples of the reactive nonionic surfactants include Latemul PD-420, 430, 450 (manufactured by Kao Corporation), Adekaria Soap ER (manufactured by Adeka), Aqualon. RN (made by Dai-ichi Kogyo Seiyaku Co., Ltd.), Antox LMA (made by Nippon Emulsifier), Antox EMH (made by Nippon Emulsifier), etc. are mentioned.
  • anionic surfactant examples include metal salts of sulfuric acid ester type, carboxylic acid type or sulfonic acid type, ammonium salts, triethanol ammonium salts, surfactants of phosphoric acid ester type and the like.
  • the sulfuric acid ester type, the sulfonic acid type and the phosphoric acid ester type are preferable, and the sulfuric acid ester type is particularly preferable.
  • anionic surfactants of sulfuric acid ester type include metal alkyl sulfates such as dodecyl sulfate, ammonium, or alkyl sulfate triethanolamine, polyoxyethylene dodecyl ether sulfate, polyoxyethylene isodecyl ether sulfate, polyoxyethylene Examples thereof include metal salts of polyoxyethylene alkyl ether sulfuric acid such as tridecyl ether sulfuric acid, ammonium salts, and triethanolamine etc.
  • Latemul PD-104, 105 manufactured by Kao Corporation
  • Adekaria Soap SR manufactured by Adeka
  • Aqualon HS manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.
  • Aqualon KH manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.
  • sodium dodecyl sulfate, ammonium dodecyl sulfate, triethanolamine dodecyl sulfate, sodium dodecyl benzene sulfonate, Latem PD-104 and the like can be mentioned.
  • nonionic surfactants and / or anionic surfactants may be used.
  • the reactivity of the reactive surfactant means that it contains a reactive double bond and undergoes a polymerization reaction with the monomer during polymerization. That is, the reactive surfactant acts as an emulsifier for the monomer during polymerization for producing the polymer, and after polymerization, it is covalently bonded to a part of the polymer to be incorporated. Therefore, the emulsion polymerization and the dispersion of the produced polymer are good, and the physical properties (flexibility, binding property) as a binder for an electrode are excellent.
  • the amount of the constituent unit of the emulsifier may be an amount generally used in the emulsion polymerization method. Specifically, it is in the range of 0.01 to 25% by mass, preferably 0.05 to 20% by mass, and more preferably 0.1 to 20% by mass, based on the amount of monomers (100% by mass) of the charge. It is.
  • the polymerization initiator used in the present invention is not particularly limited, and polymerization initiators generally used in the emulsion polymerization method and suspension polymerization method can be used. Preferably, it is an emulsion polymerization method. In the emulsion polymerization method, a water-soluble polymerization initiator is used, and in the suspension polymerization method, an oil-soluble polymerization initiator is used.
  • water-soluble polymerization initiator examples include water-soluble polymerization initiators represented by persulfates such as potassium persulfate, sodium persulfate and ammonium persulfate, 2-2′-azobis [2- (2) -Imidazolin-2-yl) propane], or a hydrochloride or sulfate thereof, 2,2'-azobis [2-methyl-N- (2-hydroxyethyl) propionamide], 2,2'-azobis (2- Methylpropanamidine), or a hydrochloride or sulfate thereof, 3,3 ′-[azobis [(2,2-dimethyl-1-iminoethane-2,1-diyl) imino]] bis (propanoic acid), 2,2 Preferred are polymerization initiators of water-soluble azo compounds such as'-[azobis (dimethylmethylene)] bis (2-imidazoline).
  • persulfates such as potassium persulfate, sodium persulfate and ammoni
  • oil-soluble polymerization initiators examples include cumene hydroperoxide, benzoyl peroxide, organic peroxides such as acetyl peroxide and t-butyl hydroperoxide, azobisisobutyronitrile, 1,1'-azobis (cyclohexane Preferred are polymerization initiators of oil-soluble azo compounds such as carbonitriles) and redox initiators. These polymerization initiators may be used alone or in combination of two or more.
  • the amount of polymerization initiator used may be an amount generally used in emulsion polymerization or suspension polymerization. Specifically, it is in the range of 0.01 to 10% by mass, preferably 0.01 to 5% by mass, and more preferably 0.02 to 3% by mass, with respect to the amount of monomer (100% by mass) to be charged. It is.
  • Chain transfer agents can be used as needed.
  • specific examples of the chain transfer agent include alkyl mercaptan such as n-hexyl mercaptan, n-octyl mercaptan, t-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan and n-stearyl mercaptan, and 2,4-diphenyl-4.
  • Xanthogen compounds such as -methyl-1-pentene, 2,4-diphenyl-4-methyl-2-pentene, dimethylxanthogen disulfide, diisopropyl xanthogen disulfide, terpinolene, tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetramethylthiuram mono Thiuram compounds such as sulfide, phenol compounds such as 2,6-di-t-butyl-4-methylphenol and styrenated phenol, allyl compounds such as allyl alcohol Halogenated hydrocarbon compounds such as ololmethane, dibromomethane and carbon tetrabromide, ⁇ -benzyloxystyrene, vinyl ethers such as ⁇ -benzyloxyacrylonitrile and ⁇ -benzyloxyacrylamide, triphenylethane, pentaphenylethane, acrolein and meth
  • the polymerization temperature and the polymerization time are not particularly limited.
  • the temperature can be appropriately selected depending on the type of polymerization initiator to be used, etc., but generally, the polymerization temperature is 20 to 100 ° C., and the polymerization time is 0.5 to 100 hours.
  • the binder for an electrode of the present invention has a polymer, but water or other substance such as an emulsifier may be contained in the inside of the polymer or attached to the outside.
  • the amount of the substance contained inside or attached to the outside is preferably 7 parts by mass or less, more preferably 5 parts by mass or less, and 3 parts by mass with respect to 100 parts by mass of the polymer. It is particularly preferred that
  • Binder composition for electrode> The binder composition for an electrode of the present invention contains the binder for an electrode of the present invention described in the section of "1. binder for an electrode” described above together with a solvent, and the binder for an electrode is dispersed in a solvent. May be there.
  • the solvent may be water or an organic solvent.
  • Organic solvents include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t-butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, alcohols such as amyl alcohol, acetone, methyl ethyl ketone, Ketones such as cyclohexanone, esters such as ethyl acetate and butyl acetate, ethers such as diethyl ether, dioxane, and tetrahydrofuran, amide-based polar organic compounds such as N, N-dimethylformamide, N-methyl-2-pyrrolidone (NMP) Examples thereof include solvents, aromatic hydrocarbons such as toluene, xylene, chlorobenzene, ortho-dichlorobenzene, and para-dichlorobenzen
  • the binder composition for electrodes of the present invention is preferably an aqueous binder composition in which the binder for electrodes is dispersed in water.
  • the binder composition for electrodes of the present invention may be an emulsion using an emulsion produced in obtaining a polymer.
  • the content of the binder for the electrode in the binder composition for an electrode of the present invention is not particularly limited, but the content of the binder for the electrode is preferably 0.2 to 80% by mass, preferably 0.5
  • the content is more preferably 70 to 70% by mass, and particularly preferably 0.5 to 60% by mass.
  • the solid content of the binder composition is generally considered to be a polymer and an emulsifier (only when the polymer is used in emulsion polymerization).
  • the binder composition for electrodes of the present invention can adjust pH by using a base as a pH adjuster as needed.
  • a base include alkali metal (Li, Na, K, Rb, Cs) hydroxide, ammonia, an inorganic ammonium compound, an organic amine compound and the like.
  • the pH range is pH 2-11, preferably pH 3-10, more preferably pH 4-9.
  • Electrode material contains at least an active material and the binder for an electrode of the present invention described in the section of “1. Binder for electrode” described above, and may further contain a conductive auxiliary. In the production of the electrode material of the present invention, the binder composition for an electrode of the present invention described in the section of "2. Binder composition for electrode” containing the binder for an electrode of the present invention together with a solvent can also be used.
  • the positive electrode material used for the positive electrode contains a positive electrode active material and the binder for an electrode of the present invention, and may further contain a conductive aid, and a negative electrode material used for the negative electrode
  • the binder for an electrode according to the present invention may further contain a conductive auxiliary agent, in an electric double layer capacitor (electrochemical capacitor), as a positive electrode material used for the positive electrode as an active material
  • An active carbon and the binder for an electrode according to the present invention may be contained, and a conductive auxiliary may be further contained.
  • a negative electrode material used for the negative electrode contains active carbon as an active material and the binder for an electrode according to the present invention It may contain an agent.
  • the positive electrode active material used in the lithium ion battery is an alkali metal-containing composite oxide having a composition of any of AMO 2 , AM 2 O 4 , A 2 MO 3 , and AMBO 4 .
  • A may be an alkali metal
  • M may be a single or two or more transition metals, and part of them may include non-transition metals.
  • B consists of P, Si or a mixture thereof.
  • the positive electrode active material is preferably a powder, and the particle diameter thereof is preferably 50 microns or less, more preferably 20 microns or less. These active materials have an electromotive force of 3 V (vs. Li / Li +) or more.
  • more preferable positive electrode active materials are, specifically, Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x CrO 2 , Li x Co a Ni 1 -a O 2 , Li x Mn a Ni 1 -a O 2 , Li x Co b Mn c Ni 1 -bc O 2 , Li x Ni a Co b Al c O 2 , Li x Mn 2 O 4 , Li y MnO 3 , Li y Mn e Fe 1-e O 3 , Li y Mn e Ti 1-e O 3 , Li x CoPO 4 , Li x MnPO 4 , Li x NiPO 4 , Li x FePO 4 , Li Mention may be made of x Mn f Fe 1-f PO 4 .
  • a negative electrode active material used for a lithium ion battery a carbon material (natural graphite, artificial graphite, amorphous carbon, etc.) having a structure (porous structure) capable of absorbing and desorbing lithium ions, or absorbing and desorbing lithium ions It is a powder composed of metals such as possible lithium, aluminum-based compounds, tin-based compounds, silicon-based compounds and titanium-based compounds.
  • the particle diameter is preferably 10 nm or more and 100 ⁇ m or less, and more preferably 20 nm or more and 20 ⁇ m or less.
  • the negative electrode active material has a porosity of about 70%.
  • Examples of the silicon-based compound include elements Si, alloys with Si, oxides containing Si, carbides containing Si, etc. Si, SiB 4 , SiB 6 , Mg 2 Si, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2, NiSi 2, CaSi 2 , CrSi 2, Cu 5 Si, FeSi 2, MnSi 2, NbSi 2, TaSi 2, VSi 2, WSi 2, ZnSi 2, SiC, Si 3 N 4, Si 2 N 2 O, SiO x (0 ⁇ x ⁇ 2), SnSiO x , LiSiO can be exemplified, and SiO x (0 ⁇ x ⁇ 2) is preferable, and silicon monoxide (SiO) or the like.
  • the lower limit of the content of the silicon-based compound to the total amount (100% by mass) of the active material is preferably 1% by mass or more, more preferably 2% by mass or more, and particularly preferably 4% by mass or more
  • the upper limit is preferably 80% by mass or less, more preferably 60% by mass or less, and particularly preferably 40% by mass or less.
  • the binder of the present invention when a silicon-based compound is used as the active material used for the negative electrode, it is preferable to use a carbon material as the active material in combination.
  • carbon materials graphite, low crystalline carbon (soft carbon, hard carbon), carbon black (ketjen black, acetylene black, channel black, lamp black, oil furnace black, thermal black etc.), fullerene, carbon nanotube, carbon Carbon materials such as nanofibers, carbon nanohorns and carbon fibrils can be exemplified, and graphite is preferable.
  • the lower limit of the content of the carbon material to the total amount (100% by mass) of the active material is preferably 20% by mass or more, more preferably 40% by mass or more, and particularly preferably 60% by mass or more.
  • the upper limit is preferably 99% by mass or less, more preferably 98% by mass or less, and particularly preferably 96% by mass or less.
  • activated carbon As an active material used for an electric double layer capacitor (electrochemical capacitor), activated carbon can be illustrated.
  • activated carbon refers to activated carbide, and commercially available activated carbon may be used, or activated carbon produced according to a known method may be used.
  • the activated carbon can be obtained by carbonizing raw materials such as wood, coconut shell, pulp waste solution, coal, heavy oil, phenol resin and the like, and activating the obtained carbide.
  • the activation may be a known activation method and can be performed by a gas activation method or a chemical activation method.
  • the carbide is activated by being brought into contact with a gas such as water vapor, carbon dioxide gas or oxygen under heating.
  • the chemical activation method the carbide is activated by heating in a state of being in contact with a known activating agent.
  • activating agents include zinc chloride, phosphoric acid, and / or alkali compounds (such as metal hydroxides such as sodium hydroxide). It is preferable to use activated carbon activated with steam (denoted as steam activated carbon in the present application) and / or activated carbon activated with alkali (denoted as alkali activated carbon in the present application).
  • the content of the active material in the electrode material is not particularly limited, and is, for example, about 99.9 to 50% by mass with respect to the electrode material (100% by mass) excluding components for forming a slurry such as water, More preferably, about 99.5 to 70% by mass, and still more preferably about 99 to 85% by mass.
  • One type of active material may be used alone, or two or more types may be used in combination.
  • conductive aid When using a conductive aid, known conductive aids can be used, and conductive carbon blacks such as graphite, furnace black, acetylene black and ketjen black, carbon fibers such as carbon nanotubes, metal powder, etc. It can be mentioned. These conductive aids may be used alone or in combination of two or more.
  • the content of the conductive auxiliary is not particularly limited, but preferably 20 parts by mass or less, more preferably 15 parts by mass or less, with respect to 100 parts by mass of the active material.
  • a conductive support agent is contained in positive electrode material, as a lower limit of content of a conductive support agent, 0.05 mass part or more, 0.1 mass part or more, 0.2 mass part or more, 0 normally .5 parts by mass or more, 2 parts by mass or more can be exemplified.
  • the electrode material of the present invention may optionally contain a thickener.
  • the type of the thickener is not particularly limited, but preferred are sodium salts of cellulose compounds, ammonium salts, polyvinyl alcohol, polyacrylic acid and salts thereof and the like.
  • sodium salts or ammonium salts of the cellulose-based compounds include sodium salts or ammonium salts of alkylcelluloses in which a cellulose-based polymer is substituted by various derivative groups. Specific examples thereof include methylcellulose, methylethylcellulose, ethylcellulose, sodium salt of carboxymethylcellulose (CMC), ammonium salt, triethanolammonium salt and the like. Particularly preferred is the sodium or ammonium salt of carboxymethylcellulose.
  • One of these thickeners may be used alone, or two or more thereof may be used in combination in any ratio.
  • the content of the thickener is not particularly limited, but preferably 5 parts by mass or less, more preferably 3 parts by mass or less, with respect to 100 parts by mass of the active material.
  • a thickener is contained, as a lower limit of content of a thickener, normally 0.05 mass part or more, 0.1 mass part or more, 0.2 mass part or more, 0.5 mass part Above, 1 mass part or more can be illustrated.
  • the electrode material of the present invention may contain water to form a slurry.
  • Water is not particularly limited, and generally used water can be used. Specific examples thereof include tap water, distilled water, ion exchanged water, and ultrapure water. Among them, preferred are distilled water, ion exchange water, and ultrapure water.
  • the solid content concentration of the slurry is preferably 10 to 90% by mass, more preferably 20 to 85% by mass, and 20 to 80% by mass. Being particularly preferred.
  • the ratio of the amount of polymer in the solid content of the slurry is preferably 0.1 to 15% by mass, and 0.2 to 10% by mass. Is more preferable, and 0.3 to 7% by mass is particularly preferable.
  • the preparation method of the electrode material is not particularly limited, and the positive electrode active material or the negative electrode active material, the binder for the electrode of the present invention, the conductive additive, water and the like can be used as usual stirrers, dispersers, kneaders, planetary ball mills, homogenizers, etc. It may be used and dispersed. In order to increase the efficiency of dispersion, heating may be performed in a range that does not affect the material.
  • Electrode> The electrode of the present invention is characterized by including the electrode material of the present invention described in the above-mentioned section "3. Electrode material" and a current collector. The details of the electrode material of the present invention are as described above.
  • a known current collector can be used for the electrode of the present invention.
  • the positive electrode metals such as aluminum, nickel, stainless steel, gold, platinum, titanium and the like are used.
  • the negative electrode metals such as copper, nickel, stainless steel, gold, platinum, titanium and aluminum are used.
  • the method for producing the electrode is not particularly limited, and a general method may be used. It is carried out by uniformly applying a battery material to a suitable thickness on the surface of a current collector (metal electrode substrate) by a doctor blade method, an applicator method, a silk screen method or the like.
  • the thickness is made uniform by a blade having a predetermined slit width.
  • the electrode is dried, for example, in a hot air at 100 ° C. or in a vacuum at 80 ° C. in order to remove excess organic solvent and water.
  • An electrode material is manufactured by press-molding the electrode after drying with a press apparatus. After pressing, heat treatment may be performed again to remove water, solvents, emulsifiers and the like.
  • the electricity storage device of the present invention is characterized by including the positive electrode, the negative electrode, and the electrolytic solution described in the section of “4. Electrode” described above. That is, the electrode used for the electrical storage device of the present invention contains the electrode material of the present invention, that is, the binder for the electrode of the present invention. The details of the electrode of the present invention are as described above. In addition, about the electrical storage device of this invention, the electrode using the electrode material containing the binder for electrodes of this invention should just be used for at least one of a positive electrode and a negative electrode, and the binder for electrodes of this invention is included. A known electrode can be used for the electrode not using the electrode material.
  • the electrolyte is not particularly limited, and a known electrolyte can be used.
  • a specific example of the electrolytic solution includes a solution containing an electrolyte and a solvent.
  • the electrolyte and the solvent may be used alone or in combination of two or more.
  • a lithium salt compound can be exemplified. Specifically, LiBF 4 , LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2) ) 2, LiN etc. [CF 3 SC (C 2 F 5 SO 2) 3] 2 , and the like, but not limited thereto.
  • electrolytes other than lithium salt compounds examples include tetraethyl ammonium tetrafluoroborate, triethyl monomethyl ammonium tetrafluoroborate, tetraethyl ammonium hexafluorophosphate and the like.
  • the organic solvent or a normal temperature molten salt can be illustrated.
  • organic solvent examples include an aprotic organic solvent, and specifically, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane ⁇ -butyrolactone, tetrahydrofuran, 1,3-dioxolane, dipropyl carbonate, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propyl nitrile, anisole, acetate, propionate, diethyl ether and the like linear ethers And two or more types may be mixed and used.
  • propylene carbonate ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane ⁇ -butyrolactone, tetrahydrofuran, 1,3-dioxolane,
  • the room temperature molten salt is also called an ionic liquid, and is a "salt" composed only of ions (anion, cation), and in particular, a liquid compound is called an ionic liquid.
  • the room temperature molten salt in the present invention refers to a salt in which at least a part is liquid at normal temperature
  • the normal temperature refers to a temperature range in which the battery is generally assumed to operate.
  • the upper limit of the temperature range in which the battery normally operates is about 120 ° C., sometimes about 80 ° C., and the lower limit is about ⁇ 40 ° C., sometimes about ⁇ 20 ° C.
  • quaternary ammonium organic cations As cationic species of the molten salt at room temperature, quaternary ammonium organic cations of pyridine type, aliphatic amine type and alicyclic amine type are known. Examples of quaternary ammonium organic cations include imidazolium ions such as dialkyl imidazolium and trialkyl imidazolium, tetraalkyl ammonium ions, alkyl pyridinium ions, pyrazolium ions, pyrrolidinium ions and piperidinium ions. In particular, imidazolium ion is preferred.
  • tetraalkyl ammonium ion examples include trimethylethyl ammonium ion, trimethylethyl ammonium ion, trimethylpropyl ammonium ion, trimethylhexyl ammonium ion, tetrapentyl ammonium ion, triethyl methyl ammonium ion and the like, but are limited thereto. is not.
  • alkyl pyridinium ion N-methyl pyridinium ion, N-ethyl pyridinium ion, N-propyl pyridinium ion, N-butyl pyridinium ion, 1-ethyl-2-methyl pyridinium ion, 1-butyl-4-methyl pyridinium
  • the ion include 1-butyl-2,4 dimethyl pyridinium ion and the like, but not limited thereto.
  • imidazolium ion 1,3-dimethylimidazolium ion, 1-ethyl-3-methylimidazolium ion, 1-methyl-3-ethylimidazolium ion, 1-methyl-3-butylimidazolium ion, 1- Butyl-3-methylimidazolium ion, 1,2,3-trimethylimidazolium ion, 1,2-dimethyl-3-ethylimidazolium ion, 1,2-dimethyl-3-propylimidazolium ion, 1-butyl- Examples include 2,3-dimethylimidazolium ion and the like, but not limited thereto.
  • the anion species of the molten salt at room temperature include chloride ion, bromide ion, halide ion such as iodide ion, perchlorate ion, thiocyanate ion, tetrafluoroborate ion, nitrate ion, AsF 6 ⁇ , PF 6 ⁇
  • Inorganic acid ion such as stearyl sulfonate ion, octyl sulfonate ion, dodecylbenzene sulfonate ion, naphthalene sulfonate ion, dodecyl naphthalene sulfonate ion, 7,7,8,8-tetracyano-p-quinodimethane ion etc
  • a normal temperature molten salt may be used individually by 1 type, and may be used combining 2 or more types.
  • additives can be used in the electrolytic solution as required.
  • the additive include flame retardants, flame retardants, positive electrode surface treatment agents, negative electrode surface treatment agents, and overcharge inhibitors.
  • Flame retardants and flame retardants include brominated epoxy compounds, phosphazene compounds, halides such as tetrabromo bisphenol A, chlorinated paraffin, etc., antimony trioxide, antimony pentoxide, aluminum hydroxide, magnesium hydroxide, phosphoric acid ester, polyphosphate Examples include acid salts and zinc borate.
  • the positive electrode surface treatment agent include inorganic compounds such as carbon and metal oxides (MgO, ZrO 2 and the like) and organic compounds such as ortho-terphenyl and the like.
  • the negative electrode surface treatment agent include vinylene carbonate, fluoroethylene carbonate, polyethylene glycol dimethyl ether and the like.
  • the overcharge inhibitor include biphenyl and 1- (p-tolyl) adamantane.
  • the method for producing the electricity storage device of the present invention is not particularly limited, and is produced by a known method using a positive electrode, a negative electrode, an electrolytic solution, a separator and the like as needed.
  • a positive electrode for example, in the case of coin type, the positive electrode, the separator if necessary, and the negative electrode are inserted into the outer can. Electrolyte is put into this and impregnated. Thereafter, the sealing body is joined to the sealing body by tab welding or the like, and the sealing body is sealed and crimped to obtain an electric storage device.
  • the shape of the storage device is not limited, examples thereof include coin, cylinder, and sheet.
  • the separator prevents the positive electrode and the negative electrode from being in direct contact with each other to short-circuit in the storage battery, and a known material can be used.
  • Specific examples of the separator include porous polymer films such as polyolefin and paper.
  • porous polymer film films of polyethylene, polypropylene and the like are preferable because they are less affected by the electrolytic solution.
  • the binding test was conducted by a 180 ° peel test. Specifically, cut the electrode into a width 2 cm ⁇ length 5 cm, affix a tape (adhesive tape: made by Nichiban, width 1.8 cm, length 5 cm), and make one end of the electrode in the longitudinal direction a strograph E3-L While fixed, the tape was peeled off at a test speed of 50 mm / min and a load range of 5 N in the direction of 180 °. The test was conducted three times and the weighted average value was determined. The evaluation results are summarized in Tables 2 and 3.
  • the bending test was performed by a mandrel bending test. Specifically, cut the electrode into 3 cm wide x 8 cm long, support the stainless steel rod 4 mm in diameter at the center side (4 cm portion) in the longitudinal direction (with the electrode surface facing outward) 180 ° The state of the coating film at the bent portion when bent was observed. Measured five times by this method, and no cracking or peeling of the electrode surface or peeling from the current collector occurred at all five times ⁇ , one or more cracks or peeling at one time x It was evaluated. The evaluation results are summarized in Tables 2 and 3.
  • the coin battery was subjected to constant current charging at 1 C and charged to 2.7 V, and then 0.05 C constant voltage charging was performed. After charging, the battery was rested for 10 minutes. Finally, a constant current discharge at 1 C was performed to discharge to 1.5 V. The discharge capacity at 1 C was divided by the charge capacity to obtain a percentage, which was taken as the charge / discharge efficiency (%).
  • the evaluation results are summarized in Table 2 and shown.
  • ⁇ Measurement of average particle size The average particle size of the polymer was measured under the following conditions.
  • Particle size distribution measuring device using dynamic light scattering Zetasizer Nano (Spectris Corporation) (Measurement condition) 1. 50 ⁇ L of the synthesized emulsion solution is sampled. 2. The sampled emulsion solution is diluted by adding 700 ⁇ L of ion-exchanged water three times. 3. Remove 2100 ⁇ L of solution from the dilution solution. 4. Add and dilute 700 ⁇ L ion-exchanged water to the remaining 50 ⁇ L sample and measure.
  • the aggregates of the polymer were measured as follows.
  • the polymerized emulsion solution is filtered using a 150 mesh stainless steel wire mesh (Kansai Wire Mesh Co., Ltd.) to scrape off the aggregates adhering to the stirring blade and the beaker. Thereafter, the collected aggregate is washed with ion exchanged water, dried for 24 hours, and the mass of the aggregate is measured. The measured amount of aggregates is divided by the emulsion yield to obtain the amount of aggregates (% by mass).
  • the reaction container equipped with a stirrer was heated to 55 ° C. in a nitrogen atmosphere, and the emulsion was added over 2 hours. After the addition of the emulsion, it was further polymerized for 1 hour and then cooled. After cooling, the pH of the polymerization solution is adjusted to 2.3 to 7.8 using a 28% aqueous ammonia solution, and the binder composition A (polymerization conversion ratio 99% or more, solid content concentration 40.3 wt%) which is an emulsion solution And the amount of aggregation: 0.05% by mass). The average particle size of the obtained polymer was 0.118 ⁇ m. The molar ratio (mol%) in the polymer is shown in Table 1.
  • Examplementation Example 2 In the beaker, 771.43 mmol of acrylic acid, 402.00 mmol of phenoxyethyl methacrylate, 36.18 mmol of acrylic acid, 86.16 mmol of methacrylic acid, 40.20 mmol of polyethylene glycol monomethacrylate (manufactured by NOF Corporation: Blenmer PE-90), Add 4.02 mmol of trimethylolpropane triacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd .: A-TMPT), 2.00 g of sodium dodecyl sulfate as an emulsifier, 300 g of ion exchanged water, and 0.24 g of ammonium persulfate as a polymerization initiator, using an ultrasonic homogenizer The mixture was sufficiently stirred to form a milky lotion.
  • the reaction container equipped with a stirrer was heated to 55 ° C. in a nitrogen atmosphere, and the emulsion was added over 2 hours. After the addition of the emulsion, it was further polymerized for 1 hour and then cooled. After cooling, the pH of the polymerization solution is adjusted to 2.5 to 7.7 using a 28% aqueous ammonia solution, and a binder composition B (polymerization conversion ratio 99% or more, solid content concentration 40.2 wt%) which is an emulsion solution And the amount of aggregation: 0.03% by mass). The average particle size of the obtained polymer was 0.250 ⁇ m. The molar ratio (mol%) in the polymer is shown in Table 1.
  • the reaction container equipped with a stirrer was heated to 55 ° C. in a nitrogen atmosphere, and the emulsion was added over 2 hours. After the addition of the emulsion, it was further polymerized for 1 hour and then cooled. After cooling, the pH of the polymerization solution is adjusted to 2.5 to 7.7 using a 28% aqueous ammonia solution, and a binder composition C as an emulsion solution (polymerization conversion rate 97% or more, solid content concentration 39.1 wt% And the amount of aggregation: 0.12% by mass). The average particle size of the obtained polymer was 0.134 ⁇ m. The molar ratio (mol%) in the polymer is shown in Table 1.
  • Examplementation Example 4 In a beaker, 634.14 mmol of 2-ethylhexyl acrylate, 330.45 mmol of phenoxyethyl methacrylate, 29.74 mmol of acrylic acid, 70.83 mmol of methacrylic acid, 33.05 mmol of polyethylene glycol monomethacrylate (manufactured by NOF Corporation: Brenmer PE-90), 3.30 mmol of trimethylolpropane triacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd .: A-TMPT), 2.00 g of sodium dodecyl sulfate as an emulsifier, 300 g of ion exchange water and 0.24 g of ammonium persulfate as a polymerization initiator, using an ultrasonic homogenizer The mixture was sufficiently stirred to form a milky lotion.
  • the reaction container equipped with a stirrer was heated to 55 ° C. in a nitrogen atmosphere, and the emulsion was added over 2 hours. After the addition of the emulsion, it was further polymerized for 1 hour and then cooled. After cooling, the pH of the polymerization solution is adjusted to 2.4 to 7.8 using a 28% aqueous ammonia solution, and a binder composition D as an emulsion solution (polymerization conversion ratio 99% or more, solid content concentration 39.7 wt% And the amount of aggregation: 0.03% by mass). The average particle size of the obtained polymer was 0.109 ⁇ m. The molar ratio (mol%) in the polymer is shown in Table 1.
  • the reaction container equipped with a stirrer was heated to 55 ° C. in a nitrogen atmosphere, and the emulsion was added over 2 hours. After the addition of the emulsion, it was further polymerized for 1 hour and then cooled. After cooling, the pH of the polymerization solution is adjusted to 2.3 to 7.8 using a 28% aqueous ammonia solution, and the binder composition E which is an emulsion solution (polymerization conversion rate 97% or more, solid content concentration 39.0 wt% And the amount of aggregation: 0.08% by mass). The average particle size of the obtained polymer was 0.246 ⁇ m. The molar ratio (mol%) in the polymer is shown in Table 1.
  • the reaction container equipped with a stirrer was heated to 55 ° C. in a nitrogen atmosphere, and the emulsion was added over 2 hours. After the addition of the emulsion, it was further polymerized for 1 hour and then cooled. After cooling, the pH of the polymerization solution was adjusted to 2.4 to 7.8 using a 28% aqueous ammonia solution to obtain a binder composition F as an emulsion solution, but the polymer separated and no emulsion was obtained. .
  • the reaction container equipped with a stirrer was heated to 55 ° C. in a nitrogen atmosphere, and the emulsion was added over 2 hours. After the addition of the emulsion, it was further polymerized for 1 hour and then cooled. After cooling, the pH of the polymerization solution is adjusted to 2.5 to 7.8 using a 28% aqueous ammonia solution, and a binder composition G (polymerization conversion ratio 94% or more, solid content concentration 37.9 wt%) which is an emulsion solution And the amount of aggregation: 0.56% by mass). The average particle size of the obtained polymer was 0.130 ⁇ m. The molar ratio (mol%) in the polymer is shown in Table 1.
  • Example 3 85 parts by mass of activated carbon as an active material, 5 parts by mass of acetylene black as a conductive additive, 2 parts by mass of sodium salt of carboxymethyl cellulose, and 4 parts by mass of the binder composition A obtained in Practical Example 1 of the binder composition Parts were added, water was further added so that the solid content concentration of the slurry was 24% by mass, and the mixture was sufficiently mixed using a planetary mill to obtain a slurry.
  • the obtained slurry is applied on a 20 ⁇ m thick aluminum current collector using a 100 ⁇ m gap baker applicator, pressed with a roll press, and dried at 150 ° C. for 12 hours or more in a vacuum state. An 89 ⁇ m electrode was produced.
  • the evaluation results of the adhesion test and the bending test are shown in Example 1 of Table 2.
  • Example 1 Active material 89 parts by mass of activated carbon, 5 parts by mass of acetylene black as a conductive auxiliary agent, 2 parts by mass of sodium salt of carboxymethylcellulose, 4 parts by mass of the binder composition B obtained in Practical Synthesis Example 2 of the binder composition Parts were added and water was further added so that the solid content concentration of the slurry was 24% by mass, and the mixture was sufficiently mixed using a planetary mill to obtain a slurry in the same manner as in Example 1 of the electrode. Made. The thickness of the obtained electrode was 85 ⁇ m. The evaluation results of the adhesion test and the bending test are shown in Example 2 of Table 2.
  • Example 1 Active material 89 parts by mass of activated carbon, 5 parts by mass of acetylene black as a conductive aid, 2 parts by mass of sodium salt of carboxymethylcellulose, 4 parts by mass of the binder composition C obtained in Practical Example of Binder Composition 3 Parts were added, water was further added so that the solid content concentration of the slurry was 22 mass%, and the slurry was obtained by sufficiently mixing using a planetary mill in the same manner as in Example 1 of the electrode. Made. The thickness of the obtained electrode was 96 ⁇ m. The evaluation results of the adhesion test and the bending test are shown in Example 3 of Table 2.
  • Example 4 of practical preparation of electrode Example 1 Active material 89 parts by mass of activated carbon, 5 parts by mass of acetylene black as a conduction aid, 2 parts by mass of sodium salt of carboxymethylcellulose, 4 parts by mass of the binder composition D obtained in Practical Synthesis Example 4 of the binder composition Parts were added, water was further added so that the solid content concentration of the slurry was 22 mass%, and the slurry was obtained by sufficiently mixing using a planetary mill in the same manner as in Example 1 of the electrode. Made. The thickness of the obtained electrode was 88 ⁇ m. The evaluation results of the adhesion test and the bending test are shown in Example 4 of Table 2.
  • Example of practical preparation of electrode 5-1 92 parts by mass of graphite as an active material, 5 parts by mass of SiO, 0.5 parts by mass of acetylene black as a conductive additive, 1.8 parts by mass of sodium salt of carboxymethyl cellulose, and Example of binder composition 0.7 mass part is added as solid content of the binder composition E, water is further added so that solid content concentration of a slurry may be 50.5 mass%, and it mixes thoroughly using a planetary mixer, and obtains a slurry.
  • the binder composition E 92 parts by mass of graphite as an active material, 5 parts by mass of SiO, 0.5 parts by mass of acetylene black as a conductive additive, 1.8 parts by mass of sodium salt of carboxymethyl cellulose, and Example of binder composition 0.7 mass part is added as solid content of the binder composition E, water is further added so that solid content concentration of a slurry may be 50.5 mass%, and it mixes thoroughly using a planetary mixer, and obtains a slurry
  • the obtained slurry is applied on a 20 ⁇ m thick aluminum current collector using a 100 ⁇ m gap baker applicator, pressed with a roll press, and dried at 110 ° C. for 12 hours or more in a vacuum state. An electrode of 37 ⁇ m was produced.
  • the evaluation results of the adhesion test and the bending test are shown in Example 5-1 of Table 3.
  • Example of Implementation Preparation of Electrode 5-2 87 parts by mass of graphite as an active material, 10 parts by mass of SiO, 0.5 parts by mass of acetylene black as a conductive additive, 1.8 parts by mass of sodium salt of carboxymethyl cellulose, and Example of binder composition 0.7 mass part is added as solid content of the binder composition E, water is further added so that solid content concentration of a slurry may be 50.5 mass%, and it mixes thoroughly using a planetary mixer, and obtains a slurry.
  • An electrode was produced in the same manner as in Example 5-1 of the electrode except for the following. The thickness of the obtained electrode was 38 ⁇ m.
  • the evaluation results of the adhesion test and the bending test are shown in Example 5-2 in Table 3.
  • Example 1 of Table 2 As a electrolytic solution, a 1.4 mol / L tetraethylmethylammonium-tetrafluoroborate / propylene carbonate solution (manufactured by Kishida Chemical Co., Ltd.) was sufficiently impregnated and caulked, and a 2032 type coin battery for test was manufactured. The evaluation results of charge and discharge efficiency are shown in Example 1 of Table 2.
  • Examplementation example 2 of coin battery (electrochemical capacitor)
  • a coin battery was produced in the same manner as in Working Example 1 of a coin battery except that the positive electrode and the negative electrode obtained in Production Example 2 of the electrode were used.
  • the evaluation results of charge and discharge efficiency are shown in Example 2 of Table 2.
  • Example 3 of practical manufacture of coin battery (electrochemical capacitor)
  • a coin battery was produced in the same manner as in Working Example 1 of a coin battery except that the positive electrode and the negative electrode obtained in Production Example 3 of the electrode were used.
  • the evaluation results of charge and discharge efficiency are shown in Example 3 of Table 2.
  • Example 4 of practical manufacture of coin battery (electrochemical capacitor)
  • a coin battery was produced in the same manner as in Working Example 1 of a coin battery except that the positive electrode and the negative electrode obtained in Working Example 4 of the electrode were used.
  • the evaluation results of charge and discharge efficiency are shown in Example 4 of Table 2.
  • Examplementation example 5-2 of coin battery lithium ion battery
  • Example of electrode A coin battery was manufactured in the same manner as Example of manufacturing coin cell 5-1 except that the negative electrode obtained in Example 5-2 was used.
  • the evaluation results of the DC internal resistance and the charge and discharge efficiency are shown in Example 5-2 in Table 3.
  • Table 2 shows the evaluation results of the physical properties of the activated carbon-containing electrodes of Examples and Comparative Examples, and the characteristic evaluation of the battery (electrochemical capacitor).
  • the binder for an electrode of the present invention has excellent binding property to the activated carbon active material when used for an electrode, and also has excellent flexibility (flexibility). Moreover, while having excellent binding property also to a silicon compound, it is provided with excellent flexibility (flexibility), and since it is excellent in charge / discharge efficiency when it uses for an electrical storage device, an electric vehicle or a hybrid is obtained. It is usefully used in on-vehicle applications such as electric vehicles and storage devices such as storage batteries for household power storage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本発明は、電極に用いられた際に優れた結着性を備えるとともに、優れた屈曲性(可撓性)を備え、蓄電デバイスに用いた際には、充放電効率に優れる、電極用バインダーを提供することを目的とする。(メタ)アクリル酸アルキルエステルモノマーに由来する構成単位、芳香族基を有するエステルモノマーに由来する構成単位を含む重合体であって、特定のモル比で構成されている重合体を電極用バインダーとして提供する。

Description

電極用バインダー、電極、及び蓄電デバイス
 本発明は、リチウムイオン二次電池及びニッケル水素二次電池などの二次電池、電気化学キャパシタなどといった蓄電デバイス、特に電解質に有機溶媒などの非水電解質を用いた非水電解質系蓄電デバイスに用いる電極用バインダー、該電極用バインダーを含む電極、並びに該電極を備える蓄電デバイスに関する。
 リチウムイオン二次電池や電気化学キャパシタといった蓄電デバイスは、携帯電話やノートパソコン、カムコーダーなどの電子機器に用いられている。最近では環境保護への意識の高まりや関連法の整備により、電気自動車やハイブリッド電気自動車などの車載用途や家庭用電力貯蔵用の蓄電池としての応用も進んできている。
 また、これらの応用が進むと同時に、蓄電デバイスに高性能化が求められており、電極等の部材の改良が進められている。このような蓄電デバイスに使用される電極は、通常、活物質と、導電助剤、バインダー、溶媒からなる電極材料を集電体上に塗布、乾燥して得られる。
 そこで、近年では、電極に用いられるバインダーの改良が試みられている。バインダーを改良することにより、活物質同士の結着性、活物質と導電助剤との結着性、及び活物質と集電体との結着性を向上させ、電気的特性(例えば、サイクル特性、低温での出力特性、低抵抗化)を向上させたりすることが提案されている。
 バインダーには、電極に用いられた際の結着性に優れ、蓄電デバイスに優れた電気的特性を付与できることが求められており、例えば特許文献1には新たなバインダーが提案されている。しかしながら、近年、特に結着性に優れるバインダーが求められており、更なる検討が必要となっている。
 そこで、特許文献2、3には、芳香族モノマーを重合体の構成単位の一つとして例示がされているが、実施例の重合体においては具体的な開示は一切なされていない。
国際公開第2013/180103号 特開2001-35496号 国際公開第2017/047379号
 本発明は、電極に用いられた際に優れた結着性を備えるとともに、優れた屈曲性(可撓性)を備え、蓄電デバイスに用いた際には、充放電効率に優れる、電極用バインダーを提供することを目的とする。
 本発明者らは、上記目的を達成するために検討を重ねた結果、(メタ)アクリル酸アルキルエステルモノマーに由来する構成単位、芳香族基を有するエステルモノマーに由来する構成単位を含む重合体であって、特定のモル比で構成されている重合体を電極用バインダーとして用いることにより、電極に用いられた際に優れた結着性及び屈曲性、更には蓄電デバイスに用いた際には優れた充放電効率を発揮することを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下に関する。
項1 (メタ)アクリル酸アルキルエステルモノマーに由来する構成単位(A)、
 下記一般式(1)
Figure JPOXMLDOC01-appb-C000005
(式中、R1は水素、又は炭素数1~4のアルキル基、R2は置換基を有していてもよい芳香族基である。)
で表わされるモノマーに由来する構成単位(B)を含む重合体であって、
 重合体における構成単位(B)に対する構成単位(A)のモル比が0.5~2.5である重合体を含む電極用バインダー。
項2 構成単位(B)が、下記一般式(2)
Figure JPOXMLDOC01-appb-C000006
(式中、R1は水素、又は炭素数1~4のアルキル基、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12は水素、ヒドロキシル基、炭素数1~3のアルキル基、置換基を有していてもよい芳香族基のいずれかであり、R13は炭素数1~3のアルキレン基、又はカルボニル基、R14は置換基を有していてもよい芳香族基、q、rは0~3の整数であり、sは0~1の整数である。)
で表わされるモノマーに由来する構成単位であることを特徴とする項1記載の電極用バインダー。
項3 更に、下記一般式(3):
Figure JPOXMLDOC01-appb-C000007
(式中、R15は水素原子又は炭素数1~4の直鎖もしくは分岐のアルキル基であり、xは2~8の整数であり、nは2~30の整数である。)
で表わされる水酸基を有するモノマーに由来する構成単位(C)を含む重合体を含む、項1又は2に記載の電極用バインダー。
項4 更に、5官能以下の多官能(メタ)アクリレートモノマーに由来する構成単位(D)を含む重合体を含む、項1~3いずれかに記載の電極用バインダー。
項5 前記構成単位(D)において、前記5官能以下の多官能(メタ)アクリレートモノマーが、下記一般式(5):
Figure JPOXMLDOC01-appb-C000008
(式中、R16は、それぞれ同一または異なって、水素原子又はメチル基であり、R17は、5価以下の炭素数2~100の有機基であり、mは5以下の整数である。)で示される化合物である、項4に記載の電極用バインダー。
項6 (メタ)アクリル酸アルキルエステルモノマーに由来する構成単位(A)は炭素数1~12のアルキル基を有する(メタ)アクリル酸アルキルエステルモノマーに由来する構成単位である項1~5のいずれかに記載の電極用バインダー。
項7 項1~6のいずれかに記載の電極用バインダーを含む、電極用バインダー組成物。
項8 項1~6のいずれかに記載の電極用バインダーを含む、電極材料。
項9 項1~6のいずれかに記載の電極用バインダーと、活物質とを含む、電極材料。
項10 活物質として、活性炭を用いる項9に記載の電極材料。
項11 活物質として、シリコン系化合物を用いる項9に記載の電極材料。
項12 項9~11いずれかに記載の電極材料を含む電極。
項13 項12に記載の電極を備える、蓄電デバイス。
 本発明によれば、電極に用いられた際に優れた結着性を備えるとともに、優れた屈曲性を備え、蓄電デバイスに用いた際には、充放電効率に優れる電極用バインダーを提供することができる。また、本発明によれば、該電極用バインダーを含む電極用バインダー組成物、電極材料、及び電極、並びに該電極を備える蓄電デバイスを提供することができる。
 本発明の電極用バインダーは、優れた結着性を備えている。特に、本発明の電極用バインダーは、電極材料における活物質として活性炭を用いた場合に優れた結着性が得られるため、有用である。
 本発明の電極用バインダーは、負極に用いる活物質として、シリコン系化合物を用いた場合に、特に顕著な効果が得られる。通常、充放電における体積変化が炭素材料を用いた場合には約10%であるのに対して、シリコン系化合物を用いた場合には200%近くの体積変化を伴うために充放電サイクルによる容量低下が大きいという問題を抱えている。本発明は、負極に用いる活物質として、シリコン系化合物を用いた場合であっても、効果を損なうことなく、高い結着性、優れた屈曲性(可撓性)、高い充放電効率を有する、及び低い直流内部抵となるため、有用である。
 本明細書において、蓄電デバイスとは、二次電池(リチウムイオン二次電池及びニッケル水素二次電池等)、電気化学キャパシタを包含するものである。また、本明細書において、「(メタ)アクリレート」とは、「アクリレートまたはメタクリレート」を意味し、これに類する表現についても同様である。
<1.電極用バインダー>
 本発明の電極用バインダーは、(メタ)アクリル酸アルキルエステルモノマーに由来する構成単位(A)、
 下記一般式(1)
Figure JPOXMLDOC01-appb-C000009
(式中、R1は水素、又は炭素数1~4のアルキル基、R2は置換基を有していてもよい芳香族基である。)
で表わされるモノマーに由来する構成単位(B)を含む重合体であって、
 重合体における構成単位(B)に対する構成単位(A)のモル比が0.5~2.5である重合体を含むことを特徴とする。
 以下に、本発明の重合体の構成単位について、詳細に説明する。
 構成単位(A)は、(メタ)アクリル酸アルキルエステルモノマーに由来する構成単位である。
 構成単位(A)は、炭素数1~12のアルキル基を有する(メタ)アクリル酸アルキルエステルモノマーに由来する構成単位であることが好ましく、炭素数1~8のアルキル基を有する(メタ)アクリル酸アルキルエステルモノマーに由来する構成単位であることがより好ましく、炭素数1~6のアルキル基を有する(メタ)アクリル酸アルキルエステルモノマーに由来する構成単位であることが更に好ましく、炭素数2~4のアルキル基を有する(メタ)アクリル酸アルキルエステルモノマーに由来する構成単位であることが特に好ましい。
 好ましい構成単位(A)の具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸n-ペンチル、(メタ)アクリル酸イソペンチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸イソヘキシル、(メタ)アクリル酸n-ヘプチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸2-エチルヘキシル、及び(メタ)アクリル酸ラウリル等の(メタ)アクリル酸アルキルエステル由来の構成単位を例示することができる。構成単位(A)は、1種類であってもよいし、2種類以上であってもよい。
 重合体における構成単位(A)の比率は、重合体における構成単位(B)に対する構成単位(A)のモル比が0.5~2.5の範囲となることを限度として、特に制限されない。重合体における構成単位(A)の比率の下限は、30モル%以上であることが好ましく、35モル%以上であることがより好ましく、40モル%以上であることが特に好ましい。また、重合体における構成単位(A)の比率の上限は、75モル%以下であることが好ましく、70モル%以下であることがより好ましく、60モル%以下であることが特に好ましい。この範囲とすることでエマルジョンの安定性が向上する点で好ましい。
 構成単位(B)は、下記一般式(1)
Figure JPOXMLDOC01-appb-C000010
(式中、R1は水素、又は炭素数1~4のアルキル基、R2は置換基を有していてもよい芳香族基である。)
に由来する構成単位である。
 構成単位(B)が、下記一般式(2)
Figure JPOXMLDOC01-appb-C000011
(式中、R1は水素、又は炭素数1~4のアルキル基、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12は水素、ヒドロキシル基、炭素数1~3のアルキル基、置換基を有していてもよい芳香族基のいずれかであり、R13は炭素数1~3のアルキレン基、又はカルボニル基、R14は置換基を有していてもよい芳香族基、q、rは0~3の整数であり、sは0~1の整数である。)で表わされるモノマーに由来する構成単位であることが好ましい。
 構成単位(B)において、
 R1は水素、又は炭素数1~4のアルキル基であり、水素、又は炭素数1~2のアルキル基であることが好ましく、水素、又はメチル基であることが特に好ましい。
 R2は置換基を有していてもよい芳香族基であり。置換基としては、アルキル基、メチル、エチル、イソプロピルなどのアルキル基、ビニルなどの不飽和炭化水素基、フルオロ基、クロロ基、ブロモ基、ヨード基などのハロゲノ基、アミノ基、ニトロ基、カルボキシル基などが挙げられる。尚、芳香環は2以上有していてもよい。
 R3、R4、R5、R6、R7、R8、R9、R10、R11、R12は水素、ヒドロキシル基、炭素数1~3のアルキル基、置換基を有していてもよい芳香族基のいずれかであり、水素、ヒドロキシル基、炭素数1~2のアルキル基、置換基を有していてもよい芳香族基のいずれかであることが好ましい。
 R13は炭素数1~3のアルキレン基、又はカルボニル基であり、炭素数1~2のアルキレン基、又はカルボニル基であることが好ましい。
 R14は置換基を有していてもよい芳香族基であり、芳香族基としては、アリール基、ベンジル基、フェノキシ基であることが好ましい。置換基としては、アルキル基、メチル、エチル、イソプロピルなどのアルキル基、ビニルなどの不飽和炭化水素基、フルオロ基、クロロ基、ブロモ基、ヨード基などのハロゲノ基、アミノ基、ニトロ基、カルボキシル基などが挙げられる。尚、芳香環は2以上有していてもよい。
 q、rは0~3の整数であり、0~2の整数であることが好ましく、q+r≧1を満たすことが好ましい。sは0~1の整数である。
 好ましい構成単位(B)の具体例としては、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェノキシメチル、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸フェノキシプロピル、(メタ)アクリル酸2-ヒドロキシ-3-フェノキシプロピル、(メタ)アクリル酸フェノキシジエチレングリコール、ネオペンチルグリコール-(メタ)アクリル酸-安息香酸エステル、2-(メタ)アクリロイロキシエチル-フタル酸等由来の構成単位を例示することができる。構成単位(B)は、1種類であってもよいし、2種類以上であってもよい。
 重合体における構成単位(B)の比率は、重合体における構成単位(B)に対する構成単位(A)のモル比が0.5~2.5の範囲となることを限度として、特に制限されない。重合体における構成単位(B)の比率の下限は、20モル%以上であることが好ましく、24モル%以上であることがより好ましく、27モル%以上であることが特に好ましい。また、重合体における構成単位(B)の比率の上限は、60モル%以下であることが好ましく、55モル%以下であることがより好ましく、50モル%以下であることが特に好ましい。この範囲とすることで電極に使用した際に、集電箔と活物質との親和性が向上する点で好ましい。
 重合体において、重合体における構成単位(B)に対する構成単位(A)のモル比(構成単位(A)mol/構成単位(B)mol)が0.5以上であることが好ましく、0.75以上であることがより好ましく、1以上であることが特に好ましく、2.5以下であることが好ましく、2.2以下であることがより好ましく、2以下であることが特に好ましい。この範囲にすることで、本発明のバインダーは電極に用いられた際に優れた結着性を備えるとともに、優れた屈曲性を備え、蓄電デバイスに用いた際には、充放電効率に優れる。
 重合体において、下記一般式(3):
Figure JPOXMLDOC01-appb-C000012
(式中、R15は水素原子又は炭素数1~4の直鎖もしくは分岐のアルキル基であり、xは2~8の整数であり、nは2~30の整数である。)
で表わされる水酸基を有するモノマーに由来する構成単位(C)を含むことが電極に使用した際にイオン伝導性が向上する点で好ましい。
 一般式(3)において、R15としては、好ましくは、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、およびイソブチル基などが挙げられる。好ましくは水素原子またはメチル基である。すなわち、構成単位(C)において、水酸基を有するモノマーは、(R15が水素原子又はメチル基である)(メタ)アクリレートモノマーであることが好ましい。
 一般式(3)において、(Cx2xO)としては、直鎖もしくは分岐のアルキルエーテル基であり、xは2~8の整数であり、好ましくは2~7の整数であり、より好ましくは2~6の整数である。
 一般式(3)において、nは2~30の整数であり、好ましくは2~25の整数であり、より好ましくは2~20の整数である。
 構成単位(C)は、以下、一般式(4)で表わされる水酸基を有するモノマーに由来することが好ましい。
Figure JPOXMLDOC01-appb-C000013
 一般式(4)において、R15は水素原子又は炭素数1~4の直鎖もしくは分岐のアルキル基であり、oは0~30の整数であり、pは0~30の整数であり、o+pは2~30である。ここで、o、およびpは、当該構成単位の構成比を表しているのみであって、(C24O)の繰り返し単位のブロックと(C36O)の繰り返し単位のブロックからなる化合物のみを意味するものではなく、(C24O)の繰り返し単位と、(C36O)の繰り返し単位が交互・ランダムに配置された、又はランダム部とブロック部が混在する化合物であってもよい。
 一般式(4)において、R15としては、好ましくは、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、およびイソブチル基などが挙げられる。好ましくは水素原子またはメチル基である。すなわち、構成単位(C)において、水酸基を有するモノマーは、(R15が水素原子又はメチル基である)(メタ)アクリレートモノマーであることが好ましい。
 一般式(4)において、oは0~30の整数であり、pは0~30の整数であり、o+pは2~30であり、oは0~25の整数であり、pは0~25の整数であり、o+pは2~25であることが好ましく、oは0~20の整数であり、pは0~20の整数であり、o+pは2~20であることが特に好ましい。
 一般式(3)で表わされる水酸基を有するモノマーの具体例としては、ジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、およびポリエチレングリコールモノ(メタ)アクリレート、ジプロピレングリコールモノ(メタ)アクリレート、トリプロピレングリコールモノ(メタ)アクリレート、テトラプロピレングリコールモノ(メタ)アクリレート、およびポリプロピレングリコールモノ(メタ)アクリレート、ポリエチレングリコール-プロピレングリコール-モノ(メタ)アクリレート、ポリエチレングリコール-テトラメチレングリコール-モノ(メタ)アクリレートなどが挙げられる。これらは1種又は2種以上併用できる。これらの中でも、テトラエチレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、テトラプロピレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレートが好ましい。
 構成単位(C)は、1種類であってもよいし、2種類以上であってもよい。
 重合体が構成単位(C)を含む場合、その比率は、重合体における構成単位(B)に対する構成単位(A)のモル比が0.5~2.5の範囲となることを限度として、特に制限されない。重合体において、構成単位(C)のモル比率の下限は0.5モル%以上であることが好ましく、1.0モル%以上であることがより好ましく、2.0モル%以上であることが特に好ましい。重合体における構成単位(C)の比率の上限は、15モル%以下であることが好ましく、12モル%以下であることがより好ましく、10モル%以下であることが特に好ましい。
 重合体において、5官能以下の多官能(メタ)アクリレートモノマーに由来する構成単位(D)を含むことがバインダー粒子を安定化させる点で好ましい。構成単位(D)は、下記一般式(5)に由来する構成単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000014
 一般式(5)において、R16は、それぞれ同一または異なって、水素原子又はメチル基であり、R17は、5価以下の炭素数2~100の有機基であり、mは5以下の整数である。
 一般式(5)において、mは2~5(すなわち、構成単位(D)が2官能から5官能(メタ)アクリレートに由来する構成単位)であることが好ましく、3~5(すなわち、構成単位(D)が3官能から5官能(メタ)アクリレートに由来する構成単位)であることがより好ましく、3~4(すなわち、構成単位(D)が3官能から4官能(メタ)アクリレートに由来する構成単位)であることが特に好ましい。
 構成単位(D)において、2官能(メタ)アクリレートに由来する構成単位の具体例としては、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、ジオキサングリコールジ(メタ)アクリレート、ビス(メタ)アクリロイルオキシエチルフォスフェート等の2官能(メタ)アクリレートに由来する構成単位が挙げられる。
 構成単位(D)において、3官能(メタ)アクリレートに由来する構成単位の具体例としては、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンEO付加トリ(メタ)アクリレート、トリメチロールプロパンPO付加トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、2,2,2-トリス(メタ)アクリロイロキシメチルエチルコハク酸、エトキシ化イソシアヌル酸トリ(メタ)アクリレート、ε-カプロラクトン変性トリス-(2-(メタ)アクリロキシエチル)イソシアヌレート、グリセリンEO付加トリ(メタ)アクリレート、グリセリンPO付加トリ(メタ)アクリレート及びトリス(メタ)アクリロイルオキシエチルフォスフェート等の3官能(メタ)アクリレートに由来する構成単位が挙げられる。これらの中でも、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンEO付加トリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートから選択される3官能(メタ)アクリレートに由来する構成単位が好ましい。
 構成単位(D)において、4官能(メタ)アクリレートに由来する構成単位の具体例としては、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート及びペンタエリスリトールEO付加テトラ(メタ)アクリレート等の4官能(メタ)アクリレートに由来する構成単位が挙げられる。
 構成単位(D)において、5官能(メタ)アクリレートに由来する構成単位の具体例としては、ジペンタエリスリトールペンタ(メタ)アクリレートに由来する構成単位が挙げられる。
 重合体が構成単位(D)を含む場合、その比率は、重合体における構成単位(B)に対する構成単位(A)のモル比が0.5~2.5の範囲となることを限度として、特に制限されない。重合体における構成単位(D)のモル比率の下限は0.05モル%以上であることが好ましく、0.1モル%以上であることがより好ましく、0.2モル%以上であることが特に好ましい。構成単位(D)の比率の上限は、10モル%以下であることが好ましく、5モル%以下であることがより好ましく、3モル%以下であることが特に好ましい。
 重合体において、(メタ)アクリル酸モノマーに由来する構成単位(E)を含むことが電極に使用した際に活物質との親和性が向上する点で好ましい。
 構成単位(E)としては、アクリル酸、メタクリル酸から選択される化合物に由来する構成単位を例示することができる。重合体が有する構成単位(E)は、1種類であってもよいし、2種類以上であってもよい。
 重合体が構成単位(E)を含む場合、その比率は、重合体における構成単位(B)に対する構成単位(A)のモル比が0.5~2.5の範囲となることを限度として、特に制限されない。重合体における構成単位(E)の比率の下限は3モル%以上であることが好ましく、4モル%以上であることがより好ましく、5モル%以上であることが特に好ましい。また、構成単位(E)の比率の上限は、15モル%以下であることが好ましく、13モル%以下であることがより好ましく、12モル%以下であることが特に好ましい。
 重合体としては、上記以外にも、その他のモノマー由来の構成単位として、フマル酸、マレイン酸、イタコン酸、シトラコン酸、メサコン酸、グルタコン酸、アクリロニトリル、メタクリロニトリル、α-クロロアクリロニトリル、クロトンニトリル、α-エチルアクリロニトリル、α-シアノアクリレート、シアン化ビニリデン、フマロニトリルから選択されるモノマー由来の構成単位を有することできる。
 重合体を得る方法としては、一般的な乳化重合法、ソープフリー乳化重合法等を使用することができる。具体的には、攪拌機、及び加熱装置付きの密閉容器に室温でモノマー、乳化剤、重合開始剤、水、必要に応じて分散剤、連鎖移動剤、pH調整剤等を含んだ組成物を不活性ガス雰囲気下で攪拌することでモノマー等を水に乳化させる。乳化の方法は撹拌、剪断、超音波等による方法等が適用でき、撹拌翼、ホモジナイザー等を使用することができる。次いで、攪拌しながら温度を上昇させて重合を開始させることで、重合体が水に分散した球形の重合体のラテックスを得ることができる。重合時のモノマーの添加方法は、一括仕込みの他に、モノマー滴下やプレエマルジョン滴下等でもよく、これらの方法を2種以上併用してもよい。尚、プレエマルジョン滴下とは先にモノマー、乳化剤、水等を予め乳化させておき、その乳液を滴下していく添加方法を指す。
 本発明で用いられる乳化剤は特に限定されない。乳化剤は界面活性剤であり、この界面活性剤には反応性基を有する反応性界面活性剤が含まれる。乳化重合法おいて一般的に用いられるノニオン性界面活性剤及びアニオン性界面活性剤等を使用することができる。
 ノニオン性界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルコールエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン多環フェニルエーテル、ポリオキシアルキレンアルキルエーテル、ソルビタン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル及びポリオキシエチレンソルビタン脂肪酸エステル等が挙げられ、反応性のノニオン性界面活性剤としては、ラテムルPD-420、430、450(花王社製)、アデカリアソープER(アデカ社製)、アクアロンRN(第一工業製薬社製)、アントックスLMA(日本乳化剤社製)、アントックスEMH(日本乳化剤社製)等が挙げられる。
 アニオン性界面活性剤としては、硫酸エステル型、カルボン酸型、又はスルホン酸型の金属塩、アンモニウム塩、トリエタノールアンモニウム塩、リン酸エステル型の界面活性剤等を挙げることができる。硫酸エステル型、スルホン酸型、リン酸エステル型が好ましく、硫酸エステル型が特に好ましい。硫酸エステル型のアニオン性界面活性剤の代表例としてはドデシル硫酸等のアルキル硫酸金属塩、アンモニウム、又はアルキル硫酸トリエタノールアミン、ポリオキシエチレンドデシルエーテル硫酸、ポリオキシエチレンイソデシルエーテル硫酸、ポリオキシエチレントリデシルエーテル硫酸等のポリオキシエチレンアルキルエーテル硫酸金属塩、アンモニウム塩、又はポリオキシエチレンアルキルエーテル硫酸トリエタノールアミン等が挙げられ、硫酸エステル型の反応性アニオン性界面活性剤の具体例としては、ラテムルPD-104、105(花王社製)、アデカリアソープSR(アデカ社製)、アクアロンHS(第一工業製薬社製)、アクアロンKH(第一工業製薬社製)が挙げられる。好ましくは、ドデシル硫酸ナトリウム、ドデシル硫酸アンモニウム、ドデシル硫酸トリエタノールアミン、ドデシルベンゼンスルホン酸ナトリウム、ラテムルPD-104等が挙げられる。
 これらノニオン性界面活性剤及び/又はアニオン性界面活性剤は1種または2種以上用いてもよい。
 反応性界面活性剤の反応性とは、反応性二重結合を含有し、重合時にモノマーと重合反応することを意味する。すなわち、反応性界面活性剤は、重合体を作製する重合の際にモノマーの乳化剤として働くと共に、重合後は重合体の一部に共有結合して取り込まれた状態となる。そのため、乳化重合及び作製した重合体の分散が良好であり、電極用バインダーとしての物性(屈曲性、結着性)が優れている。
 乳化剤の構成単位の量は乳化重合法おいて一般的に用いられる量であればよい。具体的には、仕込みのモノマー量(100質量%)に対して、0.01~25質量%の範囲であり、好ましくは0.05~20質量%、更に好ましくは0.1~20質量%である。
 本発明で用いられる重合開始剤は特に限定されず、乳化重合法、懸濁重合法おいて一般的に用いられる重合開始剤を使用することができる。好ましくは乳化重合法である。乳化重合法では水溶性の重合開始剤、懸濁重合法では油溶性の重合開始剤が使われる。
 その水溶性の重合開始剤の具体例としては、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウムなどの過硫酸塩に代表される水溶性の重合開始剤、2-2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、またはその塩酸塩または硫酸塩、2,2'-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2'-アゾビス(2-メチルプロパンアミジン)、又はその塩酸塩又は硫酸塩、3,3'-[アゾビス[(2,2-ジメチル-1-イミノエタン-2,1-ジイル)イミノ]]ビス(プロパン酸)、2,2'‐[アゾビス(ジメチルメチレン)]ビス(2‐イミダゾリン)などの水溶性のアゾ化合物の重合開始剤が好ましい。
 油溶性の重合開始剤としては、クメンハイドロパーオキサイド、過酸化ベンゾイル、アセチルパーオキサイド、t-ブチルハイドロパーオキサイド等の有機過酸化物、アゾビスイソブチロニトリル、1,1’-アゾビス(シクロヘキサンカルボニトリル) などの油溶性のアゾ化合物の重合開始剤、レドックス系開始剤が好ましい。これら重合開始剤は1種または2種以上組み合わせて用いてもよい。
 重合開始剤の使用量は乳化重合法または懸濁重合法おいて一般的に用いられる量であればよい。具体的には、仕込みのモノマー量(100質量%)に対して、0.01~10質量%の範囲であり、好ましくは0.01~5質量%、更に好ましくは0.02~3質量%である。
 連鎖移動剤は、必要に応じて用いることができる。連鎖移動剤の具体例としては、n-ヘキシルメルカプタン、n-オクチルメルカプタン、t-オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、n-ステアリルメルカプタン等のアルキルメルカプタン、2,4-ジフェニル-4-メチル-1-ペンテン、2,4-ジフェニル-4-メチル-2-ペンテン、ジメチルキサントゲンジサルファイド、ジイソプロピルキサントゲンジサルファイド等のキサントゲン化合物、ターピノレン、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラメチルチウラムモノスルフィド等のチウラム系化合物、2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノール等のフェノール系化合物、アリルアルコール等のアリル化合物、ジクロルメタン、ジブロモメタン、四臭化炭素等のハロゲン化炭化水素化合物、α-ベンジルオキシスチレン、α-ベンジルオキシアクリロニトリル、α-ベンジルオキシアクリルアミド等のビニルエーテル、トリフェニルエタン、ペンタフェニルエタン、アクロレイン、メタアクロレイン、チオグリコール酸、チオリンゴ酸、2-エチルヘキシルチオグリコレート等が挙げられ、これらを1種または2種以上用いてもよい。これらの連鎖移動剤の量は特に限定されないが、通常、仕込みモノマー量100質量部に対して0~5質量部にて使用される。
 重合体の製造においては、重合温度及び重合時間は特に限定されない。使用する重合開始剤の種類等から適宜選択できるが、一般的に、重合温度は20~100℃であり、重合時間は0.5~100時間である。
 本発明の電極用バインダーは、重合体を有するが、水分、又は乳化剤等の他の物質が重合体の内部に含有され、又は外部に付着されていてもよい。内部に含有される、又は外部に付着される物質の量は、重合体100質量部に対して、7質量部以下であることが好ましく、5質量部以下であることがより好ましく、3質量部以下であることが特に好ましい。
<2.電極用バインダー組成物>
 本発明の電極用バインダー組成物は、先述の「1.電極用バインダー」の欄で説明した本発明の電極用バインダーを溶媒とともに含有するものであり、電極用バインダーが溶媒に分散されたものであってよい。溶媒は、水、有機溶媒を用いることができる。有機溶媒としては、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、t-ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、アミルアルコールなどのアルコール類、アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン類、酢酸エチル、酢酸ブチルなどのエステル類、ジエチルエーテル、ジオキサン、テトラヒドロフランなどのエーテル類、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン(NMP)などのアミド系極性有機溶媒、トルエン、キシレン、クロロベンゼン、オルトジクロロベンゼン、パラジクロロベンゼンなどの芳香族炭化水素類を例示することができる。
 本発明の電極用バインダー組成物は、電極用バインダーが水に分散した水系バインダー組成物であることが好ましい。
 本発明の電極用バインダー組成物は、重合体を得る際に製造されるエマルジョンを用いたエマルジョンであってもよい。
 本発明の電極用バインダー組成物における、電極用バインダーの含有量は特に限定されないが、電極用バインダーの固形分濃度が0.2~80質量%となるように含有することが好ましく、0.5~70質量%となるように含有することがより好ましく、0.5~60質量%となるように含有することが特に好ましい。尚、バインダー組成物における固形分については、通常、重合体及び乳化剤(重合体が乳化重合で用いられた際のみ)と考えられる。
 本発明の電極用バインダー組成物は、必要に応じてpH調整剤として塩基を用いることでpHを調整することができる。塩基の具体例としては、アルカリ金属(Li、Na、K、Rb、Cs)水酸化物、アンモニア、無機アンモニウム化合物、有機アミン化合物等が挙げられる。pHの範囲はpH2~11、好ましくはpH3~10、更に好ましくはpH4~9の範囲である。
<3.電極材料>
 本発明の電極材料は、少なくとも活物質、及び先述の「1.電極用バインダー」の欄で説明した本発明の電極用バインダーを含有し、更に導電助剤を含有していてもよい。本発明の電極材料の製造には、本発明の電極用バインダーを溶媒とともに含有する「2.電極用バインダー組成物」の欄で説明した本発明の電極用バインダー組成物を用いることもできる。具体的には、リチウムイオン電池においては、正極に用いる正極材料としては正極活物質、及び本発明の電極用バインダーを含有し、更に導電助剤を含有していてもよく、負極に用いる負極材料としては負極活物質、本発明の電極用バインダーを含有し、更に導電助剤を含有していてもよく、電気二重層キャパシタ(電気化学キャパシタ)においては、正極に用いる正極材料としては活物質として活性炭、及び本発明の電極用バインダーを含有し、更に導電助剤を含有していてもよく、負極に用いる負極材料としては活物質として活性炭、本発明の電極用バインダーを含有し、更に導電助剤を含有していてもよい。
 リチウムイオン電池に用いる正極活物質は、AMO2、AM24、A2MO3、AMBO4のいずれかの組成からなるアルカリ金属含有複合酸化物である。Aはアルカリ金属、Mは単一または2種以上の遷移金属からなり、その一部に非遷移金属を含んでもよい。BはP、Siまたはその混合物からなる。なお正極活物質は粉末が好ましく、その粒子径には、好ましくは50ミクロン以下、より好ましくは20ミクロン以下のものを用いる。これらの活物質は、3V(vs. Li/Li+)以上の起電力を有するものである。
 リチウムイオン電池に用いる正極活物質の好ましい具体例としては、LixCoO2, LixNiO2, LixMnO2, LixCrO2, LixFeO2, LixCoaMn1-aO2, LixCoaNi1-aO2, LixCoaCr1-aO2, LixCoaFe1-aO2, LixCoaTi1-aO2, LixMnaNi1-aO2, LixMnaCr1-aO2, LixMnaFe1-aO2, LixMnaTi1-aO2, LixNiaCr1-aO2, LixNiaFe1-aO2, LixNiaTi1-aO2, LixCraFe1-aO2, LixCraTi1-aO2, LixFeaTi1-aO2, LixCobMncNi1-b-cO2, LixNiaCobAlcO2, LixCrbMncNi1-b-cO2, LixFebMncNi1-b-cO2, LixTibMncNi1-b-cO2, LixMn2O4, LixMndCo2-dO4, LixMndNi2-dO4, LixMndCr2-dO4, LixMndFe2-dO4, LixMndTi2-dO4, LiyMnO3, LiyMneCo1-eO3, LiyMneNi1-eO3, LiyMneFe1-eO3, LiyMneTi1-eO3, LixCoPO4, LixMnPO4, LixNiPO4, LixFePO4, LixCofMn1-fPO4, LixCofNi1-fPO4, LixCofFe1-fPO4, LixMnfNi1-fPO4, LixMnfFe1-fPO4, LixNifFe1-fPO4,LiyCoSiO4, LiyMnSiO4, LiyNiSiO4, LiyFeSiO4, LiyCogMn1-gSiO4, LiyCogNi1-gSiO4, LiyCogFe1-gSiO4, LiyMngNi1-gSiO4, LiyMngFe1-gSiO4, LiyNigFe1-gSiO4, LiyCoPhSi1-hO4, LiyMnPhSi1-hO4, LiyNiPhSi1-hO4, LiyFePhSi1-hO4, LiyCogMn1-gPhSi1-hO4, LiyCogNi1-gPhSi1-hO4, LiyCogFe1-gPhSi1-hO4, LiyMngNi1-gPhSi1-hO4, LiyMngFe1-gPhSi1-hO4, LiyNigFe1-gPhSi1-hO4などのリチウム含有複合酸化物をあげることができる。(ここで、x=0.01~1.2, y=0.01~2.2, a=0.01~0.99, b=0.01~0.98, c=0.01~0.98但し、b+c=0.02~0.99, d=1.49~1.99, e=0.01~0.99, f=0.01~0.99, g=0.01~0.99, h=0.01~0.99である。)
 また、リチウムイオン電池に用いる前記の好ましい正極活物質のうち、より好ましい正極活物質としては、具体的には、LixCoO2, LixNiO2, LixMnO2, LixCrO2, LixCoaNi1-aO2, LixMnaNi1-aO2, LixCobMncNi1-b-cO2, LixNiaCobAlcO2, LixMn2O4, LiyMnO3, LiyMneFe1-eO3, LiyMneTi1-eO3, LixCoPO4, LixMnPO4, LixNiPO4, LixFePO4, LixMnfFe1-fPO4を挙げることができる。(ここで、x=0.01~1.2, y=0.01~2.2, a=0.01~0.99, b=0.01~0.98, c=0.01~0.98但し、b+c=0.02~0.99, d=1.49~1.99, e=0.01~0.99, f=0.01~0.99である。なお、上記のx, yの値は充放電によって増減する。)
 リチウムイオン電池に用いる負極活物質としては、リチウムイオンを吸蔵・放出可能な構造(多孔質構造)を有する炭素材料(天然黒鉛、人造黒鉛、非晶質炭素等)か、リチウムイオンを吸蔵・放出可能なリチウム、アルミニウム系化合物、スズ系化合物、シリコン系化合物、チタン系化合物等の金属からなる粉末である。粒子径は10nm以上100μm以下が好ましく、更に好ましくは20nm以上20μm以下である。また、金属と炭素材料との混合活物質として用いてもよい。なお負極活物質にはその気孔率が、70%程度のものを用いるのが望ましい。
 本発明のバインダーにおいては、特にリチウムイオン電池の負極に用いる活物質として、シリコン系化合物を用いた際に、より顕著な効果が得られる。
 シリコン系化合物としては、Si元素、Siとの合金、Siを含む酸化物、Siを含む炭化物等であり、Si、SiB4、SiB6、Mg2Si、Ni2Si、TiSi2、MoSi2、CoSi2、NiSi2、CaSi2、CrSi2、Cu5Si、FeSi2、MnSi2、NbSi2、TaSi2、VSi2、WSi2、ZnSi2、SiC、Si34、Si22O、SiOx(0<x≦2)、SnSiOx、LiSiOを例示することができ、SiOx(0<x≦2)であることが好ましく、一酸化ケイ素(SiO)等である。
 活物質全量(100質量%)に対するシリコン系化合物の含有量は、下限は1質量%以上であることが好ましく、2質量%以上であることがより好ましく、4質量%以上であることが特に好ましく、上限は80質量%以下であることが好ましく、60質量%以下であることがより好ましく、40質量%以下であることが特に好ましい。
 本発明のバインダーにおいては、負極に用いる活物質として、シリコン系化合物を用いた際に、活物質として炭素材料を併用することが好ましい。
 炭素材料としては、グラファイト、低結晶性カーボン(ソフトカーボン、ハードカーボン)、カーボンブラック(ケッチェンブラック、アセチレンブラック、チャンネルブラック、ランプブラック、オイルファーネスブラック、サーマルブラック等)、フラーレン、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、カーボンフィブリルなどの炭素材料を例示することができ、グラファイトであることが好ましい。
 活物質全量(100質量%)に対する炭素材料の含有量は、下限は20質量%以上であることが好ましく、40質量%以上であることがより好ましく、60質量%以上であることが特に好ましく、上限は99質量%以下であることが好ましく、98質量%以下であることがより好ましく、96質量%以下であることが特に好ましい。
 電気二重層キャパシタ(電気化学キャパシタ)に用いる活物質としては活性炭を例示することができる。一般的には、活性炭とは賦活化された炭化物を指し、市販の活性炭を用いてもよく、公知の製法に従って製造された活性炭を用いてもよい。活性炭の製造法としては、木材、ヤシ殻、パルプ廃液、石炭、重質油、フェノール樹脂等の原料を炭化し、得られた炭化物を賦活化することにより得られる。
 賦活化は、公知の賦活法であればよく、ガス賦活法または薬品賦活法等により行うことができる。ガス賦活法では、炭化物を、加熱下で、水蒸気、炭酸ガス、酸素などのガスと接触させることにより、賦活化させる。薬品賦活法では、炭化物を、公知の賦活薬品と接触させた状態で加熱することにより賦活化させる。賦活薬品としては、例えば、塩化亜鉛、燐酸、および/またはアルカリ化合物(水酸化ナトリウムなどの金属水酸化物など)などが挙げられる。水蒸気で賦活化した活性炭(本願においては水蒸気賦活性炭と記載する)、および/またはアルカリで賦活化した活性炭(本願においてはアルカリ賦活活性炭と記載する)を用いることが好ましい。
 電極材料中の活物質の含有量としては、特に制限されず、水等のスラリーにするための成分を除いた電極材料(100質量%)に対して、例えば99.9~50質量%程度、より好ましくは99.5~70質量%程度、さらに好ましくは99~85質量%程度が挙げられる。活物質は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
 導電助剤を用いる場合には、公知の導電助剤を用いることができ、黒鉛、ファーネスブラック、アセチレンブラック、ケッチェンブラックなどの導電性カーボンブラック、カーボンナノチューブなどの炭素繊維、または金属粉末等が挙げられる。これら導電助剤は1種または2種以上用いてもよい。
 導電助剤を用いる場合には、導電助剤の含有量は特に制限されないが、活物質100質量部に対して、好ましくは20質量部以下、より好ましくは15質量部以下が挙げられる。なお、正極材料中に導電助剤が含まれる場合、導電助剤の含有量の下限値としては、通常、0.05質量部以上、0.1質量部以上、0.2質量部以上、0.5質量部以上、2質量部以上を例示することができる。
 本発明の電極材料は、必要に応じて増粘剤を含有させても良い。増粘剤の種類は、特に限定されないが、好ましくは、セルロース系化合物のナトリウム塩、アンモニウム塩、ポリビニルアルコール、ポリアクリル酸およびその塩等である。
 セルロース系化合物のナトリウム塩もしくはアンモニウム塩としては、セルロース系高分子を各種誘導基により置換されたアルキルセルロースのナトリウム塩もしくはアンモニウム塩などが挙げられる。具体例としては、メチルセルロース、メチルエチルセルロース、エチルセルロース、カルボキシメチルセルロース(CMC)のナトリウム塩、アンモニウム塩、トリエタノールアンモニウム塩等が挙げられる。カルボキシメチルセルロースのナトリウム塩もしくはアンモニウム塩が特に好ましい。これらの増粘剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 増粘剤を用いる場合には、増粘剤の含有量は特に制限されないが、活物質100質量部に対して、好ましくは5質量部以下、より好ましくは3質量部以下が挙げられる。なお、増粘剤が含まれる場合、増粘剤の含有量の下限値としては、通常、0.05質量部以上、0.1質量部以上、0.2質量部以上、0.5質量部以上、1質量部以上を例示することができる。
 本発明の電極材料は、スラリー状とするために水を含有してもよい。水は特に限定されず、一般的に用いられる水を使用することができる。その具体例としては水道水、蒸留水、イオン交換水、及び超純水などが挙げられる。その中でも、好ましくは蒸留水、イオン交換水、及び超純水である。
 本発明の電極材料をスラリー状として用いる場合には、スラリーの固形分濃度は、10~90質量%であることが好ましく、20~85質量%であることがより好ましく、20~80質量%であることが特に好ましい。
 本発明の電極材料をスラリー状として用いる場合には、スラリーの固形分中の重合体量の割合は、0.1~15質量%であることが好ましく、0.2~10質量%であることがより好ましく、0.3~7質量%であることが特に好ましい。
 電極材料の調製方法としては特に限定されず、正極活物質あるいは負極活物質、本発明の電極用バインダー、導電助剤、水等を通常の攪拌機、分散機、混練機、遊星型ボールミル、ホモジナイザーなど用いて分散させればよい。分散の効率を上げるために材料に影響を与えない範囲で加温してもよい。
<4.電極>
 本発明の電極は、前述の「3.電極材料」の欄で説明した本発明の電極材料と、集電体とを備えることを特徴とする。本発明の電極材料の詳細については、前述の通りである。
 本発明の電極については、公知の集電体を用いることができる。具体的には、正極としては、アルミニウム、ニッケル、ステンレス、金、白金、チタン等の金属が使用される。負極としては、銅、ニッケル、ステンレス、金、白金、チタン、アルミニウム等の金属が使用される。
 電極の作製方法は、特に限定されず一般的な方法が用いられる。電池材料をドクターブレード法やアプリケーター法、シルクスクリーン法などにより集電体(金属電極基板)表面上に適切な厚さに均一に塗布することより行われる。
 例えばドクターブレード法では、電極用スラリーを金属電極基板に塗布した後、所定のスリット幅を有するブレードにより適切な厚さに均一化する。電極は活物質塗布後、余分な有機溶剤及び水を除去するため、例えば、100℃の熱風や80℃真空状態で乾燥する。乾燥後の電極はプレス装置によってプレス成型することで電極材が製造される。プレス後に再度熱処理を施して水、溶剤、乳化剤等を除去してもよい。
<5.蓄電デバイス>
 本発明の蓄電デバイスは、前述の「4.電極」の欄で説明した正極と、負極と、電解液とを備えることを特徴としている。すなわち、本発明の蓄電デバイスに用いられる電極は、本発明の電極材料、即ち本発明の電極用バインダーを含んでいる。本発明の電極の詳細については、前述の通りである。尚、本発明の蓄電デバイスについては、正極と、負極の少なくとも一方に、本発明の電極用バインダーを含んだ電極材料を用いた電極を使用していればよく、本発明の電極用バインダーを含んだ電極材料を用いていない電極については、公知の電極を用いることができる。
 電解液としては、特に制限されず、公知の電解液を用いることができる。電解液の具体例としては、電解質と溶媒とを含む溶液が挙げられる。電解質及び溶媒は、それぞれ、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
 電解質としては、リチウム塩化合物を例示することができ、具体的には、LiBF4、LiPF6、LiClO4、LiCF3SO3、LiN(CF3SO22,LiN(C25SO22,LiN[CF3SC(C25SO23]2などが挙げられるが、これらに限定されるものではない。
 リチウム塩化合物以外の電解質としては、テトラエチルアンモニウムテトラフルオロボレート、トリエチルモノメチルアンモニウムテトラフルオロボレート、テトラエチルアンモニウムヘキサフルオロフォスフェート等が挙げられる
 電解液に用いる溶媒としては、有機溶剤、又は常温溶融塩を例示することができる。
 有機溶剤としては、非プロトン性有機溶剤を挙げることができ、具体的にはプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、1,2-ジメトキシエタン、1,2-ジエトキシエタン、γ-ブチロラクトン、テトラヒドロフラン、1,3-ジオキソラン、ジプロピルカーボネート、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピルニトリル、アニソール、酢酸エステル、プロピオン酸エステル、ジエチルエーテルなどの直鎖エーテルを使用することができ、2種類以上混合して使用してもよい。
 常温溶融塩はイオン液体とも呼ばれており、イオンのみ(アニオン、カチオン)から構成される「塩」であり、特に液体化合物をイオン液体という。
 本発明での常温溶融塩とは、常温において少なくとも一部が液状を呈する塩をいい、常温とは電池が一般的に作動すると想定される温度範囲をいう。電池が通常作動すると想定される温度範囲とは、上限が120℃程度、場合によっては80℃程度であり、下限は-40℃程度、場合によっては-20℃程度である。
 常温溶融塩のカチオン種としては、ピリジン系、脂肪族アミン系、脂環族アミン系の4級アンモニウム有機物カチオンが知られている。4級アンモニウム有機物カチオンとしては、ジアルキルイミダゾリウム、トリアルキルイミダゾリウム、などのイミダゾリウムイオン、テトラアルキルアンモニウムイオン、アルキルピリジニウムイオン、ピラゾリウムイオン、ピロリジニウムイオン、ピペリジニウムイオンなどが挙げられる。特に、イミダゾリウムイオンが好ましい。
 なお、テトラアルキルアンモニウムイオンとしては、トリメチルエチルアンモニウムイオン、トリメチルエチルアンモニウムイオン、トリメチルプロピルアンモニウムイオン、トリメチルヘキシルアンモニウムイオン、テトラペンチルアンモニウムイオン、トリエチルメチルアンモニウムイオンなどが挙げられるが、これらに限定されるものではない。
 また、アルキルピリジニウムイオンとしては、N-メチルピリジウムイオン、N-エチルピリジニウムイオン、N-プロピルピリジニウムイオン、N-ブチルピリジニウムイオン、1-エチル-2メチルピリジニウムイオン、1-ブチル-4-メチルピリジニウムイオン、1-ブチル-2,4ジメチルピリジニウムイオンなどが挙げられるが、これらに限定されるものではない。
 イミダゾリウムイオンとしては、1,3-ジメチルイミダゾリウムイオン、1-エチル-3-メチルイミダゾリウムイオン、1-メチル-3-エチルイミダゾリウムイオン、1-メチル-3-ブチルイミダゾリウムイオン、1-ブチル-3-メチルイミダゾリウムイオン、1,2,3-トリメチルイミダゾリウムイオン、1,2-ジメチル-3-エチルイミダゾリウムイオン、1,2-ジメチル-3-プロピルイミダゾリウムイオン、1-ブチル-2,3-ジメチルイミダゾリウムイオンなどが挙げられるが、これらに限定されるものではない。
 常温溶融塩のアニオン種としては、塩化物イオン、臭化物イオン、ヨウ化物イオンなどのハロゲン化物イオン、過塩素酸イオン、チオシアン酸イオン、テトラフルオロホウ素酸イオン、硝酸イオン、AsF6 -、PF6 -などの無機酸イオン、ステアリルスルホン酸イオン、オクチルスルホン酸イオン、ドデシルベンゼンスルホン酸イオン、ナフタレンスルホン酸イオン、ドデシルナフタレンスルホン酸イオン、7,7,8,8-テトラシアノ-p-キノジメタンイオンなどの有機酸イオンなどが例示される。
 なお、常温溶融塩は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
 電解液には必要に応じて種々の添加剤を使用することができる。添加剤としては、難燃剤、不燃剤、正極表面処理剤、負極表面処理剤、過充電防止剤などが挙げられる。難燃剤、不燃剤としては、臭素化エポキシ化合物、ホスファゼン化合物、テトラブロムビスフェノールA、塩素化パラフィン等のハロゲン化物、三酸化アンチモン、五酸化アンチモン、水酸化アルミニウム、水酸化マグネシウム、リン酸エステル、ポリリン酸塩、及びホウ酸亜鉛等が例示できる。正極表面処理剤としては、炭素や金属酸化物(MgОやZrO2等)の無機化合物やオルト-ターフェニル等の有機化合物等が例示できる。負極表面処理剤としては、ビニレンカーボネート、フルオロエチレンカーボネート、ポリエチレングリコールジメチルエーテル等が例示できる。過充電防止剤としては、ビフェニルや1-(p-トリル)アダマンタン等が例示できる。
 本発明の蓄電デバイスの製造方法は、特に限定されず、正極、負極、電解液、必要に応じて、セパレータなどを用いて、公知の方法にて製造される。例えば、コイン型の場合、正極、必要に応じてセパレータ、負極を外装缶に挿入する。これに電解液を入れ含浸する。その後、封口体とタブ溶接などで接合して、封口体を封入し、カシメることで蓄電デバイスが得られる。蓄電デバイスの形状は限定されないが、例としてはコイン型、円筒型、シート型などが挙げられる。
 セパレータは、正極と負極が直接接触して蓄電池内でショートすることを防止するものであり、公知の材料を用いることができる。セパレータとしては、具体的には、ポリオレフィンなどの多孔質高分子フィルム、紙等が挙げられる。多孔質高分子フィルムとしては、ポリエチレン、ポリプロピレンなどのフィルムが、電解液による影響が少ないため、好ましい。
 本発明を実施するための具体的な形態を以下に実施例を挙げて説明する。但し、本発明はその要旨を逸脱しない限り、以下の実施例に限定されるものではない。
 作製した電極の結着性と屈曲性の評価は以下の通り行った。
<結着性試験>
(測定装置)
 剥離強度試験機:ストログラフE3-L(東洋精機株式会社)
(結着性試験方法)
 結着性試験は180°剥離試験にて行った。具体的には電極を幅2cm×長さ5cmに切り、テープ(粘着テープ:ニチバン製、幅1.8cm、長さ5cm)を貼り付け、電極の長さ方向の片端をストログラフE3-Lに固定した状態でテープを180°方向に試験速度50mm/min、荷重レンジ5Nで引き剥がした。試験は3回実施し、その加重平均値を求めた。評価結果を表2、3にまとめて示した。
(屈曲試験方法)
 屈曲試験はマンドレル屈曲試験にて行った。具体的には電極を幅3cm×長さ8cmに切り、長さ方向の中央(4cm部分)の基材側(電極表面が外側を向くように)に直径4mmのステンレス棒を支えにして180°折り曲げたときの折り曲げ部分の塗膜の状態を観察した。この方法で5回測定を行い、5回とも電極表面のひび割れまたは剥離や集電体からの剥がれが全く生じていない場合を○、1回でも1箇所以上のひび割れまたは剥がれが生じた場合を×と評価した。評価結果を表2、3にまとめて示した。
[作製した活性炭電池の特性評価]
 作製した活性炭電極を使用したコイン電池の特性評価としては、充放電効率の測定を行った。評価結果を表2にまとめて示した。
<充放電効率の測定>
(測定装置)
 充放電評価装置:TOSCAT-3100(東洋システム株式会社)
(測定方法)
 作製したコイン電池を、10Cで定電流充電を行い、2.7Vまで充電した後に、0.5C定電圧充電を実施した。充電後、電池を10分間休止させた。次いで10Cでの定電流放電を実施し、1.5Vまで放電させた。上記の操作を1サイクルとし、充放電操作を10サイクル実施した。
 上記の操作終了後、コイン電池を1Cで定電流充電を行い、2.7Vまで充電した後に、0.05C定電圧充電を実施した。充電後、電池を10分間休止させた。最後に1Cでの定電流放電を実施し、1.5Vまで放電させた。1Cでの放電容量を充電容量で割り百分率を行い、充放電効率(%)とした。評価結果を表2にまとめて示した。
 [作製した電池の特性評価]
 作製したシリコン系化合物含有電極を用いたコイン電池の特性評価としては、充放電効率の測定を行った。評価結果を表3にまとめて示した。
<直流内部抵抗の測定>
(測定装置)
 充放電評価装置:TOSCAT-3100(東洋システム株式会社)
(測定方法)
 作製したリチウムイオン電池を、定電流-定電圧放電により、3.0Vまで充電した。終止電流は1C相当であった。放電後、電池を10分間休止させた。次いで2Cでの定電流充電を実施し、電流値I(mA)及び10秒後の電圧降下ΔE(mV)より、充電状態が100%(SOC100%)でのリチウムイオン電池の内部抵抗R(Ω)=ΔE/Iを測定した。
 上記のリチウムイオン電池を2Cでの定電流放電を10秒間実施し、SOC100%の状態に戻した状態で電池を10分間休止させた。次いで1Cで15分間の定電流充電を実施し、SOC50%の状態に調整し、電池を10分間休止させた。そして2Cでの定電流放電を実施し、電流値I(mA)及び10秒後の電圧降下ΔE(mV)より、充電状態が50%(SOC50%)でのリチウムイオン電池の内部抵抗R(Ω)=ΔE/Iを測定した。
 上記のリチウムイオン電池を2Cでの定電流放電を10秒間実施し、SOC100%の状態に戻した状態で電池を10分間休止させた。次いで1Cで15分間の定電流充電を実施し、SOC25%の状態に調整し、電池を10分間休止させた。そして2Cでの定電流放電を実施し、電流値I(mA)及び10秒後の電圧降下ΔE(mV)より、充電状態が25%(SOC25%)でのリチウムイオン電池の内部抵抗R(Ω)=ΔE/Iを測定した。評価結果を表3にまとめて示した。
<充放電効率の測定>
(測定装置)
 充放電評価装置:TOSCAT-3100(東洋システム株式会社)
(測定方法)
 作製したコイン電池を、1Cで定電流定電圧放電を行い、0Vまで放電した。放電後、電池を10分間休止させた。次いで1Cでの定電流充電を実施し、3.0Vまで充電させた。この時の充電容量を放電容量で割り100分率した値で評価した。評価結果を表3にまとめて示した。
<平均粒子径の測定>
 重合体の平均粒子径は以下の条件で測定した。
(測定装置)
 動的光散乱を用いた粒度分布測定装置:ゼータサイザーナノ(スペクトリス株式会社)
(測定条件)
1.合成したエマルジョン溶液50μLをサンプリングする。
2.サンプリングしたエマルジョン溶液にイオン交換水700μLを3回添加して希釈する。
3.希釈液から液を2100μL抜き取る。
4.残った50μLのサンプルに700μLイオン交換水を添加・希釈して測定する。
<凝集物の測定>
 重合体の凝集物は以下のようにして測定した。
 重合したエマルジョン溶液を150メッシュステンレス金網(関西金網株式会社製)で用いてろ過を行い、攪拌翼およびビーカーに付着している凝集物を掻き取る。その後、回収した凝集物をイオン交換水で洗浄し、24時間乾燥させ凝集物の質量を測定する。測定した凝集物量をエマルジョン収量で割り、凝集物量(質量%)とする。
[実施合成例1]
 ビーカーに、アクリル酸n-ブチル820.98mmol、メタクリル酸ベンジル427.82mmol、アクリル酸38.50mmol、メタクリル酸91.70mmol、ポリエチレングリコールモノメタクリレート(日油製:ブレンマーPE-90)42.78mmol、トリメチロールプロパントリアクリレート(新中村化学製:A-TMPT)4.28mmol、乳化剤としてドデシル硫酸ナトリウム2.00g、イオン交換水300g及び重合開始剤として過硫酸アンモニウム0.24gを入れ、超音波ホモジナイザーを用いて、十分攪拌し乳液とした。攪拌機付き反応容器を窒素雰囲気下、55℃に加温し2時間かけて乳液を添加した。乳液の添加後、更に1時間重合し、その後冷却した。冷却後、28%アンモニア水溶液を用いて、重合液のpHを2.3から7.8に調整し、エマルジョン溶液であるバインダー組成物A(重合転化率99%以上、固形分濃度40.3wt%、凝集量:0.05質量%)を得た。得られた重合体の平均粒子径は0.118μmであった。重合体におけるモル比率(mol%)を表1に示す。
[実施合成例2]
 ビーカーに、アクリル酸n-ブチル771.43mmol、メタクリル酸フェノキシエチル402.00mmol、アクリル酸36.18mmol、メタクリル酸86.16mmol、ポリエチレングリコールモノメタクリレート(日油製:ブレンマーPE-90)40.20mmol、トリメチロールプロパントリアクリレート(新中村化学製:A-TMPT)4.02mmol、乳化剤としてドデシル硫酸ナトリウム2.00g、イオン交換水300g及び重合開始剤として過硫酸アンモニウム0.24gを入れ、超音波ホモジナイザーを用いて、十分攪拌し乳液とした。攪拌機付き反応容器を窒素雰囲気下、55℃に加温し2時間かけて乳液を添加した。乳液の添加後、更に1時間重合し、その後冷却した。冷却後、28%アンモニア水溶液を用いて、重合液のpHを2.5から7.7に調整し、エマルジョン溶液であるバインダー組成物B(重合転化率99%以上、固形分濃度40.2wt%、凝集量:0.03質量%)を得た。得られた重合体の平均粒子径は0.250μmであった。重合体におけるモル比率(mol%)を表1に示す。
[実施合成例3]
 ビーカーに、アクリル酸n-ブチル613.47mmol、メタクリル酸フェノキシエチル505.23mmol、アクリル酸34.10mmol、メタクリル酸81.22mmol、ポリエチレングリコールモノメタクリレート(日油製:ブレンマーPE-90)37.89mmol、トリメチロールプロパントリアクリレート(新中村化学製:A-TMPT)3.79mmol、乳化剤としてドデシル硫酸ナトリウム2.00g、イオン交換水300g及び重合開始剤として過硫酸アンモニウム0.24gを入れ、超音波ホモジナイザーを用いて、十分攪拌し乳液とした。攪拌機付き反応容器を窒素雰囲気下、55℃に加温し2時間かけて乳液を添加した。乳液の添加後、更に1時間重合し、その後冷却した。冷却後、28%アンモニア水溶液を用いて、重合液のpHを2.5から7.7に調整し、エマルジョン溶液であるバインダー組成物C(重合転化率97%以上、固形分濃度39.1wt%、凝集量:0.12質量%)を得た。得られた重合体の平均粒子径は0.134μmであった。重合体におけるモル比率(mol%)を表1に示す。
[実施合成例4]
 ビーカーに、アクリル酸2-エチルヘキシル634.14mmol、メタクリル酸フェノキシエチル330.45mmol、アクリル酸29.74mmol、メタクリル酸70.83mmol、ポリエチレングリコールモノメタクリレート(日油製:ブレンマーPE-90)33.05mmol、トリメチロールプロパントリアクリレート(新中村化学製:A-TMPT)3.30mmol、乳化剤としてドデシル硫酸ナトリウム2.00g、イオン交換水300g及び重合開始剤として過硫酸アンモニウム0.24gを入れ、超音波ホモジナイザーを用いて、十分攪拌し乳液とした。攪拌機付き反応容器を窒素雰囲気下、55℃に加温し2時間かけて乳液を添加した。乳液の添加後、更に1時間重合し、その後冷却した。冷却後、28%アンモニア水溶液を用いて、重合液のpHを2.4から7.8に調整し、エマルジョン溶液であるバインダー組成物D(重合転化率99%以上、固形分濃度39.7wt%、凝集量:0.03質量%)を得た。得られた重合体の平均粒子径は0.109μmであった。重合体におけるモル比率(mol%)を表1に示す。
[実施合成例5]
 ビーカーに、アクリル酸n-ブチル788.99mmol、メタクリル酸ベンジル419.90mmol、アクリル酸38.21mmol、メタクリル酸89.58mmol、ポリエチレングリコールモノメタクリレート(日油製:ブレンマーPE-90)41.99mmol、トリメチロールプロパントリメタクリレート(共栄社化学株式会社:ライトエステル-TMP)21.00mmol、乳化剤としてラウリル硫酸ナトリウム2.00g、イオン交換水180g及び重合開始剤として過硫酸アンモニウム0.36gを入れ、超音波ホモジナイザーを用いて、十分攪拌し乳液とした。攪拌機付き反応容器を窒素雰囲気下、55℃に加温し2時間かけて乳液を添加した。乳液の添加後、更に1時間重合し、その後冷却した。冷却後、28%アンモニア水溶液を用いて、重合液のpHを2.3から7.8に調整し、エマルジョン溶液であるバインダー組成物E(重合転化率97%以上、固形分濃度39.0wt%、凝集量:0.08質量%)を得た。得られた重合体の平均粒子径は0.246μmであった。重合体におけるモル比率(mol%)を表1に示す。
[比較合成例1]
 ビーカーに、アクリル酸n-ブチル936.10mmol、メタクリル酸フェノキシエチル295.30mmol、アクリル酸37.97mmol、メタクリル酸90.42mmol、ポリエチレングリコールモノメタクリレート(日油製:ブレンマーPE-90)42.19mmol、トリメチロールプロパントリアクリレート(新中村化学製:A-TMPT)4.22mmol、乳化剤としてドデシル硫酸ナトリウム2.00g、イオン交換水300g及び重合開始剤として過硫酸アンモニウム0.24gを入れ、超音波ホモジナイザーを用いて、十分攪拌し乳液とした。攪拌機付き反応容器を窒素雰囲気下、55℃に加温し2時間かけて乳液を添加した。乳液の添加後、更に1時間重合し、その後冷却した。冷却後、28%アンモニア水溶液を用いて、重合液のpHを2.4から7.8に調整し、エマルジョン溶液であるバインダー組成物Fとしたが、ポリマーが離水し、エマルジョンが得られなかった。
[比較合成例2]
 ビーカーに、メタクリル酸フェノキシエチル901.85mmol、アクリル酸27.81mmol、メタクリル酸66.22mmol、ポリエチレングリコールモノメタクリレート(日油製:ブレンマーPE-90)30.90mmol、トリメチロールプロパントリアクリレート(新中村化学製:A-TMPT)3.09mmol、乳化剤としてドデシル硫酸ナトリウム2.00g、イオン交換水300g及び重合開始剤として過硫酸アンモニウム0.24gを入れ、超音波ホモジナイザーを用いて、十分攪拌し乳液とした。攪拌機付き反応容器を窒素雰囲気下、55℃に加温し2時間かけて乳液を添加した。乳液の添加後、更に1時間重合し、その後冷却した。冷却後、28%アンモニア水溶液を用いて、重合液のpHを2.5から7.8に調整し、エマルジョン溶液であるバインダー組成物G(重合転化率94%以上、固形分濃度37.9wt%、凝集量:0.56質量%)を得た。得られた重合体の平均粒子径は0.130μmであった。重合体におけるモル比率(mol%)を表1に示す。
Figure JPOXMLDOC01-appb-T000015
<活性炭含有電極の作製例>
[電極の実施作製例1]
 活物質として活性炭89質量部に、導電助剤としてアセチレンブラック5質量部、カルボキシメチルセルロースのナトリウム塩2質量部、バインダー組成物の実施合成例1で得られたバインダー組成物Aの固形分として4質量部を加え、さらにスラリーの固形分濃度が24質量%となるように水を加えて遊星型ミルを用いて十分に混合してスラリーを得た。
 得られたスラリーを厚さ20μmのアルミニウム集電体上に100μmギャップのベーカー式アプリケーターを用いて塗布し、ロールプレス機にてプレスを行い、150℃真空状態で12時間以上乾繰後、厚さ89μmの電極を作製した。結着性試験・屈曲試験の評価結果を表2の実施例1に示す。
[電極の実施作製例2]
 活物質として活性炭89質量部に、導電助剤としてアセチレンブラック5質量部、カルボキシメチルセルロースのナトリウム塩2質量部、バインダー組成物の実施合成例2で得られたバインダー組成物Bの固形分として4質量部を加え、さらにスラリーの固形分濃度が24質量%となるように水を加えて遊星型ミルを用いて十分に混合してスラリーを得た以外は電極の実施例1と同様にして電極を作製した。得られた電極の厚みは85μmであった。結着性試験・屈曲試験の評価結果を表2の実施例2に示す。
[電極の実施作製例3]
 活物質として活性炭89質量部に、導電助剤としてアセチレンブラック5質量部、カルボキシメチルセルロースのナトリウム塩2質量部、バインダー組成物の実施合成例3で得られたバインダー組成物Cの固形分として4質量部を加え、さらにスラリーの固形分濃度が22質量%となるように水を加えて遊星型ミルを用いて十分に混合してスラリーを得た以外は電極の実施例1と同様にして電極を作製した。得られた電極の厚みは96μmであった。結着性試験・屈曲試験の評価結果を表2の実施例3に示す。
[電極の実施作製例4]
 活物質として活性炭89質量部に、導電助剤としてアセチレンブラック5質量部、カルボキシメチルセルロースのナトリウム塩2質量部、バインダー組成物の実施合成例4で得られたバインダー組成物Dの固形分として4質量部を加え、さらにスラリーの固形分濃度が22質量%となるように水を加えて遊星型ミルを用いて十分に混合してスラリーを得た以外は電極の実施例1と同様にして電極を作製した。得られた電極の厚みは88μmであった。結着性試験・屈曲試験の評価結果を表2の実施例4に示す。
[電極の比較作製例2]
 活物質として活性炭89質量部に、導電助剤としてアセチレンブラック5質量部、カルボキシメチルセルロースのナトリウム塩2質量部、バインダー組成物の比較合成例2で得られたバインダー組成物Gの固形分として4質量部を加え、さらにスラリーの固形分濃度が24質量%となるように水を加えて遊星型ミルを用いて十分に混合してスラリーを得た以外は電極の実施例1と同様にして電極を作製した。得られた電極の厚みは97μmであった。結着性試験・屈曲試験の評価結果を表2の比較例2に示す。
<シリコン系化合物含有電極の作製例>
[電極の実施作製例5-1]
 活物質としてグラファイト92質量部、SiOを5質量部に、導電助剤としてアセチレンブラック0.5質量部、カルボキシメチルセルロースのナトリウム塩1.8質量部、バインダー組成物の実施合成例5で得られたバインダー組成物Eの固形分として0.7質量部を加え、さらにスラリーの固形分濃度が50.5質量%となるように水を加えてプラネタリーミキサーを用いて十分に混合してスラリーを得た。
 得られたスラリーを厚さ20μmのアルミニウム集電体上に100μmギャップのベーカー式アプリケーターを用いて塗布し、ロールプレス機にてプレスを行い、110℃真空状態で12時間以上乾繰後、厚さ37μmの電極を作製した。結着性試験・屈曲試験の評価結果を表3の実施例5-1に示す。
[電極の実施作製例5-2]
 活物質としてグラファイト87質量部、SiOを10質量部に、導電助剤としてアセチレンブラック0.5質量部、カルボキシメチルセルロースのナトリウム塩1.8質量部、バインダー組成物の実施合成例5で得られたバインダー組成物Eの固形分として0.7質量部を加え、さらにスラリーの固形分濃度が50.5質量%となるように水を加えてプラネタリーミキサーを用いて十分に混合してスラリーを得た以外は電極の実施例5-1と同様にして電極を作製した。得られた電極の厚みは38μmであった。結着性試験・屈曲試験の評価結果を表3の実施例5-2に示す。
[電極の比較作製例3]
 活物質としてグラファイト92質量部、SiOを5質量部に、導電助剤としてアセチレンブラック0.5質量部、カルボキシメチルセルロースのナトリウム塩1.8質量部、バインダー組成物の比較合成例2で得られたバインダー組成物Gの固形分として0.7質量部を加え、さらにスラリーの固形分濃度が50.5質量%となるように水を加えてプラネタリーミキサーを用いて十分に混合してスラリーを得た以外は電極の実施例5-1と同様にして電極を作製した。得られた電極の厚みは36μmであった。結着性試験・屈曲試験の評価結果を表3の比較例3に示す。
[電極の比較作製例4]
 活物質としてグラファイト87質量部、SiOを10質量部に、導電助剤としてアセチレンブラック0.5質量部、カルボキシメチルセルロースのナトリウム塩1.8質量部、バインダー組成物の比較合成例2で得られたバインダー組成物Gの固形分として0.7質量部を加え、さらにスラリーの固形分濃度が50.5質量%となるように水を加えてプラネタリーミキサーを用いて十分に混合してスラリーを得た以外は電極の実施例5-1と同様にして電極を作製した。得られた電極の厚みは35μmであった。結着性試験・屈曲試験の評価結果を表3の比較例4に示す。
<活性炭含有電極を仕様した電池(電気化学キャパシタ)の製造例>
[コイン電池(電気化学キャパシタ)の実施製造例1]
 アルゴンガスで置換されたグローブボックス内において、電極の実施作製例1で得た電極を正極、セパレータとして厚み100μmのセルロース系多孔膜を1枚、更に実施作製例1で得た電極を負極として用い、電解液として1.4mol/Lテトラエチルメチルアンモニウム-テトラフルオロボレート/プロピレンカーボネート溶液(キシダ化学社製)を十分に含浸させてかしめ、試験用2032型コイン電池を製造した。充放電効率の評価結果を表2の実施例1に示す。
 [コイン電池(電気化学キャパシタ)の実施製造例2]
 電極の実施作製例2で得た正極・負極を用いた以外は、コイン電池の実施作製例1と同様にしてコイン電池を作製した。充放電効率の評価結果を表2の実施例2に示す。
 [コイン電池(電気化学キャパシタ)の実施製造例3]
 電極の実施作製例3で得た正極・負極を用いた以外は、コイン電池の実施作製例1と同様にしてコイン電池を作製した。充放電効率の評価結果を表2の実施例3に示す。
 [コイン電池(電気化学キャパシタ)の実施製造例4]
 電極の実施作製例4で得た正極・負極を用いた以外は、コイン電池の実施作製例1と同様にしてコイン電池を作製した。充放電効率の評価結果を表2の実施例4に示す。
 [コイン電池(電気化学キャパシタ)の比較製造例2]
 電極の比較作製例2で得た正極・負極を用いた以外は、コイン電池の実施作製例1と同様にしてコイン電池を作製した。充放電効率の評価結果を表2の比較例2に示す。
<シリコン系化合物含有電極を使用した電池(リチウムイオン電池)の製造例>
[コイン電池(リチウムイオン電池)の実施製造例5-1]
 アルゴンガスで置換されたグローブボックス内において、金属リチウムを正極、セパレータとして18μmのポリプロピレン/ポリエチレン/ポリプロピレン多孔質膜を1枚、更に実施作製例5-1で得た電極を負極として用い、電解液として1mol/Lの6フッ化リン酸リチウムのエチレンカーボネートとエチルメチルカーボネートとジエチルカーボネート(体積比3:5:2、キシダ化学社製)を十分に含浸させてかしめ、試験用2032型コイン電池を製造した。直流内部抵抗および充放電効率の評価結果を表3の実施例5-1に示す。
 [コイン電池(リチウムイオン電池)の実施製造例5-2]
 電極の実施作製例5-2で得た負極を用いた以外は、コイン電池の実施作製例5-1と同様にしてコイン電池を作製した。直流内部抵抗および充放電効率の評価結果を表3の実施例5-2に示す。
[コイン電池(リチウムイオン電池)の比較製造例3]
 電極の比較作製例3で得た負極を用いた以外は、コイン電池の実施作製例5-1と同様にしてコイン電池を作製した。直流内部抵抗および充放電効率の評価結果を表3の比較例3に示す。
[コイン電池(リチウムイオン電池)の比較製造例4]
 電極の比較作製例4で得た負極を用いた以外は、コイン電池の実施作製例5-1と同様にしてコイン電池を作製した。直流内部抵抗および充放電効率の評価結果を表3の比較例4に示す。
 表2に実施例及び比較例の活性炭含有電極の物性評価結果、電池(電気化学キャパシタ)の特性評価を示す。
Figure JPOXMLDOC01-appb-T000016
 表3に実施例及び比較例のシリコン系化合物含有電極の物性評価結果、リチウムイオン電池の特性評価を示す。
Figure JPOXMLDOC01-appb-T000017
 本発明の電極用バインダーは、電極に用いられた際に活性炭活物質に対して優れた結着性を備えるとともに、優れた屈曲性(可撓性)を備える。また、シリコン系化合物に対しても優れた結着性を備えるとともに、優れた屈曲性(可撓性)を備え、蓄電デバイスに用いた際には、充放電効率に優れるため、電気自動車やハイブリッド電気自動車などの車載用途や家庭用電力貯蔵用の蓄電池等の蓄電デバイスにおいて、有用に用いられる。

Claims (13)

  1.  (メタ)アクリル酸アルキルエステルモノマーに由来する構成単位(A)、
     下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は水素、又は炭素数1~4のアルキル基、R2は置換基を有していてもよい芳香族基である。)
    で表わされるモノマーに由来する構成単位(B)を含む重合体であって、
     重合体における構成単位(B)に対する構成単位(A)のモル比が0.5~2.5である重合体を含む電極用バインダー。
  2.  構成単位(B)が、下記一般式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R1は水素、又は炭素数1~4のアルキル基、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12は水素、ヒドロキシル基、炭素数1~3のアルキル基、置換基を有していてもよい芳香族基のいずれかであり、R13は炭素数1~3のアルキレン基、又はカルボニル基、R14は置換基を有していてもよい芳香族基、q、rは0~3の整数であり、sは0~1の整数である。)
    で表わされるモノマーに由来する構成単位であることを特徴とする請求項1記載の電極用バインダー。
  3.  更に、下記一般式(3):
    Figure JPOXMLDOC01-appb-C000003
    (式中、R15は水素原子又は炭素数1~4の直鎖もしくは分岐のアルキル基であり、xは2~8の整数であり、nは2~30の整数である。)
    で表わされる水酸基を有するモノマーに由来する構成単位(C)を含む重合体を含む、請求項1又は2に記載の電極用バインダー。
  4.  更に、5官能以下の多官能(メタ)アクリレートモノマーに由来する構成単位(D)を含む重合体を含む、請求項1~3いずれかに記載の電極用バインダー。
  5.  前記構成単位(D)において、前記5官能以下の多官能(メタ)アクリレートモノマーが、下記一般式(5):
    Figure JPOXMLDOC01-appb-C000004
    (式中、R16は、それぞれ同一または異なって、水素原子又はメチル基であり、R17は、5価以下の炭素数2~100の有機基であり、mは5以下の整数である。)で示される化合物である、請求項4に記載の電極用バインダー。
  6.  (メタ)アクリル酸アルキルエステルモノマーに由来する構成単位(A)は炭素数1~12のアルキル基を有する(メタ)アクリル酸アルキルエステルモノマーに由来する構成単位である請求項1~5のいずれかに記載の電極用バインダー。
  7.  請求項1~6のいずれかに記載の電極用バインダーを含む、電極用バインダー組成物。
  8.  請求項1~6のいずれかに記載の電極用バインダーを含む、電極材料。
  9.  請求項1~6のいずれかに記載の電極用バインダーと、活物質とを含む、電極材料。
  10.  活物質として、活性炭を用いる請求項9に記載の電極材料。
  11.  活物質として、シリコン系化合物を用いる請求項9に記載の電極材料。
  12.  請求項9~11いずれかに記載の電極材料を含む電極。
  13.  請求項12に記載の電極を備える、蓄電デバイス。
PCT/JP2018/047876 2017-12-26 2018-12-26 電極用バインダー、電極、及び蓄電デバイス WO2019131771A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880083973.2A CN111566858B (zh) 2017-12-26 2018-12-26 电极用粘合剂、电极以及蓄电器件
CN202311455432.7A CN117638075A (zh) 2017-12-26 2018-12-26 电极用粘合剂、电极以及蓄电器件
JP2019562111A JP7497979B2 (ja) 2017-12-26 2018-12-26 電極用バインダー、電極、及び蓄電デバイス
JP2023106438A JP2023121816A (ja) 2017-12-26 2023-06-28 電極用バインダー、電極、及び蓄電デバイス

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-249038 2017-12-26
JP2017249038 2017-12-26
JP2018185956 2018-09-28
JP2018-185956 2018-09-28

Publications (1)

Publication Number Publication Date
WO2019131771A1 true WO2019131771A1 (ja) 2019-07-04

Family

ID=67063827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047876 WO2019131771A1 (ja) 2017-12-26 2018-12-26 電極用バインダー、電極、及び蓄電デバイス

Country Status (3)

Country Link
JP (3) JP2020057579A (ja)
CN (2) CN117638075A (ja)
WO (1) WO2019131771A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021022521A (ja) * 2019-07-30 2021-02-18 株式会社大阪ソーダ バインダー用組成物、バインダー、電極材料、電極及び蓄電デバイス
WO2021085044A1 (ja) * 2019-10-31 2021-05-06 日本ゼオン株式会社 二次電池用バインダー組成物、二次電池用スラリー組成物、二次電池用機能層および二次電池
WO2021176976A1 (ja) * 2020-03-04 2021-09-10 積水化成品工業株式会社 樹脂微粒子及びその製造方法
CN114556636A (zh) * 2019-10-31 2022-05-27 日本瑞翁株式会社 全固态二次电池用粘结剂组合物、全固态二次电池用浆料组合物、含固态电解质层以及全固态二次电池
WO2023053863A1 (ja) * 2021-09-30 2023-04-06 株式会社大阪ソーダ 電極用バインダー、電極、及び蓄電デバイス

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111969208B (zh) * 2020-08-25 2022-04-29 安普瑞斯(无锡)有限公司 一种负极粘接剂及包含该负极粘接剂的电极

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07296821A (ja) * 1994-04-21 1995-11-10 Yuasa Corp 薄形電池及びその製造方法
JPH1021964A (ja) * 1996-07-05 1998-01-23 Fuji Photo Film Co Ltd 非水二次電池とその製造方法
JP2003331848A (ja) * 2002-05-15 2003-11-21 Sanyo Chem Ind Ltd 電気化学素子の電極用結合剤および電極の製造方法
JP2004296431A (ja) * 2003-03-07 2004-10-21 Denso Corp リチウム二次電池用電極およびリチウム二次電池
JP2010061930A (ja) * 2008-09-03 2010-03-18 Toyo Ink Mfg Co Ltd 負極合材およびそれを用いたリチウム二次電池
JP2010097817A (ja) * 2008-10-16 2010-04-30 Toyo Ink Mfg Co Ltd リチウム二次電池用正極合剤ペースト
JP2011513911A (ja) * 2008-04-16 2011-04-28 エルジー・ケム・リミテッド ポリアクリロニトリル−アクリル酸共重合体バインダーを含む負極材料組成物、その製造方法およびその負極材料組成物を含むリチウム二次電池
WO2012173089A1 (ja) * 2011-06-17 2012-12-20 日本ゼオン株式会社 全固体二次電池
WO2013114849A1 (ja) * 2012-02-02 2013-08-08 第一工業製薬株式会社 リチウム二次電池の電極用結着剤、該結着剤を用いて製造された電極を使用したリチウム二次電池
JP2014035900A (ja) * 2012-08-09 2014-02-24 Toyo Ink Sc Holdings Co Ltd プライマー組成物、ニッケル水素二次電池正極及びその製造方法
WO2017130940A1 (ja) * 2016-01-29 2017-08-03 東亞合成株式会社 非水電解質二次電池電極用バインダー及びその製造方法、並びに、その用途

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3862258B2 (ja) * 2002-02-12 2006-12-27 富士フイルムホールディングス株式会社 インクジェット記録用インクおよびインクジェット記録方法
EP2639863B1 (en) * 2010-09-16 2017-01-25 Zeon Corporation Secondary battery positive electrode
CN105830263B (zh) * 2013-10-29 2018-09-14 株式会社大阪曹达 电池电极用粘合剂、及使用该粘合剂的电极和电池
CN106063005B (zh) * 2014-03-04 2020-11-17 株式会社大阪曹达 电池电极用粘合剂、及使用了该粘合剂的电极和电池
JP2016051678A (ja) * 2014-09-02 2016-04-11 Jsr株式会社 蓄電デバイス正極用バインダー組成物、蓄電デバイス正極用スラリー、蓄電デバイス正極および蓄電デバイス
PL3379623T3 (pl) * 2015-11-19 2020-09-07 Asahi Kasei Kabushiki Kaisha Spoiwo do urządzenia magazynującego energię elektryczną i kompozycja spoiwa do urządzenia magazynującego energię elektryczną
TW201735425A (zh) * 2015-12-21 2017-10-01 Osaka Soda Co Ltd 電池電極用黏結劑、電極、及電池

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07296821A (ja) * 1994-04-21 1995-11-10 Yuasa Corp 薄形電池及びその製造方法
JPH1021964A (ja) * 1996-07-05 1998-01-23 Fuji Photo Film Co Ltd 非水二次電池とその製造方法
JP2003331848A (ja) * 2002-05-15 2003-11-21 Sanyo Chem Ind Ltd 電気化学素子の電極用結合剤および電極の製造方法
JP2004296431A (ja) * 2003-03-07 2004-10-21 Denso Corp リチウム二次電池用電極およびリチウム二次電池
JP2011513911A (ja) * 2008-04-16 2011-04-28 エルジー・ケム・リミテッド ポリアクリロニトリル−アクリル酸共重合体バインダーを含む負極材料組成物、その製造方法およびその負極材料組成物を含むリチウム二次電池
JP2010061930A (ja) * 2008-09-03 2010-03-18 Toyo Ink Mfg Co Ltd 負極合材およびそれを用いたリチウム二次電池
JP2010097817A (ja) * 2008-10-16 2010-04-30 Toyo Ink Mfg Co Ltd リチウム二次電池用正極合剤ペースト
WO2012173089A1 (ja) * 2011-06-17 2012-12-20 日本ゼオン株式会社 全固体二次電池
WO2013114849A1 (ja) * 2012-02-02 2013-08-08 第一工業製薬株式会社 リチウム二次電池の電極用結着剤、該結着剤を用いて製造された電極を使用したリチウム二次電池
JP2014035900A (ja) * 2012-08-09 2014-02-24 Toyo Ink Sc Holdings Co Ltd プライマー組成物、ニッケル水素二次電池正極及びその製造方法
WO2017130940A1 (ja) * 2016-01-29 2017-08-03 東亞合成株式会社 非水電解質二次電池電極用バインダー及びその製造方法、並びに、その用途

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021022521A (ja) * 2019-07-30 2021-02-18 株式会社大阪ソーダ バインダー用組成物、バインダー、電極材料、電極及び蓄電デバイス
JP7325707B2 (ja) 2019-07-30 2023-08-15 株式会社大阪ソーダ バインダー用組成物、バインダー、電極材料、電極及び蓄電デバイス
WO2021085044A1 (ja) * 2019-10-31 2021-05-06 日本ゼオン株式会社 二次電池用バインダー組成物、二次電池用スラリー組成物、二次電池用機能層および二次電池
CN114556636A (zh) * 2019-10-31 2022-05-27 日本瑞翁株式会社 全固态二次电池用粘结剂组合物、全固态二次电池用浆料组合物、含固态电解质层以及全固态二次电池
CN114586202A (zh) * 2019-10-31 2022-06-03 日本瑞翁株式会社 二次电池用粘结剂组合物、二次电池用浆料组合物、二次电池用功能层和二次电池
WO2021176976A1 (ja) * 2020-03-04 2021-09-10 積水化成品工業株式会社 樹脂微粒子及びその製造方法
JP2021138831A (ja) * 2020-03-04 2021-09-16 積水化成品工業株式会社 樹脂微粒子及びその製造方法
TWI768730B (zh) * 2020-03-04 2022-06-21 日商積水化成品工業股份有限公司 樹脂微粒子及其製造方法
CN115003711A (zh) * 2020-03-04 2022-09-02 积水化成品工业株式会社 树脂微粒及其制造方法
JP7379782B2 (ja) 2020-03-04 2023-11-15 積水化成品工業株式会社 樹脂微粒子及びその製造方法
CN115003711B (zh) * 2020-03-04 2023-11-24 积水化成品工业株式会社 树脂微粒及其制造方法
WO2023053863A1 (ja) * 2021-09-30 2023-04-06 株式会社大阪ソーダ 電極用バインダー、電極、及び蓄電デバイス

Also Published As

Publication number Publication date
JP2020057579A (ja) 2020-04-09
CN111566858A (zh) 2020-08-21
JP7497979B2 (ja) 2024-06-11
CN117638075A (zh) 2024-03-01
JP2023121816A (ja) 2023-08-31
CN111566858B (zh) 2023-11-21
JPWO2019131771A1 (ja) 2020-12-24

Similar Documents

Publication Publication Date Title
JP5447720B1 (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
JP6269510B2 (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
WO2019131771A1 (ja) 電極用バインダー、電極、及び蓄電デバイス
JP6164303B2 (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
JP6268988B2 (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
WO2017110901A1 (ja) 電池電極用バインダー、電極、及び電池
JP6300078B2 (ja) 電池電極用スラリー組成物、およびそれを用いた電極ならびに電池
JP2016046231A (ja) 電池正極用バインダー組成物、およびそれを用いた電極ならびに電池
WO2018151122A1 (ja) 電極用バインダー
JP6395107B2 (ja) 電池電極用バインダー組成物、およびそれを用いた電極ならびに電池
JP7325707B2 (ja) バインダー用組成物、バインダー、電極材料、電極及び蓄電デバイス
JP7215420B2 (ja) 電極用バインダー、電極用バインダー組成物、電極材料、電極、及び蓄電デバイス
JP7314751B2 (ja) 水系バインダー組成物、電極、及び蓄電デバイス
JP2016192267A (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
JP7088171B2 (ja) 電極用バインダー、電極材料、電極、及び蓄電デバイス
JP2019021575A (ja) 電極用バインダー、電極用バインダー組成物、電極材料、電極、及び蓄電デバイス
JP2018174044A (ja) 電極用バインダー、電極、及び蓄電デバイス
JP7460335B2 (ja) 電極用バインダー、電極用バインダー組成物、電極材料、電極、及び蓄電デバイス
WO2019017480A1 (ja) 電極及び蓄電デバイス
WO2023053863A1 (ja) 電極用バインダー、電極、及び蓄電デバイス
JP2022057031A (ja) 電極用バインダー、電極材料、電極及び蓄電デバイス
JP2023051521A (ja) 電極用バインダー、電極、及び蓄電デバイス
JP2024052418A (ja) 蓄電デバイス負極用バインダ組成物、蓄電デバイス負極用スラリ組成物、蓄電デバイス負極用スラリ組成物の製造方法、蓄電デバイス負極および蓄電デバイス
JP2023051522A (ja) 電極用バインダー、電極、及び蓄電デバイス
JP2022057030A (ja) バインダー用組成物、バインダー、電極材料、電極及び蓄電デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897152

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019562111

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18897152

Country of ref document: EP

Kind code of ref document: A1