WO2013023257A1 - Processo catalítico oxidativo para síntese de ácido lático - Google Patents

Processo catalítico oxidativo para síntese de ácido lático Download PDF

Info

Publication number
WO2013023257A1
WO2013023257A1 PCT/BR2011/000290 BR2011000290W WO2013023257A1 WO 2013023257 A1 WO2013023257 A1 WO 2013023257A1 BR 2011000290 W BR2011000290 W BR 2011000290W WO 2013023257 A1 WO2013023257 A1 WO 2013023257A1
Authority
WO
WIPO (PCT)
Prior art keywords
lactic acid
catalyst
range
propanediol
reactor
Prior art date
Application number
PCT/BR2011/000290
Other languages
English (en)
French (fr)
Other versions
WO2013023257A8 (pt
Inventor
Marco André FRAGA
Elise Mota DE ALBUQUERQUE
Robert Amaral CANDIDO
Original Assignee
Petróleo Brasileiro S.A. - Petrobras
Instituto Nacional De Tecnologia - Int
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petróleo Brasileiro S.A. - Petrobras, Instituto Nacional De Tecnologia - Int filed Critical Petróleo Brasileiro S.A. - Petrobras
Priority to JP2013535209A priority Critical patent/JP2014518540A/ja
Priority to EP11870840.3A priority patent/EP2610238A4/en
Priority to US13/817,302 priority patent/US20140148616A1/en
Publication of WO2013023257A1 publication Critical patent/WO2013023257A1/pt
Publication of WO2013023257A8 publication Critical patent/WO2013023257A8/pt
Priority to US14/148,963 priority patent/US20140121408A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/48Separation; Purification; Stabilisation; Use of additives by liquid-liquid treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/648Vanadium, niobium or tantalum or polonium
    • B01J23/6484Niobium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/068Noble metals

Definitions

  • the present invention relates to a process for obtaining lactic acid by selective oxidation of 1,2-propanediol.
  • the present invention teaches an oxidative process in yields greater than 70% for the production of lactic acid from 1,2-propanediol in alkaline medium at low temperature and atmospheric or autogenous pressure employing a noble metal catalyst supported on metal oxide.
  • Lactic acid is considered as one of the important inputs for the petrochemical industry, because besides being used to obtain biodegradable materials, it is synthesized from renewable sources, such as corn glucose, molasses and cheese whey.
  • Lactic acid can also be obtained by chemical transformation from sources other than starch, but equally renewable.
  • some proposals employ glycerine in a process where the reaction occurs in alkaline medium, in homogeneous phase and under hydrothermal conditions.
  • lactic acid yields reach about 90%
  • reactions occur at very high temperatures (300 ° C) and quite high pressures.
  • EP 2100871 teaches the use as raw material of organic compounds with three carbon atoms, consisting of a primary alcohol or an aldehyde containing a hydroxyl group in the alpha position relative to the primary alcohol hydroxyl or aldehyde carbonyl.
  • the catalytic process is based on a hydrogenolysis reaction thus occurring in the presence of hydrogen and requiring temperatures of the order of 90 ° C to 170 ° C. ° C. Even more hydrogen is generated during the process and it is vital to avoid reacting with oxygen in the air.
  • the document makes clear the need for reactor atmosphere control and additional steps for nitrogen purge are indicated, making process control more complex.
  • the formation of by-products such as acetic acid and higher aliphatic acids is reported.
  • Patent document CN 101225041 (L. Haichao, S. Yihong, L. Hongjia, CN 01225041 A, Jul. 23, 2008) teaches a process where it is possible to obtain lactic acid, but has very low yields under the conditions specified therein. ranging from 9.7% to 32% and reaching a maximum of 81% glycerine conversion.
  • Yields of lactic acid are always in the range of 5% to
  • the present invention by contrast, teaches a selective catalytic process with yields greater than 70% for the production of lactic acid.
  • the invention relates to the manufacture of high yield lactic acid by selective oxidation of 1,2-propanediol.
  • the reaction takes place in the presence of oxygen and an activated catalyst comprising a noble metal supported on metal oxide.
  • Oxidation of the primary carbon containing an OH group is selective at temperatures below 100 ° C, atmospheric or autogenous pressure and in alkaline medium. Under these conditions yields of around 70% of lactic acid are obtained using equipment already installed and commonly used in industrial chemical plants with lower energy expenditure than those practiced in state of the art processes.
  • the catalyst is easily recovered by filtration at the end of the process.
  • the process presented in the present application makes it possible to obtain lactic acid in yields of 70% or higher through the use of heterogeneous catalysts which provide high selectivity and also high yields for lactic acid using only oxygen from air and 1,2-propanediol. as reagents at temperatures below 100 ° C and under atmospheric pressure.
  • the lactic acid manufacturing process involves the use of a gas stream selected from air, pure oxygen, or a mixture thereof which is bubbled into a reactor containing an aqueous 1,2-propanediol solution at atmospheric pressure and in alkaline medium.
  • This reactor further contains the previously activated solid catalyst for converting the reactants to lactic acid, preferably.
  • This process may be conducted in a semi-continuous, continuous, semi-semi-continuous regime or a combination of both gas and liquid phase.
  • 1,2-propanediol is converted to lactic acid through the oxidation reaction of the primary carbon. Oxidation also occurs in the secondary carbon forming acetol. At higher temperatures, acetol reacts with oxygen from the gaseous stream resulting in the formation of pyruvic acid. Thus, the main byproducts of obtaining lactic acid by this process are acetol and pyruvic acid.
  • the process of the present invention comprises the following steps: 1 a ) Catalyst activation: reduction of the catalyst at 350 ° C by 2 hours under H 2 flow.
  • Reactor feed reactor loading, equipped with reflux system, 1,2-propanediol solution and pre-reduced catalyst.
  • the catalyst is prepared by wet, dry or deposition-precipitation impregnation with metal precursor solution selected from hydroxides, nitrates, chlorides, sulphates, acetates and acetylacetonates or other decomposing compound to the corresponding metal oxide after calcination.
  • metal precursor solution selected from hydroxides, nitrates, chlorides, sulphates, acetates and acetylacetonates or other decomposing compound to the corresponding metal oxide after calcination.
  • the noble metal content in the catalyst ranges from 0.01% to 10%, preferably from 0.1% to 5% w / w.
  • the support must have a specific surface high enough to guarantee good metal dispersion in the range between 50 m 2 g 1 and 1000 mV-
  • the support is selected from range-AI 2 0 3 , Ti0 2 , Si0 2 and Zr0 2 , nb 2 0 5, EC0 2, MgO, ZSM-5, MCM-22, MCM-41, preferably Al 2 0 3, Ti0 2, and SI0 2 ZrC1 ⁇ 2.
  • the noble metal is selected from Pt, Pd, Ru, Rh and Ir, preferably Pt and Pd.
  • an oxidation catalyst comprising one of the noble metals or a combination thereof supported on a pure metal oxide, a mixture of metal oxides or zeolitic aluminosilicates is employed.
  • the catalyst impregnation is performed from a solution of hexachloroplatinic acid (H 2 PtCl 6 ).
  • the catalyst may also be obtained via dry impregnation.
  • a compound selected from Platinum is H 2 Pt (OH) 6 , Pt (NO 3 ) 4 , Pt (NH 3 ) 4 (NO 3 ) 2 , Pt (NH 3 ) 4 (OH) 2 , PtCl 4 , Pt (NH 4 ) 2 CI 4 , Pt (NH 4 ) 2 CI 6 , Pt (C 5 H 7 0 2 ) 2 or any other compound that decomposes to form Pt0 2 .
  • a commercial Pt / Al 2 O 3 catalyst with 5% w / w previously reduced Pt is used.
  • Catalyst reduction is conducted ex situ at temperatures between 200 ° C and 500 ° C or in situ within the temperature range between 30 ° C and 100 ° C.
  • the catalyst is added to the stirred propanediol solution.
  • the reduction can still be performed sequentially, ex situ and in situ within the same temperature ranges as described.
  • the oxidation reaction of 1,2-propanediol is carried out in a reactor using either pure 1,2-propanediol or aqueous solution as a reactant, and catalyst in amounts meeting the catalyst / 1,2-propanediol ratio in the range of 1/4 w / w 1/20 w / w, keeping the pH of the reaction fixed at a selected value in the range of 7 to 14.0, preferably between 8.0 and 12.0, by the controlled addition of an alkaline solution, selected from alkaline and alkaline earth metal hydroxide and carbonate solutions, preferably NaOH or KOH, with a concentration in the range 0.1 M to 2 M, preferably in the range 0.5 M to 1.5 M at a selected temperature in the range between 30 ° C and 100 ° C, autogenous pressure between 1 bar and 5 bar, under agitation in the range between 200 rpm and 2000 rpm.
  • an alkaline solution selected from alkaline and alkaline earth metal hydroxide and carbonate solutions, preferably
  • air, pure oxygen or oxygen enriched air mixture obtained via membranes or other suitable technology.
  • catalyst performance assays were performed on an apparatus containing a glass reactor, a mechanical stirrer, a alkaline solution addition system by means of a metering pump associated with a pH meter.
  • the alkaline solution selected was 1 M NaOH.
  • a 0.2 M aqueous 1,2- propanediol solution was used, a synthetic air flow (20% 0 2 in N 2 v / v) between 10 mLmin "1 elOO mLmin " 1 and a pH of 7.0 to 14.0 and kept constant by the addition of alkaline solution.
  • the reaction temperature ranged from 30 ° C to 80 ° C and the reaction pressure from 1 bar to 5 bar.
  • the platinum on alumina catalyst containing 5% w / w Pt was prepared by wet impregnation using a commercial alumina as a support and the hexachloroplatinic acid precursor salt.
  • the first stage of preparation consisted of calcination of the support which was performed in a muffle furnace from room temperature to 500 ° C following a heating rate of 10 ° Cmin -1 maintained at 500 ° C for 4 hours. Subsequently, the acid was solubilized. hexachloroplatin in water This solution was added to the support (already calcined) and this suspension was stirred for 1 hour at room temperature After this step, the material was vacuum dried at 80 ° C. Finally, the solid obtained remained in an oven at 100 ° C for 12 hours and was then calcined at 500 ° C for 4 hours with a heating rate of 10 ° C / min and synthetic air stream with a flow rate of 60 ml min "1.
  • Example 2 The 5% w / w Pt platinum on alumina catalyst prepared as described in Example 1 above was activated ex situ, ie it was heated from room temperature to 350 ° C following a heating rate of 10 ° Cmin "1 , maintained. for 2 hours at 350 ° C and using a pure hydrogen stream at a flow rate of 50 ml min "1.
  • the 5% w / w Pt platinum-alumina catalyst prepared as described in Example 1 and activated ex-situ as described in Example 2 was weighed, transferred to a 500 mL glass reactor containing 200 mL of distilled water and re-activated. this time in situ by heating the reactor to 90 ° C and using a flow of 50 ml min "1 of pure hydrogen introduced into the suspension for a connected bubbler to the reactor. the suspension was stirred at 600 rpm and this condition was maintained for 1 hour Evaporation of water was prevented by employing a reflux condenser with water current in the coil.
  • the 5% w / w Pt platinum-alumina catalyst prepared and activated according to Examples 1 to 3 was employed in the oxidation reaction of 1,2-propanediol.
  • a 0.2 M aqueous 1,2-propanediol solution was added to the reactor containing 1 g of catalyst under stirring at 700 rpm.
  • a glass electrode for pH measurement of the reaction medium was connected to the reactor.
  • a burette was coupled containing a 1 M NaOH solution allowing its drip by manual activation.
  • the pH in the reactor was adjusted to 8.0 by adding sufficient NaOH solution and maintained throughout the reaction period.
  • a flow of 30 mLmin "1 of air was admitted by the bubbler.
  • the reaction temperature was maintained at 40 ° C. After 5 hours of reaction under these conditions, total conversion of 1,2-propanediol is obtained and the following selectivity distribution between acid lactic acid, pyruvic acid and acetol: 65%, 23% and 12% respectively.
  • the 5% w / w Pt platinum-alumina catalyst prepared and activated according to Examples 1 to 3 was employed in the oxidation reaction of 1,2-propanediol.
  • a 0.2 M aqueous 1,2-propanediol solution was added to the reactor containing 1 g of catalyst under stirring at 700 rpm.
  • a glass electrode for pH measurement of the reaction medium was connected to the reactor.
  • a burette was coupled containing a 1 M NaOH solution allowing its drip by manual activation.
  • the pH in the reactor was adjusted to 10.0 by adding sufficient NaOH solution and maintained throughout the reaction period.
  • a flow of 30 mLmin "1 of air was admitted by the bubbler.
  • the reaction temperature was maintained at 40 ° C. After 6 hours of reaction under these conditions, total conversion of 1,2-propanediol is obtained and the following distribution of selectivities. between lactic acid, pyruvic acid and acetol: 70%, 19% and 11% respectively.
  • the 5% w / w Pt platinum-alumina catalyst prepared and activated according to Examples 1 to 3 was employed in the oxidation reaction of 1,2-propanediol.
  • a 0.2 M aqueous 1,2-propanediol solution was added to the reactor containing 1 g of catalyst under stirring at 700 rpm.
  • a glass electrode for pH measurement of the reaction medium was connected to the reactor.
  • a burette was coupled containing a 1 M NaOH solution allowing its drip by manual activation.
  • the pH in the reactor was adjusted to 8.0 by adding sufficient NaOH solution and maintained throughout the reaction period.
  • a flow of 30 mLmin "1 of air was admitted by the bubbler.
  • the reaction temperature was maintained at 60 ° C. After 6 hours of reaction under these conditions, total conversion of 1,2-propanediol is obtained and the following distribution of selectivities. between acid lactic acid, pyruvic acid and acetol: 61%, 27% and 12% respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Os processos industriais correntes para produção do ácido lático são fermentativos, utilizando bactérias láticas que exigem grandes volumes e geram grandes quantidades de resíduo líquido a ser tratado. A literatura química também reporta o uso de sistemas de reação com catálise homogénea, que também possuem problemas que impactam igualmente nos custos, devido às maiores exigências quanto ao controle do processo e ao tipo de reator necessário. Deste modo, os processos até agora realizados baseados em reações de hidrogenólise, isomerização e oxidação são falhos, devido à considerável formação de subprodutos, principalmente ácido pirúvico e ácido acético e baixo rendimento a ácido lático. O ácido lático pode também ser obtido pela transformação química de outras fontes além do amido, mas igualmente renováveis. A presente invenção proporciona um processo oxidativo para a produção de ácido lático, no qual a reação com oxigénio puro ou misturado com ar ocorre abaixo de 100°C e com pressão autógena, empregando um catalisador de metal nobre suportado em um óxido metálico. O processo emprega como matéria prima 1,2-propanodiol, derivado da reação de hidrogenólise da glicerina, e alcança rendimentos superiores a 70% de ácido lático e menos de 30% em subprodutos, ácido pirúvico e acetol.

Description

PROCESSO CATALÍTICO OXIDATIVO PARA SÍNTESE DE ÁCIDO
LÁTICO
CAMPO DA INVENÇÃO
A presente invenção refere-se a um processo para obtenção de ácido lático pela oxidação seletiva do 1 ,2-propanodiol. A presente invenção ensina um processo oxidativo com rendimentos superiores a 70%, para a produção de ácido lático a partir do 1 ,2-propanodiol, em meio alcalino, em baixa temperatura e pressão atmosférica ou autógena, empregando um catalisador de metal nobre suportado em óxido metálico. FUNDAMENTOS DA INVENÇÃO
O ácido lático é apontado como um dos insumos importantes para a indústria petroquímica, pois além de ser usado na obtenção de materiais biodegradáveis é sintetizado a partir de fontes renováveis, como a glicose de milho, melaços e soro de queijos.
Os processos industriais correntes são fermentativos, utilizando bactérias láticas. Esses microorganismos usados no processo possuem requerimentos complexos de fatores de crescimento, necessitando de vitaminas e aminoácidos para seu cultivo. Além disso, os processos fermentativos são demorados, exigem grandes volumes e geram grandes quantidades de resíduo líquido a ser tratado.
O ácido lático pode também ser obtido pela transformação química de outras fontes além do amido, mas igualmente renováveis. Nesse sentido, algumas propostas empregam a glicerina num processo onde a reação ocorre em meio alcalino, em fase homogénea e sob condições hidrotérmicas. Embora os rendimentos de ácido lático atinjam cerca de 90%, as reações ocorrem em temperaturas muito altas (300°C) e pressões bastante elevadas. Essas condições conduzem a processos de alto custo, pois, além do alto gasto com energia, exigem equipamentos construídos com materiais especiais, a fim de evitar a corrosão dos reatores decorrente da elevada concentração de hidróxido. O documento EP 2100871 ensina o uso como matéria prima, de compostos orgânicos com três átomos de carbono, sendo formados por um álcool primário ou um aldeído que contenham um grupamento hidroxila na posição alfa em relação à hidroxila do álcool primário ou à carbonila do aldeído. Utilizando-se essa classe de insumos, que inclui o 1 ,2- propanodiol, o processo catalítico se baseia em uma reação de hidrogenólise ocorrendo, portanto, na presença de hidrogénio e sendo necessário o uso de temperaturas da ordem de 90°C a 170°C. Durante o processo é gerado ainda mais hidrogénio, sendo vital evitar sua reação com o oxigénio do ar. Para isso, o documento deixa clara a necessidade do controle da atmosfera do reator, sendo indicadas etapas adicionais para purga do sistema com nitrogénio, tornando o controle do processo mais complexo. Além disso, é reportada a formação de subprodutos como ácido acético e ácidos alifáticos superiores.
Processos de hidrogenólise similares ao descrito acima são divulgados na literatura científica (E.P. Maris, W.C. Ketchie, M. Murayama, RJ. Davis, J. Catai. 215 (2007) 281-294 e E.P. Maris, RJ. Davis, J. Catai. 249 (2007) 328-337), porém, partindo diretamente da glicerina. Apesar do etilenoglicol e propilenoglicol serem os principais produtos dessa reação, os autores identificaram a possibilidade de se produzir ácido lático por meio de adição de hidróxidos de metal alcalino na presença de catalisadores de rutênio ou platina, ou ainda sistemas bimetálicos desses metais com ouro. Entretanto, os rendimentos são de moderados a baixos, cobrindo a faixa entre 8,5% e 45%.
Recentemente, reações de isomerização utilizando derivados oxidados da glicerina, basicamente dihidroxiacetona e gliceraldeído, têm sido propostas para síntese de ácido lático (R.M. West, M.S. Holm, S. Saravanaurugan, J. Xiong, Z. Beversdorf, E. Taarning, C.H. Christensen, J. Catai. 269 (2010) 122-130). Nesses casos, a reação ocorre na presença de um catalisador ácido com estrutura zeolítica, preferencialmente a zeólita H-USY, entre 1 15°C e 125°C e pressão autógena. Os rendimentos chegaram até cerca de 70% com algumas zeólitas, porém, devem-se destacar as elevadas pressões utilizadas durante a reação.
Métodos oxidativos utilizando catalisadores heterogéneos também têm sido divulgados, partindo tanto da glicerina quanto do 1 ,2-propanodiol. O documento de patente CN 101225041 (L. Haichao, S. Yihong, L. Hongjia, CN 01225041 A, Jul. 23, 2008) ensina um processo onde é possível obter ácido lático, porém, apresenta rendimentos muito baixos nas condições especificadas em tal documento, variando na faixa entre 9,7% e 32% e atingindo, no máximo, 81 % de conversão de glicerina.
Há trabalhos na literatura científica e que abordam a oxidação de diois e focam essencialmente a aplicação de catalisadores metálicos à base de ouro, em temperaturas da ordem de 70° a 90°C e sob pressão entre 2 bar e 3 bar de oxigénio puro.
Os rendimentos de ácido lático ficam sempre na faixa entre 5% e
64% e, eventualmente, esse desempenho é motivo de comparação com sistemas à base de platina ou paládio suportados em carvão ativo, devido às exigências operacionais (S. Demirel, P. Jern, M. Lucas, P. Claus, Catai. Today 122 (2007) 292-300; L. Prati, M. Rossi, J. Catai. 176 (1998) 552- 560; C. Bianchi, F. Porta, L. Prati, M. Rossi, Top. Catai. 13 (2000) 231- 236).
Por fim, outros estudos visam à produção de ácido pirúvico por rotas oxidativas a partir de 1 ,2-propanodiol, as quais utilizam catalisadores de platina e paládio suportados em carvão ativado e promotores como chumbo, bismuto ou estanho (T. Tsujino, S. Oigashi, K. Kawashiro, H. Hayashi, J. Mol. Catai. 71 (1992) 25-35 e H.H.C.M. Pinxt, B.F.M. Kuster, G.B. Marin, Appl. Catai. A 191 (2000) 45-54).
Os resultados desses trabalhos mostram que o ácido lático é produzido como um subproduto, através de rotas e procedimentos que não são apropriados para a síntese do ácido lático. DISTINÇÃO DO ESTADO DA TÉCNICA
Em todos os processos descritos acima ocorre produção de ácido lático a partir de misturas de glicerina ou 1 ,2-propanodiol, utilizando diferentes condições de temperatura, pressão total e concentração dos componentes e presença ou não de catalisador. Entre os produtos, além do ácido lático, são descritos outros compostos. A literatura também reporta o uso de sistemas de reação com catálise homogénea, que também apresentam problemas na separação e reutilização do catalisador no processo. Em outras referências indica-se o uso de pressões acima da atmosférica, que impacta igualmente nos custos devido às maiores exigências quanto ao controle do processo e ao tipo de reator necessário.
Em geral, os processos do estado da arte foram desenvolvidos para beneficiar a produção de ácido pirúvico. O baixo rendimento de ácido lático e a considerável formação de subprodutos, principalmente ácido pirúvico e ácido acético, exigem forçosamente a utilização de etapas adicionais, que permitam a purificação do ácido lático. Naturalmente, o emprego de operações unitárias de separação envolve aumento de custos de instalação e operação.
A presente invenção, ao contrário, ensina um processo catalítico seletivo, com rendimentos superiores a 70%, para a produção de ácido lático.
SUMÁRIO DA INVENÇÃO
A invenção trata da fabricação de ácido lático com alto rendimento por meio de oxidação seletiva de 1 ,2-propanodiol. A reação ocorre em presença oxigénio e de um catalisador ativado, que compreende um metal nobre suportado em óxido metálico. A oxidação do carbono primário que contém um grupo OH é seletiva em temperaturas menores do que 100°C, pressão atmosférica ou autógena e em meio alcalino. Por meio dessas condições obtêm-se rendimentos da ordem de 70% de ácido lático utilizando-se equipamentos já instalados e normalmente usados em plantas químicas industriais e com gasto de energia menor do que os praticados em processos do estado da arte. O catalisador é facilmente recuperado por filtração ao final do processo.
DESCRIÇÃO DETALHADA DA INVENÇÃO
O processo apresentado no presente pedido permite obter o ácido lático com rendimentos de 70% ou superior, através do emprego de catalisadores heterogéneos que propiciam alta seletividade e, também, altos rendimentos para ácido lático, empregando somente oxigénio do ar e 1 ,2-propanodiol como reagentes, em temperaturas inferiores a 100°C e sob pressão atmosférica.
Em determinadas modalidades dessa invenção é possível atingir conversão completa do 1 ,2-propanodiol e formação apenas de ácido lático e, como subproduto, ácido pirúvico.
O processo de fabricação de ácido lático envolve o uso de uma corrente gasosa selecionada entre ar, oxigénio puro ou mistura entre ambos, a qual se faz borbulhar num reator contendo uma solução aquosa de 1 ,2-propanodiol à pressão atmosférica e em meio alcalino. Este reator contém, ainda, o catalisador sólido previamente ativado, para converter os reagentes em ácido lático, preferencialmente. Este processo pode ser conduzido em regime semicontínuo, contínuo, semibatelada ou uma combinação destes, tanto em fase gasosa, quanto em fase líquida.
No processo dessa invenção, o 1 ,2-propanodiol é convertido em ácido lático através da reação de oxidação do carbono primário. A oxidação também ocorre no carbono secundário formando acetol. Em temperaturas mais altas, o acetol reage com o oxigénio da corrente gasosa resultando a formação de ácido pirúvico. Assim, os principais subprodutos da obtenção de ácido lático por este processo são o acetol e o ácido pirúvico.
O processo da presente invenção compreende as seguintes etapas: 1a) Ativação do catalisador: redução do catalisador a 350°C por 2 horas sob fluxo de H2.
2a) Alimentação do reator: carregamento do reator, equipado com sistema de refluxo, com solução de 1 ,2-propanodiol e com o catalisador pré-reduzido.
3a) Reação: acionamento do aquecimento, agitação e borbulha- mento de oxigénio ou ar mantendo-se o pH fixo com gotejamento contínuo de solução alcalina.
4a) Separação dos produtos: remoção do catalisador por filtração e separação do ácido lático da fase aquosa.
Prepara-se o catalisador por impregnação úmida, seca ou por deposição-precipitação, com solução do precursor do metal selecionado entre hidróxidos, nitratos, cloretos, sulfatos, acetatos e acetilacetonatos ou outro composto que se decomponha formando o correspondente óxido metálico depois de calcinação. O teor de metal nobre no catalisador varia numa faixa entre 0,01 % e 10%, preferencialmente entre 0,1 % e 5% p/p.
O suporte deve possuir superfície específica alta o suficiente para garantir boa dispersão do metal, na faixa entre 50 m2g 1 e 1000 mV- Seleciona-se o suporte entre gama-AI203, Ti02, Si02 e Zr02, Nb205, Ce02, MgO, ZSM-5, MCM-22, MCM-41 , preferencialmente Al203, Ti02, Si02 e ZrC½. Seleciona-se o metal nobre entre Pt, Pd, Ru, Rh e Ir, preferencialmente Pt e Pd. Em uma modalidade da presente invenção emprega-se um catalisador de oxidação que compreende um dos metais nobres, ou combinação destes, suportado em um óxido metálico puro, em uma mistura de óxidos metálicos ou em alumino-silicatos com estrutura zeolítica. Preferencialmente, a impregnação do catalisador é realizada a partir de uma solução do ácido hexacloroplatínico (H2PtCI6). O catalisador também pode ser obtido via impregnação a seco. Neste caso, emprega-se como precursor de platina um composto selecionado entre H2Pt(OH)6, Pt(N03)4, Pt(NH3)4(N03)2, Pt(NH3)4(OH)2, PtCI4, Pt(NH4)2CI4, Pt(NH4)2CI6, Pt(C5H702)2 ou qualquer outro composto que se decomponha formando Pt02. Em outra modalidade dessa invenção utiliza-se um catalisador comercial de Pt/Al203, com 5% p/p de Pt previamente reduzido.
A redução do catalisador é conduzida ex-situ em temperaturas entre 200°C e 500°C ou in-situ na faixa de temperatura entre 30°C e 100°C. Neste caso, o catalisador é adicionado à solução de propanodiol mantida sob agitação. A redução ainda pode ser realizada sequencialmente, ex-situ e in-situ nas mesmas faixas de temperatura descritas.
Conduz-se a reação de oxidação do 1 ,2-propanodiol em um reator utilizando-se como reagentes 1 ,2-propanodiol puro ou em solução aquosa, e catalisador em quantidades que satisfaçam a proporção catalisador/1 ,2- propanodiol na faixa entre 1/4 p/p a 1/20 p/p, mantendo-se o pH da reação fixo, num valor selecionado na faixa entre 7 e 14,0, preferencialmente entre 8,0 e 12,0, por meio da adição controlada de uma solução alcalina, selecionada entre as soluções de hidróxidos e carbonatos de metais alcalinos e alcalinos terrosos, preferencialmente NaOH ou KOH, com concentração na faixa entre 0,1 M e 2 M, preferencialmente na faixa entre 0,5 M e 1 ,5 M, numa temperatura selecionada na faixa entre 30°C e 100°C, pressão autógena entre 1 bar e 5 bar, sob agitação na faixa entre 200 rpm e 2000 rpm.
A entrada do oxigénio no reator é feita utilizando ar, oxigénio puro ou mistura de ar enriquecida em oxigénio. Essa última obtida via membranas ou outra tecnologia adequada.
A conversão de 1 ,2-propanodiol se completa após 5h de reação, formando ácido Iático em concentrações expressivas, se comparado aos outros produtos. A seletividade a ácido Iático fica em torno de 70% durante todo o período de reação. Outros produtos detectados são o ácido piruvico e o acetol.
Empregando-se uma modalidade preferida da presente invenção, realizaram-se ensaios de avaliação de desempenho dos catalisadores num aparato contendo um reator de vidro, um agitador mecânico, um sistema de adição de solução alcalina por meio de uma bomba dosadora associada a um medidor de pH. A solução alcalina selecionada foi de NaOH com concentração 1 M. Utilizou-se uma solução aquosa de 1 ,2- propanodiol com concentração 0,2 M, uma vazão de ar sintético (20% de 02 em N2 v/v) entre l O mLmin"1 e l OO mLmin"1 e um pH compreendido entre 7,0 e 14,0 e mantido constante por meio de adição de solução alcalina. A temperatura de reação variou na faixa compreendida entre 30°C e 80°C e a pressão de reação no intervalo entre 1 bar e 5 bar. A agitação mecânica foi mantida entre 500 rpm e 2000 rpm. Retiraram-se alíquotas da solução a cada 30 min e analisaram-se os produtos, por cromatografia líquida HPLC, após filtração para separação do catalisador. Os exemplos a seguir descrevem a invenção de forma precisa e suficiente, mas são apenas ilustrativos e de forma alguma são limitativos do escopo de proteção da presente invenção.
EXEMPLOS
Exemplo 1 :
O catalisador de platina sobre alumina contendo 5% p/p Pt foi preparado por impregnação úmida utilizando-se uma alumina comercial como suporte e o sal precursor ácido hexacloroplatínico. A primeira etapa da preparação consistiu na calcinação do suporte que foi realizada em mufla da temperatura ambiente até 500°C seguindo uma taxa de aquecimento de 10°Cmin"1 , mantido a 500°C por 4 horas. Posteriormente, solubilizou-se o ácido hexacloroplatínico em água. Esta solução foi adicionada ao suporte (já calcinado) e esta suspensão permaneceu em agitação por 1 hora à temperatura ambiente. Após esta etapa, foi feita uma secagem a vácuo do material a 80°C. Finalmente, o sólido obtido permaneceu em estufa a 100°C por 12 horas e foi, então, calcinado a 500°C por 4 horas com taxa de aquecimento de 10°C/min e fluxo de ar sintético com vazão de 60 mLmin"1.
Exemplo 2: O catalisador de platina sobre alumina contendo 5% p/p Pt preparado conforme descrito no Exemplo 1 acima foi ativado ex situ, ou seja, foi aquecido da temperatura ambiente até 350°C seguindo uma taxa de aquecimento de 10°Cmin"1, mantido por 2 horas a 350°C e utilizando uma corrente de hidrogénio puro na vazão de 50 mLmin"1.
Exemplo 3:
O catalisador de platina sobre alumina contendo 5% p/p Pt preparado conforme descrito no Exemplo 1 e ativado ex-situ conforme descrito no Exemplo 2 foi pesado, transferido para um reator de vidro de 500 mL contendo 200 ml_ de água destilada e novamente ativado, desta vez in situ, aquecendo-se o reator a 90°C e utilizando-se uma corrente de 50 mLmin"1 de hidrogénio puro, introduzida na suspensão por um borbulhador acoplado ao reator. A suspensão foi agitada a 600 rpm e essa condição foi mantida por 1 hora. A evaporação da água foi evitada empregando um condensador de refluxo com corrente de água na serpentina.
Exemplo 4:
O catalisador de platina sobre alumina contendo 5% p/p Pt preparado e ativado conforme os Exemplos 1 a 3 foi empregado na reação de oxidação de 1 ,2-propanodiol. Uma solução aquosa de 1 ,2-propanodiol com concentração de 0,2 M foi adicionada ao reator contendo 1 g de catalisador sob agitação de 700 rpm. Um eletrodo de vidro para medida de pH do meio reacional foi conectado ao reator. Da mesma forma, foi acoplada uma bureta contendo uma solução 1 M de NaOH permitindo seu gotejamento por acionamento manual. O pH no reator foi ajustado para 8,0 através da adição de quantidade suficiente da solução de NaOH e mantido durante todo o período de reação. Um fluxo de 30 mLmin"1 de ar foi admitido pelo borbulhador. A temperatura de reação foi mantida em 40°C. Após 5 horas de reação nestas condições, obtém-se conversão total de 1 ,2-propanodiol e a seguinte distribuição de seletividades entre ácido lático, ácido pirúvico e acetol: 65%, 23% e 12%, respectivamente.
Exemplo 5:
O catalisador de platina sobre alumina contendo 5% p/p Pt preparado e ativado conforme os Exemplos 1 a 3 foi empregado na reação de oxidação de 1 ,2-propanodiol. Uma solução aquosa de 1 ,2-propanodiol com concentração de 0,2 M foi adicionada ao reator contendo 1 g de catalisador sob agitação de 700 rpm. Um eletrodo de vidro para medida de pH do meio reacional foi conectado ao reator. Da mesma forma, foi acoplada uma bureta contendo uma solução 1 M de NaOH permitindo seu gotejamento por acionamento manual. O pH no reator foi ajustado para 10,0 através da adição de quantidade suficiente da solução de NaOH e mantido durante todo o período de reação. Um fluxo de 30 mLmin"1 de ar foi admitido pelo borbulhador. A temperatura de reação foi mantida a 40°C. Após 6 horas de reação nestas condições, obtém-se conversão total de 1 ,2-propanodiol e a seguinte distribuição de seletividades entre ácido lático, ácido pirúvico e acetol: 70%, 19% e 11 %, respectivamente.
Exemplo 6:
O catalisador de platina sobre alumina contendo 5% p/p Pt preparado e ativado conforme os Exemplos 1 a 3 foi empregado na reação de oxidação de 1 ,2-propanodiol. Uma solução aquosa de 1 ,2-propanodiol com concentração de 0,2 M foi adicionada ao reator contendo 1 g de catalisador sob agitação de 700 rpm. Um eletrodo de vidro para medida de pH do meio reacional foi conectado ao reator. Da mesma forma, foi acoplada uma bureta contendo uma solução 1 M de NaOH permitindo seu gotejamento por acionamento manual. O pH no reator foi ajustado para 8,0 através da adição de quantidade suficiente da solução de NaOH e mantido durante todo o período de reação. Um fluxo de 30 mLmin"1 de ar foi admitido pelo borbulhador. A temperatura de reação foi mantida a 60°C. Após 6 horas de reação nestas condições, obtém-se conversão total de 1 ,2-propanodiol e a seguinte distribuição de seletividades entre ácido lático, ácido pirúvico e acetol: 61 %, 27% e 12%, respectivamente.

Claims

REIVINDICAÇÕES
1 - PROCESSO CATALÍTICO OXIDATIVO PARA SÍNTESE DE ÁCIDO LÁTICO, por meio da reação de oxidação do grupo OH do carbono primário do 1 ,2-propanodiol, conduzida em um reator a partir de 1 ,2-propanodiol e uma corrente gasosa contendo oxigénio, em meio aquoso alcalino, em presença de um catalisador contendo metal nobre, caracterizado por compreender as seguintes etapas:
1a) Ativação do catalisador: reduzir o metal nobre por meio de contato entre o catalisador e uma corrente gasosa contendo hidrogénio;
2a) Alimentação do reator: prover o reator com o catalisador reduzido e uma solução aquosa de 1 ,2-propanodiol;
3a) Reação de oxidação: borbulhar uma corrente gasosa contendo oxigénio através da mistura de catalisador e solução de 1 ,2- propanodiol mantendo o pH em um valor fixo, por meio de adição de solução alcalina à reação, e controlando o aquecimento, a agitação e a pressão interna do reator;
4a) Separação dos produtos: remover o catalisador por filtração e separar o ácido lático da fase aquosa.
2- PROCESSO CATALÍTICO OXIDATIVO PARA SÍNTESE DE ÁCIDO LÁTICO, de acordo com a reivindicação 1 , caracterizado por dito catalisador compreender um suporte de óxido metálico, com uma superfície específica compreendida na faixa entre 50 m2g"1 e 1000 rn2g"\ selecionado entre Al203, Ti02, Si02 e Zr02, Nb205, Ce02, MgO, ZSM-5, MCM-22, MCM-41 e alumino-silicatos com estrutura zeolítica, preferencialmente Al203, Si02i Ti02 ou Zr02, e um metal nobre selecionado entre Pt, Pd, Ru, Rh e Ir, ou combinação destes, preferencialmente Pt e Pd, mais preferencialmente um catalisador de Pt/Al203.
3- PROCESSO CATALÍTICO OXIDATIVO PARA SÍNTESE DE ÁCIDO LÁTICO, de acordo com as reivindicações 1 e 2, caracterizado por dito catalisador compreender um teor de metal nobre entre 0,01 % e 10% p/p, preferencialmente entre 0,1 % e 5% p/p.
PROCESSO CATALÍTICO OXIDATIVO PARA SÍNTESE DE ÁCIDO LÁTICO, de acordo com as reivindicações 1 , 2 e 3, caracterizado por dita ativação do catalisador ser previamente realizada "in situ" no reator ou "ex situ", por meio de contato entre o catalisador e uma corrente de gás contendo um teor de hidrogénio compreendido na faixa entre 0,5% e 100% p/p, preferencialmente entre 10% e 100%, numa vazão compreendida na faixa entre 0,5 mLmin 1 e 200 mLmin 1 , preferencialmente entre 1 mLmin"1 e 150 mLmin"1, à temperatura compreendida na faixa entre 200°C e 500°C, preferencialmente entre 300°C e 500°C, por um período compreendido na faixa entre 0,5 hora e 5 horas, preferencialmente entre 1 hora e 5 horas.
PROCESSO CATALÍTICO OXIDATIVO PARA SÍNTESE DE ÁCIDO LÁTICO, de acordo com a reivindicação 1 , caracterizado por dita alimentação do reator ser conduzida em bateladas ou em modo contínuo.
PROCESSO CATALÍTICO OXIDATIVO PARA SÍNTESE DE ÁCIDO LÁTICO, de acordo com a reivindicação 1 , caracterizado por dita reação de oxidação do grupo OH do carbono primário ser conduzida nas seguintes condições de reação: concentração da solução de 1 ,2-propanodiol compreendida na faixa de 0,01 M até o substrato puro; proporção catalisador/1 ,2-propanodiol compreendida na faixa entre 1/4 e 1/20, pH da reação fixo num valor compreendido na faixa entre 7 e 14,0, preferencialmente entre 8,0 e 12,0, por meio de adição controlada de uma solução alcalina, selecionada entre soluções de hidróxidos e carbonatos de metais alcalinos e alcalinos terrosos, preferencialmente NaOH ou KOH, com concentração compreendida na faixa entre 0, 1 M e 2 M, preferencialmente na faixa entre 0,5 M e 1 ,5 M, agitação compreendida na faixa entre 200 rpm e 2000 rpm, preferencialmente entre 600 rpm e 1200 rpm, temperatura compreendida na faixa entre 20°C e 100°C, mais preferencialmente entre 30°C e 70°C, pressão compreendida na faixa entre 1 bar e 5 bar, preferencialmente entre 1 bar e 3 bar, corrente de ar ou corrente gasosa contendo oxigénio em nitrogénio com concentração compreendida na faixa entre 0,5% e 100% v/v, preferencialmente entre 10% e 30%, introduzida no reator a uma vazão compreendida na faixa entre 10 mLmin"1 e 100 mLmin 1.
PCT/BR2011/000290 2010-08-18 2011-08-18 Processo catalítico oxidativo para síntese de ácido lático WO2013023257A1 (pt)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013535209A JP2014518540A (ja) 2010-08-18 2011-08-18 乳酸を合成するための触媒による酸化方法
EP11870840.3A EP2610238A4 (en) 2010-08-18 2011-08-18 CATALYTIC OXIDATIVE PROCESS FOR THE SYNTHESIS OF LACTIC ACID
US13/817,302 US20140148616A1 (en) 2010-08-18 2011-08-18 Processo catalitico oxidativo para sintese de acido latico
US14/148,963 US20140121408A1 (en) 2010-08-18 2014-01-07 Oxidative catalytic process for the synthesis of lactic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRPI1004306-3A BRPI1004306B1 (pt) 2010-08-18 2010-08-18 Processo catalítico oxidativo para síntese de ácido lático
BRPI1004306-3 2011-08-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/817,302 A-371-Of-International US20140148616A1 (en) 2010-08-18 2011-08-18 Processo catalitico oxidativo para sintese de acido latico
US14/148,963 Continuation US20140121408A1 (en) 2010-08-18 2014-01-07 Oxidative catalytic process for the synthesis of lactic acid

Publications (2)

Publication Number Publication Date
WO2013023257A1 true WO2013023257A1 (pt) 2013-02-21
WO2013023257A8 WO2013023257A8 (pt) 2013-04-04

Family

ID=46001907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2011/000290 WO2013023257A1 (pt) 2010-08-18 2011-08-18 Processo catalítico oxidativo para síntese de ácido lático

Country Status (5)

Country Link
US (1) US20140148616A1 (pt)
EP (1) EP2610238A4 (pt)
JP (1) JP2014518540A (pt)
BR (1) BRPI1004306B1 (pt)
WO (1) WO2013023257A1 (pt)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR102012027339B1 (pt) * 2012-10-25 2019-08-27 Instituto Nac De Tecnologia Int processo para síntese direta de ácido lático
KR102069833B1 (ko) 2016-04-12 2020-01-23 주식회사 엘지화학 아크릴산의 제조방법
CN107029799B (zh) * 2017-04-18 2020-01-24 江苏大学 一种包覆型磁性纳米Fe3O4负载钯催化剂在甘油制备乳酸中的应用
EP3453786A1 (en) 2017-09-08 2019-03-13 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Method for producing lactic acid
CN108404860B (zh) * 2018-05-18 2021-02-23 王顺方 一种无机重金属离子吸附材料的制备方法
CN111482184B (zh) * 2020-04-22 2023-03-21 江苏大学 一种Cu/Pd/Au三元复合金属催化剂及其制备方法和应用
CN115055201B (zh) * 2022-05-18 2024-08-23 汕尾职业技术学院 一种乙炔芳构化反应制备苯的催化剂及其制备和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR8602110A (pt) * 1985-05-14 1987-01-13 Shell Int Research Processo para a preparacao de um sal de acido carboxilico,processo para a preparacao de um acido carboxilico e processo para a preparacao de acido azetidina-3-carboxilico ou sais do mesmo
EP0460831A2 (en) * 1990-06-08 1991-12-11 BP Chemicals Limited Production of hydroxy carboxylic compounds
CN101225041A (zh) 2008-02-02 2008-07-23 北京大学 一种利用甘油合成乳酸的方法
EP2100871A1 (de) 2008-03-10 2009-09-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Katalytisches Verfahren zur Gewinnung von Milchsäure aus nachwachsenden Rohstoffen

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128614B2 (pt) * 1972-07-15 1976-08-20
DE4228487A1 (de) * 1991-08-30 1993-03-04 Kao Corp Verfahren zur herstellung einer eine carbonyl- und/oder carboxylgruppe aufweisenden verbindung
JP3276413B2 (ja) * 1991-08-30 2002-04-22 花王株式会社 カルボニル基及び/又はカルボキシル基を有する化合物の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR8602110A (pt) * 1985-05-14 1987-01-13 Shell Int Research Processo para a preparacao de um sal de acido carboxilico,processo para a preparacao de um acido carboxilico e processo para a preparacao de acido azetidina-3-carboxilico ou sais do mesmo
EP0460831A2 (en) * 1990-06-08 1991-12-11 BP Chemicals Limited Production of hydroxy carboxylic compounds
CN101225041A (zh) 2008-02-02 2008-07-23 北京大学 一种利用甘油合成乳酸的方法
EP2100871A1 (de) 2008-03-10 2009-09-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Katalytisches Verfahren zur Gewinnung von Milchsäure aus nachwachsenden Rohstoffen

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
C. BIANCHI; F. PORTA; L. PRATI; M. ROSSI, TOP. CATAL., vol. 13, 2000, pages 231 - 236
E.P. MARIS; R.J. DAVIS, J. CATAL., vol. 249, 2007, pages 328 - 337
E.P. MARIS; W.C. KETCHIE; M. MURAYAMA; R.J. DAVIS, J. CATAL., vol. 215, 2007, pages 281 - 294
H.H.C.M. PINXT; B.F.M. KUSTER; G.B. MARIN, APPL. CATAL. A, vol. 191, 2000, pages 45 - 54
L. PRATI; M. ROSSI, J. CATAL., vol. 176, 1998, pages 552 - 560
MALLAT T. ET AL.: "Oxidation of alcohols with molecular oxygen on platinum metal catalysts in aqueous solutions", CATALYSIS TODAY, vol. 19, 1994, pages 247 - 284, XP055075633 *
MALLAT T. ET AL.: "Oxidation of alcohols with molecular oxygen on solid catalysts", CHEMICAL REVIEWS, vol. 104, 2004, pages 3037 - 3058, XP055075632 *
PINXT H.H.C.M. ET AL.: "Promoter effects in the Pt-catalysed oxidation of propylene glycol", APPLIED CATALYSIS A: GENERAL, vol. 191, 2000, pages 45 - 54, XP004272121 *
R.M. WEST; M.S. HOLM; S. SARAVANAURUGAN; J. XIONG; Z. BEVERSDORF; E. TAARNING; C.H. CHRISTENSEN, J. CATAL., vol. 269, 2010, pages 122 - 130
S. DEMIREL; P. JERN; M. LUCAS; P. CLAUS, CATAL. TODAY, vol. 122, 2007, pages 292 - 300
T. TSUJINO; S. OIGASHI; K. KAWASHIRO; H. HAYASHI, J. MOL. CATAL., vol. 71, 1992, pages 25 - 35

Also Published As

Publication number Publication date
US20140148616A1 (en) 2014-05-29
WO2013023257A8 (pt) 2013-04-04
JP2014518540A (ja) 2014-07-31
BRPI1004306A2 (pt) 2012-05-08
BRPI1004306B1 (pt) 2018-04-17
EP2610238A1 (en) 2013-07-03
EP2610238A4 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
WO2013023257A1 (pt) Processo catalítico oxidativo para síntese de ácido lático
RU2518371C1 (ru) Способ получения этиленгликоля из полиоксисоединений
TWI659946B (zh) 生產烯醇之方法及其用於生產1,3-丁二烯之用途
JP7222092B2 (ja) 1,4-シクロヘキサンジメタノールの製造方法
BR112015009556B1 (pt) processo de preparação de sulfóxido de dimetila
KR101437072B1 (ko) 효율적인 이산화탄소 전환 촉매 및 이의 제조 방법
ES2747906T3 (es) Producción de 1,6-hexanodiol a partir de ácido adípico
US20050059839A1 (en) Process and catalysts for the oxidation of methanol and/or ethanol
EP2735558B1 (en) Process for direct synthesis of lactic acid
JP5481975B2 (ja) エポキシ化合物の製造法
EP3323801B1 (en) Methods of preparing cyclohexanone and derivatives
KR100785254B1 (ko) 헤테로폴리산 담지 촉매 및 상기 촉매를 이용한디메틸카보네이트의 제조방법
JP2000026347A (ja) 接触酸化によりヒドロキシル基を有する芳香族化合物を製造する方法
US20140121408A1 (en) Oxidative catalytic process for the synthesis of lactic acid
WO2013053032A1 (pt) Processo de obtenção de ácido acético a partir de etanol
US6242632B1 (en) Supported catalysts containing a platinum group metal and method for producing diarylcarbonates
JP2020105160A (ja) C5+化合物の製造方法及びこれに用いられる触媒
WO2021239641A1 (en) A process for the oxidation of primary alcohols to carboxylic acids
EP4284889A1 (en) A continuous process for the synthesis of dimethyl carbonate over a cerium-based catalyst formulation
KR101533537B1 (ko) 세리아-지르코니아를 포함하는 혼합 산화물 지지체에 백금을 담지한 폴리올의 수상개질반응용 촉매
BR112020023948A2 (pt) método catalítico para a produção de hidrocarbonetos e compostos aromáticos a partir de compostos oxigenados contidos em mistura aquosas
JP2021126606A (ja) 1,4−アンヒドロエリスリトール水素化分解触媒、及び前記触媒を使用した1,3−ブタンジオールの製造方法
RU2462307C1 (ru) Катализатор и способ получения уксусной кислоты или смеси уксусной кислоты и этилацетата
BRPI0903361A2 (pt) processo para obtenÇço de acetati de etila em uma etapa por via oxidativa utilizando misturas fÍsicas
KR20070063281A (ko) 피퍼리딘 카르복실산 에스테르류의 연속 제조 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013535209

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011870840

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870840

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13817302

Country of ref document: US