WO2012141523A2 - 당류의 촉매 수소화에 의해 당알코올류를 제조하기 위한 담지촉매, 이의 제조방법 및 이를 이용한 당알코올류의 제조방법 - Google Patents

당류의 촉매 수소화에 의해 당알코올류를 제조하기 위한 담지촉매, 이의 제조방법 및 이를 이용한 당알코올류의 제조방법 Download PDF

Info

Publication number
WO2012141523A2
WO2012141523A2 PCT/KR2012/002810 KR2012002810W WO2012141523A2 WO 2012141523 A2 WO2012141523 A2 WO 2012141523A2 KR 2012002810 W KR2012002810 W KR 2012002810W WO 2012141523 A2 WO2012141523 A2 WO 2012141523A2
Authority
WO
WIPO (PCT)
Prior art keywords
ruthenium
catalyst
supported catalyst
supported
titania
Prior art date
Application number
PCT/KR2012/002810
Other languages
English (en)
French (fr)
Other versions
WO2012141523A3 (ko
Inventor
황진수
장종산
이종민
쿠마 미스라 드니쉬
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120028318A external-priority patent/KR101359446B1/ko
Priority claimed from KR1020120028423A external-priority patent/KR101332303B1/ko
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2012141523A2 publication Critical patent/WO2012141523A2/ko
Publication of WO2012141523A3 publication Critical patent/WO2012141523A3/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H3/00Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
    • C07H3/02Monosaccharides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/7415Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention relates to a supported catalyst for producing alcohols by the catalytic hydrogenation of sugars, a method for preparing the alcohols, and a method for producing sugar alcohols using the same.
  • Biomass is regarded as a field of alternative energy that can solve the depletion of fossil fuels and environmental pollution.
  • Biorefinery is a biorefinery material that does not use fossil raw materials. It is a new concept for the production of biofuels and chemicals through a biological and chemical conversion process from mass, although it was born with the term oil-refinery, which means that crude oil is refined in the existing petrochemical industry. This means a whole-cycle core technology that produces all biochemicals, including biofuels, through biochemical and chemical conversion from biomass feedstock.
  • U.S. Pat.Nos. 3,586,537 and 4,008,285 disclose a process for producing xyli by hydrating xylose in a batch reactor using a nickel nickel catalyst. This manufacturing method is complex as a by-product is produced in large quantities.
  • nickel which is an active ingredient of the catalyst, is dissolved in the reaction product, and the catalyst is gradually deactivated after a certain time reaction is performed.
  • U.S. Patent No. 6,124,443 also describes a method for preparing and continuously hydrogenating xylose using a nickel-iron-zirconia alloy catalyst, which is carried out under hydrogen pressure of 60 ° C and 300 kg / cm 2 . It has the advantage of converting xylose into 99.6% purity after crystallization by hydrogenating xylose, but it requires a reaction equipment to withstand high pressure, and nickel and iron, which are active ingredients of catalyst, melt in the reaction product, The problem is that the catalyst is deactivated.
  • Patents have been reported for the use of catalysts in hydrogenation reactions.
  • U.S. Patent No. 3,963,788 discloses a method of hydrogenating saccharides by carrying ruthenium on a zeolite carrier having a silica / alumina molar ratio of 3 or more.
  • zeolite is added to an aqueous solution of ruthenium chloride and stirred in a slurry form at 80 ° C. After replacement of the catalyst, the solution is washed with filtration and distilled water to remove unsubstituted ruthenium chloride, and the catalyst is dried and reduced.
  • the inorganic material was dissolved in acid or base, and the carbon was supported on the remaining polymers of the carbon fatigue polymer to prepare a catalyst, and compared with the general alumina carrier catalyst, it was suggested that the stability and reaction activity against hot water are excellent.
  • the carbon pyropolymer support has a disadvantage in that the method of producing the carbon fatigue polymer carrier is complicated and the reaction selectivity is low compared with the case of using gamma alumina carrier.
  • a method of converting polysaccharides into monosaccharide alcohols by simultaneously performing hydrolysis and hydrogenation using a catalyst that increases the dispersibility of ruthenium by ion exchange of amine complex compound salts is described.
  • the zeolite was obtained, it was filtered and washed to remove the residual ruthenium salt and ammonium chloride, and then dried at room temperature and reduced in a hydrogen atmosphere to be used for hydrogenation reaction.
  • This method can be carried out by ion exchange high dispersion using ruthenium amine complex salt.
  • the use of acidic carriers allows hydrolysis and hydrogenation at the same time, but the reaction temperature during hydrolysis tends to be relatively high, and thus it is difficult to selectively produce sugar alcohols.
  • There is a problem of semi-melting and there is a disadvantage of using expensive ruthenium amine complex salt compared with ruthenium chloride.
  • U.S. Patent No. 6,177,598 discloses 2 to 50 Group 8 transition metals, including ruthenium.
  • sugar alcohols of 99% purity are produced without the problem of melting heavy metals. Claimed to be manufactured. However, this method also requires a separate purification process to obtain high pressure equipment and high purity products, and the catalyst is inactivated.
  • WO 02/100537 discloses ruthenium free of halogen elements in silica carriers.
  • a method of hydrogenating saccharides at 100 ° C and 100 kg / cm 2 is disclosed, but at higher conversions, the selectivity of sugar alcohols is still low.
  • U.S. Patent No. 5,998,181 uses a Candidalop Picalis strain to ferment for 48 hours to produce xylide.
  • the fermentation method has the advantage of using a separate refining process relative to batch hydrogenation, but has a long reaction time and low productivity.
  • the present invention provides a novel method for producing alcohols by hydrogenation of sugars.
  • the purpose is to provide a supported catalyst.
  • the present invention aims to provide a method for preparing a new supported catalyst for the production of alcohols by the hydrogenation of sugars under comparatively mild conditions.
  • the present invention aims to provide a method for producing a high yield of sugar alcohols by repeating and hydrogenating sugars without regenerating the catalyst.
  • the present invention provides a continuous high yield of alcohol by the catalytic hydrogenation of sugars.
  • the purpose is to provide a method of manufacture.
  • a single or mixture carrier selected from silica, alumina and titania is selected from silica, alumina and titania having a coating of zeolite carrier or nickel metal oxide.
  • a supported catalyst for preparing alcohols by catalyzing hydrogenation of saccharides, on which ruthenium or ruthenium boron is supported, is provided.
  • the supported catalyst may be a supported catalyst having ruthenium boron on a single or mixed carrier selected from silica, alumina and titania.
  • the supported catalyst may be a supported catalyst carrying ruthenium on the zeolite carrier.
  • the supported catalyst may be a supported catalyst having ruthenium supported on a single or mixed carrier selected from silica, alumina and titania having a coating of nickel metal oxide.
  • a process for preparing a supported material which is selected from silica, alumina and titania, or a mixture thereof, followed by drying at 60 to 100 ° C .; 2) reducing the solid obtained in step 1) at 10 to 35 0 C by addition of an alkaline solution containing potassium borohydride (KBH 4 ); and 3) filtering the solid obtained in step 2).
  • It provides a method for producing a supported catalyst for producing the alcohol by the catalytic hydrogenation of a saccharide, including the step of obtaining a supported catalyst carrying ruthenium boron by washing with water.
  • the ruthenium compound is a ruthenium precursor, including but not limited to, for example, ruthenium (m) chloride and ruthenium (m). Acetylacetonate or ruthenium (m) nitrosyl acetate and the like.
  • a single or mixed carrier selected from silica, alumina and titania with a coating of zeolite carrier or nickel metal oxide is treated with a solution of ruthenium compound and then dried.
  • 5) reducing the dried product obtained in step 4) to a nitrogen gas containing hydrogen to obtain a supported catalyst carrying ruthenium; and a supported catalyst for producing a sugar alcohol by catalyzing hydrogenation of a saccharide comprising: Provide a method for manufacturing
  • the zeolite carrier of step 4) is ruthenium
  • the sole or mixture carrier selected from silica, alumina and titania having the nickel metal oxide coating of step 4) is selected from 4-a) silica, alumina and titania. Treating the selected single substance or a combination thereof with a solution of a nickel compound and drying it; and 4-b) firing the solid obtained in step 4-a) to obtain a supported substance on which a nickel metal oxide film is formed.
  • the sole or mixture carrier selected from silica, alumina and titania having the nickel metal oxide coating of step 4) is selected from 4-a) silica, alumina and titania. Treating the selected single substance or a combination thereof with a solution of a nickel compound and drying it; and 4-b) firing the solid obtained in step 4-a) to obtain a supported substance on which a nickel metal oxide film is formed.
  • the ruthenium compound is, but is not limited to, a ruthenium precursor, for example, ruthenium (m) chloride, ruthenium ( ⁇ )
  • the nitrogen gas containing hydrogen is 1 to 1 hydrogen.
  • the sugar may be exemplified by glucose, xylose, mannose, fructose, erythrose, galactose, sucrose, starch hydrolyzate, cellulose hydrolyzate or maltose.
  • the supported catalyst of the present invention can be recovered without requiring a separate regeneration process.
  • RuB ruthenium boron
  • FIG. 2 is a transmission electron microscope image of a catalyst in which ruthenium boron (RuB) is supported on alumina ((1) of Example 1, RUB / Y-A1 2 0 3 ).
  • RuB ruthenium boron
  • Fig. 4 is a transmission electron microscope image of a catalyst supported on ruthenium boron (RuB) titania ((1) of Example 2, RuB / Ti0 2 ).
  • FIG. 5 is a transmission electron microscope image of a catalyst supported on ruthenium (Ru) ibeta-zeolite ( ⁇ -Zeolite of Example 5, Ru / (3-Zeolite).
  • Ru ruthenium
  • FIG. 6 is an XRD profile of a catalyst supported on ruthenium (Ru) ibeta-zeolite ((1) of Example 5, Ru / ⁇ —Zeolite).
  • Fig. 7 is a transmission electron microscope image of a catalyst in which ruthenium (Ru) is supported on HZSM-5 zeolite (HZSM-5) ((l) of Example 6, Ru / HZSM-5).
  • Fig. 8 is an XRD profile of a catalyst (ru) of ruthenium (Ru) supported on HZSM-5 zeolite (HZSM-5) (Example 1 (1), Ru / HZSM-5).
  • FIG. 9 shows an XRD profile of a catalyst (Example 10, Ru / NiO-Y-Al 2 0 3 ) on which gamma alumina ( ⁇ - ⁇ - ⁇ 1 2 0 3 ) coated with nickel oxide is supported on ruthenium (Ru). : A1 2 0 3 , b: NiO-Al 2 0 3 , c: Ru / NiO-Al 2 0 3 : (*) NiO).
  • Example 10 is a transmission electron microscope image of a nickel oxide-coated gamma alumina ( ⁇ - ⁇ - ⁇ 1 2 0 3 ) erthenium (Ru) -supported catalyst (Example 10, Ru / NiO-Y-Al 2 0 3 ) to be.
  • FIG. 11 is an XRD profile (a: Ti0 2 , b: NiO-Ti0) of a catalyst (Example 11, Ru / NiO-Ti0 2 ) supported with nickel oxide coated titania (NiO-Ti0 2 ) eruthenium (Ru). 2 , c:
  • Example 12 is a transmission electron microscope image of a catalyst (Example ll, Ru / NiO-Ti0 2 ) supported with nickel oxide coated titania (NiO-Ti0 2 ) erthenium (Ru).
  • Example 13 shows a titanium oxide coated nickel oxide (NiO-Ti0 2 ) eruthenium (Ru) -supported catalyst (Example ll, Ru / NiO-Ti0 2 ) and a ruthenium-supported titania catalyst (Comparative Example 3, Ru / Hydrogen TPR analysis of Ti0 2 ) (a: Ti0 2> b: Ru / Ti0 2 , c: NiO-Ti0 2> d: Ru / NiO-Ti0 2 ).
  • Fig. 15 is a transmission electron microscope image of a catalyst (Example 12, Ru / NiO-Si0 2 ) supported with nickel oxide coated silica (NiO-Si0 2 ) erthenium (Ru).
  • the present invention is a single or combination selected from silica, alumina and titania Support for preparing the corresponding alcohols by catalytic hydrogenation of saccharides, supported by ruthenium or ruthenium boron, on a single or mixed carrier selected from silica, alumina and titania with a carrier, zeolite carrier or nickel metal oxide coating It's about catalysts.
  • the silica, alumina and titania used as the carrier are not particularly limited and may be natural sources or synthesized.
  • the single or mixed carrier selected from silica, alumina and titania having the nickel metal oxide coating is an oxide film coated with nickel metal on a single or mixed carrier selected from silica, alumina and titania, and according to the present invention.
  • the film is formed by 0.5 to 15% by weight based on the total weight of the supported catalyst, which is supported by ruthenium or old particles, so that a high activity can be obtained using a small amount of catalyst.
  • zeolite carriers used as carriers may be of natural origin or synthetic, with no particular limitations.
  • Zeolites have a skeleton structure that determines the basic characteristics of the zeolite, and the International Zeolite Association (IZA) assigns structure codes consisting of alphabetic three-letter letters per skeleton.
  • IZA International Zeolite Association
  • FAU and MOR zeolites are produced in nature, but can also be synthesized in the laboratory. There are 40 kinds of natural zeolites, which are very small compared to synthetic zeolites. The zeolites are classified according to the size of the pore. There are ERI, CHA, MFI, MWW, FER, etc. for medium work, and FAU, BEA, MOR, LTL, MTW for big work. In the present invention and one preferred embodiment, among these various zeolites Having an MFI, FAU, BEA, or MOR structure may be desirable in terms of scattering, but there are no limitations.
  • the content of the ruthenium in the supported catalyst of the present invention is preferably 0.1 to 15% by weight based on the total weight of the supported catalyst in consideration of the speed and economic efficiency of the hydrogenation reaction in the sugar reaction reaction.
  • the supported catalyst of the present invention is a supported catalyst having a ruthenium boron on a single or mixed carrier selected from silica, alumina and titania, and the content of ruthenium in the supported catalyst is 0.5 to 15% by weight of the total increase may be desirable given the speed and economics of the hydrogenation reaction in the hydration reaction of sugars.
  • the supported catalyst of the present invention is a supported catalyst in which ruthenium is supported on a zeolite carrier, wherein the content of ruthenium in the supported catalyst is ⁇ to 5% by weight based on the total weight of the supported catalyst. This may be desirable when considering the rate and economics of the hydrogenation reaction in the hydrogenation reaction of sugars.
  • the supported catalyst of the present invention is a supported catalyst having a ruthenium supported on a single or mixed carrier selected from silica, alumina and titania having a coating of nickel metal oxide. The content of ruthenium in the catalyst may be 0.2 to 15% by weight based on the total weight of the supported catalyst when considering the rate and economic efficiency of the hydrogenation reaction in the saccharide hydrogenation reaction.
  • the present invention also relates to a method for preparing a supported catalyst carrying ruthenium boron.
  • step 2) The solid obtained in step 1) is converted to Potassium borohydride (KBH 4 ).
  • step 1) an optional substance selected from silica, alumina, and titania or a mixture thereof is treated with a solution of ruthenium compound and then dried at 60 to 100 ° C.
  • the ruthenium compound is a ruthenium precursor, for example ruthenium (m) chloride, ruthenium (m) acetylacetonate and ruthenium (m).
  • It may be selected from nitrosyl acetate and preferably ruthenium (m) chloride in that it is water-reduced and reacts well with potassium borohydride (KBH 4 ).
  • step 2) the solid obtained in step 1)
  • alkaline solution containing borohydride (KBH 4 ) is carried out at 10 to 35 ° C., preferably at room temperature.
  • step 3 the solids obtained in step 2) are filtered into water.
  • the present invention also relates to a method for preparing a ruthenium-supported supported catalyst, which includes the following steps:
  • step 5) reducing the dried product obtained in step 4) to nitrogen gas containing hydrogen;
  • the zeolite carrier of step 4) may be calcined before being treated with a solution of ruthenium compound.
  • the single or mixed carrier selected from titania is 4-a) a step of drying the treated support material selected from silica, alumina and titania or a mixture thereof with a solution of the nickel compound, and drying; and 4-b). firing the solid obtained in step a) to obtain a supported material on which a nickel metal oxide film is formed;
  • a method for producing a supported catalyst in which ruthenium is supported on a zeolite carrier of the present invention comprises: 4-1) firing a zeolite carrier; 4-2) treating the solid obtained in step 4-1) with a solution of ruthenium compound and drying it; and 5) reducing the solid obtained in step 4-2) with nitrogen gas containing hydrogen to carry ruthenium. Obtaining the supported catalyst;
  • Ruthenium is added to the zeolite carrier according to a more preferred embodiment of the present invention.
  • Method for producing a supported catalyst 4-1) the step of firing the zeolite carrier at 200 to 600 ° C for 1 to 15 hours; 4-2) the solid obtained in step 5-1) as a solution of the ruthenium compound And drying at 20 to 150 ° C. after the treatment; and 5) reducing the solid obtained in step 4-2) to nitrogen gas containing hydrogen for 1 to 10 hours at 120 to 450 ° C., to the ruthenium carrier.
  • step 4-1) the zeolite carrier is calcined at 200 to 600 ° C. for 1 to 15 hours.
  • step 4-2) the solid obtained in step 4-1) is treated with a solution of ruthenium compound and then dried at 20 to 150 ° C.
  • the ruthenium compound is a ruthenium precursor, for example ruthenium (m) chloride, ruthenium (m) acetylacetonate and ruthenium (m).
  • It may be selected from nitrosyl acetate.
  • step 5 the solid obtained in step 4-2) is reduced to nitrogen gas containing hydrogen for 1 to 10 hours at 120 to 450 ° C to obtain a supported catalyst supported on the ruthenium zeolite carrier.
  • nitrogen gas containing hydrogen may be desirable in that containing 1 to 10% of hydrogen avoids rapid reduction.
  • a method of preparing a supported catalyst supported on a singly or a composite carrier selected from silica, alumina and titania having a coating of ruthenium nickel metal oxide of the present invention is described in 4-a.
  • step 4-c) treating the supported material having the nickel metal oxide film formed in step 4-b) with a solution of ruthenium compound and drying at 60 to 150 ° C .; and 5) solid obtained in step 4-c).
  • a single or mixed carrier selected from silica, alumina and titania containing ruthenium with nickel metal oxide coatings at 120 to 450 ° C for 1 to 10 hours with hydrogen-containing nitrogen gas. It includes;
  • step 4-a a single or mixed support material selected from silica, alumina and titania is treated with a solution of nickel compound and dried at 60 to 150 ° C., and then step 4-b).
  • the solid obtained in step 4-a) is calcined at 200 to 700 ° C., preferably at 200 to 600 ° C. for 1 to 30 hours, preferably 1 to 15 hours to form a nickel oxide film on the supported material.
  • Nickel compounds are not particularly limited, but nickel dichloride, nickel sulfate hexahydrate, nickel nitrate hexahydrate, or nickel dichloride hexahydrate can be used in consideration of its uniform dispersion in water. It may be nickel chloride.
  • step 4-c) the supporting material on which the nickel metal oxide film obtained in step 4-b) is formed is treated with a solution of ruthenium compound and dried at 60 to 150 ° C.
  • ruthenium compounds correspond to ruthenium precursors, for example ruthenium (m) chloride, ruthenium (m) acetylacetonate and ruthenium (m).
  • It may be selected from nitrosyl acetate.
  • step 5 the solid obtained in the above step 4-c) is reduced to 1-10 hours with nitrogen gas containing hydrogen at 120 to 450 o C to obtain a supported catalyst carrying ruthenium.
  • Nitrogen gas containing hydrogen is desirable in that containing 1 to 10% of hydrogen avoids rapid reduction.
  • the present invention can be repeated without regenerating the catalyst using the supported catalyst described above.
  • saccharides for example, alone or two selected from glucose, xylose, mannose, propose, erythrose, galactose, sucrose, starch hydrolyzate, cellulose hydrolyzate and maltose. The above combination can be used.
  • sugars are generally solid at room temperature, it is preferable to dissolve the sugars in an appropriate solvent to improve reaction efficiency.
  • the solvents can dissolve sugars and sugar alcohols, which are the products of sugars and hydrogenated reactions at the same time.
  • water or alcohol may be used alone or in common.
  • alcohols may include methanol, ethanol, propanol, isopropanol or mixtures thereof.
  • water is used alone or water and ethanol are used. It is a mixture.
  • Hydrogenation reactions may also be desirable when reaction conditions are performed under conditions of 2 to 200 MPa, taking into account the reaction speed and the safety of the reaction.
  • the supported catalysts involved in this hydrogenation reaction can be recovered and used repeatedly in the hydrogenation reaction of saccharides without requiring a separate regeneration process, and the catalyst components are not dissolved or deactivated even after repeated use.
  • Sugar alcohols can be produced in high purity with little or no complicated separation process.
  • ruthenium trichloride (RuCl 3 .xH 2 O) was dissolved in 10 ml of ethanol. 5 g of gamma alumina (specific surface area 155 m7 g) was added to the above solution and dried overnight at 80 ° C. oven. Was added to 30 ml of distilled water, and stirred with 100 ml of 0.2 M potassium borohydride (KBH 4 ) containing 0.002 M sodium hydroxide (NaOH). After the reaction, the pH of the solution was 8.654.
  • the ruthenium boron / alumina powder was filtered and thoroughly washed with distilled water to obtain a ruthenium boron-supported alumina catalyst (hereinafter referred to as RuB / Al 2 O 3 ).
  • FIG. 1 The XRD profile evaluated by the above-described method for the obtained supported catalyst is shown in FIG. 1, and a TEM photograph thereof is shown in FIG.
  • the diffraction pattern of the supported catalyst does not show a difference in each peak being compared with the diffraction pattern of alumina, except that 2 ⁇ is a peak peaked at 43.1, which is alumina. This is due to the supported amorphous RuB.
  • RuB also appears on the flakes (gray portion) of alumina in the TEM image of FIG.
  • the particles (black, particle size 5.0mn) are dispersed.
  • Hydrogenated reaction product to make sugar alcohols which we are using is made of SUS314 material.
  • the reaction product is a liquid having a refractive index detector attached as described above.
  • the conversion of glucose was 99.0% and the selectivity of sol was 99.0%, and there was no decrease in activity even after more than 100 consecutive reactions.
  • the metal detection after the hydrogenation reaction as described above no ruthenium, boron and aluminum were detected in the hydrogenation reaction solution.
  • a catalyst was prepared in the same manner as in Example 1 (1), except that 5 g of titania powder (specific surface area 51 m 7 g) was added instead of 5 g of gamma alumina. The pH of the solution was 9.408. Ruthenium boron / titania powder was filtered and thoroughly washed with distilled water to obtain a ruthenium boron loaded titania catalyst (hereafter referred to as RuB / Ti0 2 ).
  • the XRD profile evaluated by the above-described method for the obtained supported catalyst is shown in FIG. 3, and a TEM photograph thereof is shown in FIG.
  • the diffraction pattern of the supported catalyst does not show a difference in each peak being compared with the diffraction pattern of Titania, but it is possible to confirm the weak but sharp peak in 2 ⁇ 43.1.
  • This supported titania is also amorphous and dispersed on the support of the rutile type.
  • RuB particles black and 5.5 nm in diameter
  • FIG. 4 it can be seen from the TEM photograph of FIG. 4 that RuB particles (black and 5.5 nm in diameter) are dispersed on the titania support.
  • the reaction product is a liquid having a refractive index detector attached as described above.
  • the conversion rate of glucose was 99.7% and the selectivity of sorbitol was 99.0%, and the activity was not decreased even after repeated more than 100 times.
  • the detection of metal after hydrogenation reaction was performed as described above. In the solution, no ruthenium, boron and titanium were detected in the solution.
  • Example 1 instead of 5 g of gamma alumina, the humed silica
  • the catalyst was prepared in the same manner, except that 5 g of powder (specific surface area 450 m7 g) was added. After reaction, the pH of the solution was 9.408. Ruthenium boron / silica powder was filtered and thoroughly washed with distilled water to make ruthenium boron. A supported silica catalyst (hereinafter referred to as RuB / Si0 2 ) was obtained.
  • the reaction product is a liquid having a refractive index detector attached as described above.
  • the reaction product is a liquid having a refractive index detector attached as described above.
  • Beta-zeolite ( ⁇ -Zeolite, BEA structure) was calcined at 500 ° C for 12 hours.
  • the solution was added to the dissolved 20 ml toluene solution, stirred for 1 hour, and then dried for 2 hours in a vacuum oven.
  • 3-Zeolite ruthenium-supported beta-zeolite catalyst
  • the XRD profile of the supported catalyst is shown in Fig. 6. According to the XRD profile of Fig. 6, it can be seen that the diffraction pattern of the supported catalyst is almost the same as that of the carrier (beta-zeolite). This is because it is composed of nanoparticles.
  • Hydrogen iron reactor for manufacturing sugar alcohol is made in the high pressure tank reactor made of SUS314. It was performed in a 300 ml volume of Teflon container.
  • Teflon-Bannunger was added 0.45 g of the ruthenium / beta-zeolite catalyst obtained from the above (1), followed by 200 ml of 20% glucose aqueous solution. The reaction was performed at 120 ° C. for 120 minutes.
  • the reaction product is a liquid having a refractive index detector attached as described above.
  • the conversion rate of glucose was 99.5% and the selectivity of sol beetle was 99.5%, and the activity was not decreased even after repeated 100 times.
  • the detection of metal after the hydrogenation reaction as described above no ruthenium, aluminum and silicon were detected in the hydrogenation reaction solution.
  • the content of ruthenium in the supported catalyst was 1.3% by weight. The amount of high glucose conversion and solbi selectivity was shown.
  • Ru / HZSM-5 Zeolite ruthenium-supported HZSM-5 zeolite catalyst
  • Ru particles black dots, particle size l.Onm
  • flakes gray and black speckles
  • the XRD profile for the supported catalyst was also shown in Fig. 8. According to the XRD profile of Fig. 8, the diffraction pattern of the supported catalyst was found to be almost the same as that of the carrier (HZSM-5 zeolite). This is because the particles are made of nanoparticles.
  • the reaction product is a liquid having a refractive index detector as described above.
  • the conversion rate of glucose was 99.7% and the selectivity of sorbbi was 99.5%, and the activity was not decreased even after repeated more than 100 times.
  • the detection of metal after hydrogenation reaction was performed as described above. in the result, after hydrogenation banung, ruthenium, aluminum and silicon in the solution was not detected at all. in the above banung
  • the content of ruthenium in the supported catalyst is 0.7% by weight, which shows a high glucose conversion rate and selectivity for sol ratio.
  • the reaction product is a liquid having a refractive index detector attached as described above.
  • the conversion rate of xylose was 98.9%, and the selectivity of xylul was 99.5%, and there was no deactivation even after more than 100 consecutive reactions.
  • the metal detection after hydrogenation reaction no ruthenium, aluminum and silicon were detected in the hydrogenation reaction solution.
  • the content of ruthenium in the supported catalyst was 1.3 weight ⁇ 3 ⁇ 4. It uses a small amount and shows high xylus conversion rate and xyl selectivity.
  • Beta zeolite ((3-Zeolite, BEA structure) was calcined at 500 ° C for 12 hours.
  • a dried powder sample is nitrogen gas containing 5% hydrogen for 6 hours at 300 ° C.
  • Ru / p-Zeolite ruthenium-supported beta zeolite catalyst
  • the reaction rate was 98.9% for glucose conversion and 98.7% for the sol beetle, and the activity was not decreased even after more than 100 times of reaction.
  • the metal detection after the hydrogenation reaction no ruthenium, aluminum and silicon were detected in the solution after the hydrogenation reaction.
  • the content of ruthenium in the supported catalyst was 0.8 wt ⁇ 3 ⁇ 4 It shows high glucose conversion and solbi selectivity.
  • Example 8 HZSM-5.
  • a catalyst was prepared in the same manner except that 9.95 g of zeolite (MFI structure) was added.
  • Nia 2 nickel dichloride
  • the dried powder sample is nitrogen gas containing 5% hydrogen at 170 ° C. for 2 hours.
  • Ru / NiO-Al 2 O 3 ruthenium-supported nickel oxide film-alumina catalyst
  • the XRD profile evaluated by the above-described method for the obtained supported catalyst is shown in FIG. 9, and a TEM photograph thereof is shown in FIG.
  • the diffraction pattern of the supported catalyst can confirm the peak due to NiO, and in addition, Ru particles (particle size 1.5 ⁇ 5.0 nm) is dispersed.
  • NiCl 2 nickel dichloride
  • titania specific surface area 51m7g
  • the dried powder sample is nitrogen gas containing 5% hydrogen at 170 ° C for 2 hours.
  • Ru / NiO-Ti0 2 ruthenium-supported nickel oxide-titania catalyst
  • the XRD profile evaluated by the above method for the supported catalyst obtained is shown in FIG. 11, and a TEM photograph thereof is shown in FIG.
  • the diffraction pattern of the supported catalyst is based on NiO.
  • the peak can be confirmed, and also in the TEM photograph of FIG. 12, it can be confirmed that Ru particles (particle size 2 nm) are dispersed on the flake (gray portion) of the nickel oxide film-titania.
  • Example 10 In the same manner as in Example 10, except that 575 g of gamma alumina was added to 4.75 g of a humed silica powder (specific surface area of 450 m7 g), a ruthenium-supported nickel oxide-silica catalyst (hereinafter, Ru / NiO-Si0). 2 ) was prepared.
  • Ru / NiO-Si0 ruthenium-supported nickel oxide-silica catalyst
  • the diffraction pattern of the supported catalyst was due to NiO.
  • the peaks can be identified, and a diffraction pattern by Ru is also found near 44 at 2 ⁇ , which can be observed due to Ru particles with some large crystals.
  • Ru particles black, particle size 2-5 nm
  • Example 13 Preparation of Sol Beetle [229] The hydrogenated reaction mixture for continuously producing sugar alcohols from sugars using the supported catalyst (Ru / NiO-Ti0 2 ) obtained in Example 11 was carried out in a fixed bed type reactor of SUS314. It was.
  • the catalyst was reduced for 3 hours while spreading the reaction vessel with hydrogen.
  • the reaction temperature was lowered to 120 ° C, then the pressure was raised to 5.5 MPa, and 20% glucose aqueous solution was injected at a rate of 0.04 ml / min.
  • Solbi was continuously prepared for 150 hours at the same conditions as described above, followed by injection of 20% glucose aqueous solution at a rate of 0.1 ml per minute, followed by continuous preparation of Solbi for 150 hours under the same conditions as described above. Subsequently, the reaction temperature was set at 80 ° C.
  • the reaction product is a liquid having a refractive index detector attached as described above.
  • a supported catalyst (Ru / NiO-Ti0 2 ) obtained from Example 11 was used to prepare a reaction product.
  • the reaction product is a liquid having a refractive index detector as described above.
  • Xylol was prepared by continuous reaction using a ruthenium / nickel oxide-titania catalyst (Example ll, Ru / NiO-Ti0 2 ) from xylose.
  • the hydrogenation reaction was performed in the same manner as in 13.
  • the reaction product is a liquid having a refractive index detector as described above.
  • gamma alumina (specific surface area 155 m7 g) was added to 20 ml of luene and stirred for 15 minutes to prepare gamma alumina slurry.
  • the prepared gamma alumina slurry was added and stirred for 1 hour.
  • the toluene was sometimes evaporated at room temperature, evenly mixed evenly.
  • the catalyst was raised to 250 o C over 4 hours in a helium gas atmosphere, and then 250 for 2 hours. The temperature was kept at ° C.
  • the catalyst was heated up to 350 o C over 1 hour in a 5% hydrogen atmosphere and then maintained at 350 ° C for 3 hours to reduce the catalyst to 1 wt% ruthenium-supported alumina catalyst.
  • the dried powder sample was nitrogen gas containing 5% hydrogen at 400 ° C. for 3 hours.
  • RuTi0 2 ruthenium-supported titania catalyst
  • the reduction temperature of Ru particles on the flakes of Titania was found to be 400 ° C.
  • a titania catalyst loaded with 1% by weight of ruthenium hereinafter, 1% 1 / ⁇ 0 2 , except that 6.3 g of titania (specific surface area 51 m7 g) was added instead of 6.3 g of gamma alumina) Is prepared.
  • a hydrogenation reaction was carried out in the same manner as in Example 13, except that the catalyst (Ru / Ti0 2 ) obtained in Comparative Example 3 was used.
  • the reaction product was analyzed by liquid chromatography with a detector as described above.
  • the hydrogenation reaction was performed in the same manner as in Example 13, except that 20% xylose was used instead of glucose.
  • the reaction product is a liquid having a refractive index detector as described above.
  • a hydrogenation reaction was performed in the same manner as in Example 13 except that 20% mannose was used instead of glucose.
  • the reaction product is a liquid having a refractive index detector attached as described above.
  • Mannequins were prepared by continuous reaction using a commercial 5% Ru / C catalyst from mannose.
  • the supported catalyst of the present invention is prepared without the need for a separate regeneration process and produces high-purity sugar alcohols without dissolving or deactivating the catalyst component during repeated use of the hydrogenation reaction of saccharides, so that little by-products and wastes are generated. It is effective to produce sugar alcohols without complicated separation process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

본 발명은 당류의 촉매 수소화에 의해 당알코올류를 제조하기 위한 담지촉매, 이의 제조방법 및 이를 이용하여 당알코올류를 제조하는 방법에 관한 것으로, 보다 상세하게는 실리카, 알루미나 및 티타니아 중에서 선택되는 단독 또는 혼합물 담체, 제올라이트 담체, 또는 니켈금속 산화물로 된 피막을 갖는 실리카, 알루미나 및 티타니아 중에서 선택되는 단독 또는 혼합물 담체에 루테늄 또는 루테늄보론을 담지한 촉매, 이의 제조방법 및 비교적 적은 양의 상기 담지촉매를 재생없이 반복사용하여 당류를 수소화함으로써 그에 상응하는 당알코올류를 고수율로 제조하는 방법에 관한 것이다. 본 발명의 담지 촉매를 사용하면 수소화 반응 중 반복 사용하는 동안 촉매성분의 용해나 비활성화가 없이 고순도의 당알코올류를 제조함으로써 부산물 및 폐기물이 거의 발생하지 않고, 복잡한 분리공정 없이 당알코올류를 제조할 수 있다.

Description

명세서
발명의명칭:당류의촉매수소화에의해당알코올류를제조하기 위한담지촉매,이의제조방법및이를이용한당알코올류의 제조방법
기술분야
[1] 본발명은당류의촉매수소화에의해당알코올류를제조하기위한담지촉매, 이의제조방법및이를이용하여당알코올류를제조하는방법에관한것이다. 배경기술
[2] 석유,가스및석탄등의화석원료는그자원의유한성으로인하여가격이
지속적으로상승하고있으며,이의원활한확보를위한국가간경쟁이가열되고 있다.더욱이화석원료로부터생산뒤는화학제품들은제조공정에서부산물로 지구온난화가스와폐기물을발생시켜환경오염을초래하고있으며 ,이는 기존의화학산업을급격히위축시키는요인이되고있다.
[3] 에너지의대부분을수입에의존하는우리나라에서는국가안보와지속적인 경제성장을유지하기위해에너지수입의존도를최대한감소시킬수있는 장기적인에너지수급정책의수립과근본적인청정대체에너지개발이 필수적이다.이러한현실에서바이오매스는화석연료의고갈과환경오염에 대한우려를해소할수있는대체에너지의한분야로주목받고있다.
석유자원의고갈과고유가행진에따른석유수급불안,화석연료사용으로인한 온실기체배출억제등환경규제강화움직임이세계경제의발전에
저해요인으로작용하고있다.특히고유가와환경규제에가장직접적인영향을 받고있는화학산업은화석연료의존도를줄이고환경친화형산업구조로의 변화가중요한대안으로인식되고있다.따라서화석원료에기반을둔
화학공정올대체할수있는,즉화석원료의소비와인류에게유해한폐기물의 생산을최소화할수있는바이오매스를원료로사용하는환경친화적인새로운 생물화학공정의개발이요구되고있다.
[4] 환경친화적인생물화학공정개발을위한방법으로최근에주목할만한움직임 가운데하나는 biomass를이용한바이오리파이너리분야가두각을나타내고 있다는것이다.바이오리파이너리 (biorefinery)란화석원료를사용하지않고, 오로지바이오매스로부터생물학적및화학적전환과정을거쳐바이오연료및 화학제품을제조하는새로운개념이다.기존의석유화학산업에서원유를 정제한다는의미의오일리파이너리 (Oil-refinery)란용어에 기원을두고 탄생하기는했지만실제로는바이오매스원료로부터생물학적및화학적 전환과정을거쳐바이오연료를포함한모든바이오화학제품을생산하는 전주기적핵심 기술올의미한다.
[5] 원유를원료로하여산업용 /수송용연료와각종화학제품을생산하는 오일리파이너리가종합적인일관공정으로개발된것처럼바이오리파이너리는 바이오매스를원료로바이오연료인에탄올,부탄올,아세톤등과화학원료인 솔비를,자이리를,젖산,숙신산등을만드는기술과이를구현하기위한 종합적인플랜트시스템으로구축되는통합공정으로개발되고있다. ,
[6] 솔비틀,마니를,자일리를등과같은육탄당과오탄당의당알코올류는
식품첨가제,의약품,화장품등에 널리사용되는유용한물질이다.일반적으로, 이들당알코올류는그상웅하는당류의수소화반웅에의해대부분제조되며, 대표적인예는다음과같다.
[7] 미국특허제 3,586,537호,제 4,008,285호둥에서는라니니켈촉매를사용하여 회분식반웅기에서자일로스를수소화하여자일리를을제조하는방법을 개시하고있다.이러한제조방법은부산물이다량생성됨에따라복잡한분리 정제공정과촉매회수공정이필요할뿐만아니라,반웅생성물에촉매의 활성성분인니켈이녹아나오게되고,일정시간반웅이진행된후에점차로 촉매가비활성화되는문제점이 있다.
[8] 미국특허제 6,414,2이호에'서는연속수소화반웅기에서라니니켈-알루미나 촉매를이용하여 120oC, 150 kg/cm2의수소압력에서자일로스와같은당류를 연속으로수소화하여 98%수율로자일리틀을제조하는방법을기술하고있다. 그러나,이방법도반웅생성물에촉매의활성성분인니켈이녹아나오게되고, 일정시간반웅이진행된후에점차로촉매의반응활성이낮아지는단점이 있다.
[9] 또한,미국특허제 6,124,443호에서는니켈-철 -지르코니아합금촉매를제조, 사용하여자일로스를연속수소화하는방법을보고하고있다.상기방법은 60°C, 300kg/cm2의수소압력하에서자일로스를수소화하여결정화후 99.6%순도의 자일리를로전환되는장점이 있으나,고압에견디는반웅설비가필요하고, 반웅생성물에촉매의활성성분인니켈과철이녹아나오게되고,장시간반웅이 진행되면점차로촉매가비활성화되는문제점이 있다.
[10] 한편,종래기술에는라니니켈과같이반웅시에용액에녹지않는루테늄
촉매를수소화반웅에사용하는특허들이보고되어 있다.미국특허제
3,963,788호에서는실리카 /알루미나몰비가 3이상인제올라이트담체에 루테늄을담지하여당류를수소화하는방법을개시하고있다.이특허에서는 염화루테늄수용액에제올라이트를넣고 80°C에서슬러리형태로교반하여 이온교환법으로루테늄을치환시킨후여과및증류수로세척하여담체에 치환되지않은염화루테늄을제거하고,건조,환원과정을거쳐촉매를
제조하였으며,수소화반웅후에사용된촉매는산세척을통해재생가능하였다. 그러나,이방법은이온교환법을사용하므로써촉매제조방법이복잡하고,촉매 제조시간이오래걸리며루테늄전구체의손실이많고,루테늄함량의조절이 어려우며,촉매재생공정이추가되는단점이 있으며또한수율이 97%로낮아 고순도당알코올제조를위해서는별도의분리공정이필요하다. [11] 미국특허제 4,380,679호에서는탄소피로폴리머담체위에루테늄,니켈과 같은 8족금속을담지한촉매를제조하여당류를수소화하는방법을개시하고 있다.이특허에서는무기산화물표면을고온에서유기열분해성물질로처리한 후,무기물은산또는염기로용해하고남은탄소피로폴리머담체에금속을 담지시켜촉매를제조하였으며,일반알루미나담체촉매와비교하여열수에 대한안정성및반웅활성이우수함을주장하였다.그러나,탄소피로폴리머 담체의제조방법이복잡하고감마알루미나담체를사용하는경우와비교하여 반웅선택성이낮은단점이 있다.
[12] 미국특허제 4,950,812호에서는제올라이트와같은산성담체에루테늄
아민착화합물염을이온교환시켜루테늄의분산도를높인촉매를이용해 가수분해와수소화를동시에진행하여다당류를단당알코올로전환하는 방법을기술하였다.핵사아민루테늄클로라이드수용액에암모늄이온으로 치환된제올라이트담체를넣고이온교환시켜루테늄아민으로치환된
제올라이트를얻은후에이를여과및세척하여잔류루테늄염과암모늄 염화물을제거하고,상온에서건조후수소분위기에서환원하여수소화반웅에 사용하였다.이방법은루테늄아민착염을사용하여 이온교환시고분산도로 담지할수있고,산성담체를사용함으로써가수분해와수소화를동시에 진행하는장점이 있지만,가수분해시의반웅온도가비교적높아이성질화되기 쉬우며이에따라선택적으로당알코올을제조하기어렵고,담체성분인 실리콘과알루미늄이반웅증용해되는문제점이 있다.또한염화루테늄과 비교하여고가의루테늄아민착화합물염을사용해야하는단점이 있다.
[13] 미국특허제 6,177,598호에서는루테늄을포함한 8족전이금속을 2〜 50
나노미터의큰세공과 50 ~ 10,000나노미터의중간세공의적절한비율을가진 알루미나와같은담체에담지한촉매를사용하여당류를수소화하는경우,반웅 중금속이녹아나오는문제없이 99%순도의당알콜류를제조함을주장하였다. 그러나,이방법역시고압설비와고순도제품을얻기위해서는분리 정제 공정이필요하고,촉매가비활성화되는문제점이 있다.
[14] 또한, WO 02/100537호에서는실리카담체에할로겐원소가없는루테늄
전구체를사용하여소성없이건조한촉매를환원하여 100°C,50kg/cm2에서 자일로스를수소화하는방법을보고하고있으나,이방법은담체인실리카 성분이수소화반웅증용해되는문제점이 있다.또한,자일리를의선택도가 97%로낮아반웅후분리정제가필요한단점이있다.
[15] 미국특허제 6,570,043호에서는루테늄을티타니아에담지한촉매를사용하여
100°C, 100 kg/cm2에서당류를수소화하는방법을개시하고있으나,전환율이 높은경우에는여전히낮은당알코올류의선택도를나타내었다.
[16] 한편,수소화제조법과달리효소를사용하여자일로스와같은당류를
자일리를로전환하는기술들이보고되었다.미국특허제 5,998,181호에서는 캔디다트롭피칼리스균주를이용, 48시간동안발효하여자일리를을제조하는 방법올개시하고있다.발효법은회분식수소화제조법에비해상대적으로분리 정제과정이용이한장점이있으나,반웅시간이길고생산성이낮은문제점이 있다.
발명의상세한설명
기술적과제
[17] 본발명은당류의수소화에의해당알코올을제조하기위한,신규한
담지촉매를제공하는데목적이있다.
[18] 본발명은비교적온화한조건으로당류의수소화에의해당알코올을제조하기 위한신규한담지촉매를제조하는방법올제공하는데목적이 있다.
[19] 본발명은촉매의재생없이반복하여당류를수소화함으로써그에상웅하는 당알코올류를고수율로제조하는방법을제공하는데목적이있다.
[20] 본발명은당류의촉매수소화에의해당알코올류를고수율로연속적으로
제조하는방법을제공하는데목적이 있다.
과제해결수단
[21] 본발명의한측면에따라,실리카,알루미나및티타니아증에서선택되는단독 또는흔합물담체,제올라이트담체,또는니켈금속산화물로된피막을갖는 실리카,알루미나및티타니아중에서선택되는단독또는혼합물담체에루테늄 또는루테늄보론이담지된것인,당류의촉매수소화에의해당알코올류를 제조하기위한담지촉매를제공한다.
[22] 본발명의일구현예에따르면,상기담지촉매는실리카,알루미나및티타니아 중에서선택되는단독또는혼합물담체에루테늄보론이담지된담지촉매일수 있다.
[23] 본발명의 일구현예에따르면,상기담지촉매는제올라이트담체에루테늄이 담지된담지촉매일수있다.
[24] 본발명의일구현예에따르면,상기담지촉매는니켈금속산화물로된피막을 갖는실리카,알루미나및티타니아중에서선택되는단독또는혼합물담체에 루테늄이담지된담지촉매일수있다.
[25]
[26] 본발명의다른측면에따라, 1)실리카,알루미나및티타니아중에서선택되는 단독또는이들의혼합물인담지물질을루테늄화합물의용액으로처리한후 60 내지 100°C에서건조시키는단계; 2)상기 1)단계에서얻어진고체를포타슘 보로하이드라이드 (KBH4)를포함하는알칼리성용액의 첨가에의해 10내지 350C에서환원시키는단계;및 3)상기 2)단계에서얻어진고체를여과하여물로 세척하여루테늄보론이담지된담지촉매를얻는단계;를포함하는당류의촉매 수소화에의해당알코올류를제조하기위한담지촉매의제조방법을제공한다.
[27] 본발명의 일구현예에따르면,상기루테늄화합물이루테늄전구체로서, 제한되지않지만,예를들면,루테늄 (m)클로라이드,루테늄 (m) 아세틸아세토네이트또는루테늄 (m)니트로실아세테이트등으로예시될수 있다.
[28]
[29] 본발명의또다른측면에따라, 4)제올라이트담체,또는니켈금속산화물로 된피막을갖는실리카,알루미나및티타니아증에서선택되는단독또는 흔합물담체를루테늄화합물의용액으로처리한후건조시키는단계;및 5)상기 4)단계에서얻어진건조물을수소를함유한질소가스로환원시켜루테늄이 담지된담지촉매를얻는단계;를포함하는당류의촉매수소화에의해 당알코올류를제조하기위한담지촉매의제조방법을제공한다.
[30] 본발명의 일구현예에따르면,상기 4)단계의제올라이트담체는루테늄
화합물의용액으로처리하기전에소성시켜서사용할수있다.
[31] 본발명의일구현예에따르면,상기 4)단계의니켈금속산화물로된피막을 갖는실리카,알루미나및티타니아중에서선택되는단독또는흔합물담체는 4-a)실리카,알루미나및티타니아증에서선택되는단독또는이들의흔합물인 담지물질을니켈화합물의용액으로처리한후건조시키는단계;및 4-b)상기 4-a)단계에서 얻어진고체를소성시켜니켈금속산화물피막이형성된담지 물질을얻는단계;로제조될수있다.
[32] 본발명의일구현예에따르면,상기루테늄화합물이루테늄전구체로서, 제한되지않지만,예를들면,루테늄 (m)클로라이드,루테늄 (πι)
아세틸아세토네이트또는루테늄 (m)니트로실아세테이트등으로예시될수 있다.
[33] 본발명의일구현예에따르면,상기수소를함유한질소가스는수소를 1내지
10 %함유한질소가스일수있다.
[34]
[35] 본발명의또다른측면에따라,본발명의상기담지촉매를사용하여,당류를 수소화반웅에의해그에상웅하는당알코올류로제조하는방법을제공한다.
[36] 본발명의 일구현예에서.,상기당류는글루코스,자일로스,만노스,프릭토스, 에리스로스,갈락토스,슈크로스,전분가수분해물,셀루로스가수분해물또는 말토스등으로예시될수있다.
발명의효과
[37] 본발명의담지촉매는별도의 재생공정을필요로하지않고회수되어
반복적으로당류의수소화반웅에사용될수있고,당류의수소화반웅중반복 사용하는동안촉매성분의용해나비활성화가없이고순도의당알코올류를 제조함으로써부산물및폐기물이거의발생하지않고,복잡한분리공정없이 당알코올류를제조할수있는효과가있다.
도면의간단한설명
[38] 도 1은루테늄보론 (RuB)이알루미나에담지된촉매 (실시예 1의 (1), RuB/y-Al20 3)의 XRD프로파일이다.
도 2는루테늄보론 (RuB)이알루미나에담지된촉매 (실시예 1의 (1), RUB/Y-A120 3)의투과전자현미경이미지이다.
도 3은루테늄보론 (RuB)이티타니아에담지된촉매 (실시예 2의 (1), RuB/Ti02 )의 XRD프로파일이다.
도 4는루테늄보론 (RuB)이티타니아에담지된촉매 (실시예 2의 (1), RuB/Ti02 )의투과전자현미경이미지이다.
도 5는루테늄 (Ru)이베타 -제올라이트 (β-Zeolite)에담지된촉매 (실시예 5의 (1), Ru/(3-Zeolite)의투과전자현미경이미지이다.
도 6은루테늄 (Ru)이베타 -제올라이트 (β-Zeolite)에담지된촉매 (실시예 5의 (1), Ru/β— Zeolite)의 XRD프로파일이다.
도 7은루테늄 (Ru)이 HZSM-5제올라이트 (HZSM-5)에담지된촉매 (실시예 6의 (l),Ru/HZSM-5)의투과전자현미경이미지이다.
도 8은루테늄 (Ru)이 HZSM-5제올라이트 (HZSM-5)에담지된촉매 (실시예 6의 (1), Ru/HZSM-5)의 XRD프로파일이다.
도 9는니켈산화막이피막된감마알루미나 (ΝίΟ-γ-Α1203)에루테늄 (Ru)이 담지된촉매 (실시예 10, Ru/NiO-Y-Al203)의 XRD프로파일 (a: A1203, b: NiO-Al203, c: Ru/NiO-Al203: (*) NiO)이다.
도 10은니켈산화막이피막된감마알루미나 (ΝίΟ-γ-Α1203)에루테늄 (Ru)이 담지된촉매 (실시예 10, Ru/NiO-Y-Al203)의투과전자현미경이미지이다.
도 11은니켈산화막이피막된티타니아 (NiO-Ti02)에루테늄 (Ru)이담지된 촉매 (실시예 11, Ru/NiO-Ti02)의 XRD프로파일 (a: Ti02, b: NiO-Ti02, c:
Ru/NiO-Ti02)이다.
도 12는니켈산화막이피막된티타니아 (NiO-Ti02)에루테늄 (Ru)이담지된 촉매 (실시예 ll,Ru/NiO-Ti02)의투과전자현미경이미지이다.
도 13은니켈산화막이피막된티타니아 (NiO-Ti02)에루테늄 (Ru)이담지된 촉매 (실시예 ll,Ru/NiO-Ti02)와루테늄이담지된티타니아촉매 (비교예 3, Ru/Ti02)의수소 TPR분석결과 (a: Ti02> b: Ru/Ti02, c: NiO-Ti02> d: Ru/NiO-Ti02 )이다.
도 14는니켈산화막이피막된실리카 (NiO-Si02)에루테늄 (Ru)이담지된 촉매 (실시예 12, Ru/NiO-Si02)의 XRD프로파일 (a: Si02, b: NiO-Si02, c:
Ru/NiO-Si02: (*) NiO)이다.
도 15는니켈산화막이피막된실리카 (NiO-Si02)에루테늄 (Ru)이담지된 촉매 (실시예 12,Ru/NiO-Si02)의투과전자현미경이미지이다.
발명의실시를위한형태
이와같은본발명을더욱상세하게설명하면다음과같다.
본발명은실리카,알루미나및티타니아증에서선택되는단독또는흔합물 담체,제올라이트담체 ,또는니켈금속산화물로된피막을갖는실리카, 알루미나및티타니아중에서선택되는단독또는혼합물담체에루테늄또는 루테늄보론이담지된것인,당류의촉매수소화에의해당알코올류를제조하기 위한담지촉매에관한것이다.
[55] 상기담체로서사용되는실리카,알루미나및티타니아등은각별한제한이 있는것은아니고,천연기원이거나합성된것일수있다.
[56] 상기니켈금속산화물로된피막을갖는실리카,알루미나및티타니아중에서 선택되는단독또는혼합물담체는실리카,알루미나및티타니아중에서 선택되는단독또는혼합물담체에니켈금속으로산화피막을입힌것으로,본 발명의담지촉매중니켈금속산화막을형성함에있어서,니켈이담지촉매총 중량에 대하여 0.5내지 15중량 %로피막이형성되는것이루테늄이나노입자로 담지되어소량의촉매를사용하여도높은활성을얻을수있다.
[57] 또한,담체로서사용되는제올라이트담체는각별한제한이 있는것은아니고, 천연기원이거나합성된것일수있다.
[58] 제올라이트는골격구조에따라제올라이트의기본성격이결정되는데,국제 제올라이트학회 (International Zeolite Association, IZA)에서골격에따라알파벳 세글자로이루어진구조코드를부여한다.제올라이트는천연에서
생성되었느냐,인위적으로합성하였느냐에따라천연제올라이트와
합성제올라이트로구분할수있다. FAU나 MOR제올라이트는천연에서 산출되지만,실험실에서도합성할수있다.천연제올라이트는 40종으로합성 제올라이트에비해그수가매우적다.세공의크기에따라제올라이트를 분류하면,작은세공의대표적인제올라이트로는 LTA,ERI,CHA가있고, 중간세공의것은 MFI,MWW,FER등이 있으며,큰세공의것은 FAU, BEA, MOR, LTL, MTW둥을들수있다.본발명와바람직한일구현예에서는이러한다양한 제올라이트중에서도특히 MFI, FAU, BEA, MOR구조를갖는것이산점을갖는 측면에서바람직할수있으나,이에제한이 있는것은아니다.
[59] 본발명의담지촉매중상기루테늄의함량은담지촉매총중량에대하여 0.1 내지 15중량 %인것이당류의수소화반웅에서수소화반웅의속도및경제성을 고려할때바람직할수있다.
[60] 본발명의바람직한일구현예에서,본발명의담지촉매는실리카,알루미나및 티타니아중에서선택되는단독또는혼합물담체에루테늄보론이담지된 담지촉매로,상기담지촉매중루테늄의함량은담지촉매총증량에대하여 0.5 내지 15중량%인것이당류의수소화반웅에서수소화반웅의속도및경제성을 고려할때바람직할수있다.
[61] 본발명의바람직한일구현예에서,본발명의담지촉매는제올라이트담체에 루테늄이담지된담지촉매로,상기담지촉매중루테늄의함량은담지촉매총 ᅳ 중량에 대하여 αι내지 5중량 %인것이당류의수소화반웅에서수소화반응의 속도및경제성을고려할때바람직할수있다. ' [62] 본발명의바람직한일구현예에서,본발명의담지촉매는니켈금속산화물로 된피막을갖는실리카,알루미나및티타니아중에서선택되는단독또는 흔합물담체에루테늄이담지된담지촉매로,상기담지촉매중루테늄의함량은 담지촉매총중량에대하여 0.2내지 15중량 %인것이당류의수소화반웅에서 수소화반웅의속도및경제성을고려할때바람직할수있다.
[63]
[64] 또한,본발명은루테늄보론이담지된담지촉매를제조하는방법에관한
것으로,하기의단계를포함한다:
[65] 1)실리카,알루미나및티타니아증에서선택되는단독또는이들의흔합물인 담지물질을루테늄화합물의용액으로처리한후 60내지 100°C에서건조시키는 단계;
[66] 2)상기 1)단계에서얻어진고체를포타슴보로하이드라이드 (KBH4)를
포함하는알칼리성용액의첨가에의해 10내지 35°C에서환원시키는단계;및 [67] 3)상기 2)단계에서얻어진고체를여과하여물로세척하여루테늄보론이
.담지된담지촉매를얻는단계.
[68]
[69] 먼저, 1)단계에서는실리카,알루미나및티타니아중에서선택되는단독또는 이들의혼합물인담지물질을루테늄화합물의용액으로처리한후 60내지 100°C에서건조시킨다.
[70] 이때루테늄화합물은루테늄전구체에해당되는것으로,일예로루테늄 (m) 클로라이드,루테늄 (m)아세틸아세토네이트및루테늄 (m)
니트로실아세테이트로부터선택되는것일수있고,수용성으로포타슘 보로하이드라이드 (KBH4)와반웅하여환원이잘된다는점에서좋기로는 루테늄 (m)클로라이드일수있다.
[71] 다음으로, 2)단계에서는상기 1)단계에서얻어진고체를포타슘
보로하이드라이드 (KBH4)를포함하는알칼리성용액의첨가에의해 10내지 35°C,좋기로는상온에서환원시킨다.
[72] 다음으로 3)단계에서는상기 2)단계에서얻어진고체를여과하여물로
세척하여루테늄보론이담지된담지촉매를얻을수있다.
[73]
[74] 또한,본발명은루테늄이담지된담지촉매를제조하는방법에관한것으로, 하기의단계를포함한다:
[75] 4)제올라이트담체 ,또는니켈금속산화물로된피막을갖는실리카,알루미나 및티타니아증에서선택되는단독또는흔합물담체를루테늄화합물의 용액으로처리한후건조시키는단계;및
[76] 5)상기 4)단계에서얻어진건조물을수소를함유한질소가스로환원시켜
루테늄이담지된담지촉매를얻는단계. [78] 상기 4)단계의제올라이트담체는루테늄화합물의용액으로처리하기전에 소성시켜서사용할수있다.
[79] 상기 4)단계의니켈금속산화물로된피막을갖는실리카,알루미나및
티타니아중에서선택되는단독또는흔합물담체는 4-a)실리카,알루미나및 티타니아중에서선택되는단독또는이들의흔합물인담지물질을니켈 화합물의용액으로처리한후건조시키는단계;및 4-b)상기 4-a)단계에서 얻어진고체를소성시켜니켈금속산화물피막이 형성된담지물질을얻는 단계;로제조될수있다.
[80] 본발명의바람직한일구현예에서,본발명의루테늄이제올라이트담체에 담지된담지촉매의제조방법은 4-1)제올라이트담체를소성시키는단계 ; 4-2) 상기 4-1)단계에서얻어진고체를루테늄화합물의용액으로처리한후 건조시키는단계;및 5)상기 4-2)단계에서얻어진고체를수소를함유한 질소가스로환원시켜루테늄이담지된담지촉매를얻는단계;를포함한다.
[81] 본발명의보다바람직한일구현예에따른루테늄이제올라이트담체에
담지된담지촉매의제조방법은, 4-1)제을라이트담체를 200내지 600°C에서 1 내지 15시간소성시키는단계 ;4-2)상기 5-1)단계에서얻어진고체를루테늄 화합물의용액으로처리한후 20내지 150°C에서건조시키는단계;및 5)상기 4-2)단계에서얻어진고체를수소를함유한질소가스로 120내지 450°C에서 1 내지 10시간환원시켜루테늄이제올라이트담체에담지된담지촉매를얻는 단계;를포함한다.
[82] 먼저, 4-1)단계에서는제올라이트담체를 200내지 600°C에서 1내지 15시간 소성시킨다.
[83] 다음으로, 4-2)단계에서는상기 4-1)단계에서얻어질고체를루테늄화합물의 용액으로처리한후 20내지 150°C에서건조시킨다.
[84] 이때루테늄화합물은루테늄전구체에해당되는것으로,일예로루테늄 (m) 클로라이드,루테늄 (m)아세틸아세토네이트및루테늄 (m)
니트로실아세테이트로부터선택되는것일수있다.
[85] 다음으로, 5)단계에서는상기 4-2)단계에서얻어진고체를수소를함유한 질소가스로 120내지 450°C에서 1내지 10시간환원시켜루테늄이제올라이트 담체에담지된담지촉매를얻을수있다.이때수소를함유한질소가스는수소를 1내지 10%함유하는것이급속한환원을피할수있다는점에서바람직할수 있다.
[86] 본발명의바람직한일구현예에서,본발명의루테늄이니켈금속산화물로된 피막을갖는실리카,알루미나및티타니아중에서선택되는단독또는흔합물 담체에담지된담지촉매의제조방법은 4-a)실리카,알루미나및티타니아 중에서선택되는단독또는이들의흔합물인담지물질을니켈화합물의 용액으로처리한후건조시키는단계; 4— b)상기 4-a)단계에서얻어진고체를 소성시켜니켈금속산화물피막이형성된담지물질을얻는단계 ;4-C)상기 4-b) 단계에서얻어진니켈금속산화물피막이형성된담지물질을루테늄화합물의 용액으로처리한후건조시키는단계;및 5)상기 4-c)단계에서얻어진고체를 수소를함유한질소가스로환원시켜루테늄이니켈금속산화물로된피막을 갖는실리카,알루미나및티타니아중에서선택되는단독또는흔합물담체에 담지된담지촉매를얻는단계;를포함한다.
[87] 본발명의보다바람직한일구현예에따른루테늄이니켈금속산화물로된 피막을갖는실리카,알루미나및티타니아중에서선택되는단독또는흔합물 담체에담지된담지촉매의제조방법은, 4-a)실리카,알루미나및티타니아 중에서선택되는단독또는이들의혼합물인담지물질을니켈화합물의 용액으로처리한후 60내지 150oC에서건조시키는단계; 4-b)상기 4-a)단계에서 얻어진고체를 200내지 700°C에서 1내지 30시간소성시켜니켈금속산화물 피막이형성된담지물질을얻는단계; 4-c)상기 4-b)단계에서 얻어진니켈금속 산화물피막이형성된담지물질을루테늄화합물의용액으로처리한후 60내지 150°C에서건조시키는단계;및 5)상기 4-c)단계에서얻어진고체를수소를 함유한질소가스로 120내지 450°C에서 1내지 10시간환원시켜루테늄이 니켈금속산화물로된피막올갖는실리카,알루미나및티타니아중에서 선택되는단독또는혼합물담체에담지된담지촉매를얻는단계;를포함한다.
[88] 먼저, 4-a)단계에서는실리카,알루미나및티타니아중에서선택되는단독 또는이들의혼합물인담지물질을니켈화합물의용액으로처리한후 60내지 150°C에서건조시키고, 4-b)단계에서는상기 4-a)단계에서얻어진고체를 200 내지 700°C,좋게는 200내지 600oC에서 1내지 30시간,좋게는 1내지 15시간 소성시켜담지물질에니켈산화피막을형성시킨다.이때,니켈화합물로는 각별히한정이있는것은아니나,물에잘녹아서균일하게분산하는점을 고려하여이염화니켈,황산니켈 6수화물,질산니켈 6수화물또는이염화니켈 6수화물등을사용할수있으며,바람직하기로는이염화니켈일수있다.
[89] 다음으로, 4-c)단계에서는상기 4-b)단계에서얻어진니켈금속산화물피막이 형성된담지물질을루테늄화합물의용액으로처리한후 60내지 150°C에서 건조시킨다.
[90] 이때루테늄화합물은루테늄전구체에해당되는것으로,일예로루테늄 (m) 클로라이드,루테늄 (m)아세틸아세토네이트및루테늄 (m)
니트로실아세테이트로부터선택되는것일수있다.
[91] 다음으로, 5)단계에서는상기 4-c)단계에서 얻어진고체를수소를함유한 질소가스로 120내지 450oC에서 1내지 10시간환원시켜루테늄이담지된 담지촉매를얻을수있다.이때수소를함유한질소가스는수소를 1내지 10 % 함유하는것이급속한환원을피할수있다는점에서바람직할수있다.
[92]
[93] 또한,본발명은상기의담지촉매를사용하여촉매의재생없이반복하여
당류를수소화함으로써그에상웅하는당알코올류를고수율로제조하는방법에 관한것이다.
[94] 여기서당류로는그한정이 있는것은아니며,일예로글루코스,자일로스, 만노스,프력토스,에리스로스,갈락토스,슈크로스,전분가수분해물,셀루로스 가수분해물및말토스중에서선택되는단독또는 2이상의흔합물을사용할수 있다.
[95] 당류는일반적으로상온에서고체상태이므로반웅효율을향상시키기위해 당류를적절한용매에녹여사용하는것이바람직하다.이때용매로는당류및 수소화반웅의생성물인당알코올류를동시에용해시킬수있으며어느것이나 사용가능하다.일반적으로물또는알코올을단독으로사용하거나흔용할수 있다.알코올의일예로는메탄올,에탄올,프로판올,이소프로판올또는이들의 흔합물을포함할수있다.바람직하기로는물을단독으로사용하거나물과 에탄올을혼합하여사용하는것이다.
[96] 본발명의담지촉매를사용한당류의수소화반웅은반웅온도 60내지
200°C에서수행되는것이바람직할수있는데,반웅온도가낮으면반웅속도가 느려질수있고반웅온도가너무높으면부반웅이증가하여원하는반웅물의 선택성이낮아지는문제가일어날수있다.
[97] 또한수소화반웅은반웅압력 2내지 200 MPa의조건하에서수행되는것이 반웅속도및반웅기의안전성을고려할때바람직할수있다ᅳ
[98]
[99] 이와같은수소화반응에참여한상기담지촉매는별도의재생공정을필요로 하지않고회수되어반복적으로당류의수소화반웅에사용될수있고, 반복사용시에도촉매성분이용해되거나비활성화되지않는다.따라서부산물 및폐기물을거의발생시키지않고복잡한분리공정없이당알코올류를 고순도로제조할수있다.
[100]
[101] 이상에서설명한바와같은본발명은다음의실시예에의거하여보다상세히 설명하겠는바,본발명이다음의실시예에의해한정되는것은아니다.
[102] 이하의실시예에서의평가방법은다음과같다.
[103] (1)제조된촉매중의루테늄의유효량은화학적분석법,구체적으로는
EDX(energy dispersive X-ray analysis)에의해측정하였다.
[104] (2)제조된촉매의결정특성은 X-선회절법 (XRD)으로관찰하였다.
[105] (3)수소화반웅이후로의반웅물중의금속이온의양은 ICP(inductively coupled plasma mass spectrometry)로결정하였다 (Thermo Scientific ICAP 6500 duo inductively coupled plasma-atomic emission spectrometer (ICP-AES)로수행).
[106] (4)촉매의특징 (입자크기)에대하여투과전자현미경 (Transmission electron microscopy, TEM, Maker FEI, Model Technai G2)으로관찰하였다.이를위해촉매 시료들을 2-프로판올에용해시키고,초음파욕조에서조심스럽게분산시킨다음 이를카본-코팅된구리그리드에증착시켰다. [107]
[108] [실시예 1]
[109] (1)담지촉매의제조
[110] 삼염화루테늄 (RuCl3.xH2O)0.5g을에탄올 10ml에용해시켰다.상기의용액에 감마알루미나 (비표면적 155m7g) 5g을넣고 80°C오븐에서하룻밤동안 건조시켰다.건조된분말시료를 30ml의증류수에 넣고서서히교반하면서 0.002M가성소다 (NaOH)가함유된포타슘보로하이드라이드 (KBH4) 0.2M용액 100ml를한방을씩넣었다.반웅후에용액의 pH는 8.654가되었다.
루테늄보론 /알루미나분말을필터하고증류수를이용하여철저하게세척하여 루테늄보론이담지된알루미나촉매 (이하, RuB/Al203로표시)를얻었다.
[111] 얻어진담지촉매에대하여상기한방법으로평가한 XRD프로파일은도 1에 도시하였고,이에대한 TEM사진을도 2로나타내었다.
[112] 도 1의 XRD프로파일에따르면담지촉매의회절패턴은알루미나의회절 패턴과대비하여대웅되는각피크에각별한차이를나타내지않고,다만 2Θ가 43.1에서브로드한피크를확인할수있는데,이는알루미나에담지된비정질의 RuB에의한것이라할수있다.
[113] 또한도 2의 TEM사진에서알루미나의플레이크상 (회색부분)에 RuB
입자 (검정색,입경 5.0mn)가분산되어 있음을확인할수있다.
[114] 한편, EDX분석결과담지촉매증루테늄의함량은 5.9중량 %이었다.
[115]
[116] (2)당알코올류의제조
[117] 상기 (1)로부터얻어진담지촉매 (RuB/Al203)를이용하여당류로부터그에
상웅하는당알코올류를제조하는수소첨가반웅은 SUS314재질의
고압탱크반웅기내에 300ml용량의테프론용기에서수행하였다.
[118] 테프론반웅기에상기 (1)로부터얻어진담지촉매 (RuB/Al2O3)0.45g를넣고 20%의글루코스수용액 200ml를넣는다.수소로반웅기를퍼지하고압력을 5.5MPa로올리고 1200 rpm의속도로교반하면서 120°C에서 120분반응하였다.
[119] 반웅생성물은상기한바와같이굴절률검출기가부착된액체
크로마토그래피로분석하였다.
[120] 분석결과반웅후글루코스의전환율은 99.0%,솔 ΰᅵ를의선택도 99.0%를 얻었으며,이후 100회이상연속하여반웅하여도활성저하는나타나지않았다. 상기한방법과같이수소화반웅이후의금속검출을수행한결과에서,수소화 반웅후용액내에서루테늄,보론과알루미늄은전혀검출되지않았다.
[121]
[122] [실시예 2]
[123] (1)담지촉매의제조
[124] 상기실시예 1의 (1)에서감마알루미나 5g올대신하여티타니아분말 (비표면적 51m7g) 5g을넣는것을제외하고는같은방법으로촉매를제조하였다.반웅후에 용액의 pH는 9.408이되었다.루테늄보론 /티타니아분말을필터하고증류수를 이용하여철저하게세척하여루테늄보론이담지된티타니아촉매 (이하, RuB/Ti02로표시)를얻었다.
[125] 얻어진담지촉매에대하여상기한방법으로평가한 XRD프로파일은도 3에 도시하였고,이에대한 TEM사진을도 4로나타내었다.
[126] 도 3의 XRD프로파일에따르면담지촉매의회절패턴은티타니아의회절 패턴과대비하여대웅되는각피크에각별한차이를나타내지않고,다만 2Θ 43.1에서약하나마샤프한피크를확인할수있다.이는루테늄보론이담지된 티타니아또한비정질의것이고루타일타입의지지체상에분산된것임을 나타낸다.
[127] 또한도 4의 TEM사진에서 RuB입자 (검정색,입경 5.5nm)가티타니아지지체 상에분산되어 있음을확인할수있다.
[128] 한편, EDX분석결과담지촉매증루테늄의함량은 3.6중량%이었다.
[129]
[130] (2)당알코올류의제조
[131] 상기 (1)로부터얻어진담지촉매 (RuB/Ti02)를사용하여,상기실시예 1의 (2)와 동일하게수소첨가반웅을수행하였다.
[132] 반웅생성물은상기한바와같이굴절률검출기가부착된액체
크로마토그래피로분석하였다.
[133] 분석결과글루코스의전환율은 99.7%,솔비톨의선택도 99.0%를얻었으며, 이후 100회이상연속하여반웅하여도활성저하는나타나지않았다.상기한 방법과같이수소화반웅이후의금속검출을수행한결과에서,수소화반웅후 용액내에서루테늄,보론과티타늄은전혀검출되지않았다.
[134]
[135] [실시예 3]
[136] (1)담지촉매의제조
[137] 상기실시예 1의 (1)에서감마알루미나 5g을대신하여훔드실리카
분말 (비표면적 450m7g) 5g을넣는것올제외하고는같은방법으로촉매를 제조하였다.반웅후에용액의 pH는 9.408이되었다.루테늄보론 /실리카분말을 필터하고증류수를이용하여철저하게세척하여루테늄보론이담지된실리카 촉매 (이하, RuB/Si02로표시)를얻었다.
[138] EDX분석결과담지촉매중루테늄의함량은 4중량 <¾이었다.
[139]
[140] (2)당알코올류의제조
[141] 상기 (1)로부터얻어진담지촉매 (RuB/Si02)를사용하여,상기실시예 1의 (2)와 동일하게수소첨가반웅을수행하였다.
[142] 반웅생성물은상기한바와같이굴절률검출기가부착된액체
크로마토그래피로분석하였다. [143] 분석결과글루코스의전환율은 98.7%,솔비틀의선택도 99.0%를얻었으며, 이후 100회이상연속하여반웅하여도활성저하는나타나지않았다.상기한 방법과같이수소화반웅이후의금속검출을수행한결과에서,수소화반웅후 용액내에서루테늄,보론과규소는전혀검출되지않았다.
[144]
[145] [실시예 4]
[146] (1)당알코올류의제조
[147] · 상기실시예 1의 (1)로부터얻어진담지촉매 (RuB/Al203)를사용하고,반웅물을 20%글루코스대신에 20%자일로스를사용하는것을제외하고는상기실시예 1의 (2)와같은방법으로수소화반웅을수행하였다.
[148] 반웅생성물은상기한바와같이굴절률검출기가부착된액체
크로마토그래피로분석하였다.
[149] 분석결과자일로스의전환율은 98.7%,자일리틀의선택도 99.0%를얻었으며, 이후 100회이상연속하여반웅하여도활성 저하는나타나지않았다.수소화 반웅후용액내에서루테늄,보론과알루미나는전혀검출되지않았다.
[150]
[151] [실시예 5]
[152] (1)담지촉매의제조
[153] 베타 -제올라이트 (β-Zeolite, BEA구조)를 500°C에서 12시간소성시켰다.
[154] 소성된분말시료 10.9g올루테늄아세틸아세토네이트 (RuC15H2,03) 0.43g이
녹아있는 20ml틀루엔용액에 넣고 1시간교반한후상온감압오븐에서 2시간 동안건조시켰다.
[155] 건조된분말시료를 5%수소를함유한질소가스로 300°C에서 6시간
환원시켜서루테늄이담지된베타 -제올라이트촉매 (이하, Ru/|3-Zeolite로표시)를 얻었다.
[156] 얻어진담지촉매에대하여상기한방법으로평가한 TEM사진을도 5로
나타내었다.
[157] 도 5의 TEM사진에서베타-제올라이트의플레이크상 (회색부분)에 Ru
입자 (검정색점,입경 l.Onm)가분산되어있음을확인할수있다.
[158] 또한얻어진담지촉매에대한 XRD프로파일을도 6로나타내었다.도 6의 XRD 프로파일에따르면담지촉매의회절패턴은담지체 (베타-제올라이트)와거의 동일함을확인할수있는데,이는 Ru입자가나노입자로이루어졌기때문인 것이라할수있다.
[159] 한편, EDX분석결과담지촉매중루테늄의함량은 1.3증량%이었다.
[160]
[161] (2)당알코올류의제조
[162] 상기 (1)로부터얻어진담지촉매를이용하여당류로부터그에상웅하는
당알코올류를제조하는수소철가반웅은 SUS314재질의고압탱크반웅기내에 300ml용량의테프론용기에서수행하였다.
[163] 테프론반웅기에상기 (1)로부터얻어진루테늄 /베타 -제올라이트촉매 0.45g을 넣고 20%의글루코스수용액 200ml를넣는다.수소로반웅기를퍼지하고압력을 5.5MPa로올리고 1200 rpm의속도로교반하면서 120°C에서 120분반웅하였다.
[164] 반웅생성물은상기한바와같이굴절률검출기가부착된액체
크로마토그래피로분석하였다.
[165] 분석결과반웅후글루코스의전환율은 99.5%,솔비틀의선택도 99.5%를 얻었으며,이후 100회이상연속하여반웅하여도활성저하는나타나지않았다. 상기한방법과같이수소화반웅이후의금속검출을수행한결과에서,수소화 반웅후용액내에서루테늄,알루미늄과규소는전혀검출되지않았다.상기한 반웅에서담지촉매내루테늄의함량은 1.3중량 %로적은양을사용하고도높은 ᅳ 글루코스의전환율과솔비를의선택도를보여주었다.
[166]
[167] [실시예 6]
[168] (1)담지촉매의제조
[169] 상기실시예 5의 (1)에서 베타 -제올라이트 10.9g을대신하여 HZSM-5
제올라이트 (MFI구조) 10.9g을넣는것을제외하고는같은방법으로루테늄이 담지된 HZSM-5제올라이트촉매 (이하, Ru/HZSM-5 Zeolite로표시)를
제조하였다.
[170] 얻어진담지촉매에대하여상기한방법으로평가한 TEM사진올도 7로
나타내었다.
[171] 도 7의 TEM사진에서 HZSM-5제올라이트의플레이크상 (회색과검정얼룩 부분)에 Ru입자 (검정색점,입경 l.Onm)가분산되어 있음을확인할수있다.
[172] 또한얻어진담지촉매에대한 XRD프로파일을도 8에나타내었다.도 8의 XRD 프로파일에따르면담지촉매의회절패턴은담지체 (HZSM— 5제올라이트)와 거의동일함을확인할수있는데,이는 Ru입자가나노입자로이루어졌기때문인 것이라할수있다.
[173] 한편, EDX분석결과담지촉매중루테늄의함량은 0.7중량%이었다.
[174]
[175] (2)당알코올류의제조
[176] 상기 (1)로부터얻어진루테늄 /HZSM-5제올라이트담지촉매를사용하여,상기 실시예 5의 (2)와동일하게수소첨가반웅을수행하였다.
[177] 반응생성물은상기한바와같이굴절률검출기가부착된액체
크로마토그래피로분석하였다.
[178] 분석결과글루코스의전환율은 99.7%,솔비를의선택도 99.5%를얻었으며, 이후 100회이상연속하여반웅하여도활성저하는나타나지않았다.상기한 방법과같이수소화반웅이후의금속검출을수행한결과에서,수소화반웅후 , 용액내에서루테늄,알루미늄과규소는전혀검출되지않았다.상기한반웅에서 담지촉매내루테늄의함량은 0.7증량 %로적은양을사용하고도높은 글루코스의전환율과솔비를의선택도를보여주고있다.
[179]
[180] [실시예 7]
[181] (1)당알코올류의제조
[182] 상기실시예 5의 (1)로부터얻어진담지촉매 (Ru/(3-Zeolite)를사용하고,
반응물을 20%글루코스대신에 20%자일로스를사용하는것을제외하고는상기 실시예 5의 (2)와같은방법으로수소화반웅을수행하였다.
[183] 반웅생성물은상기한바와같이굴절률검출기가부착된액체
크로마토그래피로분석하였다.
[184] 분석결과반웅후자일로스의전환율은 98.9%,자일리를의선택도 99.5%를 얻었으며,이후 100회이상연속하여반웅하여도활성저하는나타나지않았다. 상기한방법과같이수소화반웅이후의금속검출을수행한결과에서,수소화 반웅후용액내에서루테늄,알루미늄과규소는전혀검출되지않았다.상기한 반웅에서담지촉매내루테늄의함량은 1.3중량 <¾로적은양을사용하고도높은 자일로스의전환율과자일리를의선택도를보여주고있다.
[185]
[186] [실시예 8]
[187] (1)담지촉매의제조
[188] 베타제올라이트 ((3-Zeolite,BEA구조)를 500°C에서 12시간소성시켰다.
[189] 소성된분말시료 9.95g을삼염화루테늄 (RuCl3.xH2O)0.1g이녹아있는루테늄 화합물의수용액 10m【에 넣고잘교반한후 80°C오븐에서하룻밤동안 건조시켰다.
[190] 건조된분말시료를 5%수소를함유한질소가스로 300°C에서 6시간
환원시켜서루테늄이담지된베타제올라이트촉매 (이하, Ru/p-Zeolite로표시)를 얻었다.
[191] EDX분석결과담지촉매중루테늄의함량은 0.8중량%이었다.
[192]
[193] (2)당알코올류의제조
[194] 상기 (1)로부터얻어진촉매를사용하여상기실시예 5의 (2)와동일하게
수소첨가반웅을수행하고,반웅후액체크로마토그래피분석결과글루코스의 전환율은 98.9%,솔비틀의선택도 98.7%를얻었으며,이후 100회이상연속하여 반웅하여도활성 저하는나타나지않았다.상기한방법과같이수소화반웅 이후의금속검출을수행한결과에서,수소화반웅후용액내에서루테늄, 알루미늄과규소는전혀검출되지않았다.상기한반웅에서담지촉매내 루테늄의함량은 0.8중량 <¾로적은양을사용하고도높은글루코스의전환율과 솔비를의선택도를보여주고있다.
[195] [196] [실시예 9]
[197] (1)담지촉매의제조
[198] 상기실시예 8의 (1)에서베타 -제올라이트 9.95g을대신하여 HZSM-5
제올라이트 (MFI구조) 9.95g을넣는것을제외하고는같은방법으로촉매를 제조하였다.
[199] EDX분석결과담지촉매중루테늄의함량은 1.2중량 <¾이었다.
[200]
[201] (2)당알코올류의제조
[202] 상기 (1)로부터얻어진촉매를사용하여상기실시예 5의 (2)와동일하게
수소첨가반웅을수행하고,반웅후액체크로마토그래피분석결과글루코스의 전환율은 98.7%,솔비를의선택도 98.7%를얻었으며,이후 100회이상연속하여 반응하여도활성 저하는나타나지않았다.상기한방법과같이수소화반웅 이후의금속검출을수행한결과에서,수소화반웅후용액내에서루테늄, 알루미늄과규소는전혀검출되지않았다.상기한반웅에서담지촉매내 루테늄의함량은 1.2중량 %로적은양을사용하고도높은글루코스의전환율과 솔비를의선택도를보여주고있다.
[203]
[204] [실시예 10]담지촉매의제조
[205] 이염화니켈 (Nia2)0.55g을증류수 10m 용해시켰다.상기의용액에
감마알루미나 (비표면적 155m7g) 5g을넣고잘교반한후 80°C오븐에서하룻밤 동안건조시켰다.얻어진고체를 500°C에서 12시간소성시켜감마알루미나에 니켈산화피막을형성시켰다.
[206] 삼염화루테늄 (RuCl3xH20) 0.04g을증류수 10ml에용해시킨루테늄화합물의 수용액에상기얻어진니켈산화피막을갖는감마알루미나분말 1.98g을넣고잘 교반한후 80oC오븐에서하룻밤동안건조시켰다.
[207] 상기건조된분말시료를 5%수소를함유한질소가스로 170oC에서 2시간
환원시켜서루테늄이담지된니켈산화막-알루미나촉매 (이하, Ru/NiO-Al203로 표시)를얻었다.
[208] 얻어진담지촉매에대하여상기한방법으로평가한 XRD프로파일은도 9에 도시하였고,이에대한 TEM사진을도 10으로나타내었다.
[209] 도 9의 XRD프로파일에따르면담지촉매의회절패턴은 NiO에기인한피크를 확인할수있고,또한도 10의 TEM사진에서니켈산화막-알루미나의플레이크 상 (회색부분)에 Ru입자 (입경 1.5~5.0nm)가분산되어 있음을확인할수있다.
[210] 한편, EDX분석결과담지촉매중루테늄의함량은 1.1중량 %이고,니켈의 함량은 8.4중량%이었다.
[211]
[212] [실시예 11]담지촉매의제조
[213] 이염화니켈 (NiCl2)0.55g을증류수 10ml에용해시켰다ᅳ상기의용액에 티타니아 (비표면적 51m7g)분말 4.75g을넣고잘교반한후 110°C오본에서 하룻밤동안건조시켰다.얻어진고체를 500°C에서 12시간소성시켜티타니아에 니켈산화피막을형성시켰다ᅳ
[214] 삼염화루테늄 (RuCl3xH20) 0.04g을증류수 lOm 용해시킨루테늄화합물의 수용액에상기얻어진니켈산화피막을갖는티타니아분말 1.98g을넣고잘 교반한후 110°C오본에서하룻밤동안건조시켰다.
[215] 상기건조된분말시료를 5%수소를함유한질소가스로 170°C에서 2시간
환원시켜서루테늄이담지된니켈산화막-티타니아촉매 (이하, Ru/NiO-Ti02로 표入ᅵ)를얻었다.
[216] 얻어진담지촉매에대하여상기한방법으로평가한 XRD프로파일은도 11에 도시하였고,이에대한 TEM사진을도 12로나타내었다.
[217] 도 11의 XRD프로파일에따르면담지촉매의회절패턴은 NiO에기인한
피크를확인할수있고,또한도 12의 TEM사진에서니켈산화막 -티타니아의 플레이크상 (회색부분)에 Ru입자 (입경 2nm)가분산되어 있음을확인할수 있다.
[218] 한편, EDX분석결과담지촉매중루테늄의함량은 1.1중량%이고,니켈의 함량은 5.4중량 %이었다.
[219] 또한도 13의수소 TPR분석결과에서보는바와같이니켈산화막—티타니아의 플레이크상에서의 Ru입자 (입경 2nm)의환원온도는 170°C로낮아지는것을 확인할수있었다.
[220]
[221] [실시예 12]담지촉매의제조
[222] 상기실시예 10에서감마알루미나 5g을대신하여훔드실리카분말 (비표면적 450m7g) 4.75g을넣는것을제외하고는같은방법으로루테늄이담지된 니켈산화막-실리카촉매 (이하, Ru/NiO-Si02로표시)를제조하였다.
[223] 얻어진담지촉매에대하여상기한방법으로평가한 XRD프로파일은도 14에 도시하였고,이에대한 TEM사잔을도 15로나타내었다.
[224] 도 14의 XRD프로파일에따르면담지촉매의회절패턴은 NiO에기인한
피크를확인할수있고, Ru에의한회절패턴도 2Θ가 44부근에서발견되는데 이는일부크게결정이형성된 Ru입자에기인하여관찰할수있다.
[225] 또한도 15의 TEM사진에서 Ru입자 (검정색 ,입경 2~5nm)가
루테늄 /산화니켈막-알루미나촉매에비하여불균일하게존재하고있으나일부 10nm이상의큰입자들도산화니켈막-실리카지지체상에담지되어 있음을 확인할수있었다.
[226] 한편, EDX분석결과담지촉매중루테늄의함량은으9중량 %이고,니켈의 함량은 8.8중량 %>이었다.
[227]
[228] [실시예 13]솔비틀의제조 [229] 상기실시예 11로부터얻어진담지촉매 (Ru/NiO-Ti02)를이용하여당류로부터 그에상웅하는당알코올류를연속적으로제조하는수소첨가반웅은 SUS314 재질의 Fixed Bed형의반웅기에서수행하였다.
[230] Fixed Bed형반웅기에상기실시예 11로부터얻어진
루테늄 /산화니켈 /티타니아촉매 (Ru/NiO-Ti02) 2g을넣고반웅기의온도를 170oC로올린후에수소로반웅기를퍼지하면서 3시간동안촉매를환원하였다. 처음에는반웅기의온도를 120°C로내린후에압력을 5.5MPa로올리고 20%의 글루코스수용액을분당 0.04ml의속도로주입하여 100시간동안연속적으로 솔비를을제조하였다.다음으로반웅온도를 100°C로하고상기한바와동일한 조건에서 150시간동안연속적으로솔비를을제조하였다.이후에 20%의 글루코스수용액을분당 0.1ml의속도로주입하고상기한바와동일한조건에서 150시간동안연속적으로솔비를을제조하였다.그다음으로반웅온도를 80°C로 하고상기한바와동일한조건에서 20%의글루코스수용액을분당 0.04ml의 속도로주입하여 150시간동안연속적으로솔비를을제조하였다.이후에 20%의 글루코스수용액을분당 0.1ml의속도로주입하고상기한바와동일한조건에서 150시간동안연속적으로솔비를을제조하였다.
[231] 반웅생성물은상기한바와같이굴절률검출기가부착된액체
크로마토그래피로분석하였다.
[232] 분석결과반웅후글루코스의전환율과솔비를의선택도는표 1과같으며, 700시간이상연속하여반웅하여도촉매활성이 일정하게유지되는것을알수 있었다.
[233] 표 1
[Table 1]
글루코스로부터루테늄 /산화니켈-티타니아촉매 (실시예 U,Ru/NiO-Ti02)를 사용하여연속반웅에의해솔비를을제조한결과
Figure imgf000021_0001
상기한방법과같이수소화반응이후의금속검출을수행한결과에서,수소화 반웅후용액내에서루테늄,니켈과티타늄은전혀검출되지않았다.상기한 반웅에서담지촉매내루테늄의함량은 1.1중량 %»로의적은양올사용하고도 높은글루코스의전환율과솔비를의선택도를보여주었다.
[235]
[236] [실시예 I4]자일리틀의제조
[237] 상기실시예 11로부터얻어진담지촉매 (Ru/NiO-Ti02)를사용하고반웅물을
20%글루코스대신에 20%자일로스를사용하는것을제외하고는상기실시예
13과같은방법으로수소화반웅을수행하였다.
[238] 반웅생성물은상기한바와같이굴절률검출기가부착된액체
크로마토그래피로분석하였다.
[239] 분석결과반웅후자일로스의전환율과자일리를의선택도는표 2와같으며,
700시간이상연속하여반웅하여도촉매활성이일정하게유지되는것을알수 있었다.
[240] 표 2
[Table 2]
자일로스로부터루테늄 /산화니켈-티타니아촉매 (실시예 ll,Ru/NiO-Ti02)를 사용하여연속반웅에의해자일리롤을제조한결과
Figure imgf000022_0001
[241] 상기한방법과같이수소화반웅이후의금속검출을수행한결과에서,수소화 반웅후용액내에서루테늄,니켈과티타늄은전혀검출되지않았다.
[242]
[243] [실시예 15]만니틀의제조
[244] 상기실시예 U로부터얻어진담지촉매 (Ru/NiO-Ti02)를사용하고반웅물을
20%글루코스대신에 20%만노스를사용하는것을제외하고는상기실시예
13과같은방법으로수소첨가반웅올수행하였다,
[245] 반웅생성물은상기한바와같이굴절률검출기가부착된액체
크로마토그래피로분석하였다.
[246] 분석결과반웅후만노스의전환율과만니를의선택도는표 3과같으며,
700시간이상연속하여반웅하여도활성이일정하게유지되는것을알수 있었다.
[247] 표 3 [Table 3]
만노스로부터루테늄 /산화니켈-티타니아촉매 (실시예 U,Ru/NiO-Ti02)를 사용하여연속반웅에의해만니를을제조한결과
Figure imgf000023_0001
[248] 상기한방법과같이수소화반웅이후의금속검출을수행한결과에서,수소화 반웅후용액내에서루테늄,니켈과티타늄은전혀검출되지않았다.
[249]
[250] [비교예 1]
[251] (1)담지촉매의제조
[252] 감마알루미나 (비표면적 155 m7g) 6.3g올를루엔 20ml에 넣고 15분간교반하여 감마알루미나슬러리를제조하였다.루테늄아세틸아세토네이트 (Cl5H2106Ru) 2.5g을를루엔 130ml에용해하고,여기에상기제조한감마알루미나슬러리를 넣고 1시간교반하였다.틀루엔을때때로균일하게잘섞어주면서상온에서 증발시켰다.촉매는헬륨가스분위기에서 4시간에걸쳐 250oC까지올린후에 2시간동안 250°C의온도를유지시켰다.여기에 5%수소분위기에서 1시간에 걸쳐 350oC까지올린후에 3시간동안 350°C의온도를유지하여촉매를환원시켜 1중량 %의루테늄이담지된알루미나촉매를얻었다.
[253]
[254] (2)당알코을류의제조
[255] 상기 (1)로부터얻어진촉매를사용하여상기실시예 1의 (2)와동일하게
수소첨가반웅을수행하고,반웅후액체크로마토그래피분석결과글루코스의 전환율은 9으9%,솔비를의선택도 83.7%를얻었으며,이후 20회연속반웅후에 글루코스의전환율은 82.9%,솔비를의선택도는 73.3%로활성의저하를 나타내었다.수소화반웅후용액내에서루테늄과알루미늄은전혀검출되지 않았다.
[256]
[257] [비교예 2]
[258] (1)담지촉매의제조
[259] 상기 비교예 1의 (1)에서감마알루미나 6.3g을대신하여티타니아 (비표면적
51m7g)6.3g을넣는것올제외하고는같은방법으로 1중량 %의루테늄이담지된 티타니아촉매를얻었다.
[260]
[261] (2)당알코올류의제조
[262] 상기 (1)로부터얻어진촉매를사용하여상기실시예 1의 ( 와동일하게
수소첨가반웅올수행하고,반웅후액체크로마토그래피분석결과글루코스의 전환율은 92.3%,솔비를의선택도 94.2%를얻었으며,이후 20회연속반웅후에 글루코스의전환율은 85.7%,솔비를의선택도는 83.3%로활성의저하를 나타내었디-.수소화반응후용액내에서루테늄과티타늄은전혀검출되지 않았다.
[263]
[264] [비교예 3]담지촉매의제조
[265] 삼염화루테늄 (RuCl3.xH20) 0.04g을증류수 lOm 용해시킨루테늄화합물의 수용액에티타니아 (비표면적 51m7g)분말 1.98g을넣고잘교반한후 110°C 오븐에서하룻밤동안건조시켰다.
[266] 상기건조된분말시료를 5%수소를함유한질소가스로 400°C에서 3시간
환원시켜서루테늄이담지된티타니아촉매 (이하, RuTi02로표시)를얻었다.
[267] 상기얻어진담지촉매에대하여 EDX분석결과담지촉매중루테늄의함량은
1.1중량%이었다.
[268] 또한도 13의수소 TPR분석결과에서보는바와같이티타니아의플레이크 상에서의 Ru입자의환원온도는 400°C로확인할수있었다.
[269]
[270] [비교예 4]담지촉매의제조
[271] 감마알루미나 (비표면적 155m7g) 6.3g을틀루엔 20ml에 넣고 15분간교반하여 감마알루미나슬러리를제조하였다.루테늄아세틸아세토네이트 (C,5H2106Ru) 2.5g을를루엔 130ml에용해하고,여기에상기제조한감마알루미나슬러리를 넣고 1시간교반하였다.를루엔을때때로균일하게잘섞어주면서상온에서 증발시켰다.촉매는헬륨가스분위기에서 2시간에걸쳐 170°C까지올린후에 5% 수소분위기에서 2시간동안 170°C의온도를유지하여촉매를환원시켜 1 중량 <¾의루테늄이담지된알루미나촉매 (이하, 1%RU/A1203로표시)를얻었다.
[272]
[273] [비교예 5]담지촉매의제조
[274] 비교예 4에서감마알루미나 6.3g을대신하여티타니아 (비표면적 51m7g)6.3g을 넣는것을제외하고는같은방법으로 1중량 %의루테늄이담지된티타니아 촉매 (이하, 1% 1 /^02로표시)를제조하였다.
[275]
[276] [비교예 6]솔비틀의제조
[277] 상기비교예 3으로부터얻어진촉매 (Ru/Ti02)를사용하는것을제외하고는 상기실시예 13과같은방법으로수소첨가반웅을수행하였다. [278] 반웅생성물은상기한바와같이굴절를검출기가부착된액체 크로마토그래피로분석하였다.
[279] 분석결과반웅후글루코스의전환율과솔비를의선택도는표 4와같으며, 700시간이상연속하여반웅하면실시예 13에서사용된
루테늄 /산화니켈-티타니아촉매 (Ru/NiO-Ti02)에비하여부산물인만니롤이 생성되고기타의블순물이생성되어글루코스의전환율가솔비를의선택성 o 다소떨어지는것을알수있었다.
[280] 표 4
[Table 4]
글루코스로부터루테늄 /티타니아촉매 (비교예 3ᅳ Ru/Ti02)를사용하여 연속반웅에의해솔비를을제조한결과
Figure imgf000025_0001
[281] 상기한방법과같이수소화반웅이후의금속검출을수행한결과에서,수소화 반움후용액내에서루테늄과티타늄은전혀검출되지않았다.
[282]
[283] [비교예 "7]자일리를의제조
[284] 상기비교예 3으로부터얻어진촉매 (Ru/Ti02)를사용하고반응물을 20%
글루코스대신에 20%자일로스를사용하는것올제외하고는상기실시예 13과 같은방법으로수소첨가반웅을수행하였다.
[285] 반웅생성물은상기한바와같이굴절률검출기가부착된액체
크로마토그래피로분석하였다.
[286] 분석결과반웅후자일로스의전환율과자일리틀의선택도는표 5와같으며,
700시간이상연속하여반웅하면실시예 14에서사용된
루테늄 /산화니켈-티타니아촉매 (Ru/NiO-Ti02)에 비하여부산물인아라비를이 생성되고기타의블순물이생성되어자일로스의전환율가자일리를의선택성이 다소떨어지는것을알수있었다.
[287] 표 5 [Table 5]
자일로스로부터루테늄 /티타니아촉매 (비교예 3,Ru/Ti02)를사용하여 연속반웅에의해자일리를을제조한결과
Figure imgf000026_0001
[288] 상기한방법과같이수소화반웅이후의금속검출을수행한결과에서,수소화 반웅후용액내에서루테늄과티타늄은전혀검출되지않았다.
[289]
[290] [비교예 8]만니를의제조
[291] 상기비교예 3으로부터얻어진촉매 (Ru/Ti02)를사용하고반웅물을 20%
글루코스대신에 20%만노스를사용하는것을제외하고는상기실시예 13과 같은방법으로수소첨가반웅을수행하였다.
[292] 반웅생성물은상기한바와같이굴절률검출기가부착된액체
크로마토그래피로분석하였다.
[293] 분석결과반웅후만노스의전환율과만니를의선택도는표 6과같으며, 700시간이상연속하여반웅하면실시예 15에서사용된
루테늄 /산화니켈-티타니아촉매 (Ru/NiO-Ti02; j비하여기타의불순물이 생성되어만노스의전환율과만니를의선택성이다소떨어지는것올알수 있었다.
[294] 표 6
[Table 6]
만노스로부터루테늄 /티타니아촉매 (비교예 3, Ru/Ti02)를사용하여연속반웅에 의해만니를을제조한결과
Figure imgf000027_0001
[295] 상기한방법과같이수소화반웅이후의금속검출을수행한결과에서,수소화 반웅후용액내에서루테늄과티타늄은전혀검출되지않았다.
[296]
[297] [비교예 9]상업용 5% Ru/C촉매를사용하여솔비를의제조
[298] 상업용 5% Ru/C촉매를사용하여상기실시예 13과같은방법으로
수소첨가반웅을수행하고,반웅후액체크로마토그래피분석결과글루코스의 전환율과솔비를의선택도는표 7과같으며, 700시간이상연속하여반웅하면 실시예 13에서사용된루테늄 /산화니켈-티타니아촉매 (Ru/NiO-Ti02)에비하여 부산물인만니를이다량생성되고기타의불순물이생성되며솔비를의 선택성이크게떨어지는것을알수있었다.
[299] 표 7
[Table 7]
글루코스로부터상업용 5% Ru/C촉매를사용하여연속반웅에의해솔비틀을 제조한결과
Figure imgf000027_0002
[비교예 10]상업용 5% Ru/C촉매를사용하여자일리톨의제조 [302] 상업용 5% Ru/C촉매를사용하여상기실시예 13과같은방법으로
수소첨가반웅을수행하고,반웅후액체크로마토그래피분석결과자일로스의 전환율과자일리를의선택도는표 8과같으며, 700시간이상연속하여반웅하면 실시예 14에서사용된루테늄 /산화니켈-티타니아촉매 (Ru/NiO-Ti02^비하여 부산물인아라비를이다량생성되고기타의불순물이생성되며자일리틀의 선택성이크게떨어지는것올알수있었다.
[303] 표 8
[Table 8]
자일로스로부터상업용 5% Ru/C촉매를사용하여연속반웅에의해자일리를을 제조한결과
Figure imgf000028_0001
[304]
[305] [비교예 11]상업용 5% Ru/C촉매를사용하여만니를의제조
[306] 상업용 5% Ru/C촉매를사용하여상기실시예 13과같은방법으로
수소첨가반웅을수행하고,반웅후액체크로마토그래피분석결과만노스의 전환율과만니를의선택도는표 9와같으며 , 700시간이상연속하여반웅하면 실시예 15에서사용된루테늄 /산화니켈-티타니아촉매 (Ru/NiO-Ti02)에비하여 기타의불순물이다량생성되며만니를의선택성이크게떨어지는것을알수 있었다.
[307] 표 9
[Table 9]
만노스로부터상업용 5%Ru/C촉매를사용하여연속반웅에의해만니를을 제조한결과
Figure imgf000029_0001
산업상이용가능성
본발명의담지촉매는별도의재생공정을필요로하지않고희수되어당류의 수소화반웅중반복사용하는동안촉매성분의용해나비활성화가없이 고순도의당알코올류를제조함으로써부산물및폐기물이거의발생하지않고 복잡한분리공정없이당알코을류를제조할수있는효과가있다.

Claims

청구범위
실리카,알루미나및티타니아중에서선택되는단독또는흔합물 담체,제올라이트담체,또는니켈금속산화물로된피막을갖는 실리카,알루미나및티타니아중에서선택되는단독또는흔합물 담체에루테늄또는루테늄보론이담지된것인,
당류의촉매수소화에의해당알코올류를제조하기위한 담지촉매.
제 1항에 있어서,
상기담지촉매는실리카,알루미나및티타니아중에서선택되는 단독또는흔합물담체에루테늄보론이담지된것인,당류의촉매 수소화에의해당알코올류를제조하기위한담지촉매.
제 1항에 있어서,
상기담지촉매는제올라이트담체에루테늄이담지된것인, 당류의촉매수소화에의해당알코올류를제조하기위한 담지촉매.
제 1항에 있어서,
상기담지촉매는니켈금속산화물로된괴막을갖는실리카, 알루미나및티타니아중에서선택되는단독또는흔합물담체에 루테늄이담지된것인,당류의촉매수소화에의해당알코올류를 제조하기위한담지촉매.
1)실리카,알루미나및티타니아중에서선택되는단독또는 이들의흔합물인담지물질을루테늄화합물의용액으로처리한 후 60내지 100°C에서건조시키는단계 ;
2)상기 1)단계에서얻어진고체를포타슴
보로하이드라이드 (KBH4)를포함하는알칼리성용액의 첨가에 의해 10내지 35°C에서환원시키는단계;및
3)상기 2)단계에서얻어진고체를여과하여물로세척하여 루테늄보론이담지된담지촉매를얻는단계;
를포함하는당류의촉매수소화에의해당알코올류를제조하기 위한담지촉매의제조방법.
4)제올라이트담체,또는니켈금속산화물로된피막을갖는 실리카,알루미나및티타니아증에서선택되는단독또는흔합물 담체를루테늄화합물의용액으로처리한후건조시키는단계;및
5)상기 4)단계에서얻어진고체를수소를함유한질소가스로 환원시켜루테늄이담지된담지촉매를얻는단계;
를포함하는당류의촉매수소화에의해당알코올류를제조하기 위한담지촉매의제조방법. [청구항 7] 제 6항에 있어서,
상기 4)단계의제올라이트담체는소성된것인당류의촉매 수소화에의해당알코올류를제조하기위한담지촉매의제조방법.
[청구항 8] 제 6항에 있어서,
상기 4)단계의니켈금속산화물로된피막을갖는실리카, 알루미나및티타니아중에서선택되는단독또는흔합물담체는 4-a)실리카,알루미나및티타니아중에서선택되는단독또는 이들의흔합물인담지물질을니켈화합물의용액으로처리한후 건조시키는단계;및
4-b)상기 4-a)단계에서얻어진고체를소성시켜니켈금속산화물 피막이형성된담지물질을얻는단계;로제조된것인당류의촉매 수소화에의해당알코올류를제조하기위한담지촉매의제조방법.
[청구항 9] 제 5항또는제 6항에 있어서,
상기루테늄화합물이루테늄 (m)클로라이드,루테늄 (m) 아세틸아세토네이트및루테늄 (m)니트로실아세테이트로부터 선택되는것인당류의촉매수소화에의해당알코올류를제조하기 위한담지촉매의제조방법.
[청구항 10] 제 6항에 있어서,
상기수소를함유한질소가스는수소를 1내지 10 %함유한 질소가스인당류의촉매수소화에의해당알코올류를제조하기 위한담지촉매의제조방법.
[청구항 11] 제 1항내지제 4항에서선택되는어느한항의담지촉매를
사용하여,당류를수소화반웅에의해그에상웅하는
당알코올류로제조하는방법.
[청구항 12] 제 11항에 있어서,
상기당류는글루코스,자일로스,만노스,프릭토스,에리스로스, 갈락토스,슈크로스,전분가수분해물,셀루로스가수분해물및 말토스중에서선택되는단독또는 2이상의흔합물인것인방법.
PCT/KR2012/002810 2011-04-14 2012-04-13 당류의 촉매 수소화에 의해 당알코올류를 제조하기 위한 담지촉매, 이의 제조방법 및 이를 이용한 당알코올류의 제조방법 WO2012141523A2 (ko)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR20110034706 2011-04-14
KR10-2011-0034706 2011-04-14
KR10-2011-0036273 2011-04-19
KR20110036290 2011-04-19
KR20110036273 2011-04-19
KR10-2011-0036290 2011-04-19
KR1020120028318A KR101359446B1 (ko) 2011-04-19 2012-03-20 당류의 촉매 수소화에 의해 당알코올류를 제조하기 위한 담지촉매 및 이의 제조방법
KR10-2012-0028318 2012-03-20
KR10-2012-0028423 2012-03-20
KR1020120028423A KR101332303B1 (ko) 2011-04-19 2012-03-20 당류의 촉매 수소화에 의한 당알코올류의 제조방법

Publications (2)

Publication Number Publication Date
WO2012141523A2 true WO2012141523A2 (ko) 2012-10-18
WO2012141523A3 WO2012141523A3 (ko) 2013-03-07

Family

ID=47009855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002810 WO2012141523A2 (ko) 2011-04-14 2012-04-13 당류의 촉매 수소화에 의해 당알코올류를 제조하기 위한 담지촉매, 이의 제조방법 및 이를 이용한 당알코올류의 제조방법

Country Status (1)

Country Link
WO (1) WO2012141523A2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10759727B2 (en) 2016-02-19 2020-09-01 Intercontinental Great Brands Llc Processes to create multiple value streams from biomass sources
CN112206769A (zh) * 2020-09-21 2021-01-12 浙江工业大学 一种多壁碳纳米管负载钌催化剂及其制备与应用
CN112916011A (zh) * 2019-12-05 2021-06-08 中国科学院大连化学物理研究所 来源于硅酸镍的木糖加氢生产木糖醇催化剂及其制备和应用
CN113559854A (zh) * 2021-07-23 2021-10-29 中国地质大学(武汉) 一种高比表面积载钌催化剂及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3963788A (en) * 1974-08-20 1976-06-15 Kruse Walter M Polyhydric alcohol production using ruthenium zeolite catalyst
US20040176619A1 (en) * 2001-06-11 2004-09-09 Dominic Vanoppen Ruthenium catalysts on a s102-based carrier material for catalytic hydrogenation of saccharides
KR20050024230A (ko) * 2003-09-03 2005-03-10 에스케이 주식회사 당류의 수소화에 의한 당알코올류 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3963788A (en) * 1974-08-20 1976-06-15 Kruse Walter M Polyhydric alcohol production using ruthenium zeolite catalyst
US20040176619A1 (en) * 2001-06-11 2004-09-09 Dominic Vanoppen Ruthenium catalysts on a s102-based carrier material for catalytic hydrogenation of saccharides
KR20050024230A (ko) * 2003-09-03 2005-03-10 에스케이 주식회사 당류의 수소화에 의한 당알코올류 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HONG SHAN LUO ET AL. CHINESE CHEMICAL LETTERS vol. 13, no. 12, 31 December 2002, pages 1221 - 1224 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10759727B2 (en) 2016-02-19 2020-09-01 Intercontinental Great Brands Llc Processes to create multiple value streams from biomass sources
US11840500B2 (en) 2016-02-19 2023-12-12 Intercontinental Great Brands Llc Processes to create multiple value streams from biomass sources
CN112916011A (zh) * 2019-12-05 2021-06-08 中国科学院大连化学物理研究所 来源于硅酸镍的木糖加氢生产木糖醇催化剂及其制备和应用
CN112206769A (zh) * 2020-09-21 2021-01-12 浙江工业大学 一种多壁碳纳米管负载钌催化剂及其制备与应用
CN113559854A (zh) * 2021-07-23 2021-10-29 中国地质大学(武汉) 一种高比表面积载钌催化剂及其制备方法和应用
CN113559854B (zh) * 2021-07-23 2022-07-29 中国地质大学(武汉) 一种高比表面积载钌催化剂及其制备方法和应用

Also Published As

Publication number Publication date
WO2012141523A3 (ko) 2013-03-07

Similar Documents

Publication Publication Date Title
Subramanian et al. Nanoreactors: an efficient tool to control the chain-length distribution in Fischer–Tropsch synthesis
KR101415682B1 (ko) 폴리하이드록시 화합물로부터 에틸렌 글리콜을 제조하는 방법
CN107011154B (zh) 一种由呋喃-2,5-二羧酸制备己二酸的方法
Li et al. Enhanced Ni/W/Ti catalyst stability from Ti–O–W linkage for effective conversion of cellulose into ethylene glycol
Jiang et al. Promotional effect of F for Pd/HZSM-5 catalyst on selective HDO of biobased ketones
CN105289619A (zh) 镍基催化剂及其制备方法与在5-羟甲基糠醛加氢中的应用
KR101336981B1 (ko) 텅스텐 산화물 티타니아 촉매를 사용하여 구아이아콜의 수첨탈산소 반응을 통해 카테콜 및 페놀 등 방향족 화합물을 생성하는 방법
Zhang et al. One-pot solvothermal synthesis of graphene nanocomposites for catalytic conversion of cellulose to ethylene glycol
Bunrit et al. Photo–thermo-dual catalysis of levulinic acid and levulinate ester to γ-valerolactone
WO2012141523A2 (ko) 당류의 촉매 수소화에 의해 당알코올류를 제조하기 위한 담지촉매, 이의 제조방법 및 이를 이용한 당알코올류의 제조방법
Khusnun et al. Influence of TiO2 dispersion on silica support toward enhanced amine assisted CO2 photoconversion to methanol
Ban et al. Catalytic hydrogenation of alginic acid into sugar alcohols over ruthenium supported on nitrogen-doped mesoporous carbons
CN113976131B (zh) 一种多相催化剂以及由5-羟甲基糠醛制备2,5-呋喃二甲胺的方法
CN114917935A (zh) 一种H2分子原位调控Ni-MoS2加氢脱硫催化剂制备方法及应用
Anutrasakda et al. Performances of mesoporous silica-supported nickel phosphide nanocatalysts in the one-pot transformation of cellobiose to sorbitol
Zhang et al. Zeolitic framework Sn boosts the 2, 5-dimethylfuran selectivity for the hydrodeoxygenation of 5-hydroxymethylfurfural over Co/Sn-Beta catalyst
CN100493705C (zh) 膨胀蛭石负载NiB非晶态合金催化剂制备方法及应用
CN111054339B (zh) 制乙二醇的催化剂组合物
KR20120123202A (ko) 당류의 촉매 수소화에 의해 당알코올류를 제조하기 위한 루테늄-제올라이트계 담지촉매, 이의 제조방법 및 이를 이용한 당알코올류의 제조방법
KR101572846B1 (ko) 규칙적인 중형기공구조를 갖는 레늄-구리-탄소 복합체 촉매, 그 제조방법 및 상기 촉매를 이용한 1,4-부탄디올의 생산 방법
Khamkeaw et al. Application of activated carbon derived from bacterial cellulose for mesoporous HZSM-5 catalyst synthesis and performances of catalyst in bioethanol dehydration
Jin et al. Catalytic transfer hydrogenation of CO2 to formic acid with glycerol as the hydrogen donor over Ru-REUSY catalysts
KR101359446B1 (ko) 당류의 촉매 수소화에 의해 당알코올류를 제조하기 위한 담지촉매 및 이의 제조방법
KR101332303B1 (ko) 당류의 촉매 수소화에 의한 당알코올류의 제조방법
KR20120117677A (ko) 당류의 촉매 수소화에 의해 당알코올류를 제조하기 위한 담지촉매, 이의 제조방법 및 이를 이용한 당알코올류의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12771288

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12771288

Country of ref document: EP

Kind code of ref document: A2