RU2518371C1 - Способ получения этиленгликоля из полиоксисоединений - Google Patents

Способ получения этиленгликоля из полиоксисоединений Download PDF

Info

Publication number
RU2518371C1
RU2518371C1 RU2012144018/04A RU2012144018A RU2518371C1 RU 2518371 C1 RU2518371 C1 RU 2518371C1 RU 2012144018/04 A RU2012144018/04 A RU 2012144018/04A RU 2012144018 A RU2012144018 A RU 2012144018A RU 2518371 C1 RU2518371 C1 RU 2518371C1
Authority
RU
Russia
Prior art keywords
catalyst
tungsten
active component
reactor
mixture
Prior art date
Application number
RU2012144018/04A
Other languages
English (en)
Other versions
RU2012144018A (ru
Inventor
Тао Чжан
Чжицзюнь ТАЙ
Айцинь ВАН
Минюань ЧЖЭН
Original Assignee
Далянь Инститьют Оф Кемикал Физикс, Чайниз Академи Оф Сайенсез
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44599528&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2518371(C1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Далянь Инститьют Оф Кемикал Физикс, Чайниз Академи Оф Сайенсез filed Critical Далянь Инститьют Оф Кемикал Физикс, Чайниз Академи Оф Сайенсез
Publication of RU2012144018A publication Critical patent/RU2012144018A/ru
Application granted granted Critical
Publication of RU2518371C1 publication Critical patent/RU2518371C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6527Tungsten
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/94Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/20Dihydroxylic alcohols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/468Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Изобретение относится к способу получения этиленгликоля из полиоксисоединения. Способ включает добавление полиоксисоединения и воды в реактор, удаление воздуха из реактора, герметизацию реактора с газообразным водородом при определенном исходном давлении водорода и взаимодействие полиоксисоединения с водородом в присутствии катализатора при перемешивании реакционной смеси. При этом температура реакции поддерживается равной или выше 120°С, время реакции составляет не менее 5 минут, катализатор представляет собой смешанный катализатор, включающий катализатор А и катализатор В, где активный компонент катализатора А включает переходный металл 8, 9 или 10 группы, выбранный из железа, кобальта, никеля, рутения, родия, палладия, иридия и платины, или их смесь, активный компонент катализатора В включает соединение оксида вольфрама, сульфида вольфрама, хлорида вольфрама, гидроксида вольфрама, оксидной вольфрамовой бронзы, вольфрамовой кислоты, вольфрамата, метавольфрамовой кислоты, метавольфрамата, паравольфрамовой кислоты, паравольфрамата, пероксовольфрамовой кислоты, первольфрамата, гетерополикислоты, содержащей вольфрам, или их смесь. Кроме того, массовое соотношение активного компонента катализатора А и активного компонента катализатора В (из расчета на массу вольфрама) находится в интервале от 0,02 до 3000. Способ позволяет получать продукт с высоким выходом при использовании катализатора, который может быть получен в мягких условиях при низких затратах. 10 з.п. ф-лы, 6 табл., 9 пр.

Description

[0001] ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
[0002] Изобретение относится к способам получения этиленгликоля, точнее, к способам получения этиленгликоля каталитическим гидрированием полиоксисоединений до разложения в гидротермальных условиях.
[0003] УРОВЕНЬ ТЕХНИКИ
[0004] Этиленгликоль является важным компонентом жидкого топлива, а также имеет большое значение как исходное вещество для получения сложных полиэфиров, например полиэтилентерефталата (polyethylene terephthalate - PET), полиэтиленнафталата (polyethylene naphthalate - PEN). Он также может использоваться в качестве антифриза, смазочного вещества, пластификатора, поверхностно-активного вещества и т.д. Он представляет собой широко применяемое сырье для промышленности органической химии.
[0005] В традиционных способах получения этиленгликоля в качестве сырья используется нефть. Например, этилен подвергается эпоксидированию с получением этиленоксида, гидратирование которого приводит к получению этиленгликоля (Публикация 1: CUI Xiao-ming. The overview of the production development of ethylene glycol. Chemical Industry, 2007, 25, (4), 15-21; Публикация 2: Process for preparation ethandiol by catalyzing epoxyethane hydration. Патент № CNI463960-A; CN1204103-C). Указанные способы основаны на применении нефти - невосстановимого источника - и включают стадию селективного окисления или эпоксидирования, которые повышают техническую сложность процесса. Кроме того, стандартные способы являются низкоэффективными, характеризуются высоким расходом материалов, могут приводить к серьезному загрязнению окружающей среды и приводят к получению большого количества побочных продуктов.
[0006] Получение этиленгликоля из восстановимого сырья может снизить зависимость людей от ископаемых источников энергии и способствовать устойчивому развитию как с точки зрения безопасности окружающей среды, так и с точки зрения экономики.
[0007] Полиоксисоединения, такие как целлюлоза, крахмал, гемицеллюлоза, глюкоза, сахароза, фруктоза, фруктан, ксилоза и растворимые ксилоолигосахариды, широко распространены в природе, и их получение возрастает с развитием сельскохозяйственных технологий. Получение этиленгликоля с использованием полиоксисоединений не только снижает зависимость людей от ископаемых источников энергии, но и приводит к получению полезных химических веществ из сельскохозяйственных продуктов.
[0008] Способы получения этиленгликоля из полиоксисоединений, применяемые в настоящее время (Публикация 3: Process for the preparation of lower polyhydric alcohols. Патент США № 5107018; Публикация 4: Preparation of lower polyhydric alcohols. Патент США № 5210335; Публикация 5: A new method for ethylene glycol preparation. CN200610068869.5; Публикация 6: A method for preparation of diol and polyols via sorbitol hydrogenolysis. CN200510008652.0), обычно включают три стадии: (а) желатинирование, сжижение и осахаривание полиоксисоединений с получением глюкозы; (b) гидрирование глюкозы с применением рутения или никеля в качестве катализатора для получения сорбита; (с) гидрогенолиз сорбита в условиях высокой температуры и высокого давления для получения смеси, которая включает, главным образом, пропиленгликоль, глицерин и этиленгликоль. Выход этиленгликоля находится в интервале от 10% до 30%. Процесс является сложным.
[0009] Другим способом получения этиленгликоля является гидрогенолиз целлюлозы в гидротермальных условиях (Публикация 7: Direct conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. Angew. Chem. Int. Ed. 2008, 47, 8510-8513; Публикация 8: Transition metal-tungsten bimetallic catalysts for conversion of cellulose into ethylene glycol. ChemSusChem. 2010, 3, 63-66). Карбид вольфрама или металлический вольфрам, активированный переходными металлами в форме металлов, использовались в качестве катализатора для конверсии целлюлозы в этиленгликоль с выходами в интервале от 60% до 75%.
[0010] Изобретение предлагает способы получения этиленгликоля непосредственно из полиоксисоединений с использованием смешанных катализаторов. Реакционный процесс является простым и приводит к получению этиленгликоля с высоким выходом, катализатор также является простым и легко может быть получен при низких затратах.
[0011]
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[0012] Изобретение предлагает способы получения этиленгликоля из полиоксисоединений. Полиоксисоединения, включая, но без ограничения только ими, целлюлозу, крахмал, гемицеллюлозу, глюкозу, сахарозу, фруктозу, фруктан, ксилозу и растворимые ксилоолигосахариды, подвергаются разложению посредством одностадийного каталитического гидрирования для получения этиленгликоля с высоким выходом и высокой селективностью.
[0013] Для достижения указанной цели техническая схема данного изобретения включает загрузку полиоксисоединений, которые используются в качестве реагента и включают целлюлозу, крахмал, гемицеллюлозу, глюкозу, сахарозу, фруктозу, фруктан, ксилозу и растворимые ксилоолигосахариды, в герметично закрывающийся реактор высокого давления для каталитического гидрирования в воде. Катализатор представляет собой смешанный катализатор, включающий катализатор А и катализатор В. Активный компонент катализатора включает переходный металл 8, 9 или 10 Групп Периодической таблицы (в соответствии с IUPAC), такой как железо, кобальт, никель, рутений, родий, палладий, иридий и платина или их смесь. Активный компонент катализатора В представляет собой одно или несколько соединений, выбранных из оксида вольфрама, сульфида вольфрама, гидроксида вольфрама, хлорида вольфрама, оксидной вольфрамовой бронзы (tungsten bronze oxide), вольфрамовой кислоты, вольфрамата, метавольфрамовой кислоты (metatungstate acid), метавольфрамата, паравольфрамовой кислоты (paratungstate acid), паравольфрамата, пероксовольфрамовой кислоты (peroxotungstic acid), пероксовольфрамата, гетерополикислоты, содержащей вольфрам. Исходное давление водорода в реакторе при комнатной температуре предпочтительно находится в интервале от 1 до 12 МПа. Температура реакции предпочтительно находится в интервале от 120 до 300°С, и время реакции составляет не менее 5 минут. Более предпочтительно, температура реакции находится в интервале от 180 до 250°С, исходное давление водорода внутри реактора находится в интервале от 3 до 7 МПа при комнатной температуре, время реакции составляет от 30 минут до 3 часов.
[0014] В процессе осуществления данного способа массовое соотношение активного компонента катализатора А и активного компонента катализатора В (из расчета на массу вольфрама) находится в интервале от 0,02 до 3000, предпочтительно в интервале от 0,1 до 100.
[0015] Химическое превращение полиоксисоединений в этиленгликоль приводит к получению промежуточных гликолевых альдегидов, которые должны подвергаться каталитическому гидрированию для получения этиленгликоля. Поэтому необходимо, чтобы смешанный катализатор содержал катализатор А, который каталитически активен в реакции гидрирования. Активный компонент катализатора А, представляющий собой металл, нанесен на носитель, выбранный из активированного угля, оксида алюминия, диоксида кремния, карбида кремния, диоксида циркония, оксида цинка, диоксида титана и/или их смеси. Металлический компонент катализатора составляет от 0,05 до 50% масс. катализатора, предпочтительно от 1 до 30% масс. Катализатор А может представлять собой не нанесенный на подложку скелетный катализатор, такой как никель Ренея, в котором активные компоненты используются в качестве структурного носителя. Активный компонент катализатора В в смешанном катализаторе выбран из оксида вольфрама, сульфида вольфрама, гидроксида вольфрама, хлорида вольфрама, оксидной вольфрамовой бронзы, вольфрамовой кислоты, вольфрамата, метавольфрамовой кислоты, метавольфрамата, паравольфрамовой кислоты, паравольфрамата, пероксовольфрамовой кислоты, пероксовольфрамата, гетерополикислоты, содержащей вольфрам, или их смеси. Различные соединения вольфрама в растворе играют ключевые роли в каталитическом разложении полиоксисоединений в процессе реакции.
[0016] Количество полиоксисоединений и воды должно добавляться, когда реакционная смесь частично или полностью приобретает форму жидкого раствора в условиях реакции. В этих условиях реакционную смесь перемешивают для однородного нагрева, избегая образования нагара вследствие образования локализованных областей перегрева.
[0017] Предпочтительно, массовое соотношение полиоксисоединения и воды находится в интервале от 1:200 до 1:1, и массовое соотношение полиоксисоединения и смешанного катализатора А+В находится в интервале от 1:1 до 100:1.
[0018] В представленных далее примерах реакции проводятся в реакторах высокого давления. Однако не могут исключаться и другие оптимально разработанные реакторы, такие как реактор с неподвижным слоем катализатора или реактор со взвешенным слоем катализатора, так что массообмен и взаимодействие полиоксисоединения и водорода в присутствии катализатора являются оптимальными.
[0019] Преимущества настоящего изобретения в целом описаны далее:
[0020] 1) Получение этиленгликоля с использованием полиоксисоединений, например целлюлозы, крахмала, гемицеллюлозы, глюкозы, сахарозы, фруктозы, фруктана, ксилозы и растворимых ксилоолигосахаридов, в качестве исходных веществ. Применение исходного вещества, которое может восполняться, что, следовательно, удовлетворяет требованию устойчивого развития, является преимуществом по сравнению с традиционными способами, в которых в качестве исходного вещества используется этилен.
[0021] 2) Атомы углерода, водорода и кислорода, присутствующие в исходных веществах, в значительной степени сохраняются в продуктах разложения полиоксисоединений, и это означает, что способ получения характеризуется высокой экономией атомов.
[0022] 3) Смешанный катализатор может быть легко получен и является удобным для применения. Кроме того, стоимость катализатора низка. Реакция с использованием такого смешанного катализатора является высокоселективной по этиленгликолю и приводит к получению этиленгликоля с выходом более чем 50%, что делает способ высокоперспективным для коммерческого применения.
ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Пример 1 - Получение Ni/AC, Ni/SiO 2 , Pt/AC, Ru/AC катализатора
[0023] Носители из активированного угля импрегнируют водными растворами нитрата никеля, хлорплатиновой кислоты и трихлорида рутения соответственно. Образцы сушат при 120°С в течение 12 часов и восстанавливают в присутствии водорода при 450°С в течение одного часа, получая Ni/AC катализатор, содержащий 5% масс. никеля, Pt/AC катализатор, содержащий 0,5% масс. платины, и Ru/AC катализатор, содержащий 5% рутения, соответственно.
[0024] Ni/SiO2 катализатор, содержащий 15% масс. никеля, получают в соответствии с методикой, описанной выше, но используя SiO2 вместо активированного угля.
Пример 2 - Получение катализатора никель-карбид вольфрама
[0025] В соответствии с публикацией Angew. Chem. Int. Ed. 2008, 47, 8510-8513, готовят смешанный раствор метавольфрамата аммония и нитрата никеля с массовым соотношением W/Ni, равным 15:1, где концентрация метавольфрамата аммония равна 0,4 г/мл. Носитель, представляющий собой активированный уголь, импрегнируют полученным раствором и сушат в печи при 120°С в течение 12 часов. Один грамм полученного таким образом образца подвергают науглероживанию в потоке Н2 (60 мл/мин.) с трехстадийным режимом нагрева от комнатной температуры до 400°С в течение 1 часа, затем до 700°С со скоростью нагрева 1°С/мин, и выдерживают при данной температуре в течение 1 часа. И наконец, получают Ni-W2C/AC катализатор, содержащий 2% масс. никеля и 30% масс. вольфрама, который обозначают как Ni-W2C/AC (2% масс. Ni-30% масс. W2C).
Пример 3 - Каталитическое разложение полиоксисоединений
[0026] 1 г полиоксисоединения, 0,3 г катализатора А, 0,03 г катализатора В и 100 мл воды загружают в реактор объемом 200 мл. Реактор заполняют водородом и выпускают его, повторяя эту процедуру трижды для удаления воздуха. После этого давление водорода в реакторе повышают до 5 МПа и затем температуру в реакторе повышают до 240°С. Реакционную смесь выдерживают в указанных условиях в течение 30 минут, затем реактор охлаждают до комнатной температуры и реакционную смесь центрифугируют для получения надсадочной жидкости. Надсадочную жидкость анализируют с помощью высокоэффективной жидкостной хроматографии (ВЭЖХ) с использованием кальциевой ионообменной колонки и рефрактометрического детектора. Рассчитывают только выходы этиленгликоля, пропиленгликоля и гекситолов (включая сорбит и маннит). Выходы других жидких продуктов, таких как эритол, этанол и другие неизвестные соединения, а также газообразных продуктов, таких как СО2, СН4, С2Н6 и т.д., не вычисляют.
Пример 4
[0027] В соответствии с методикой, описанной в примере 3, целлюлозу подвергают разложению в присутствии различных смешанных катализаторов. В катализаторе А используют различные металлы, в то время как катализатор В представляет собой фосфовольфрамовую кислоту. Результаты каталитической конверсии целлюлозы с использованием различных смешанных катализаторов, описанных выше, представлены в таблице 1.
Таблица 1
Химическое превращение целлюлозы в этиленгликоль в присутствии различных катализаторов
Катализатор Выход этилен-гликоля, % Выход пропилен-гликоля, % Выход гекси-толов, % Другие продук-ты, %
Ni/AC+фосфовольфрамовая кислота 56 3 5 36
Pt/AC+фосфовольфрамовая кислота 48 3 5 54
Ni/AC(5%Ni) 8 2 48 42
Pt/AC(0,5%Pt) 5 45 50
Фосфовольфрамовая кислота 0 0 0 100
Ru/AC+фосфовольфрамовая кислота 60 4 15 21
Ru/AC(5%Ru) 6 0 10 84
Ni/SiO2+фосфовольфрамовая кислота 53 5 8 34
Ni/SiO2(15%Ni) 5 2 44 49
NiAl2O3+фосфовольфрамовая кислота 33 6 6 55
Ir/TiO2+фосфовольфрамовая кислота 38 7 7 48
Ni Ренея+
фосфовольфрамовая кислота
52 10 7 31
[0028] Как видно из таблицы 1, при применении различных смешанных катализаторов согласно настоящему изобретению целлюлоза химически превращается в этиленгликоль с высоким выходом. Выход этиленгликоля достигает 56% при применении Ni/AC и фосфовольфрамовой кислоты в качестве смешанного катализатора.
Пример 5
[0029] Результаты каталитического превращения различных полиоксисоединений в соответствии с методикой, описанной в примере 3, но с тем отличием, что катализатор А представляет собой Ru/AC, а катализатор В представляет собой фосфовольфрамовую кислоту, представлены в таблице 2.
Таблица 2
Химическое превращение различных полиоксисоединений в присутствии Ru/AC и фосфовольфрамовой кислоты в качестве смешанного катализатора
Полиоксисоединение Выход этилен-гликоля, % Выход пропилен-гликоля, % Выход гекси-толов, % Другие продук-ты, %
Целлюлоза 60 4 15 21
Крахмал 68 6 10 16
Гемицеллюлоза 30 24 4 42
Сахароза 32 20 15 33
Глюкоза 45 5 20 30
Ксилоза 30 22 - 48
Растворимые ксилоолигосахариды 32 23 - 45
Фруктоза 18 25 25 32
Инулин 25 28 17 30
[0030] Как видно из таблицы 2, различные полиоксисоединения в результате каталитической реакции согласно изобретению могут превращаться в этиленгликоль и пропиленгликоль с высокими выходами.
Пример 6
[0031] Результаты химического превращения целлюлозы в соответствии с методикой, описанной в примере 3, в присутствии смешанных катализаторов, но с тем отличием, что катализатор А представляет собой Ir/AC или Ni/AC, а катализатор В представляет собой вольфрамсодержащее соединение, представлены в таблице 3.
Таблица 3
Конверсия целлюлозы в этиленгликоль в присутствии различных катализаторов
Катализатор Выход
этиленгликоля, %
Выход
пропиленгликоля, %
Выход
гекситолов, %
Другие
продукты, %
Ir/AC+WO3 45 6 10 39
Ir/AC+WO2 48 8 8 36
Ir/AC+фосфовольфрамовая кислота (H3[P(W3O10)4]×H2O) 55 4 12 29
Ir/AC+силиковольфрамовая кислота (H2WO4) 50 6 14 30
Ir/AC+кремневольфрамовая кислота (H4[W12SiO40]) 35 4 30 31
Ir/AC+вольфрамат натрия (Na2WO4) 25 15 16 44
Ni/AC+метавольфрамат аммония 59 2 12 27
[0032] Как видно из таблицы 3, целлюлоза может превращаться в этиленгликоль с высокими выходами в результате каталитической реакции согласно изобретению при использовании различных катализаторов согласно изобретению.
Пример 7 - Сравнение двух групп экспериментов
[0033] В первой группе экспериментов смешанный катализатор содержит никель Ренея в качестве катализатора А, фосфовольфрамовую кислоту в качестве катализатора В и активированный уголь (АС) в качестве промотора разложения полиоксисоединений при 30% (масс.) содержании АС из расчета на общую массу катализатора. Во второй группе экспериментов смешанный катализатор содержит никель Ренея в качестве катализатора А и фосфовольфрамовую кислоту в качестве катализатора В. Условия реакции аналогичны условиям, описанным в примере 3. Результаты каталитической конверсии полиоксисоединений представлены в таблице 4.
Таблица 4
Результаты экспериментов для сравнения катализаторов
Группа Полиоксисоединение Выход
этиленгликоля, %
Выход
пропиленгликоля, %
Выход
гекситолов, %
Другие
продукты, %
1 Крахмал 58 6 10 26
2 Крахмал 52 3 8 37
1 Инулин 28 35 16 21
2 Инулин 22 25 10 43
[0034] Как видно из таблицы 4, применение активированного угля в качестве промотора в катализаторе может дополнительно улучшить выход многоатомных спиртов, таких как этиленгликоль и пропиленгликоль.
Пример 8
[0035] Реакцию проводят в условиях, описанных в примере 3, но с тем отличием, что катализатор А представляет собой Ir/AC или Ni/АС, в то время как катализатор В представляет собой вольфрамсодержащее соединение. Результаты каталитической конверсии крахмала в присутствии различных смешанных катализаторов представлены в таблице 5.
Таблица 5
Химическое превращение крахмала в этиленгликоль в присутствии различных катализаторов
Катализатор Выход этиленгликоля, % Выход пропилен-гликоля, % Выход гекситолов, % Другие продукты, %
Ir/AC+сульфид вольфрама 48 4 5 43
Ir/AC+метавольфрамовая кислота 43 9 11 37
Ir/AC+паравольфрамовая кислота 51 2 12 35
Ir/AC+пероксовольфрамовая кислота 56 6 9 29
Ni/AC+оксидная вольфрамовая
бронза
60 7 8 25
[0036] Как видно из таблицы 5, при применении различных катализаторов согласно настоящему изобретению крахмал может быть химически превращен в этиленгликоль с высоким выходом.
Пример 9
[0037] В таблице 6 представлено сравнение результатов химического превращения целлюлозы или крахмала с использованием предпочтительных катализаторов согласно настоящему изобретению с данными патентов и научных публикаций, включая заявку на патент КНР CN200510008652.0 «A method for producing diols and polyols with sorbitol» и публикацию «Direct catalytic conversion of cellulose into ethylene flycol using nickel-promoted tungsten carbide catalysts», Angew. Chem. Int. Ed. 2008, 47, 8510-8513.
Таблица 6
Сравнение результатов, полученных согласно настоящему изобретению, с данными опубликованных патентов и научных публикаций
Катализатор Исходное вещество Выход этиленгликоля, %
Ru/AC+фосфовольфрамовая кислота Целлюлоза 60%
Ru/AC+фосфовольфрамовая кислота Крахмал 68%
Ni/AC+метавольфрамат
аммония
Целлюлоза 59
Ni-W2C/AC
Angew. Chem. Int.
Ed. 2008, 47, 8510-8513
Целлюлоза 61%
Ni/Ru
(способ, описанный в CN200510008652.0)
Крахмал, гидролизованный с ферментом, с получением глюкозы c последующим ее гидрированием для получения сорбита 15%
[0038] Как видно из таблицы, выход этиленгликоля в способе согласно настоящему изобретению заметно выше, чем в соответствии со способом, описанным в CN 200510008652.0. При сравнении со способом, описанным в Angew. Chem. Int. Ed. 2008, 47, 8510-8513, выходы этиленгликоля являются аналогичными. Однако получение катализатора согласно настоящему изобретению проводится в более мягких условиях, и получение может легче осуществляться (как показано в примерах 1 и 2, сравнивающих способы получения).

Claims (11)

1. Способ получения этиленгликоля из полиоксисоединения, включающий следующие стадии:
a) добавление полиоксисоединения и воды в реактор;
b) удаление воздуха из реактора и герметизация реактора с газообразным водородом при определенном исходном давлении водорода;
c) взаимодействие полиоксисоединения с водородом в присутствии катализатора при перемешивании реакционной смеси;
d) температура реакции поддерживается равной или выше 120°С и время реакции составляет не менее 5 минут;
где катализатор представляет собой смешанный катализатор, включающий катализатор А и катализатор В;
активный компонент катализатора А включает переходный металл 8, 9 или 10 группы, выбранный из железа, кобальта, никеля, рутения, родия, палладия, иридия и платины, или их смесь;
активный компонент катализатора В включает соединение оксида вольфрама, сульфида вольфрама, хлорида вольфрама, гидроксида вольфрама, оксидной вольфрамовой бронзы, вольфрамовой кислоты, вольфрамата, метавольфрамовой кислоты, метавольфрамата, паравольфрамовой кислоты, паравольфрамата, пероксовольфрамовой кислоты, первольфрамата, гетерополикислоты, содержащей вольфрам, или их смесь;
массовое соотношение активного компонента катализатора А и активного компонента катализатора В (из расчета на массу вольфрама) находится в интервале от 0,02 до 3000.
2. Способ по п.1, где исходное давление водорода в реакторе при комнатной температуре находится в интервале от 1 до 12 МПа, температура реакции имеет значение выше 120°С и ниже температуры, вызывающей разложение реагента и продуктов реакции.
3. Способ по п.1, где температура реакции находится в интервале от 120°С до 300°С.
4. Способ по п.1, где температура реакции находится в интервале от 180°С до 250°С, исходное давление водорода в реакторе при комнатной температуре находится в интервале от 3 до 7 МПа и время реакции составляет от 30 до 180 минут.
5. Способ по п.1, где активный компонент катализатора А нанесен на носитель, включающий активированный уголь, оксид алюминия, диоксид кремния, карбид кремния, диоксид циркония, оксид цинка, диоксид титана или их смесь, и где активный компонент в виде металла катализатора А составляет от 0,05 до 50% масс. катализатора.
6. Способ по п.5, где активный компонент в виде металла катализатора А составляет от 1 до 30% масс. катализатора.
7. Способ по п.1, где активный компонент в виде металла катализатора А не нанесен на носитель и представляет собой скелетный катализатор.
8. Способ по п.1, где смесь полиоксисоединения и воды представлена в жидком состоянии или частично жидком состоянии, причем количество смешанного катализатора, применяемого в реакции, является каталитическим количеством.
9. Способ по п.1, где массовое соотношение полиоксисоединения и воды находится в интервале от 1:200 до 1:1 и массовое соотношение полиоксисоединения и смешанного катализатора А+В находится в интервале от 1:1 до 100:1.
10. Способ по п.1, где массовое соотношение активного компонента в виде металла катализатора А и активного компонента катализатора В (из расчета на массу вольфрама) находится в интервале от 0,1 до 100.
11. Способ по п.1, где полиоксисоединение представляет собой целлюлозу, крахмал, гемицеллюлозу, сахарозу, глюкозу, фруктозу, фруктан, ксилозу, растворимые ксилоолигосахариды или их смесь.
RU2012144018/04A 2010-03-17 2010-11-04 Способ получения этиленгликоля из полиоксисоединений RU2518371C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201010125806.5A CN102190562B (zh) 2010-03-17 2010-03-17 一种多羟基化合物制乙二醇的方法
CN201010125806.5 2010-03-17
PCT/CN2010/078413 WO2011113281A1 (zh) 2010-03-17 2010-11-04 一种多羟基化合物制乙二醇的方法

Publications (2)

Publication Number Publication Date
RU2012144018A RU2012144018A (ru) 2014-04-27
RU2518371C1 true RU2518371C1 (ru) 2014-06-10

Family

ID=44599528

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012144018/04A RU2518371C1 (ru) 2010-03-17 2010-11-04 Способ получения этиленгликоля из полиоксисоединений

Country Status (11)

Country Link
US (1) US9352304B2 (ru)
EP (1) EP2548858B2 (ru)
JP (1) JP5575911B2 (ru)
KR (1) KR101415682B1 (ru)
CN (1) CN102190562B (ru)
CA (1) CA2778131C (ru)
ES (1) ES2622106T5 (ru)
MX (1) MX344140B (ru)
RU (1) RU2518371C1 (ru)
WO (1) WO2011113281A1 (ru)
ZA (1) ZA201202762B (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2698724C2 (ru) * 2014-09-28 2019-08-29 Чанчунь Мэйхэ Сайэнс Энд Текнолоджи Девелопмент Ко., Лтд Способ получения диола
RU2720679C2 (ru) * 2015-06-30 2020-05-12 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Процесс получения гликолей
RU2738931C2 (ru) * 2015-10-20 2020-12-18 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ получения гликолей
RU2741385C2 (ru) * 2016-03-07 2021-01-25 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ извлечения металлического компонента

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012101550A1 (de) * 2011-01-24 2012-08-02 Basf Se Hydrierkatalysator aus nickel auf kohlenstoff
US8410319B2 (en) 2011-07-28 2013-04-02 Uop Llc Continuous catalytic generation of polyols from cellulose with recycle
EP2736869A4 (en) * 2011-07-28 2015-01-07 Uop Llc OBTAINING POLYOLS FROM SACCHARIDES
US8222463B2 (en) 2011-07-28 2012-07-17 Uop Llc Process for generation of polyols from saccharide containing feedstock
US8222462B2 (en) 2011-07-28 2012-07-17 Uop Llc Process for generation of polyols from saccharides
US8222465B2 (en) 2011-07-28 2012-07-17 Uop Llc Catalytic process for continuously generating polyols
US8323937B2 (en) 2011-07-28 2012-12-04 Uop Llc Continuous catalytic generation of polyols from cellulose
US8222464B2 (en) 2011-07-28 2012-07-17 Uop Llc Catalytic process for continuously generating polyols
CN103420795B (zh) * 2012-05-18 2015-11-04 中国科学院大连化学物理研究所 一种低沸点有机相中由碳水化合物生产二元醇的方法
CN103420798B (zh) * 2012-05-18 2015-12-09 中国科学院大连化学物理研究所 一种高效催化转化纤维素类原料到二元醇的方法
CN103420788B (zh) * 2012-05-21 2015-04-08 中国科学院大连化学物理研究所 一种在两相溶剂中由碳水化合物生产小分子醇的方法
CN103420797B (zh) * 2012-05-21 2015-04-08 中国科学院大连化学物理研究所 低金属负载量催化剂用于碳水化合物制备乙二醇的方法
CN103420799B (zh) * 2012-05-21 2015-04-01 中国科学院大连化学物理研究所 一种吸附剂在碳水化合物制小分子醇反应中的应用
CN103420796B (zh) * 2012-05-21 2015-05-20 中国科学院大连化学物理研究所 一种高金属负载量催化剂用于碳水化合物制乙二醇的方法
CN102746117B (zh) * 2012-06-27 2015-02-04 中国科学院大连化学物理研究所 一种以菊芋为原料催化转化制备六元醇的方法
CN103848720B (zh) * 2012-12-05 2015-08-26 中国科学院大连化学物理研究所 一种制备乙二醇的方法
CN103897717B (zh) * 2012-12-25 2016-02-10 中国科学院大连化学物理研究所 一种利用纤维素制取液体燃料的方法
CN103897716B (zh) * 2012-12-25 2016-03-16 中国科学院大连化学物理研究所 一种利用葡萄糖制取液体燃料的方法
CN105073693B (zh) * 2013-04-05 2017-05-03 国际壳牌研究有限公司 用于含糖原料转化的方法
CN105073694B (zh) * 2013-04-05 2017-04-26 国际壳牌研究有限公司 制备二醇的方法
CN104098440B (zh) * 2013-04-11 2016-02-10 中国科学院大连化学物理研究所 一种催化转化芒草制备二元醇的方法
WO2014173973A1 (en) * 2013-04-26 2014-10-30 Shell Internationale Research Maatschappij B.V. Process for the preparation of monoethylene glycol
CN105263625A (zh) * 2013-06-18 2016-01-20 株式会社大赛璐 氢化反应用催化剂的再生方法及多元醇的氢化物的制造方法
BR112016004272B8 (pt) 2013-08-30 2023-01-03 Shell Int Research Processo para a conversão catalítica de uma carga de alimentação contendo sacarídeo em um reator
CN106795081B (zh) * 2014-05-19 2018-12-28 爱荷华谷类推广协会 由糖类连续制备乙二醇的方法
JP6861032B2 (ja) 2014-06-30 2021-04-21 ハルドール・トプサー・アクチエゼルスカベット 糖からエチレングリコールを製造する方法
EP3160927B1 (en) * 2014-06-30 2022-04-13 Haldor Topsøe A/S Process for the preparation of ethylene glycol from sugars
KR101533535B1 (ko) * 2014-09-01 2015-07-03 성균관대학교산학협력단 폴리올로부터 글리콜 생산을 위한 텅스텐 카바이드 계열의 촉매
CN105521788B (zh) 2014-09-28 2020-10-27 长春美禾科技发展有限公司 一种耐酸合金催化剂
KR101533541B1 (ko) * 2014-12-19 2015-07-03 성균관대학교산학협력단 세리아-지르코니아를 포함하는 복합 금속 산화물 지지체에 금속을 담지한 솔비톨로부터 글리콜을 제조하기 위한 촉매
PL3245183T3 (pl) * 2015-01-13 2020-07-27 Avantium Knowledge Centre B.V. Sposób wytwarzania glikolu etylenowego ze źródła węglowodanów
US10131600B2 (en) 2015-01-13 2018-11-20 Avantium Knowledge Centre B.V. Process for preparing ethylene glycol from a carbohydrate
NL2014119B1 (en) * 2015-01-13 2017-01-05 Avantium Knowledge Centre Bv Process for preparing alkylene glycol from a carbohydrate.
CA2973437C (en) * 2015-01-13 2020-04-14 Avantium Knowledge Centre B.V. Process for preparing ethylene glycol from a carbohydrate source
US10138184B2 (en) 2015-01-13 2018-11-27 Avantium Knowledge Centre B.V. Continuous process for preparing ethylene glycol from a carbohydrate source
US20180272319A1 (en) * 2015-09-29 2018-09-27 Shell Oil Company Process for the preparation of a hydrogenation catalyst and its use for the preparation of glycols
US20180273452A1 (en) * 2015-09-29 2018-09-27 Shell Oil Company Process for the preparation of glycols
WO2017070067A1 (en) * 2015-10-20 2017-04-27 Shell Oil Company Method for the production of glycols from a carbohydrate feed
CN106694009B (zh) 2015-11-12 2019-12-13 中国科学院大连化学物理研究所 合金催化剂用于碳水化合物催化制备低碳二元醇的方法
BR112018010232B1 (pt) 2015-11-19 2021-08-10 Shell Internationale Research Maatschappij B.V Processo para a preparação de monoetileno glicol a partir de material de partida compreendendo um ou mais sacarídeos
US20180333706A1 (en) * 2015-11-19 2018-11-22 Shell Oil Company Catalyst system and process for the production of glycols
CA3006503A1 (en) * 2015-12-17 2017-06-22 Shell Internationale Research Maatschappij B.V. Hydrogenation or hydrogenolysis process
CA3006508C (en) * 2015-12-17 2023-12-05 Shell Internationale Research Maatschappij B.V. Hydrogenation or hydrogenolysis of an oxygenate
MX2018007748A (es) 2016-01-07 2018-11-14 Topsoe Haldor As Proceso para la preparacion de etilenglicol a partir de azucares.
US10759726B2 (en) 2016-01-07 2020-09-01 Haldor Topsøe A/S Process for the preparation of ethylene glycol from sugars
WO2017178391A1 (en) * 2016-04-11 2017-10-19 Shell Internationale Research Maatschappij B.V. A process for the preparation of a catalyst and a process for producing glycols using the catalyst
US10472310B2 (en) 2016-06-03 2019-11-12 Iowa Corn Promotion Board Continuous processes for the highly selective conversion of sugars to propylene glycol or mixtures of propylene glycol and ethylene glycol
KR102437548B1 (ko) 2016-06-03 2022-08-26 아이오와 콘 프로모션 보드 알도헥소스-생성 탄수화물의 에틸렌 글리콜로의 매우 선택적인 전환을 위한 연속 공정
US20190194100A1 (en) * 2016-08-23 2019-06-27 Shell Oil Company Method for the production of glycols from an anhydrosugar feed
EP3519379B1 (en) * 2016-09-29 2022-09-07 Shell Internationale Research Maatschappij B.V. Method for acid treatment conditioning of a catalyst in the production of glycols
US10647647B2 (en) * 2016-12-07 2020-05-12 Shell Oil Company Process for the preparation of glycols
US20200109098A1 (en) * 2016-12-19 2020-04-09 Shell Oil Company Method for stabilization of glucose feed in the production of glycols
CN109896922B (zh) * 2017-12-07 2022-03-22 中国科学院大连化学物理研究所 一种木质纤维素高效分离并实现全组分利用的方法
CN111054342B (zh) * 2018-10-16 2023-06-06 中国石油化工股份有限公司 用于碳水化合物制备乙二醇的催化剂及其制备方法
CN111054336A (zh) * 2018-10-16 2020-04-24 中国石油化工股份有限公司 用于制生物质基乙二醇的催化剂及其制备方法
CN111054339B (zh) * 2018-10-16 2023-05-02 中国石油化工股份有限公司 制乙二醇的催化剂组合物
CN111054330A (zh) * 2018-10-16 2020-04-24 中国石油化工股份有限公司 用于生物质制乙二醇的催化剂及其制备方法
CN111054335A (zh) * 2018-10-16 2020-04-24 中国石油化工股份有限公司 用于制备生物质基乙二醇的催化剂
CN112169795B (zh) * 2019-07-02 2022-05-06 中国科学院大连化学物理研究所 优化的多元醇氢解催化剂活化方法
CN111617802A (zh) * 2020-06-24 2020-09-04 新疆农业大学 一种组合负载型催化剂及其制备方法与应用
CN111604091A (zh) * 2020-06-24 2020-09-01 新疆农业大学 一种组合形成的负载型催化剂及其制备方法与应用
CN113842911B (zh) * 2020-06-28 2023-08-29 中国石油化工股份有限公司 用于制生物质基乙二醇的钨青铜催化剂和催化剂组合物
CN113083299A (zh) * 2021-02-19 2021-07-09 青岛科技大学 Yolk-shell双功能催化剂及其制备方法和在葡萄糖氢解制备乙二醇中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU168666A1 (ru) *
WO2002028544A1 (en) * 2000-09-29 2002-04-11 Osram Sylvania Inc. Supported tungsten carbide material
US20090177018A1 (en) * 2006-05-09 2009-07-09 Kao Corporation Process for Producing Product of Hydrogenolysis of Polyhydric Alcohol
CA2720693A1 (en) * 2008-08-14 2010-02-18 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Tungsten carbide catalysts, their preparation and application in synthesis of ethylene glycol from cellulose

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE541362C (de) 1927-10-25 1932-01-11 I G Farbenindustrie Akt Ges Verfahren zur Hydrierung von Polyoxyverbindungen
CH532844A (de) 1969-08-01 1973-01-15 Siemens Ag Verfahren zur Herstellung einer Wolframcarbid enthaltenden Elektrode für Brennstoffelemente
US3691100A (en) 1970-02-05 1972-09-12 Atlas Chem Ind Tungsten oxide promoted and supported nickel catalyst
US3965199A (en) 1972-04-26 1976-06-22 Ici United States Inc. Hydrogenation and hydrogenolysis of carbohydrates with tungsten oxide promoted supported nickel catalyst
US4155928A (en) 1975-05-16 1979-05-22 Phillips Petroleum Company Methanation of carbon monoxide over tungsten carbide-containing catalysts
DE3818198A1 (de) 1988-05-28 1989-12-21 Basf Ag Verfahren zur herstellung niederer mehrwertiger alkohole
DE3928285A1 (de) 1989-08-26 1991-02-28 Basf Ag Verfahren zur herstellung niederer, mehrwertiger alkohole
CN1019502B (zh) * 1989-12-11 1992-12-16 中国石油化工总公司抚顺石油化工研究院 馏分油加氢精制催化剂及制法
CN1204103A (zh) 1997-06-27 1999-01-06 三星电子株式会社 现金出纳机系统的支票/卡识别装置和方法
US6297185B1 (en) 1998-02-23 2001-10-02 T/J Technologies, Inc. Catalyst
US6461539B1 (en) 1999-10-18 2002-10-08 Conoco Inc. Metal carbide catalysts and process for producing synthesis gas
CN1204103C (zh) 2002-06-12 2005-06-01 中国石油化工股份有限公司 环氧乙烷催化水合制备乙二醇的方法
KR100825688B1 (ko) 2006-04-04 2008-04-29 학교법인 포항공과대학교 나노다공성 텅스텐 카바이드 촉매 및 그의 제조방법
KR101460807B1 (ko) 2006-05-08 2014-11-11 바이렌트, 아이엔씨. 폴리올을 제조하는 방법 및 시스템
JP5010963B2 (ja) * 2006-05-09 2012-08-29 花王株式会社 多価アルコールの水素化分解物の製造方法
MY154790A (en) * 2007-03-08 2015-07-31 Virent Inc Synthesis of liquid fuels and chemicals from oxygenated hydrocarbons
CN100564258C (zh) 2007-07-13 2009-12-02 北京工业大学 一种利用硬模板剂合成高比表面积介孔碳分子筛的方法
CN101411975A (zh) 2007-10-19 2009-04-22 中国科学院大连化学物理研究所 一种炭载过渡金属碳化物催化剂在肼分解反应中的应用
CN101428213B (zh) 2007-11-07 2011-04-20 中国科学院大连化学物理研究所 炭载类贵金属催化剂在纤维素加氢水解反应中的应用
CN101613253B (zh) * 2008-06-25 2012-10-24 中国科学院大连化学物理研究所 一种糖及糖醇的催化裂解方法
CN101723802B (zh) 2008-10-24 2013-06-19 中国科学院大连化学物理研究所 一种纤维素制乙二醇的方法
CN101735014B (zh) 2008-11-26 2013-07-24 中国科学院大连化学物理研究所 一种多羟基化合物制乙二醇的方法
CN102049273B (zh) 2009-10-27 2013-05-01 中国科学院大连化学物理研究所 一种介孔炭担载的碳化钨催化剂及其制备和应用
CN101768050B (zh) 2009-12-25 2012-12-05 北京大学 一种生产乙二醇和1,2-丙二醇的方法
CN101869853B (zh) 2010-05-28 2012-07-11 中山大学 有序介孔碳/碳化钨复合材料与其负载型催化剂以及它们的制备方法
US8222462B2 (en) 2011-07-28 2012-07-17 Uop Llc Process for generation of polyols from saccharides
US8222465B2 (en) 2011-07-28 2012-07-17 Uop Llc Catalytic process for continuously generating polyols
US20110312487A1 (en) 2011-07-28 2011-12-22 Uop Llc Catalyst system for generation of polyols from saccharides
US8222464B2 (en) 2011-07-28 2012-07-17 Uop Llc Catalytic process for continuously generating polyols
US8323937B2 (en) * 2011-07-28 2012-12-04 Uop Llc Continuous catalytic generation of polyols from cellulose
US8222463B2 (en) 2011-07-28 2012-07-17 Uop Llc Process for generation of polyols from saccharide containing feedstock

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU168666A1 (ru) *
WO2002028544A1 (en) * 2000-09-29 2002-04-11 Osram Sylvania Inc. Supported tungsten carbide material
US20090177018A1 (en) * 2006-05-09 2009-07-09 Kao Corporation Process for Producing Product of Hydrogenolysis of Polyhydric Alcohol
CA2720693A1 (en) * 2008-08-14 2010-02-18 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Tungsten carbide catalysts, their preparation and application in synthesis of ethylene glycol from cellulose

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2698724C2 (ru) * 2014-09-28 2019-08-29 Чанчунь Мэйхэ Сайэнс Энд Текнолоджи Девелопмент Ко., Лтд Способ получения диола
RU2720679C2 (ru) * 2015-06-30 2020-05-12 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Процесс получения гликолей
RU2738931C2 (ru) * 2015-10-20 2020-12-18 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ получения гликолей
RU2741385C2 (ru) * 2016-03-07 2021-01-25 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ извлечения металлического компонента

Also Published As

Publication number Publication date
ZA201202762B (en) 2013-01-30
JP2013510801A (ja) 2013-03-28
KR20120068991A (ko) 2012-06-27
RU2012144018A (ru) 2014-04-27
US9352304B2 (en) 2016-05-31
US20120172633A1 (en) 2012-07-05
MX344140B (es) 2016-12-07
CN102190562A (zh) 2011-09-21
EP2548858B1 (en) 2017-01-11
CA2778131A1 (en) 2011-09-22
ES2622106T5 (es) 2020-06-25
WO2011113281A1 (zh) 2011-09-22
EP2548858A4 (en) 2014-11-26
EP2548858B2 (en) 2020-01-08
CA2778131C (en) 2015-12-22
EP2548858A1 (en) 2013-01-23
ES2622106T3 (es) 2017-07-05
MX2012003832A (es) 2012-05-08
JP5575911B2 (ja) 2014-08-20
KR101415682B1 (ko) 2014-07-04
CN102190562B (zh) 2014-03-05

Similar Documents

Publication Publication Date Title
RU2518371C1 (ru) Способ получения этиленгликоля из полиоксисоединений
CA2725248C (en) Method of preparing ethylene glycol from cellulose
US8324433B2 (en) Method for producing ethylene glycol from polyhydroxy compound
EP2989073B1 (en) Methods to produce fuels
US20230256423A1 (en) Modified copper-zinc catalysts and methods for alcohol production from carbon dioxide
US20230234037A1 (en) Molybdenum-based catalysts for carbon dioxide conversion
WO2013023257A1 (pt) Processo catalítico oxidativo para síntese de ácido lático
CN111359644B (zh) 用于二甲醚水蒸气重整制氢的非贵金属基碳化钼催化剂及其制备方法和应用
CN109851473B (zh) 一种甘油溶液氢解制备1,3-丙二醇的方法
CN114950505B (zh) 一种用于氧化苯乙烯加氢制备β-苯乙醇的催化剂及其制备方法和应用
CN114602477B (zh) 用于co2低温制甲醇的双壳空心铜锌基催化剂及其制备方法
CN109705069A (zh) 一种2,5-呋喃二甲酸的制备方法
CN110981691B (zh) 一种利用单糖合成1,6-己二醇的方法
CN109824634A (zh) 一种糠醛直接氧化酯化制备糠酸甲酯的方法
CN110026191B (zh) 一种催化剂及甘油氢解制备1,3-丙二醇的方法
CN112044435A (zh) 甘油选择性氢解制1,3-丙二醇用Pt-W催化剂及其制备方法
CN115385882B (zh) 一种制备δ-己内酯的方法
CN112619660B (zh) 用于合成乙二醇的催化剂及其制备方法和应用
JP2018080122A (ja) C5+モノアルコールの製造方法
CN116286075A (zh) 一种水热法催化转化甲酸产长链烃的方法
CN116924888A (zh) 一种催化甘油选择性氢解生产1,3-丙二醇的方法
JP2020105160A (ja) C5+化合物の製造方法及びこれに用いられる触媒
JP2021126606A (ja) 1,4−アンヒドロエリスリトール水素化分解触媒、及び前記触媒を使用した1,3−ブタンジオールの製造方法
CN114572934A (zh) 一种生物质经甲酸制备氢气的方法