CN107011154B - 一种由呋喃-2,5-二羧酸制备己二酸的方法 - Google Patents

一种由呋喃-2,5-二羧酸制备己二酸的方法 Download PDF

Info

Publication number
CN107011154B
CN107011154B CN201610059736.5A CN201610059736A CN107011154B CN 107011154 B CN107011154 B CN 107011154B CN 201610059736 A CN201610059736 A CN 201610059736A CN 107011154 B CN107011154 B CN 107011154B
Authority
CN
China
Prior art keywords
catalyst
dicarboxylic acids
noble metal
furans
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610059736.5A
Other languages
English (en)
Other versions
CN107011154A (zh
Inventor
刘海超
孙乾辉
李宇明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201610059736.5A priority Critical patent/CN107011154B/zh
Publication of CN107011154A publication Critical patent/CN107011154A/zh
Application granted granted Critical
Publication of CN107011154B publication Critical patent/CN107011154B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/377Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups

Abstract

本发明公开了一种制备己二酸的方法。本发明方法包括如下步骤:在水中,通过化学催化方法将呋喃‑2,5‑二羧酸或四氢呋喃‑2,5‑二羧酸转化为己二酸。具体可为下述(1)‑(3)中任一种:(1)在加氢脱氧催化剂的催化下,所述四氢呋喃‑2,5‑二羧酸与氢气进行反应,即得己二酸;(2)在加氢催化剂和加氢脱氧催化剂的催化下,所述呋喃‑2,5‑二羧酸与氢气进行,即得己二酸;(3)包括如下1)和2)的步骤:1)在加氢催化剂的催化下,所述呋喃‑2,5‑二羧酸与氢气进行反应,得到四氢呋喃‑2,5‑二羧酸;2)在加氢脱氧催化剂的催化下,四氢呋喃‑2,5‑二羧酸与氢气进行反应,即得己二酸。本发明方法使用水作为溶剂,除使用的多相催化剂外不引入其它杂元素,因此本发明方法不仅进一步降低了生产成本,而且更为绿色环保。

Description

一种由呋喃-2,5-二羧酸制备己二酸的方法
技术领域
本发明涉及一种制备己二酸的方法,具体涉及一种由呋喃-2,5-二羧酸制备己二酸的方法。
背景技术
目前,人类社会发展所需要的燃料和化学品都强烈地依赖着化石资源。但是,化石资源的不可再生性以及分布的不均性使得它已很难完全满足人们不断增长的需求。
已知的可以用来代替传统化石资源的替代者包括太阳能、水能、风能、氢能、核能、地热、生物质能等。在各种可再生能源中,生物质能是地球上唯一一种公认的可以为人类同时提供能源和化学品的可再生有机碳源。由它转化的燃料主要以二氧化碳最为最终的产物排放到大气中,而二氧化碳也会通过光和作用被植物体吸收成为生物质,这种循环保证了生物质对环境的友好性。
目前,公认的实现生物炼油厂的关键技术壁垒在于如何降低生物质转化过程的成本,即如何实现生物质的高效催化转化。其根本原因在于生物质中的主要成分与传统的化石资源相比,在分子结构和性质上是非常不同,甚至完全相反的。传统的化石资源以烃类为主,一般具有热稳定性好、易挥发和低官能团的特点,其通常需要通过重整、氧化和水合等反应使反应物官能团化,进而转化为所需要的石化产品、材料、精细化学品等。而对于生物质中的主要成分,如糖类及其多元醇衍生物等,这些化合物不仅热稳定性差、难挥发,而且含氧量高、官能团过多。所以,它们需要通过脱水、加氢和氢解等反应去掉过多的含氧官能团,然后才能与现有的石油化工业相衔接。
但是,相比于已经非常成熟的石油化工技术,目前对于这些除去含氧官能团反应的研究还不够深入。例如,生物质的转化很多都是在溶液相来进行的,这不仅需要催化剂材料具有更好的水热稳定性以及一定的耐酸碱腐蚀性能,也对催化剂的原位表征、反应器的设计等提出了新的要求。
呋喃-2,5-二羧酸被认为是生物质中纤维素、半纤维素及淀粉等向燃料和下游化学品转化的平台分子。实际上,早在2004年的时候,美国能源部就已经将甘油列为未来生物质转化和利用最为重要的“十二个平台分子”之一。美国政府已经征求呋喃-2,5-二羧酸用于生产工业化学品的提案。至今,还没有实现由呋喃-2,5-二羧酸大规模生产高价值工业化学品。
己二酸(Adipic acid),又称肥酸,是一种重要的有机二元酸,能够发生成盐反应、酯化反应、酰胺化反应等,并能与二元胺或二元醇缩聚成高分子聚合物等。己二酸是工业上具有重要意义的二元羧酸,在化工生产、有机合成工业、医药、润滑剂制造等方面都有重要作用,产量居所有二元羧酸中的第二位。近几年,我国己二酸需求旺盛,国内生产不能满足市场需求,因而每年都从国外大量进口。
因此需要提供一种成本低廉、绿色环保的制备己二酸的方法。
发明内容
本发明的目的是提供一种由呋喃-2,5-二羧酸制备己二酸的方法,具体是在水溶液中将呋喃-2,5-二羧酸或四氢呋喃-2,5-二羧酸转化为己二酸。
本发明提供的第一种制备己二酸的方法,包括如下步骤:在水中,通过化学催化方法将呋喃-2,5-二羧酸或四氢呋喃-2,5-二羧酸转化为所述己二酸。
所述方法具体可为如下(1)-(3)中任一种:
(1)在加氢脱氧催化剂的催化下,所述四氢呋喃-2,5-二羧酸与氢气进行反应,即得到所述己二酸;
(2)在加氢催化剂和加氢脱氧催化剂的催化下,所述呋喃-2,5-二羧酸与氢气进行反应,即得到所述己二酸;
(3)包括如下1)和2)的步骤:
1)在加氢催化剂的催化下,所述呋喃-2,5-二羧酸与氢气进行反应,得到四氢呋喃-2,5-二羧酸;
2)在加氢脱氧催化剂的催化下,所述四氢呋喃-2,5-二羧酸与氢气进行反应,即得到所述己二酸。
上述的方法中,所述加氢脱氧催化剂具体可为下述1)或2):
1)负载型贵金属催化剂与至少一种金属氧化物或至少一种杂多酸的混合物;
2)贵金属与至少一种金属氧化物或至少一种杂多酸共负载形成的催化剂。
所述加氢脱氧催化剂为1)所述催化剂,所述负载型贵金属催化剂由载体和负载于所述载体上的贵金属组成,所述金属的负载量可为0.25%~10%,如2%;
所述载体可为活性炭、二氧化硅、氧化锆或二氧化钛;
所述贵金属可为Ru、Rh、Pd、Os、Ir或Pt;
所述金属氧化物可为MoO3、WO3或ReO3
所述杂多酸可为含钨杂多酸、含钼杂多酸或含铼杂多酸;
所述金属氧化物或所述杂多酸与所述负载型贵金属催化剂的质量比可为0.5~60:1,如48:1;
所述加氢脱氧催化剂为2)所述催化剂,所述贵金属与所述金属氧化物或所述杂多酸均负载于所述载体上(与1)所述催化剂采用的载体相同),所述贵金属的负载量可为0.25%~10%,如2%,所述金属氧化物或所述杂多酸与所述贵金属的质量比可为0.5~60:1,如48:1。
上述的方法中,所述加氢催化剂具体可为负载型贵金属催化剂,所述负载型贵金属催化剂由载体和负载于所述载体上的贵金属组成,所述贵金属的负载量可为0.25%~10%,如2%;
所述载体可为活性炭、二氧化硅、氧化锆或二氧化钛;
所述金属可为Ru、Rh、Pd、Os、Ir或Pt。
当采用步骤(1)的方法时,各工艺条件如下:
所述四氢呋喃-2,5-二羧酸与水形成的水溶液中,所述四氢呋喃-2,5-二羧酸的质量百分含量可为1%~20%,如2%;
所述加氢脱氧催化剂为1)所述催化剂时,所述负载型贵金属催化剂中的贵金属与所述四氢呋喃-2,5-二羧酸的摩尔比可为1:10~1000,具体可为1:30~60、1:30或1:60;
所述加氢脱氧催化剂为2)所述催化剂时,所述贵金属与所述四氢呋喃-2,5-二羧酸的摩尔比可为1:10~1000,具体可为1:30~60、1:30或1:60;
所述反应可在1MPa~5MPa的压力下进行,如在2MPa的压力下进行;
所述反应的温度可为60℃~140℃,具体可为80℃~100℃、80℃或100℃;
所述反应的时间可为10~40小时,具体可为20小时。
当采用步骤(2)的方法时,各工艺条件如下:所述呋喃-2,5-二羧酸与水形成的水溶液中,所述呋喃-2,5-二羧酸的质量百分含量可为1%~20%,如10%;
所述加氢催化剂中的贵金属与所述呋喃-2,5-二羧酸的摩尔比可为1:10~1000,具体可为1:30~60、1:30或1:60;
所述加氢脱氧催化剂为1)所述催化剂时,所述负载型贵金属催化剂中的贵金属与所述呋喃-2,5-二羧酸的摩尔比可为1:10~1000,具体可为1:30~60、1:30或1:60;
所述加氢脱氧催化剂为2)所述催化剂时,所述贵金属与所述呋喃-2,5-二羧酸的摩尔比可为1:10~1000,具体可为1:30~60、1:30或1:60;
所述反应可在1MPa~5MPa的压力下进行,具体可在4MPa的压力下进行;
所述反应的温度可为60℃~140℃,具体可为120℃;
所述反应的时间可为10~40小时,具体可为20小时。
当采用步骤(3)的方法时,各工艺条件如下:
步骤1)中,所述呋喃-2,5-二羧酸与水形成的水溶液中,所述呋喃-2,5-二羧酸的质量百分含量可为1%~20%,如10%;
所述加氢催化剂中的贵金属与所述呋喃-2,5-二羧酸的摩尔比可为1:10~1000,具体可为1:30~60、1:30或1:60;
所述反应可在1MPa~5MPa的压力下进行,具体可在4MPa的压力下进行;
所述反应的温度可为60℃~140℃,具体可为120℃;
所述反应的时间可为5~40小时,具体可为6小时;
步骤2)中,所述四氢呋喃-2,5-二羧酸与水形成的水溶液中,所述四氢呋喃-2,5-二羧酸的质量百分含量可为1%~20%,如2%;
所述加氢脱氧催化剂为1)所述催化剂时,所述负载型贵金属催化剂中的贵金属与所述呋喃-2,5-二羧酸的摩尔比可为1:10~1000,具体可为1:60;
所述加氢脱氧催化剂为2)所述催化剂时,所述贵金属与所述呋喃-2,5-二羧酸的摩尔比可为1:10~1000,具体可为1:60;
所述反应可在1MPa~5MPa的压力下进行,具体可在2MPa的压力下进行;
所述反应的温度可为60℃~140℃,具体可为100℃;
所述反应的时间可为10~40小时,具体可为20小时。
本发明方法所使用的负载型贵金属催化剂,可根据现有的方法进行制备,如采用等容浸渍法、初湿浸渍法、离子交换法、沉积-沉淀法或真空浸溃法等;具体制备时,在金属沉积之后将固体粉末置于至少110℃烘箱中干燥12小时左右,得到的负载型催化剂前驱体先在空气中在一定温度(如500℃)下煅烧一段时间,再在还原气氛(如20%H2+N2)中在一定温度(如200℃)下还原一段时间,得到负载型贵金属催化剂。
本发明方法所使用的加氢脱氧催化剂—负载型贵金属催化剂与至少一种金属氧化物或至少一种杂多酸的混合物,可通过简单机械混合的方式进行配制,所述金属氧化物或所述杂多酸与所述负载型贵金属催化剂可在反应前按一定比例研磨均匀后加入反应,也可以按一定比例分别加入反应。
本发明方法所使用的加氢脱氧催化剂—贵金属与至少一种金属氧化物或至少一种杂多酸共负载形成的催化剂,可通过分步负载的方法制备:首先在载体上沉积目标金属氧化物或杂多酸的前体,干燥后在空气中煅烧一段时间得到目标金属氧化物或杂多酸修饰的载体,再在其上通过所述负载型催化剂的制备方法,负载一定比例的贵金属,最终得到所述共负载型催化剂。
使用本发明方法制备己二酸时,可在反应釜中进行,反应结束后,取出反应釜,冷却至室温,将反应釜泄压,打开釜盖后,将液固混合物取出进行抽滤分离,将得到的液体用液相色谱进行分析,并计算转化率和产物产率。
本发明提供的制备己二酸的方法,使用水作为溶剂,除使用的多相催化剂外不引入其它杂元素,因此本发明方法不仅进一步降低了生产成本,而且更为绿色环保。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
加氢催化剂2%Ru/TiO2的制备:
将0.1mol/L的RuCl2溶液2.1mL和3.0mL去离子水混合,搅拌均匀,然后把TiO2载体1.00g加入该混合液中,在室温下搅拌浸渍10小时后,蒸干水分,然后于110℃烘箱中干燥12小时,得到催化剂前躯体。Ru的担载量为2%(质量百分数)。将上述步骤制备的前驱体置于石英管中,先在空气中500℃下煅烧4h,再在20%H2+N2中200℃温度下还原3h,得到负载型2%Ru/TiO2催化剂。
按照上述方法制备2%Rh/ZrO2和2%Pt/TiO2
加氢脱氧催化剂2%Ir/40%WO3/TiO2(共负载型)的制备:
将0.76g偏钨酸铵和5.0mL水混合,搅拌均匀,然后把TiO2载体1.00g加入该混合液中,在室温下搅拌浸渍10小时后,蒸干水分,然后于110℃烘箱中干燥12小时,得到催化剂前躯体。WO3的担载量为40%(质量百分数)。将上述步骤制备的前驱体置于石英管中,先在空气中500℃下煅烧3小时,得到40%WO3/TiO2
将0.1mol/L的H2IrCl6水溶液2.1mL和3.0mL去离子水混合,搅拌均匀,然后把上步得到的40%WO3/TiO21.00g加入该混合液中,在室温下搅拌浸渍10小时后,蒸干水分,然后于110℃烘箱中干燥12小时,得到催化剂前躯体。Ir的担载量为2%(质量百分数)。将上述步骤制备的前驱体置于石英管中,先在空气中500℃下煅烧3小时,再在20%H2+N2中200℃温度下还原3小时,得到负载型2%Ir/40%WO3/TiO2催化剂。
按照上述方法制备2%Rh2%ReOx/TiO2(x为1、2或3)和2%Ir/4%PWOx/TiO2
不同的共负载组分选取其对应的前驱体依例进行制备即可,如共负载组分为WO3时,可选择偏钨酸铵作为前驱体;共负载组分为磷钨杂多酸时,可选取磷钨酸作为前驱体。
实施例1、己二酸的制备
一、四氢呋喃-2,5-二羧酸(THFDCA)的制备
在30mL的高压反应釜中,加入0.2g上述制备的的2%Ru/TiO2催化剂、1g FDCA及10mL水(FDCA的质量百分含量为10%),反应釜密闭后,充入2MPa氢气置换反应釜中的残余空气,重复三次后,向反应釜中充入4MPa氢气,把反应釜置于加热炉上进行加热至反应温度120℃,在700rpm的转速下搅拌反应6小时。反应结束后,从加热炉中取出反应釜,冷却至室温,把釜内压力降至常压,打开釜盖,将液固混合物取出进行抽滤分离,将得到的液体定容至50mL,用高效液相色谱(HPLC)进行分析,并计算转化率和产物产率。此条件下,FDCA的转化率可达到100%,THFDCA的选择性>97%,由此,可以得到2%(质量分数)的THFDCA水溶液用于至己二酸的进一步转化。
二、由四氢呋喃-2,5-二羧酸(THFDCA)制备己二酸
以2%Ir/TiO2+WO3机械混合得到的催化剂作为催化剂
在30mL的高压反应釜中,加入0.2g2%Ir/TiO2催化剂(其中Ir与THFDCA的摩尔比约为1:60),0.2g商业化WO3和10mL上述的2%THFDCA水溶液,反应釜密闭后,充入2MPa氢气置换反应釜中的残余空气,重复三次后,向反应釜中充入2MPa氢气,把反应釜置于加热炉上进行加热至反应温度100℃,在700rpm的转速下搅拌反应20小时。反应结束后,从加热炉中取出反应釜,冷却至室温,把釜内压力降至常压,打开釜盖,将液固混合物取出进行抽滤分离,将得到的液体用液相色谱进行分析,并计算转化率和产物产率。反应结果列于表1中。
实施例2、由四氢呋喃-2,5-二羧酸(THFDCA)制备己二酸
以2%Rh/ZrO2+WO3作为催化剂。
在30mL的高压反应釜中,加入0.2g2%Rh/ZrO2+WO3催化剂(其中Rh与THFDCA的摩尔比约为1:30)和10mL实施例1制备的2%THFDCA水溶液,反应釜密闭后,充入2MPa氢气置换反应釜中的残余空气,重复三次后,向反应釜中充入2MPa氢气,把反应釜置于加热炉上进行加热至反应温度100℃,在700rpm的转速下搅拌反应20小时。反应结束后,从加热炉中取出反应釜,冷却至室温,把釜内压力降至常压,打开釜盖,将液固混合物取出进行抽滤分离,将得到的液体用液相色谱进行分析,并计算转化率和产物产率。反应结果列于表1中。
实施例3、由四氢呋喃-2,5-二羧酸(THFDCA)制备己二酸
以2%Ir/TiO2+MoO3机械混合得到的催化剂作为催化剂。
在30mL的高压反应釜中,加入0.2g2%Ir/TiO2催化剂(其中Ir与THFDCA的摩尔比为1:60),0.2g商业化MoO3和10mL实施例1制备的2%THFDCA水溶液,反应釜密闭后,充入2MPa氢气置换反应釜中的残余空气,重复三次后,向反应釜中充入2MPa氢气,把反应釜置于加热炉上进行加热至反应温度80℃,在700rpm的转速下搅拌反应20小时。反应结束后,从加热炉中取出反应釜,冷却至室温,把釜内压力降至常压,打开釜盖,将液固混合物取出进行抽滤分离,将得到的液体用液相色谱进行分析,并计算转化率和产物产率。反应结果列于表1中。
实施例4、由四氢呋喃-2,5-二羧酸(THFDCA)制备己二酸
以2%Pt/TiO2+磷钨酸机械混合得到的催化剂作为催化剂。
在30mL的高压反应釜中,加入0.2g2%Pt/TiO2催化剂(其中Pt与THFDCA的摩尔比约为1:60),0.2g商业化磷钨酸和10mL实施例1制备的2%THFDCA水溶液,反应釜密闭后,充入2MPa氢气置换反应釜中的残余空气,重复三次后,向反应釜中充入2MPa氢气,把反应釜置于加热炉上进行加热至反应温度100℃,在700rpm的转速下搅拌反应20小时。反应结束后,从加热炉中取出反应釜,冷却至室温,把釜内压力降至常压,打开釜盖,将液固混合物取出进行抽滤分离,将得到的液体用液相色谱进行分析,并计算转化率和产物产率。反应结果列于表1中。
实施例5、由四氢呋喃-2,5-二羧酸(THFDCA)制备己二酸
以2%Ir/40%WO3/TiO2共负载型催化剂作为催化剂。
在30mL的高压反应釜中,加入0.2g上述制备的2%Ir/40%WO3/TiO2催化剂(其中Ir与THFDCA的摩尔比为1:60)和10mL实施例1制备的2%THFDCA水溶液,反应釜密闭后,充入2MPa氢气置换反应釜中的残余空气,重复三次后,向反应釜中充入2MPa氢气,把反应釜置于加热炉上进行加热至反应温度100℃,在700rpm的转速下搅拌反应20小时。反应结束后,从加热炉中取出反应釜,冷却至室温,把釜内压力降至常压,打开釜盖,将液固混合物取出进行抽滤分离,将得到的液体用液相色谱进行分析,并计算转化率和产物产率。反应结果列于表1中。
实施例6、由四氢呋喃-2,5-二羧酸(THFDCA)制备己二酸
以2%Rh2%ReOx/TiO2共负载型催化剂作为催化剂。
在30mL的高压反应釜中,加入0.2g2%Rh2%ReOx/TiO2催化剂(其中Rh与THFDCA的摩尔比约为1:30)和10mL实施例1制备的2%THFDCA水溶液,反应釜密闭后,充入2MPa氢气置换反应釜中的残余空气,重复三次后,向反应釜中充入2MPa氢气,把反应釜置于加热炉上进行加热至反应温度80℃,在700rpm的转速下搅拌反应20小时。反应结束后,从加热炉中取出反应釜,冷却至室温,把釜内压力降至常压,打开釜盖,将液固混合物取出进行抽滤分离,将得到的液体用液相色谱进行分析,并计算转化率和产物产率。反应结果列于表1中。
实施例7、由四氢呋喃-2,5-二羧酸(THFDCA)制备己二酸
以2%Ir/4%PWOx/TiO2共负载型催化剂作为催化剂。
在30mL的高压反应釜中,加入0.2g2%Ir/4%PWOx/TiO2催化剂(其中Ir与THFDCA的摩尔比为1:60)和10mL实施例1制备的2%THFDCA水溶液,反应釜密闭后,充入2MPa氢气置换反应釜中的残余空气,重复三次后,向反应釜中充入2MPa氢气,把反应釜置于加热炉上进行加热至反应温度100℃,在700rpm的转速下搅拌反应20小时。反应结束后,从加热炉中取出反应釜,冷却至室温,把釜内压力降至常压,打开釜盖,将液固混合物取出进行抽滤分离,将得到的液体用液相色谱进行分析,并计算转化率和产物产率。反应结果列于表1中。
实施例8、“一锅法”从呋喃-2,5-二羧酸制备己二酸
以2%Ru/TiO2催化剂作为加氢催化剂,2%Ir/40%WO3/TiO2共负载型催化剂为加氢脱氧催化剂。
在30mL的高压反应釜中,加入0.2g2%Ir/40%WO3/TiO2催化剂(其中Ir与FDCA的摩尔比为1:60)、0.2g2%Ru/TiO2催化剂(其中Ru与FDCA的摩尔比约为1:30)、1g FDCA及10mL水(FDCA的质量百分含量为10%),反应釜密闭后,充入2MPa氢气置换反应釜中的残余空气,重复三次后,向反应釜中充入4MPa氢气,把反应釜置于加热炉上进行加热至反应温度100℃,在700rpm的转速下搅拌反应20小时。反应结束后,从加热炉中取出反应釜,冷却至室温,把釜内压力降至常压,打开釜盖,将液固混合物取出进行抽滤分离,将得到的液体用液相色谱进行分析,并计算转化率和产物产率。反应结果列于表1。
实施例9、“一锅法”从呋喃-2,5-二羧酸制备己二酸
以2%Ru/TiO2催化剂作为加氢催化剂,2%Ir/TiO2+WO3机械混合型催化剂为加氢脱氧催化剂。
在30mL的高压反应釜中,加入0.2g2%Ir/TiO2+WO3混合型催化剂(其中Ir与FDCA的摩尔比为1:60)、0.2g2%Ru/TiO2催化剂(其中Ru与FDCA的摩尔比约为1:30)、1g FDCA及10mL水(FDCA的质量百分含量为10%),反应釜密闭后,充入2MPa氢气置换反应釜中的残余空气,重复三次后,向反应釜中充入4MPa氢气,把反应釜置于加热炉上进行加热至反应温度120℃,在700rpm的转速下搅拌反应20小时。反应结束后,从加热炉中取出反应釜,冷却至室温,把釜内压力降至常压,打开釜盖,将液固混合物取出进行抽滤分离,将得到的液体用液相色谱进行分析,并计算转化率和产物产率。反应结果列于表1。
由表1中的数据可以看出,本发明提供的制备己二酸的方法,可以在水溶液中很好的实现THFDCA或FDCA到重要化工原料己二酸的转化。从THFDCA出发可以得到最高75%的己二酸收率,从FDCA出发可以得到最高72%的己二酸收率。由于制备得到的THFDCA溶液纯度很高,则本发明提供的“两步法从呋喃-2,5-二羧酸至己二酸的转化”得到的己二酸收率与本发明提供的“四氢呋喃-2,5-二羧酸至己二酸的转化”得到的己二酸收率近似。
表1 实施例1-9的反应条件及己二酸收率

Claims (5)

1.一种制备己二酸的方法,包括如下1)-3)中任一步骤:
1)在水中,在加氢脱氧催化剂的催化下,四氢呋喃-2,5-二羧酸与氢气进行反应,即得到所述己二酸;
2)在水中,在加氢催化剂和加氢脱氧催化剂的催化下,呋喃-2,5-二羧酸与氢气进行反应,即得到所述己二酸;
3)包括如下a)和b)的步骤:
a)在水中,在加氢催化剂的催化下,呋喃-2,5-二羧酸与氢气进行反应,得到四氢呋喃-2,5-二羧酸;
b)在水中,在加氢脱氧催化剂的催化下,所述四氢呋喃-2,5-二羧酸与氢气进行反应,即得到所述己二酸;
所述加氢脱氧催化剂为下述1)或2):
1)负载型贵金属催化剂与至少一种金属氧化物或至少一种杂多酸的混合物;
2)贵金属与至少一种金属氧化物或至少一种杂多酸共负载形成的催化剂;
所述加氢脱氧催化剂为1)所述催化剂,所述负载型贵金属催化剂由载体和负载于所述载体上的贵金属组成,所述贵金属的负载量为0.25%~10%;
所述载体为活性炭、二氧化硅、氧化锆或二氧化钛;
所述贵金属为Ru、Rh、Pd、Os、Ir或Pt;
所述金属氧化物为MoO3、WO3或ReO3
所述杂多酸为含钨杂多酸、含钼杂多酸或含铼杂多酸;
所述加氢脱氧催化剂为2)所述催化剂,所述贵金属与所述金属氧化物或所述杂多酸均负载于所述载体上,所述贵金属的负载量为0.25%~10%,所述金属氧化物或所述杂多酸与所述贵金属的质量比为0.5~60:1。
2.根据权利要求1所述的方法,其特征在于:所述加氢催化剂为负载型贵金属催化剂,所述负载型贵金属催化剂由载体和负载于所述载体上的贵金属组成,所述贵金属的负载量为0.25%~10%;
所述载体为活性炭、二氧化硅、氧化锆或二氧化钛;
所述贵金属为Ru、Rh、Pd、Os、Ir或Pt。
3.根据权利要求1或2所述的方法,其特征在于:步骤1)中,所述四氢呋喃-2,5-二羧酸与水形成的水溶液中,所述四氢呋喃-2,5-二羧酸的质量百分含量为1%~20%;
所述加氢脱氧催化剂为1)所述催化剂时,所述负载型贵金属催化剂中的贵金属与所述四氢呋喃-2,5-二羧酸的摩尔比为1:10~1000;
所述加氢脱氧催化剂为2)所述催化剂时,所述贵金属与所述四氢呋喃-2,5-二羧酸的摩尔比为1:10~1000;
所述反应在1MPa~5MPa的压力下进行;
所述反应的温度为60°C~140°C;
所述反应的时间为10~40小时。
4.根据权利要求1或2所述的方法,其特征在于:步骤2)中,所述呋喃-2,5-二羧酸与水形成的水溶液中,所述呋喃-2,5-二羧酸的质量百分含量为1%~20%;
所述加氢催化剂中的贵金属与所述呋喃-2,5-二羧酸的摩尔比为1:10~1000;
所述加氢脱氧催化剂为1)所述催化剂时,所述负载型贵金属催化剂中的贵金属与所述呋喃-2,5-二羧酸的摩尔比为1:10~1000;
所述加氢脱氧催化剂为2)所述催化剂时,所述贵金属与所述呋喃-2,5-二羧酸的摩尔比为1:10~1000;
所述反应在1MPa~5MPa的压力下进行;
所述反应的温度为60°C~140°C;
所述反应的时间为10~40小时。
5.根据权利要求1或2所述的方法,其特征在于:步骤3)a)中,所述呋喃-2,5-二羧酸与水形成的水溶液中,所述呋喃-2,5-二羧酸的质量百分含量为1%~20%;
所述加氢催化剂中的贵金属与所述呋喃-2,5-二羧酸的摩尔比为1:10~1000;
所述反应在1MPa~5MPa的压力下进行;
所述反应的温度为60°C~140°C;
所述反应的时间为5~40小时;
步骤3)b)中,所述四氢呋喃-2,5-二羧酸与水形成的水溶液中,所述四氢呋喃-2,5-二羧酸的质量百分含量为1%~20%;
所述加氢脱氧催化剂为1)所述催化剂时,所述负载型贵金属催化剂中的贵金属与所述呋喃-2,5-二羧酸的摩尔比为1:10~1000;
所述加氢脱氧催化剂为2)所述催化剂时,所述贵金属与所述呋喃-2,5-二羧酸的摩尔比为1:10~1000;
所述反应在1MPa~5MPa的压力下进行;
所述反应的温度为60°C~140°C;
所述反应的时间为10~40小时。
CN201610059736.5A 2016-01-28 2016-01-28 一种由呋喃-2,5-二羧酸制备己二酸的方法 Active CN107011154B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610059736.5A CN107011154B (zh) 2016-01-28 2016-01-28 一种由呋喃-2,5-二羧酸制备己二酸的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610059736.5A CN107011154B (zh) 2016-01-28 2016-01-28 一种由呋喃-2,5-二羧酸制备己二酸的方法

Publications (2)

Publication Number Publication Date
CN107011154A CN107011154A (zh) 2017-08-04
CN107011154B true CN107011154B (zh) 2019-09-27

Family

ID=59438615

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610059736.5A Active CN107011154B (zh) 2016-01-28 2016-01-28 一种由呋喃-2,5-二羧酸制备己二酸的方法

Country Status (1)

Country Link
CN (1) CN107011154B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111440062A (zh) * 2019-01-16 2020-07-24 中国石油化工股份有限公司 一种由呋喃-2,5-二羧酸酯类衍生物制备己二酸的方法
CN111440060A (zh) * 2019-01-16 2020-07-24 中国石油化工股份有限公司 一种制备己二酸的方法
CN111606804B (zh) * 2019-02-26 2023-04-11 中国石油化工股份有限公司 一种制备己二酸酯类衍生物的方法
CN111792991A (zh) * 2019-04-08 2020-10-20 中国石油化工股份有限公司 一种制备己二酸的方法
CN112441911B (zh) * 2019-08-28 2023-01-13 中国石油化工股份有限公司 一种制备5-羟基戊酸的方法
CN112574024B (zh) * 2019-09-27 2023-03-31 中国石油化工股份有限公司 一种制备丁二酸的方法
CN112979474B (zh) * 2019-12-13 2022-09-06 中国科学院大连化学物理研究所 催化2,5-二氰基呋喃加氢开环合成1,6-己二胺的方法
CN111233656B (zh) * 2020-03-24 2021-03-26 北京大学 一种生物质基壬二酸的制备方法
CN111499505B (zh) * 2020-06-04 2022-03-01 中国科学技术大学 由呋喃二甲酸制备己二酸的方法
CN112898264B (zh) * 2021-03-09 2022-04-22 中国科学院兰州化学物理研究所 利用呋喃乙酸及其酯类制备ε-己内酯和6-羟基己酸及其酯的方法
CN113354603A (zh) * 2021-06-02 2021-09-07 中科国生(杭州)科技有限公司 一种2,5-四氢呋喃二甲酸的制备方法
CN114849703A (zh) * 2022-05-09 2022-08-05 大连理工大学 一种用于2,5-呋喃二甲酸加氢催化剂及反应工艺
CN116474793B (zh) * 2023-06-14 2023-09-15 广东工业大学 一种岛型单原子催化材料及其制备方法与应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102803196A (zh) * 2009-06-13 2012-11-28 莱诺维亚公司 由含碳水化合物的物质生产己二酸和衍生物

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102803196A (zh) * 2009-06-13 2012-11-28 莱诺维亚公司 由含碳水化合物的物质生产己二酸和衍生物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
钨催化剂的制备及在己二酸绿色合成等反应中应用;曹小华;《中国优秀硕士学位论文全文数据库》;20071231;第1页第2段,第10页最后一段 *

Also Published As

Publication number Publication date
CN107011154A (zh) 2017-08-04

Similar Documents

Publication Publication Date Title
CN107011154B (zh) 一种由呋喃-2,5-二羧酸制备己二酸的方法
EP2548858B1 (en) Process for preparing ethylene glycol from polyhydric compounds
Yang et al. Effect of redox properties of LaCoO3 perovskite catalyst on production of lactic acid from cellulosic biomass
CN112441911B (zh) 一种制备5-羟基戊酸的方法
CN111792991A (zh) 一种制备己二酸的方法
CN106944050B (zh) 一种合成1,3-丙二醇的催化剂及其制备方法和应用
CN106824191B (zh) 双金属催化剂在甘油氢解制备1,3-丙二醇中的应用
CN111054339B (zh) 制乙二醇的催化剂组合物
CN108970604B (zh) 一种钼钒铌基复合氧化物及其合成方法与应用
CN113831312B (zh) 一种制备δ-环戊内酯的方法
CN102731247B (zh) 一种由生物基二元醇制备正丙醇的方法
CN110981691B (zh) 一种利用单糖合成1,6-己二醇的方法
CN110026191B (zh) 一种催化剂及甘油氢解制备1,3-丙二醇的方法
CN104888778B (zh) 一种催化葡萄糖氢解的Cu/MgO催化剂及其制备方法
CN111440062A (zh) 一种由呋喃-2,5-二羧酸酯类衍生物制备己二酸的方法
CN111440060A (zh) 一种制备己二酸的方法
CN112574023B (zh) 一种制备3-羟基丙酸的方法
CN110665494B (zh) 一种Nb-Mo共晶介孔金属氧化物催化剂的制备方法和应用
KR100870370B1 (ko) 프로판디올 제조용 촉매, 그 제조 방법 및 이를 이용한프로판디올의 제조 방법
CN112778088B (zh) 一种甘油同步制备丙烯酸和1,2-丙二醇的方法
CN114702384B (zh) 酶解木质素基多级孔碳负载钼氧化物催化木质素醇解制备对羟基肉桂酸酯的方法
CN115990485B (zh) 一种糖酸合成用双金属复合生物炭催化剂及糖酸合成方法和应用
CN115779925B (zh) 生物质原料制乙二醇催化剂组合物及其制备方法和应用
KR101041638B1 (ko) 프로판디올 제조용 촉매, 그 제조 방법 및 그 촉매를 이용한 프로판디올의 제조 방법
CN115894420A (zh) 一种制备δ-环戊内酯的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant