WO2013053032A1 - Processo de obtenção de ácido acético a partir de etanol - Google Patents

Processo de obtenção de ácido acético a partir de etanol Download PDF

Info

Publication number
WO2013053032A1
WO2013053032A1 PCT/BR2012/000388 BR2012000388W WO2013053032A1 WO 2013053032 A1 WO2013053032 A1 WO 2013053032A1 BR 2012000388 W BR2012000388 W BR 2012000388W WO 2013053032 A1 WO2013053032 A1 WO 2013053032A1
Authority
WO
WIPO (PCT)
Prior art keywords
palladium
ethanol
catalyst
process according
acetic acid
Prior art date
Application number
PCT/BR2012/000388
Other languages
English (en)
French (fr)
Inventor
Carlos RENE KLOTZ RABELLO
Marlito Gomes Junior
Bernardo GALVÃO SIQUEIRA
Raphael Bezerra De Menezes
Lúcia GORENSTIN APPEL
Alexandre BARROS GASPAR
Sonia LETICHEVSKY
Priscila DA COSTA ZONETTI
Original Assignee
Petroleo Brasileiro S.A. - Petrobras
Instituto Nacional De Tecnologia - Int
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleo Brasileiro S.A. - Petrobras, Instituto Nacional De Tecnologia - Int filed Critical Petroleo Brasileiro S.A. - Petrobras
Publication of WO2013053032A1 publication Critical patent/WO2013053032A1/pt

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0213Preparation of the impregnating solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/08Acetic acid

Definitions

  • the present invention belongs to the field of processes for obtaining carboxylic acids from alcohols, particularly the processes for obtaining acetic acid from ethanol, by one-step oxidation.
  • Acetic acid is an important chemical intermediate. Through it are synthesized various substances used in different industrial sectors, such as: textile, pharmaceutical, paints and varnishes, food, etc. Acetic acid is produced commercially from different raw materials, such as methanol, ethanol and butane, among others, using various processes such as acetaldehyde oxidation, liquid phase oxidation of light hydrocarbons and carbonylation of methanol, the latter being the most widely used technology.
  • the methanol carbonylation process employs high pressures and is conducted in liquid phase with homogeneous catalyst. Catalyst recovery and operating costs are high.
  • the methanol employed is usually obtained from synthesis gas, a non-renewable raw material, which in turn is obtained from natural gas reforming (CH 4 ).
  • acetic acid from biomass derivatives refers to the generation of acetic acid from ethanol through non-fermentative processes. These processes traditionally comprise two steps: in the first one acetaldehyde is generated via dehydrogenation reaction or ethanol oxidation; In the second, the obtained aldehyde is oxidized to acetic acid. Acetaldehyde formation occurs in the gas phase using a copper-based catalyst when the dehydrogenative route is considered, or silver catalysts in the case of the oxidative. In the second step acetaldehyde is oxidized to acetic acid with cobalt and / or manganese catalysts, in liquid phase and under pressure. A disadvantage of this method is the use of two reactors, which impacts production and investment costs, and the fact that the second reaction is associated with homogeneous catalysis, where difficult catalyst recovery also leads to increased production costs.
  • US 5,770,761 teaches a process of oxidizing ethanol in liquid phase and under pressure. During the reaction ethyl acetate, acetic acid, acetaldehyde and water are formed.
  • the catalytic system comprises a palladium catalyst supported on hydrophobic styrene divinylbenzene (SDB) copolymer support. Yields in ethyl acetate and acetic acid reached 22% and 12%, respectively.
  • SDB hydrophobic styrene divinylbenzene
  • US 5,840,971 discloses a vanadium, titanium and oxygen catalytic system commonly used in the oxidation of ethanol to produce acetic acid.
  • Patent C 1,305,180 relates to the production of acetic acid from the ethanol oxidation reaction using a catalytic system comprising an oxide catalyst containing molybdenum and vanadium metals, alone or with at least one other metal. .
  • the catalytic behavior was investigated in a mixture of oxides ⁇ 0, 0 6 ⁇ V 25 Nb 0, o6 (4 g) and Sn 0 7 / mo 0, 3 (2 g).
  • Ethanol was fed 50% by weight of aqueous solution, 0.4 mL.h- 1 , through a preheater to 255 ° C prior to entering the reactor. Simultaneously, 7% by volume of 0 2 was fed. 7% by volume of N 2 and 86% by volume from He.
  • the spatial velocity values used comprised the range between 200 h "1 and 3,000 h " 1 .
  • Ethanol was completely converted and the selectivity for acetic acid was 62%. The presence of ethane under these conditions improves acid +
  • the patent application BR PI 8901776 teaches the synthesis of a supported palladium catalyst, with content between 0.5% and 5%, that allows to obtain acetic acid from the ethanol oxidation reaction.
  • the ⁇ -alumina support was used and after the impregnation two heat treatment methods were adopted.
  • WO 00/61535 relates to the production of acetic acid or a mixture of acetic acid and ethyl acetate from oxidation of ethanol with oxygen.
  • promoter palladium-based catalysts (Se, Te, Sb, Cr, Au, Mn and Zn) are used for the production of acetic acid and the following operating conditions: 160 ° C reaction temperature; pressure 0.8 MPa; space velocity 4400 h ⁇ 1 ; mixture of ethanol, oxygen, water and nitrogen with 2.5 / 6/25 / 66.5 molar ratio, respectively.
  • the presence of promoters improves the performance of the Pd catalyst, especially in the presence of water in the reaction medium.
  • the selectivity of the processes of obtaining acetic acid in one step depends on ethanol concentration, hourly space velocity and temperature.
  • US 5,770,761 shows a liquid phase process whose main disadvantages over the gas phase process are the separation between the catalyst and the products obtained during the reaction and the low acid yield.
  • WO 00/61535 also teaches that the presence of various promoters makes the preparation of palladium-based catalysts more complex. It is worth noting that WO 00/61535 and PI 8901776 propose a reduction step prior to the reaction of palladium catalysts. It is also worth mentioning that the spatial speeds of the described patents are much lower than the range employed by the proposed system. All of these issues addressed result in increased investment and production costs in acetic acid generation.
  • the present invention provides a simple and effective method of preparing a supported palladium oxide (PdO) catalytic composition, and teaches a one-step process for obtaining acetic acid using ethanol and air in the presence of said catalytic composition.
  • PdO palladium oxide
  • the advantages of this innovation over those of the state of the art are the use of a supported noble metal based catalyst which is easily prepared and without the use of promoters, the addition of water and / or inert to the reaction medium, the non-use of the step. catalyst reduction use of commercial supports in the catalyst preparation and, finally, the use of high space velocities.
  • the present invention is a process for obtaining acetic acid from ethanol in a single reaction step and mild operating conditions wherein a mixture of air stream and ethanol stream passes through a catalytic bed reactor, preferably a bed reactor. fixed.
  • the catalyst which, together with the support, constitutes a catalytic composition, comprises palladium, typically palladium oxide, supported on at least one of the following supports: silica, alpha-alumina, gamma-alumina, monoclinic zirconia, tetragonal zirconia.
  • the preferred support is monoclinic zirconia.
  • the reaction temperature is between 100 ° C and 300 ° C, the pressure is between 1 bar and 20 bar and the space velocity is between 20,000h -1 and 80,000h -1.
  • the catalyst uses as a palladium precursor a palladium salt such as Pd (NO 3 ) 2 and Pd (NH 3 ) Cl 2 which decomposes to form PdO.
  • the palladium content is between 0.1% w / w and 5.0% w / w, the temperature between 165 ° C and 225 ° C, the operating pressure between 1 bar and 5 bar, the spatial velocity between 45,000 h “1 and 65,000h “ 1 and the percentage of ethanol in the mixture is between 1% and 20%, more preferably between 2% and 15%.
  • the process of the present invention involves the use of a gaseous stream comprising pure or diluted oxygen, preferably an air stream, and another vapor stream of an alcohol, preferably ethanol, using a fixed but not limited to bed reactor.
  • Alcohol intake is via a metering pump associated with a vaporizer and air is supplied via a blower or compressor.
  • the two streams pass through a reaction bed, which is the catalytic bed where the alcohol oxidation reaction occurs.
  • the reaction system relating to the oxidation process of ethanol to acetic acid in one step involves the generation of acetaldehyde via dehydrogenative oxidation.
  • This aldehyde may desorb from the catalytic bed as a byproduct or be oxidized to acetic acid. This acid may also desorb as a reaction product or be oxidized to carbon dioxide. Another possibility is for acetaldehyde to react with ethanol resulting in ethyl acetate.
  • the catalysts employed in obtaining acetic acid contain a noble metal, such as platinum, ruthenium, palladium, rhodium or iridium, preferably palladium. Alternatively, a combination of these metals is used.
  • the palladium precursor employed may be Pd (NO 3 ) 2 , Pd (NH 3 ) 4 CI 2 , or any other palladium compound that decomposes to PdO. Other precursors should be considered for other metals.
  • the noble metal content varies in a range between
  • the supports used are silica, ⁇ -alumina, Y-alumina, monoclinic zirconia, tetragonal zirconia and other oxides, preferably monoclinic zirconia.
  • Such catalysts may be prepared by conventional methods such as wet soaking, dry soaking, ion exchange and co-precipitation, among others, followed by the drying and calcining steps.
  • reaction temperature should be in the range of 50 ° C to 300 ° C, preferably in the range of 165 ° C to 225 ° C, with pressure in the range 1 bar to 20 bar.
  • the percentage of ethanol in the mixture should be between 1% and 20%, preferably between 2% and 15%.
  • the value of space velocity should be between about 10,000 ⁇ "1 and 200,000h " 1 .
  • Anhydrous or hydrous ethanol may be employed in this process.
  • the preparation of the catalyst based on palladium supported on monoclinic zirconia (Zr0 2 m) by the dry impregnation method was made using as precursor salt Pd (N0 3) 2 and supported by a commercial monoclinic zirconia.
  • the catalyst was synthesized to obtain a palladium content of 0.65% w / w.
  • the material was dried and calcined following a heating rate of 0.5 ° C min- 1 to 250 ° C and 10 ° C min- 1 of 250 ° C to 400 ° C. Then the catalyst was kept at 400 ° C for 10 hours under a flow of 60 ml min "1 synthetic air.
  • This catalyst was synthesized to obtain a palladium content of 2.0% w / w.
  • the preparation of the catalyst based on palladium supported on monoclinic zirconia (Zr0 2 m) by the dry impregnation method was conducted using as precursor salt Pd (N0 3) 2 and supported by a commercial monoclinic zirconia. The same drying and calcining conditions as Example 1 were used.
  • the preparation of the monoclinic zirconia-supported palladium-based catalyst by the ion exchange method, (m-Zr0 2 ) was carried out using the precursor salt Pd (NH 4 ) 4 CI 2 and a commercial monoclinic zirconia as the support.
  • Monoclonal zirconia was added to 100 mL of aqueous solution containing 42 mL of NH OH (25% v / v). This suspension was kept under magnetic stirring for 24 hours for m-Zr0 2 activation.
  • 0.12 g of Pd (NH 3 ) 4 Cl 2 was added to 480 mL of an aqueous solution containing 200 mL NH 4 OH (25% v / v).
  • the solution containing the palladium salt was mixed with the previously prepared suspension containing the support.
  • the initial pH value of this mixture was 11. This suspension remained under magnetic stirring for 72 hours at room temperature. Subsequently, a wash was conducted to neutralize the pH of the sample which was then oven dried for 24 hours and finally calcined at 400 ° C, with a heating rate of 10 ° Cmin -1 for 6 hours under a flow rate. 60 ml / min synthetic air "1 .
  • the Pd content of this catalyst was 0.65% w / w.
  • Tetragonal zirconia supported palladium catalyst was prepared as in Example 1 using the dry impregnation method and the same drying and calcining conditions.
  • a tetragonal zirconia (t-Zr0 2 ) and the palladium precursor salt, Pd (NO 3 ) were used.
  • the Pd content of this catalyst was 0.65% w / w.
  • zirconia (s-Zr0 2 ) was synthesized in the laboratory by the precipitation method.
  • the preparation consisted of abruptly adding 37 mL of ZrO (NO 3 ) 2 to 470 mL of NH 4 OH (25% v / v). After filtration of the white precipitate obtained, washing was conducted until pH neutralization.
  • the solid obtained was directly calcined at 400 ° C for 4 hours, following a heating rate of 10 ° C min ⁇ 1 under synthetic air flow 60 ml min "1.
  • the Laboratory synthesized zirconia supported palladium catalyst was prepared as in Example 1 using the dry impregnation method and the same drying and calcining conditions.
  • the precursor salt of palladium was used Pd (N0 3) 2.
  • the Pd content of this catalyst was 0.65% w / w.
  • an aqueous solution was initially prepared by adding 74 g of AI (NO 3 ) 3 H 2 0 to 105 ml of distilled water. Subsequently, the magnetic stirring was added to the urea until it reached the 1/13 AI 3+ / CON 2 H 4 molar ratio, ie 153 g of urea. This solution was kept under stirring for 1 hour at room temperature and then filtered through a 0.45 pm Millipore filter. The filtered solution was heated at 90 ° C for 12 hours. The pH of the solution, which initially was 2.0, after this heating reached 8.0 concurrently with the formation of a clear gel.
  • This gel was dried at 90 ° C and then precalculated at 300 ° C for 25 min to remove urea and nitrate. Finally, after cooling to room temperature, the material was calcined at 1200 ° C under heating rate 10 ° C min "1 for 3 hours. Then, the palladium catalyst supported on a-AI 2 0 3 was prepared as in Example 1, using the dry impregnation method and the same drying and calcination conditions. the palladium salt precursor used was Pd (N0 3) 2.
  • Example 1 silicon carbide (diluent) was introduced into a "U” shaped reactor. Prior to the reaction, the system was pretreated at 200 ° C under synthetic air flow, and flow rate of 20 rnLmin "1 remaining at this temperature for 2 hours. Then the catalytic bed was cooled to the reaction temperature. After treatment, the The ethanol / air gas mixture was introduced into the micro-reactor at a total flow rate of 20 ml_mln "1 .
  • Reaction temperature 100 ° C - 250 ° C.
  • Example 2 The 2.0% Pd monoclonal palladium on zirconia catalyst (Example 2) was weighed, mixed with the diluent and introduced into a U-shaped glass micro-reactor and then subjected to the same pre-procedure. treatment and the same reaction conditions as described in Example 7.
  • Example 4 The palladium on tetragonal zirconia catalyst (Example 4) was weighed, mixed with the diluent and introduced into a U-shaped glass micro-reactor and then subjected to the same pretreatment procedure and reaction conditions as described in Example. 7 The results obtained are presented in Table 1.
  • Example 5 The laboratory synthesized palladium on zirconia catalyst (Example 5) was weighed, mixed with the diluent and introduced into a U-shaped glass micro reactor and then subjected to the same pretreatment procedure and the same reaction conditions as described. in Example 7.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

Processo de obtenção de ácido acético a partir de etanol por oxidação em uma única etapa, usando-se composição catalítica a base de óxido de paládio, suportado em sílica, alumina ou preferentemente zircônia, em condições de temperatura entre 100°C e 300°C, pressão entre 1 bar e 20 bar e velocidade espacial entre 20.000h"1 e 80.000h"1.

Description

PROCESSO DE OBTENÇÃO DE ÁCIDO ACÉTICO A PARTIR DE
ETANOL
CAMPO DA INVENÇÃO
A presente invenção pertence ao campo dos processos de obtenção de ácidos carboxílicos a partir de álcoois, particularmente os processos de obtenção de ácido acético a partir de etanol, através de oxidação em uma única etapa.
FUNDAMENTOS DA INVENÇÃO
O ácido acético é um importante intermediário químico. Através dele sintetizam-se diversas substâncias empregadas em diferentes setores industriais, como: têxtil, farmacêutico, de tintas e vernizes, alimentício, etc. Produz-se o ácido acético comercialmente a partir de diferentes matérias- primas, como metanol, etanol e butano, entre outras, empregando-se processos variados, como por exemplo, a oxidação do acetaldeído, a oxidação em fase líquida de hidrocarbonetos leves e a carbonilação do metanol, sendo essa última a tecnologia mais empregada.
O processo de carbonilação do metanol emprega altas pressões e é conduzido em fase líquida com catalisador homogéneo. A recuperação do catalisador e os custos de operação são elevados. O metanol empregado, geralmente, é obtido a partir do gás de síntese, uma matéria-prima não renovável, que por sua vez é obtido a partir da reforma do gás natural (CH4).
Por outro lado, a produção de ácido acético a partir de derivados de biomassa refere-se à geração de ácido acético a partir do etanol, através de processos não fermentativos. Estes processos tradicionalmente compreendem duas etapas: na primeira gera-se acetaldeído via reação de desidrogenação ou oxidação do etanol; na segunda o aldeído obtido é oxidado a ácido acético. A formação de acetaldeído ocorre em fase gasosa utilizando-se um catalisador à base de cobre, quando a rota desidrogenativa é considerada, ou catalisadores de prata, no caso da rota oxidativa. Na segunda etapa o acetaldeído é oxidado a ácido acético com catalisadores de cobalto e/ou manganês, em fase líquida e sob pressão. Uma desvantagem deste método é a utilização de dois reatores, o que impacta nos custos de produção e investimento, e o fato da segunda reação estar associada à catálise homogénea, onde a difícil recuperação do catalisador também leva ao aumento dos custos de produção.
A patente US 5,770,761 ensina um processo de oxidação de etanol em fase líquida e sob pressão. Durante a reação formam-se acetato de etila, ácido acético, acetaldeído e água.
O sistema catalítico compreende um catalisador de paládio em suporte de co-polímero hidrofóbico estireno-divinilbenzeno (SDB). Os rendimentos em acetato de etila e ácido acético atingiram 22% e 12%, respectivamente.
A patente US 5,840,971 apresenta um sistema catalítico a base de vanádio, titânio e oxigénio, comumente utilizados na oxidação do etanol para produzir ácido acético. As condições operacionais empregadas foram: percentagem molar da alimentação dos reagentes no reator, etanol/02/H20/N2 = 2,5 / 3,0 / 5,0 / 89,5; temperatura e pressão de reação, 200°C e 1 ,7 bar, respectivamente; velocidade espacial, 3.200 h"1. A conversão de etanol nestas condições é de 92% e as seletividades para ácido acético e produtos de combustão 97% e 3%, respectivamente.
O documento de patente C 1 ,305,180 refere-se a produção de ácido acético a partir da reação de oxidação do etanol, utilizando um sistema catalítico que compreende um catalisador óxido contendo os metais molibdênio e vanádio, sozinhos ou com pelo menos mais um outro metal. Investigou-se o comportamento catalítico de uma mistura de óxidos Μο0,6θ V0,25 Nb0,o6 (4 g) e Sn0,7 / Mo0,3 (2 g). O etanol foi alimentado a 50% em peso de solução aquosa, a 0,4 mL.h"1, passando por um pré- aquecedor a 255°C antes da entrada no reator. Simultaneamente, eram alimentados 7% em volume de 02, 7% em volume de N2 e 86% em volume de He. Os valores de velocidade espacial utilizados compreendiam a faixa entre 200 h"1 e 3.000 h"1. O etanol foi completamente convertido e a seletividade para ácido acético foi de 62%. A presença de etano nestas condições melhora a seletividade em ácido + eteno.
O pedido de patente BR PI 8901776 ensina a síntese de um catalisador de paládio suportado, com teor entre 0,5% e 5%, que permite obter ácido acético a partir da reação de oxidação do etanol. Utilizou-se como suporte a α-alumina e após a impregnação adotaram-se dois métodos de tratamento térmico.
No primeiro utilizou-se uma oxidação na faixa de temperatura compreendida entre 400°C e 500°C e no segundo uma redução com hidrogénio a temperaturas de 100°C, 200°C, 300°C e 420°C. As condições de reação usadas foram: temperatura entre 120°C e 300°C, pressão atmosférica, velocidade espacial de 7.100 h"1 e relação molar etanol/ar entre 0,02 e 0,05. Os resultados mostraram que o catalisador é mais estável após a redução e que apresenta boa seletividade para ácido acético, cerca de 70%.
A patente WO 00/61535 refere-se à produção de ácido acético ou uma mistura de ácido acético e acetato de etila a partir da oxidação do etanol com oxigénio. Nestes sistemas utilizam-se catalisadores à base de paládio com promotores (Se, Te, Sb, Cr, Au, Mn e Zn) para a produção de ácido acético e as seguintes condições operacionais: temperatura reacional de 160°C; pressão de 0,8 MPa; velocidade espacial de 4400 h~1; mistura de etanol, oxigénio, água e nitrogénio com razão molar de 2,5 / 6 / 25 / 66,5, respectivamente. A presença de promotores melhora o desempenho do catalisador de Pd, principalmente em presença de água no meio reacional.
De uma forma geral, a seletividade dos processos de obtenção de ácido acético em uma etapa depende da concentração de etanol, da velocidade espacial horária e da temperatura. DISTINÇÃO DO ESTADO DA TÉCNICA
A patente US 5,770,761 mostra um processo em fase líquida cujas principais desvantagens em relação ao processo em fase gasosa são a separação entre o catalisador e os produtos obtidos durante a reação e o baixo rendimento em ácido.
As patentes US 5,840,971 , C 1 ,305,180 e WO 00/61535 mostram a presença de quantidades significativas de água no meio reacional. Além disso, nessas patentes emprega-se um gás inerte (N2 ou He) de forma a viabilizar a operação com baixa concentração de 02. Ambos os procedimentos resultam em aumento do tamanho do reator e/ou uso de insumos adicionais.
A patente WO 00/61535 também ensina que a presença de diversos promotores torna mais complexa a preparação dos catalisadores a base de paládio. Vale comentar que as patentes WO 00/61535 e PI 8901776 propõem uma etapa de redução antes da reação dos catalisadores de paládio. Vale também destacar que as velocidades espaciais das patentes descritas são bem menores que a faixa empregada pelo sistema ora proposto. Todas estas questões abordadas resultam em aumento dos custos de investimento e de produção na geração de ácido acético.
Empregando-se o processo da presente invenção produz-se ácido acético a partir de fonte renovável, ou seja, a partir de etanol, em uma única etapa reacional e em condições de operação brandas. A presente invenção provê um método simples e eficaz de preparação de uma composição catalítica a base de óxido de paládio (PdO) suportado, e ensina um processo de obtenção de ácido acético, em uma única etapa, usando como reagentes etanol e ar em presença da dita composição catalítica. As vantagens dessa inovação sobre as do estado da técnica são o uso de um catalisador a base de metal nobre suportado de fácil preparação e sem o uso de promotores, a não adição de água e/ou inertes ao meio reacional, o não emprego da etapa de redução do catalisador, o uso de suportes comerciais no preparo do catalisador e, finalmente, o emprego de altas velocidades espaciais.
SUMÁRIO DA INVENÇÃO
A presente invenção trata de um processo para obtenção de ácido acético a partir de etanol em uma única etapa reacional e condições de operação brandas em que uma mistura de corrente de ar e corrente de etanol atravessa um reator de leito catalítico, preferentemente um reator de leito fixo. O catalisador, que, junto com o suporte, constitui uma composição catalítica, compreende paládio, tipicamente óxido de paládio, suportado em pelo menos um dos suportes seguintes: sílica, alfa-alumina, gama-alumina, zircônia monoclínica, zircônia tetragonal. O suporte preferido é a zircônia monoclínica. A temperatura de reação está entre 100°C e 300°C, a pressão está entre 1 bar e 20 bar e a velocidade espacial está entre 20.000h -1 e 80.000h -1. O catalisador usa como precursor de paládio um sal de paládio, tal como Pd(N03)2 e Pd(NH3) CI2, que se decomponha formando PdO.
Preferentemente, o teor de paládio se situa entre 0,1 % p/p e 5,0% p/p, a temperatura entre 165°C e 225°C a pressão de operação entre 1 bar e 5 bar, a velocidade espacial entre 45.000h"1 e 65.000h"1 e o percentual de etanol na mistura estar entre 1 % e 20%, mais preferentemente entre 2% e 15%.
DESCRIÇÃO DETALHADA DA INVENÇÃO
O processo da presente invenção envolve o uso de uma corrente gasosa, que compreende oxigénio puro ou diluído, preferencialmente uma corrente de ar, e outra corrente de vapor de um álcool, preferencialmente o etanol, utilizando um reator de leito fixo, porém não limitado a este tipo de reator. A admissão do álcool é feita através de uma bomba dosadora associada a um vaporizador e o ar é alimentado por intermédio de um soprador ou compressor. As duas correntes atravessam um leito reacional, que é o leito catalítico onde ocorre a reação de oxidação do álcool. Em uma modalidade preferencial da presente invenção, o sistema reacional relativo ao processo de oxidação do etanol a ácido acético, em uma única etapa, envolve a geração de acetaldeído via oxidação desidrogenativa. Este aldeído pode dessorver do leito catalítico como subproduto ou ser oxidado a ácido acético. Este ácido pode também dessorver como produto da reação ou ser oxidado a gás carbónico. Outra possibilidade é o acetaldeído reagir com o etanol resultando acetato de etila.
Os catalisadores empregados na obtenção de ácido acético contêm um metal nobre, como por exemplo, a platina, o rutênio, o paládio, o ródio ou o irídio, preferencialmente o paládio. Alternativamente, utiliza-se uma combinação desses metais. O precursor de paládio empregado pode ser o Pd(NO3)2, Pd(NH3)4CI2, ou qualquer outro composto de paládio que se decomponha formando PdO. Outros precursores devem ser considerados no caso dos demais metais. O teor de metal nobre varia numa faixa entre
0,01% e 5%. Os suportes utilizados são a sílica, a α-alumina, a Y-alumina, a zircônia monoclínica, a zircônia tetragonal e outros óxidos, preferencialmente a zircônia monoclínica. Tais catalisadores podem ser preparados pelos métodos convencionais, tais como impregnação úmida, impregnação a seco, troca iônica e co-precipitação, entre outros, seguidos das etapas de secagem e calcinação.
As condições reacionais usuais em que o processo ocorre são as seguintes: a temperatura de reação deve estar numa faixa entre 50°C e 300°C, preferivelmente entre 165°C e 225°C, com pressão numa faixa entre 1 bar a 20 bar. O percentual de etanol na mistura deve estar entre 1% e 20%, preferivelmente entre 2% e 15%. O valor da velocidade espacial deve se situar entre cerca de 10.000η"1 e 200.000h"1. Podem ser empregados neste processo o etanol anidro ou o hidratado.
EXEMPLOS
Os exemplos a seguir descrevem a invenção em questão, sendo demonstrados de maneira ilustrativa e não limitando, portanto, o escopo da invenção.
Exemplo 1
Preparação de catalisadores de paládio (0,65%) suportado em zircônia monoclínica pelo método de impregnação a seco.
A preparação do catalisador a base de paládio suportado em zircônia monoclínica (m-Zr02) pelo método de impregnação a seco foi feita utilizando-se como sal precursor Pd(N03)2 e como suporte uma zircônia monoclínica comercial. O catalisador foi sintetizado de forma a se obter um teor de paládio de 0,65% p/p. Após a impregnação, o material foi seco e calcinado seguindo uma taxa de aquecimento de 0,5°C min"1 até 250°C e de 10°C min"1 de 250°C até 400°C. Em seguida, o catalisador foi mantido na temperatura de 400°C por 10 horas sob fluxo de 60 mLmin"1 de ar sintético.
Exemplo 2
Preparação de catalisadores de paládio (2,0%) suportado em zircônia monoclínica pelo método de impregnação a seco.
Este catalisador foi sintetizado de forma a se obter um teor de paládio de 2,0% p/p. A preparação do catalisador a base de paládio suportado em zircônia monoclínica (m-Zr02) pelo método de impregnação a seco foi conduzida utilizando-se como sal precursor Pd(N03)2 e como suporte uma zircônia monoclínica comercial. Utilizaram-se as mesmas condições de secagem e calcinação do Exemplo 1.
Exemplo 3
Preparação de catalisadores de paládio suportados em zircônia monoclínica pelo método de troca iônica.
Realizou-se a preparação do catalisador a base de paládio suportado em zircônia monoclínica pelo método de troca iônica, (m-Zr02) utilizando-se como sal precursor Pd(NH4)4CI2 e como suporte uma zircônia monoclínica comercial. Adicionou-se a zircônia monoclínica a 100 mL de solução aquosa contendo 42 mL de NH OH (25% v/v). Esta suspensão foi mantida em agitação magnética por 24 horas para a ativação da m-Zr02. 0,12 g de Pd(NH3)4CI2 foi adicionado a 480 mL de uma solução aquosa contendo 200 mL de NH4OH (25% v/v). A solução contendo o sal de paládio foi misturada à suspensão previamente preparada contendo o suporte. O valor inicial do pH desta mistura era 11. Esta suspensão permaneceu em agitação magnética por 72 horas a temperatura ambiente. Posteriormente, foi conduzida uma lavagem para neutralizar o pH da amostra que foi, então, seca em estufa por 24 horas e, finalmente, calcinada a 400°C, com taxa de aquecimento de 10°Cmin"1, durante 6 horas sob fluxo de ar sintético de 60 mLmin"1. O teor de Pd deste catalisador foi 0,65% p/p.
Exemplo 4
Preparação de catalisadores de paládio suportados em zircônia tetragonal.
O catalisador de paládio suportado em zircônia tetragonal foi preparado como no Exemplo 1 , utilizando o método de impregnação a seco e as mesmas condições de secagem e calcinação. Foi utilizada uma zircônia tetragonal (t- Zr02) e o sal precursor de paládio, o Pd(N03). O teor de Pd deste catalisador foi 0,65% p/p.
Exemplo 5
Preparação de catalisadores de paládio suportados em zircônia sintetizada em laboratório.
Primeiramente, sintetizou-se a zircônia (s-Zr02) em laboratório pelo método de precipitação. A preparação consistiu em adicionar, abruptamente, 37 mL de ZrO(N03)2 a 470 mL de NH4OH (25% v/v). Após a filtração do precipitado branco obtido, foi conduzida a lavagem do mesmo até a neutralização do pH. O sólido obtido foi diretamente calcinado a 400°C por 4 horas, seguindo uma taxa de aquecimento de 10°C min~1, sob fluxo de ar sintético de 60 mLmin"1. Em seguida, o catalisador de paládio suportado em zircônia sintetizada no laboratório foi preparado como no Exemplo 1 , utilizando o método de impregnação a seco e as mesmas condições de secagem e calcinação. O sal precursor de paládio utilizado foi Pd(N03)2. O teor de Pd deste catalisador foi 0,65% p/p.
Exemplo 6
Preparação de catalisadores de paládio suportados em a-AI203.
Para a síntese do suporte a-AI203, inicialmente, preparou-se uma solução aquosa adicionando-se 74 g de AI(N03)3.9H20 a 105 mL de água destilada. Posteriormente, foi agregada a uréia com agitação magnética até alcançar a razão molar AI3+/CON2H4 de 1/13, ou seja, 153 g de uréia. Esta solução foi mantida sob agitação por 1 hora à temperatura ambiente e, posteriormente, filtrada num filtro Millipore de 0,45 pm. A solução filtrada foi aquecida a 90°C por 12 horas. O pH da solução, que inicialmente era igual a 2,0, atingiu após este aquecimento o valor 8,0 concomitantemente com a formação de um gel transparente. Este gel foi seco a 90°C e, então, pré-calcinado a 300°C por 25 min para eliminação da uréia e do nitrato. Finalmente, após resfriamento até a temperatura ambiente, o material obtido foi calcinado a 1200°C sob taxa de aquecimento de 10°C min"1 durante 3 horas. Em seguida, o catalisador de paládio suportado em a-AI203 foi preparado como no Exemplo 1 , utilizando o método de impregnação a seco e as mesmas condições de secagem e calcinação. O sal precursor de paládio utilizado foi Pd(N03)2.
Exemplo 7
Teste catalítico. Uma mistura física do catalisador PdO/m-Zr02
(Exemplo 1) e carbeto de silício (diluente) foi introduzida em um micro- reator em forma de "U". Antes da reação, o sistema foi submetido a um pré-tratamento a 200°C sob fluxo de ar sintético, e vazão de 20 rnLmin"1 permanecendo nesta temperatura por 2 horas. Em seguida, o leito catalítico foi resfriado a temperatura de reação. Após o tratamento, a mistura gasosa etanol/ar foi introduzida no micro-reator a uma vazão total de 20 ml_mln"1.
As condições operacionais e as quantidades de catalisador e diluente são apresentadas a seguir:
Catalisador = 25 mg;
Diluente = 100 mg;
Concentração de etanol = 3% v/v;
P = 1 atm;
Temperatura de reação = 100°C - 250°C.
Os resultados obtidos são apresentados na Tabela 1.
Exemplo 8
Teste catalítico. O catalisador de paládio sobre zircônia monoclínica com teor de 2,0% de Pd (Exemplo 2) foi pesado, misturado ao diluente e introduzido num micro-reator de vidro em forma de U, sendo, então, submetido ao mesmo procedimento de pré-tratamento e as mesmas condições reacionais descritas no Exemplo 7.
Os resultados obtidos são apresentados na Tabela .
Exemplo 9
Teste catalítico. O catalisador de paládio sobre zircônia monoclínica preparado pelo método de troca iônica (Exemplo 3) foi pesado, misturado ao diluente e introduzido num micro-reator de vidro em forma de U, sendo, então, submetido ao mesmo procedimento de pré-tratamento e as mesmas condições reacionais descritas no Exemplo 7.
Os resultados obtidos são apresentados na Tabela 1.
Exemplo 10
Teste catalítico. O catalisador de paládio sobre zircônia tetragonal (Exemplo 4) foi pesado, misturado ao diluente e introduzido num micro- reator de vidro em forma de U, sendo, então, submetido ao mesmo procedimento de pré-tratamento e as mesmas condições reacionais descritas no Exemplo 7. Os resultados obtidos são apresentados na Tabela 1.
Exemplo 11
Teste catalítico. O catalisador de paládio sobre zircônia sintetizada em laboratório (Exemplo 5) foi pesado, misturado ao diluente e introduzido num micro-reator de vidro em forma de U, sendo, então, submetido ao mesmo procedimento de pré-tratamento e as mesmas condições reacionais descritas no Exemplo 7.
Os resultados obtidos são apresentados na Tabela 1.
Exemplo 12
Teste catalítico. O catalisador de paládio sobre a-AI203 (Exemplo 6) foi pesado, misturado ao diluente e introduzido num micro-reator de vidro em forma de U, sendo, então, submetido ao mesmo procedimento de pré- tratamento e as mesmas condições reacionais descritas no Exemplo 7.
Os resultados obtidos são apresentados na Tabela 1.
TABELA 1
Resultados dos catalisadores utilizados nos exemplos
TempeSeletividade para Rendiratura Acetato mento de
Ácido
Catalisador do C02 CH4 Acetaldeído de Ácido
Acético
Reator [%] [%] [%] Etila Acético
[°C] [%]
[%] [%]
175 19 6 2 3 71 65
Exemplo 7
200 60 7 2 1 30 30
175 13 5 2 3 77 71
Exemplo 8
200 49 7 1 2 41 40
175 8 4 32 33 23 8
Exemplo 9
200 12 5 22 27 35 18
Exemplo 175 10 4 31 21 34 16
10 200 17 2 28 8 44 35 Exemplo 175 11 4 26 30 29 12 11 200 16 4 4 9 66 53
Exemplo 175 16 8 19 14 44 32 12 200 17 6 18 7 52 46

Claims

REIVINDICAÇÕES
1- PROCESSO PARA OBTENÇÃO DE ÁCIDO ACÉTICO A PARTIR DE ETANOL, em uma única etapa reaciònal e condições de operação brandas caracterizado por:
(i) uma mistura de corrente de ar e corrente de etanol atravessar um reator de leito catalítico, com um catalisador que compreende paládio suportado em pelo menos um dos suportes seguintes: sílica, a-alumina, γ-alumina, zircônia monoclínica, zircônia tetragonal, sendo que a temperatura de reação está entre 100°C e 300°C, a pressão está entre 1 bar e 20 bar e a velocidade espacial está entre 20.000h "1 e 80.000h "1.
2- PROCESSO, de acordo com a reivindicação 1 , caracterizado por o catalisador que compreende paládio estar suportado em somente um suporte.
3- PROCESSO, de acordo com a reivindicação 2, caracterizado por o suporte ser zircônia monoclínica.
4- PROCESSO, de acordo com a reivindicação 1 , caracterizado por o catalisador que compreende paládio ser um catalisador de óxido de paládio.
5- PROCESSO, de acordo com a reivindicação 1 , caracterizado por o catalisador utilizar como precursor de paládio um precursor que se decomponha formando PdO.
6- PROCESSO, de acordo com a reivindicação 5, caracterizado por o dito precursor ser escolhido dentre Pd(NO3)2 e Pd(NH3)4CI2.
7- PROCESSO, de acordo com a reivindicação 1 , caracterizado por o teor de paládio se situar entre 0,1% p/p e 5,0% p/p.
8- PROCESSO, de acordo com a reivindicação 1 , caracterizado por a temperatura estar entre 65°C e 225°C.
9- PROCESSO, de acordo com a reivindicação 1 , caracterizado por a pressão de operação estar entre 1 bar e 5 bar. 10- PROCESSO, de acordo com a reivindicação 1 , caracterizado por a velocidade espacial estar entre 45.000IV1 e 65.000h"1.
11- PROCESSO, de acordo com a reivindicação 1 , caracterizado por o percentual de etanol na mistura estar entre 1% e 20%.
12- PROCESSO, de acordo com a reivindicação 11 , caracterizado por o percentual de etanol na mistura estar entre 2% e 15%.
PCT/BR2012/000388 2011-10-13 2012-10-11 Processo de obtenção de ácido acético a partir de etanol WO2013053032A1 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRPI1106803-5A BRPI1106803B1 (pt) 2011-10-13 2011-10-13 Processo de obtenção de ácido acético a partir de etanol
BRPI1106803-5 2011-10-13

Publications (1)

Publication Number Publication Date
WO2013053032A1 true WO2013053032A1 (pt) 2013-04-18

Family

ID=48081289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2012/000388 WO2013053032A1 (pt) 2011-10-13 2012-10-11 Processo de obtenção de ácido acético a partir de etanol

Country Status (2)

Country Link
BR (1) BRPI1106803B1 (pt)
WO (1) WO2013053032A1 (pt)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107519884A (zh) * 2017-08-28 2017-12-29 江苏大学 一种催化剂催化甲醇脱氢制备甲酸甲酯的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3739020A (en) * 1969-05-13 1973-06-12 Nat Distillers Chem Corp Preparation of carboxylic acids
BR8901776A (pt) * 1989-04-14 1990-01-23 Inst Nacional De Tecnologia Obtencao e pre-tratamento de um catalisador a base de paladio,bem como para o processo de preparacao de acido acetico

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3739020A (en) * 1969-05-13 1973-06-12 Nat Distillers Chem Corp Preparation of carboxylic acids
BR8901776A (pt) * 1989-04-14 1990-01-23 Inst Nacional De Tecnologia Obtencao e pre-tratamento de um catalisador a base de paladio,bem como para o processo de preparacao de acido acetico

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GASPAR, A.B. ET AL.: "Chemicals from ethanol - The ethyl acetate one-pot sysnthesis", APPLIED CATALYSIS A: GENERAL (2009), vol. 363, 9 May 2009 (2009-05-09), pages 109 - 114, XP026223794, DOI: doi:10.1016/j.apcata.2009.05.001 *
GASPAR, A.B. ET AL.: "The one-pot ethyl acetate synthesis: The role of the support in the oxidative and the dehydrogenative routes", APPLIED CATALYSIS.A: GENERAL (2010), vol. 380, 25 March 2010 (2010-03-25), pages 113 - 117, XP027038026 *
GRECA, M.C. ET AL.: "Evaluation of Pdlalumina catalysts produced by combustion synthesis, in ethanol oxidation reaction to acetic acid", APPLIED CATALYSIS A: GENERAL (1999), vol. 179, 20 August 1998 (1998-08-20), pages 87 - 92, XP004271693, DOI: doi:10.1016/S0926-860X(98)00297-X *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107519884A (zh) * 2017-08-28 2017-12-29 江苏大学 一种催化剂催化甲醇脱氢制备甲酸甲酯的方法

Also Published As

Publication number Publication date
BRPI1106803B1 (pt) 2020-03-17
BRPI1106803A2 (pt) 2013-10-29

Similar Documents

Publication Publication Date Title
ES2212945T3 (es) Catalizador con distribucion bimodal del radio de poro.
ES2264284T3 (es) Oxidacion catalitgica de alcanos en los correspondientes acidos.
US8642825B2 (en) Membrane-supported catalysts and the process of oxidative dehydrogenation of ethane using the same
RU2259988C2 (ru) Катализатор и способ получения углеводородов
JP6200946B2 (ja) 還元触媒
JP2001519771A (ja) 脱水素によるオレフィン、特にプロピレンの製造方法
TWI579265B (zh) 製備乙烯及乙酸之方法
CN113813953B (zh) 一种铈锆复合氧化物固溶体催化剂的制备及应用方法
WO2013023257A1 (pt) Processo catalítico oxidativo para síntese de ácido lático
JP4713895B2 (ja) ヨウ化物の製造方法
US20050059839A1 (en) Process and catalysts for the oxidation of methanol and/or ethanol
WO2013053032A1 (pt) Processo de obtenção de ácido acético a partir de etanol
ES2236559T3 (es) Procedimiento para la preparacion selectiva de tetrahidrofurano, mediante hidrogenacion de anhidrido maleico.
TWI391371B (zh) 在基於乙烷之製程中使用化學反應自乙烷中分離乙烯以製造醋酸之方法
BR102012027339A2 (pt) Processo para síntese direta de ácido lático
CN115430418A (zh) 一种催化剂及其制备方法及应用该催化剂制备乙酸的方法
BR102018073404A2 (pt) Processo de oxidação seletiva de glicerol
KR20030072365A (ko) 이봉 세공 반경 분포를 갖는 촉매
WO2002055465A1 (fr) Methode et appareil de reaction chimique faisant appel a un catalyseur a membrane
KR100785254B1 (ko) 헤테로폴리산 담지 촉매 및 상기 촉매를 이용한디메틸카보네이트의 제조방법
CN117816161A (zh) 用于甘油氢解制备1,3-丙二醇催化剂的制备方法以及催化剂及应用
CN117816160A (zh) 用于甘油氢解制备1,3-丙二醇催化剂及其制备方法和应用
RU2462307C1 (ru) Катализатор и способ получения уксусной кислоты или смеси уксусной кислоты и этилацетата
BRPI0903361A2 (pt) processo para obtenÇço de acetati de etila em uma etapa por via oxidativa utilizando misturas fÍsicas
KR101318255B1 (ko) 디메틸카보네이트 제조용 갈륨 옥사이드-세륨 옥사이드-지르코늄 옥사이드 복합 촉매 및 상기 촉매를 이용한 디메틸카보네이트의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12839839

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/08/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12839839

Country of ref document: EP

Kind code of ref document: A1