WO2011113281A1 - 一种多羟基化合物制乙二醇的方法 - Google Patents

一种多羟基化合物制乙二醇的方法 Download PDF

Info

Publication number
WO2011113281A1
WO2011113281A1 PCT/CN2010/078413 CN2010078413W WO2011113281A1 WO 2011113281 A1 WO2011113281 A1 WO 2011113281A1 CN 2010078413 W CN2010078413 W CN 2010078413W WO 2011113281 A1 WO2011113281 A1 WO 2011113281A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
tungsten
reaction
acid
active component
Prior art date
Application number
PCT/CN2010/078413
Other languages
English (en)
French (fr)
Inventor
张涛
邰志军
王爱琴
郑明远
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44599528&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011113281(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to RU2012144018/04A priority Critical patent/RU2518371C1/ru
Priority to CA2778131A priority patent/CA2778131C/en
Priority to EP10847750.6A priority patent/EP2548858B2/en
Priority to MX2012003832A priority patent/MX344140B/es
Priority to JP2012538178A priority patent/JP5575911B2/ja
Priority to ES10847750T priority patent/ES2622106T5/es
Priority to KR1020127012729A priority patent/KR101415682B1/ko
Priority to US13/395,470 priority patent/US9352304B2/en
Publication of WO2011113281A1 publication Critical patent/WO2011113281A1/zh
Priority to ZA2012/02762A priority patent/ZA201202762B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6527Tungsten
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/94Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/20Dihydroxylic alcohols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/468Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to a method for preparing ethylene glycol, in particular to a reaction process in which a polyhydroxy compound is subjected to one-step catalytic hydrogenation to ethylene glycol under hydrothermal conditions.
  • Ethylene glycol is an important energy liquid fuel and is also a very important raw material for polyester synthesis.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • ethylene glycol is mainly based on the petroleum raw material route, that is, ethylene epoxidation to obtain ethylene oxide, and then hydration to obtain ethylene glycol
  • Document 1 Cui Huaweing, domestic and international ethylene glycol production development overview, chemistry Industrial, 2007, 25, (4), 15-21.
  • Document 2 Process for preparing ethanediol by catalyzing epoxyethane hydration, Patent No. CN1463960-A; CN1204103-C].
  • the synthesis method relies on non-renewable petroleum resources, and the production process includes selective oxidation or epoxidation steps, which are technically difficult, inefficient, have many by-products, high material consumption and serious pollution.
  • Document 4 Preparation of lower polyhydric alcohols
  • Document 5 Production New process for ethylene glycol
  • Document 6 A method for producing diols and polyols by sorbitol cleavage, CN200510008652.0 generally comprises three steps: (1) starch gelatinization, enzyme liquefaction, enzyme Glucose process to obtain glucose (2) Glucose is hydrogenated by noble metal ruthenium or nickel catalyst to obtain sorbitol (3) sorbitol hydrogenate at high temperature and high pressure to form product polyol, mainly propylene glycol, glycerol, ethylene glycol. Among them, the yield of ethylene glycol is in the range of 10-30%. The reaction process is cumbersome.
  • the method provided by the invention uses a polyhydroxy compound as a reaction raw material and directly converts into ethylene glycol by the action of a composite catalyst.
  • the reaction process is simple, the ethylene glycol yield in the product is high, and the catalyst preparation is simple and easy, and the cost is low. Summary of the invention
  • Polyhydroxy compounds including cellulose, starch, hemicellulose, sucrose, glucose, fructose, fructan, xylose, soluble xylooligosaccharides
  • Ethylene glycol are prepared by a one-step catalytic hydrodegradation process with high yield and high selectivity.
  • the technical solution adopted by the present invention is as follows: a polyhydroxy compound, including cellulose, starch, hemicellulose, sucrose, glucose, fructose, fructan, xylose, and soluble xylooligosaccharide as reaction materials, Catalytic hydrogenation reaction in water in a closed high pressure reactor, the catalyst is a composite catalyst, including catalyst A and catalyst B, and the active component of catalyst A is a transition metal of Groups 8, 9 and 10, cobalt, nickel, ruthenium, One or more of ruthenium, palladium, rhodium, and platinum.
  • the active components of catalyst B are tungsten oxide, tungsten sulfide, tungsten chloride, tungsten hydroxide, tungsten bronze, tungstic acid, tungsten.
  • the reaction vessel is filled with hydrogen gas, the reaction temperature is higher than 120 °C, and the upper temperature limit is based on the thermal decomposition of the raw materials and products.
  • the reaction time is not less than 5 minutes.
  • the initial pressure of hydrogen at room temperature is l-12 MPa, more preferably the reaction temperature is 120-300 ° C, and the reaction time is not less than 5 minutes; more preferably, the reaction temperature is 180-250 ° C, at room temperature. More preferably, the initial pressure of hydrogen in the reactor is 3-7 MPa, and the preferred reaction time is 30 min _ 3 h.
  • the weight ratio of the metal active component of Catalyst A to the active component of Catalyst B is in the range of 0.02 to 3000 times. Preferably, the weight ratio is between 0.1 and 100 times.
  • the intermediate species formed are unsaturated aldols, and thus the final polyol is obtained by a catalytic hydrogenation process.
  • an active component catalyst having catalytic hydrogenation ability is required in the catalyst.
  • the metal active component of the catalyst A is supported on a carrier, and comprises one or more complexes of activated carbon, alumina, silica, silicon carbide, zirconia, zinc oxide, and titania.
  • the content of the metal on the catalyst A is from 0.05 to 50% by weight, preferably from 1 to 30% by weight.
  • the catalyst A is an unsupported framework metal catalyst having an active component as a catalyst skeleton, such as Raney nickel or the like.
  • the active component B in the composite catalyst is an oxide containing tungsten, a sulfide of tungsten, a chloride of tungsten, a hydroxide of tungsten, a tungsten bronze, a tungstic acid, a tungstate, a metatungstic acid, a metatungstate, One or more of paratungstic acid, paratungstate, peroxytungstic acid, peroxytungstate, and tungsten heteropolyacid.
  • the tungsten ions dissolved in the solution have an important catalytic effect on the catalytic degradation of the polyhydroxy compound.
  • the amount of the polyhydroxy compound and the water used in the reaction material may be partially or completely liquid under the reaction conditions. Under the conditions, the reaction may be heated uniformly to avoid the local temperature being too high to cause the raw material to be burnt. A phenomenon occurs.
  • the amount of the composite catalyst used is the amount of the catalyst.
  • the mass ratio of the polyhydroxy compound to water in the reaction raw material is 1:200-1: 1, and the mass ratio of the polyhydroxy compound to the composite catalyst A+B is 1:1 to 100:1.
  • ethylene glycol from polyols including cellulose, starch, hemicellulose, glucose, sucrose, fructose, fructan, xylose, and soluble xylooligosaccharides, compared to the existing ethylene glycol industry
  • the ethylene raw materials used in the synthetic route have the advantages of renewable raw material resources and meet the requirements of sustainable development.
  • the preparation process of the composite catalyst is simple, convenient to use, low in cost, and the reaction process has high product yield and selectivity, and the yield of ethylene glycol can reach more than 50%, and has a good application prospect.
  • Ni/AC, Ni/Si0 2 , Pt/AC, Ru/AC The activated carbon carrier was impregnated with nickel nitrate, chloroplatinic acid and antimony trichloride aqueous solution, and dried at 120 ° C for 12 h. The catalyst was reduced in a hydrogen atmosphere at 450 ° C for 1 h to obtain a catalyst of Ni/AC (5 wt% Ni), Pt/AC (0.5 wt% Pt), and Ru/AC (5 wt% Ru).
  • Ni/Si0 2 (15 wt% Ni) catalyst can be obtained by replacing the activated carbon support with Si0 2 .
  • Ni-W 2 C/AC catalyst having a tungsten loading of 30 wt% and a nickel loading of 2 wt% was obtained, which was expressed as Ni-W 2 C/AC (2 wt% Ni-30 wt% W 2 C ). .
  • Catalytic conversion experiment 1.0 g of polyol, 0.3 g of catalyst A, 0.03 g of catalyst B and 100 ml of water were added to a 200 ml reactor, and after replacing three gases with hydrogen, the hydrogen was charged to 5 MPa and the temperature was raised to 240 °. C reaction for 30 min. After the reaction is completed, the temperature is lowered to room temperature, and the supernatant liquid after centrifugation is taken, in high performance liquid chromatography. Separation was performed on a calcium type ion exchange column and detected by a differential refractive index detector. The product yields are calculated only for the target products ethylene glycol, propylene glycol, and hexahydric alcohol (including sorbitol, mannitol). Other liquid products include butanol, ethanol, unknown components, and gaseous products (C0 2 , CH 4 ). , C 2 H 6 , etc.) The yield was not calculated.
  • the catalyst A is a different metal
  • the catalyst B is phosphotungstic acid
  • the reaction conditions are the same as in the third embodiment.
  • Catalytic conversion of cellulose on various composite catalysts (Table 1).
  • cellulose can be converted to ethylene glycol in a high yield on different composite catalysts in the catalytic process involved in the present invention. Among them, the yield of ethylene glycol on the N1/AC+ phosphotungstic acid catalyst can reach 56%.
  • the catalyst A was Ru/AC
  • the catalyst B was phosphotungstic acid
  • the reaction conditions were the same as in Example 3.
  • Catalytic conversion results for various polyols (Table 2).
  • Fructose 18 25 25 32 Fructose Inulin 25 28 17 30 As shown in Table 2, various polyhydroxy compounds can be converted into ethylene glycol and propylene glycol in a high yield in the catalytic process involved in the present invention.
  • the catalyst A is a metal ruthenium Ir/AC or Ni/AC
  • the catalyst B is a tungsten-containing compound.
  • the reaction conditions were the same as in Example 3.
  • Catalytic conversion results of cellulose on various composite catalysts (Table 3).
  • cellulose can be converted into ethylene glycol in a high yield on different composite catalysts in the catalytic process involved in the present invention.
  • the catalyst A is Raney nickel
  • the catalyst B is phosphotungstic acid
  • the activated carbon AC component is added to the catalyst, and AC accounts for 30% by weight of the total catalyst, which is used as a cocatalyst for degradation of the polyhydroxy compound.
  • the catalyst A in the composite catalyst was Raney nickel
  • the catalyst B was phosphotungstic acid.
  • the reaction conditions were the same as in Example 3.
  • the catalytic conversion results of various polyhydroxy compounds are shown in Table 4.
  • the catalyst A is a metal ruthenium Ir/AC or Ni/AC
  • the catalyst B is a tungsten-containing compound.
  • the reaction conditions were the same as in Example 3.
  • Catalytic conversion of starch on various composite catalysts Table 5
  • Table 5 Results of Catalytic Conversion of Starch on Various Catalysts
  • the starch can be converted into ethylene glycol in a high yield on different composite catalysts in the catalytic process involved in the present invention.
  • the preferred catalyst according to the present invention is a reaction result of cellulose and starch as a reaction raw material (reaction condition example 3), compared with published patents and literatures: "A method for producing diols and polyols by sorbitol cracking ,, CN200510008652.0, "Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts", Angew. Chem. Int. Ed. 2008, 47, 8510-8513. See Table 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

一种多羟基化合物制乙二醇的方法 技术领域
本发明涉及乙二醇的制备方法,具体地说是多羟基化合物在水热条件下经过一步 催化加氢降解制乙二醇的反应过程。 背景技术
乙二醇是重要的能源液体燃料, 也是非常重要的聚酯合成原料, 例如, 用于聚对 苯二甲酸乙二酯(PET), 聚萘二甲酸乙二醇酯(PEN), 还可以用作防冻剂、润滑剂、 增塑剂、 表面活性剂等, 是用途广泛的有机化工原料。
目前, 乙二醇的工业生产主要是采用石油原料路线, 即乙烯环氧化后得到环氧乙 烷, 然后水合得到乙二醇【文献 1 : 崔小明, 国内外乙二醇生产发展概况, 化学工业, 2007 , 25, (4), 15-21. 文献 2: Process for preparing ethanediol by catalyzing epoxyethane hydration, Patent No. CN1463960-A; CN1204103-C】。合成方法依赖于不可 再生的石油资源,而且生产过程中包括选择氧化或环氧化步骤,技术难度大,效率低, 副产物多, 物耗高且污染严重。
利用具有可再生性的生物质制备乙二醇, 可以减少人类对化石能源物质的依赖, 有利于实现环境友好和经济可持续发展。 多羟基化合物, 包括纤维素、 淀粉、 半纤维 素、 葡萄糖、 蔗糖、 果糖、 果聚糖、 木糖、 可溶性低聚木糖在自然界中广泛存在。 随 着农业技术的发展, 其产量日益增长。发展以多羟基化合物制备乙二醇, 不仅可以在 一定程度上降低对石油资源的依赖, 同时,有助于实现农产品深加工制高附加值化学 品。目前,以多羟基化合物制多元醇的技术【文献 3: Process for the preparation of lower polyhydric alcohols, patent, No. US5107018. 文献 4: Preparation of lower polyhydric alcohols, patent, No. US5210335 文献 5:—种生产乙二醇的新工艺, CN200610068869.5 文献 6: —种由山梨醇裂解生产二元醇和多元醇的方法, CN200510008652.0】一般 包括三个步骤: (1 ) 淀粉经过糊化、 酶液化、 酶糖化过程得到葡萄糖 (2) 葡萄糖经 过贵金属钌或镍催化剂加氢得到山梨醇 (3 ) 山梨醇在高温高压下氢解生成产物多元 醇, 主要为丙二醇、 丙三醇、 乙二醇。 其中, 乙二醇的收率在 10-30%范围。 反应过 程繁琐。
另外一制备途径是通过水热条件下催化加氢转化纤维素制备乙二醇 【文献 4:
Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts, Angew. Chem. Int. Ed. 2008, 47, 8510 -8513。 文献 5: transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol, ChemSusChem 2010, 3, 63-66]0 该方法以碳化钨催化剂, 或者过渡金属促进 的金属钨催化剂对纤维素进行催化转化, 从而获得乙二醇。 乙二醇收率可以达到 60-75%。
本发明提供的方法以多羟基化合物为反应原料,在复合催化剂的作用下, 直接催 化转化为乙二醇。不仅反应过程简单, 产物中乙二醇收率高, 而且催化剂制备简单易 行, 成本低廉。 发明内容
本发明的目的在于提供一种多羟基化合物制乙二醇的方法。多羟基化合物(包括 纤维素、 淀粉、 半纤维素、 蔗糖、 葡萄糖、 果糖、 果聚糖、 木糖、 可溶性低聚木糖) 经过一步催化加氢降解过程, 高收率、 高选择性地制备乙二醇。
为实现上述目的, 本发明采取的技术方案为: 以多羟基化合物, 包括纤维素、 淀 粉、 半纤维素、 蔗糖、 葡萄糖、 果糖、 果聚糖、 木糖、 可溶性低聚木糖为反应原料, 在密闭高压反应釜内于水中进行催化加氢反应, 催化剂为复合催化剂, 包括催化剂 A 和催化剂 B, 催化剂 A的活性成分为第 8、 9、 10族的过渡金属铁、 钴、 镍、 钌、 铑、 钯、 铱、 铂中的一种或一种以上, 催化剂 B的活性成分为钨的氧化物、 钨的硫化物、 钨的氯化物、 钨的氢氧化物、 钨青铜、 钨酸、 钨酸盐、 偏钨酸、 偏钨酸盐、 仲钨酸、 仲钨酸盐、 过氧钨酸、 过氧钨酸盐、 钨杂多酸中的一种或一种以上; 于反应釜搅拌反 应; 反应前反应釜中充填氢气, 反应温度高于 120 °C, 温度上限以原料和产物不发生 热分解为准。 反应时间不少于 5 分钟。 较优选的反应釜中氢气室温时的初始压力为 l-12MPa, 较优选反应温度为 120-300°C, 反应时间不少于 5分钟; 更优选的反应温 度为 180-250°C, 室温下反应釜中更优选氢气的初始压力 3-7 MPa, 优选反应时间为 30 min _ 3 h。
在使用过程中, 催化剂 A的金属活性成分与催化剂 B的活性成分 (以金属钨重 量计) 重量比在 0.02-3000倍范围之间。 优选重量比在 0.1-100倍范围之间。
由多羟基化合物生成乙二醇的反应过程中, 生成的中间物种为不饱和的醇醛, 因 而需要通过催化加氢过程才能得到最终的多元醇。因而,催化剂中需要具有催化加氢 能力的活性组分催化剂 。 催化剂 A的金属活性成分担载在载体上, 包括活性炭、 氧化铝、 氧化硅、 碳化硅、 氧化锆、 氧化锌、 二氧化钛一种或一种以上复合体。 金属 于催化剂 A上的含量在 0.05-50 wt%, 优选在 1-30 wt%。 或者催化剂 A是非负载的、 以活性组分作为催化剂骨架的骨架金属催化剂, 例如雷尼镍等。
复合催化剂中的活性组分 B 为含有钨的氧化物、 钨的硫化物、 钨的氯化物、 钨 的氢氧化物、 钨青铜、 钨酸、 钨酸盐、 偏钨酸、 偏钨酸盐、 仲钨酸、 仲钨酸盐、 过氧 钨酸、 过氧钨酸盐、 钨杂多酸中的一种或两种以上。 在反应过程中, 溶解于溶液中的 钨离子对于多羟基化合物的催化降解具有重要的催化作用。
反应原料多羟基化合物与水的用量以反应条件下反应物料部分或完全为液态即 可, 在此条件下进行搅拌, 可以使反应物受热均匀, 避免局部温度过高引起原料烧焦 现象发生。 复合催化剂的用量为催化剂量。
较佳的条件为反应原料多羟基化合物与水的质量比为 1 :200— 1 : 1, 多羟基化合物 与复合催化剂 A+B的质量比为 1 : 1一 100: 1。
下面所列的实施例为高压反应釜中进行,但不排除可以通过反应器设计优化,例 如, 采用固定床反应器、 浆态床反应器等, 实现多羟基化合物、 氢气、 以及催化剂之 间更好的传质效果, 获得更好的反应结果。
本发明具有如下优点:
1 . 以多羟基化合物包括纤维素、 淀粉、 半纤维素、 葡萄糖、 蔗糖、 果糖、 果聚 糖、木糖、 可溶性低聚木糖为原料制备乙二醇, 相对于现有的乙二醇工业合成路线中 使用的乙烯原料, 具有原料资源可再生的优点, 符合可持续发展的要求。
2. 多羟基化合物催化降解后, 原料分子中的碳氢氧原子得到最大程度的保留, 反应过程具有很高的原子经济性。
3. 复合催化剂的制备过程简单, 使用方便, 成本低, 且反应过程具有很高的产 品收率和选择性, 乙二醇的收率可以达到 50%以上, 具有很好的应用前景。
下面通过具体实施例对本发明进行详细说明,但这些实施例并不对本发明的内容 构成限制。 具体实施方式
实施例 1
金属催化剂 Ni/AC, Ni/Si02, Pt/AC, Ru/AC的制备: 分别以硝酸镍、 氯铂酸、 三 氯化钌水溶液浸渍活性碳载体, 经过 120°C干燥 12 h后, 于 450°C氢气氛中还原 l h, 分别得到催化剂 Ni/AC ( 5 wt%Ni), Pt/AC ( 0.5 wt%Pt), Ru/AC ( 5 wt%Ru)。 将活 性碳载体换为 Si02, 同样方法可制得 Ni/Si02 ( 15 wt%Ni) 催化剂。
实施例 2
参考文献 Angew. Chem. Int. Ed. 2008, 47, 8510-8513, 制备 Ni-W2C/AC催化剂: 将偏钨酸氨和硝酸镍按照钨 /镍重量比为 15 : 1 的比例制成混合溶液, 其中, 偏钨酸 氨的质量浓度为 0.4 g/ml。 而后, 将混合溶液浸渍活性炭载体 (AC)。 经 120°C烘箱 干燥 12 h后,将催化剂前体置于 H2气氛中进行程序升温碳热反应,具体反应过程为: 1.0 g前体在石英反应管中由室温 1 h升温至 400°C, 而后以 rC/min升温至 700°C并 保持 1 h进行碳化,氢气流速为 60 ml/min。得到钨担载量为 30 wt%、镍担载量为 2 wt% 的 Ni-W2C/AC催化剂, 表示为 Ni-W2C/AC ( 2 wt%Ni-30 wt% W2C )。
实施例 3
催化转化实验:将 1.0 g多羟基化合物, 0.3 g催化剂 A, 0.03 g催化剂 B和 100 ml 水加入到 200 ml 反应釜中, 通入氢气置换三次气体后, 充氢气至 5 MPa, 升温至 240°C反应 30 min。 反应结束后, 降至室温, 取离心后的上清液体, 在高效液相色谱 钙型离子交换柱上进行分离并用差示折光检测器进行检测。产物收率中仅对目标产物 乙二醇、 丙二醇以及六元醇 (包括山梨醇、 甘露醇)进行计算, 其他液体产物包括丁 四醇、 乙醇、 未知成分, 以及气体产物 (C02, CH4, C2H6等) 未计算其收率。
实施例 4
复合催化剂中, 催化剂 A为不同的金属, 催化剂 B为磷钨酸, 反应条件同实施 例 3。 各种复合催化剂上纤维素的催化转化结果 (表一)。
表一 各种催化剂上, 纤维素催化转化的结果
Figure imgf000005_0001
如表一所示, 纤维素能够在本发明中所涉及的催化过程中,在不同复合催化剂上 高收率地转化为乙二醇。 其中, N1/AC+磷钨酸催化剂上乙二醇的收率可以达到 56%。
实施例 5
复合催化剂中, 催化剂 A为 Ru/AC, 催化剂 B为磷钨酸, 反应条件同实施例 3。 各种多羟基化合物的催化转化结果 (表二)。
表二 Ru /AC+磷钨酸催化剂上, 各种多羟基化合物的催化转化的结果
Figure imgf000005_0002
果糖 18 25 25 32 果聚糖菊粉 25 28 17 30 如表二所示,各种多羟基化合物能够在本发明中所涉及的催化过程中高收率地转 化为乙二醇和丙二醇。
实施例 6
复合催化剂中, 催化剂 A为金属铱 Ir/AC或 Ni/AC, 催化剂 B为含钨化合物。 反应条件同实施例 3。 各种复合催化剂上纤维素的催化转化结果 (表三)。
表三 各种催化剂上, 纤维素催化转化的结果
Figure imgf000006_0001
如表三所示, 纤维素能够在本发明中所涉及的催化过程中,在不同复合催化剂上 高收率地转化为乙二醇。
实施例 7
对比两组实验。 第 1组实验, 复合催化剂中, 催化剂 A为雷尼镍, 催化剂 B为 磷钨酸, 催化剂中还添加了活性炭 AC组分, AC占催化剂总量的 30wt%, 作为多羟 基化合物降解的助催化剂。第 2组实验, 复合催化剂中催化剂 A为雷尼镍, 催化剂 B 为磷钨酸。 反应条件同实施例 3。 各种多羟基化合物的催化转化结果见表四。
表四、 催化剂对比实验结果
Figure imgf000006_0002
如表四对比结果所示, 催化剂中添加催化助剂 AC后, 能够进一步改善乙二醇丙 二醇的多元醇收率。
实施例 8
复合催化剂中, 催化剂 A为金属铱 Ir/AC或 Ni/AC, 催化剂 B为含钨化合物。 反应条件同实施例 3。 各种复合催化剂上淀粉的催化转化结果 (表五)。 表五 各种催化剂上, 淀粉催化转化的结果
Figure imgf000007_0001
如表五所示, 淀粉能够在本发明中所涉及的催化过程中,在不同复合催化剂上高 收率地转化为乙二醇。
实施例 9
本发明所涉及的较佳催化剂以纤维素、淀粉为反应原料的反应结果(反应条件实 施例 3 ), 与公开专利和文献的比较: "一种由山梨醇裂解生产二元醇和多元醇的方 法,,, CN200510008652.0, "Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts", Angew. Chem. Int. Ed. 2008, 47, 8510-8513。 见表六。
表六 本发明与公开专利和文献的结果对比
Figure imgf000007_0002
催化剂更高明的反应过程更为简单, 显然, 与专利 CN200510008652.0中的方法 比较, 本发明中的乙二醇收率明显更高。 与文献 Angew. Chem. Int. Ed. 2008, 47, 8510-8513的结果相比, 乙二醇收率相近。 但是, 在催化剂的制备上, 本发明中的方 法条件更为温和, 制备过程更为简单易行(参见实施例 1, 2, 对比催化剂制备过程)。

Claims

权 利 要 求 书
1. 一种多羟基化合物制乙二醇的方法, 其特征在于: 其以多羟基化合物为反应原 料, 在密闭高压反应釜内于水中进行催化加氢反应, 所采用的催化剂为复合催化剂, 包 括催化剂 A和催化剂 B构成,催化剂 A的活性成分为第 8、 9、 10族的过渡金属铁、钴、 镍、 钌、 铑、 钯、 铱、 铂中的一种或一二种以上, 催化剂 B的活性成分为钨的氧化物、 钨的硫化物、钨的氯化物、钨的氢氧化物、钨青铜、钨酸、钨酸盐、偏钨酸、偏钨酸盐、 仲钨酸、 仲钨酸盐、 过氧钨酸、 过氧钨酸盐、 钨杂多酸中的一种或两种以上; 于反应釜 搅拌反应; 反应前反应釜中充填氢气, 反应温 ≥120°C, 反应时间不少于 5分钟; 在使用过程中, 催化剂 A的金属活性成分与催化剂 B的活性成分 (以金属钨重 量计) 重量比在 0.02-3000倍范围之间。
2. 按照权利要求 1所述的方法, 其特征在于: 反应前反应釜中充填氢气, 室温 时氢气的初始压力为 l-12MPa; 反应温度≥120 ,温度上限以原料和产物不发生热分 解为准。
3. 按照权利要求 1所述的方法, 其特征在于: 反应温度 120-300°C。
4. 按照权利要求 1所述的方法, 其特征在于: 优选的反应温度为 180-250°C, 室 温下反应釜中优选氢气的初始压力 3-7 MPa, 优选反应时间为 30 min - 3 h。
5. 按照权利要求 1所述的方法, 其特征在于: 所述催化剂 A为负载型催化剂, 活性组分担载在载体上, 所述载体为活性炭、 氧化铝、 氧化硅、 碳化硅、 氧化锆、 氧 化锌、二氧化钛中的一种或二种以上的复合载体; 活性组分金属于催化剂上的含量在 0.05-50 wt%。
6. 按照权利要求 5所述的方法, 其特征在于: 所述催化剂 A的活性组分金属于 催化剂上的含量优选在 1-30 wt%。
7.按照权利要求 1所述的方法,其特征在于: 所述催化剂 A也可以是非负载的、 以活性组分作为催化剂骨架的骨架金属催化剂。
8. 按照权利要求 1所述的方法, 其特征在于: 反应原料多羟基化合物与水的用 量以反应条件下反应物料部分或完全为液态即可; 复合催化剂的用量为催化剂量。
9. 按照权利要求 1所述的方法, 其特征在于: 反应原料多羟基化合物与水的质 量比为 1 :200— 1 :1, 多羟基化合物与复合催化剂 A+B的质量比为 1 :1一 100:1。
10. 按照权利要求 1所述的方法, 其特征在于: 所述催化剂 A的金属活性成分 与催化剂 B的活性组分 (以金属钨重量计算) 在使用过程中的优选重量比在 0.1-100 倍范围之间。
11. 按照权利要求 1所述的方法, 其特征在于: 所述多羟基化合物为纤维素、 淀 粉、 半纤维素、 蔗糖、 葡萄糖、 果糖、 果聚糖、 木糖、 可溶性低聚木糖中的一种或二 一种以上。
PCT/CN2010/078413 2010-03-17 2010-11-04 一种多羟基化合物制乙二醇的方法 WO2011113281A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
RU2012144018/04A RU2518371C1 (ru) 2010-03-17 2010-11-04 Способ получения этиленгликоля из полиоксисоединений
CA2778131A CA2778131C (en) 2010-03-17 2010-11-04 Methods for preparing ethylene glycol from polyhydroxy compounds
EP10847750.6A EP2548858B2 (en) 2010-03-17 2010-11-04 Process for preparing ethylene glycol from polyhydric compounds
MX2012003832A MX344140B (es) 2010-03-17 2010-11-04 Metodos para preparar etilenglicol a partir de compuestos de polihidroxi.
JP2012538178A JP5575911B2 (ja) 2010-03-17 2010-11-04 多価化合物からエチレングリコールを調製する方法
ES10847750T ES2622106T5 (es) 2010-03-17 2010-11-04 Procedimiento para preparar etilenglicol a partir de compuestos polihídricos
KR1020127012729A KR101415682B1 (ko) 2010-03-17 2010-11-04 폴리하이드록시 화합물로부터 에틸렌 글리콜을 제조하는 방법
US13/395,470 US9352304B2 (en) 2010-03-17 2010-11-04 Methods for preparing ethylene glycol from polyhydroxy compounds
ZA2012/02762A ZA201202762B (en) 2010-03-17 2012-04-16 Process for preparing ethylene glycol from polyhydric compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010125806.5A CN102190562B (zh) 2010-03-17 2010-03-17 一种多羟基化合物制乙二醇的方法
CN201010125806.5 2010-03-17

Publications (1)

Publication Number Publication Date
WO2011113281A1 true WO2011113281A1 (zh) 2011-09-22

Family

ID=44599528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078413 WO2011113281A1 (zh) 2010-03-17 2010-11-04 一种多羟基化合物制乙二醇的方法

Country Status (11)

Country Link
US (1) US9352304B2 (zh)
EP (1) EP2548858B2 (zh)
JP (1) JP5575911B2 (zh)
KR (1) KR101415682B1 (zh)
CN (1) CN102190562B (zh)
CA (1) CA2778131C (zh)
ES (1) ES2622106T5 (zh)
MX (1) MX344140B (zh)
RU (1) RU2518371C1 (zh)
WO (1) WO2011113281A1 (zh)
ZA (1) ZA201202762B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8222463B2 (en) 2011-07-28 2012-07-17 Uop Llc Process for generation of polyols from saccharide containing feedstock
US8222465B2 (en) 2011-07-28 2012-07-17 Uop Llc Catalytic process for continuously generating polyols
US8222462B2 (en) 2011-07-28 2012-07-17 Uop Llc Process for generation of polyols from saccharides
US8222464B2 (en) 2011-07-28 2012-07-17 Uop Llc Catalytic process for continuously generating polyols
US8323937B2 (en) 2011-07-28 2012-12-04 Uop Llc Continuous catalytic generation of polyols from cellulose
US8410319B2 (en) 2011-07-28 2013-04-02 Uop Llc Continuous catalytic generation of polyols from cellulose with recycle
CN103420788A (zh) * 2012-05-21 2013-12-04 中国科学院大连化学物理研究所 一种在两相溶剂中由碳水化合物生产小分子醇的方法
JP2014507270A (ja) * 2011-01-24 2014-03-27 ビーエーエスエフ ソシエタス・ヨーロピア ニッケル坦持炭素を含む水素化触媒
CN108348900A (zh) * 2015-11-19 2018-07-31 国际壳牌研究有限公司 用于产生二醇的催化剂系统和方法

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103608320A (zh) * 2011-07-28 2014-02-26 环球油品公司 由糖类生产多元醇
CN103420795B (zh) * 2012-05-18 2015-11-04 中国科学院大连化学物理研究所 一种低沸点有机相中由碳水化合物生产二元醇的方法
CN103420798B (zh) * 2012-05-18 2015-12-09 中国科学院大连化学物理研究所 一种高效催化转化纤维素类原料到二元醇的方法
CN103420799B (zh) * 2012-05-21 2015-04-01 中国科学院大连化学物理研究所 一种吸附剂在碳水化合物制小分子醇反应中的应用
CN103420797B (zh) * 2012-05-21 2015-04-08 中国科学院大连化学物理研究所 低金属负载量催化剂用于碳水化合物制备乙二醇的方法
CN103420796B (zh) * 2012-05-21 2015-05-20 中国科学院大连化学物理研究所 一种高金属负载量催化剂用于碳水化合物制乙二醇的方法
CN102746117B (zh) * 2012-06-27 2015-02-04 中国科学院大连化学物理研究所 一种以菊芋为原料催化转化制备六元醇的方法
CN103848720B (zh) * 2012-12-05 2015-08-26 中国科学院大连化学物理研究所 一种制备乙二醇的方法
CN103897716B (zh) * 2012-12-25 2016-03-16 中国科学院大连化学物理研究所 一种利用葡萄糖制取液体燃料的方法
CN103897717B (zh) * 2012-12-25 2016-02-10 中国科学院大连化学物理研究所 一种利用纤维素制取液体燃料的方法
CN105073693B (zh) * 2013-04-05 2017-05-03 国际壳牌研究有限公司 用于含糖原料转化的方法
EP2981515B1 (en) * 2013-04-05 2017-02-01 Shell Internationale Research Maatschappij B.V. Process for the preparation of glycols
CN104098440B (zh) * 2013-04-11 2016-02-10 中国科学院大连化学物理研究所 一种催化转化芒草制备二元醇的方法
BR112015019100A2 (pt) * 2013-04-26 2017-07-18 Shell Int Research processo para a preparação de monoetileno glicol a partir de sacarose, e, processo para a conversão de sacarose em frutose e/ou derivados de frutose
WO2014203601A1 (ja) * 2013-06-18 2014-12-24 株式会社ダイセル 水素化反応用触媒の再生方法、及び多価アルコールの水素化物の製造方法
CA2920938C (en) * 2013-08-30 2021-07-27 Shell Internationale Research Maatschappij B.V. Use of a cooled feed stream in processes for catalytic conversion of saccharide-containing feedstocks
EP3145902B1 (en) * 2014-05-19 2018-08-15 Iowa Corn Promotion Board Process for the continuous production of ethylene glycol from carbohydrates
DK3160927T3 (da) * 2014-06-30 2022-06-13 Haldor Topsoe As Fremgangsmåde til fremstilling af ethylenglycol ud fra sukker
BR112016030694B1 (pt) * 2014-06-30 2020-12-15 Haldor Topsøe A/S Processo para a preparação de etileno glicol a partir de açúcares
KR101533535B1 (ko) * 2014-09-01 2015-07-03 성균관대학교산학협력단 폴리올로부터 글리콜 생산을 위한 텅스텐 카바이드 계열의 촉매
CN105521788B (zh) 2014-09-28 2020-10-27 长春美禾科技发展有限公司 一种耐酸合金催化剂
CN105523890B (zh) * 2014-09-28 2021-04-16 长春美禾科技发展有限公司 一种制备二元醇的方法
KR101533541B1 (ko) * 2014-12-19 2015-07-03 성균관대학교산학협력단 세리아-지르코니아를 포함하는 복합 금속 산화물 지지체에 금속을 담지한 솔비톨로부터 글리콜을 제조하기 위한 촉매
CN107438591B (zh) * 2015-01-13 2020-10-16 阿凡田知识中心有限公司 从碳水化合物源制备乙二醇的工艺
LT3245182T (lt) * 2015-01-13 2020-03-10 Avantium Knowledge Centre B.V. Etileno glikolio paruošimo iš angliavandenių procesas
EP3245181B1 (en) 2015-01-13 2019-10-23 Avantium Knowledge Centre B.v. Continuous process for preparing ethylene glycol from a carbohydrate source
LT3245180T (lt) 2015-01-13 2020-07-27 Avantium Knowledge Centre B.V. Etileno glikolio gamybos būdas iš angliavandenių šaltinio
NL2014119B1 (en) * 2015-01-13 2017-01-05 Avantium Knowledge Centre Bv Process for preparing alkylene glycol from a carbohydrate.
EP3317242B1 (en) * 2015-06-30 2020-07-29 Shell International Research Maatschappij B.V. Process for the preparation of glycols
CN108137455A (zh) * 2015-09-29 2018-06-08 国际壳牌研究有限公司 用于制备二醇的方法
CN108137454A (zh) * 2015-09-29 2018-06-08 国际壳牌研究有限公司 氢化催化剂的制备方法和其用于制备二醇的用途
BR112018007830B1 (pt) 2015-10-20 2021-09-21 Shell Internationale Research Maatschappij B.V. Método para produção de etilenoglicol a partir de uma alimentação de carboidrato
CN108137450A (zh) * 2015-10-20 2018-06-08 国际壳牌研究有限公司 二醇的制造方法
CN106694009B (zh) * 2015-11-12 2019-12-13 中国科学院大连化学物理研究所 合金催化剂用于碳水化合物催化制备低碳二元醇的方法
CN108349857B (zh) * 2015-11-19 2021-09-24 国际壳牌研究有限公司 用于生产二醇的催化剂系统和方法
CA3006508C (en) * 2015-12-17 2023-12-05 Shell Internationale Research Maatschappij B.V. Hydrogenation or hydrogenolysis of an oxygenate
EP3389854A1 (en) * 2015-12-17 2018-10-24 Shell International Research Maatschappij B.V. Hydrogenation or hydrogenolysis process
WO2017118701A1 (en) 2016-01-07 2017-07-13 Haldor Topsøe A/S Process for the preparation of ethylene glycol from sugars
EP3400208B1 (en) 2016-01-07 2021-07-28 Haldor Topsøe A/S Process for the preparation of ethylene glycol from sugars
RU2741385C2 (ru) * 2016-03-07 2021-01-25 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ извлечения металлического компонента
WO2017178391A1 (en) * 2016-04-11 2017-10-19 Shell Internationale Research Maatschappij B.V. A process for the preparation of a catalyst and a process for producing glycols using the catalyst
US10472310B2 (en) 2016-06-03 2019-11-12 Iowa Corn Promotion Board Continuous processes for the highly selective conversion of sugars to propylene glycol or mixtures of propylene glycol and ethylene glycol
JP7094894B2 (ja) * 2016-06-03 2022-07-04 アイオワ・コーン・プロモーション・ボード アルドヘキソースを生じる炭水化物のエチレングリコールへの高度に選択的な変換のための連続プロセス
US20190194100A1 (en) * 2016-08-23 2019-06-27 Shell Oil Company Method for the production of glycols from an anhydrosugar feed
WO2018064245A1 (en) * 2016-09-29 2018-04-05 Shell Oil Company Method for acid treatment conditioning of a catalyst in the production of glycols
CN110023273B (zh) * 2016-12-07 2023-03-28 国际壳牌研究有限公司 用于制备二醇的方法
US20200109098A1 (en) * 2016-12-19 2020-04-09 Shell Oil Company Method for stabilization of glucose feed in the production of glycols
CN109896922B (zh) * 2017-12-07 2022-03-22 中国科学院大连化学物理研究所 一种木质纤维素高效分离并实现全组分利用的方法
CN111054330A (zh) * 2018-10-16 2020-04-24 中国石油化工股份有限公司 用于生物质制乙二醇的催化剂及其制备方法
CN111054339B (zh) * 2018-10-16 2023-05-02 中国石油化工股份有限公司 制乙二醇的催化剂组合物
CN111054336A (zh) * 2018-10-16 2020-04-24 中国石油化工股份有限公司 用于制生物质基乙二醇的催化剂及其制备方法
CN111054335A (zh) * 2018-10-16 2020-04-24 中国石油化工股份有限公司 用于制备生物质基乙二醇的催化剂
CN111054342B (zh) * 2018-10-16 2023-06-06 中国石油化工股份有限公司 用于碳水化合物制备乙二醇的催化剂及其制备方法
CN112169795B (zh) * 2019-07-02 2022-05-06 中国科学院大连化学物理研究所 优化的多元醇氢解催化剂活化方法
CN111617802A (zh) * 2020-06-24 2020-09-04 新疆农业大学 一种组合负载型催化剂及其制备方法与应用
CN111604091A (zh) * 2020-06-24 2020-09-01 新疆农业大学 一种组合形成的负载型催化剂及其制备方法与应用
CN113842911B (zh) * 2020-06-28 2023-08-29 中国石油化工股份有限公司 用于制生物质基乙二醇的钨青铜催化剂和催化剂组合物
CN113083299A (zh) * 2021-02-19 2021-07-09 青岛科技大学 Yolk-shell双功能催化剂及其制备方法和在葡萄糖氢解制备乙二醇中的应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5107018A (en) 1989-08-26 1992-04-21 Basf Aktiengesellschaft Process for the preparation of lower polyhydric alcohols
US5210335A (en) 1988-05-28 1993-05-11 Basf Aktiengesellschaft Preparation of lower polyhydric alcohols
CN1204103A (zh) 1997-06-27 1999-01-06 三星电子株式会社 现金出纳机系统的支票/卡识别装置和方法
CN1463960A (zh) 2002-06-12 2003-12-31 中国石油化工股份有限公司 环氧乙烷催化水合制备乙二醇的方法
CN101437781A (zh) * 2006-05-09 2009-05-20 花王株式会社 多元醇的氢解物的制造方法
CN101648140A (zh) * 2008-08-14 2010-02-17 中国科学院大连化学物理研究所 碳化钨催化剂及其制备和在纤维素制乙二醇反应中的应用
CN101768050A (zh) * 2009-12-25 2010-07-07 北京大学 一种生产乙二醇和1,2-丙二醇的方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE541362C (de) 1927-10-25 1932-01-11 I G Farbenindustrie Akt Ges Verfahren zur Hydrierung von Polyoxyverbindungen
CH532844A (de) 1969-08-01 1973-01-15 Siemens Ag Verfahren zur Herstellung einer Wolframcarbid enthaltenden Elektrode für Brennstoffelemente
US3691100A (en) 1970-02-05 1972-09-12 Atlas Chem Ind Tungsten oxide promoted and supported nickel catalyst
US3965199A (en) 1972-04-26 1976-06-22 Ici United States Inc. Hydrogenation and hydrogenolysis of carbohydrates with tungsten oxide promoted supported nickel catalyst
US4155928A (en) 1975-05-16 1979-05-22 Phillips Petroleum Company Methanation of carbon monoxide over tungsten carbide-containing catalysts
CN1019502B (zh) * 1989-12-11 1992-12-16 中国石油化工总公司抚顺石油化工研究院 馏分油加氢精制催化剂及制法
US6297185B1 (en) 1998-02-23 2001-10-02 T/J Technologies, Inc. Catalyst
US6461539B1 (en) 1999-10-18 2002-10-08 Conoco Inc. Metal carbide catalysts and process for producing synthesis gas
US6696184B1 (en) 2000-09-29 2004-02-24 Osram Sylvania Inc. Supported tungsten carbide material
KR100825688B1 (ko) 2006-04-04 2008-04-29 학교법인 포항공과대학교 나노다공성 텅스텐 카바이드 촉매 및 그의 제조방법
NZ572113A (en) 2006-05-08 2011-10-28 Virent Inc Methods and systems for generating polyols
JP5010963B2 (ja) * 2006-05-09 2012-08-29 花王株式会社 多価アルコールの水素化分解物の製造方法
US7977517B2 (en) * 2007-03-08 2011-07-12 Virent Energy Systems, Inc. Synthesis of liquid fuels and chemicals from oxygenated hydrocarbons
CN100564258C (zh) 2007-07-13 2009-12-02 北京工业大学 一种利用硬模板剂合成高比表面积介孔碳分子筛的方法
CN101411975A (zh) 2007-10-19 2009-04-22 中国科学院大连化学物理研究所 一种炭载过渡金属碳化物催化剂在肼分解反应中的应用
CN101428213B (zh) 2007-11-07 2011-04-20 中国科学院大连化学物理研究所 炭载类贵金属催化剂在纤维素加氢水解反应中的应用
CN101613253B (zh) * 2008-06-25 2012-10-24 中国科学院大连化学物理研究所 一种糖及糖醇的催化裂解方法
CN101723802B (zh) 2008-10-24 2013-06-19 中国科学院大连化学物理研究所 一种纤维素制乙二醇的方法
CN101735014B (zh) 2008-11-26 2013-07-24 中国科学院大连化学物理研究所 一种多羟基化合物制乙二醇的方法
CN102049273B (zh) 2009-10-27 2013-05-01 中国科学院大连化学物理研究所 一种介孔炭担载的碳化钨催化剂及其制备和应用
CN101869853B (zh) 2010-05-28 2012-07-11 中山大学 有序介孔碳/碳化钨复合材料与其负载型催化剂以及它们的制备方法
US8222464B2 (en) 2011-07-28 2012-07-17 Uop Llc Catalytic process for continuously generating polyols
US8222463B2 (en) 2011-07-28 2012-07-17 Uop Llc Process for generation of polyols from saccharide containing feedstock
US8222462B2 (en) 2011-07-28 2012-07-17 Uop Llc Process for generation of polyols from saccharides
US8222465B2 (en) 2011-07-28 2012-07-17 Uop Llc Catalytic process for continuously generating polyols
US8323937B2 (en) * 2011-07-28 2012-12-04 Uop Llc Continuous catalytic generation of polyols from cellulose
US20110312487A1 (en) 2011-07-28 2011-12-22 Uop Llc Catalyst system for generation of polyols from saccharides

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5210335A (en) 1988-05-28 1993-05-11 Basf Aktiengesellschaft Preparation of lower polyhydric alcohols
US5107018A (en) 1989-08-26 1992-04-21 Basf Aktiengesellschaft Process for the preparation of lower polyhydric alcohols
CN1204103A (zh) 1997-06-27 1999-01-06 三星电子株式会社 现金出纳机系统的支票/卡识别装置和方法
CN1463960A (zh) 2002-06-12 2003-12-31 中国石油化工股份有限公司 环氧乙烷催化水合制备乙二醇的方法
CN101437781A (zh) * 2006-05-09 2009-05-20 花王株式会社 多元醇的氢解物的制造方法
CN101648140A (zh) * 2008-08-14 2010-02-17 中国科学院大连化学物理研究所 碳化钨催化剂及其制备和在纤维素制乙二醇反应中的应用
CN101768050A (zh) * 2009-12-25 2010-07-07 北京大学 一种生产乙二醇和1,2-丙二醇的方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts", ANGEW. CHEM. INT. ED., vol. 47, 2008, pages 8510 - 8513
ANGEW. CHEM. INT. ED., vol. 47, 2008, pages 8510 - 8513
CHEMSUSCHEM, vol. 3, 2010, pages 63 - 66
CUI XIAO-MING: "the overview of the production development of ethylene glycol", CHEMICAL INDUSTRY, vol. 25, no. 4, 2007, pages 15 - 21
See also references of EP2548858A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014507270A (ja) * 2011-01-24 2014-03-27 ビーエーエスエフ ソシエタス・ヨーロピア ニッケル坦持炭素を含む水素化触媒
US8222463B2 (en) 2011-07-28 2012-07-17 Uop Llc Process for generation of polyols from saccharide containing feedstock
US8222465B2 (en) 2011-07-28 2012-07-17 Uop Llc Catalytic process for continuously generating polyols
US8222462B2 (en) 2011-07-28 2012-07-17 Uop Llc Process for generation of polyols from saccharides
US8222464B2 (en) 2011-07-28 2012-07-17 Uop Llc Catalytic process for continuously generating polyols
US8323937B2 (en) 2011-07-28 2012-12-04 Uop Llc Continuous catalytic generation of polyols from cellulose
US8410319B2 (en) 2011-07-28 2013-04-02 Uop Llc Continuous catalytic generation of polyols from cellulose with recycle
CN103420788A (zh) * 2012-05-21 2013-12-04 中国科学院大连化学物理研究所 一种在两相溶剂中由碳水化合物生产小分子醇的方法
CN108348900A (zh) * 2015-11-19 2018-07-31 国际壳牌研究有限公司 用于产生二醇的催化剂系统和方法
CN108348900B (zh) * 2015-11-19 2021-04-16 国际壳牌研究有限公司 用于产生二醇的催化剂系统和方法

Also Published As

Publication number Publication date
MX344140B (es) 2016-12-07
CN102190562A (zh) 2011-09-21
RU2012144018A (ru) 2014-04-27
CA2778131A1 (en) 2011-09-22
ES2622106T3 (es) 2017-07-05
EP2548858A4 (en) 2014-11-26
KR101415682B1 (ko) 2014-07-04
EP2548858A1 (en) 2013-01-23
JP5575911B2 (ja) 2014-08-20
EP2548858B1 (en) 2017-01-11
KR20120068991A (ko) 2012-06-27
MX2012003832A (es) 2012-05-08
ZA201202762B (en) 2013-01-30
EP2548858B2 (en) 2020-01-08
JP2013510801A (ja) 2013-03-28
RU2518371C1 (ru) 2014-06-10
CA2778131C (en) 2015-12-22
US20120172633A1 (en) 2012-07-05
CN102190562B (zh) 2014-03-05
ES2622106T5 (es) 2020-06-25
US9352304B2 (en) 2016-05-31

Similar Documents

Publication Publication Date Title
WO2011113281A1 (zh) 一种多羟基化合物制乙二醇的方法
WO2010060345A1 (zh) 一种多羟基化合物制乙二醇的方法
CA2725248C (en) Method of preparing ethylene glycol from cellulose
WO2010017681A1 (zh) 碳化钨催化剂及其制备和在纤维素制乙二醇反应中的应用
Ji et al. Catalytic conversion of cellulose into ethylene glycol over supported carbide catalysts
CN102675045A (zh) 一种糖溶液制备乙二醇、1,2-丙二醇的方法
CN103420795B (zh) 一种低沸点有机相中由碳水化合物生产二元醇的方法
US20230256423A1 (en) Modified copper-zinc catalysts and methods for alcohol production from carbon dioxide
Ban et al. Catalytic hydrogenation of alginic acid into sugar alcohols over ruthenium supported on nitrogen-doped mesoporous carbons
CN111054339B (zh) 制乙二醇的催化剂组合物
WO2012141523A2 (ko) 당류의 촉매 수소화에 의해 당알코올류를 제조하기 위한 담지촉매, 이의 제조방법 및 이를 이용한 당알코올류의 제조방법
CN103420787B (zh) 近或超临界水条件下碳水化合物制小分子多元醇的方法
CN106824191B (zh) 双金属催化剂在甘油氢解制备1,3-丙二醇中的应用
CN102731253B (zh) 一种抑制环醚醇生成的纤维素催化转化制乙二醇的方法
CN108607553A (zh) 一种甘油氢解制备1,3-丙二醇的催化剂及制备和应用
CN109225329B (zh) 一种用于甘油氢解制备1,3-丙二醇的催化剂及其应用
CN111054338A (zh) 用于制生物质基乙二醇的催化剂
Cheng et al. Effect of Phosphine Doping and the Surface Metal State of Ni on the Catalytic Performance of Ni/Al 2 O 3 Catalyst.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847750

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13395470

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 669/MUMNP/2012

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2010847750

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010847750

Country of ref document: EP

Ref document number: MX/A/2012/003832

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2778131

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2012538178

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127012729

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012144018

Country of ref document: RU