WO2011146808A2 - Topical formulation for a jak inhibitor - Google Patents
Topical formulation for a jak inhibitor Download PDFInfo
- Publication number
- WO2011146808A2 WO2011146808A2 PCT/US2011/037291 US2011037291W WO2011146808A2 WO 2011146808 A2 WO2011146808 A2 WO 2011146808A2 US 2011037291 W US2011037291 W US 2011037291W WO 2011146808 A2 WO2011146808 A2 WO 2011146808A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- weight
- formulation
- component
- pharmaceutical formulation
- formulation according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/107—Emulsions ; Emulsion preconcentrates; Micelles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/519—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/10—Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/14—Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/16—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
- A61K47/18—Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/24—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/26—Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/36—Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0014—Skin, i.e. galenical aspects of topical compositions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/06—Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/02—Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/04—Antipruritics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/06—Antipsoriatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/08—Antiallergic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
Definitions
- This invention relates to pharmaceutical formulations for topical skin application comprising (R)-3-cyclopentyl-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l- yl]propanenitrile, or a pharmaceutically acceptable salt thereof, and use in the treatment of skin disorders.
- Protein kinases regulate diverse biological processes including cell growth, survival, differentiation, organ formation, morphogenesis, neovascularization, tissue repair, and regeneration, among others. Protein kinases also play specialized roles in a host of human diseases including cancer. Cytokines, low-molecular weight polypeptides or glycoproteins, regulate many pathways involved in the host inflammatory response to sepsis. Cytokines influence cell differentiation, proliferation and activation, and can modulate both pro-inflammatory and anti-inflammatory responses to allow the host to react appropriately to pathogens.
- JAKs Janus kinase family
- JAK2 Janus kinase- 1
- JAK2 JAK2
- JAK3 also known as Janus kinase, leukocyte
- JAKL protein-tyrosine kinase 2
- TYK2 protein-tyrosine kinase 2
- autoimmune diseases e.g., asthma, systemic lupus erythematosus, thyroiditis, myocarditis
- illnesses such as scleroderma and osteoarthritis
- Jakl-/- mice are runted at birth, fail to nurse, and die perinatally (Rodig, S. J., M. A. Meraz, et al. (1998) Cell 93(3): 373-83). Jak2-/- mouse embryos are anemic and die around day 12.5 postcoitum due to the absence of definitive erythropoiesis.
- the JAK/STAT pathway and in particular all four JAKs, are believed to play a role in the pathogenesis of asthmatic response, chronic obstructive pulmonary disease, bronchitis, and other related inflammatory diseases of the lower respiratory tract.
- cytokines that signal through JAKs have been linked to inflammatory diseases/conditions of the upper respiratory tract, such as those affecting the nose and sinuses ⁇ e.g., rhinitis and sinusitis) whether classically allergic reactions or not.
- the JAK/STAT pathway has also been implicated in inflammatory diseases/conditions of the eye and chronic allergic responses.
- JAK STAT Activation of JAK STAT in cancers may occur by cytokine stimulation ⁇ e.g. IL-6 or GM-CSF) or by a reduction in the endogenous suppressors of JAK signaling such as SOCS (suppressor or cytokine signaling) or PIAS (protein inhibitor of activated STAT) (Boudny, V., and Kovarik, J., Neoplasm. 49:349-355, 2002).
- SOCS suppressor or cytokine signaling
- PIAS protein inhibitor of activated STAT
- Activation of STAT signaling, as well as other pathways downstream of JAKs ⁇ e.g., Akt has been correlated with poor prognosis in many cancer types (Bowman, T., et al. Oncogene 19:2474-2488, 2000). Elevated levels of circulating cytokines that signal through JAK/STAT play a causal role in cachexia and/or chronic fatigue. As such, JAK inhibition may be beneficial
- Inhibition of the JAK kinases is also envisioned to have therapeutic benefits in patients suffering from skin immune disorders such as psoriasis, and skin sensitization.
- skin immune disorders such as psoriasis, and skin sensitization.
- psoriasis vulgaris the most common form of psoriasis, it has been generally accepted that activated T lymphocytes are important for the maintenance of the disease and its associated psoriatic plaques (Gott Kunststoff, A.B., et al, Nat Rev Drug Disc, 4: 19-34).
- Psoriatic plaques contain a significant immune infiltrate, including leukocytes and monocytes, as well as multiple epidermal layers with increased keratinocyte proliferation.
- JAK inhibitors Given the usefulness of JAK inhibitors in the treatment of skin disorders, there is a need for improved topical formulations of JAK inhibitors. In particular, there is a need for stable, easily applied formulations for JAK inhibitors with good skin permeation characteristics.
- the formulations of the invention, as well the methods described herein are directed toward this need and other ends.
- the present invention describes an oil-in- water formulation of (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl)-3- cyclopentylpropanenitrile suitable for topical administration and treatment of skin disorders.
- a pharmaceutical formulation for topical skin application comprising:
- a therapeutically effective amount of a therapeutic agent which is (R)-3- cyclopentyl-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]propanenitrile, or a pharmaceutically acceptable salt thereof.
- the present invention also provides a method of treating a skin disorder, comprising applying a pharmaceutical formulation described herein to an area of skin of the patient.
- the present invention also provides a pharmaceutical formulation described herein for use in treatment of a skin disorder in a patient in need thereof.
- the present invention also provides use of a pharmaceutical formulation described herein for the preparation of a medicament for use in treatment of a skin disorder in a patient in need thereof.
- FIG 1 depicts a flowchart describing the manufacturing process for an oil-in- water formulation of (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl)-3- cyclopentylpropanenitrile phosphoric acid salt.
- FIG 2 depicts the change in lesion score for subjects with chronic plaque psoriasis treated with 0.5 %, 1.0%, and 1.5% w/w of an oil-in-water formulation of (R)-3- (4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl)-3-cyclopentylpropanenitrile phosphoric acid salt (on a free base basis) as compared to treatment with placebo over a 12-week period (the dashed line is baseline).
- FIG 3 shows photographs of subjects with chronic plaque psoriasis before (FIG. 3(a)) and after 84 days (FIG. 3(b)) of treatment with 1.0% w/w of an oil-in-water formulation of (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl)-3- cyclopentylpropanenitrile phosphoric acid salt (on a free base basis).
- FIG 4 shows photographs of subjects with chronic plaque psoriasis before (FIG. 4(a)) and after 84 days (FIG. 4(b)) of treatment with 1.0% w/w of an oil-in-water formulation of (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl)-3- cyclopentylpropanenitrile phosphoric acid salt (on a free base basis).
- FIG 5 shows photographs of subjects with chronic plaque psoriasis before (FIG. 5(a)) and after 84 days (FIG.
- FIG 6 shows photographs of subjects with chronic plaque psoriasis before (FIG.
- FIG 7 shows photographs of subjects with chronic plaque psoriasis before (FIG. 7(a)) and after 84 days (FIG. 7(b)) of treatment with 1.0% w/w of an oil-in-water formulation of (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl)-3- cyclopentylpropanenitrile phosphoric acid salt (on a free base basis).
- the present invention provides, inter alia, a pharmaceutical formulation for topical skin application, comprising a therapeutically effective amount of (R)-3-cyclopentyl-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l- yl]propanenitrile, or a pharmaceutically acceptable salt thereof.
- the pharmaceutical formulation comprises:
- a therapeutically effective amount of a therapeutic agent which is (R)-3- cyclopentyl-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]propanenitrile, or a pharmaceutically acceptable salt thereof.
- the emulsion comprises water, an oil component, and an emulsifier component.
- the term "emulsifier component” refers, in one aspect, to a substance, or mixtures of substances that maintains an element or particle in suspension within a fluid medium.
- the emulsifier component allows an oil phase to form an emulsion when combined with water.
- the emulsifier component refers to one or more non-ionic surfactants.
- the oil-in-water formulations were found to have better appearance, spreadability and stability as compared with other formulations. The formulations have a thick, creamy appearance which allows for good spreadability of the formulation on skin. This good spreadability leads to better skin permeation than comparable anhydrous formulations.
- the oil-in-water formulations showed higher cumulative amounts in studies of transport across human cadaver skin over 24 hours when compared with an anhydrous ointment. While not wishing to be bound by any particular theory, the higher cumulative amounts are believed to be due to better spreadability of the oil-in- water formulation as compared to the anhydrous ointment, resulting in increased surface area for transport.
- a higher viscosity for the oil-in-water formulations also appeared to be preferred with respect to skin permeation as higher viscosity cream formulations had better transport across human cadaver skin as compared with oil-in-water lotions of lower viscosity.
- oil-in-water formulations described herein were found to have good stability over a three-month period when stored at 25 °C/60% RH and 40 °C/75% RH in aluminum tubes and maintain reasonable viscosity over time.
- water- in-oil formulations displayed syneresis when stored at 40 °C (syneresis means separation of liquid from the emulsion).
- the water-in-oil formulation was also less desirable than the formulations of the invention, because the API dissolved in the base over time, leading to highly variable skin permeation in in vitro studies as well as a lack of an increase in permeability with increasing strength of the formulation.
- the formulations described herein are relatively simple to manufacture with a repeatable process of formulation.
- the resultant product is easily packaged.
- the formulations appear to have good stability and relatively consistent permeation profiles.
- the oil component is present in an amount of about 10% to about 40% by weight of the formulation.
- the oil component is present in an amount of about 17% to about 27% by weight of the formulation.
- the oil component is present in an amount of about 20% to about 27% by weight of the formulation.
- the oil component comprises one or more substances independently selected from petrolatums, fatty alcohols, mineral oils, triglycerides, and silicone oils.
- the oil component comprises one or more substances independently selected from white petrolatum, cetyl alcohol, stearyl alcohol, light mineral oil, medium chain triglycerides, and dimethicone.
- the oil component comprises an occlusive agent component.
- the occlusive agent component is present in an amount of about 2% to about 15% by weight of the formulation.
- the occlusive agent component is present in an amount of about 5% to about 10% by weight of the formulation.
- occlusive agent component refers to a hydrophobic agent or mixtures of hydrophobic agents that form an occlusive film on skin that reduces transepidermal water loss (TEWL) by preventing evaporation of water from the stratum corneum.
- TEWL transepidermal water loss
- the occlusive agent component comprises one or more substances selected from fatty acids (e.g., lanolin acid), fatty alcohols (e.g., lanolin alcohol), hydrocarbon oils & waxes (e.g., petrolatum), polyhydric alcohols (e.g., propylene glycol), silicones (e.g., dimethicone), sterols (e.g., cholesterol), vegetable or animal fat (e.g., cocoa butter), vegetable wax (e.g., Carnauba wax), and wax ester (e.g., bees wax).
- fatty acids e.g., lanolin acid
- fatty alcohols e.g., lanolin alcohol
- hydrocarbon oils & waxes e.g., petrolatum
- polyhydric alcohols e.g., propylene glycol
- silicones e.g., dimethicone
- sterols e.g., cholesterol
- vegetable or animal fat e.g.
- the occlusive agent component comprises one or more substances selected from lanolin acid fatty alcohols, lanolin alcohol, petrolatum, propylene glycol, dimethicone, cholesterol, cocoa butter, Carnauba wax, and bees wax.
- the occlusive agent component comprises petrolatum.
- the occlusive agent component comprises white petrolatum.
- the oil component comprises a stiffening agent component.
- the stiffening agent component is present in an amount of about 2% to about 8% by weight of the formulation.
- the stiffening agent component is present in an amount of about 3% to about 6% by weight of the formulation.
- the stiffening agent component is present in an amount of about 4% to about 7% by weight of the formulation.
- the term “stiffening agent component” refers to a substance or mixture of substances that increases the viscosity and/or consistency of the formulation or improves the rheology of the formulation.
- the stiffening agent component comprises one or more substances independently selected from fatty alcohols.
- the stiffening agent component comprises one or more substances independently selected from C12-20 fatty alcohols.
- the stiffening agent component comprises one or more substances independently selected from Ci 6 _i8 fatty alcohols.
- the stiffening agent component comprises one or more substances independently selected from cetyl alcohol and stearyl alcohol.
- the oil component comprises an emollient component.
- the emollient component is present in an amount of about 5% to about 15% by weight of the formulation.
- the emollient component is present in an amount of about 7% to about 13% by weight of the formulation.
- the term “emollient component” refers to an agent that softens or soothes the skin or soothes an irritated internal surface.
- the emollient component comprises one or more substances independently selected from mineral oils and triglycerides. In some embodiments, the emollient component comprises one or more substances independently selected from light mineral oil and medium chain triglycerides.
- the emollient component comprises one or more substances independently selected from light mineral oil, medium chain triglycerides, and dimethicone.
- the water is present in an amount of about 35% to about 65% by weight of the formulation.
- the water is present in an amount of about 40% to about 60% by weight of the formulation.
- the water is present in an amount of about 45% to about 55% by weight of the formulation.
- the emulsifier component is present in an amount of about 1% to about 9% by weight of the formulation.
- the emulsifier component is present in an amount of about 2% to about 6% by weight of the formulation.
- the emulsifier component is present in an amount of about 3% to about 5% by weight of the formulation.
- the emulsifier component is present in an amount of about 4% to about 7% by weight of the formulation.
- the pharmaceutical formulation comprises an emulsifier component and a stiffening agent component, wherein the combined amount of emulsifier component and stiffening agent component is at least about 8% by weight of the formulation.
- the emulsifier component comprises one or more substances independently selected from glyceryl fatty esters and sorbitan fatty esters.
- the emulsifier component comprises one or more substances independently selected from glyceryl stearate, and polysorbate 20.
- the pharmaceutical formulation further comprises a stabilizing agent component.
- the stabilizing agent component is present in an amount of about 0.05% to about 5% by weight of the formulation. In some embodiments, the stabilizing agent component is present in an amount of about 0.1% to about 2% by weight of the formulation.
- the stabilizing agent component is present in an amount of about 0.3 to about 0.5% by weight of the formulation.
- the term “stabilizing agent component” refers to a substance or mixture of substances that improves the stability of the pharmaceutical formulation and/or the compatibility of the components in the formulation. In some embodiments, the stabilizing agent component prevents agglomeration of the emulsion and stabilizes the droplets in the oil-in-water emulsion.
- the stabilizing agent component comprises one or more substances independently selected from polysaccharides.
- the stabilizing agent component comprises xanthan gum.
- the pharmaceutical formulation further comprises a solvent component.
- the solvent component is present in an amount of about 10% to about 35% by weight of the formulation.
- the solvent component is present in an amount of about 15% to about 30% by weight of the formulation.
- the solvent component is present in an amount of about 20% to about 25% by weight of the formulation.
- solvent component is a liquid substance or mixture of liquid substances capable of dissolving (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH- pyrazol-l-yl)-3-cyclopentylpropanenitrile or other substances in the formulation.
- the solvent component is a liquid substance or mixture of liquid substances in which (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl)-3- cyclopentylpropanenitrile, or its pharmaceutically acceptable salt, has reasonable solubility.
- solubilities of (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH- pyrazol-l-yl)-3-cyclopentylpropanenitrile (free base) or its phosphate salt are reported in Table 21.
- a solvent is a substance or mixture thereof, in which (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)- lH-pyrazol- 1 -yl)-3- cyclopentylpropanenitrile, or its pharmaceutically acceptable salt (whichever is used), has a solubility of at least about 10 mg/mL or greater, at least about 15 mg/mL or greater, or at least about 20 mg/mL or greater, when measured as described in Example 4.
- the solvent component comprises one or more substances independently selected from alkylene glycols and polyalkylene glycols.
- the solvent component comprises one or more substances independently selected from propylene glycol and polyethylene glycol.
- the therapeutic agent is present in an amount of about 0.5% to about 1.5% by weight of the formulation on a free base basis.
- the therapeutic agent is present in an amount of about 0.5% by weight of the formulation on a free base basis.
- the therapeutic agent is present in an amount of about 1% by weight of the formulation on a free base basis.
- the therapeutic agent is present in an amount of about 1.5% by weight of the formulation on a free base basis.
- the therapeutic agent is (R)-3-cyclopentyl-3-[4-(7H- pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]propanenitrile phosphate.
- the pharmaceutical formulation comprises:
- the pharmaceutical formulation comprises:
- the pharmaceutical formulation comprises:
- the pharmaceutical formulation comprises:
- the oil component comprises one or more substances independently selected from petrolatums, fatty alcohols, mineral oils, triglycerides, and dimethicones;
- the emulsifier component comprises one or more substances independently selected from glyceryl fatty esters and sorbitan fatty esters;
- the solvent component comprises one or more substances independently selected from alkylene glycols and polyalkylene glycols;
- the stabilizing agent component comprises one or more substances independently selected from polysaccharides.
- the oil component comprises one or more substances independently selected from white petrolatum, cetyl alcohol, stearyl alcohol, light mineral oil, medium chain triglycerides, and dimethicone;
- the emulsifier component comprises one or more substances independently selected from glyceryl stearate and polysorbate 20;
- the solvent component comprises one or more substances independently selected from propylene glycol and polyethylene glycol;
- the stabilizing agent component comprises xanthan gum.
- the pharmaceutical formulation comprises:
- the pharmaceutical formulation comprises:
- the pharmaceutical formulation comprises:
- the pharmaceutical formulation comprises:
- the pharmaceutical formulation comprises:
- a stabilizing agent component by weight of the formulation; about 22% of a solvent component by weight of the formulation; and from about 0.5% to about 1.5% of (R)-3-cyclopentyl-3-[4-(7H- pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]propanenitrile, or a pharmaceutically acceptable salt thereof, by weight of the formulation on a free base basis.
- the combined amount of the stiffening agent component and the emulsifier component is at least about 8% by weight of the formulation.
- the occlusive agent component comprises a petrolatum
- the stiffening agent component comprises one or more substances independently selected from one or more fatty alcohols
- the emollient component comprises one or more substances independently selected from mineral oils and triglycerides;
- the emulsifier component comprises one or more substances independently selected from glyceryl fatty esters and sorbitan fatty esters;
- the stabilizing agent component comprises one or more substances independently selected from polysaccharides.
- the solvent component comprises one or more substances independently selected from alkylene glycols and polyalkylene glycols.
- the occlusive agent component comprises white petrolatum
- the stiffening agent component comprises one or more substances independently selected from cetyl alcohol and stearyl alcohol;
- the emollient component comprises one or more substances independently selected from light mineral oil, medium chain triglycerides, and dimethicone;
- the emulsifier component comprises one or more substances independently selected from glyceryl stearate and polysorbate 20;
- the stabilizing agent component comprises xanthan gum
- the solvent component comprises one or more substances independently selected from propylene glycol and polyethylene glycol.
- the pharmaceutical formulation further comprises an antimicrobial preservative component.
- the antimicrobial preservative component is present in an amount of about 0.05% to about 3% by weight of the formulation.
- the antimicrobial preservative component is present in an amount of about 0.1% to about 1% by weight of the formulation.
- antimicrobial preservative component is a substance or mixtures of substances which inhibits microbial growth in the formulation.
- the antimicrobial preservative component comprises one or more substances independently selected from alkyl parabens and phenoxyethanol.
- the antimicrobial preservative component comprises one or more substances independently selected from methyl paraben, propyl paraben, and phenoxyethanol.
- the pharmaceutical formulation further comprises a chelating agent component.
- chelating agent component refers to a compound or mixtures of compounds that has the ability to bind strongly with metal ions.
- the chelating agent component comprises edetate disodium.
- (R)-3-(4-(7H-Pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl)-3- cyclopentylpropanenitrile can be prepared as described in U.S. Patent 7,598,257 and U.S. Patent Publ. No. 2009/0181959, each of which is incorporated herein by reference in its entirety.
- the 1 : 1 phosphate salt of (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH- pyrazol-l-yl)-3-cyclopentylpropanenitrile can be prepared as described in U.S. Patent Publ. No. 2008/0312259, which is incorporated herein by reference in its entirety.
- the compounds of the present invention also include pharmaceutically acceptable salts of the compounds disclosed herein.
- pharmaceutically acceptable salt refers to a salt formed by the addition of a pharmaceutically acceptable acid or base to a compound disclosed herein.
- phrase “pharmaceutically acceptable salt” refers to a salt formed by the addition of a pharmaceutically acceptable acid or base to a compound disclosed herein.
- “pharmaceutically acceptable” refers to a substance that is acceptable for use in pharmaceutical applications from a toxicological perspective and does not adversely interact with the active ingredient.
- Pharmaceutically acceptable salts include, but are not limited to, those derived from organic and inorganic acids such as, but not limited to, acetic, lactic, citric, cinnamic, tartaric, succinic, fumaric, maleic, malonic, mandelic, malic, oxalic, propionic, hydrochloric, hydrobromic, phosphoric, nitric, sulfuric, glycolic, pyruvic, methanesulfonic, ethanesulfonic, toluenesulfonic, salicylic, benzoic, and similarly known acceptable acids. Lists of suitable salts are found in Remington's Pharmaceutical Sciences, 17th ed., Mack
- % by weight of the formulation means the percent
- concentration of the component in the formulation is on weight/weight basis.
- 1% w/w of component A [(mass of component A) / (total mass of the formulation)] x 100.
- % by weight of the formulation on a free base basis of (R)-3-(4- (7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl)-3-cyclopentylpropanenitrile, or pharmaceutically acceptable salt thereof means that the % w/w is calculated based on the weight of (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl)-3- cyclopentylpropanenitrile in the total formulation.
- "0.5% w/w on a free base basis" of (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl)-3- cyclopentylpropanenitrile phosphate means that for 100 grams of total formulation, there are 0.66 grams of (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl)-3- cyclopentylpropanenitrile phosphate in the formulation (which equates to 0.5 grams of the free base, (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl)-3- cyclopentylpropanenitrile).
- the components are present in exactly the ranges specified (e.g., the term “about” is not present). In some embodiments, "about” means plus or minus 10% of the value.
- each component of the formulation comprises a different substance or mixture of substances.
- component can mean one substance or a mixture of substances.
- fatty acid refers to an aliphatic acid that is saturated or unsaturated. In some embodiments, the fatty acid is in a mixture of different fatty acids. In some embodiments, the fatty acid has between about eight to about thirty carbons on average. In some embodiments, the fatty acid has about 12 to 20, 14-20, or 16-18 carbons on average.
- Suitable fatty acids include, but are not limited to, cetyl acid, stearic acid, lauric acid, myristic acid, erucic acid, palmitic acid, palmitoleic acid, capric acid, caprylic acid, oleic acid, linoleic acid, linolenic acid, hydroxystearic acid, 12- hydroxystearic acid, cetostearic acid, isostearic acid, sesquioleic acid, sesqui-9- octadecanoic acid, sesquiisooctadecanoic acid, behenic acid, isobehenic acid, and arachidonic acid, or mixtures thereof.
- fatty alcohol refers to an aliphatic alcohol that is saturated or unsaturated. In some embodiments, the fatty alcohol is in a mixture of different fatty alcohols. In some embodiments, the fatty alcohol has between about 12 to about 20, about 14 to about 20, or about 16 to about 18 carbons on average. Suitable fatty alcohols include, but are not limited to, stearyl alcohol, lauryl alcohol, palmityl alcohol, cetyl alcohol, capryl alcohol, caprylyl alcohol, oleyl alcohol, linolenyl alcohol, arachidonic alcohol, behenyl alcohol, isobehenyl alcohol, selachyl alcohol, chimyl alcohol, and linoleyl alcohol, or mixtures thereof.
- polyalkylene glycol employed alone or in
- the term "oxyalkylene”, employed alone or in combination with other terms, refers to a group of formula -O- alkylene-.
- the polyalkylene glycol is polyethylene glycol.
- sorbitan fatty ester includes products derived from sorbitan or sorbitol and fatty acids and, optionally, poly(ethylene glycol) units, including sorbitan esters and polyethoxylated sorbitan esters.
- the sorbitan fatty ester is a polyethoxylated sorbitan ester.
- sorbitan ester refers to a compound, or mixture of compounds, derived from the esterification of sorbitol and at least one fatty acid.
- Fatty acids useful for deriving the sorbitan esters include, but are not limited to, those described herein.
- Suitable sorbitan esters include, but are not limited to, the SpanTM series
- sorbitan monolaurate sorbitan monolaurate
- 40 sorbitan monopalmitate
- 60 sorbitan monostearate
- 65 sorbitan tristearate
- 80 sorbitan monooleate
- 85 sorbitan trioleate
- Other suitable sorbitan esters include those listed in R. C. Rowe and P. J. Shesky, Handbook of pharmaceutical excipients, (2006), 5th ed., which is incorporated herein by reference in its entirety.
- polyethoxylated sorbitan ester refers to a compound, or mixture thereof, derived from the ethoxylation of a sorbitan ester.
- the polyoxethylene portion of the compound can be between the fatty ester and the sorbitan moiety.
- sorbitan ester refers to a compound, or mixture of compounds, derived from the esterification of sorbitol and at least one fatty acid.
- Fatty acids useful for deriving the polyethoyxlated sorbitan esters include, but are not limited to, those described herein.
- the polyoxyethylene portion of the compound or mixture has about 2 to about 200 oxyethylene units. In some embodiments, the polyoxyethylene portion of the compound or mixture has about 2 to about 100
- Suitable polyethoxylated sorbitan esters include, but are not limited to the TweenTM series (available from Uniqema), which includes Tween 20 (POE(20) sorbitan monolaurate), 21 (POE(4) sorbitan monolaurate), 40 (POE(20) sorbitan monopalmitate), 60 (POE(20) sorbitan monostearate), 60K
- POE polyoxyethylene
- the number following the POE abbreviation refers to the number of oxyethylene repeat units in the compound.
- Other suitable polyethoxylated sorbitan esters include the polyoxyethylene sorbitan fatty acid esters listed in R. C.
- the polyethoxylated sorbitan ester is a polysorbate. In some embodiments, the polyethoxylated sorbitan ester is polysorbate 20.
- glycol fatty esters refers to mono-, di- or
- glyceryl fatty esters may be optionally substituted with sulfonic acid groups, or pharmaceutically acceptable salts thereof.
- Suitable fatty acids for deriving glycerides of fatty acids include, but are not limited to, those described herein.
- the glyceryl fatty ester is a mono-glyceride of a fatty acid having 12 to 18 carbon atoms.
- the glyceryl fatty ester is glyceryl stearate.
- triglycerides refers to a triglyceride of a fatty acid. In some embodiments, the triglyceride is medium chain triglycerides.
- alkylene glycol refers to a group of formula -O- alkylene-, wherein the alkylene group has 2 to 6, 2 to 4, or 2 to 3 carbon atoms.
- the alkylene glycol is propylene glycol (1,2-propanediol).
- polyethylene glycol refers to a polymer containing ethylene glycol monomer units of formula -0-CH 2 -CH 2 -. Suitable polyethylene glycols may have a free hydroxyl group at each end of the polymer molecule, or may have one or more hydroxyl groups etherified with a lower alkyl, e.g., a methyl group.
- Polyethylene glycols useful in the present invention can be polymers of any chain length or molecular weight, and can include branching.
- the average molecular weight of the polyethylene glycol is from about 200 to about 9000. In some embodiments, the average molecular weight of the polyethylene glycol is from about 200 to about 5000. In some embodiments, the average molecular weight of the polyethylene glycol is from about 200 to about 900. In some embodiments, the average molecular weight of the polyethylene glycol is about 400.
- Suitable polyethylene glycols include, but are not limited to polyethylene glycol-200, polyethylene glycol-300, polyethylene glycol-400, polyethylene glycol-600, and polyethylene glycol-900.
- the number following the dash in the name refers to the average molecular weight of the polymer.
- the skin disorder is an autoimmune bullous skin disorder such as pemphigus vulgaris (PV) or bullous pemphigoid (BP).
- the skin disorder is psoriasis (for example, psoriasis vulgaris), atopic dermatitis, skin rash, skin irritation, skin sensitization (e.g., contact dermatitis or allergic contact dermatitis).
- psoriasis for example, psoriasis vulgaris
- atopic dermatitis for example, skin rash, skin irritation, skin sensitization (e.g., contact dermatitis or allergic contact dermatitis).
- certain substances including some pharmaceuticals when topically applied can cause skin sensitization.
- coadministration or sequential administration of the topical formulations of the invention together with the agent causing unwanted sensitization can be helpful in treating such unwanted sensitization or dermatitis.
- the present invention further provides a method of treating dermatological side effects of other pharmaceuticals by administration of the compound of the invention.
- numerous pharmaceutical agents result in unwanted allergic reactions which can manifest as acneiform rash or related dermatitis.
- Example pharmaceutical agents that have such undesirable side effects include anti-cancer drugs such as gefitinib, cetuximab, erlotinib, and the like.
- the formulations of the invention can be administered
- formulation of the invention can be administered topically together with one or more other pharmaceuticals, where the other pharmaceuticals when topically applied in the absence of a formulation of the invention cause contact dermatitis, allergic contact sensitization, or similar skin disorder.
- formulation of the invention include topical formulations further comprising an additional pharmaceutical agent which can cause dermatitis, skin disorders, or related side effects.
- the term "individual” or “patient,” used interchangeably, refers to any animal, including mammals, preferably mice, rats, other rodents, rabbits, dogs, cats, swine, cattle, sheep, horses, or primates, and most preferably humans.
- the phrase "therapeutically effective amount” refers to the amount of active compound or pharmaceutical agent that elicits the biological or medicinal response that is being sought in a tissue, system, animal, individual or human by a researcher, veterinarian, medical doctor or other clinician.
- the term "treating" or “treatment” refers to one or more of (1) preventing the disease; for example, preventing a disease, condition or disorder in an individual who may be predisposed to the disease, condition or disorder but does not yet experience or display the pathology or symptomatology of the disease; (2) inhibiting the disease; for example, inhibiting a disease, condition or disorder in an individual who is experiencing or displaying the pathology or symptomatology of the disease, condition or disorder (i.e., arresting further development of the pathology and/or symptomatology); and (3) ameliorating the disease; for example, ameliorating a disease, condition or disorder in an individual who is experiencing or displaying the pathology or
- symptomatology of the disease, condition or disorder i.e., reversing the pathology and/or symptomatology
- decreasing the severity of disease i.e., decreasing the severity of disease.
- One or more additional pharmaceutical agents such as, for example,
- chemotherapeutics anti-inflammatory agents, steroids, immunosuppressants, as well as Bcr-Abl, Flt-3, RAF and FAK kinase inhibitors such as, for example, those described in WO 2006/056399, or other agents can be used in combination with the formulations of the present invention for treatment of JAK-associated diseases, disorders or conditions.
- the one or more additional pharmaceutical agents can be administered to a patient simultaneously or sequentially.
- Example chemotherapeutic include proteosome inhibitors ⁇ e.g., bortezomib), thalidomide, revlimid, and DNA-damaging agents such as melphalan, doxorubicin, cyclophosphamide, vincristine, etoposide, carmustine, and the like.
- Example steroids include corticosteroids such as dexamethasone or prednisone.
- Example Bcr-Abl inhibitors include the compounds, and pharmaceutically acceptable salts thereof, of the genera and species disclosed in U.S. Pat. No. 5,521,184, WO 04/005281, and U.S. Ser. No. 60/578,491.
- Example suitable Flt-3 inhibitors include compounds, and their pharmaceutically acceptable salts, as disclosed in WO 03/037347, WO 03/099771, and WO 04/046120.
- Example suitable RAF inhibitors include compounds, and their pharmaceutically acceptable salts, as disclosed in WO 00/09495 and WO 05/028444.
- Example suitable FAK inhibitors include compounds, and their pharmaceutically acceptable salts, as disclosed in WO 04/080980, WO 04/056786, WO 03/024967, WO 01/064655, WO 00/053595, and WO 01/014402.
- the formulations of the invention can be used in combination with one or more other kinase inhibitors including imatinib, particularly for treating patients resistant to imatinib or other kinase inhibitors.
- a corticosteroid such as dexamethasone is administered to a patient in combination with the compound of the invention where the dexamethasone is administered intermittently as opposed to continuously.
- Another aspect of the present invention relates to formulations comprising a labeled active compound (radio-labeled, fluorescent-labeled, etc.) that would be useful not only in imaging techniques but also in assays, both in vitro and in vivo, for localizing and quantitating JAK in tissue samples, including human, and for identifying JAK ligands by inhibition binding of a labeled compound. Accordingly, the present invention includes JAK assays that contain such labeled compounds.
- a labeled active compound radio-labeled, fluorescent-labeled, etc.
- the present invention further includes formulations of an isotopically-labeled compound.
- An “isotopically” or “radio-labeled” compound is a compound where one or more atoms are replaced or substituted by an atom having an atomic mass or mass number different from the atomic mass or mass number typically found in nature (i.e., naturally occurring).
- Suitable radionuclides that may be incorporated in compounds of the present invention include but are not limited to 2 H (also written as D for deuterium), 3 H (also written as T for tritium), U C, 13 C, 14 C, 13 N, 15 N, 15 0, 17 0, 18 0, 18 F, 35 S, 36 C1, 82 Br, 75 Br, 76 Br, 77 Br, 123 I, 124 I, 125 I and 131 I.
- the radionuclide that is incorporated in the instant radio-labeled compounds will depend on the specific application of that radio-labeled compound. For example, for in vitro JAK labeling and competition assays, compounds
- radio-labeled or “labeled compound” is a compound that has incorporated at least one radionuclide. In some embodiments the radionuclide is
- kits useful for example, in the treatment or prevention of JAK-associated diseases or disorders, such as cancer, which include one or more containers containing a pharmaceutical formulation of the invention.
- kits can further include, if desired, one or more of various conventional
- kit components such as, for example, containers with one or more pharmaceutically acceptable carriers, additional containers, etc., as will be readily apparent to those skilled in the art. Instructions, either as inserts or as labels, indicating quantities of the components to be administered, guidelines for administration, and/or guidelines for mixing the components, can also be included in the kit.
- the present invention provides pharmaceutical formulations comprising the components specified in the example formulations (e.g., Example 3), wherein the components are present in about the amounts in Tables 2-5.
- the aqueous layer was back- extracted with three portions of ethyl acetate.
- the combined organic extracts were washed with brine, dried over sodium sulfate, filtered and concentrated.
- the crude product was purified by silica gel chromatography (gradient of ethyl acetate/hexanes) to yield a viscous clear syrup, which was dissolved in ethanol and evaporated several times to remove ethyl acetate, to afford 19.4 g of racemic adduct (93%).
- the enantiomers were separated by preparative -HPLC, (OD-H, 15% ethanol/hexanes) and used separately in the next step to generate their corresponding final product.
- the phosphoric acid salt was shown to be a 1 : 1 salt by 1H NMR and crystallinity was confirmed by X-ray powder diffraction (XRPD). Differential scanning calorimetry (DSC) gave a sharp melting peak at about 198.66 °C. The product showed little weight loss up to 200 °C by TGA.
- An oil-in- water cream formulation was prepared for (R)-3-(4-(7H-pyrrolo[2,3- d]pyrimidin-4-yl)-lH-pyrazol-l-yl)-3-cyclopentylpropanenitrile phosphoric acid salt (Example 2) at 0.5, 1.0 and 1.5% by weight of the formulation (free base equivalent).
- the compositions for a 15 gram tube are provided in Table 2 below.
- the formulation for three strengths were identical except for adjustments to the purified water quantity based on the amount of active ingredient. All excipients used in the formulation were compendial grade (ie, USP/NF or BP) or are approved for use in topical products.
- Example 2 * 1.32% of Example 2 is equivalent to 1.0% of (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l- yl)-3-cyclopentylpropanenitrile free base
- Table 3
- oil-in-water cream formulations were synthesized according to the following procedure at either a 3.5 kg or 400 kg scale (when made at a 3.5 kg batch size, the amounts in Tables 3-5 were scaled appropriately). Some batches were subject to minor changes associated with scale-up, such as the size of mixing vessels and mixers.
- FIG. 1 shows a flowchart representation of the process for making the oil-in- water formulation.
- the (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl)-3- cyclopentylpropanenitrile is referred to as "API" throughout this application.
- a paraben phase was prepared by mixing methyl and propyl parabens with a portion of the propylene glycol (see % in Tables 2-5). 2.
- a xanthan gum phase was prepared by mixing xanthan gum with propylene glycol (see % in Table 2-5).
- An oil phase was then prepared by mixing light mineral oil, glyceryl stearate, polysorbate 20, white petrolatum, cetyl alcohol, stearyl alcohol, dimethicone and medium chain triglycerides. The phase is heated to 70-80 °C to melt and form a uniform mixture.
- the aqueous phase was next prepared by mixing purified water, polyethylene glycol, and disodium EDTA. The phase is heated to 70-80 °C.
- step 7 The oil phase from step 3 was then combined under high shear mixing with the mixture from step 6 to form an emulsion.
- Phenoxyethanol was then added to the emulsion from step 7. Mixing was continued, and then the product was cooled under low shear mixing.
- More consistent batches at larger scales could be obtained by adding Example 2 gradually to the aqueous phase and then combining with the other phases.
- more consistent batches could be obtained by slower cooling (e.g., by using room temperature water in the outer jacket of the reactor, rather than lower temperature water.
- the appearance of the cream was visually inspected. Viscosity was measured using a Brookfield viscometer at 25 °C. The pH was measured on the final cream formulation. The microbial limit testing is performed as per USP. The fill weight is analyzed as an in-process test during filling of the cream into tubes.
- Assay related substances, identity and content uniformity were determined in the formulation by a gradient reverse-phase HPLC with UV detection at 294 nm.
- a Waters HPLC was used with a Zorbax SB-C18 column (3.5 ⁇ , 4.6 X 150 mm) at a flow rate of 1.0 mL/minute, temperature of 40 °C using Mobile Phase A of 2 mL of TFA into 4 L of Water (0.05% TFA), or Mobile Phase B of 2 mL of TFA into 4 L of methanol (0.05% TFA).
- Results are shown below for a 3.5 kg batches at 0.5%>, 1% and 1.5% strength of Example 2 (free base basis (API)) (Table 6).
- the stability data from batches of the cream formulation at 0.5, 1.0 and 1.5% w/w strength stored in 15 gram aluminum tubes is provided in Tables 7-10 and 19-20.
- stability data from batches of the cream formulation at 0.5, 1.0 and 1.5% w/w strength packaged in amber glass jars (2 oz. with teflon cap) is provided in Tables 13-17, while longer stability data for the 1.0% w/w formulation packaged in 16 oz. amber glass jars is provided in Tables 11-12.
- the preliminary stability data for the drug product did not show any chemical instability after 3 months of storage at 25 °C/60% RH and 40 °C/75% RH in either packaging configuration. A change in viscosity is seen following 3 months at 40 °C/75% RH for formulation stored in amber glass jars. However, physical inspection of the product did not indicate any phase separation.
- Table 8 Stability Data for 0.5% w/w Cream at 40 °C/75% RH (15 aluminum gram tubes)
- the 1% dispersed cream (water-in-oil formulation) showed syneresis after two and four weeks of aging 40 °C, while the 1% lotion and 1% solubilized cream formulations (oil-in- water formulations) did not show syneresis.
- the 1% solubilized cream formulation was generally higher in viscosity than the 1% lotion.
- Example 5 The three different topical formulations in Example 5 (Table 20) and the cream formulation in Example 3 (Table 4) were evaluated for transport across human cadaver skin.
- the skin permeation data are summarized in Table 24.
- Significant variability was observed in the transport among the three replicates for each formulation.
- the variability in transport may be due in part to differences in skin samples (donor, region of the body, thickness, etc.).
- the two cream formulations showed higher flux compared to the lotion or ointment.
- the cumulative amount of API transported for the ointment formulation was particularly low in comparison to the other three formulations and this, at least in part, could be due to poor spreadability of the ointment leading to decreased surface area for transport.
- the two cream formulations were selected for further development, one as an oil-in-water (see Example 3 above) and the other as a water-in-oil emulsion base.
- strengths containing 1.0, 1.5, and 2.0% w/w of (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH- pyrazol-l-yl)-3-cyclopentylpropanenitrile phosphate salt were developed for the oil-in water base cream (solubilized cream) and 1.0, 2.0, and 3.0% w/w were developed for the water-in oil base cream (dispersed cream). Procedures for the skin permeation studies are described below. Human Cadaver Skin Transport Studies
- the permeability of the API in topical formulations was studied using cadaver human skin samples and Franz diffusion cells. Dermatomed human cadaver skin was obtained from tissue banks while the Franz diffusion cells were custom made. The human cadaver skin samples, sized to fit between the donor and the receiver compartments, were positioned on the Franz diffusion cells. Topical formulations were weighed (20 mg) onto glassine paper, placed formulation side toward the skin and clamped into place. The dosing chamber was covered with parafilm. The reservoir side was filled using saline with 4% albumin. The reservoir was stirred and maintained at 37 °C using a dry block heater (Aungst B. Fatty Acid Skin Penetration Enhancers. Pharm. Res. 1989; 6(3):244- 247).
- the permeability of the API in topical formulations was studied using freshly excised mouse skin samples mounted in Franz diffusion cells. Balb/c mice were depilated using a waxing technique four days before the experiment. The morning of the experiment the mice were euthanized and as much of the depilated skin as possible was removed, rinsed and kept moist with 37 °C saline until use. The mouse skin samples, sized to fit between the donor and the receiver compartments, were positioned between the donor and the receiver compartments of the Franz diffusion cells. The opening of the Franz cell was 1 cm 2 . Topical formulations were weighed (20 mg) on to glassine paper, placed formulation side toward the skin and clamped into place. The dosing chamber was covered with parafilm.
- the reservoir side was filled using saline with 4% albumin.
- the reservoir was stirred and maintained at 37 °C using a dry block heater (Aungst 1989 (above). At 4 hours, a 1 mL sample was removed and replaced with 1 mL of saline + 4% albumin. At 24 hours, the entire reservoir was collected. The tissue was examined visually for any hole or tear.
- the reservoir side samples were analyzed for concentrations of the API by a LC/MS assay.
- photos were obtained from subjects who signed an informed consent for the photos. Pictures were obtained at baseline (prior to the first application of study treatment) and on day 84 (the last application day for study treatment) (see Fig. 3- 7). These photos are representative of a subset of the subjects who were treated with the oil-in-water formulations.
- the formulations described herein can also be tested for their efficacies (of inhibiting JAK targets) in the T-cell driven murine delayed hypersensitivity test model.
- the murine skin contact delayed-type hypersensitivity (DTH) response is considered to be a valid model of clinical contact dermatitis, and other T-lymphocyte mediated immune disorders of the skin, such as psoriasis ⁇ Immunol Today. 1998 Jan;19(l):37-44).
- Murine DTH shares multiple characteristics with psoriasis, including the immune infiltrate, the accompanying increase in inflammatory cytokines, and keratinocyte hyperproliferation.
- many classes of agents that are efficacious in treating psoriasis in the clinic are also effective inhibitors of the DTH response in mice (Agents Actions. 1993
- mice On Day 0 and 1, Balb/c mice are sensitized with a topical application, to their shaved abdomen with the antigen 2,4,dinitro-fluorobenzene (DNFB). On day 5, ears are measured for thickness using an engineer's micrometer. This measurement is recorded and used as a baseline. Both of the animals' ears are then challenged by a topical application of DNFB in a total of 20 ⁇ ⁇ (10 ⁇ ⁇ on the internal pinna and 10 ⁇ ⁇ on the external pinna) at a concentration of 0.2%. Twenty-four to seventy-two hours after the challenge, ears are measured again.
- DNFB 2,4,dinitro-fluorobenzene
- Treatment with the test formulations is given throughout the sensitization and challenge phases (day -1 to day 7) or prior to and throughout the challenge phase (usually afternoon of day 4 to day 7). Treatment of the test compounds (in different concentration) is administered topically (topical application of the treatment to the ears). Efficacies of the test formulations are indicated by a reduction in ear swelling comparing to the situation without the treatment. Compounds causing a reduction of 20% or more are considered efficacious. In some experiments, the mice are challenged but not sensitized (negative control).
- the inhibitive effect (inhibiting activation of the JAK-STAT pathways) of the test formulations can be confirmed by immunohistochemical analysis. Activation of the JAK-STAT pathway(s) results in the formation and translocation of functional transcription factors. Further, the influx of immune cells and the increased proliferation of keratinocytes should also provide unique expression profile changes in the ear that can be investigated and quantified. Formalin fixed and paraffin embedded ear sections (harvested after the challenge phase in the DTH model) are subjected to
- test formulations can produce similar transcriptional changes both qualitatively and quantitatively, and both the test formulations and dexamethasone can reduce the number of infiltrating cells.
- Topical administration of the test compounds can produce inhibitive effects, i.e., reduction in the number of infiltrating cells and inhibition of the transcriptional changes.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Dermatology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Molecular Biology (AREA)
- Inorganic Chemistry (AREA)
- Immunology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Pulmonology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Priority Applications (27)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| BR112012029653-1A BR112012029653B1 (pt) | 2010-05-21 | 2011-05-20 | formulação farmacêutica para aplicação tópica em pele e seu uso |
| SG2012083739A SG185567A1 (en) | 2010-05-21 | 2011-05-20 | Topical formulation for a jak inhibitor |
| CA2799928A CA2799928C (en) | 2010-05-21 | 2011-05-20 | Topical formulation for a jak inhibitor |
| KR1020197032033A KR102303885B1 (ko) | 2010-05-21 | 2011-05-20 | Jak 저해제에 대한 국소 제형 |
| MEP-2016-92A ME02445B (me) | 2010-05-21 | 2011-05-20 | Topikalna formulacija za inhibiciju jak-a |
| NZ603686A NZ603686A (en) | 2010-05-21 | 2011-05-20 | Topical formulation for a jak inhibitor |
| AU2011255443A AU2011255443B2 (en) | 2010-05-21 | 2011-05-20 | Topical formulation for a JAK inhibitor |
| PH1/2012/502296A PH12012502296B1 (en) | 2010-05-21 | 2011-05-20 | Topical formulation for a jak inhibitor |
| RS20160298A RS54824B1 (sr) | 2010-05-21 | 2011-05-20 | Topikalna formulacija za inhibiciju jak-a |
| KR1020187025131A KR102040479B1 (ko) | 2010-05-21 | 2011-05-20 | Jak 저해제에 대한 국소 제형 |
| MX2012013400A MX338228B (es) | 2010-05-21 | 2011-05-20 | Formulacion topica para inhibidor de cinasas janus (jak). |
| CN201180035301.2A CN103002875B (zh) | 2010-05-21 | 2011-05-20 | Jak抑制剂的局部用制剂 |
| HRP20160841TT HRP20160841T1 (hr) | 2010-05-21 | 2011-05-20 | Topikalna formulacija za jak inhibitor |
| KR1020217029425A KR102402137B1 (ko) | 2010-05-21 | 2011-05-20 | Jak 저해제에 대한 국소 제형 |
| ES11724104.2T ES2581834T3 (es) | 2010-05-21 | 2011-05-20 | Formulación tópica para un inhibidor de JAK |
| EP11724104.2A EP2574168B9 (en) | 2010-05-21 | 2011-05-20 | Topical formulation for a jak inhibitor |
| UAA201214654A UA111588C2 (uk) | 2010-05-21 | 2011-05-20 | Композиція інгібітора jak для місцевого застосування |
| HK13109607.1A HK1182313B (en) | 2010-05-21 | 2011-05-20 | Topical formulation for a jak inhibitor |
| EA201291310A EA035981B1 (ru) | 2010-05-21 | 2011-05-20 | Композиция ингибитора jak для местного применения |
| SI201130813A SI2574168T1 (sl) | 2010-05-21 | 2011-05-20 | Topična formulacija zaviralca jak |
| JP2013511374A JP5849312B2 (ja) | 2010-05-21 | 2011-05-20 | Jak阻害剤の局所製剤 |
| KR1020127033308A KR101921466B1 (ko) | 2010-05-21 | 2011-05-20 | Jak 저해제에 대한 국소 제형 |
| DK11724104.2T DK2574168T3 (en) | 2010-05-21 | 2011-05-20 | Topical formulation to a jak inhibitor |
| KR1020227017111A KR102635013B1 (ko) | 2010-05-21 | 2011-05-20 | Jak 저해제에 대한 국소 제형 |
| IL223084A IL223084A (en) | 2010-05-21 | 2012-11-15 | Local preparation for jak inhibitor |
| SM201600172T SMT201600172B (it) | 2010-05-21 | 2016-06-16 | Formulazione topica per un inibitore di jak |
| CY20161100706T CY1117815T1 (el) | 2010-05-21 | 2016-07-19 | Τοπικο σκευασμα για εναν αναστολεα jak |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US34713210P | 2010-05-21 | 2010-05-21 | |
| US61/347,132 | 2010-05-21 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2011146808A2 true WO2011146808A2 (en) | 2011-11-24 |
| WO2011146808A3 WO2011146808A3 (en) | 2012-06-07 |
Family
ID=44201091
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2011/037291 Ceased WO2011146808A2 (en) | 2010-05-21 | 2011-05-20 | Topical formulation for a jak inhibitor |
Country Status (35)
Cited By (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8691807B2 (en) | 2011-06-20 | 2014-04-08 | Incyte Corporation | Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as JAK inhibitors |
| JP2014224109A (ja) * | 2013-04-25 | 2014-12-04 | 日本たばこ産業株式会社 | 皮膚バリア機能改善剤 |
| US8933085B2 (en) | 2010-11-19 | 2015-01-13 | Incyte Corporation | Cyclobutyl substituted pyrrolopyridine and pyrrolopyrimidine derivatives as JAK inhibitors |
| US9034884B2 (en) | 2010-11-19 | 2015-05-19 | Incyte Corporation | Heterocyclic-substituted pyrrolopyridines and pyrrolopyrimidines as JAK inhibitors |
| US9079912B2 (en) | 2005-12-13 | 2015-07-14 | Incyte Corporation | Heteroaryl substituted pyrrolo[2,3-B] pyridines and pyrrolo[2,3-B] pyrimidines as Janus kinase inhibitors |
| US9216984B2 (en) | 2009-05-22 | 2015-12-22 | Incyte Corporation | 3-[4-(7H-pyrrolo[2,3-D]pyrimidin-4-yl)-1H-pyrazol-1-yl]octane—or heptane-nitrile as JAK inhibitors |
| US9221845B2 (en) | 2013-03-06 | 2015-12-29 | Incyte Holdings Corporation | Processes and intermediates for making a JAK inhibitor |
| US9249145B2 (en) | 2009-09-01 | 2016-02-02 | Incyte Holdings Corporation | Heterocyclic derivatives of pyrazol-4-yl-pyrrolo[2,3-d]pyrimidines as janus kinase inhibitors |
| US9334274B2 (en) | 2009-05-22 | 2016-05-10 | Incyte Holdings Corporation | N-(hetero)aryl-pyrrolidine derivatives of pyrazol-4-yl-pyrrolo[2,3-d]pyrimidines and pyrrol-3-yl-pyrrolo[2,3-d]pyrimidines as janus kinase inhibitors |
| WO2016074650A1 (en) * | 2014-11-10 | 2016-05-19 | Zentiva, K.S. | Salts of (3r)-3-cyclopentyl-3-[4-(7h-pyrrolo[2,3-d]pyrimidin-4-yl)pyrazol-1-yl]propanenitrile |
| US9359358B2 (en) | 2011-08-18 | 2016-06-07 | Incyte Holdings Corporation | Cyclohexyl azetidine derivatives as JAK inhibitors |
| US9487521B2 (en) | 2011-09-07 | 2016-11-08 | Incyte Holdings Corporation | Processes and intermediates for making a JAK inhibitor |
| US9655854B2 (en) | 2013-08-07 | 2017-05-23 | Incyte Corporation | Sustained release dosage forms for a JAK1 inhibitor |
| WO2017125097A1 (en) * | 2016-01-22 | 2017-07-27 | Zentiva, K.S. | Crystalline forms of (3r)-3-cyclopentyl-3-[4-(7h-pyrrolo[2,3-d]pyrimidin-4- yl)pyrazol-l-yl]propanenitrile salts and preparation thereof |
| US9999619B2 (en) | 2010-03-10 | 2018-06-19 | Incyte Holdings Corporation | Piperidin-4-yl azetidine derivatives as JAK1 inhibitors |
| US10166191B2 (en) | 2012-11-15 | 2019-01-01 | Incyte Corporation | Sustained-release dosage forms of ruxolitinib |
| US10596161B2 (en) | 2017-12-08 | 2020-03-24 | Incyte Corporation | Low dose combination therapy for treatment of myeloproliferative neoplasms |
| US10758543B2 (en) | 2010-05-21 | 2020-09-01 | Incyte Corporation | Topical formulation for a JAK inhibitor |
| CN111818910A (zh) * | 2018-01-09 | 2020-10-23 | 德玛万科学有限公司 | 含有赛度替尼的局部用皮肤药物组合物及其应用 |
| US10899736B2 (en) | 2018-01-30 | 2021-01-26 | Incyte Corporation | Processes and intermediates for making a JAK inhibitor |
| US11213528B2 (en) | 2007-06-13 | 2022-01-04 | Incyte Holdings Corporation | Salts of the janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
| US11304949B2 (en) | 2018-03-30 | 2022-04-19 | Incyte Corporation | Treatment of hidradenitis suppurativa using JAK inhibitors |
| US11833155B2 (en) | 2020-06-03 | 2023-12-05 | Incyte Corporation | Combination therapy for treatment of myeloproliferative neoplasms |
Families Citing this family (50)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CL2008001709A1 (es) | 2007-06-13 | 2008-11-03 | Incyte Corp | Compuestos derivados de pirrolo [2,3-b]pirimidina, moduladores de quinasas jak; composicion farmaceutica; y uso en el tratamiento de enfermedades tales como cancer, psoriasis, artritis reumatoide, entre otras. |
| JOP20190230A1 (ar) | 2009-01-15 | 2017-06-16 | Incyte Corp | طرق لاصلاح مثبطات انزيم jak و المركبات الوسيطة المتعلقة به |
| WO2011039637A2 (en) | 2009-10-02 | 2011-04-07 | Foamix Ltd. | Surfactant-free water-free foamable compositions, breakable foams and gels and their uses |
| PL2675451T3 (pl) | 2011-02-18 | 2016-05-31 | Novartis Pharma Ag | Terapia skojarzona z inhibitorem mTOR/JAK |
| WO2013023119A1 (en) | 2011-08-10 | 2013-02-14 | Novartis Pharma Ag | JAK P13K/mTOR COMBINATION THERAPY |
| LT3196202T (lt) | 2011-09-02 | 2019-07-10 | Incyte Holdings Corporation | Heterociklilaminai, kaip pi3k slopikliai |
| TW201406761A (zh) | 2012-05-18 | 2014-02-16 | Incyte Corp | 做爲jak抑制劑之哌啶基環丁基取代之吡咯并吡啶及吡咯并嘧啶衍生物 |
| CA2888816A1 (en) | 2012-11-01 | 2014-05-08 | Incyte Corporation | Tricyclic fused thiophene derivatives as jak inhibitors |
| UA117830C2 (uk) | 2013-05-17 | 2018-10-10 | Інсайт Корпорейшн | Похідні біпіразолу як інгібітори jak |
| NZ763326A (en) | 2014-04-08 | 2023-04-28 | Incyte Holdings Corp | Treatment of b-cell malignancies by a combination jak and pi3k inhibitor |
| CR20160553A (es) | 2014-04-30 | 2017-04-25 | Incyte Corp | Procesos para preparar un inhibidor de jak1 y nuevas formas de este |
| WO2015184305A1 (en) | 2014-05-30 | 2015-12-03 | Incyte Corporation | TREATMENT OF CHRONIC NEUTROPHILIC LEUKEMIA (CNL) AND ATYPICAL CHRONIC MYELOID LEUKEMIA (aCML) BY INHIBITORS OF JAK1 |
| US10077277B2 (en) | 2014-06-11 | 2018-09-18 | Incyte Corporation | Bicyclic heteroarylaminoalkyl phenyl derivatives as PI3K inhibitors |
| JP6770946B2 (ja) * | 2014-07-25 | 2020-10-21 | ノバルティス アーゲー | 2−フルオロ−n−メチル−4−[7−(キノリン−6−イルメチル)イミダゾ[1,2−b][1,2,4]トリアジン−2−イル]ベンズアミドの錠剤 |
| EP3714887A4 (en) * | 2017-11-20 | 2021-08-11 | Jiangsu Hengrui Medicine Co. Ltd. | PHARMACEUTICAL COMPOSITION FOR TOPICAL ADMINISTRATION AND RELATED PREPARATION PROCESS |
| AU2018372180B2 (en) | 2017-11-21 | 2023-08-17 | Denali Therapeutics Inc. | Polymorphs and solid forms of a pyrimidinylamino-pyrazole compound, and methods of production |
| CN112088003B (zh) | 2017-12-20 | 2023-10-13 | 戴纳立制药公司 | 制备嘧啶基-4-氨基吡唑化合物的工艺 |
| BR122023022189A2 (pt) | 2018-02-16 | 2024-02-20 | Incyte Corporation | Usos de inibidores da via de jak1 para o tratamento de distúrbios relacionados a citocinas |
| EP3775284A1 (en) | 2018-03-30 | 2021-02-17 | Incyte Corporation | Biomarkers for inflammatory skin disease |
| MX2020010815A (es) | 2018-04-13 | 2020-12-11 | Incyte Corp | Biomarcadores para enfermedad de injerto contra hospedero. |
| PE20211208A1 (es) | 2018-06-01 | 2021-07-05 | Incyte Corp | Regimen de dosificacion para el tratamiento de trastornos relacionados con pi3k |
| JP6830460B2 (ja) * | 2018-07-05 | 2021-02-17 | コンサート ファーマシューティカルズ インコーポレイテッド | ルキソリチニブの重水素化誘導体 |
| EA202191170A1 (ru) | 2018-10-31 | 2021-07-27 | Инсайт Корпорейшн | Комбинированная терапия для лечения гематологических заболеваний |
| MA54551A (fr) | 2018-12-20 | 2021-10-27 | Incyte Corp | Composés d'imidazopyridazine et d'imidazopyridine utilisés en tant qu'inhibiteurs de la kinase 2 de type récepteur de l'activine |
| WO2020252012A1 (en) | 2019-06-10 | 2020-12-17 | Incyte Corporation | Topical treatment of vitiligo by a jak inhibitor |
| US11510923B2 (en) | 2019-09-05 | 2022-11-29 | Incyte Corporation | Ruxolitinib formulation for reduction of itch in atopic dermatitis |
| US12360120B2 (en) | 2019-10-10 | 2025-07-15 | Incyte Corporation | Biomarkers for graft-versus-host disease |
| JP2022551649A (ja) | 2019-10-10 | 2022-12-12 | インサイト・コーポレイション | 移植片対宿主病のバイオマーカー |
| CN115038443A (zh) | 2019-11-22 | 2022-09-09 | 因西特公司 | 包含alk2抑制剂和jak2抑制剂的组合疗法 |
| IL298118B1 (en) | 2020-06-02 | 2025-10-01 | Incyte Corp | Processes for preparing JAK1 inhibitor |
| CA3189561A1 (en) * | 2020-07-17 | 2022-01-20 | Pfizer Inc. | Stable pharmaceutical topical formulation containing immunosuppressant for treating dermatological conditions |
| AU2021329303A1 (en) | 2020-08-18 | 2023-04-06 | Incyte Corporation | Process and intermediates for preparing a JAK inhibitor |
| MX2023002035A (es) | 2020-08-18 | 2023-06-12 | Incyte Corp | Proceso e intermediarios para preparar un inhibidor de cinasa janus 1 (jak1). |
| JP2023542137A (ja) * | 2020-09-16 | 2023-10-05 | インサイト・コーポレイション | 白斑の局所処置 |
| JP2023544728A (ja) | 2020-10-02 | 2023-10-25 | インサイト・コーポレイション | 扁平苔癬の治療のための局所ルキソリチニブ |
| PL4255442T3 (pl) | 2020-12-04 | 2025-09-01 | Incyte Corporation | Inhibitor jak z analogiem witaminy d do leczenia chorób skóry |
| WO2022125670A1 (en) | 2020-12-08 | 2022-06-16 | Incyte Corporation | Jak1 pathway inhibitors for the treatment of vitiligo |
| DK4333840T3 (da) | 2021-05-03 | 2025-11-24 | Incyte Corp | Jak1-vejinhibitorer til behandling af prurigo nodularis |
| EP4333849A1 (en) | 2021-05-03 | 2024-03-13 | Incyte Corporation | Ruxolitinib for the treatment of prurigo nodularis |
| CN113264936B (zh) * | 2021-05-25 | 2022-08-09 | 常州制药厂有限公司 | 一种jak抑制剂关键中间体及其制备方法 |
| US12071439B2 (en) | 2021-07-12 | 2024-08-27 | Incyte Corporation | Process and intermediates for preparing a JAK inhibitor |
| CN115702936A (zh) * | 2021-08-13 | 2023-02-17 | 杭州中美华东制药有限公司 | 一种芦可替尼组合物及其用途 |
| CA3229388A1 (en) * | 2021-08-19 | 2023-02-23 | Zhuhai United Laboratories Co., Ltd. | Local topical preparation containing jak inhibitor, salts or crystal forms thereof, and preparation method and use thereof |
| CN115869321A (zh) | 2021-09-28 | 2023-03-31 | 杭州中美华东制药有限公司 | 一种芦可替尼组合物及其制备方法 |
| CN114870016B (zh) * | 2022-04-21 | 2023-05-26 | 上海博悦生物科技有限公司 | 一种jak抑制剂的微乳泡沫剂及其应用 |
| CA3259499A1 (en) | 2022-06-14 | 2023-12-21 | Incyte Corp | SOLID FORMS OF A JAK INHIBITOR AND THEIR PREPARATION METHOD |
| CN119157880A (zh) * | 2023-06-20 | 2024-12-20 | 中国医学科学院药物研究所 | 一种6-氨基-1H-吡唑并[3,4-d]嘧啶类JAK3激酶抑制剂在治疗特应性皮炎中的应用 |
| WO2025096373A1 (en) | 2023-11-02 | 2025-05-08 | Incyte Corporation | Ruxolitinib for use in the treatment of prurigo nodularis |
| WO2025117642A1 (en) | 2023-12-01 | 2025-06-05 | Incyte Corporation | Ruxolitinib for treating hidradenitis suppurativa (hs) |
| CN119424386B (zh) * | 2024-10-12 | 2025-07-25 | 深圳市泰力生物医药有限公司 | 含有芦可替尼的外用速溶膜及其制备方法和应用 |
Citations (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5521184A (en) | 1992-04-03 | 1996-05-28 | Ciba-Geigy Corporation | Pyrimidine derivatives and processes for the preparation thereof |
| WO2000009495A1 (en) | 1998-08-11 | 2000-02-24 | Novartis Ag | Isoquinoline derivatives with angiogenesis inhibiting activity |
| WO2000053595A1 (en) | 1999-03-06 | 2000-09-14 | Astrazeneca Ab | Pyrimidine compounds |
| WO2001014402A1 (en) | 1999-08-19 | 2001-03-01 | Isis Pharmaceuticals, Inc. | Antisense modulation of focal adhesion kinase expression |
| WO2001064655A1 (en) | 2000-03-01 | 2001-09-07 | Astrazeneca Ab | 2, 4-di(hetero-)arylamino (-oxy)-5-substituted pyrimidines as antineoplastic agents |
| WO2003024967A2 (en) | 2001-09-19 | 2003-03-27 | Aventis Pharma S.A. | Indolizines as kinase protein inhibitors |
| WO2003037347A1 (en) | 2001-10-30 | 2003-05-08 | Novartis Ag | Staurosporine derivatives as inhibitors of flt3 receptor tyrosine kinase activity |
| WO2003099771A2 (en) | 2002-05-29 | 2003-12-04 | Novartis Ag | Diaryl urea derivatives useful for the treatment of protein kinase dependent diseases |
| WO2004005281A1 (en) | 2002-07-05 | 2004-01-15 | Novartis Ag | Inhibitors of tyrosine kinases |
| WO2004046120A2 (en) | 2002-11-15 | 2004-06-03 | Vertex Pharmaceuticals Incorporated | Diaminotriazoles useful as inhibitors of protein kinases |
| WO2004056786A2 (en) | 2002-12-20 | 2004-07-08 | Pfizer Products Inc. | Pyrimidine derivates for the treatment of abnormal cell growth |
| WO2004080980A1 (en) | 2003-03-14 | 2004-09-23 | Novartis Ag | 2, 4- di (phenylamino) pyrimidines useful in the treatment of neoplastic diseases, inflammatory and immune system disorders |
| WO2005028444A1 (en) | 2003-09-24 | 2005-03-31 | Novartis Ag | 1,4-disubstituted isoquinilone derivatives as raf-kinase inhibitors useful for the treatment of proliferative diseases |
| WO2006056399A2 (en) | 2004-11-24 | 2006-06-01 | Novartis Ag | Combinations of jak inhibitors and at least one of bcr-abl, flt-3, fak or raf kinase inhibitors |
| US20080312259A1 (en) | 2007-06-13 | 2008-12-18 | Incyte Corporation | SALTS OF THE JANUS KINASE INHIBITOR (R)-3-(4-(7H-PYRROLO[2,3-d]PYRIMIDIN-4-YL)-1H-PYRAZOL-1-YL)-3-CYCLOPENTYLPROPANENITRILE |
| US20090181959A1 (en) | 2005-12-13 | 2009-07-16 | Incyte Corporation | HETEROARYL SUBSTITUTED PYRROLO[2,3-b]PYRIDINES AND PYRROLO[2,3-b]PYRIMIDINES AS JANUS KINASE INHIBITORS |
Family Cites Families (265)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2985589A (en) | 1957-05-22 | 1961-05-23 | Universal Oil Prod Co | Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets |
| US3832460A (en) | 1971-03-19 | 1974-08-27 | C Kosti | Anesthetic-vasoconstrictor-antihistamine composition for the treatment of hypertrophied oral tissue |
| US4140755A (en) | 1976-02-13 | 1979-02-20 | Hoffmann-La Roche Inc. | Sustained release tablet formulations |
| DE3036390A1 (de) | 1980-09-26 | 1982-05-13 | Troponwerke GmbH & Co KG, 5000 Köln | Neue pyrrolo-pyrimidine, verfahren zu ihrer herstellung und ihre verwendung bei der herstellung von biologischen wirkstoffen |
| DE3220113A1 (de) | 1982-05-28 | 1983-12-01 | Basf Ag, 6700 Ludwigshafen | Difluormethoxiphenylthiophosphorsaeureester |
| US4402832A (en) | 1982-08-12 | 1983-09-06 | Uop Inc. | High efficiency continuous separation process |
| US4548990A (en) | 1983-08-15 | 1985-10-22 | Ciba-Geigy Corporation | Crosslinked, porous polymers for controlled drug delivery |
| US4498991A (en) | 1984-06-18 | 1985-02-12 | Uop Inc. | Serial flow continuous separation process |
| NL8403224A (nl) | 1984-10-24 | 1986-05-16 | Oce Andeno Bv | Dioxafosforinanen, de bereiding ervan en de toepassing voor het splitsen van optisch actieve verbindingen. |
| CA1306260C (en) | 1985-10-18 | 1992-08-11 | Shionogi & Co., Ltd. | Condensed imidazopyridine derivatives |
| US5702688A (en) * | 1986-12-23 | 1997-12-30 | Tristrata Technology, Inc. | Amphoteric compositions and polymeric forms of alpha hydroxyacids, and their therapeutic use |
| ATE139232T1 (de) | 1989-10-11 | 1996-06-15 | Teijin Ltd | Bizyklische pyrimidinderivate, verfahren zu deren herstellung und diese enthaltende pharmazeutische zusammensetzung |
| IT1258781B (it) | 1992-01-16 | 1996-02-29 | Zambon Spa | Composizione farmaceutica oftalmica contenente n-acetilcisteina e polivinilalcol |
| AU671491B2 (en) | 1992-12-18 | 1996-08-29 | F. Hoffmann-La Roche Ag | N-oxycarbonyl substituted 5'-deoxy-5-fluorcytidines |
| JPH0710876A (ja) | 1993-06-24 | 1995-01-13 | Teijin Ltd | 4位に環状アミノ基を有するピロロ[2,3―d]ピリミジン |
| EP0727217A3 (en) | 1995-02-10 | 1997-01-15 | Suntory Ltd | Pharmaceutical and cosmetic compositions containing God-type ellagitannin as an active ingredient |
| IL117580A0 (en) | 1995-03-29 | 1996-07-23 | Merck & Co Inc | Inhibitors of farnesyl-protein transferase and pharmaceutical compositions containing them |
| US5856326A (en) | 1995-03-29 | 1999-01-05 | Merck & Co., Inc. | Inhibitors of farnesyl-protein transferase |
| CN1105113C (zh) | 1995-07-05 | 2003-04-09 | 纳幕尔杜邦公司 | 杀真菌嘧啶酮 |
| US5630943A (en) | 1995-11-30 | 1997-05-20 | Merck Patent Gesellschaft Mit Beschrankter Haftung | Discontinuous countercurrent chromatographic process and apparatus |
| GB9604361D0 (en) | 1996-02-29 | 1996-05-01 | Pharmacia Spa | 4-Substituted pyrrolopyrimidine compounds as tyrosine kinase inhibitors |
| CA2250232A1 (en) | 1996-04-03 | 1997-10-09 | Allen I. Oliff | A method of treating cancer |
| WO1997038664A2 (en) | 1996-04-18 | 1997-10-23 | Merck & Co., Inc. | A method of treating cancer |
| US5795909A (en) | 1996-05-22 | 1998-08-18 | Neuromedica, Inc. | DHA-pharmaceutical agent conjugates of taxanes |
| JP2000508335A (ja) | 1996-05-30 | 2000-07-04 | メルク エンド カンパニー インコーポレーテッド | 癌の治療方法 |
| US6624138B1 (en) | 2001-09-27 | 2003-09-23 | Gp Medical | Drug-loaded biological material chemically treated with genipin |
| JP2001524079A (ja) | 1997-04-07 | 2001-11-27 | メルク エンド カンパニー インコーポレーテッド | ガンの治療方法 |
| US6060038A (en) | 1997-05-15 | 2000-05-09 | Merck & Co., Inc. | Radiolabeled farnesyl-protein transferase inhibitors |
| US6063284A (en) | 1997-05-15 | 2000-05-16 | Em Industries, Inc. | Single column closed-loop recycling with periodic intra-profile injection |
| CA2295620A1 (en) | 1997-08-11 | 1999-02-18 | Boehringer Ingelheim Pharmaceuticals, Inc. | 5,6-heteroaryl-dipyrido¬2,3-b:3',2'-f|azepines and their use in the prevention or treatment of hiv infection |
| US6075056A (en) * | 1997-10-03 | 2000-06-13 | Penederm, Inc. | Antifungal/steroid topical compositions |
| US6025366A (en) | 1998-04-02 | 2000-02-15 | Merck & Co., Inc. | Antagonists of gonadotropin releasing hormone |
| US6232320B1 (en) | 1998-06-04 | 2001-05-15 | Abbott Laboratories | Cell adhesion-inhibiting antiinflammatory compounds |
| IL139811A0 (en) | 1998-06-04 | 2002-02-10 | Abbott Lab | Cell adhesion-inhibiting antinflammatory compounds |
| PA8474101A1 (es) | 1998-06-19 | 2000-09-29 | Pfizer Prod Inc | Compuestos de pirrolo [2,3-d] pirimidina |
| JP2000119271A (ja) | 1998-08-12 | 2000-04-25 | Hokuriku Seiyaku Co Ltd | 1h―イミダゾピリジン誘導体 |
| TR200100708T2 (tr) | 1998-09-10 | 2001-07-23 | Nycomed Danmark A/S | İlaç maddelerine mahsus çabuk salımlı farmasötik bileşimler. |
| FR2785196B1 (fr) | 1998-10-29 | 2000-12-15 | Inst Francais Du Petrole | Procede et dispositif de separation avec des zones chromatographiques a longueur variable |
| US6375839B1 (en) | 1998-10-29 | 2002-04-23 | Institut Francais Du Petrole | Process and device for separation with variable-length chromatographic zones |
| US6413419B1 (en) | 1998-10-29 | 2002-07-02 | Institut Francais Du Petrole | Process and device for separation with variable-length chromatographic |
| US6333384B1 (en) | 1998-11-02 | 2001-12-25 | Gil Technologies | Vinyl-terminated polybutadiene and butadiene-styrene copolymers containing urethane and/or ester residues, and the electrical laminates obtained therefrom |
| JP2002538121A (ja) | 1999-03-03 | 2002-11-12 | メルク エンド カムパニー インコーポレーテッド | プレニルタンパク質トランスフェラーゼの阻害剤 |
| US6217895B1 (en) | 1999-03-22 | 2001-04-17 | Control Delivery Systems | Method for treating and/or preventing retinal diseases with sustained release corticosteroids |
| US6239113B1 (en) | 1999-03-31 | 2001-05-29 | Insite Vision, Incorporated | Topical treatment or prevention of ocular infections |
| WO2000063168A1 (en) | 1999-04-16 | 2000-10-26 | Coelacanth Chemical Corporation | Synthesis of azetidine derivatives |
| US6921763B2 (en) | 1999-09-17 | 2005-07-26 | Abbott Laboratories | Pyrazolopyrimidines as therapeutic agents |
| DE60013464T2 (de) | 1999-10-13 | 2005-09-15 | Banyu Pharmaceutical Co., Ltd. | Substituierte imidazolin-derivate |
| CZ303875B6 (cs) | 1999-12-10 | 2013-06-05 | Pfizer Products Inc. | Pyrrolo[2,3-d]pyrimidinová sloucenina a farmaceutická kompozice s jejím obsahem |
| IL150388A0 (en) | 1999-12-24 | 2002-12-01 | Aventis Pharma Ltd | Azaindoles |
| US7235551B2 (en) | 2000-03-02 | 2007-06-26 | Smithkline Beecham Corporation | 1,5-disubstituted-3,4-dihydro-1h-pyrimido[4,5-d]pyrimidin-2-one compounds and their use in treating csbp/p38 kinase mediated diseases |
| ES2206363T3 (es) | 2000-04-07 | 2004-05-16 | Laboratoire Medidom S.A. | Formulaciones oftalmicas a base de ciclosporina, de acido hialuronico y de polisorbato. |
| WO2001081345A1 (en) | 2000-04-20 | 2001-11-01 | Mitsubishi Pharma Corporation | Aromatic amide compounds |
| KR100785363B1 (ko) | 2000-04-25 | 2007-12-18 | 이코스 코포레이션 | 인간 포스파티딜-이노시톨 3-키나제 델타의 억제제 |
| EP1294752A2 (en) | 2000-06-16 | 2003-03-26 | Curis, Inc. | Angiogenesis-modulating compositions and uses |
| US7498304B2 (en) | 2000-06-16 | 2009-03-03 | Curis, Inc. | Angiogenesis-modulating compositions and uses |
| US6335342B1 (en) | 2000-06-19 | 2002-01-01 | Pharmacia & Upjohn S.P.A. | Azaindole derivatives, process for their preparation, and their use as antitumor agents |
| ATE465756T1 (de) | 2000-06-23 | 2010-05-15 | Mitsubishi Tanabe Pharma Corp | Antitumoreffekt-verstärker |
| EA006153B1 (ru) | 2000-06-26 | 2005-10-27 | Пфайзер Продактс Инк. | СОЕДИНЕНИЯ ПИРРОЛО[2,3-d]ПИРИМИДИНА В КАЧЕСТВЕ ИММУНОДЕПРЕССАНТОВ |
| EP1294358B1 (en) | 2000-06-28 | 2004-08-18 | Smithkline Beecham Plc | Wet milling process |
| ES2307667T3 (es) | 2000-12-05 | 2008-12-01 | Vertex Pharmaceuticals Incorporated | Inhibidires de quinasas terminales c-jun(jnk) y otras proteinas quinasas. |
| GB0100622D0 (en) | 2001-01-10 | 2001-02-21 | Vernalis Res Ltd | Chemical compounds V111 |
| WO2002055496A1 (en) | 2001-01-15 | 2002-07-18 | Glaxo Group Limited | Aryl piperidine and piperazine derivatives as inducers of ldl-receptor expression |
| WO2002060492A1 (en) | 2001-01-30 | 2002-08-08 | Cytopia Pty Ltd | Methods of inhibiting kinases |
| AU2002308748A1 (en) | 2001-05-16 | 2002-11-25 | Vertex Pharmaceuticals Incorporated | Heterocyclic substituted pyrazoles as inhibitors of src and other protein kinases |
| US7301023B2 (en) | 2001-05-31 | 2007-11-27 | Pfizer Inc. | Chiral salt resolution |
| GB0115109D0 (en) | 2001-06-21 | 2001-08-15 | Aventis Pharma Ltd | Chemical compounds |
| GB0115393D0 (en) | 2001-06-23 | 2001-08-15 | Aventis Pharma Ltd | Chemical compounds |
| CA2455181C (en) | 2001-08-01 | 2010-04-06 | Merck & Co., Inc. | Benzimidazo[4,5-f]isoquinolinone derivatives |
| US6429231B1 (en) | 2001-09-24 | 2002-08-06 | Bradley Pharmaceuticals, Inc. | Compositions containing antimicrobials and urea for the treatment of dermatological disorders and methods for their use |
| JP2003155285A (ja) | 2001-11-19 | 2003-05-27 | Toray Ind Inc | 環状含窒素誘導体 |
| US6949668B2 (en) | 2001-11-30 | 2005-09-27 | Teijin Limited | Process for producing 5-(3-cyanophenyl)-3-formylbenzoic acid compound |
| GT200200234A (es) | 2001-12-06 | 2003-06-27 | Compuestos cristalinos novedosos | |
| US6995144B2 (en) | 2002-03-14 | 2006-02-07 | Eisai Co., Ltd. | Nitrogen containing heterocyclic compounds and medicines containing the same |
| TW200403058A (en) | 2002-04-19 | 2004-03-01 | Bristol Myers Squibb Co | Heterocyclo inhibitors of potassium channel function |
| WO2003091246A1 (en) | 2002-04-26 | 2003-11-06 | Vertex Pharmaceuticals Incorporated | Pyrrole derivatives as inhibitors of erk2 and uses thereof |
| EP1503757B1 (en) | 2002-05-02 | 2007-12-19 | Merck & Co., Inc. | Tyrosine kinase inhibitors |
| MXPA04011004A (es) | 2002-05-07 | 2005-01-25 | Control Delivery Sys Inc | Procesos para formar un dispositivo de administracion de farmaco. |
| US7122550B2 (en) | 2002-05-23 | 2006-10-17 | Cytopia Pty Ltd | Protein kinase inhibitors |
| CN1630668A (zh) | 2002-06-26 | 2005-06-22 | 出光兴产株式会社 | 氢化共聚物及其制备方法以及包含氢化共聚物的热熔粘合剂组合物 |
| GB0215844D0 (en) | 2002-07-09 | 2002-08-14 | Novartis Ag | Organic compounds |
| WO2004007472A1 (ja) | 2002-07-10 | 2004-01-22 | Ono Pharmaceutical Co., Ltd. | Ccr4アンタゴニストおよびその医薬用途 |
| CA2497977A1 (en) | 2002-09-20 | 2004-04-01 | Alcon, Inc. | Use of cytokine synthesis inhibitors for the treatment of dry eye disorders |
| US20040204404A1 (en) | 2002-09-30 | 2004-10-14 | Robert Zelle | Human N-type calcium channel blockers |
| US7259161B2 (en) | 2002-11-04 | 2007-08-21 | Vertex Pharmaceuticals Incorporated | Compositions useful as inhibitors of JAK and other protein kinases |
| US20040099204A1 (en) | 2002-11-25 | 2004-05-27 | Nestor John J. | Sheet, page, line, position marker |
| CA2507392A1 (en) | 2002-11-26 | 2004-06-10 | Pfizer Products Inc. | Method of treatment of transplant rejection |
| TWI335819B (en) | 2002-12-24 | 2011-01-11 | Alcon Inc | Use of oculosurface selective glucocorticoid in the treatment of dry eye |
| US7135493B2 (en) | 2003-01-13 | 2006-11-14 | Astellas Pharma Inc. | HDAC inhibitor |
| US7167750B2 (en) | 2003-02-03 | 2007-01-23 | Enteromedics, Inc. | Obesity treatment with electrically induced vagal down regulation |
| US7407962B2 (en) | 2003-02-07 | 2008-08-05 | Vertex Pharmaceuticals Incorporated | Heteroaryl compounds useful as inhibitors or protein kinases |
| JP2006522124A (ja) | 2003-04-03 | 2006-09-28 | バーテックス ファーマシューティカルズ インコーポレイテッド | プロテインキナーゼのインヒビターとして有用な組成物 |
| SE0301372D0 (sv) | 2003-05-09 | 2003-05-09 | Astrazeneca Ab | Novel compounds |
| SE0301373D0 (sv) | 2003-05-09 | 2003-05-09 | Astrazeneca Ab | Novel compounds |
| FR2857454B1 (fr) | 2003-07-08 | 2006-08-11 | Aventis Pasteur | Dosage des acides techoiques des bacteries gram+ |
| US20050043346A1 (en) | 2003-08-08 | 2005-02-24 | Pharmacia Italia S.P.A. | Pyridylpyrrole derivatives active as kinase inhibitors |
| JP5010917B2 (ja) | 2003-08-29 | 2012-08-29 | エグゼリクシス, インコーポレイテッド | c−Kit調節因子および使用方法 |
| EP1678147B1 (en) | 2003-09-15 | 2012-08-08 | Lead Discovery Center GmbH | Pharmaceutically active 4,6-disubstituted aminopyrimidine derivatives as modulators of protein kinases |
| SI1679074T1 (sl) | 2003-10-24 | 2011-04-29 | Santen Pharmaceutical Co Ltd | Terapevtsko sredstvo za keratokonjuktivno motnjo |
| MY141220A (en) | 2003-11-17 | 2010-03-31 | Astrazeneca Ab | Pyrazole derivatives as inhibitors of receptor tyrosine kinases |
| WO2005051393A1 (en) | 2003-11-25 | 2005-06-09 | Pfizer Products Inc. | Method of treatment of atherosclerosis |
| MXPA06007002A (es) | 2003-12-17 | 2006-08-31 | Pfizer Prod Inc | Compuestos de pirrolo[2,3-d]pirimidina para tratar rechazo de transplantes. |
| DK1696920T3 (en) | 2003-12-19 | 2015-01-19 | Plexxikon Inc | RELATIONS AND PROCEDURES FOR THE DEVELOPMENT OF LAW MODULATORS |
| ATE406356T1 (de) | 2003-12-19 | 2008-09-15 | Schering Corp | Thiadiazole als cxc- und cc- chemokinrezeptorliganden |
| HRP20100675T1 (hr) | 2003-12-23 | 2011-01-31 | Astex Therapeutics Limited | Derivati pirazola kao modulatori protein kinaze |
| US20050187389A1 (en) | 2004-01-13 | 2005-08-25 | Ambit Biosciences Corporation | Pyrrolopyrimidine derivatives and analogs and their use in the treatment and prevention of diseases |
| EP1744751A4 (en) | 2004-03-18 | 2010-03-10 | Brigham & Womens Hospital | METHOD FOR THE TREATMENT OF SYNUCLEINOPATHIES |
| WO2005095400A1 (en) | 2004-03-30 | 2005-10-13 | Vertex Pharmaceuticals Incorporated | Azaindoles useful as inhibitors of jak and other protein kinases |
| JP5213229B2 (ja) | 2004-04-23 | 2013-06-19 | エグゼリクシス, インコーポレイテッド | キナーゼ調節因子および使用方法 |
| WO2005105814A1 (en) | 2004-04-28 | 2005-11-10 | Incyte Corporation | Tetracyclic inhibitors of janus kinases |
| US7558717B2 (en) | 2004-04-28 | 2009-07-07 | Vertex Pharmaceuticals Incorporated | Crystal structure of human JAK3 kinase domain complex and binding pockets thereof |
| EP1755680A1 (en) | 2004-05-03 | 2007-02-28 | Novartis AG | Combinations comprising a s1p receptor agonist and a jak3 kinase inhibitor |
| US20060074102A1 (en) | 2004-05-14 | 2006-04-06 | Kevin Cusack | Kinase inhibitors as therapeutic agents |
| PE20060426A1 (es) | 2004-06-02 | 2006-06-28 | Schering Corp | DERIVADOS DE ACIDO TARTARICO COMO INHIBIDORES DE MMPs, ADAMs, TACE Y TNF-alfa |
| RU2401265C2 (ru) | 2004-06-10 | 2010-10-10 | Айрм Ллк | Соединения и композиции в качестве ингибиторов протеинкиназы |
| WO2006001463A1 (ja) | 2004-06-23 | 2006-01-05 | Ono Pharmaceutical Co., Ltd. | S1p受容体結合能を有する化合物およびその用途 |
| WO2006004984A1 (en) | 2004-06-30 | 2006-01-12 | Vertex Pharmaceuticals Incorporated | Azaindoles useful as inhibitors of protein kinases |
| US7138423B2 (en) | 2004-07-20 | 2006-11-21 | Bristol-Myers Squibb Company | Arylpyrrolidine derivatives as NK-1 /SSRI antagonists |
| FR2873691B1 (fr) | 2004-07-29 | 2006-10-06 | Sanofi Synthelabo | Derives d'amino-piperidine, leur preparation et leur application en therapeutique |
| WO2006013114A1 (en) | 2004-08-06 | 2006-02-09 | Develogen Aktiengesellschaft | Use of a timp-2 secreted protein product for preventing and treating pancreatic diseases and/or obesity and/or metabolic syndrome |
| CN101006186A (zh) | 2004-08-23 | 2007-07-25 | 财团法人牧岩生命工学研究所 | 用于检测sars冠状病毒的引物和探针,包括该引物和/或探针的试剂盒及其检测方法 |
| US20070054916A1 (en) | 2004-10-01 | 2007-03-08 | Amgen Inc. | Aryl nitrogen-containing bicyclic compounds and methods of use |
| CN101899049A (zh) | 2004-10-13 | 2010-12-01 | 霍夫曼-拉罗奇有限公司 | 二取代吡唑并苯并二氮杂*类 |
| UY29177A1 (es) | 2004-10-25 | 2006-05-31 | Astex Therapeutics Ltd | Derivados sustituidos de purina, purinona y deazapurina, composiciones que los contienen métodos para su preparación y sus usos |
| MY179032A (en) | 2004-10-25 | 2020-10-26 | Cancer Research Tech Ltd | Ortho-condensed pyridine and pyrimidine derivatives (e.g.purines) as protein kinase inhibitors |
| US7528138B2 (en) | 2004-11-04 | 2009-05-05 | Vertex Pharmaceuticals Incorporated | Pyrazolo[1,5-a]pyrimidines useful as inhibitors of protein kinases |
| US7517870B2 (en) | 2004-12-03 | 2009-04-14 | Fondazione Telethon | Use of compounds that interfere with the hedgehog signaling pathway for the manufacture of a medicament for preventing, inhibiting, and/or reversing ocular diseases related with ocular neovascularization |
| US20060128803A1 (en) | 2004-12-14 | 2006-06-15 | Alcon, Inc. | Method of treating dry eye disorders using 13(S)-HODE and its analogs |
| WO2006067445A2 (en) | 2004-12-22 | 2006-06-29 | Astrazeneca Ab | Csf-1r kinase inhibitors |
| AR054416A1 (es) | 2004-12-22 | 2007-06-27 | Incyte Corp | Pirrolo [2,3-b]piridin-4-il-aminas y pirrolo [2,3-b]pirimidin-4-il-aminas como inhibidores de las quinasas janus. composiciones farmaceuticas. |
| EP1844037A1 (en) | 2005-01-20 | 2007-10-17 | Pfizer Limited | Chemical compounds |
| JP5227032B2 (ja) | 2005-02-03 | 2013-07-03 | バーテックス ファーマシューティカルズ インコーポレイテッド | プロテインキナーゼの阻害剤として有用なピロロピリミジン |
| WO2007044050A2 (en) | 2005-02-04 | 2007-04-19 | Bristol-Myers Squibb Company | 1h-imidazo[4,5-d]thieno[3,2-b]pyridine based tricyclic compounds and pharmaceutical compositions comprising same |
| BRPI0608513A2 (pt) | 2005-03-15 | 2010-01-05 | Irm Llc | compostos e composições como inibidores da proteìna quinase |
| AU2006232105A1 (en) | 2005-04-05 | 2006-10-12 | Pharmacopeia, Inc. | Purine and imidazopyridine derivatives for immunosuppression |
| GB0510139D0 (en) | 2005-05-18 | 2005-06-22 | Addex Pharmaceuticals Sa | Novel compounds B1 |
| RU2435769C2 (ru) | 2005-05-20 | 2011-12-10 | Вертекс Фармасьютикалз Инкорпорейтед | Пирролопиридины, полезные в качестве ингибиторов протеинкиназы |
| GB0510390D0 (en) | 2005-05-20 | 2005-06-29 | Novartis Ag | Organic compounds |
| RU2485106C2 (ru) | 2005-06-08 | 2013-06-20 | Райджел Фамэсьютикэлз, Инк. | Соединения, проявляющие активность в отношении jak-киназы (варианты), способ лечения заболеваний, опосредованных jak-киназой, способ ингибирования активности jak-киназы (варианты), фармацевтическая композиция на основе указанных соединений |
| WO2006136823A1 (en) | 2005-06-21 | 2006-12-28 | Astex Therapeutics Limited | Heterocyclic containing amines as kinase b inhibitors |
| WO2007002433A1 (en) | 2005-06-22 | 2007-01-04 | Plexxikon, Inc. | Pyrrolo [2, 3-b] pyridine derivatives as protein kinase inhibitors |
| EP2251341A1 (en) | 2005-07-14 | 2010-11-17 | Astellas Pharma Inc. | Heterocyclic Janus kinase 3 inhibitors |
| FR2889662B1 (fr) * | 2005-08-11 | 2011-01-14 | Galderma Res & Dev | Emulsion de type huile-dans-eau pour application topique en dermatologie |
| WO2007025090A2 (en) | 2005-08-25 | 2007-03-01 | Kalypsys, Inc. | Heterobicyclic and - tricyclic inhibitors of mapk/erk kinase |
| US20070149506A1 (en) | 2005-09-22 | 2007-06-28 | Arvanitis Argyrios G | Azepine inhibitors of Janus kinases |
| NZ567133A (en) | 2005-09-30 | 2011-07-29 | Vertex Pharma | Deazapurines useful as inhibitors of janus kinases |
| WO2007044894A2 (en) | 2005-10-11 | 2007-04-19 | Chembridge Research Laboratories, Inc. | Cell-free protein expression systems and methods of use thereof |
| KR101315574B1 (ko) | 2005-10-14 | 2013-10-08 | 스미또모 가가꾸 가부시끼가이샤 | 히드라지드 화합물 및 이의 살충 용도 |
| WO2007049041A1 (en) | 2005-10-28 | 2007-05-03 | Astrazeneca Ab | 4- (3-aminopyrazole) pyrimidine derivatives for use as tyrosine kinase inhibitors in the treatment of cancer |
| MY167260A (en) | 2005-11-01 | 2018-08-14 | Targegen Inc | Bi-aryl meta-pyrimidine inhibitors of kinases |
| WO2007062459A1 (en) | 2005-11-29 | 2007-06-07 | Cytopia Research Pty Ltd | Selective kinase inhibitors based on pyridine scaffold |
| US20130137681A1 (en) | 2005-12-13 | 2013-05-30 | Incyte Corporation | HETEROARYL SUBSTITUTED PYRROLO[2,3-b]PYRIDINES AND PYRROLO[2,3-b]PYRIMIDINES AS JANUS KINASE INHIBITORS |
| WO2007076423A2 (en) | 2005-12-22 | 2007-07-05 | Smithkline Beecham Corporation | INHIBITORS OF Akt ACTIVITY |
| SI1962830T1 (sl) | 2005-12-23 | 2013-07-31 | Glaxosmithkline Llc | Azaindolni inhibitorji kinaz Aurora |
| NZ601687A (en) | 2006-01-17 | 2014-03-28 | Vertex Pharma | Azaindoles useful as inhibitors of janus kinases |
| EP1979353A2 (en) | 2006-01-19 | 2008-10-15 | OSI Pharmaceuticals, Inc. | Fused heterobicyclic kinase inhibitors |
| JP2009525350A (ja) | 2006-02-01 | 2009-07-09 | スミスクライン ビーチャム コーポレーション | Rafキナーゼ阻害薬として有用なピロロ[2,3,b]ピリジン誘導体 |
| US7745477B2 (en) | 2006-02-07 | 2010-06-29 | Hoffman-La Roche Inc. | Heteroaryl and benzyl amide compounds |
| US8003642B2 (en) | 2006-03-10 | 2011-08-23 | Ono Pharmaceutical Co., Ltd. | Nitrogenated heterocyclic derivative, and pharmaceutical agent comprising the derivative as active ingredient |
| FR2898498B1 (fr) * | 2006-03-15 | 2008-11-28 | Galderma Sa | Nouvelles compositions topiques sous forme d'emulsion h/e comprenant un glycol pro-penetrant |
| AU2007236707C1 (en) | 2006-04-03 | 2012-05-24 | Astellas Pharma Inc. | Hetero compound |
| US8741912B2 (en) | 2006-04-05 | 2014-06-03 | Vertex Pharmaceuticals Incorporated | Deazapurines useful as inhibitors of Janus kinases |
| US20090124636A1 (en) | 2006-04-12 | 2009-05-14 | Pfizer Inc. | Chemical compounds |
| WO2007129195A2 (en) | 2006-05-04 | 2007-11-15 | Pfizer Products Inc. | 4-pyrimidine-5-amino-pyrazole compounds |
| US20080051427A1 (en) | 2006-05-18 | 2008-02-28 | Fritz Schuckler | Pharmaceutical Compositions and Methods of Using Same |
| US7691811B2 (en) | 2006-05-25 | 2010-04-06 | Bodor Nicholas S | Transporter-enhanced corticosteroid activity and methods and compositions for treating dry eye |
| JO3235B1 (ar) | 2006-05-26 | 2018-03-08 | Astex Therapeutics Ltd | مركبات بيررولوبيريميدين و استعمالاتها |
| CA2658764A1 (en) | 2006-07-20 | 2008-01-24 | Mehmet Kahraman | Benzothiophene inhibitors of rho kinase |
| US8715700B2 (en) * | 2006-07-21 | 2014-05-06 | Dow Pharmaceutical Sciences, Inc. | Alpha hydroxy acid sustained release formulation |
| WO2008013622A2 (en) | 2006-07-27 | 2008-01-31 | E. I. Du Pont De Nemours And Company | Fungicidal azocyclic amides |
| US8492378B2 (en) | 2006-08-03 | 2013-07-23 | Takeda Pharmaceutical Company Limited | GSK-3β inhibitor |
| US8318723B2 (en) | 2006-08-16 | 2012-11-27 | Boehringer Ingelheim International Gmbh | Pyrazine compounds, their use and methods of preparation |
| AU2007293653B2 (en) | 2006-09-08 | 2011-02-17 | Novartis Ag | N-biaryl (hetero) arylsulphonamide derivatives useful in the treatment of diseases mediated by lymphocytes interactions |
| WO2008035376A2 (en) | 2006-09-19 | 2008-03-27 | Council Of Scientific & Industrial Research | A novel bio-erodible insert for ophthalmic applications and a process for the preparation thereof |
| AR063142A1 (es) | 2006-10-04 | 2008-12-30 | Pharmacopeia Inc | Derivados de 2-(bencimidazolil) purina y purinonas 6-sustituidas utiles como inmunosupresores,y composiciones farmaceuticas que los contienen. |
| US7915268B2 (en) | 2006-10-04 | 2011-03-29 | Wyeth Llc | 8-substituted 2-(benzimidazolyl)purine derivatives for immunosuppression |
| US20120225057A1 (en) | 2006-10-11 | 2012-09-06 | Deciphera Pharmaceuticals, Llc | Methods and compositions for the treatment of myeloproliferative diseases and other proliferative diseases |
| CA2667487C (en) | 2006-11-06 | 2017-04-04 | Supergen, Inc. | Imidazo[1,2-b]pyridazine and pyrazolo[1,5-a]pyrimidine derivatives and their use as protein kinase inhibitors |
| US20080119496A1 (en) | 2006-11-16 | 2008-05-22 | Pharmacopeia Drug Discovery, Inc. | 7-Substituted Purine Derivatives for Immunosuppression |
| GEP20125658B (en) | 2006-11-22 | 2012-10-10 | Incyte Corp | Imidazotriazines and imidazo pyrimidines as kinase inhibitors |
| WO2008067119A2 (en) | 2006-11-27 | 2008-06-05 | Smithkline Beecham Corporation | Novel compounds |
| AU2007334436A1 (en) | 2006-12-15 | 2008-06-26 | Abbott Laboratories | Novel oxadiazole compounds |
| AU2007338792B2 (en) | 2006-12-20 | 2012-05-31 | Amgen Inc. | Substituted heterocycles and methods of use |
| MX2009006543A (es) | 2006-12-20 | 2009-06-26 | Amgen Inc | Compuestos heterociclicos y su uso en el tratamiento de la inflamacion, angiogenesis y cancer. |
| AU2007338210B2 (en) | 2006-12-22 | 2013-01-31 | Sigma-Tau Industrie Farmaceutiche Riunite S.P.A. | Gel useful for the delivery of ophthalmic drugs |
| EP2121692B1 (en) | 2006-12-22 | 2013-04-10 | Incyte Corporation | Substituted heterocycles as janus kinase inhibitors |
| WO2008082840A1 (en) | 2006-12-29 | 2008-07-10 | Abbott Laboratories | Pim kinase inhibitors as cancer chemotherapeutics |
| WO2008082839A2 (en) | 2006-12-29 | 2008-07-10 | Abbott Laboratories | Pim kinase inhibitors as cancer chemotherapeutics |
| KR20080062876A (ko) | 2006-12-29 | 2008-07-03 | 주식회사 대웅제약 | 신규한 항진균성 트리아졸 유도체 |
| EA019951B1 (ru) | 2007-03-01 | 2014-07-30 | Новартис Аг | Ингибиторы киназы pim и способы их применения |
| UA101611C2 (ru) | 2007-04-03 | 2013-04-25 | Аррей Байофарма Инк. | СОЕДИНЕНИЯ ИМИДАЗО[1,2-а]ПИРИДИНА КАК ИНГИБИТОРЫ ТИРОЗИНКИНАЗЫ РЕЦЕПТОРОВ |
| GB0709031D0 (en) | 2007-05-10 | 2007-06-20 | Sareum Ltd | Pharmaceutical compounds |
| WO2008145681A2 (en) | 2007-05-31 | 2008-12-04 | Boehringer Ingelheim International Gmbh | Ccr2 receptor antagonists and uses thereof |
| GB0710528D0 (en) | 2007-06-01 | 2007-07-11 | Glaxo Group Ltd | Novel compounds |
| CL2008001709A1 (es) | 2007-06-13 | 2008-11-03 | Incyte Corp | Compuestos derivados de pirrolo [2,3-b]pirimidina, moduladores de quinasas jak; composicion farmaceutica; y uso en el tratamiento de enfermedades tales como cancer, psoriasis, artritis reumatoide, entre otras. |
| EP2175858B1 (en) | 2007-07-11 | 2014-09-10 | Pfizer Inc. | Pharmaceutical compositions and methods of treating dry eye disorders |
| KR20100038119A (ko) | 2007-08-01 | 2010-04-12 | 화이자 인코포레이티드 | 피라졸 화합물 및 raf 억제제로서 이의 용도 |
| WO2009049028A1 (en) | 2007-10-09 | 2009-04-16 | Targegen Inc. | Pyrrolopyrimidine compounds and their use as janus kinase modulators |
| WO2009064486A2 (en) | 2007-11-15 | 2009-05-22 | Musc Foundation For Research Development | Inhibitors of pim protein kinases, compositions, and methods for treating cancer |
| CN101910152B (zh) | 2007-11-16 | 2014-08-06 | 因塞特公司 | 作为janus激酶抑制剂的4-吡唑基-n-芳基嘧啶-2-胺和4-吡唑基-n-杂芳基嘧啶-2-胺 |
| GB0723815D0 (en) | 2007-12-05 | 2008-01-16 | Glaxo Group Ltd | Compounds |
| TR201815961T4 (tr) | 2008-01-18 | 2018-11-21 | Inst Of Organic Chemistry And Biochemistry Of The Academy Of Sciences Of The Czech Republic | Yeni sitostatik 7-deazapürin nükleozidleri. |
| MY158994A (en) | 2008-02-04 | 2016-11-30 | Mercury Therapeutics Inc | Ampk modulators |
| AR070531A1 (es) | 2008-03-03 | 2010-04-14 | Novartis Ag | Inhibidores de cinasa pim y metodos para su uso |
| MX2010010012A (es) | 2008-03-11 | 2010-10-20 | Incyte Corp | Derivados de azetidina y ciclobutano como inhibidores de jak. |
| CN102015686B (zh) | 2008-03-21 | 2014-07-02 | 诺华股份有限公司 | 杂环化合物及其用途 |
| KR20160130519A (ko) * | 2008-06-26 | 2016-11-11 | 안테리오스, 인코퍼레이티드 | 경피 운반 |
| UY31952A (es) | 2008-07-02 | 2010-01-29 | Astrazeneca Ab | 5-metilideno-1,3-tiazolidina-2,4-dionas sustituidas como inhibidores de quinasa pim |
| FR2933409B1 (fr) | 2008-07-03 | 2010-08-27 | Centre Nat Rech Scient | NOUVEAUX PYRROLO °2,3-a! CARBAZOLES ET LEUR UTILISATION COMME INHIBITEURS DES KINASES PIM |
| TWI496779B (zh) | 2008-08-19 | 2015-08-21 | Array Biopharma Inc | 作為pim激酶抑制劑之三唑吡啶化合物 |
| US8557809B2 (en) | 2008-08-19 | 2013-10-15 | Array Biopharma Inc. | Triazolopyridine compounds as PIM kinase inhibitors |
| PT2384326E (pt) | 2008-08-20 | 2014-06-09 | Zoetis Llc | Compostos de pirrolo[2,3-d]pirimidina |
| MX2011002367A (es) | 2008-09-02 | 2011-04-04 | Novartis Ag | Inhibidores de cinasa biciclicos. |
| US8759338B2 (en) | 2008-09-02 | 2014-06-24 | Novartis Ag | Heterocyclic kinase inhibitors |
| BRPI0918268B1 (pt) | 2008-09-02 | 2021-08-03 | Novartis Ag | Derivados de picolinamida, seu uso, e composição farmacêutica |
| CL2009001884A1 (es) | 2008-10-02 | 2010-05-14 | Incyte Holdings Corp | Uso de 3-ciclopentil-3-[4-(7h-pirrolo[2,3-d]pirimidin-4-il)-1h-pirazol-1-il)propanonitrilo, inhibidor de janus quinasa, y uso de una composición que lo comprende para el tratamiento del ojo seco. |
| WO2010043052A1 (en) | 2008-10-17 | 2010-04-22 | Merck Frosst Canada Ltd. | Azetidine derivatives as inhibitors of stearoyl-coenzyme a delta-9 desaturase |
| JOP20190230A1 (ar) | 2009-01-15 | 2017-06-16 | Incyte Corp | طرق لاصلاح مثبطات انزيم jak و المركبات الوسيطة المتعلقة به |
| EP2210890A1 (en) | 2009-01-19 | 2010-07-28 | Almirall, S.A. | Oxadiazole derivatives as S1P1 receptor agonists |
| US8263601B2 (en) | 2009-02-27 | 2012-09-11 | Concert Pharmaceuticals, Inc. | Deuterium substituted xanthine derivatives |
| DK2432472T3 (da) | 2009-05-22 | 2019-11-18 | Incyte Holdings Corp | 3-[4-(7h-pyrrolo[2,3-d]pyrimidin-4-yl)-1h-pyrazol-1-yl]octan- eller heptan-nitril som jak-inhibitorer |
| TW201100429A (en) | 2009-05-22 | 2011-01-01 | Incyte Corp | N-(hetero)aryl-pyrrolidine derivatives of pyrazol-4-yl-pyrrolo[2,3-d]pyrimidines and pyrrol-3-yl-pyrrolo[2,3-d]pyrimidines as janus kinase inhibitors |
| UA110324C2 (en) | 2009-07-02 | 2015-12-25 | Genentech Inc | Jak inhibitory compounds based on pyrazolo pyrimidine |
| CN101958119B (zh) | 2009-07-16 | 2012-02-29 | 中兴通讯股份有限公司 | 一种改进的离散余弦变换域音频丢帧补偿器和补偿方法 |
| WO2011066371A2 (en) | 2009-11-24 | 2011-06-03 | Alder Biopharmaceuticals, Inc. | Antibodies to il-6 and use thereof |
| EP2470534A4 (en) | 2009-08-24 | 2013-02-27 | Merck Sharp & Dohme | JAK INHIBITION FOR BLOCKING TOXICITY ASSOCIATED WITH RNA INTERFERENCE |
| TW201111385A (en) | 2009-08-27 | 2011-04-01 | Biocryst Pharm Inc | Heterocyclic compounds as janus kinase inhibitors |
| TW201113285A (en) | 2009-09-01 | 2011-04-16 | Incyte Corp | Heterocyclic derivatives of pyrazol-4-yl-pyrrolo[2,3-d]pyrimidines as janus kinase inhibitors |
| EP2475659B1 (en) | 2009-09-08 | 2015-10-28 | F.Hoffmann-La Roche Ag | 4-substituted pyridin-3-yl-carboxamide compounds and methods of use |
| EP2305660A1 (en) | 2009-09-25 | 2011-04-06 | Almirall, S.A. | New thiadiazole derivatives |
| ES2435491T3 (es) | 2009-10-09 | 2013-12-19 | Incyte Corporation | Derivados de hidroxilo, ceto y glucurónido de 3-(4-(7H-pirrolo[2,3-d]pirimidin-4-il)-1H-pirazol-1-il)-3-ciclopentilpropanonitrilo |
| AU2010309882B2 (en) | 2009-10-20 | 2016-01-28 | Cellzome Limited | Heterocyclyl pyrazolopyrimidine analogues as JAK inhibitors |
| EP2332917B1 (en) | 2009-11-11 | 2012-08-01 | Sygnis Bioscience GmbH & Co. KG | Compounds for PIM kinase inhibition and for treating malignancy |
| WO2011069141A2 (en) | 2009-12-04 | 2011-06-09 | Board Of Regents, The University Of Texas System | Interferon therapies in combination with blockade of stat3 activation |
| KR20140015162A (ko) | 2010-01-12 | 2014-02-06 | 에프. 호프만-라 로슈 아게 | 트라이사이클릭 헤테로사이클릭 화합물, 조성물 및 이의 사용 방법 |
| SA111320200B1 (ar) | 2010-02-17 | 2014-02-16 | ديبيوفارم اس ايه | مركبات ثنائية الحلقة واستخداماتها كمثبطات c-src/jak مزدوجة |
| JP5858434B2 (ja) | 2010-02-18 | 2016-02-10 | インサイト・ホールディングス・コーポレイションIncyte Holdings Corporation | Janusキナーゼ阻害薬としてのシクロブタンおよびメチルシクロブタン誘導体 |
| PH12015502575A1 (en) | 2010-03-10 | 2017-04-24 | Incyte Corp | Piperidin-4-yl azetidine derivatives as jak1 inhibitors |
| NZ603446A (en) | 2010-04-14 | 2014-05-30 | Array Biopharma Inc | 5, 7-substituted-imidazo [1, 2-c] pyrimidines as inhibitors of jak kinases |
| EP2390252A1 (en) | 2010-05-19 | 2011-11-30 | Almirall, S.A. | New pyrazole derivatives |
| EP3087972A1 (en) | 2010-05-21 | 2016-11-02 | Incyte Holdings Corporation | Topical formulation for a jak inhibitor |
| US8637529B2 (en) | 2010-06-11 | 2014-01-28 | AbbYie Inc. | Pyrazolo[3,4-d]pyrimidine compounds |
| US9351943B2 (en) | 2010-07-01 | 2016-05-31 | Matthew T. McLeay | Anti-fibroblastic fluorochemical emulsion therapies |
| EP2621489A1 (en) | 2010-09-30 | 2013-08-07 | Portola Pharmaceuticals, Inc. | Combinations of 4-(cyclopropylamino)-2-(4-(4-(ethylsulfonyl)piperazin-1-yl)phenylamino)pyrimidine-5-carboxamide and fludarabine |
| CA2818545C (en) | 2010-11-19 | 2019-04-16 | Incyte Corporation | Heterocyclic-substituted pyrrolopyridines and pyrrolopyrimidines as jak inhibitors |
| CN103415515B (zh) | 2010-11-19 | 2015-08-26 | 因塞特公司 | 作为jak抑制剂的环丁基取代的吡咯并吡啶和吡咯并嘧啶衍生物 |
| US20140073643A1 (en) | 2010-12-03 | 2014-03-13 | Ym Biosciences Australia Pty Ltd | Treatment of jak2-mediated conditions |
| PL2675451T3 (pl) | 2011-02-18 | 2016-05-31 | Novartis Pharma Ag | Terapia skojarzona z inhibitorem mTOR/JAK |
| US8691807B2 (en) | 2011-06-20 | 2014-04-08 | Incyte Corporation | Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as JAK inhibitors |
| WO2013023119A1 (en) | 2011-08-10 | 2013-02-14 | Novartis Pharma Ag | JAK P13K/mTOR COMBINATION THERAPY |
| TW201313721A (zh) | 2011-08-18 | 2013-04-01 | Incyte Corp | 作為jak抑制劑之環己基氮雜環丁烷衍生物 |
| UA111854C2 (uk) | 2011-09-07 | 2016-06-24 | Інсайт Холдінгс Корпорейшн | Способи і проміжні сполуки для отримання інгібіторів jak |
| TW201406761A (zh) | 2012-05-18 | 2014-02-16 | Incyte Corp | 做爲jak抑制劑之哌啶基環丁基取代之吡咯并吡啶及吡咯并嘧啶衍生物 |
| US10155987B2 (en) | 2012-06-12 | 2018-12-18 | Dana-Farber Cancer Institute, Inc. | Methods of predicting resistance to JAK inhibitor therapy |
| EP2890691B1 (en) | 2012-08-31 | 2018-04-25 | Principia Biopharma Inc. | Benzimidazole derivatives as itk inhibitors |
| CA2888816A1 (en) | 2012-11-01 | 2014-05-08 | Incyte Corporation | Tricyclic fused thiophene derivatives as jak inhibitors |
| EP3949953A1 (en) | 2012-11-15 | 2022-02-09 | Incyte Holdings Corporation | Sustained-release dosage forms of ruxolitinib |
| BR112015021458B1 (pt) | 2013-03-06 | 2022-06-07 | Incyte Holdings Corporation | "processos e intermediários para preparar {1-{1-[3-flúor2-(trifluormetil)isonicotinoil] piperidin-4-il}-3-[4-(7hpirrolo[2,3-d]pirimidin-4-il)-1h-pirazol-1-il]azetidin-3-il}acetonitrila, útil no tratamento de doenças relacionadas com a atividade de janus quinases |
| UA117830C2 (uk) | 2013-05-17 | 2018-10-10 | Інсайт Корпорейшн | Похідні біпіразолу як інгібітори jak |
| WO2015021153A1 (en) | 2013-08-07 | 2015-02-12 | Incyte Corporation | Sustained release dosage forms for a jak1 inhibitor |
| TW201529074A (zh) | 2013-08-20 | 2015-08-01 | Incyte Corp | 在c-反應蛋白含量較高之實體腫瘤患者中的存活益處 |
| SI3110409T1 (sl) | 2014-02-28 | 2018-11-30 | Incyte Corporation | Inhibitorji JAK1 za zdravljenje mielodisplastičnih sindromov |
| NZ763326A (en) | 2014-04-08 | 2023-04-28 | Incyte Holdings Corp | Treatment of b-cell malignancies by a combination jak and pi3k inhibitor |
| CR20160553A (es) | 2014-04-30 | 2017-04-25 | Incyte Corp | Procesos para preparar un inhibidor de jak1 y nuevas formas de este |
| EP3148545B1 (en) | 2014-05-28 | 2023-03-15 | Onco Tracker, Inc. | Anti-cancer effects of jak2 inhibitors in combination with thalidomide derivatives and glucocorticoids |
| WO2015184305A1 (en) | 2014-05-30 | 2015-12-03 | Incyte Corporation | TREATMENT OF CHRONIC NEUTROPHILIC LEUKEMIA (CNL) AND ATYPICAL CHRONIC MYELOID LEUKEMIA (aCML) BY INHIBITORS OF JAK1 |
-
2011
- 2011-05-20 EP EP16160077.0A patent/EP3087972A1/en not_active Withdrawn
- 2011-05-20 HR HRP20160841TT patent/HRP20160841T1/hr unknown
- 2011-05-20 PL PL11724104.2T patent/PL2574168T3/pl unknown
- 2011-05-20 DK DK11724104.2T patent/DK2574168T3/en active
- 2011-05-20 EP EP11724104.2A patent/EP2574168B9/en active Active
- 2011-05-20 AU AU2011255443A patent/AU2011255443B2/en active Active
- 2011-05-20 MY MYPI2016000077A patent/MY178634A/en unknown
- 2011-05-20 KR KR1020187025131A patent/KR102040479B1/ko active Active
- 2011-05-20 EA EA201291310A patent/EA035981B1/ru unknown
- 2011-05-20 CN CN201180035301.2A patent/CN103002875B/zh active Active
- 2011-05-20 UA UAA201214654A patent/UA111588C2/uk unknown
- 2011-05-20 SG SG2012083739A patent/SG185567A1/en unknown
- 2011-05-20 BR BR112012029653-1A patent/BR112012029653B1/pt active IP Right Grant
- 2011-05-20 ES ES11724104.2T patent/ES2581834T3/es active Active
- 2011-05-20 KR KR1020127033308A patent/KR101921466B1/ko active Active
- 2011-05-20 SG SG10201910912TA patent/SG10201910912TA/en unknown
- 2011-05-20 EA EA202091303A patent/EA202091303A3/ru unknown
- 2011-05-20 TW TW100117866A patent/TWI499421B/zh active
- 2011-05-20 HU HUE11724104A patent/HUE029035T2/en unknown
- 2011-05-20 KR KR1020197032033A patent/KR102303885B1/ko active Active
- 2011-05-20 MY MYPI2012004949A patent/MY161078A/en unknown
- 2011-05-20 PE PE2012002197A patent/PE20130216A1/es active IP Right Grant
- 2011-05-20 MX MX2012013400A patent/MX338228B/es active IP Right Grant
- 2011-05-20 RS RS20160298A patent/RS54824B1/sr unknown
- 2011-05-20 US US13/112,370 patent/US20110288107A1/en not_active Abandoned
- 2011-05-20 ME MEP-2016-92A patent/ME02445B/me unknown
- 2011-05-20 PH PH1/2012/502296A patent/PH12012502296B1/en unknown
- 2011-05-20 SI SI201130813A patent/SI2574168T1/sl unknown
- 2011-05-20 CA CA2799928A patent/CA2799928C/en active Active
- 2011-05-20 KR KR1020227017111A patent/KR102635013B1/ko active Active
- 2011-05-20 KR KR1020217029425A patent/KR102402137B1/ko active Active
- 2011-05-20 NZ NZ603686A patent/NZ603686A/en unknown
- 2011-05-20 SG SG10201503983QA patent/SG10201503983QA/en unknown
- 2011-05-20 CN CN201610207261.XA patent/CN105853356B/zh active Active
- 2011-05-20 JP JP2013511374A patent/JP5849312B2/ja active Active
- 2011-05-20 WO PCT/US2011/037291 patent/WO2011146808A2/en not_active Ceased
- 2011-05-20 AR ARP110101747A patent/AR084691A1/es not_active Application Discontinuation
-
2012
- 2012-11-15 IL IL223084A patent/IL223084A/en active IP Right Grant
- 2012-11-20 CL CL2012003229A patent/CL2012003229A1/es unknown
- 2012-11-23 CO CO12213010A patent/CO6640250A2/es unknown
- 2012-11-30 CR CR20120605A patent/CR20120605A/es unknown
-
2013
- 2013-04-11 EC ECSP13012546 patent/ECSP13012546A/es unknown
-
2014
- 2014-05-28 AU AU2014202896A patent/AU2014202896A1/en not_active Abandoned
-
2015
- 2015-05-18 US US14/714,820 patent/US20150250790A1/en not_active Abandoned
- 2015-11-09 JP JP2015219637A patent/JP2016053069A/ja active Pending
-
2016
- 2016-06-16 SM SM201600172T patent/SMT201600172B/it unknown
- 2016-07-06 AU AU2016204689A patent/AU2016204689A1/en not_active Abandoned
- 2016-07-19 CY CY20161100706T patent/CY1117815T1/el unknown
-
2017
- 2017-04-04 JP JP2017074531A patent/JP6479877B2/ja active Active
-
2018
- 2018-03-16 AU AU2018201889A patent/AU2018201889B2/en active Active
-
2019
- 2019-02-06 JP JP2019019674A patent/JP6657441B2/ja active Active
- 2019-09-10 US US16/566,625 patent/US10758543B2/en active Active
-
2020
- 2020-02-05 JP JP2020018063A patent/JP6952143B2/ja active Active
- 2020-02-18 AU AU2020201151A patent/AU2020201151B2/en active Active
- 2020-05-04 ZA ZA2020/01999A patent/ZA202001999B/en unknown
- 2020-08-14 US US16/947,735 patent/US10869870B2/en active Active
- 2020-09-17 US US16/948,408 patent/US11219624B2/en active Active
-
2021
- 2021-09-27 JP JP2021157016A patent/JP7167280B2/ja active Active
- 2021-11-24 AR ARP210103240A patent/AR124134A2/es not_active Application Discontinuation
- 2021-12-03 US US17/541,439 patent/US20220211707A1/en active Pending
-
2022
- 2022-03-25 US US17/704,155 patent/US20220370455A1/en not_active Abandoned
- 2022-03-25 US US17/704,180 patent/US11590136B2/en active Active
- 2022-03-25 US US17/704,168 patent/US11571425B2/en active Active
- 2022-07-05 AU AU2022204807A patent/AU2022204807B2/en active Active
- 2022-10-26 JP JP2022171523A patent/JP7547435B2/ja active Active
- 2022-12-28 US US18/089,651 patent/US20230277541A1/en active Pending
-
2024
- 2024-02-27 US US18/588,626 patent/US12226419B2/en active Active
- 2024-05-07 EC ECSENADI202434690A patent/ECSP24034690A/es unknown
- 2024-08-28 JP JP2024146729A patent/JP2024164235A/ja active Pending
- 2024-11-12 AU AU2024264568A patent/AU2024264568A1/en active Pending
-
2025
- 2025-04-05 US US19/171,214 patent/US20250255872A1/en active Pending
- 2025-07-18 US US19/274,086 patent/US20250345337A1/en active Pending
Patent Citations (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5521184A (en) | 1992-04-03 | 1996-05-28 | Ciba-Geigy Corporation | Pyrimidine derivatives and processes for the preparation thereof |
| WO2000009495A1 (en) | 1998-08-11 | 2000-02-24 | Novartis Ag | Isoquinoline derivatives with angiogenesis inhibiting activity |
| WO2000053595A1 (en) | 1999-03-06 | 2000-09-14 | Astrazeneca Ab | Pyrimidine compounds |
| WO2001014402A1 (en) | 1999-08-19 | 2001-03-01 | Isis Pharmaceuticals, Inc. | Antisense modulation of focal adhesion kinase expression |
| WO2001064655A1 (en) | 2000-03-01 | 2001-09-07 | Astrazeneca Ab | 2, 4-di(hetero-)arylamino (-oxy)-5-substituted pyrimidines as antineoplastic agents |
| WO2003024967A2 (en) | 2001-09-19 | 2003-03-27 | Aventis Pharma S.A. | Indolizines as kinase protein inhibitors |
| WO2003037347A1 (en) | 2001-10-30 | 2003-05-08 | Novartis Ag | Staurosporine derivatives as inhibitors of flt3 receptor tyrosine kinase activity |
| WO2003099771A2 (en) | 2002-05-29 | 2003-12-04 | Novartis Ag | Diaryl urea derivatives useful for the treatment of protein kinase dependent diseases |
| WO2004005281A1 (en) | 2002-07-05 | 2004-01-15 | Novartis Ag | Inhibitors of tyrosine kinases |
| WO2004046120A2 (en) | 2002-11-15 | 2004-06-03 | Vertex Pharmaceuticals Incorporated | Diaminotriazoles useful as inhibitors of protein kinases |
| WO2004056786A2 (en) | 2002-12-20 | 2004-07-08 | Pfizer Products Inc. | Pyrimidine derivates for the treatment of abnormal cell growth |
| WO2004080980A1 (en) | 2003-03-14 | 2004-09-23 | Novartis Ag | 2, 4- di (phenylamino) pyrimidines useful in the treatment of neoplastic diseases, inflammatory and immune system disorders |
| WO2005028444A1 (en) | 2003-09-24 | 2005-03-31 | Novartis Ag | 1,4-disubstituted isoquinilone derivatives as raf-kinase inhibitors useful for the treatment of proliferative diseases |
| WO2006056399A2 (en) | 2004-11-24 | 2006-06-01 | Novartis Ag | Combinations of jak inhibitors and at least one of bcr-abl, flt-3, fak or raf kinase inhibitors |
| US20090181959A1 (en) | 2005-12-13 | 2009-07-16 | Incyte Corporation | HETEROARYL SUBSTITUTED PYRROLO[2,3-b]PYRIDINES AND PYRROLO[2,3-b]PYRIMIDINES AS JANUS KINASE INHIBITORS |
| US7598257B2 (en) | 2005-12-13 | 2009-10-06 | Incyte Corporation | Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as janus kinase inhibitors |
| US20080312259A1 (en) | 2007-06-13 | 2008-12-18 | Incyte Corporation | SALTS OF THE JANUS KINASE INHIBITOR (R)-3-(4-(7H-PYRROLO[2,3-d]PYRIMIDIN-4-YL)-1H-PYRAZOL-1-YL)-3-CYCLOPENTYLPROPANENITRILE |
Non-Patent Citations (13)
| Title |
|---|
| "Remington's Pharmaceutical Sciences", 1985, MACK PUBLISHING COMPANY, pages: 1418 |
| ADV PHARMACOL., vol. 47, 2000, pages 113 - 74 |
| AGENTS ACTIONS, vol. 38, no. 1-2, January 1993 (1993-01-01), pages 116 - 21 |
| AUNGST B.: "Fatty Acid Skin Penetration Enhancers", PHARM. RES., vol. 6, no. 3, 1989, pages 244 - 247 |
| BOUDNY, V., KOVARIK, J., NEOPLASM., vol. 49, 2002, pages 349 - 355 |
| BOWMAN, T. ET AL., ONCOGENE, vol. 19, 2000, pages 2474 - 2488 |
| GOTTLIEB, A.B. ET AL., NAT REV DRUG DISC., vol. 4, pages 19 - 34 |
| IMMUNOL TODAY., vol. 19, no. 1, January 1998 (1998-01-01), pages 37 - 44 |
| JCL, vol. 113, pages 1664 - 1675 |
| JOURNAL OF PHARMACEUTICAL SCIENCE, vol. 66, 1977, pages 2 |
| ORTMANN, R. A., T. CHENG ET AL., ARTHRITIS RES, vol. 2, no. 1, 2000, pages 16 - 32 |
| R. C. ROWE, P. J. SHESKY: "Handbook of pharmaceutical excipients", 2006 |
| RODIG, S. J., M. A. MERAZ ET AL., CELL, vol. 93, no. 3, 1998, pages 373 - 83 |
Cited By (56)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11331320B2 (en) | 2005-12-13 | 2022-05-17 | Incyte Holdings Corporation | Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as Janus kinase inhibitors |
| US11744832B2 (en) | 2005-12-13 | 2023-09-05 | Incyte Corporation | Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as Janus kinase inhibitors |
| US9974790B2 (en) | 2005-12-13 | 2018-05-22 | Incyte Corporation | Heteroaryl substituted pyrrolo[2,3-B] pyridines and pyrrolo[2,3-B] pyrimidines as janus kinase inhibitors |
| US9079912B2 (en) | 2005-12-13 | 2015-07-14 | Incyte Corporation | Heteroaryl substituted pyrrolo[2,3-B] pyridines and pyrrolo[2,3-B] pyrimidines as Janus kinase inhibitors |
| US9206187B2 (en) | 2005-12-13 | 2015-12-08 | Incyte Holdings Corporation | Heteroaryl substituted pyrrolo[2,3-B] pyridines and pyrrolo[2,3-B] pyrimidines as Janus kinase |
| US10398699B2 (en) | 2005-12-13 | 2019-09-03 | Incyte Holdings Corporation | Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as janus kinase inhibitors |
| US9814722B2 (en) | 2005-12-13 | 2017-11-14 | Incyte Holdings Corporation | Heteroaryl substituted pyrrolo[2,3-B] pyridines and pyrrolo[2,3-B] pyrimidines as janus kinase inhibitors |
| US10639310B2 (en) | 2005-12-13 | 2020-05-05 | Incyte Corporation | Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as Janus kinase inhibitors |
| US9662335B2 (en) | 2005-12-13 | 2017-05-30 | Incyte Holdings Corporation | Heteroaryl substituted pyrrolo[2,3-B] pyridines and pyrrolo[2,3-B] pyrimidines as janus kinase inhibitors |
| US11213528B2 (en) | 2007-06-13 | 2022-01-04 | Incyte Holdings Corporation | Salts of the janus kinase inhibitor (R)-3-(4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile |
| US9216984B2 (en) | 2009-05-22 | 2015-12-22 | Incyte Corporation | 3-[4-(7H-pyrrolo[2,3-D]pyrimidin-4-yl)-1H-pyrazol-1-yl]octane—or heptane-nitrile as JAK inhibitors |
| US9623029B2 (en) | 2009-05-22 | 2017-04-18 | Incyte Holdings Corporation | 3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]octane- or heptane-nitrile as JAK inhibitors |
| US9334274B2 (en) | 2009-05-22 | 2016-05-10 | Incyte Holdings Corporation | N-(hetero)aryl-pyrrolidine derivatives of pyrazol-4-yl-pyrrolo[2,3-d]pyrimidines and pyrrol-3-yl-pyrrolo[2,3-d]pyrimidines as janus kinase inhibitors |
| US9249145B2 (en) | 2009-09-01 | 2016-02-02 | Incyte Holdings Corporation | Heterocyclic derivatives of pyrazol-4-yl-pyrrolo[2,3-d]pyrimidines as janus kinase inhibitors |
| US10695337B2 (en) | 2010-03-10 | 2020-06-30 | Incyte Holdings Corporation | Piperidin-4-yl azetidine derivatives as JAK1 inhibitors |
| US11285140B2 (en) | 2010-03-10 | 2022-03-29 | Incyte Corporation | Piperidin-4-yl azetidine derivatives as JAK1 inhibitors |
| US9999619B2 (en) | 2010-03-10 | 2018-06-19 | Incyte Holdings Corporation | Piperidin-4-yl azetidine derivatives as JAK1 inhibitors |
| US11571425B2 (en) | 2010-05-21 | 2023-02-07 | Incyte Corporation | Topical formulation for a JAK inhibitor |
| US12226419B2 (en) | 2010-05-21 | 2025-02-18 | Incyte Corporation | Topical formulation for a JAK inhibitor |
| US10869870B2 (en) | 2010-05-21 | 2020-12-22 | Incyte Corporation | Topical formulation for a JAK inhibitor |
| US10758543B2 (en) | 2010-05-21 | 2020-09-01 | Incyte Corporation | Topical formulation for a JAK inhibitor |
| US11219624B2 (en) | 2010-05-21 | 2022-01-11 | Incyte Holdings Corporation | Topical formulation for a JAK inhibitor |
| US11590136B2 (en) | 2010-05-21 | 2023-02-28 | Incyte Corporation | Topical formulation for a JAK inhibitor |
| US10640506B2 (en) | 2010-11-19 | 2020-05-05 | Incyte Holdings Corporation | Cyclobutyl substituted pyrrolopyridine and pyrrolopyrimidines derivatives as JAK inhibitors |
| US8933085B2 (en) | 2010-11-19 | 2015-01-13 | Incyte Corporation | Cyclobutyl substituted pyrrolopyridine and pyrrolopyrimidine derivatives as JAK inhibitors |
| US9034884B2 (en) | 2010-11-19 | 2015-05-19 | Incyte Corporation | Heterocyclic-substituted pyrrolopyridines and pyrrolopyrimidines as JAK inhibitors |
| US8691807B2 (en) | 2011-06-20 | 2014-04-08 | Incyte Corporation | Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as JAK inhibitors |
| US10513522B2 (en) | 2011-06-20 | 2019-12-24 | Incyte Corporation | Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as JAK inhibitors |
| US11214573B2 (en) | 2011-06-20 | 2022-01-04 | Incyte Holdings Corporation | Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as JAK inhibitors |
| US9611269B2 (en) | 2011-06-20 | 2017-04-04 | Incyte Corporation | Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as JAK inhibitors |
| US9359358B2 (en) | 2011-08-18 | 2016-06-07 | Incyte Holdings Corporation | Cyclohexyl azetidine derivatives as JAK inhibitors |
| US9718834B2 (en) | 2011-09-07 | 2017-08-01 | Incyte Corporation | Processes and intermediates for making a JAK inhibitor |
| US9487521B2 (en) | 2011-09-07 | 2016-11-08 | Incyte Holdings Corporation | Processes and intermediates for making a JAK inhibitor |
| US11576865B2 (en) | 2012-11-15 | 2023-02-14 | Incyte Corporation | Sustained-release dosage forms of ruxolitinib |
| US10874616B2 (en) | 2012-11-15 | 2020-12-29 | Incyte Corporation | Sustained-release dosage forms of ruxolitinib |
| US11896717B2 (en) | 2012-11-15 | 2024-02-13 | Incyte Holdings Corporation | Sustained-release dosage forms of ruxolitinib |
| US11337927B2 (en) | 2012-11-15 | 2022-05-24 | Incyte Holdings Corporation | Sustained-release dosage forms of ruxolitinib |
| US10166191B2 (en) | 2012-11-15 | 2019-01-01 | Incyte Corporation | Sustained-release dosage forms of ruxolitinib |
| US11576864B2 (en) | 2012-11-15 | 2023-02-14 | Incyte Corporation | Sustained-release dosage forms of ruxolitinib |
| US9221845B2 (en) | 2013-03-06 | 2015-12-29 | Incyte Holdings Corporation | Processes and intermediates for making a JAK inhibitor |
| US9714233B2 (en) | 2013-03-06 | 2017-07-25 | Incyte Corporation | Processes and intermediates for making a JAK inhibitor |
| JP2014224109A (ja) * | 2013-04-25 | 2014-12-04 | 日本たばこ産業株式会社 | 皮膚バリア機能改善剤 |
| US11045421B2 (en) | 2013-08-07 | 2021-06-29 | Incyte Corporation | Sustained release dosage forms for a JAK1 inhibitor |
| US9655854B2 (en) | 2013-08-07 | 2017-05-23 | Incyte Corporation | Sustained release dosage forms for a JAK1 inhibitor |
| US12151026B2 (en) | 2013-08-07 | 2024-11-26 | Incyte Corporation | Sustained release dosage forms for a JAK1 inhibitor |
| US10561616B2 (en) | 2013-08-07 | 2020-02-18 | Incyte Corporation | Sustained release dosage forms for a JAK1 inhibitor |
| WO2016074650A1 (en) * | 2014-11-10 | 2016-05-19 | Zentiva, K.S. | Salts of (3r)-3-cyclopentyl-3-[4-(7h-pyrrolo[2,3-d]pyrimidin-4-yl)pyrazol-1-yl]propanenitrile |
| WO2017125097A1 (en) * | 2016-01-22 | 2017-07-27 | Zentiva, K.S. | Crystalline forms of (3r)-3-cyclopentyl-3-[4-(7h-pyrrolo[2,3-d]pyrimidin-4- yl)pyrazol-l-yl]propanenitrile salts and preparation thereof |
| US11278541B2 (en) | 2017-12-08 | 2022-03-22 | Incyte Corporation | Low dose combination therapy for treatment of myeloproliferative neoplasms |
| US10596161B2 (en) | 2017-12-08 | 2020-03-24 | Incyte Corporation | Low dose combination therapy for treatment of myeloproliferative neoplasms |
| CN111818910A (zh) * | 2018-01-09 | 2020-10-23 | 德玛万科学有限公司 | 含有赛度替尼的局部用皮肤药物组合物及其应用 |
| US10899736B2 (en) | 2018-01-30 | 2021-01-26 | Incyte Corporation | Processes and intermediates for making a JAK inhibitor |
| US11304949B2 (en) | 2018-03-30 | 2022-04-19 | Incyte Corporation | Treatment of hidradenitis suppurativa using JAK inhibitors |
| US12280054B2 (en) | 2018-03-30 | 2025-04-22 | Incyte Corporation | Treatment of hidradenitis suppurativa using JAK inhibitors |
| US11833155B2 (en) | 2020-06-03 | 2023-12-05 | Incyte Corporation | Combination therapy for treatment of myeloproliferative neoplasms |
| US12440495B2 (en) | 2020-06-03 | 2025-10-14 | Incyte Corporation | Combination therapy for treatment of myeloproliferative neoplasms |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12226419B2 (en) | Topical formulation for a JAK inhibitor | |
| HK1230920A1 (en) | Topical formulation for a jak inhibitor | |
| HK1182313B (en) | Topical formulation for a jak inhibitor |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 201180035301.2 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11724104 Country of ref document: EP Kind code of ref document: A2 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 223084 Country of ref document: IL |
|
| WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2012/013400 Country of ref document: MX |
|
| ENP | Entry into the national phase |
Ref document number: 2799928 Country of ref document: CA |
|
| ENP | Entry into the national phase |
Ref document number: 2013511374 Country of ref document: JP Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2012003229 Country of ref document: CL Ref document number: 002197-2012 Country of ref document: PE |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1201006029 Country of ref document: TH Ref document number: 12012502296 Country of ref document: PH |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 12213010 Country of ref document: CO |
|
| WWE | Wipo information: entry into national phase |
Ref document number: CR2012-000605 Country of ref document: CR |
|
| ENP | Entry into the national phase |
Ref document number: 2011255443 Country of ref document: AU Date of ref document: 20110520 Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 10745/DELNP/2012 Country of ref document: IN |
|
| ENP | Entry into the national phase |
Ref document number: 20127033308 Country of ref document: KR Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: A201214654 Country of ref document: UA Ref document number: 201291310 Country of ref document: EA |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2011724104 Country of ref document: EP |
|
| REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012029653 Country of ref document: BR |
|
| WWE | Wipo information: entry into national phase |
Ref document number: P-2016/0298 Country of ref document: RS |
|
| ENP | Entry into the national phase |
Ref document number: 112012029653 Country of ref document: BR Kind code of ref document: A2 Effective date: 20121121 |