JP2018174044A - 電極用バインダー、電極、及び蓄電デバイス - Google Patents

電極用バインダー、電極、及び蓄電デバイス Download PDF

Info

Publication number
JP2018174044A
JP2018174044A JP2017070190A JP2017070190A JP2018174044A JP 2018174044 A JP2018174044 A JP 2018174044A JP 2017070190 A JP2017070190 A JP 2017070190A JP 2017070190 A JP2017070190 A JP 2017070190A JP 2018174044 A JP2018174044 A JP 2018174044A
Authority
JP
Japan
Prior art keywords
electrode
binder
meth
weight
unit derived
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017070190A
Other languages
English (en)
Inventor
大明 進藤
Hiroaki Shindo
大明 進藤
松尾 孝
Takashi Matsuo
孝 松尾
一博 高橋
Kazuhiro Takahashi
一博 高橋
義広 諸岡
Yoshihiro Morooka
義広 諸岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Osaka Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Soda Co Ltd filed Critical Osaka Soda Co Ltd
Priority to JP2017070190A priority Critical patent/JP2018174044A/ja
Publication of JP2018174044A publication Critical patent/JP2018174044A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】結着性に優れるリチウムイオン二次電池や電気化学キャパシタといった蓄電デバイス用バインダーを提供することを主な目的とする。更に、本発明は、該電極用バインダーを用いてなる電極、及び該電極を備える蓄電デバイスも提供することを目的とする。【解決手段】(メタ)アクリル酸エステルに由来する構成単位と水酸基を有するアリルエーテルに由来する構成単位を有し、水酸基を有するアリルエーテルに由来する構成単位のモル比率が4〜10mol%である重合体からなる電極用バインダー、該電極用バインダーを用いてなる電極、及び該電極を備える蓄電デバイスである。【選択図】なし

Description

本発明は、一次電池、またはリチウムイオン二次電池及びニッケル水素二次電池といった二次電池、電気化学キャパシタといった蓄電デバイスに用いる電極用バインダー、該電極用バインダーを用いてなる電極、及び該電極を備える蓄電デバイスに関する。
リチウムイオン二次電池や電気化学キャパシタといった蓄電デバイスは、携帯電話やノートパソコン、カムコーダーなどの電子機器に用いられている。最近では環境保護への意識の高まりや関連法の整備により、電気自動車やハイブリッド電気自動車などの車載用途や家庭用電力貯蔵用の蓄電池としての応用も進んできている。
また、これらの応用が進むと同時に、蓄電デバイスに高性能化が求められており、電極等の部材の改良が進められている。このような蓄電デバイスに使用される電極は、通常、活物質と、導電助剤、バインダー、溶媒からなる電極材料を集電体上に塗布、乾燥して得られる。
そこで、近年では、電極に用いられるバインダーの改良が試みられている。バインダーを改良することにより、活物質同士の結着性、活物質と導電助剤との結着性及び活物質と集電体との結着性を向上させ、電気的特性(例えば、サイクル特性、低温での出力特性)を向上させたりすることが提案されている(特許文献1参照)。
特許文献1においては、架橋剤として、トリメチロールプロパントリアクリレート等の多官能アクリレートが用いられているが、更なる結着性向上が求められている。
国際公開2015/064570公報
本発明は上記事情に鑑みてなされたものであり、結着性に優れるリチウムイオン二次電池や電気化学キャパシタといった蓄電デバイスに用いられる電極用バインダーを提供することを主な目的とする。更に、本発明は、該電極用バインダーを用いてなる電極、及び該電極を備える蓄電デバイスも提供することを目的とする。
本発明者らは、上記目的を達成するために検討を重ねた結果、特定の重合体からなる電極用バインダーを用いることにより、上記課題を解決することを見出し、本発明を完成するに至った。すなわち本発明は以下に関する。
項1 (メタ)アクリル酸エステルに由来する構成単位と水酸基を有するアリルエーテルに由来する構成単位を有し、水酸基を有するアリルエーテルに由来する構成単位のモル比率が4〜10mol%である重合体からなる電極用バインダー。
項2 水酸基を有するアリルエーテルに由来する構成単位がグリセリンジアリルエーテル、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールジアリルエーテル、ペンタエリスリトールトリアリルエーテルからなる群から選択される項1に記載の電極用バインダー。
項3 更に、水酸基を有する(メタ)アクリレート由来の構成単位を有する重合体からなる項1又は2に記載の電極用バインダー。
項4 水酸基を有する(メタ)アクリレート由来の構成単位がポリエチレングリコールモノ(メタ)アクリレート由来の構成単位である項3に記載の電極用バインダー。
項5 項1〜4いずれかに記載の電極用バインダーを含有する電極用バインダー組成物。
項6 項1〜5いずれかに記載の電極用バインダー、又は電極用バインダー組成物を用いてなる電極。
項7 項6記載の電極を用いてなる蓄電デバイス。
本発明の電極用バインダーは、優れた結着性を備えており、該電極バインダーを用いてなる電極、及び該電極を備える蓄電デバイスは電気自動車やハイブリッド電気自動車などの車載用途や家庭用電力貯蔵用の蓄電池に有用に用いられる。
本明細書において、蓄電デバイスとは、一次電池、リチウムイオン二次電池及びニッケル水素二次電池等の二次電池、電気化学キャパシタを包含するものである。また、本明細書において、「(メタ)アクリル酸」とは、「アクリル酸またはメタクリル酸」を意味し、これに類する表現についても同様である。
<1.電極用バインダー>
本発明の電極用バインダーは、(メタ)アクリル酸エステルに由来する構成単位と水酸基を有するアリルエーテルに由来する構成単位を有する重合体からなる。
(メタ)アクリル酸エステルに由来する構成単位としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸n−ペンチル、(メタ)アクリル酸n−アミル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸n−ヘプチル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸2−エチルヘキシル、及び(メタ)アクリル酸ラウリル等の(メタ)アクリル酸アルキルエステル由来の構成単位が挙げられる。(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸2−エチルヘキシルから選択される(メタ)アクリル酸アルキルエステル由来の構成単位であることが好ましく、アクリル酸n−ブチル、アクリル酸2−エチルヘキシルから選択される(メタ)アクリル酸アルキルエステル由来の構成単位であることが好ましく、アクリル酸n−ブチル由来の構成単位とアクリル酸2−エチルヘキシル由来の構成単位を共に有することが好ましい。
本発明の重合体において、(メタ)アクリル酸エステルに由来する構成単位のモル比率は、下限は50mol%以上であることが好ましく、55mol%以上であることがより好ましく、60mol%以上であることが特に好ましく、上限は85mol%以下であることが好ましく、80mol%以下であることがより好ましく、75mol%以下であることが特に好ましい。
水酸基を有するアリルエーテルに由来する構成単位としては、グリセリンジアリルエーテル、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールジアリルエーテル、ペンタエリスリトールトリアリルエーテルからなる群から選択されることが好ましく、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールトリアリルエーテルであることがより好ましい。
本発明の重合体において、水酸基を有するアリルエーテルに由来する構成単位のモル比率は、下限は4mol%以上であることが好ましく、5mol%以上であることがより好ましく、6mol%以上であることが特に好ましく、上限は10mol%以下であることが好ましく、9mol%以下であることがより好ましく、8mol%以下であることが特に好ましい。水酸基を有するアリルエーテルに由来する構成単位のモル比率が4mol未満である蓄電デバイスの内部抵抗値が上昇する点で好ましくなく、10mol%を超えると結着性が低下する点で好ましくない。
本発明の重合体において、(メタ)アクリル酸エステルに由来する構成単位と水酸基を有するアリルエーテルに由来する構成単位とのモル比が15:1〜7:1であることが好ましく、12:1〜8:1であることが好ましい。
(メタ)アクリル酸エステルに由来する構成単位と水酸基を有するアリルエーテルに由来する構成単位を有する重合体においては、水酸基を有する(メタ)アクリレートに由来する構成単位、(メタ)アクリル酸に由来する構成単位を有していてもよい。
水酸基を有する(メタ)アクリレート由来の構成単位としては、具体例としてはジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、及びポリエチレングリコールモノ(メタ)アクリレート、ジプロピレングリコールモノ(メタ)アクリレート、トリプロピレングリコールモノ(メタ)アクリレート、テトラプロピレングリコールモノ(メタ)アクリレート、及びポリプロピレングリコールモノ(メタ)アクリレート等の水酸基を有する(メタ)アクリレート由来の構成単位が挙げられる。これらは1種又は2種以上併用できる。これらの中でも、テトラエチレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、テトラプロピレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレートから選択される水酸基を有する(メタ)アクリレート由来の構成単位が好ましい。水酸基を有する(メタ)アクリレート由来の構成単位を有することで結着性が向上する点で好ましい。
本発明の重合体における水酸基を有する(メタ)アクリレート由来の構成単位のモル比率の下限は2mol%以上であることが好ましく、3mol%以上であることがより好ましく、4mol%以上であることが特に好ましく、上限は10mol%以下であることが好ましく、9mol%以下であることがより好ましく、8mol%以下であることが特に好ましい。
(メタ)アクリル酸に由来する構成単位としては、アクリル酸、メタアクリル酸から選択される化合物に由来する構成単位を例示することができる。
本発明の重合体における(メタ)アクリル酸由来の構成単位のモル比率の下限は2mol%以上であることが好ましく、3mol%以上であることがより好ましく、5mol%以上であることが特に好ましく、上限は20mol%以下であることが好ましく、18mol%以下であることがより好ましく、15mol%以下であることが特に好ましい。
本発明の重合体としては、上記以外にも、その他のモノマー由来の構成単位として、フマル酸、マレイン酸、イタコン酸、シトラコン酸、メサコン酸、グルタコン酸、アクリロニトリル、メタクリロニトリル、α−クロロアクリロニトリル、クロトンニトリル、α−エチルアクリロニトリル、α−シアノアクリレート、シアン化ビニリデン、フマロニトリルから選択されるモノマー由来の構成単位を有することできる。
本発明の重合体を得る方法としては、一般的な乳化重合法、ソープフリー乳化重合法等を使用することができる。具体的には、攪拌機、及び加熱装置付きの密閉容器に室温でモノマー、乳化剤、重合開始剤、水、必要に応じて分散剤、連鎖移動剤、pH調整剤等を含んだ組成物を不活性ガス雰囲気下で攪拌することでモノマー等を水に乳化させる。乳化の方法は撹拌、剪断、超音波等による方法等が適用でき、撹拌翼、ホモジナイザー等を使用することができる。次いで、攪拌しながら温度を上昇させて重合を開始させることで、重合体が水に分散した球形の重合体のラテックスを得ることができる。重合時のモノマーの添加方法は、一括仕込みの他に、モノマー滴下やプレエマルジョン滴下等でもよく、これらの方法を2種以上併用してもよい。尚、プレエマルジョン滴下とは先にモノマー、乳化剤、水等を予め乳化させておき、その乳液を滴下していく添加方法を指す。
本発明の電極用バインダーにおける上記重合体の粒子径は、動的光散乱法によって計測できる。特に動的光散乱法を用いて得た散乱強度により算出した平均粒子径は、例えば1nm〜10μm、好ましくは10nm〜1μmであり、より好ましくは50nm〜300nmである。動的光散乱法を用いた具体的な測定装置としては、スペクトリス製のゼータサイザーナノ、堀場製作所製LB−500、シンパテック製NANOPHOX/R等が例示できる。
本発明で用いられる乳化剤は特に限定されない。乳化剤は界面活性剤であり、この界面活性剤には反応性基を有する反応性界面活性剤が含まれる。乳化重合法おいて一般的に用いられるノニオン性界面活性剤及びアニオン性界面活性剤等を使用することができる。
ノニオン界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルコールエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン多環フェニルエーテル、ポリオキシアルキレンアルキルエーテル、ソルビタン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル及びポリオキシエチレンソルビタン脂肪酸エステル等が挙げられ、反応性ノニオン界面活性剤としては、ラテムルPD−420、430、450(花王社製)、アデカリアソープER(アデカ社製)、アクアロンRN(第一工業製薬社製)、アントックスLMA(日本乳化剤社製)、アントックスEMH(日本乳化剤社製)等が挙げられる。
アニオン性界面活性剤としては、硫酸エステル型、カルボン酸型、又はスルホン酸型の金属塩、アンモニウム塩、トリエタノールアンモニウム塩、リン酸エステル型の界面活性剤等を挙げることができる。硫酸エステル型、スルホン酸型、リン酸エステル型が好ましく、硫酸エステル型が特に好ましい。硫酸エステル型のアニオン界面活性剤の代表例としてはドデシル硫酸等のアルキル硫酸金属塩、アンモニウム、又はアルキル硫酸トリエタノールアミン、ポリオキシエチレンドデシルエーテル硫酸、ポリオキシエチレンイソデシルエーテル硫酸、ポリオキシエチレントリデシルエーテル硫酸等のポリオキシエチレンアルキルエーテル硫酸金属塩、アンモニウム塩、ポリオキシアルキレンアルケニルエーテル硫酸アンモニウム、又はポリオキシエチレンアルキルエーテル硫酸トリエタノールアミン等が挙げられ、硫酸エステル型の反応性アニオン界面活性剤の具体例としては、ラテムルPD−104、105(花王社製)、アデカリアソープSR(アデカ社製)、アクアロンHS(第一工業製薬社製)、アクアロンKH(第一工業製薬社製)が挙げられる。好ましくは、ドデシル硫酸ナトリウム、ドデシル硫酸アンモニウム、ドデシル硫酸トリエタノールアミン、ドデシルベンゼンスルホン酸ナトリウム、ラテムルPD−104等が挙げられる。
これらノニオン性界面活性剤及び/又はアニオン性界面活性剤は1種または2種以上用いてもよい。
反応性界面活性剤の反応性とは、反応性二重結合を含有し、重合時にモノマーと重合反応することを意味する。すなわち、反応性界面活性剤は、重合体を作製する重合の際にモノマーの乳化剤として働くと共に、重合後は重合体の一部に共有結合して取り込まれた状態となる。そのため、乳化重合及び作製した重合体の分散が良好であり、バインダーとしての物性(屈曲性、結着性)が優れている。
乳化剤の構成単位の量は乳化重合法おいて一般的に用いられる量であればよい。具体的には、仕込みのモノマー量に対して、0.01〜25重量%の範囲であり、好ましくは0.05〜20重量%、更に好ましくは0.1〜10重量%である。
本発明で用いられる重合開始剤は特に限定されず、乳化重合法、懸濁重合法おいて一般的に用いられる重合開始剤を使用することができる。好ましくは乳化重合法である。乳化重合法では水溶性の重合開始剤、懸濁重合法では油溶性の重合開始剤が使われる。
その水溶性の重合開始剤の具体例としては、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウムなどの過硫酸塩に代表される水溶性の重合開始剤、2−2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]、またはその塩酸塩または硫酸塩、2,2'−アゾビス[2−メチル−N−(2−ヒドロキシエチル)プロピオンアミド]、2,2'−アゾビス(2−メチルプロパンアミジン)、又はその塩酸塩又は硫酸塩、3,3'−[アゾビス[(2,2−ジメチル−1−イミノエタン−2,1−ジイル)イミノ]]ビス(プロパン酸)、2,2'‐[アゾビス(ジメチルメチレン)]ビス(2‐イミダゾリン)などの水溶性のアゾ化合物の重合開始剤が好ましい。
油溶性の重合開始剤としては、クメンハイドロパーオキサイド、過酸化ベンゾイル、アセチルパーオキサイド、t−ブチルハイドロパーオキサイド等の有機過酸化物、アゾビスイソブチロニトリル、1,1’−アゾビス(シクロヘキサンカルボニトリル) などの油溶性のアゾ化合物の重合開始剤、レドックス系開始剤が好ましい。これら重合開始剤は1種または2種以上組み合わせて用いてもよい。
重合開始剤の使用量は乳化重合法または懸濁重合法おいて一般的に用いられる量であればよい。具体的には、仕込みのモノマー量に対して、0.01〜10重量%の範囲であり、好ましくは0.01〜5重量%、更に好ましくは0.02〜3重量%である。
連鎖移動剤は、必要に応じて用いることができる。連鎖移動剤の具体例としては、n−ヘキシルメルカプタン、n−オクチルメルカプタン、t−オクチルメルカプタン、n−ドデシルメルカプタン、t−ドデシルメルカプタン、n−ステアリルメルカプタン等のアルキルメルカプタン、2,4−ジフェニル−4−メチル−1−ペンテン、2,4−ジフェニル−4−メチル−2−ペンテン、ジメチルキサントゲンジサルファイド、ジイソプロピルキサントゲンジサルファイド等のキサントゲン化合物、ターピノレン、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラメチルチウラムモノスルフィド等のチウラム系化合物、2,6−ジ−t−ブチル−4−メチルフェノール、スチレン化フェノール等のフェノール系化合物、アリルアルコール等のアリル化合物、ジクロルメタン、ジブロモメタン、四臭化炭素等のハロゲン化炭化水素化合物、α−ベンジルオキシスチレン、α−ベンジルオキシアクリロニトリル、α−ベンジルオキシアクリルアミド等のビニルエーテル、トリフェニルエタン、ペンタフェニルエタン、アクロレイン、メタアクロレイン、チオグリコール酸、チオリンゴ酸、2−エチルヘキシルチオグリコレート等が挙げられ、これらを1種または2種以上用いてもよい。これらの連鎖移動剤の量は特に限定されないが、通常、仕込モノマー量100重量部に対して0〜5重量部にて使用される。
本発明の重合体の重合時間及び重合温度は特に限定されない。使用する重合開始剤の種類等から適宜選択できるが、一般的に、重合温度は20〜100℃であり、重合時間は0.5〜100時間である。
さらに上記の方法によって得られた重合体は、必要に応じてpH調整剤として塩基を用いることでpHを調整することができる。塩基の具体例としては、アルカリ金属(Li、Na、K、Rb、Cs)水酸化物、アンモニア、無機アンモニウム化合物、有機アミン化合物等が挙げられる。pHの範囲はpH2〜11、好ましくはpH3〜10、更に好ましくはpH4〜9の範囲である。
本発明の電極用バインダーは、(メタ)アクリル酸エステルに由来する構成単位と水酸基を有するアリルエーテルに由来する構成単位を有する重合体からなるが、水分、又は乳化剤等の他の物質が重合体の内部に含有され、又は外部に付着されていてもよい。内部に含有される、又は外部に付着される物質の量は、重合体100重量部に対して、7重量部以下であることが好ましく、5重量部以下であることがより好ましく、3重量部以下であることが特に好ましい。
<2.電極用バインダー組成物>
本発明のバインダー組成物は、先述の「1.電極用バインダー」を溶媒とともに含有するものであり、電極用バインダーが溶媒に分散されるものであってよい。溶媒は、水、有機溶媒を用いることができる。有機溶媒としては、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、t−ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、アミルアルコールなどのアルコール類、アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン類、酢酸エチル、酢酸ブチルなどのエステル類、ジエチルエーテル、ジオキサン、テトラヒドロフランなどのエーテル類、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン(NMP)などのアミド系極性有機溶媒、トルエン、キシレン、クロロベンゼン、オルトジクロロベンゼン、パラジクロロベンゼンなどの芳香族炭化水素類を例示することができる。
本発明のバインダー組成物は、電極用バインダーを水で分散された水系バインダー組成物であることが好ましい。
本発明のバインダー組成物は、(メタ)アクリル酸エステルに由来する構成単位と水酸基を有するアリルエーテルに由来する構成単位を有する重合体を乳化重合で得る際に製造されるエマルジョンであってもよい。
本発明のバインダー組成物における、(メタ)アクリル酸エステルに由来する構成単位と水酸基を有するアリルエーテルに由来する構成単位を有する重合体の含有量は特に限定されないが、電極用バインダーにおける固形分濃度が0.2〜80重量%となるように含有することが好ましく、0.5〜70重量%となるように含有することがより好ましく、0.5〜60重量%となるように含有することが特に好ましい。尚、バインダー組成物における固形分については、通常、重合体、と乳化剤(重合体が乳化重合で用いられた際のみ)と考えられる。
<3.電極材料>
本発明の電極材料は、少なくとも活物質、及び先述の「1.電極用バインダー」の欄で説明した本発明のバインダーを含有し、更に導電助剤、増粘剤を含有していてもよい。本発明の電極材料においては、本発明のバインダーを溶媒とともに含有する「2.電極用バインダー組成物」の欄で説明した本発明のバインダー組成物として含有してもよい。具体的には、正極に用いる正極材料としては正極活物質、及び本発明のバインダーを含有し、更に導電助剤、増粘剤を含有していてもよく、負極に用いる負極材料としては負極活物質、本発明のバインダーを含有し、更に導電助剤、増粘剤を含有していてもよい。
正極活物質は、AMO、AM、AMO、AMBOのいずれかの組成からなるアルカリ金属含有複合酸化物である。Aはアルカリ金属、Mは単一または2種以上の遷移金属からなり、その一部に非遷移金属を含んでもよい。BはP、Siまたはその混合物からなる。なお正極活物質は粉末が好ましく、その粒子径には、好ましくは50ミクロン以下、より好ましくは20ミクロン以下のものを用いる。これらの活物質は、3V(vs. Li/Li+)以上の起電力を有するものである。
正極活物質の好ましい具体例としては、LixCoO2, LixNiO2, LixMnO2, LixCrO2, LixFeO2, LixCoaMn1-aO2, LixCoaNi1-aO2, LixCoaCr1-aO2, LixCoaFe1-aO2, LixCoaTi1-aO2, LixMnaNi1-aO2, LixMnaCr1-aO2, LixMnaFe1-aO2, LixMnaTi1-aO2, LixNiaCr1-aO2, LixNiaFe1-aO2, LixNiaTi1-aO2, LixCraFe1-aO2, LixCraTi1-aO2, LixFeaTi1-aO2, LixCobMncNi1-b-cO2, LixNiaCobAlcO2, LixCrbMncNi1-b-cO2, LixFebMncNi1-b-cO2, LixTibMncNi1-b-cO2, LixMn2O4, LixMndCo2-dO4, LixMndNi2-dO4, LixMndCr2-dO4, LixMndFe2-dO4, LixMndTi2-dO4, LiyMnO3, LiyMneCo1-eO3, LiyMneNi1-eO3, LiyMneFe1-eO3, LiyMneTi1-eO3, LixCoPO4, LixMnPO4, LixNiPO4, LixFePO4, LixCofMn1-fPO4, LixCofNi1-fPO4, LixCofFe1-fPO4, LixMnfNi1-fPO4, LixMnfFe1-fPO4, LixNifFe1-fPO4,LiyCoSiO4, LiyMnSiO4, LiyNiSiO4, LiyFeSiO4, LiyCogMn1-gSiO4, LiyCogNi1-gSiO4, LiyCogFe1-gSiO4, LiyMngNi1-gSiO4, LiyMngFe1-gSiO4, LiyNigFe1-gSiO4, LiyCoPhSi1-hO4, LiyMnPhSi1-hO4, LiyNiPhSi1-hO4, LiyFePhSi1-hO4, LiyCogMn1-gPhSi1-hO4, LiyCogNi1-gPhSi1-hO4, LiyCogFe1-gPhSi1-hO4, LiyMngNi1-gPhSi1-hO4, LiyMngFe1-gPhSi1-hO4, LiyNigFe1-gPhSi1-hO4などのリチウム含有複合酸化物をあげることができる。(ここで、x=0.01〜1.2, y=0.01〜2.2, a=0.01〜0.99, b=0.01〜0.98, c=0.01〜0.98但し、b+c=0.02〜0.99, d=1.49〜1.99, e=0.01〜0.99, f=0.01〜0.99, g=0.01〜0.99, h=0.01〜0.99である。)
また、前記の好ましい正極活物質のうち、より好ましい正極活物質としては、具体的には、LixCoO2, LixNiO2, LixMnO2, LixCrO2, LixCoaNi1-aO2, LixMnaNi1-aO2, LixCobMncNi1-b-cO2, LixNiaCobAlcO2, LixMn2O4, LiyMnO3, LiyMneFe1-eO3, LiyMneTi1-eO3, LixCoPO4, LixMnPO4, LixNiPO4, LixFePO4, LixMnfFe1-fPO4, を挙げることができる。(ここで、x=0.01〜1.2, y=0.01〜2.2, a=0.01〜0.99, b=0.01〜0.98, c=0.01〜0.98但し、b+c=0.02〜0.99, d=1.49〜1.99, e=0.01〜0.99, f=0.01〜0.99である。なお、上記のx, yの値は充放電によって増減する。)
負極活物質としてはリチウムイオンを吸蔵・放出可能な構造(多孔質構造)を有する炭素材料(天然黒鉛、人造黒鉛、非晶質炭素等)か、リチウムイオンを吸蔵・放出可能なリチウム、アルミニウム系化合物、スズ系化合物、シリコン系化合物、チタン系化合物等の金属からなる粉末である。粒子径は10nm以上100μm以下が好ましく、更に好ましくは20nm以上20μm以下である。また、金属と炭素材料との混合活物質として用いてもよい。なお負極活物質にはその気孔率が、70%程度のものを用いるのが望ましい。
電極材料中の活物質の含有量としては、特に制限されず、例えば99.9〜50重量%程度、より好ましくは99.5〜70重量%程度、さらに好ましくは99〜85重量%程度が挙げられる。活物質は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
導電助剤を用いる場合には、公知の導電助剤を用いることができ、黒鉛、ファーネスブラック、アセチレンブラック、ケッチェンブラックなどの導電性カーボンブラック、カーボンナノチューブなどの炭素繊維、または金属粉末等が挙げられる。これら導電助剤は1種または2種以上用いてもよい。
導電助剤を用いる場合には、導電助剤の含有量は特に制限されないが、活物質100重量部に対して、好ましくは20重量部以下、より好ましくは15重量部以下が挙げられる。なお、正極材料中に導電助剤が含まれる場合、導電助剤の含有量の下限値としては、通常、0.05重量部以上、0.1重量部以上、0.2重量部以上、0.5重量部以上、2重量部以上を例示することができる。
本発明の電極材料には必要に応じて増粘剤を存在させても良い。増粘剤の種類は、特に限定されないが、好ましくは、セルロース系化合物のナトリウム塩、アンモニウム塩、ポリビニルアルコール、ポリアクリル酸およびその塩等である。
セルロース系化合物のナトリウム塩もしくはアンモニウム塩としては、セルロース系高分子を各種誘導基により置換されたアルキルセルロースのナトリウム塩もしくはアンモニウム塩などが挙げられる。具体例としては、メチルセルロース、メチルエチルセルロース、エチルセルロース、カルボキシメチルセルロース(CMC)のナトリウム塩、アンモニウム塩、トリエタノールアンモニウム塩等が挙げられる。カルボキシメチルセルロースのナトリウム塩もしくはアンモニウム塩が特に好ましい。これらの増粘剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
増粘剤を用いる場合には、増粘剤の含有量は特に制限されないが、活物質100重量部に対して、好ましくは5重量部以下、より好ましくは3重量部以下が挙げられる。なお、正極材料中に増粘剤が含まれる場合、増粘剤の含有量の下限値としては、通常、0.05重量部以上、0.1重量部以上、0.2重量部以上、0.5重量部以上、1重量部以上を例示することができる。
本発明の電極材料としては、スラリー状とするために水を含有してもよい。水は特に限定されず、一般的に用いられる水を使用することができる。その具体例としては水道水、蒸留水、イオン交換水、及び超純水などが挙げられる。その中でも、好ましくは蒸留水、イオン交換水、及び超純水である。
本発明の電極材料をスラリー状として用いる場合には、スラリーの固形分濃度は、10〜90重量%であることが好ましく、20〜85重量%であることがより好ましく、30〜80重量%であることが特に好ましい。
本発明の電極材料をスラリー状として用いる場合には、スラリーの固形分中の重合体量の割合は、0.1〜15重量%であることが好ましく、0.2〜10重量%であることがより好ましく、0.3〜7重量%であることが特に好ましい。
電極材料の調製方法としては特に限定されず、正極活物質あるいは負極活物質、本発明のバインダー、増粘剤、導電助剤、水等を通常の攪拌機、分散機、混練機、遊星型ボールミル、ホモジナイザーなど用いて分散させればよい。分散の効率を上げるために材料に影響を与えない範囲で加温してもよい。
<4.電極>
本発明の電極は、前述の「3.電極材料」の欄で説明した本発明の電極材料と、集電体とを備えることを特徴とする。本発明の電極材料の詳細については、前述の通りである。
本発明の電極については、公知の集電体を用いることができる。具体的には、正極としては、アルミニウム、ニッケル、ステンレス、金、白金、チタン等の金属が使用される。負極としては、銅、ニッケル、ステンレス、金、白金、チタン等の金属が使用される。
電極の作製方法は、特に限定されず一般的な方法が用いられる。電池材料をドクターブレード法やアプリケーター法、シルクスクリーン法などにより集電体(金属電極基板)表面上に適切な厚さに均一に塗布することより行われる。
例えばドクターブレード法では、電池電極用スラリーを金属電極基板に塗布した後、所定のスリット幅を有するブレードにより適切な厚さに均一化する。電極は活物質塗布後、余分な有機溶剤及び水を除去するため、例えば、100℃の熱風や80℃真空状態で乾燥する。乾燥後の電極はプレス装置によってプレス成型することで電極材製造される。プレス後に再度熱処理を施して水、溶剤、乳化剤等を除去してもよい。
<5.蓄電デバイス>
本発明の蓄電デバイスは、前述の「4.電極」の欄で説明した正極と、負極と、電解液とを備えることを特徴としている。すなわち、本発明の蓄電デバイスに用いられる電極は、本発明の電極材料、即ち本発明のバインダーを含んでいる。本発明の電極の詳細については、前述の通りである。尚、本発明の蓄電デバイスについては、正極と、負極の少なくとも一方に、本発明のバインダーを含んだ電極材料を用いた電極を使用していればよく、本発明のバインダーを含んだ電極材料を用いていない電極については、公知の電極を用いることができる。
電解液としては、特に制限されず、公知の電解液を用いることができる。電解液の具体例としては、電解質と溶媒とを含む溶液が挙げられる。電解質及び溶媒は、それぞれ、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
電解質としては、リチウム塩化合物を例示することができ、具体的には、LiBF、LiPF、LiClO、LiCFSO、LiN(CFSO,LiN(CSO,LiN[CFSC(CSO]などが挙げられるが、これらに限定されるものではない。
リチウム塩化合物以外の電解質としては、テトラエチルアンモニウムテトラフルオロボレート、トリエチルモノメチルアンモニウムテトラフルオロボレート、テトラエチルアンモニウムヘキサフルオロフォスフェート等が挙げられる
電解液に用いる溶媒としては、有機溶剤、又は常温溶融塩を例示することができる。
有機溶剤としては、非プロトン性有機溶剤を挙げることができ、具体的にはプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、1,3−ジオキソラン、ジプロピルカーボネート、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピルニトリル、アニソール、酢酸エステル、プロピオン酸エステル、ジエチルエーテルなどの直鎖エーテルを使用することができ、2種類以上混合して使用してもよい。
常温溶融塩はイオン液体とも呼ばれており、イオンのみ(アニオン、カチオン)から構成される「塩」であり、特に液体化合物をイオン液体という。
本発明での常温溶融塩とは、常温において少なくとも一部が液状を呈する塩をいい、常温とは電池が一般的に作動すると想定される温度範囲をいう。電池が通常作動すると想定される温度範囲とは、上限が120℃程度、場合によっては80℃程度であり、下限は−40℃程度、場合によっては−20℃程度である。
常温溶融塩のカチオン種としては、ピリジン系、脂肪族アミン系、脂環族アミン系の4級アンモニウム有機物カチオンが知られている。4級アンモニウム有機物カチオンとしては、ジアルキルイミダゾリウム、トリアルキルイミダゾリウム、などのイミダゾリウムイオン、テトラアルキルアンモニウムイオン、アルキルピリジニウムイオン、ピラゾリウムイオン、ピロリジニウムイオン、ピペリジニウムイオンなどが挙げられる。特に、イミダゾリウムイオンが好ましい。
なお、テトラアルキルアンモニウムイオンとしては、トリメチルエチルアンモニウムイオン、トリメチルエチルアンモニウムイオン、トリメチルプロピルアンモニウムイオン、トリメチルヘキシルアンモニウムイオン、テトラペンチルアンモニウムイオン、トリエチルメチルアンモニウムイオンなどが挙げられるが、これらに限定されるものではない。
また、アルキルピリジウムイオンとしては、N−メチルピリジウムイオン、N−エチルピリジニウムイオン、N−プロピルピリジニウムイオン、N−ブチルピリジニウムイオン、1−エチル−2メチルピリジニウムイオン、1−ブチル−4−メチルピリジニウムイオン、1−ブチル−2,4ジメチルピリジニウムイオンなどが挙げられるが、これらに限定されるものではない。
イミダゾリウムイオンとしては、1,3−ジメチルイミダゾリウムイオン、1−エチル−3−メチルイミダゾリウムイオン、1−メチル−3−エチルイミダゾリウムイオン、1−メチル−3−ブチルイミダゾリウムイオン、1−ブチル−3−メチルイミダゾリウムイオン、1,2,3−トリメチルイミダゾリウムイオン、1,2−ジメチル−3−エチルイミダゾリウムイオン、1,2−ジメチル−3−プロピルイミダゾリウムイオン、1−ブチル−2,3−ジメチルイミダゾリウムイオンなどが挙げられるが、これらに限定されるものではない。
常温溶融塩のアニオン種としては、塩化物イオン、臭化物イオン、ヨウ化物イオンなどのハロゲン化物イオン、過塩素酸イオン、チオシアン酸イオン、テトラフルオロホウ素酸イオン、硝酸イオン、AsF 、PF などの無機酸イオン、ステアリルスルホン酸イオン、オクチルスルホン酸イオン、ドデシルベンゼンスルホン酸イオン、ナフタレンスルホン酸イオン、ドデシルナフタレンスルホン酸イオン、7,7,8,8−テトラシアノ−p−キノジメタンイオンなどの有機酸イオンなどが例示される。
なお、常温溶融塩は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
電解液には必要に応じて種々の添加剤を使用することができる。添加剤としては、難燃剤、不燃剤、正極表面処理剤、負極表面処理剤、過充電防止剤などが挙げられる。難燃剤、不燃剤としては、臭素化エポキシ化合物、ホスファゼン化合物、テトラブロムビスフェノールA、塩素化パラフィン等のハロゲン化物、三酸化アンチモン、五酸化アンチモン、水酸化アルミニウム、水酸化マグネシウム、リン酸エステル、ポリリン酸塩、及びホウ酸亜鉛等が例示できる。正極表面処理剤としては、炭素や金属酸化物(MgОやZrO等)の無機化合物やオルト−ターフェニル等の有機化合物等が例示できる。負極表面処理剤としては、ビニレンカーボネート、フルオロエチレンカーボネート、ポリエチレングリコールジメチルエーテル等が例示できる。過充電防止剤としては、ビフェニルや1−(p−トリル)アダマンタン等が例示できる。
本発明の蓄電デバイスの製造方法は、特に限定されず、正極、負極、電解液、必要に応じて、セパレータなどを用いて、公知の方法にて製造される。例えば、コイン型の場合、正極、必要に応じてセパレータ、負極を外装缶に挿入する。これに電解液を入れ含浸する。その後、封口体とタブ溶接などで接合して、封口体を封入し、カシメることで蓄電デバイスが得られる。蓄電デバイスの形状は限定されないが、例としてはコイン型、円筒型、シート型などが挙げられる。
セパレータは、正極と負極が直接接触して蓄電池内でショートすることを防止するものであり、公知の材料を用いることができる。セパレータとしては、具体的には、ポリオレフィンなどの多孔質高分子フィルム、紙等が挙げられる。多孔質高分子フィルムとしては、ポリエチレン、ポリプロピレンなどのフィルムが、電解液による影響が少ないため、好ましい。
本発明を実施するための具体的な形態を以下に実施例を挙げて説明する。但し、本発明はその要旨を逸脱しない限り、以下の実施例に限定されるものではない。
本実施例では、電極及びコイン電池を作製し、電極の評価として電極の結着性試験、コイン電池の評価として内部抵抗測定を以下の実験にて行った。
[作製した電極の物性評価]
作製した電極の物性評価としては、結着性試験を行った。評価結果を表1にまとめて示した。
<結着性試験>
(測定装置)
剥離強度試験機:ストログラフE3−L(東洋精機株式会社)
<結着性試験>
結着性試験は180°剥離試験にて行った。具体的には電極を幅2cm×長さ5cmに切り、テープ(粘着テープ:ニチバン製、幅1.8cm、長さ5cm)を貼り付け、電極の長さ方向の片端をストログラフE3−Lに固定した状態でテープを180°方向に試験速度50mm/min、荷重レンジ5Nで引き剥がした。試験は3回実施し、その加重平均値を求めた。
[作製した電池の特性評価]
作製したコイン電池の特性評価としては、充放電による内部抵抗の測定を行った。評価結果を表2にまとめて示した。
<内部抵抗の測定>
(測定装置)
充放電評価装置:TSCAT−3100(東洋システム株式会社)
(測定方法)
作製したリチウムイオン電池を、定電流−定電圧充電により、4.2Vまで充電した。終止電流は1C相当であった。充電後、電池を10分間休止させた。次いで2Cでの定電流放電を実施し、電流値I(mA)及び10秒後の電圧降下ΔE(mV)より、充電状態が100%(SOC100%)でのリチウムイオン電池の内部抵抗R(Ω)=ΔE/Iを測定した。
上記のリチウムイオン電池を2Cでの定電流充電を10秒間実施し、SOC100%の状態に戻した状態で電池を10分間休止させた。次いで1Cで15分間の定電流放電を実施し、SOC25%の状態に調整し、電池を10分間休止させた。そして2Cでの定電流放電を実施し、電流値I(mA)及び10秒後の電圧降下ΔE(mV)より、充電状態が25%(SOC25%)でのリチウムイオン電池の内部抵抗R(Ω)=ΔE/Iを測定した。
<平均粒径の測定>
重合体の平均粒径は以下の条件で測定した。
(測定装置)
動的光散乱を用いた粒度分布測定装置:ゼータサイザーナノ(スペクトリス株式会社)
(測定条件)
1.合成したエマルジョン溶液50μLをサンプリングする。
2.サンプリングしたエマルジョン溶液にイオン交換水700μLを3回添加して希釈する。
3.希釈液から液を2100μL抜き取る。
4.残った50μLのサンプルに700μLイオン交換水を添加・希釈して測定する。
[実施合成例1]
ビーカーに、アクリル酸n−ブチル44.23重量部、アクリル酸2−エチルヘキシル28.64重量部、アクリル酸1.31重量部、メタアクリル酸5.61重量部、ポリエチレングリコールモノメタアクリレート(日油製:ブレンマーPE−90)7.06重量部、ペンタエリスリトールトリアリルエーテル(大阪ソーダ製:ネオアリルP−30)13.13重量部、乳化剤としてドデシル硫酸ナトリウム1重量部、ポリオキシアルキレンアルケニルエーテル硫酸アンモニウム(花王製:ラテムルPD−104)2重量部、イオン交換水151.56重量部及び重合開始剤として過硫酸アンモニウム0.12重量部を入れ、超音波ホモジナイザーを用いて、十分攪拌し乳液とした。攪拌機付き反応容器を窒素雰囲気下、55℃に加温し2時間かけて乳液を添加した。乳液の添加後、更に1時間重合し、その後冷却した。冷却後、28%アンモニア水溶液を用いて、重合液のpHを2.6から8.0に調整し、エマルジョン溶液であるバインダー組成物A(重合転化率90%以上、固形分濃度37wt%)を得た。得られた重合体の平均粒子径は0.210μmであった。重合体組成としては、アクリル酸ブチル51.07mol%、アクリル酸2−エチルヘキシル23.0mol%、アクリル酸2.7mol%、メタアクリル酸9.65mol%、ポリエチレングリコールモノメタアクリレート6.0mol%、ペンタエリスリトールトリアリルエーテル7.58mol%となる。
[実施合成例2]
ビーカーに、アクリル酸n−ブチル45.21重量部、アクリル酸2−エチルヘキシル29.28重量部、アクリル酸1.34重量部、メタアクリル酸5.74重量部、ポリエチレングリコールモノメタアクリレート(日油製:ブレンマーPE−90)7.22重量部、トリメチロールプロパンジアリルエーテル(大阪ソーダ製:ネオアリルT−20)11.22重量部、乳化剤としてドデシル硫酸ナトリウム1重量部、ポリオキシアルキレンアルケニルエーテル硫酸アンモニウム(花王製:ラテムルPD−104)2重量部、イオン交換水151.56重量部及び重合開始剤として過硫酸アンモニウム0.12重量部を入れ、超音波ホモジナイザーを用いて、十分攪拌し乳液とした。攪拌機付き反応容器を窒素雰囲気下、55℃に加温し2時間かけて乳液を添加した。乳液の添加後、更に1時間重合し、その後冷却した。冷却後、28%アンモニア水溶液を用いて、重合液のpHを2.6から8.0に調整し、エマルジョン溶液であるバインダー組成物B(重合転化率87%以上、固形分濃度35wt%)を得た。得られた重合体の平均粒子径は0.213μmであった。重合体組成としては、アクリル酸ブチル51.07mol%、アクリル酸2−エチルヘキシル23.0mol%、アクリル酸2.7mol%、メタアクリル酸9.65mol%、ポリエチレングリコールモノメタアクリレート6.0mol%、トリメチロールプロパンジアリルエーテル7.58mol%となる。
[比較合成例1]
ビーカーに、アクリル酸n−ブチル43.35重量部、アクリル酸2−エチルヘキシル28.07重量部、アクリル酸1.29重量部、メタアクリル酸5.50重量部、ポリエチレングリコールモノメタアクリレート(日油製:ブレンマーPE−90)6.92重量部、トリメチロールプロパントリアクリレート(新中村化学製:A−TMPT)14.87重量部、乳化剤としてドデシル硫酸ナトリウム1重量部、ポリオキシアルキレンアルケニルエーテル硫酸アンモニウム(花王製:ラテムルPD−104)2重量部、イオン交換水151.56重量部及び重合開始剤として過硫酸アンモニウム0.12重量部を入れ、超音波ホモジナイザーを用いて、十分攪拌し乳液とした。攪拌機付き反応容器を窒素雰囲気下、55℃に加温し2時間かけて乳液を添加した。乳液の添加後、更に1時間重合し、その後冷却した。冷却後、28%アンモニア水溶液を用いて、重合液のpHを2.6から8.0に調整し、エマルジョン溶液であるバインダー組成物C(重合転化率99%以上、固形分濃度39wt%)を得た。得られた重合体の平均粒子径は0.204μmであった。重合体組成としては、アクリル酸ブチル51.07mol%、アクリル酸2−エチルヘキシル23.0mol%、アクリル酸2.7mol%、メタアクリル酸9.65mol%、ポリエチレングリコールモノメタアクリレート6.0mol%、トリメチロールプロパントリアクリレート7.58mol%となる。
<電極の作製例>
[電極の実施作製例1]
正極活物質としてスピネル型マンガン酸リチウム95重量部に、導電助剤としてアセチレンブラック3重量部、実施合成例1で得られたバインダー組成物Aの固形分として1重量部、カルボキシメチルセルロースナトリウム塩1重量部を加え、さらにスラリーの固形分濃度が71重量%となるように水を加えて遊星型ミルを用いて十分に混合して正極用スラリーを得た。
得られた正極スラリーを厚さ20μmのアルミニウム集電体上に100μmギャップのベーカー式アプリケーターを用いて塗布し、110℃真空状態で12時間以上乾繰後、ロールプレス機にてプレスを行い、厚さ35μmの正極を作製した。結着性試験の評価結果を表1の実施例1に示す。
[電極の実施作製例2]
実施合成例2で得られたバインダー組成物Bを使用した以外は、電極の実施作製例1と同様にして正極を作製した。得られた正極の厚みは36μmであった。結着性試験の評価結果を表1の実施例2に示す。
[電極の比較作製例1]
比較合成例1で得られたバインダー組成物Cを使用した以外は、電極の実施作製例1と同様にして正極を作製した。得られた正極の厚みは38μmであった。結着性試験の評価結果を表1の比較例1に示す。
表1に実施例及び比較例の電極の物性評価結果を示す。
<電池の製造例>
[コイン電池の実施製造例1]
アルゴンガスで置換されたグローブボックス内において、電極の実施作製例1で得た正極、セパレータとして厚み18μmのポリプロピレン/ポリエチレン/ポリプロピレン多孔質膜を2枚、更に対極として厚さ300μmの金属リチウム箔を貼り合わせた積層物に、電解液として1mol/Lの6フッ化リン酸リチウムのエチレンカーボネートとエチルメチルカーボネートとジエチルカーボネート(体積比3:5:2)を十分に含浸させてかしめ、試験用2032型コイン電池を製造した。内部抵抗測定の評価結果を表2の実施例1に示す。
[コイン電池の実施製造例2]
電極の実施作製例2で得た正極を用いた以外は、電極の実施作製例1と同様にしてコイン電池を作製した。内部抵抗測定の評価結果を表2の実施例2に示す。
[コイン電池の比較製造例1]
電極の比較作製例1で得た正極を用いた以外は、電極の実施作製例1と同様にしてコイン電池を作製した。内部抵抗測定の評価結果を表2の比較例1に示す。
表2に実施例及び比較例の電池の特性評価結果を示す。
本発明の正極を用いたリチウムイオン電池である実施例1〜2は比較例1と比べて接着性に優れており、またコイン電池としても比較例1に比べて充電状態での内部抵抗は同等であり、PHEV等の電気自動車に用いる場合の性能が優れていることが示された。
本発明の電極用バインダーは優れた結着性を備えており、リチウムイオン二次電池や電気化学キャパシタといった蓄電デバイスにおいて有用である。本発明の電極バインダーを用いてなる電極、及び該電極を備える蓄電デバイスは携帯電話やノートパソコン、カムコーダーなどの電子機器、電気自動車やハイブリッド電気自動車などの車載用途や家庭用電力貯蔵用途に好適に利用可能である。

Claims (7)

  1. (メタ)アクリル酸エステルに由来する構成単位と水酸基を有するアリルエーテルに由来する構成単位を有し、水酸基を有するアリルエーテルに由来する構成単位のモル比率が4〜10mol%である重合体からなる電極用バインダー。
  2. 水酸基を有するアリルエーテルに由来する構成単位がグリセリンジアリルエーテル、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールジアリルエーテル、ペンタエリスリトールトリアリルエーテルからなる群から選択される請求項1に記載の電極用バインダー。
  3. 更に、水酸基を有する(メタ)アクリレート由来の構成単位を有する重合体からなる請求項1又は2に記載の電極用バインダー。
  4. 水酸基を有する(メタ)アクリレート由来の構成単位がポリエチレングリコールモノ(メタ)アクリレート由来の構成単位である請求項3に記載の電極用バインダー。
  5. 請求項1〜4いずれかに記載の電極用バインダーを含有する電極用バインダー組成物。
  6. 請求項1〜5いずれかに記載の電極用バインダー、又は電極用バインダー組成物を用いてなる電極。
  7. 請求項6記載の電極を用いてなる蓄電デバイス。
JP2017070190A 2017-03-31 2017-03-31 電極用バインダー、電極、及び蓄電デバイス Pending JP2018174044A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017070190A JP2018174044A (ja) 2017-03-31 2017-03-31 電極用バインダー、電極、及び蓄電デバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017070190A JP2018174044A (ja) 2017-03-31 2017-03-31 電極用バインダー、電極、及び蓄電デバイス

Publications (1)

Publication Number Publication Date
JP2018174044A true JP2018174044A (ja) 2018-11-08

Family

ID=64108851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017070190A Pending JP2018174044A (ja) 2017-03-31 2017-03-31 電極用バインダー、電極、及び蓄電デバイス

Country Status (1)

Country Link
JP (1) JP2018174044A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020110847A1 (ja) * 2018-11-27 2020-06-04 東亞合成株式会社 二次電池電極用バインダー、二次電池電極合剤層用組成物及び二次電池電極

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020110847A1 (ja) * 2018-11-27 2020-06-04 東亞合成株式会社 二次電池電極用バインダー、二次電池電極合剤層用組成物及び二次電池電極
JPWO2020110847A1 (ja) * 2018-11-27 2021-10-21 東亞合成株式会社 二次電池電極用バインダー、二次電池電極合剤層用組成物及び二次電池電極

Similar Documents

Publication Publication Date Title
WO2017110901A1 (ja) 電池電極用バインダー、電極、及び電池
JP6268988B2 (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
JP6164303B2 (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
WO2013180103A1 (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
JPWO2014119481A1 (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
CN111566858B (zh) 电极用粘合剂、电极以及蓄电器件
JP6300078B2 (ja) 電池電極用スラリー組成物、およびそれを用いた電極ならびに電池
JP6395107B2 (ja) 電池電極用バインダー組成物、およびそれを用いた電極ならびに電池
CN110832683B (zh) 电极用粘结剂、电极用粘结剂组合物、电极材料、电极、以及蓄电装置
CN110139881B (zh) 电极用粘结剂
JP2016046231A (ja) 電池正極用バインダー組成物、およびそれを用いた電極ならびに電池
JP2016192267A (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
JP2018174044A (ja) 電極用バインダー、電極、及び蓄電デバイス
JP2019021575A (ja) 電極用バインダー、電極用バインダー組成物、電極材料、電極、及び蓄電デバイス
JP2017117522A (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
JP7088171B2 (ja) 電極用バインダー、電極材料、電極、及び蓄電デバイス
JP7180595B2 (ja) 電極及び蓄電デバイス
JP2017091789A (ja) 正極、二次電池およびその製造方法
JP7314751B2 (ja) 水系バインダー組成物、電極、及び蓄電デバイス
JP2021163762A (ja) 負極及び蓄電デバイス
JP2020205178A (ja) 電極用バインダー、電極用バインダー組成物、電極材料、電極、及び蓄電デバイス
JP2017069006A (ja) 電池電極用バインダー組成物およびその製造方法