WO2012128374A1 - Slurry, production method for solid electrolyte layer, production method for electrode active material layer, and production method for all-solid-state battery - Google Patents

Slurry, production method for solid electrolyte layer, production method for electrode active material layer, and production method for all-solid-state battery Download PDF

Info

Publication number
WO2012128374A1
WO2012128374A1 PCT/JP2012/057660 JP2012057660W WO2012128374A1 WO 2012128374 A1 WO2012128374 A1 WO 2012128374A1 JP 2012057660 W JP2012057660 W JP 2012057660W WO 2012128374 A1 WO2012128374 A1 WO 2012128374A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
active material
slurry
material layer
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2012/057660
Other languages
English (en)
French (fr)
Inventor
Hiroki Kubo
Keisuke Omori
Yuichi Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to US14/005,477 priority Critical patent/US9236158B2/en
Priority to KR1020137023339A priority patent/KR101506833B1/ko
Priority to CN201280013830.7A priority patent/CN103430364B/zh
Priority to EP12722915.1A priority patent/EP2686898B1/en
Publication of WO2012128374A1 publication Critical patent/WO2012128374A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a practical slurry- containing a polar solvent as a dispersion medium for a sulfide solid electrolyte material.
  • the lithium batteries currently commercially available utilize an electrolyte including a combustible organic solvent, improvement is required in terms of the structure and material for prevention of a short circuit or for mounting a safety device for restraining temperature rise at the time of the short circuit.
  • the safety device can be simplified so that it is considered that they can provide the excellent production cost and productivity.
  • the non-patent article 1 discloses use of a non-polar solvent such as toluene and heptane.
  • Non-Patent Literature 1 Taro Inada et al . , "Silicone as a binder in composite electrolytes", Journal of Power Sources 119-121 (2003) 948-950
  • the dispersion medium used at the time of preparing a slurry has been limited to the non-polar solvents such as toluene and heptane so that widening of the selection range of the dispersion medium material has been desired.
  • the present invention has been achieved in view of the circumstances mentioned above, and the main object thereof is to provide a practical slurry including a polar solvent as the dispersion medium for a sulfide solid electrolyte material .
  • the present invention provides a slurry comprising: a sulfide solid electrolyte material, and a dispersion medium including at least one selected from the group consisting of tertiary amine; ether; thiol; ester having a functional group of a 3 or more carbon number bonded with a carbon atom of an ester bonding and a functional group of a 4 or more carbon number bonded with an oxygen atom of the ester bonding; and ester having a benzene ring bonded with a carbon atom of an ester bonding .
  • a dispersion medium comprising at least one selected from the group consisting of tertiary amine; ether; thiol; ester having a functional group of a 3 or more carbon number bonded with a carbon atom of an ester bonding and a functional group of a 4 or more carbon number bonded with an oxygen atom of the ester bonding; and ester having a benzene ring bonded with a carbon atom of an ester bonding is used, a practical slurry including a polar solvent as a dispersion medium for a sulfide solid electrolyte material can be provided. Thereby, the selection range of the dispersion medium material can be widened.
  • the above-mentioned slurry may further comprise a non-polar solvent. Since a material to be hardly dissolved or dispersed in a dispersion medium as a slurry material can be dissolved or dispersed using the non-polar solvent, the selection range of the slurry material can be widened.
  • the above-mentioned sulfide solid electrolyte material uses a material composition including Li 2 S and P 2 S 5 because a sulfide solid electrolyte material with a high Li ion conductivity can be provided.
  • a stable sulfide solid electrolyte material can be provided and reaction with the above-mentioned dispersion medium can be restrained.
  • the above-mentioned slurry further comprises a binder. Since a binder is included, the slurry viscosity can be made higher so that a further practical slurry can be provided.
  • the present invention provides a production method for a solid electrolyte layer comprising: a mixing step of preparing a solid electrolyte layer forming slurry by mixing a sulfide solid electrolyte material, and a dispersion medium comprising at least one selected from the group consisting of tertiary amine; ether; thiol; ester having a functional group of a 3 or more carbon number bonded with a carbon atom of an ester bonding and a functional group of a 4 or more carbon number bonded with an oxygen atom of the ester bonding; and ester having a benzene ring bonded with a carbon atom of an ester bonding, a coating step of forming a solid electrolyte layer forming coating film by applying the above-mentioned solid electrolyte layer forming slurry on a substrate, and a drying step of forming a solid electrolyte layer by drying the above-mentioned solid electrolyte layer forming coating
  • a dispersion medium comprising at least one selected from the group consisting of tertiary amine; ether; thiol; ester having a functional group of a 3 or more carbon number bonded with a carbon atom of an ester bonding and a functional group of a 4 or more carbon number bonded with an oxygen atom of the ester bonding; and ester having a benzene ring bonded with a carbon atom of an ester bonding is used, a practical solid electrolyte layer forming slurry comprising a polar solvent as a dispersion medium for a sulfide solid electrolyte material can be prepared. Thereby, a solid electrolyte layer can be obtained easily using the solid electrolyte layer forming slurry.
  • the above-mentioned solid electrolyte layer forming slurry may be prepared by further adding a non-polar solvent in the above-mentioned mixing step. Since a material to be hardly dissolved or dispersed in a dispersion medium as the above-mentioned solid electrolyte layer forming slurry can be dissolved or dispersed using the non-polar solvent, the selection range of the above-mentioned solid electrolyte layer forming slurry material can be widened.
  • the above-mentioned solid electrolyte layer forming slurry be prepared by further adding a binder in the above-mentioned mixing step.
  • a further practical solid electrolyte layer forming slurry can be prepared so that a further homogeneous solid electrolyte layer can be obtained using the solid electrolyte layer forming slurry.
  • the present invention provides a production method for an electrode active material layer comprising: a mixing step of preparing an electrode active material layer forming slurry by mixing an electrode active material, a sulfide solid electrolyte material, and a dispersion medium comprising at least one selected from the group consisting of tertiary amine; ether; thiol; ester having a functional group of a 3 or more carbon number bonded with a carbon atom of an ester bonding and a functional group of a 4 or more carbon number bonded with an oxygen atom of the ester bonding; and ester having a benzene ring bonded with a carbon atom of an ester bonding, a coating step of forming an electrode active material layer forming coating film by applying the above-mentioned electrode active material layer forming slurry on a substrate, and a drying step of forming an electrode active material layer by drying the above-mentioned electrode active material layer forming coating film.
  • a dispersion medium comprises at least one selected from the group consisting of tertiary amine; ether; thiol; ester having a functional group of a 3 or more carbon number bonded with a carbon atom of an ester bonding and a functional group of a 4 or more carbon number bonded with an oxygen atom of the ester bonding; and ester having a benzene ring bonded with a carbon atom of an ester bonding is used, a practical electrode active material layer forming slurry comprising a polar solvent as a dispersion medium for a sulfide solid electrolyte material can be prepared. Thereby, an electrode active material layer can be obtained easily using the electrode active material layer forming slurry.
  • the above-mentioned electrode active material layer forming slurry may be prepared by further adding a non-polar solvent in the above-mentioned mixing step. Since a material to be hardly dissolved or dispersed in a dispersion medium as the above-mentioned electrode active material layer forming slurry can be dissolved or dispersed using the non-polar solvent, the selection range of the above-mentioned electrode active material layer forming slurry material can be widened.
  • the above-mentioned electrode active material layer forming slurry be prepared by further adding a binder in the above-mentioned mixing step.
  • a further practical electrode active material layer forming slurry can be prepared so that a further homogeneous electrode active material layer can be obtained using the electrode active material layer forming slurry.
  • the present invention provides a production method for an all-solid-state battery comprising a cathode active material layer including a cathode active material, an anode active material layer including an anode active material, and a solid electrolyte layer formed between the above-mentioned cathode active material layer and the above-mentioned anode active material layer, characterized in that the method comprises at least one step of: a solid electrolyte layer forming step for forming the solid electrolyte layer by the procedure shown in the above-described production method for a solid electrolyte layer, and an electrode active material layer forming step for forming the electrode active material layer by the procedure shown in the above-described production method for an electrode active material layer.
  • all-solid-state battery can be formed homogeneously by a simple method. Thereby, an all-solid-state secondary battery can be produced with high production efficiency.
  • the present invention provides an effect of providing a practical slurry comprising a polar solvent as a dispersion medium for a sulfide solid electrolyte.
  • FIG .1 is a flow chart showing an example of the production method for a solid electrolyte layer of the present invention.
  • FIG.2 is a flow chart showing an example of the production method for an electrode active material layer of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing an example of an all-solid-state battery produced by the production method for an all-solid-state battery of the present invention .
  • FIGS. 4A and 4B are each a flow chart showing an example of the production method for an all-solid-state battery of the present invention.
  • the slurry of the present invention comprises: a sulfide solid electrolyte material, and a dispersion medium comprising at least one selected from the group consisting of tertiary amine; ether; thiol; ester having a functional group of a 3 or more carbon number bonded with a carbon atom of an ester bonding and a functional group of a 4 or more carbon number bonded with an oxygen atom of the ester bonding; and ester having a benzene ring bonded with a carbon atom of an ester bonding .
  • a dispersion medium comprises at least one selected from the group consisting of tertiary amine; ether; thiol; ester having a functional group of a 3 or more carbon number bonded with a carbon atom of an ester bonding and a functional group of a 4 or more carbon number bonded with an oxygen atom of the ester bonding; and ester having a benzene ring bonded with a carbon atom of an ester bonding is used, a practical slurry comprising a polar solvent as a dispersion medium for a sulfide solid electrolyte material can be provided. Thereby, the selection range of the dispersion medium material can be widened.
  • the dispersion medium in the present invention comprises at least one selected from the group consisting of tertiary amine; ether; thiol; ester having a functional group of a 3 or more carbon number bonded with a carbon atom of an ester bonding and a functional group of a 4 or more carbon number bonded with an oxygen atom of the ester bonding; and ester having a benzene ring bonded with a carbon atom of an ester bonding.
  • the primary amine and the secondary amine have a high reactivity so as to react with a sulfide.
  • the tertiary amine has a nitrogen atom bonded with three hydrocarbon groups, and steric hindrance around an unshared electron pair on a nitrogen atom is large. Thus, the nucleophilicity is weakened and it is considered to have a low reactivity. Accordingly, the tertiary amine may be used as a dispersion medium for a sulfide solid electrolyte material.
  • triethyl amine, tripropyl amine, and tributyl amine can be presented.
  • ether Since ether has an oxygen atom having an extremely low reactivity, it is considered to be not reactive with a sulfide, and thus may be used as a dispersion medium for a sulfide solid electrolyte material.
  • ether used in the present invention cyclopentyl methyl ether, dibutyl ether, and anisole can be presented.
  • thiol does not have an oxygen atom with a high reactivity, it is considered to be not reactive with sulfur of a sulfide, and thus may be used as a dispersion medium for a sulfide solid electrolyte material .
  • thiol used in the present invention ethane mercaptan, tert-dodecyl mercaptan, n-butyl mercaptan, t-butyl mercaptan, octane thiol, 1-hexane thiol, 1 -propane thiol, and 2 -propane thiol can be presented .
  • Ester having a functional group of a 3 or less carbon number of a small molecular weight bonded on both sides of an ester bonding reacts with a sulfide.
  • ester having a functional group of a 3 or more carbon number bonded with a carbon atom of an ester bonding and ester having a functional group of a 4 or more carbon number bonded with an oxygen atom of the ester bonding are considered to have a lower reactivity owing to the steric hindrance. Accordingly, they may be used as a dispersion medium for a sulfide solid electrolyte material.
  • ester having a benzene ring bonded with a carbon atom of an ester bonding has an electron donating property, it is considered that eccentricity of charge of a carbonyl group is removed so as to lower the reactivity of an oxygen atom. Accordingly, it may be used as a dispersion medium for a sulfide solid electrolyte material.
  • esters used in the present invention butyl butyrate and ethyl benzoate can be presented.
  • the dispersion medium in the present invention comprises, as mentioned above, at least one selected from the group consisting of tertiary amine; ether; thiol; ester having a functional group of a 3 or more carbon number bonded with a carbon atom of an ester bonding and a functional group of a 4 or more carbon number bonded with an oxygen atom of the ester bonding; and ester having a benzene ring bonded with a carbon atom of an ester bonding. It may be at least one selected therefrom, or it may be a mixture thereof .
  • the above-mentioned tertiary amine, ether, thiol and ester have a low reactivity with a sulfide solid electrolyte material so that they hardly influence the sulfide solid electrolyte material.
  • the selection range can be widened in the case of changing the drying speed of the dispersion medium in drying the slurry of the present invention.
  • a high drying speed is advantageous in terms of the productivity of a product using the above-mentioned slurry.
  • a disadvantage such as migration of a binder, may occur, and thus a slow drying operation may be needed.
  • the drying speed of the dispersion medium can be controlled so as to reduce spots, and the like produced by a drying operation during a coating operation.
  • the moisture content of the above-mentioned dispersion medium is preferably lower, and specifically it is preferably 100 ppm or less.
  • the dispersion medium in the present invention has a dispersion effect (surface-active effect) .
  • the dispersion effect refers to an effect of making the sedimentation rate of particles present in a liquid lower than the sedimentation rate obtained from the Stokes formula shown in the following formula (1) .
  • the dispersion property of the sulfide solid electrolyte material is improved.
  • the dispersion medium in the present invention does not dramatically lower the Li ion conductivity of the sulfide solid electrolyte material before and after dispersion of the sulfide solid electrolyte material to the dispersion medium. In general, it does not lower the Li ion conductivity of the sulfide solid electrolyte material after dispersion into the dispersion medium to 1/10 or less of the Li ion conductivity of the sulfide solid electrolyte material before dispersion into the dispersion medium.
  • the Li ion conductivity of the sulfide solid electrolyte material after dispersion into the dispersion medium is obtained by measuring the Li ion conductivity of a sample prepared by shaping a powder obtained by applying a slurry and drying into pellets.
  • the slurry of the present invention may further comprise a conventional non-polar solvent such as heptane, xylene and toluene. Moreover, in this case, it is particularly preferable to use heptane or toluene.
  • the ratio of the above-mentioned dispersion medium to the total solvent included in the slurry of the present invention is preferably 0.1 wt% or more, it is more preferably 5 wt% or more, and it is further preferably 10 wt% or more.
  • the solvent included in the slurry of the present invention may only be the above-mentioned dispersion medium.
  • the slurry of the present invention comprises a binder and the solubility of the binder is low with respect to the above-mentioned dispersion medium
  • the above-mentioned non-polar solvent may be used in combination.
  • the ratio of the above-mentioned dispersion medium to the total solvent included in the slurry of the present invention is preferably in a range of 0.1 wt% to 99.9 wt%, it is more preferably in a range of 5 wt% to 95 wt3 ⁇ 4, and it is further preferably in a range of 10 wt% to 90 wt%.
  • the slurry material selection range can be widened.
  • the sulfide solid electrolyte material of the present invention is not particularly limited as long as it includes sulfur (S) and has the ion conductivity.
  • S sulfur
  • the slurry of the present invention is used for a lithium battery
  • the above-mentioned sulfide solid electrolyte material those prepared using a material composition including Li 2 S and a sulfide of an element of 13 to 15 groups can be presented.
  • B, Al, Si, Ge , P, As, and Sb can be presented .
  • a sulfide of an element of 13 to 15 groups specifically, B 2 S 3 , Al 2 S 3 , SiS 2 , GeS 2 , P 2 S 3 , P 2 S 5 , As 2 S 3 , and Sb 2 S 3 can be presented.
  • the sulfide solid electrolyte material prepared using a material composition including Li 2 S and a sulfide of an element of 13 to 15 groups is preferably a Li 2 S-P 2 S 5 material , a Li 2 S-SiS 2 material, a L ⁇ 2 S-GeS 2 material or a Li 2 S-Al 2 S 3 material, and it is more preferably a Li 2 S-P 2 S 5 material, because they have the excellent Li ion conductivity.
  • the Li 2 S-P 2 S 5 material is be a sulfide solid electrolyte material prepared using a material composition including Li 2 S and P 2 S 5 or may be a sulfide solid electrolyte material containing Li S and P 2 S 5 as the main material, and it may further include other materials.
  • the above-mentioned material composition has little impurities because side reaction can be restrained thereby.
  • a method for synthesizing Li 2 S for example, a method disclosed in the official gazette of Japanese Patent Laid-Open Publication No. H07-330312 can be presented. Furthermore, it is preferable that Li 2 S be refined by a method disclosed in WO2005/040039 , and the like.
  • the above-mentioned material composition may further include at least one kind of ortho-oxoacid lithium selected from the group consisting of Li 3 P0 4 , Li 4 Si0 4 , Li 4 Ge0 4 , Li 3 B0 3 and Li 3 A10 3 . By adding such ortho-oxoacid lithium, a further stable sulfide solid electrolyte material can be obtained.
  • the sulfide solid electrolyte material in the present invention does not substantially include cross-linked sulfur.
  • reaction with the above-mentioned dispersion medium can be restrained and the decline of the ion conductivity can be restrained.
  • the cross-linked sulfur has a high reactivity, reaction with the above-mentioned dispersion medium may cause deterioration of the sulfide solid electrolyte material.
  • cross- linked sulfur refers to the sulfur element of -S- bond generated at the time of synthesis of the sulfide solid electrolyte material.
  • the phrase "substantially not including cross-linked sulfur” denotes that the ratio of the cross-linked sulfur included in the sulfide solid electrolyte material is as low as not being influenced by the reaction with the above-mentioned dispersion medium. In this case, the ratio of the cross-linked sulfur is for example preferably 10 mol% or less, and more preferably 5 mol% or less.
  • substantially not including cross-linked sulfur can be confirmed by measuring Raman spectroscopy spectrum.
  • the sulfide solid electrolyte material is a Li 2 S-P 2 S 5 material
  • the peak of a S 3 P-S-PS 3 unit having a cross -linked-sulfur (P 2 S 7 unit) appears in general at 402 cm “1 . Therefore, in this invention, it is preferable that the peak is not detected.
  • the peak of a PS 4 3" unit appears in general at 417 cm “1 .
  • the intensity I 02 at 402 cm "1 be smaller than the intensity l il7 at 417 cm “1 .
  • the intensity I 402 is preferably for example 70% or less, more preferably 50% or less, and further preferably 35% or less.
  • the sulfide solid electrolyte materials other than the Li 2 S-P 2 S 5 material whether the cross-linked sulfur is not substantially included can be judged by specifying a unit including cross-linked sulfur and measuring the peak of the unit. In addition to using the measurement result by the Raman spectroscopy spectrum, whether "the cross-linked sulfur is not substantially included" can be confirmed using the material composition ratio at the time of synthesizing the sulfide solid electrolyte material, or the NMR measurement result.
  • the above-mentioned sulfide solid electrolyte material is prepared using a material composition including Li 2 S
  • the phrase "does not substantially include Li 2 S” means that Li 2 S derived from the starting material is not substantially included. Since Li 2 S has a high reactivity like the cross-linked sulfur, it is preferably not included. Whether “Li 2 S is not substantially included” can be confirmed by the X-ray diffraction.
  • the sulfide solid electrolyte material tends to include Li 2 S.
  • the sulfide solid electrolyte material tends to include the above-mentioned cross-linked sulfur.
  • the above-mentioned sulfide solid electrolyte material does not substantially include cross-linked sulfur and Li 2 S
  • the above-mentioned sulfide solid electrolyte material has an ortho composition or a composition in the vicinity thereof.
  • ortho refers in general to one having the highest degree of hydration among oxoacids obtained by hydration of the same oxide.
  • the crystal composition with Li 2 S most added among the sulfides is referred to as the ortho composition.
  • Li 3 PS 4 corresponds to the ortho composition.
  • Li 2 S-GeS 2 corresponds to the ortho composition.
  • Li 4 GeS 4 corresponds to the ortho composition.
  • Li 3 AlS 3 corresponds to the ortho composition.
  • a sulfide solid electrolyte material having a low reactivity with the above-mentioned dispersion medium can be obtained.
  • the above-mentioned material composition includes Li 2 S and A1 2 S 3 .
  • a sulfide solid electrolyte material having a low reactivity with the above-mentioned dispersion medium can be obtained.
  • the above-mentioned material composition includes Li 2 S and GeS 2 .
  • the sulfide solid electrolyte material in the present invention include Lil because a sulfide solid electrolyte material having a high Li ion conductivity can be provided. Moreover, it is preferable that the sulfide solid electrolyte material in the present invention include Li 2 0 because a sulfide solid electrolyte material having a little hydrogen sulfide generation amount can be provided.
  • the sulfide solid electrolyte material in the present invention may be a sulfide glass, or a sulfide glass ceramic obtained by applying heat treatment to the sulfide glass.
  • the sulfide glass can be obtained by carrying out for example an amorphous process to the above-mentioned material composition
  • amorphous process for example, a mechanical milling process and a melting and rapid cooling process can be presented
  • the mechanical milling process is preferable because processing is enabled in an ordinary temperature so that the production step can be simplified.
  • the mechanical milling is not particularly limited as long as it is a method of mixing a material composition while providing a mechanical energy.
  • ball mill, turbo mill, mechano- fusion, and disc mill can be presented.
  • the ball mill is preferable, and a planetary ball mill is especially preferable because a desired sulfide solid electrolyte material can be obtained efficiently.
  • the sulfide glass ceramic can be obtained by for example applying a heat treatment to the sulfide glass at a temperature higher than the crystallization temperature. That is, by applying the amorphous process to the material composition and further the heat treatment, the sulfide glass ceramic can be obtained.
  • the present invention it is preferable to adjust the heat treatment temperature and the heat treatment time so as not to cause them.
  • the shape of the sulfide solid electrolyte material for example, granular can be presented. In particular, spherical or elliptical are preferable. Moreover, in the case the sulfide solid electrolyte material is granular, it is preferable that its average particle size is for example in a range of 0.1 ⁇ to 50 ⁇ . Moreover, it is preferable that the sulfide solid electrolyte material has a high Li ion conductivity.
  • the Li ion conductivity at an ordinary temperature is preferably for example 1x10 4 S/cm or more, and more preferably lxlO "3 S/cm or more.
  • the sulfide solid electrolyte material content in the slurry of the present invention is for example preferably in a range of 10 wt% to 70 wt%, and more preferably in a range of 40 wt% to 60 wt%.
  • the slurry of the present invention comprises at least the above-mentioned dispersion medium and sulfide solid electrolyte material. As needed, it may comprise other materials .
  • the slurry of the present invention further comprises a binder. Since a binder is included, the viscosity of the slurry can be made higher so that the sedimentation rate of the sulfide solid electrolyte material in the dispersion medium can be made slower. Therefore, in forming an all-solid-state battery by applying the binder.
  • the dispersion state of the sulfide solid electrolyte material obtained by the above-mentioned dispersion medium can be maintained from the start of a coating operation until the end of a drying operation.
  • a layer with the sulfide solid electrolyte material evenly dispersed can be provided. Therefore, a layer formed using the slurry of the present invention can be one with a further even film thickness and homogeneity.
  • flexibility can be provided to a layer formed using the slurry of the present invention.
  • the binder used in the present invention is not particularly limited as long as it can be dissolved in a solvent used for the slurry.
  • a binder dissolvable to the above-mentioned dispersion medium is used.
  • a solvent used for the slurry is a solvent mixture of the above-mentioned dispersion medium and a non-polar solvent, a binder dissolvable in the above-mentioned solvent mixture is used.
  • the binder is not particularly limited.
  • an acrylic binder a fluorine-including binder such as polyvinylidene fluoride (PVDF) and polytetrafluoro ethylene (PTFE)
  • a rubber binder such as butadiene rubber
  • the rubber binder is not particularly limited, however, a hydrogenated butadiene rubber, or a hydrogenated butadiene rubber with a functional group introduced to its end can preferably be used.
  • binder is not particularly limited, however, it is preferably in a range of 50,000 to 1,500,000, more preferably in a range of 100,000 to 1,000,000, and particularly preferably in a range of 100,000 to 800,000.
  • weight average molecular weight in the above-mentioned range, a further practical slurry can be provided.
  • binder is obtained by measurement with the gel permeation chromatography (GPC) conversion on the polystyrene basis.
  • the binder content in the slurry of the present invention is not particularly limited, however, it is preferably in a range of 0.1 wt% to 10 wt%, more preferably in a range of 0.5 wt% to 5 wt%, and particularly preferably in a range of 0.7 wt% to 2.0 wt%.
  • the binder content is less than the above-mentioned range, the effect of maintaining the dispersion state of the sulfide solid electrolyte material may not be sufficiently obtained.
  • the binder content exceeds the above-mentioned range, the battery characteristics of the all-solid-state battery obtained using the slurry of the present invention may be lowered.
  • the slurry of the present invention may comprise an electrode active material and an electric conducting material. Since an electrode active material and an electric conducting material are included, an electrode active material layer can be formed using the slurry of the present invention.
  • the slurry of the present invention may comprise a dispersion medium other than the above-mentioned dispersion medium, and a dispersing agent.
  • the slurry of the present invention can be used in producing a solid electrolyte layer of an all-solid-state battery. Moreover, in the case the slurry of the present invention comprises an electrode active material, it can be used in producing an electrode active material layer of a battery. As the production method of the slurry of the present invention, the same production method for a general slurry can be used.
  • the production method for a solid electrolyte layer according to the present invention comprises: a mixing step of preparing a solid electrolyte layer forming slurry by mixing a sulfide solid electrolyte material, and a dispersion medium comprising at least one selected from the group consisting of tertiary amine; ether; thiol; ester having a functional group of a 3 or more carbon number bonded with a carbon atom of an ester bonding and a functional group of a 4 or more carbon number bonded with an oxygen atom of the ester bonding; and ester having a benzene ring bonded with a carbon atom of an ester bonding; a coating step of forming a solid electrolyte layer forming coating film by applying the above-mentioned solid electrolyte layer forming slurry on a substrate; and a drying step of forming a solid electrolyte
  • a dispersion medium comprises at least one selected from the group consisting of tertiary amine; ether; thiol; ester having a functional group of a 3 or more carbon number bonded with a carbon atom of an ester bonding and a functional group of a 4 or more carbon number bonded with an oxygen atom of the ester bonding; and ester having a benzene ring bonded with a carbon atom of an ester bonding is used, a practical solid electrolyte layer forming slurry comprising a polar solvent as a dispersion medium for a sulfide solid electrolyte material can be prepared. Thus, a solid electrolyte layer can be obtained easily using the solid electrolyte layer forming slurry.
  • FIG.1 is a flow chart showing an example of the production method for a solid electrolyte layer of the present invention.
  • a sulfide solid electrolyte material and a tertiary amine are prepared. Then, they are mixed for preparing a solid electrolyte layer forming slurry (mixing step) . Subsequently, by applying the solid electrolyte layer forming slurry onto a substrate, a solid electrolyte layer forming coating film is formed (coating step) . Furthermore, by drying the solid electrolyte layer forming coating film, a solid electrolyte layer is formed (drying step) .
  • the mixing step in the present invention is a step of preparing a solid electrolyte layer forming slurry by mixing: a sulfide solid electrolyte material; and a dispersion medium comprising at least one selected from the group consisting of tertiary amine; ether thiol; ester having a functional group of a 3 or more carbon number bonded with a carbon atom of an ester bonding and a functional group of a 4 or more carbon number bonded with an oxygen atom of the ester bonding; and ester having a benzene ring bonded with a carbon atom of an ester bonding. Since the above-mentioned sulfide solid electrolyte material and the above-mentioned dispersion medium are the same as those mentioned in the above "A. Slurry", the explanation is omitted here.
  • a solid electrolyte layer forming slurry prepared by this step comprises at least the above-mentioned sulfide solid electrolyte material and the above-mentioned dispersion medium, however, as needed it may further comprise other materials such as a non-polar solvent and a binder.
  • this step it is preferable to prepare a solid electrolyte layer forming slurry while further adding a binder .
  • the binder the same content mentioned in the above "A. Slurry" can be applied.
  • the content of the above-mentioned sulfide solid electrolyte material in the above-mentioned solid electrolyte layer forming slurry is, for example, preferably in a range of 10 wt% to 70 wt%, and more preferably in a range of 40 wt% to 60 wt%.
  • the other aspects of the above-mentioned solid electrolyte layer forming slurry are the same as the content mentioned in the above "A. Slurry".
  • the drying speed of the dispersion medium can be controlled by combining materials having different vapor pressures from any of tertiary amine; ether; thiol; ester having a functional group of a 3 or more carbon number bonded with a carbon atom of an ester bonding and a functional group of a 4 or more carbon number bonded with an oxygen atom of the ester bonding; and ester having a benzene ring bonded with a carbon atom of an ester bonding.
  • the mixing method in this step is not particularly limited as long as a slurry with a high dispersion property can be obtained.
  • common methods such as a dissolver, a homo mixer, a kneader, a roll mill, a sand mill, an attritor, a ball mill, a vibrator mill , a high speed impeller mill, a ultrasonic homogenizer, and a shaker can be adopted.
  • the coating step in the present invention is a step of applying the above-mentioned solid electrolyte layer forming slurry onto a substrate for forming a solid electrolyte layer forming coating film.
  • the substrate used in this step for example, peelable ones such as a metal foil and a fluorine-based resin sheet, and an electrode active material layer can be presented.
  • the above-mentioned substrate is an electrode active material layer, it can be applied directly onto an anode active material layer or a cathode active material layer.
  • the method for applying the solid electrolyte layer forming slurry is not particularly limited. For example, common methods such as a doctor blade method, a die coating method, a gravure coating method, a spray coating method, an electrostatic coating method and a bar coating method can be adopted.
  • electrolyte layer forming coating film to be formed in this step can be selected appropriately according to the target thickness of the solid electrolyte layer.
  • the drying step in the present invention is a step of drying the above-mentioned solid electrolyte layer forming coating film for forming a solid electrolyte layer.
  • the method for drying the solid electrolyte layer forming coating film is not particularly limited as long as the solid electrolyte layer forming coating film is not deteriorated.
  • common methods such as hot air drying, infrared ray drying, reduced pressure drying, and induced heating drying can be adopted.
  • the drying atmosphere in this step for example, inert gas atmosphere such as Ar gas atmosphere and nitrogen gas atmosphere, atmosphere, and vacuum can be presented.
  • the thickness of the solid electrolyte layer to be formed in this step is preferably, for example, in a range of 0.1 ⁇ to 1,000 ⁇ , and particularly preferably in a range of 0.1 ⁇ to 300 ⁇ .
  • the production method for a solid electrolyte layer of the present invention may have an optional step.
  • a compression step can be presented.
  • a high density solid electrolyte layer can be obtained so that capacity increase can be enabled by the improvement of the ion conductivity and thinning of the solid electrolyte layer film.
  • the production method for an electrode active material layer of the present invention comprises: a mixing step of preparing an electrode active material layer forming slurry by mixing an electrode active material, a sulfide solid electrolyte material, and a dispersion medium comprising at least one selected from the group consisting of tertiary amine; ether; thiol; ester having a functional group of a 3 or more carbon number bonded with a carbon atom of an ester bonding and a functional group of a 4 or more carbon number bonded with an oxygen atom of the ester bonding; and ester having a benzene ring bonded with a carbon atom of an ester bonding; a coating step of forming an electrode active material layer forming coating film by applying the above-mentioned electrode active material layer forming slurry on a substrate; and a drying step of forming an electrode active material layer by drying the above-mentioned electrode active material
  • a dispersion medium comprises at least one selected from the group consisting of tertiary amine; ether; thiol; ester having a functional group of a 3 or more carbon number bonded with a carbon atom of an ester bonding and a functional group of a 4 or more carbon number bonded with an oxygen atom of the ester bonding; and ester having a benzene ring bonded with a carbon atom of an ester bonding is used, a practical electrode active material layer forming slurry comprising a polar solvent as a dispersion medium for a sulfide solid electrolyte material can be prepared. Thus, an electrode active material layer can be obtained easily using the electrode active material layer forming slurry.
  • FIG.2 is a flow chart showing an example of the production method for an electrode active material layer of the present invention.
  • an electrode active material, a sulfide solid electrolyte material, and a tertiary amine are prepared. Then, they are mixed for preparing an electrode active material layer forming slurry (mixing step) .
  • an electrode active material layer forming coating film is formed (coating step) .
  • an electrode active material layer is formed (drying step) .
  • the mixing step in the present invention is a step of preparing an electrode active material layer forming slurry by mixing an electrode active material, a sulfide solid electrolyte material, and a dispersion medium comprising at least one selected from the group consisting of tertiary amine; ether; thiol; ester having a functional group of a 3 or more carbon number bonded with a carbon atom of an ester bonding and a functional group of a 4 or more carbon number bonded with an oxygen atom of the ester bonding; and ester having a benzene ring bonded with a carbon atom of an ester bonding. Since the above-mentioned sulfide solid electrolyte material and the above-mentioned dispersion medium are the same as those mentioned in the above "A. Slurry", the explanation is omitted here .
  • the electrode active material in the present invention differs depending on the kind of the conductive ion of the battery to use an electrode active material layer produced by the present invention.
  • the electrode active material absorbs and desorbs the lithium ion.
  • the electrode active material used in the present invention may be a cathode active material or an anode active material.
  • halite stratiform type active materials such as LiCo0 2 , LiMn0 2 , LiNi0 2 , LiV0 2 , and LiNi 1 / 3 Co 1 / 3 Mn 1 / 3 0 2
  • Spinel type active materials such as LiMn 2 0 4
  • Olivine type active materials such as LiFeP0 4 , LiMnP0 4
  • Si-including oxides such as Li 2 FeSi0 , and Li 2 MnSi0 may be used as the cathode active material.
  • anode active material used in the present invention for example, metal active materials and carbon active materials can be presented.
  • metal active material for example, In, Al , Si, and Sn can be presented.
  • carbon active material for example, mesocarbon microbeeds (MCMB) , highly oriented graphite (HOPG) , hard carbon, and soft carbon can be presented.
  • the shape of the electrode active material for example, granular can be presented. In particular, spherical or elliptical are preferable. Moreover, in the case the electrode active material is granular, it is preferable that its average particle size be, for example, in a range of 0.1 ⁇ to 50 ⁇ .
  • An electrode active material layer forming slurry prepared by this step comprises at least the above-mentioned electrode active material, the above-mentioned sulfide solid electrolyte material and the above-mentioned dispersion medium, however, as needed it may further comprise other materials such as a non-polar solvent, an electric conducting material and a binder.
  • the electric conducting material for example, acetylene black, Ketjen black, and carbon fiber can be presented.
  • the binder and the like, the content is the same as those mentioned in the above "A. Slurry", thus the explanation is omitted here.
  • the solid content in the above-mentioned electrode active material layer forming slurry is preferably in a range of 10 wt% to 80 wt%, and more preferably in a range of 40 wt3 ⁇ 4 to 70 wt% .
  • the solid content denotes the ratio of the total weight of the above-mentioned electrode active material and the above-mentioned solid electrolyte material with respect to the weight of the above-mentioned electrode active material layer forming slurry.
  • the other aspects of the above-mentioned electrode active material layer forming slurry are the same as the content mentioned in the above "A. Slurry" .
  • the drying speed of the dispersion medium can be controlled by combining materials having different vapor pressures from any of tertiary amine; ether; thiol; ester having a functional group of a 3 or more carbon number bonded with a carbon atom of an ester bonding and a functional group of a 4 or more carbon number bonded with an oxygen atom of the ester bonding; and ester having a benzene ring bonded with a carbon atom of an ester bonding .
  • the coating step in the present invention is a step of applying the above-mentioned electrode active material layer forming slurry onto a substrate for forming an electrode active material layer forming coating film.
  • the substrate used in this step for example, peelable ones such as a fluorine-based resin sheet, and a current collector can be presented.
  • a solid electrolyte layer may also be used as the substrate.
  • the film thickness of the electrode active material layer forming coating film to be formed in this step can be selected appropriately according to the target thickness of the electrode active material layer.
  • the drying step in the present invention is a step of drying the above-mentioned electrode active material layer forming coating solution for forming an electrode active material layer.
  • the thickness of the electrode active material layer to be formed in this step is preferably, for example, in a range of 0.1 ⁇ to 1,000 ⁇ .
  • the production method for an electrode active material layer of the present invention may have an optional step. Since these steps are the same as the content mentioned in the above-mentioned "B. Production method for a solid electrolyte layer", the explanation is omitted here.
  • the production method for an all-solid-state battery of the present invention comprises a cathode active material layer including a cathode active material, an anode active material layer including an anode active material, and a solid electrolyte layer formed between the above-mentioned cathode active material layer and the above-mentioned anode active material layer, comprising at least one step of: a solid electrolyte layer forming step for forming a solid electrolyte layer by the procedure shown in the "B. Production method for a solid electrolyte layer", and an electrode active material layer forming step for forming an electrode active material layer by the procedure shown in the "C. Production method for an electrode active material layer”.
  • a layer including an all-solid-state battery can be formed homogeneously by a simple method. Thereby, an all-solid-state secondary battery can be produced with a high productivity.
  • FIG. 3 is a schematic cross-sectional view showing an example of an all-solid-state battery produced by the production method of the present invention.
  • all-solid-state battery 10 shown in FIG. 3 comprises a cathode active material layer 1 including a cathode active material, an anode active material layer 2 including an anode active material, and a solid electrolyte layer 3 formed between the cathode active material layer 1 and the anode active material layer 2. Moreover, it comprises a cathode current collector 4 for collecting current of the cathode active material layer 1, and an anode current collector 5 for collecting current of the anode active material layer 2. Moreover, the cathode active material layer 1 including a cathode active material, an anode active material layer 2 including an anode active material, and a solid electrolyte layer 3 formed between the cathode active material layer 1 and the anode active material layer 2. Moreover, it comprises a cathode current collector 4 for collecting current of the cathode active material layer 1, and an anode current collector 5 for collecting current of the anode active material layer 2. Moreover, the
  • all-solid-state battery 10 is sealed in a battery case 6.
  • FIGS. 4A and 4B are each a flow chart showing an example of the production method for an all-solid-state battery of the present invention.
  • a cathode active material layer is formed (cathode active material layer forming step) .
  • an anode active material layer is formed (anode active material layer forming step) .
  • electrolyte layer is formed (solid electrolyte layer forming step) .
  • the present invention is characterized in that the above-mentioned solid electrolyte layer forming step or the above-mentioned electrode active material layer forming step is carried out by the procedure mentioned in the "B. Production method for a solid electrolyte layer” or the “C. Production method for an electrode active material layer”.
  • it comprises an assembly step of assembling an all-solid-state battery using the cathode active material layer, the anode active material layer, and the solid electrolyte layer obtained in the above-mentioned steps.
  • an all-solid-state battery may be assembled in the assembly step after forming the anode active material layer (anode active material layer forming step) and forming the solid electrolyte layer on the anode active material layer (solid electrolyte layer forming step) , using the laminate of the above-mentioned anode active material layer and the solid electrolyte layer, and a cathode active material layer formed additionally in the cathode active material layer forming step.
  • FIGS. 4A, 4B are merely examples of the production method for an all-solid-state battery of the present invention, and thus it is not limited thereto.
  • either one of the above-mentioned solid electrolyte layer forming step or electrode active material layer forming step is to be contained, however, it is more preferable to have both steps.
  • the layers can be formed homogeneously and the layers can be adhered preferably at the interface.
  • a step of forming a solid electrolyte layer or an electrode active material layer by a procedure other than the procedures mentioned in the "B. Production method for a solid electrolyte layer” or the “C. Production method for an electrode active material layer” can be presented. Specifically, a step of forming a pellet by pressuring the solid electrolyte layer material or the electrode active material layer material can be presented.
  • an assembly step of assembling the all-solid-state battery, a sealing step of sealing the assembled all-solid-state battery into a battery case, and the like can be presented.
  • a common battery case for a battery can be used.
  • the battery case for example, an Al -deposited laminate sheet and a SUS battery case can be presented.
  • the kind of the all-solid-state battery (battery) produced by the production method of the present invention for example, a lithium battery, a sodium battery, a magnesium battery, and a calcium battery can be presented .
  • a lithium battery is preferable.
  • the battery of the present invention may be either a primary battery or a secondary battery, however, it is preferably a secondary battery because it can be charged and discharged repeatedly so that it is useful for example as a vehicle-mounting type battery.
  • the shape of the battery of the present invention for example, a coin type, a laminate type, a cylindrical type and a rectangular type can be presented.
  • the present invention is not limited to the
  • Li 2 S lithium sulfide
  • P 2 S 5 phosphorus pentasulfide
  • a slurry was obtained in the same manner as in the example 1 except that cyclopentyl methyl ether, ethane mercaptan and tert-dodecyl mercaptan were each used instead of triethyl amine .
  • a slurry was obtained in the same manner as in the example 1 except that heptane and toluene were each used instead of triethyl amine.
  • Li ion conductivity measurement The Li ion conductivity (ordinary temperature) was measured by an alternative current impedance method for the samples obtained by scraping out the powders obtained by applying and drying the slurries obtained in the examples 1-1 to 1-4 and the comparative examples 1-4, 1-5 onto a stainless steel or aluminum foil, and shaping the same into a ⁇ .28 mm x 0.5 mm cylindrical shape.
  • Solatron 1260TM was used for the measurement.
  • the samples produced from the slurries obtained in the examples 1-1 to 1-4 each had a high Li ion conductivity of 1 x 10 "4 S/cm or higher, which is approximately the same as those of the comparative examples 1-4, 1-5 using the conventional non-polar solvents as the dispersion medium for the sulfide solid electrolyte material. Therefore, it was suggested that the slurry of the present invention is a practical slurry while comprising a polar solvent as the dispersion medium for the sulfide solid electrolyte material.
  • a slurry was obtained in the same manner as in the example 1-1 except that the sulfide solid electrolyte material was synthesized as follows.
  • Li 2 S lithium sulfide
  • P 2 S 5 phosphorus pentasulfide
  • Lil lithium iodide
  • sulfide solid electrolyte material sulfide glass, LiI-Li 2 S-P 2 S 5 .
  • a slurry was obtained in the same manner as in the example 5 except that tributyl amine, cyclopentyl methyl ether, dibutyl ether, anisol, n-butyl butyrate, and ethyl benzoate were used instead of triethyl amine.
  • a slurry was obtained in the same manner as in the example 5 except that isopropyl acetate, butyl acetate, n-ethyl butyrate and heptane were each used instead of tributyl amine.
  • the Li ion conductivity (ordinary temperature) was measured by an alternative current impedance method for the samples obtained by scraping out the powders obtained by applying and drying the slurries obtained in the examples 1-5 to 1-11 and the comparative examples 1-8, 1-11 onto a stainless steel or aluminum foil, and shaping the same into a ⁇ 11.28 mm x 0.5 mm cylindrical shape.
  • Solatron 1260TM was used for the measurement. The measurement conditions included the 10 mV applied voltage and 0.01 MHz to 1 MHz of the measurement frequency band. Results thereof are shown in the table 2.
  • the samples produced from the slurries obtained in the examples 1-5 to 1-11 each had a high Li ion conductivity of approximately lxlO "3 S/cm, which is equivalent to that of the comparative example 1-11 using the conventional non-polar solvents as the dispersion medium for the sulfide solid electrolyte material . Therefore, it was suggested that the slurry of the present invention is a practical slurry while comprising a polar solvent as the dispersion medium for the sulfide solid electrolyte material. On the other hand, the samples produced from the slurries obtained in the comparative examples 1-8 to 1-10 each had a low Li ion conductivity.
  • a sulfide solid electrolyte material was obtained in the same manner as in the example 1-5.
  • a slurry solvent was prepared by the following procedure .
  • the main solvent heptane (produced by Nakalai Tesque , Inc . , dehydration grade)
  • the sub solvent tri-n-butyl amine (produced by Tokyo Chemical Industry Co., Ltd.) subjected to dehydration process with a molecular sieve were used.
  • a solvent mixture was obtained.
  • LiNii /3 Coi /3 Mni /3 0 2 As the active material, LiNii /3 Coi /3 Mni /3 0 2 , as the binder, a hydrogenated butadiene rubber with an amine group introduced to the end, and as the electric conduction auxiliary agent, VGCF, were prepared.
  • the solid component was adjusted so that the weight ratio of the active material and the sulfide solid electrolyte material was 70:30, the binder was 1.5 weight parts with respect to 100 weight parts of the active material, and VGCF was 3.0 weight parts with respect to 100 weight parts of the active material.
  • a cathode active material layer forming slurry was obtained by blending the solvent mixture and the solid component so as to have the solid component ratio of 63 wt3 ⁇ 4, and mixing the same with a ultrasonic homogenizer
  • a cathode active material layer was formed by applying and drying the cathode active material layer forming slurry onto an aluminum foil with a carbon applied foil (produced by Show Denko K.K. , SDXTM) using an applicator.
  • a cathode was obtained by punching out the above-mentioned aluminum foil and the cathode active material layer by 1 cm 2 .
  • anode active material MF-6TM (Mitsubishi Chemical Corporation)
  • binder a hydrogenated butadiene rubber with an amine group introduced to the end was prepared.
  • the solid component was adjusted so that the weight ratio of the active material and the sulfide solid electrolyte material was 58:42, and the binder was 1.1 weight parts with respect to 100 weight parts of the active material.
  • An anode active material layer forming slurry was obtained by blending the solid component and the solvent mixture which was the same as that used for the cathode so as to have the solid component ratio of 63 wt%, and mixing the same with a ultrasonic homogenizer
  • Anode active material layer was formed by applying and drying the anode active material layer forming slurry onto a copper foil using an applicator. An anode was obtained by punching out the above-mentioned copper foil and the anode active material layer by 1 cm 2 .
  • a solid electrolyte layer was produced.
  • a solid electrolyte layer forming slurry was obtained by adding 1 weight part of a hydrogenated butadiene rubber to 100 weight parts of the above-mentioned sulfide solid electrolyte material in an inert gas , and furthermore a dehydrated heptane so as to have the solid component of 35 wt%, and mixing the same with a ultrasonic homogenizer (produced by SMT Co. , Ltd. , UH-50TM) .
  • a solid electrolyte layer was obtained by applying and drying the solid electrolyte layer forming slurry onto an aluminum foil using an applicator.
  • a battery was obtained by punching out the aluminum foil and the solid electrolyte layer by 1 cm 2 , peeling off the aluminum foil so as to superimpose the cathode and the anode facing with each other with the solid electrolyte layer disposed therebetween and pressing by 4.3 ton .
  • n-butyl ether produced by Nakalai Tesque, Inc.
  • a molecular sieve was used as the sub solvent.
  • a slurry solvent was prepared by the following procedure .
  • heptane produced by Nakalai Tesque, Inc. , dehydration grade
  • n-butyl ether produced by Nakalai Tesque, Inc. , dehydration grade
  • Example 2-4 In the same manner as in the example 2-1 except that only n-butyl ether was used as the slurry solvent, a cathode active material layer, an anode active material layer, and a battery were produced.
  • the in-plane average film thickness was measured for the cathode active material layer and the anode active material layer. Moreover, the maximum film thickness and the minimum film thickness of the cathode active material layer and the anode active material layer were measured.
  • the average film thickness, the maximum film thickness and the minimum film thickness of the cathode active material layer and the anode active material layer were values obtained by measuring with a constant pressure thickness measuring device (type: PG-20TM produced by Teclock Corporation) by 5 points x 5 points divided equally in a range of 80 cm x 80 cm of the coated film.
  • results are shown in the table 3.
  • the mark “O” in the table 3 denotes that the maximum film thickness and the minimum film thickness of the cathode active material layer and the anode active material layer were each within ⁇ 5% with respect to the average film thickness with spot generation of 5 points or less, and "X" denotes that the above-mentioned film thickness difference or the spot generation was outside the above-mentioned range of "O".
  • the charge and discharge capacity was measured for the batteries obtained in the examples 2-1 to 2-6, and the comparative example 2 - 1. Specifically, a charge and discharge test was carried out for 0.33 C-CCCV (CV finish condition 1/100 C) in a 4.55 V-3.0 V voltage range with the initial CC discharge capacity value regarded as the charge and discharge capacity. Results are shown in the table 3. In the table 3, the output of the examples 2-1 to 2-5 were calculated as a relative value with the initial state of the comparative example 2-1 as 100. Results are shown in the table 3.
  • the output was measured for the batteries obtained in the examples 2-1 to 2-5 and the comparative example 2-1. Specifically, constant electric discharge (20 mW to 100 mw, each 10 mW) was executed after the SOC adjustment by a 3.6 V so as to have the electric power corresponding to 5 seconds as the output . Results are shown in the table 3. In the table 3, the output of the examples 2-1 to 2-5 were calculated as a relative value with the initial state of the comparative example 2-1 as 100.
  • the dispersion property of the solid component was improved by the dispersion medium, and furthermore, by adding the binder, the dispersion state of the above-mentioned solid component was maintained to the end of the forming step of each layer so that a homogeneous layer was obtained.
  • the comparative example 2-1 using only heptane as the solvent it is considered that the solid component was easily aggregated in the slurry so as to generate sedimentation, and the like of the solid component in the forming step of each layer so that a homogeneous layer was not obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
PCT/JP2012/057660 2011-03-18 2012-03-16 Slurry, production method for solid electrolyte layer, production method for electrode active material layer, and production method for all-solid-state battery Ceased WO2012128374A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/005,477 US9236158B2 (en) 2011-03-18 2012-03-16 Slurry, production method for solid electrolyte layer, production method for electrode active material layer, and production method for all-solid-state battery
KR1020137023339A KR101506833B1 (ko) 2011-03-18 2012-03-16 슬러리, 고체 전해질층의 제조 방법, 전극 활물질층의 제조 방법 및 전고체 전지의 제조 방법
CN201280013830.7A CN103430364B (zh) 2011-03-18 2012-03-16 浆料、固体电解质层的制备方法、电极活性材料层的制备方法和全固态电池的制备方法
EP12722915.1A EP2686898B1 (en) 2011-03-18 2012-03-16 Slurry, production method for solid electrolyte layer, production method for electrode active material layer, and production method for all-solid-state battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-060882 2011-03-18
JP2011060882 2011-03-18
JP2011275852A JP5708467B2 (ja) 2011-03-18 2011-12-16 スラリー、固体電解質層の製造方法、電極活物質層の製造方法、および全固体電池の製造方法
JP2011-275852 2011-12-16

Publications (1)

Publication Number Publication Date
WO2012128374A1 true WO2012128374A1 (en) 2012-09-27

Family

ID=46147621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057660 Ceased WO2012128374A1 (en) 2011-03-18 2012-03-16 Slurry, production method for solid electrolyte layer, production method for electrode active material layer, and production method for all-solid-state battery

Country Status (6)

Country Link
US (1) US9236158B2 (enExample)
EP (1) EP2686898B1 (enExample)
JP (1) JP5708467B2 (enExample)
KR (1) KR101506833B1 (enExample)
CN (1) CN103430364B (enExample)
WO (1) WO2012128374A1 (enExample)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103474620A (zh) * 2013-09-16 2013-12-25 向勇 固态锂离子电极、电池及其制备方法
CN103500853A (zh) * 2013-10-08 2014-01-08 中国科学院宁波材料技术与工程研究所 硫化物电解质材料及其制备方法
US8951600B2 (en) 2011-12-05 2015-02-10 Toyota Jidosha Kabushiki Kaisha Method for producing electrode for solid battery
US20150096169A1 (en) * 2012-05-31 2015-04-09 Kureha Corporation Slurry for positive electrode for sulfide-based solid-state battery, positive electrode for sulfide-based solid-state battery and method for manufacturing the same, and sulfide-based solid-state battery and method for manufacturing the same
CN104704653A (zh) * 2012-10-09 2015-06-10 微软公司 固态电池电极
CN105050976A (zh) * 2012-12-27 2015-11-11 丰田自动车株式会社 硫化物固体电解质材料、锂固体电池及硫化物固体电解质材料的制造方法
CN105210154A (zh) * 2013-07-04 2015-12-30 三井金属矿业株式会社 结晶性固体电解质及其制造方法
US20160218349A1 (en) * 2013-09-27 2016-07-28 Toyota Jidosha Kabushiki Kaisha Positive electrode active material layer
US20160240838A1 (en) * 2013-10-03 2016-08-18 Japan Science And Technology Agency Solution for Forming Layer That Contains Solid Electrolyte for All-Solid-State Alkali Metal Secondary Batteries, Coated Active Material Particles, Electrode, All-Solid-State Alkali Metal Secondary Battery and Method for Manufacturing Same
CN107112587A (zh) * 2015-02-12 2017-08-29 富士胶片株式会社 全固态二次电池、用于该全固态二次电池的固体电解质组合物及电池用电极片以及电池用电极片及全固态二次电池的制造方法
CN107591563A (zh) * 2016-07-07 2018-01-16 中国科学院物理研究所 一种硫基电解质溶液及其在固态锂电池中的应用
WO2018054709A1 (en) * 2016-09-20 2018-03-29 Basf Se Solid lithium electrolytes and process of production
US10333123B2 (en) 2012-03-01 2019-06-25 Johnson Ip Holding, Llc High capacity solid state composite cathode, solid state composite separator, solid-state rechargeable lithium battery and methods of making same
US10566611B2 (en) 2015-12-21 2020-02-18 Johnson Ip Holding, Llc Solid-state batteries, separators, electrodes, and methods of fabrication
USRE49205E1 (en) 2016-01-22 2022-09-06 Johnson Ip Holding, Llc Johnson lithium oxygen electrochemical engine

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6095218B2 (ja) * 2013-03-26 2017-03-15 公立大学法人大阪府立大学 固体電解質で被覆された活物質の製造方法、全固体リチウム二次電池の固体電解質を含む層の形成用溶液、全固体リチウム二次電池及びその製造方法
JP2014216217A (ja) * 2013-04-26 2014-11-17 トヨタ自動車株式会社 硫化物全固体電池の製造方法
JP6292798B2 (ja) * 2013-08-30 2018-03-14 出光興産株式会社 負極合材の製造方法
JP5741653B2 (ja) * 2013-09-02 2015-07-01 トヨタ自動車株式会社 硫化物固体電解質の製造方法
JP6110885B2 (ja) * 2014-02-03 2017-04-05 富士フイルム株式会社 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびに電池用電極シートおよび全固体二次電池の製造方法
JP6090249B2 (ja) * 2014-07-10 2017-03-08 トヨタ自動車株式会社 複合活物質及びその製造方法
KR101868210B1 (ko) * 2014-10-31 2018-06-15 주식회사 엘지화학 리튬 이차 전지 및 이의 제조 방법
JP6416370B2 (ja) * 2015-02-27 2018-10-31 富士フイルム株式会社 固体電解質組成物、電池用電極シート及びその製造方法、並びに全固体二次電池及びその製造方法
KR101684074B1 (ko) 2015-03-12 2016-12-07 현대자동차주식회사 습식-건식 혼합 공정을 통한 전고체 전지의 제조방법
KR101806605B1 (ko) 2015-04-06 2017-12-07 현대자동차주식회사 리튬이온 배터리 전극 구조 및 이의 제조방법
JP6287945B2 (ja) * 2015-05-08 2018-03-07 トヨタ自動車株式会社 電極積層体の製造方法
JP6442605B2 (ja) * 2015-05-28 2018-12-19 富士フイルム株式会社 固体電解質組成物、混合物、複合化ゲル、全固体二次電池用電極シートおよび全固体二次電池ならびに固体電解質組成物、複合化ゲル、全固体二次電池用電極シートおよび全固体二次電池の製造方法
KR20170055325A (ko) 2015-11-11 2017-05-19 현대자동차주식회사 전고체 배터리용 전해질층 및 이를 이용한 전고체 배터리의 제조방법
KR20170071692A (ko) * 2015-12-15 2017-06-26 현대자동차주식회사 이차전지용 황화물계 결정화 유리의 제조방법
WO2017106817A1 (en) 2015-12-17 2017-06-22 The Regents Of The University Of Michigan Slurry formulation for the formation of layers for solid batteries
CN105470564A (zh) * 2016-01-22 2016-04-06 山东鸿正电池材料科技有限公司 一种固体电解质膜及其制备方法和锂离子电池
WO2017209233A1 (ja) * 2016-06-03 2017-12-07 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート、全固体二次電池用電極シートおよび全固体二次電池ならびに固体電解質含有シート、全固体二次電池用電極シートおよび全固体二次電池の製造方法
KR102593601B1 (ko) * 2016-07-19 2023-10-24 한양대학교 산학협력단 황화물계 고체전해질이 포함된 슬러리의 정전슬러리분무를 이용한 리튬 이차전지 후막 제조방법 및 리튬 이차전지 제조방법
KR101846695B1 (ko) * 2016-08-18 2018-04-06 현대자동차주식회사 전고체 전지용 양극 슬러리 조성물 및 이를 포함하는 전고체 전지용 양극
KR20180055086A (ko) 2016-11-16 2018-05-25 현대자동차주식회사 습식공정을 통한 황화물계 고체전해질의 제조방법
KR102193945B1 (ko) 2016-11-22 2020-12-22 한국전기연구원 황화물계 고체전해질을 포함하는 고체전해질층 및 전극복합체층의 제조방법
KR20180072944A (ko) 2016-12-22 2018-07-02 한국전기연구원 황화물계 고체전해질을 포함하는 고체전해질층 및 양극복합체층의 제조방법 및 이를 포함하는 전고체전지
KR102496183B1 (ko) 2016-12-28 2023-02-03 현대자동차주식회사 전고체 전지용 고체 전해질 시트 및 이의 제조방법, 및 이를 이용한 전고체 전지
JPWO2018168505A1 (ja) * 2017-03-14 2019-12-12 富士フイルム株式会社 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、並びに、固体電解質組成物、固体電解質含有シートおよび全固体二次電池の製造方法
KR102398467B1 (ko) 2017-04-12 2022-05-13 한국전기연구원 황화물계 고체전해질 분말을 포함하는 복합체 제조방법, 이를 이용한 고체전해질층, 전극복합체층 제조방법 및 이를 포함하는 전고체전지
US20180301679A1 (en) * 2017-04-14 2018-10-18 Sumitomo Chemical Company, Limited Coating material for nonaqueous electrolyte secondary battery
KR102359583B1 (ko) * 2017-05-08 2022-02-07 현대자동차주식회사 고체전해질 및 이를 포함하는 전고체 전지의 제조방법
JP6971732B2 (ja) 2017-09-12 2021-11-24 関西ペイント株式会社 二次電池用硫黄化合物固体電解質分散ペースト、これを用いた二次電池用硫黄化合物固体電解質層及びこれを用いた全固体二次電池
JP7035067B2 (ja) 2017-09-14 2022-03-14 富士フイルム株式会社 固体電解質組成物、その製造方法、保存方法及びキット、固体電解質含有シート、その保存方法及びキット、並びに、全固体二次電池
KR102406179B1 (ko) 2017-10-13 2022-06-07 현대자동차주식회사 침상형 황화물계 고체 전해질의 제조 방법
JP7008080B2 (ja) * 2017-10-30 2022-02-10 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート及び全固体二次電池並びに固体電解質含有シート及び全固体二次電池の製造方法
JP6876820B2 (ja) 2017-10-30 2021-05-26 富士フイルム株式会社 活物質層形成用組成物及びその製造方法、並びに、全固体二次電池用電極シート及び全固体二次電池の製造方法
KR102456770B1 (ko) 2017-11-02 2022-10-20 한국전기연구원 황화물계 고체전해질을 포함하는 고체전해질층 및 양극복합체층의 제조방법 및 이를 포함하는 전고체전지
JP6996244B2 (ja) 2017-11-15 2022-01-17 トヨタ自動車株式会社 全固体電池の製造方法、全固体電池およびスラリー
EP3713003B1 (en) * 2017-11-16 2024-05-15 FUJIFILM Corporation Solid electrolyte composition, solid electrolyte-containing sheet, solid-state rechargeable battery, and method for producing solid electrolyte-containing sheet and solid-state rechargeable battery
JP6893253B2 (ja) * 2017-11-17 2021-06-23 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート、全固体二次電池用電極シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
KR20190086146A (ko) 2018-01-12 2019-07-22 인천대학교 산학협력단 이미다졸륨 양이온을 이용한 오늄염 화합물을 포함하는 고체전해질 합성용 용매 및 이를 이용한 고체전해질의 합성방법
KR102216570B1 (ko) 2018-01-12 2021-02-17 인천대학교 산학협력단 이미다졸륨 양이온을 이용한 오늄염 화합물을 포함하는 고체전해질 합성용 용매 및 이를 이용한 고체전해질의 합성방법
KR20190086148A (ko) 2018-01-12 2019-07-22 인천대학교 산학협력단 피롤리디늄 양이온을 이용한 오늄염 화합물을 포함하는 고체전해질 합성용 용매 및 이를 이용한 고체전해질의 합성방법
EP3751642B1 (en) 2018-02-05 2024-07-24 FUJIFILM Corporation Solid electrolyte composition and method for producing same, solid electrolyte-containing sheet, and methods for manufacturing all-solid secondary battery electrode sheet and all-solid secondary battery
KR102552153B1 (ko) * 2018-04-18 2023-07-05 현대자동차주식회사 전고체 전지용 황화물계 고체 전해질의 제조 방법
JP7077766B2 (ja) * 2018-05-18 2022-05-31 トヨタ自動車株式会社 硫化物系固体電解質、当該硫化物系固体電解質の製造方法、及び、全固体電池の製造方法
KR102260429B1 (ko) 2018-08-23 2021-06-03 주식회사 엘지에너지솔루션 리튬 금속을 음극으로 사용하는 전고체 전지
WO2020045306A1 (ja) 2018-08-31 2020-03-05 日本ゼオン株式会社 全固体二次電池用スラリー組成物、固体電解質含有層および全固体二次電池
KR102684867B1 (ko) 2018-11-02 2024-07-12 한국전기연구원 강화인자를 이용한 고체전해질 멤브레인의 제조방법 및 이로부터 제조된 고체전해질 멤브레인, 이를 포함하는 전고체전지
US11139505B2 (en) 2018-11-22 2021-10-05 Idemitsu Kosan Co., Ltd. Method for producing solid electrolyte, and electrolyte precursor
JP7115291B2 (ja) * 2018-12-20 2022-08-09 トヨタ自動車株式会社 全固体電池用セパレータ及びその製造方法、並びに、全固体電池
CN109786845B (zh) * 2019-01-23 2022-03-22 蜂巢能源科技有限公司 硫化物电解质浆料及其制备方法和应用
JP7218661B2 (ja) * 2019-04-16 2023-02-07 トヨタ自動車株式会社 スラリーの製造方法、活物質層の製造方法、および全固体電池の製造方法
CN114342146B (zh) * 2019-07-01 2025-04-29 A123系统有限责任公司 具有离子导电聚合物电解质的复合固态电池单元的系统和方法
EP4024501A4 (en) * 2019-08-30 2023-02-22 FUJIFILM Corporation COMPOSITION CONTAINING AN INORGANIC SOLID ELECTROLYTE, SHEET FOR SECONDARY SEMICONDUCTOR BATTERIES, SECONDARY SEMICONDUCTOR BATTERY AND METHODS FOR PRODUCING SECONDARY SEMICONDUCTOR BATTERY AND SHEET FOR SECONDARY SEMICONDUCTOR BATTERIES
JP7124814B2 (ja) 2019-10-28 2022-08-24 トヨタ自動車株式会社 スラリー、全固体電池および全固体電池の製造方法
US20230021458A1 (en) * 2019-12-23 2023-01-26 Idemitsu Kosan Co.,Ltd. Method for producing solid electrolyte
WO2021158731A1 (en) * 2020-02-04 2021-08-12 Massachusetts Institute Of Technology Fabrication of single-crystalline ionically conductive materials and related articles and systems
US11978848B2 (en) * 2020-05-27 2024-05-07 Idemitsu Kosan Co., Ltd. Method for producing solid electrolyte
EP3961751B1 (en) 2020-08-31 2023-06-28 Samsung SDI Co., Ltd. Positive electrode layer for all-solid secondary battery, method of preparing the same, and all-solid secondary battery including the same
KR102890757B1 (ko) 2020-11-10 2025-11-24 주식회사 엘지에너지솔루션 전고체 전지용 음극 및 이를 포함하는 전고체 전지
JP7749249B2 (ja) * 2021-04-09 2025-10-06 ソウル大学校産学協力団 固体電解質基盤の全固体リチウム二次電池用バインダー、それを含む全固体リチウム二次電池正極、それを含む全固体リチウム二次電池分離膜、及び固体電解質基盤の全固体リチウム二次電池
CN113471398B (zh) * 2021-05-28 2023-04-14 国联汽车动力电池研究院有限责任公司 一种用于基于卤化物固体电解质的电极浆料及固体电极、全固态电池
EP4199142A1 (en) 2021-12-16 2023-06-21 Ricoh Company, Ltd. Liquid composition, storage container, and apparatus and method for producing solid electrolyte layer or electrode mixture layer
CN115000494A (zh) * 2022-06-16 2022-09-02 杨维年 一种用于钠离子电池的低耗能生产工艺
KR102516163B1 (ko) 2022-10-28 2023-03-30 케이엠텍 주식회사 건식 전극용 전고체용 스패릭코터장치
KR102516150B1 (ko) 2022-10-28 2023-03-30 케이엠텍 주식회사 건식 전극용 전고체용 니더장치
KR20240123176A (ko) 2023-02-06 2024-08-13 한국전기연구원 전고체전지용 고체전해질 멤브레인 제조방법 및 고체전해질 멤브레인을 포함하는 전고체전지 제조방법
US20250246674A1 (en) * 2024-01-31 2025-07-31 Lg Energy Solution, Ltd. Solid electrolyte for all-solid-state battery and all-solid-state battery comprising same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3642436A (en) * 1969-11-14 1972-02-15 Foote Mineral Co Method for preparing lithium sulfide compounds
EP0435844A1 (en) * 1989-12-27 1991-07-03 Monsanto Company Substituted pyridine compounds
JPH07330312A (ja) 1994-06-03 1995-12-19 Idemitsu Petrochem Co Ltd 硫化リチウムの製造方法
WO2005040039A1 (ja) 2003-10-23 2005-05-06 Idemitsu Kosan Co., Ltd. 硫化リチウムの精製方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2126883C (en) * 1993-07-15 2005-06-21 Tomoari Satoh Cathode material for lithium secondary battery and method for producing lithiated nickel dioxide and lithium secondary battery
WO2004093099A1 (ja) * 2003-04-15 2004-10-28 Idemitsu Kosan Co., Ltd. リチウムイオン導電性固体電解質の製造方法及びそれを用いた全固体型二次電池
WO2007015409A1 (ja) * 2005-08-02 2007-02-08 Idemitsu Kosan Co., Ltd. 固体電解質シート
JP2008103229A (ja) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd 固体電解質成形体の製造方法及びこれを用いる全固体電池
EP2211415B1 (en) 2007-10-11 2013-11-06 Idemitsu Kosan Co., Ltd. Method for producing lithium ion conductive solid electrolyte
JP2010033918A (ja) * 2008-07-30 2010-02-12 Idemitsu Kosan Co Ltd リチウム電池の製造方法、及びそれより得られるリチウム電池
JP5580979B2 (ja) * 2008-11-04 2014-08-27 出光興産株式会社 リチウムイオン伝導性固体電解質組成物及びそれを用いた電池
JP4835736B2 (ja) * 2009-08-31 2011-12-14 トヨタ自動車株式会社 固体電解質シートの製造方法
JP5747985B2 (ja) * 2011-06-29 2015-07-15 トヨタ自動車株式会社 固体電解質層、二次電池用電極層および全固体二次電池
JP5445527B2 (ja) * 2011-07-13 2014-03-19 トヨタ自動車株式会社 硫化物固体電解質材料の製造方法
JP5500158B2 (ja) * 2011-12-05 2014-05-21 トヨタ自動車株式会社 固体電池用電極の製造方法
US8597838B2 (en) * 2012-05-03 2013-12-03 Ut-Battelle, Llc Lithium sulfide compositions for battery electrolyte and battery electrode coatings

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3642436A (en) * 1969-11-14 1972-02-15 Foote Mineral Co Method for preparing lithium sulfide compounds
EP0435844A1 (en) * 1989-12-27 1991-07-03 Monsanto Company Substituted pyridine compounds
JPH07330312A (ja) 1994-06-03 1995-12-19 Idemitsu Petrochem Co Ltd 硫化リチウムの製造方法
WO2005040039A1 (ja) 2003-10-23 2005-05-06 Idemitsu Kosan Co., Ltd. 硫化リチウムの精製方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
INADA T ET AL: "Fabrications and properties of composite solid-state electrolytes", SOLID STATE IONICS, NORTH HOLLAND PUB. COMPANY. AMSTERDAM; NL, NL, vol. 158, no. 3-4, 1 March 2003 (2003-03-01), pages 275 - 280, XP004412995, ISSN: 0167-2738, DOI: 10.1016/S0167-2738(02)00889-5 *
INADA T ET AL: "Silicone as a binder in composite electrolytes", JOURNAL OF POWER SOURCES, ELSEVIER SA, CH, vol. 119-121, 1 June 2003 (2003-06-01), pages 948 - 950, XP004430305, ISSN: 0378-7753, DOI: 10.1016/S0378-7753(03)00293-3 *
TARO INADA ET AL.: "Silicone as a binder in composite electrolytes", JOURNAL OF POWER SOURCES, vol. 1, 2003, pages 19 - 121,948-950

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8951600B2 (en) 2011-12-05 2015-02-10 Toyota Jidosha Kabushiki Kaisha Method for producing electrode for solid battery
US10333123B2 (en) 2012-03-01 2019-06-25 Johnson Ip Holding, Llc High capacity solid state composite cathode, solid state composite separator, solid-state rechargeable lithium battery and methods of making same
US20150096169A1 (en) * 2012-05-31 2015-04-09 Kureha Corporation Slurry for positive electrode for sulfide-based solid-state battery, positive electrode for sulfide-based solid-state battery and method for manufacturing the same, and sulfide-based solid-state battery and method for manufacturing the same
US12315873B2 (en) 2012-10-09 2025-05-27 Johnson IP Holding, LLC. Solid-state battery separator including low melt temperature inorganic electrolyte and method of fabricating the same
CN104704653A (zh) * 2012-10-09 2015-06-10 微软公司 固态电池电极
US10084168B2 (en) 2012-10-09 2018-09-25 Johnson Battery Technologies, Inc. Solid-state battery separators and methods of fabrication
US9793525B2 (en) 2012-10-09 2017-10-17 Johnson Battery Technologies, Inc. Solid-state battery electrodes
CN105050976B (zh) * 2012-12-27 2017-06-16 丰田自动车株式会社 硫化物固体电解质材料、锂固体电池及硫化物固体电解质材料的制造方法
CN105050976A (zh) * 2012-12-27 2015-11-11 丰田自动车株式会社 硫化物固体电解质材料、锂固体电池及硫化物固体电解质材料的制造方法
CN105210154A (zh) * 2013-07-04 2015-12-30 三井金属矿业株式会社 结晶性固体电解质及其制造方法
EP3018660A4 (en) * 2013-07-04 2016-11-30 Mitsui Mining & Smelting Co CRYSTALLINE FIXED ELECTROLYTE AND MANUFACTURING METHOD THEREFOR
CN105210154B (zh) * 2013-07-04 2017-07-14 三井金属矿业株式会社 结晶性固体电解质及其制造方法
US10644348B2 (en) 2013-07-04 2020-05-05 Mitsui Mining & Smelting Co., Ltd. Crystalline solid electrolyte and production method therefor
CN103474620A (zh) * 2013-09-16 2013-12-25 向勇 固态锂离子电极、电池及其制备方法
US20160218349A1 (en) * 2013-09-27 2016-07-28 Toyota Jidosha Kabushiki Kaisha Positive electrode active material layer
US20160240838A1 (en) * 2013-10-03 2016-08-18 Japan Science And Technology Agency Solution for Forming Layer That Contains Solid Electrolyte for All-Solid-State Alkali Metal Secondary Batteries, Coated Active Material Particles, Electrode, All-Solid-State Alkali Metal Secondary Battery and Method for Manufacturing Same
US10439198B2 (en) * 2013-10-03 2019-10-08 Japan Science And Technology Agency Solution for forming layer that contains solid electrolyte for all-solid-state alkali metal secondary batteries, coated active material particles, electrode, all-solid-state alkali metal secondary battery and method for manufacturing same
CN103500853A (zh) * 2013-10-08 2014-01-08 中国科学院宁波材料技术与工程研究所 硫化物电解质材料及其制备方法
CN107112587B (zh) * 2015-02-12 2019-03-19 富士胶片株式会社 全固态二次电池、固体电解质组合物、电池用电极片
CN107112587A (zh) * 2015-02-12 2017-08-29 富士胶片株式会社 全固态二次电池、用于该全固态二次电池的固体电解质组合物及电池用电极片以及电池用电极片及全固态二次电池的制造方法
US10566611B2 (en) 2015-12-21 2020-02-18 Johnson Ip Holding, Llc Solid-state batteries, separators, electrodes, and methods of fabrication
US11417873B2 (en) 2015-12-21 2022-08-16 Johnson Ip Holding, Llc Solid-state batteries, separators, electrodes, and methods of fabrication
USRE49205E1 (en) 2016-01-22 2022-09-06 Johnson Ip Holding, Llc Johnson lithium oxygen electrochemical engine
CN107591563A (zh) * 2016-07-07 2018-01-16 中国科学院物理研究所 一种硫基电解质溶液及其在固态锂电池中的应用
CN107591563B (zh) * 2016-07-07 2019-07-23 北京卫蓝新能源科技有限公司 一种硫基电解质溶液及其在固态锂电池中的应用
WO2018054709A1 (en) * 2016-09-20 2018-03-29 Basf Se Solid lithium electrolytes and process of production

Also Published As

Publication number Publication date
CN103430364B (zh) 2016-07-13
JP5708467B2 (ja) 2015-04-30
US9236158B2 (en) 2016-01-12
EP2686898A1 (en) 2014-01-22
KR101506833B1 (ko) 2015-03-27
KR20130130820A (ko) 2013-12-02
CN103430364A (zh) 2013-12-04
JP2012212652A (ja) 2012-11-01
EP2686898B1 (en) 2016-02-10
US20140004257A1 (en) 2014-01-02

Similar Documents

Publication Publication Date Title
EP2686898B1 (en) Slurry, production method for solid electrolyte layer, production method for electrode active material layer, and production method for all-solid-state battery
CN105914395B (zh) 硫化物固体电解质材料、电池和硫化物固体电解质材料的制造方法
CN105050976B (zh) 硫化物固体电解质材料、锂固体电池及硫化物固体电解质材料的制造方法
JP5272995B2 (ja) 固体電解質層、電極活物質層、全固体リチウム電池、固体電解質層の製造方法、および電極活物質層の製造方法
JP2012199003A (ja) スラリー、固体電解質層の製造方法および電極活物質層の製造方法
CN102959646B (zh) 硫化物固体电解质材料的制造方法、锂固体电池的制造方法
JP5625351B2 (ja) 電極層、固体電解質層および全固体二次電池
JP6310713B2 (ja) 固体電解質材料、リチウムイオン電池および固体電解質材料の製造方法
JP6965860B2 (ja) 全固体電池
JP6595031B2 (ja) 固体電解質材料、リチウムイオン電池および固体電解質材料の製造方法
CN105938894A (zh) 电极体的制造方法
JP7156157B2 (ja) 正極合材、全固体電池、正極合材の製造方法および全固体電池の製造方法
JP2015115294A (ja) 全固体二次電池および全固体二次電池の製造方法
CN101861673A (zh) 硫化物固体电解质材料
CN111816912A (zh) 硫化物固体电解质、硫化物固体电解质的制造方法、电极体和全固体电池
JP2014241282A (ja) 電極体の製造方法
JP2012178256A (ja) イオン伝導体材料、固体電解質層、電極活物質層および全固体電池
JP7035984B2 (ja) 正極合材、全固体電池および正極合材の製造方法
JP6349211B2 (ja) 正極材料、正極、およびリチウムイオン電池
WO2013076854A1 (ja) 全固体電池
JP6001390B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極材料、リチウムイオン電池用正極、リチウムイオン電池およびリチウムイオン電池用正極活物質の製造方法
JP6062308B2 (ja) リチウムイオン電池用固体電解質材料、リチウムイオン電池用固体電解質、リチウムイオン電池およびリチウムイオン電池用固体電解質材料の製造方法
JP5998428B2 (ja) 非水電解液二次電池用正極、非水電解液二次電池、非水電解液二次電池用正極インクの製造方法、非水電解液二次電池用正極インク、非水電解液二次電池用正極の製造方法
JP2012186119A (ja) 二次電池用負極合材、二次電池用負極、二次電池及びこれを用いた車両
JP2019071235A (ja) 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12722915

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137023339

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14005477

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012722915

Country of ref document: EP