WO2011102473A1 - 炭素材料及びその製造方法 - Google Patents

炭素材料及びその製造方法 Download PDF

Info

Publication number
WO2011102473A1
WO2011102473A1 PCT/JP2011/053535 JP2011053535W WO2011102473A1 WO 2011102473 A1 WO2011102473 A1 WO 2011102473A1 JP 2011053535 W JP2011053535 W JP 2011053535W WO 2011102473 A1 WO2011102473 A1 WO 2011102473A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
flaky graphite
resin
carbon
flaky
Prior art date
Application number
PCT/JP2011/053535
Other languages
English (en)
French (fr)
Inventor
一生 村松
豊田 昌宏
Original Assignee
株式会社インキュベーション・アライアンス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社インキュベーション・アライアンス filed Critical 株式会社インキュベーション・アライアンス
Priority to JP2012500663A priority Critical patent/JP5632448B2/ja
Priority to EP11744759.9A priority patent/EP2537801B1/en
Priority to KR1020147014303A priority patent/KR101516610B1/ko
Priority to SG2012060513A priority patent/SG183331A1/en
Priority to CN201180010173.6A priority patent/CN102791628B/zh
Priority to CA2789028A priority patent/CA2789028C/en
Priority to US13/577,536 priority patent/US9221686B2/en
Priority to KR1020127024399A priority patent/KR101456905B1/ko
Publication of WO2011102473A1 publication Critical patent/WO2011102473A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/02Apparatus characterised by being constructed of material selected for its chemically-resistant properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/002Component parts of these vessels not mentioned in B01J3/004, B01J3/006, B01J3/02 - B01J3/08; Measures taken in conjunction with the process to be carried out, e.g. safety measures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/03Pressure vessels, or vacuum vessels, having closure members or seals specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/524Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from polymer precursors, e.g. glass-like carbon material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/6224Fibres based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62272Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on non-oxide ceramics
    • C04B35/62277Fibres based on carbides
    • C04B35/62281Fibres based on carbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62839Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62889Coating the powders or the macroscopic reinforcing agents with a discontinuous coating layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62892Coating the powders or the macroscopic reinforcing agents with a coating layer consisting of particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63472Condensation polymers of aldehydes or ketones
    • C04B35/63476Phenol-formaldehyde condensation polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/42Powders or particles, e.g. composition thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/025Apparatus characterised by their chemically-resistant properties characterised by the construction materials of the reactor vessel proper
    • B01J2219/0272Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00853Uses not provided for elsewhere in C04B2111/00 in electrochemical cells or batteries, e.g. fuel cells
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00862Uses not provided for elsewhere in C04B2111/00 for nuclear applications, e.g. ray-absorbing concrete
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to electrode materials such as lithium ion batteries, lithium ion capacitors, fuel cells, solar cells, other primary batteries, secondary batteries, steel making, refining and electrolysis, diffusion layers, heat dissipation materials, crystals such as crystalline silicon and silicon carbide.
  • Graphite materials are chemically stable, have excellent electrical and thermal conductivity, and have excellent mechanical strength at high temperatures, so they are widely used for steelmaking electrodes, electrodes for arc melting / reduction of high-purity quartzite, and aluminum refining electrodes.
  • Graphite has a crystal structure formed by stacking carbon hexagonal network planes on which carbon hexagonal rings are grown by SP2 hybrid orbitals of carbon atoms, and is classified into hexagonal and rhombohedral depending on the stacking form.
  • the carrier concentration and mobility of free electrons, holes, etc. in the carbon hexagonal network surface is high, and it exhibits good electrical and thermal conductivity.
  • natural graphite produced in nature is a polycrystal, it is broken at the interface of crystal grains and is produced in the form of flakes, which cannot be obtained as a lump with sufficient hardness and strength. Therefore, natural graphite is generally classified according to its particle size and used as an aggregate (filler).
  • An artificial graphite material which is an artificial graphite material, is produced by mixing fillers and binders, which are aggregates, and molding, carbonizing and graphitizing. It is essential that both the filler and the binder have a high carbonization yield that remains as carbon after carbonization firing, and an appropriate one is selected depending on each application.
  • filler calcined petroleum coke, calcined pitch coke, natural graphite, calcined anthracite, carbon black, etc. are used. These fillers are mixed with coal tar pitch, coal tar, polymer resin material, etc., and molded into a desired shape by methods such as extrusion, casting, and pressing.
  • the graphite crystal structure is developed and graphitized by firing at a high temperature of 2500 ° C. or higher.
  • constituent elements other than carbon such as hydrogen and nitrogen, are decomposed and generated as moisture, carbon dioxide, hydrogen, and hydrocarbon gas from the raw material, so that the firing temperature is controlled at a low speed. It takes a very long production time of ⁇ 20 days, 5-10 days for cooling, and 15-30 days in total.
  • Graphitization is produced by conducting heating in a large-scale furnace such as an Atchison resistance heating furnace. In the graphitization treatment, it takes 2 to 7 days for current heating, 14 days for cooling, and a total period of 16 to 21 days. When the raw materials, molding, carbonization firing, and graphitization are combined, a manufacturing period of about 2 months is required (Non-patent Document 1).
  • the shape of the filler added during the molding process is easy to align, and the crystallinity increases with carbonization and graphitization, increasing the anisotropy, and accordingly the bulk density and mechanical strength. Tends to decrease.
  • Both fillers and binders used are hydrocarbon-based substances that carbonize after heat treatment, but they are easily graphitizable due to their chemical structure and non-graphitizable due to cross-linking of benzene rings in the structure.
  • the material is roughly divided.
  • Densification is achieved by using graphitizable fillers such as mesocarbon microbeads made from mesophase extract, gilsonite coke, and carbon beads, adjusting their particle size distribution, and compatibility with binder pitch. Improvement, repeated impregnation treatment, etc.
  • graphitizable fillers such as mesocarbon microbeads made from mesophase extract, gilsonite coke, and carbon beads, adjusting their particle size distribution, and compatibility with binder pitch. Improvement, repeated impregnation treatment, etc.
  • isotropic properties it is effective and is a common method to perform isotropic pressing with a cold isostatic pressing device in the molding stage.
  • the material once graphitized has been once impregnated with a binder pitch and repeatedly graphitized. In this case, the production period is 2 to 3 months. There is an extremely long time required.
  • the raw materials used are liquid and solid, and liquid phase-solid phase reaction and solid phase reaction are dominant in the molding, carbonization and graphitization processes. proceed.
  • the elements such as hydrogen, oxygen, and nitrogen are dissipated from hydrocarbon substances, and the benzene ring network gradually expands, and the hexagonal carbon surface grows and becomes closer to the graphite crystal structure. Then, since the reaction is in a solid phase, a high temperature of 2500 ° C. or higher and an extremely long reaction time are required.
  • Carbon fiber made from resin such as polyacrylonitrile (PAN), coal, and petroleum pitch as raw materials is carbonized and graphitized by heat treatment that is drawn into a fiber at the polymer material stage.
  • boron or rare earth elements or their compounds are vapor-deposited or coated on a polyimide film or a carbonized polyimide film, and after laminating a plurality of sheets, the film is perpendicular to the film surface in an inert atmosphere at a temperature of 2000 ° C. or higher.
  • a highly oriented graphite film with high crystallinity can be produced by firing while applying pressure, but the thickness is limited to about several millimeters (Patent Document 1).
  • Method for producing graphite-based material by vapor phase growth There is a method of producing carbon and graphite materials by vapor phase growth by using a reaction vessel such as a CVD (Chemical Vapor Deposition) apparatus using hydrocarbons and hydrogen gas as raw materials and bringing them into contact with a metal catalyst at a high temperature.
  • a reaction vessel such as a CVD (Chemical Vapor Deposition) apparatus using hydrocarbons and hydrogen gas as raw materials and bringing them into contact with a metal catalyst at a high temperature.
  • Examples of the carbon material manufactured by the vapor deposition method include vapor grown carbon fiber, carbon nanotube, carbon nanohorn, and fullerene.
  • a catalyst-supporting base material is prepared by suspending a transition metal oxide having a size of several hundred angstroms in a solvent such as alcohol, spraying the base material, and drying.
  • a solvent such as alcohol
  • a hydrocarbon gas By putting this base material in a reaction vessel and flowing a hydrocarbon gas at a temperature of about 1000 ° C., carbon fibers grow from the surface of the transition metal on the base material by a gas phase reaction.
  • an organic transition metal compound gas and a hydrocarbon gas are mixed and passed through a reaction vessel at about 1000 ° C. (Patent Document 2).
  • a graphitized fiber is obtained by subsequently heat-treating the carbon fiber obtained by vapor phase growth at a high temperature of 2000 ° C. or higher in a graphitization furnace (Patent Document 3).
  • a reaction temperature of around 2000 ° C. is required, but in this temperature range, the transition metal as a catalyst is liquefied and vaporized, and the function of the catalyst is not expressed. Therefore, it is common to graphitize separately after carbonization at low temperature.
  • Carbon nanotube A carbon nanotube is a very small substance having an outer diameter on the order of nm, in which a carbon hexagonal network surface of several atomic layers has a cylindrical shape, and was discovered in 1991 (Non-patent Document 1). These carbon nanotubes are known to exist in cathode deposits produced by arc discharge of carbon materials such as graphite, and carbon materials such as graphite are used as anodes, heat resistant conductive materials as cathodes, and cathodes. As the deposit grows, it is manufactured by performing arc discharge while adjusting the gap between the anode and the cathode (Patent Document 4).
  • Carbon nanotubes are produced by arc discharge, but a large-scale reaction apparatus is required, and the yield that can be obtained is extremely low, and large-scale synthesis methods have been studied.
  • plasma is generated in a reaction vessel filled with an inert gas and containing carbon molecular species such as C, C2, and C3, and these small carbon molecules are generated.
  • the seed solidifies into soot, fullerenes, nanotubes, or dense solids in the next stage. For this reason, the yield of nanotubes is increased by optimizing the gas partial pressure in the chamber and the plasma temperature (Patent Document 5).
  • Patent Document 6 Method for precipitating highly oriented graphite in glassy carbon
  • Patent Document 6 a thermosetting resin is molded into a thick plate by hot pressing or the like, converted into glassy carbon by carbonization, and subsequently subjected to hot isostatic pressing at 2000 ° C. or higher. It is disclosed that graphite precipitates in a glassy carbon in the form of a cocoon in the middle of a Japanese confectionery. According to this method, it is necessary that the glassy carbon is limited to a thickness of about 6 mm that can be fired, and after the formation of graphite, the glassy carbon shell needs to be broken to take out graphite precipitates.
  • Si Composite material of artificial graphite and artificial silicon (Si)
  • Si can store about 10 times as much Li as graphite as a negative electrode for lithium ion batteries, but the volume expands to about 3 times due to such occlusion. Even the negative electrode agent breaks down. Therefore, it is difficult to put it into practical use as a stable battery negative electrode agent.
  • Si with a one-dimensional shape of sub-micron size (one-dimensional nanosilicon material, eg, Si nanowire, Si nanorod, etc.)
  • Non-patent document 2 Non-patent document 2.
  • porous graphite plates and sheets with high open porosity are required for secondary battery electrodes such as lithium ion batteries and hybrid capacitors, fuel cell electrodes, and diffusion plates. Then, since the material strength cannot be maintained, it has been necessary to apply it to a metal plate or the like as a slurry after being pulverized and granulated.
  • the vapor-grown carbon fiber production method using hydrocarbon gas as a raw material can be produced by a relatively simple process, but it is necessary to configure a gas-phase reaction chamber (reaction vessel) and a separate graphitization process is required. Therefore, there is a problem that the equipment cost becomes large in mass production.
  • the resulting material is in a fiber state with a diameter of 1 mm or less, and in order to give sufficient strength as a graphite member of the desired shape, it is combined with a binder such as impregnated or molded with resin, and again carbonized graphite. It was necessary to make it. Further, since the metal catalyst is an essential material for fiber formation, it is necessary to remove the added catalyst metal in order to achieve high purity.
  • the yield is extremely low, and in order to make a structural member, it is combined with a polymer material as an additive material, carbonized again, graphitized, or applied with slurry. It was necessary to dry.
  • liquid and solid raw materials are used to advance carbonization and graphitization in the solid phase.
  • 1) To develop a carbon hexagonal network surface (graphite crystal structure) Requires a very long production period of about two months at a maximum temperature of about 3000 ° C. 2) A complete graphite crystal structure cannot be obtained.
  • the anisotropy becomes strong and brittle (the surface direction is strong but the thickness direction is soft).
  • Open porosity There is a problem that it is difficult to produce a large porous body.
  • carbonization or graphitization is advanced in the gas phase (including radicals in plasma) using gas or solid materials, or graphite crystal structures such as carbon nanotubes, graphene, fullerenes, carbon nanofibers, carbon nanohorns, etc.
  • gas or solid materials or graphite crystal structures such as carbon nanotubes, graphene, fullerenes, carbon nanofibers, carbon nanohorns, etc.
  • a reaction vessel is required, the production efficiency is extremely low and mass production is difficult, and it is difficult to directly manufacture large shapes such as blocks, blocks, cylinders, uprights, and plates. There was a problem.
  • a container in which a granular material (calcined raw material) of an organic compound calcined so as to contain residual hydrogen is composed of a heat-resistant material (for example, it was sealed in a graphite container) and extended from the inside to the outside by performing a hot isostatic pressing process (HIP process) using an atmosphere pressurized with the container under predetermined conditions.
  • a flaky graphite crystal mass (hereinafter, also simply referred to as “the flaky graphite crystal mass of the present invention”) formed by aggregation of flaky graphite crystals can be produced.
  • the present invention has been completed by discovering that it is useful as an electrode material for batteries, hybrid capacitors, etc., and that such a production method has advantages such as efficiency and high productivity.
  • powdered silicon is mixed with a calcined raw material, and the maximum temperature reached in the HIP process is a temperature close to the melting point of Si (about 1320 ° C.) or higher. It is found that a one-dimensional shape nanosilicon (Si) material (fibrous Si nanowires or Si nanorods) is produced simultaneously with the production of the flaky graphite crystal mass of the present invention. completed.
  • a flaky graphite crystal aggregate formed by aggregating flaky graphite crystals is used as a raw material, and the pulverized product is dispersed in a solvent, ultrasonically applied, and centrifuged.
  • a flaky graphite crystal suitable for the production of a transparent conductive film for example, multi-layer graphene having a high crystallinity of about 10 nm or less, particularly, Multilayer graphene having a thickness of about 3.5 nm (about 10 layers or less) and / or that it is possible to produce crimped and / or roll-shaped deformed flaky graphite crystals, and completed the present invention did.
  • a transparent conductive film for example, multi-layer graphene having a high crystallinity of about 10 nm or less, particularly, Multilayer graphene having a thickness of about 3.5 nm (about 10 layers or less) and / or that it is possible to produce crimped and / or roll-shaped deformed flaky graphite crystals, and completed the present invention did.
  • the present invention (1) A method for producing a flaky graphite crystal mass in which flaky graphite crystals extending from the inside to the outside are assembled, and a powder of an organic compound calcined so as to contain residual hydrogen is prepared In a sealed container composed of a heat-resistant material, and hot isostatic pressing using a pressurized gas atmosphere together with the container. Manufacturing method in which the maximum temperature reached 900 ° C. or higher and lower than 2000 ° C., (2) The production method according to (1), wherein the maximum temperature reached is 1000 ° C.
  • the sealed container made of the heat-resistant material is a graphite sealed container
  • the residual hydrogen is 6500 ppm or more
  • the calcining temperature is 1000 ° C. or lower
  • the graphite sealed container has an open porosity of less than 20% and is of a screw type using triangular screws.
  • the organic compound is starch, cellulose, protein, collagen, alginic acid, danmar, kovar, rosin, guttaberca, natural rubber, cellulose resin, cellulose acetate, cellulose nitrate, cellulose acetate petitate, casein plastic, soybean protein Plastic, phenolic resin, urea resin, melamine resin, benzoguanamine resin, epoxy resin, diallyl phthalate resin, unsaturated polyester resin, bisphenol A type epoxy resin, novolac type epoxy resin, polyfunctional epoxy resin, alicyclic epoxy resin, alkyd resin , Urethane resin, polyester resin, vinyl chloride resin, polyethylene, polypropylene, polystyrene, polyisoprene, butadiene, nylon, vinylon, acrylic fiber , Rayon, polyvinyl acetate, ABS resin, AS resin, acrylic resin, polyacetal, polyimide, polycarbonate, modified polyphenylene ether, polyarylate, polysulfone, polyphenylene sulfide
  • any one of the production methods (10) The manufacturing method according to (9), wherein the spacer and the sleeve are composed of one or more selected from the group consisting of glassy carbon, diamond-like carbon, and amorphous carbon. (11) Mixing one or more carbon materials selected from the group consisting of carbon fiber, natural graphite, artificial graphite, glassy carbon, and amorphous carbon into the calcined organic compound particles.
  • a method for producing a graphite crystal mass by partially cleaving a flaky graphite crystal (13) A flaky graphite crystal mass formed by aggregation of flaky graphite crystals extending from the inside to the outside, (14) A graphite crystal mass obtained by partially cleaving the flaky graphite crystal of the flaky graphite crystal mass of (13) above, (15) Prepare a powder of an organic compound calcined so as to contain residual hydrogen, mix powdered silicon with the powder, put the mixture in a sealed container made of a heat-resistant material, and A one-dimensional shape nanosilicon material comprising performing a hot isostatic pressing process using a pressurized gas atmosphere, wherein the highest ultimate temperature in the hot isostatic pressing process is not less than 1320 ° C.
  • the flaky graphite crystal aggregate formed by aggregating flaky graphite crystals is a flaky graphite crystal mass formed by aggregating flaky graphite crystals extending from the inside to the outside.
  • an artificial graphite material excellent in crystallinity and the whole while maintaining high crystallinity which has been difficult to produce conventionally isotropic graphite particles or graphite structures useful for fuel cells, capacitors and the like.
  • the production period of artificial graphite material, which was conventionally required for 2 to 3 months, can be shortened to several hours, which greatly improves productivity.
  • the cost can be reduced, and the cost reduction of the applications where the carbon materials such as fuel cells and capacitors occupy a large part of the cost will progress, and the spread will be promoted.
  • flaky graphite crystals and / or crimped bodies and / or roll-shaped deformed bodies thereof can be efficiently produced. Further, these flaky graphite crystals and / or crimps and / or rolls thereof are useful as a transparent conductive film, a conductive film, a thermally conductive film, and an additive thereof.
  • FIG. 3 is a conceptual diagram (cross-sectional view) showing a mechanism for generating vapor-grown graphite on the outer surface and inside of a calcined raw material in a spherical state according to an embodiment of the present invention.
  • FIG. 4 is a conceptual diagram (cross-sectional view) illustrating a mechanism in which vapor-grown graphite is generated on the outer surface of a calcined raw material in a spherical state and a bulk graphite structure is generated according to an embodiment of the present invention.
  • Example 1 A drawing-substituting photograph showing an electron microscopic image of the surface of the product of sample number 1.
  • FIG. 16 is a drawing-substituting photograph showing the high-magnification image of FIG. 15.
  • Example 1 A drawing-substituting photograph showing an electron microscopic image of a fracture surface of the product of sample number 1.
  • Example 1 is a drawing-substituting photograph showing an electron microscopic image of a fracture surface of the product of sample number 5.
  • Example 1 is a drawing-substituting photograph showing an electron microscopic image of a fracture surface of the product of sample number 6.
  • Example 1 is a measurement result of Raman spectrum of sample number 1.
  • Example 1 is a measurement result of Raman spectrum of sample number 5.
  • FIG. 2 is a drawing-substituting photograph showing an electron microscopic image of the surface of the product of Example 2.
  • FIG. The bar in the photograph is 20 ⁇ m.
  • Example 9 is a scanning electron microscope (SEM) photograph of the sample obtained in Example 8. A small amount of vapor-grown graphite was formed on the surface of the spherical calcined raw material, and carbon nanotubes were also observed. 4 is an SEM photograph of the sample obtained in Example 8. In the photo, the white color appears to be silicon, maintaining the particle state. The external appearance photograph which shows the condition after a process of the sample heat-pressed in Example 9. FIG. The graphite crucible is opened and the inside of the graphite crucible body and the inner surface of the graphite crucible upper lid are photographed.
  • the part that appears white is a felt-like product
  • the part that appears black is a composite material of vapor-grown graphite and a fibrous silicon-based compound.
  • SEM photograph of felt-like product that appeared white in the previous figure. Enlarged drawing of the previous figure.
  • the SEM photograph of the part which the spherical and disk-like thing united and formed in the nano-sized fiber contained in the felt-like product which looked white in FIG. SEM photograph of a product similar to the previous figure.
  • 9 is an SEM photograph of vapor-grown graphite and silicon compound produced in Example 9. A large number of silicon produced in a rod shape is observed. An enlarged view of the rod-shaped silicon in the part shown in the previous figure.
  • Example 9 is an SEM photograph of vapor-grown graphite and silicon compound produced in Example 9. A mode that many fibrous silicon compounds are producing
  • the bar-like portion observed by the SEM is mainly composed of Si.
  • the EDX measurement result of the part which the spherical-shaped and disk-like thing united and formed in the nano-sized fiber contained in the felt-like product which looked white in FIG. The upper part of the figure shows the SEM and characteristic X-ray map, and the lower part shows the qualitative and quantitative analysis results of EDX.
  • a similar bead shape can be confirmed in the characteristic X-ray map of SEM and Si, O, but since it is not observed in the characteristic X-ray map of C, the bead-like product is composed of Si and O. I was sure that.
  • FIG. 6 is a schematic diagram showing the structure of a graphite crucible and a glassy carbon spacer used in Example 11 and a sample filling state. It is an external appearance photograph which shows the production
  • FIG. 5 is an SEM photograph of an end portion of a film-like product generated in Example 11. The SEM photograph which expanded the part which looks flat in FIG.
  • FIG. 4 is an SEM photograph of the product of Example 13.
  • the enlarged drawing of FIG. The SEM photograph of the graphene laminated carbon nanofiber (CNF) produced in Example 15. A mode that many graphene sheets are laminated
  • 18 is an SEM photograph of graphene laminated CNF produced in Example 16. Enlarged drawing of the previous figure.
  • FIG. 18 is an SEM photograph of the flaky graphite crystal mass of the present invention produced in Example 17.
  • 19 is a transmission electron microscope (TEM) photograph of a crimped flaky graphite crystal produced in Example 18 (multilayer graphene shrinks in a bowl shape).
  • 20 is a TEM photograph of a flaky graphite crystal crimp produced in Example 18 (multi-layer graphene shrinks in a cage shape).
  • 19 is a TEM photograph showing a part of the surface of a flaky graphite crystal (multilayer graphene) produced in Example 18.
  • FIG. This is an enlarged drawing of the flaky graphite crystal (multilayer graphene) in the previous figure, capturing the lattice image of the edge.
  • a graphite crystal lump obtained by partially cleaving a flaky graphite crystal of the flaky graphite crystal lump of the present invention (Example 19). Enlarged drawing of the previous figure.
  • the closed container (for example, a graphite crucible) made of the heat-resistant material according to the present invention is capable of performing a CVD reaction with a gas such as hydrogen, hydrocarbon, carbon monoxide, or water generated from a calcined raw material during HIP processing. It plays the role of a reaction vessel for generating. Since it is necessary to cause a chemical reaction without diffusing the reaction gas generated inside while maintaining an isotropic high pressure due to the gas pressure, it is necessary to use an appropriate material and a sealed structure. If the material is too dense, a pressure difference between the inside and outside of the container (for example, crucible) is generated, and the container (for example, crucible) is explosively destroyed. On the other hand, if the material is too porous, the reaction gas generated inside diffuses outside the container (for example, crucible), so that the efficiency of the chemical reaction is lowered.
  • a gas such as hydrogen, hydrocarbon, carbon monoxide, or water generated from a calcined raw material during HIP processing. It
  • Examples of the heat resistant material constituting the container include graphite, ceramics such as alumina, magnesia, and zirconia, and metals such as iron, nickel, zirconium, and platinum.
  • a graphite material is suitable for the material of the container (for example, crucible).
  • the porosity of the graphite material is important for efficiently generating a chemical reaction inside the container (for example, crucible), and those having an open porosity (apparent porosity) of less than about 20% can be suitably used.
  • the reaction gas diffuses outside the container (for example, crucible), so that the concentration necessary for producing graphite cannot be maintained.
  • the open porosity of the container for example, crucible
  • the open porosity of the container for example, crucible
  • a screw-type graphite crucible should be used in order to efficiently fill the inside of the calcination raw material into the crucible and take out the product after the HIP treatment.
  • a screw part is engraved by a predetermined tapping process on the inner wall 2a of the upper part of the crucible body 2 and the outer peripheral part 1a of the crucible lid part 1 so that the screw part fits the crucible lid part 1 after filling the calcined raw material 3. Rotate to and seal by tightening.
  • the spacer 4 made of a hard carbon material having a low open porosity is used to cover all (or part of) the bottom and top of the calcined raw material 3
  • the dissipation of the reaction gas generated from the calcined raw material 3 from the top and bottom of the crucible can be controlled.
  • the sleeve 5 made of a hard carbon material having a low open porosity is used to cover the whole (or part) of the side surface portion of the calcined raw material 3 (FIG.
  • the reaction efficiency can be increased by performing the hot isostatic pressing.
  • the carbon material constituting the spacer and the sleeve include glassy carbon, diamond-like carbon, and amorphous carbon, and one or more of these can be used at the same time.
  • the open porosity of the carbon material is usually less than about 0.5%.
  • screws in the screw-type graphite crucible include triangular screws (screws whose thread cross section is close to a regular triangle), square screws, and trapezoidal screws. preferable.
  • the calcining temperature, the amount of residual hydrogen in the calcined raw material, the calcined raw material can be controlled by the shape, HIP treatment temperature, pressure, temperature increase / decrease rate, and the like.
  • the amount of residual hydrogen is such that, during the HIP process, from the viewpoint of production of the object of the present invention, the amount of hydrogen is sufficient to generate hydrogen, hydrocarbons, carbon monoxide, water and other gases necessary for the CVD reaction. There is no hindrance, usually about 6500 ppm or more, preferably about 10000 ppm or more, more preferably about 20000 ppm or more.
  • the calcining raw material in which hydrogen remains can be obtained by calcining a powder of an organic compound. In this case, the amount of residual hydrogen usually changes according to the temperature of calcination. In other words, the amount of residual hydrogen decreases as the calcining temperature increases.
  • a preferable calcination temperature is about 1000 ° C.
  • the calcined raw material in which hydrogen thus obtained remains is subjected to HIP treatment under appropriate conditions. Vapor-grown graphite is obtained when the temperature during HIP treatment is about 900 ° C. or higher, preferably about 1000 ° C. or higher. However, if the temperature is too high (eg, about 2000 ° C.), the target object is damaged by etching with excited hydrogen. (FIG. 19). Therefore, in the present invention, the maximum temperature achieved during the HIP process needs to be about 900 ° C. (preferably about 1000 ° C.) or more and less than about 2000 ° C.
  • the maximum temperature achieved during the HIP treatment is in the range of about 1200 ° C. to about 1900 ° C., preferably about 1400 ° C. to about 1800 ° C.
  • the highest temperature achieved during the HIP treatment needs to be higher than the calcining temperature, and is usually a temperature that is 100 ° C. or higher, preferably 400 ° C. or higher.
  • An appropriate value as the maximum ultimate pressure at the time of HIP processing varies depending on the particle size of the calcined raw material, but is usually in the range of about 1 MPa to about 300 MPa, preferably about 10 MPa to about 200 MPa, preferably about 30 MPa to about 200 MPa.
  • the HIP processing can be suitably performed.
  • the particle size is large, a higher pressure is required as the maximum pressure, whereas when the particle size is small, a smaller pressure is sufficient.
  • the maximum ultimate pressure is preferably 70 MPa or more, but the particle size is about 1 ⁇ m or less (for example, carbon In the case of black or the like, the HIP treatment can be suitably performed even at about 10 MPa.
  • the pressure is first raised to a predetermined pressure (pressure preceding pattern) before raising the temperature to near the calcined temperature.
  • the temperature should be raised to near the calcining temperature after the firing raw material is not scattered, and then the temperature is increased and pressurized as necessary to reach the maximum temperature and the maximum pressure.
  • An example of the predetermined pressure is about 70 MPa.
  • the particle size is as small as about 1 ⁇ m or less, the HIP process can be performed efficiently without requiring the above-described pressure advance pattern.
  • the flaky graphite crystal mass which is the object of the present invention thus obtained has a high crystallinity.
  • Its true density is usually about 1.85 g / cm 3 or more, preferably about 2.0 g / cm 3 or more, more preferably about 2.1 g / cm 3 or more, more preferably about 2.2g / Cm 3 or more flaky graphite crystal mass with good crystallinity.
  • about means that an error of about ⁇ 1% is allowed.
  • the particle size of the calcined raw material is large, as will be described later, the production ratio of flaky graphite crystal lumps tends to decrease. Therefore, if the true density of the product after HIP treatment is measured as it is, The whole object may have a lower true density value than the above.
  • the total porosity of the flaky graphite crystal mass is preferably 40% or more, more preferably 50% or more. Flaky graphite crystal masses that simultaneously satisfy any of the above-mentioned “preferable ranges” for the true density and total porosity among the flaky graphite crystal masses satisfy only one of the true density and the total porosity. It is a more preferable flaky graphite crystal mass than the flaky graphite crystal mass.
  • true density of those 1.85 g / cm 3 or more at and and the total porosity of 40% or more
  • true density is not less 2.0 g / cm 3 or more and the total porosity of 50 % Or more, but not limited thereto, and any other combination is within the scope of the present invention.
  • FIG. 1 The mechanism by which vapor-grown graphite is produced from the calcined raw material is shown in FIG.
  • a gas such as hydrogen, hydrocarbon, carbon monoxide, carbon dioxide, etc. from the inside of the calcined raw material particles 6 heated to a temperature higher than the calcining temperature. 6a occurs.
  • the gas 6a reaches the surface of the calcined raw material particles 6 while passing through the pores in the material.
  • vapor-grown graphite 7 is generated physicochemically by being excited by temperature and pressure.
  • the calcined raw material shrinks due to the generation of reaction gas, and forms vapor-grown graphite on the outside and inside.
  • the graphite crystal grows roughly radially from the surface 6 s of the calcined raw material particles 6, and the graphite hexagonal network.
  • the surface 7 grows in the in-plane direction 7a (a-axis direction of the graphite crystal).
  • the graphite hexagonal mesh surface (graphene) 7 formed at the initial stage of the reaction starts from the graphite hexagonal mesh surface 7 in the direction of 7a while connecting the carbon, and at the same time, the graphite hexagonal mesh surface 7 is laminated in the direction of 7c.
  • the structure grows.
  • the high pressure pressurized medium gas exhibits a shielding effect on the graphene surface and prevents the graphene from adhering to and joining to each other and making it multi-layered, the growth of graphene is further suppressed in the 7c direction. As a result of growth in the 7a direction, it is considered that the flaky graphite crystal mass of the present invention is formed.
  • the shape of the calcined raw material to be subjected to HIP treatment can be various shapes such as spherical, elliptical, vertical columnar, cylindrical, fibrous, and irregular lump (FIG. 10).
  • the graphite hexagonal mesh surface 7 spreads radially from the surface 6s of the calcined raw material particles 6 in the direction of 7a while connecting the carbon, and at the same time, the graphite hexagonal mesh surface 7 is laminated in the direction of 7c and the graphite structure. Will grow.
  • a highly anisotropic graphite material could be produced (FIG. 11)
  • the growth of the graphite hexagonal mesh surface 7 was directed in the direction of 7a and the growth toward the 7a was substantially radially extended.
  • a flaky graphite crystal mass (including isotropic graphite particles and a bulk graphite structure) formed by agglomerating flaky graphite crystals extending from the inside to the outside can be obtained.
  • Such flaky graphite crystal mass may be in the form of isotropic graphite particles, or may be a graphite structure in which they are connected in bulk.
  • the degree of generation of vapor-grown graphite inside and outside the calcined raw material 6 is determined.
  • vapor-grown graphite 7 is generated on the outer surface and inside of the calcined raw material 6 to increase the crystallinity as bulk graphite and improve the true density. I can make it.
  • the production mechanism of the vapor growth graphite of the present invention will be described in more detail.
  • the calcined raw material is isotropically pressurized with a pressure medium such as argon or nitrogen in the HIP process. Therefore, a high-pressure, high-density phase is first formed around the calcined raw material grains in the initial stage of the HIP process.
  • a pressure medium such as argon or nitrogen in the HIP process. Therefore, a high-pressure, high-density phase is first formed around the calcined raw material grains in the initial stage of the HIP process.
  • the HIP treatment temperature is higher than the calcining temperature, gas generation from the calcined raw material starts, but the diffusion coefficient of gas into the high-pressure and high-pressure medium is reduced, so a high concentration of reaction gas around the calcined raw material. Regions (hydrogen, hydrocarbons, carbon monoxide, etc.) are formed. Since the HIP process is isotropic pressurization, the reaction gas region is formed uniform
  • the HIP treatment temperature is higher, specifically, when it reaches about 900 ° C. or higher, it is excited to cause a so-called thermal CVD reaction to deposit vapor-grown graphite.
  • a reaction gas is generated around a calcined raw material in a graphite crucible container using a HIP apparatus, which is a CVD reaction performed by supplying a reaction gas to the substrate surface using a CVD apparatus, a plasma CVD apparatus or the like. It is the characteristic reaction mechanism of the present invention to be carried out in the region. Accordingly, in the case of a spherical calcined raw material, vapor-grown graphite is generated almost radially from the surface of the sphere as shown in FIG. 15, and in the case of an irregular shaped calcined raw material, each of the calcined raw materials is shown in FIG. Vapor-grown graphite grows from the surface in a similar manner.
  • the reason why there is an optimal range for the calcining temperature of the raw material is that it is necessary to configure appropriate raw material gas species such as hydrocarbon, hydrogen, carbon monoxide, etc. in order to efficiently generate graphite by the CVD reaction. For example, when the calcination temperature exceeds about 1000 ° C., the remaining hydrogen is reduced and efficient graphite precipitation does not occur.
  • the reason why the HIP processing temperature is in an appropriate range is that it is difficult to cause thermal excitation of the generated gas at temperatures lower than about 900 ° C., and it is difficult for the CVD reaction to proceed. This is because it has been found that etching of precipitated graphite by hydrogen occurs.
  • the CVD reaction mainly occurs on the surface of the particle. Therefore, when the particle size is large, the ratio of the surface area to the volume decreases, and the vapor-grown graphite occupies the resulting material. The amount of is reduced. Therefore, the production ratio of the vapor-grown graphite 7 as the bulk graphite material can be increased by using a raw material having a small particle size (FIG. 14). Therefore, from the viewpoint of production efficiency, when a spherical resin is used, it is preferable to use one having a particle size (average) of about 100 ⁇ m or less.
  • the target material can be easily selected by selecting particles larger than 100 ⁇ m as necessary. Obtainable.
  • the raw material after calcination is pulverized and classified in advance. What is necessary is just to set it as the calcining raw material of desired size.
  • thermoplastic resin is obtained as a foam (brittle sponge-like product) after calcination, when the foam is subjected to HIP treatment, it is pulverized in advance and then classified to obtain a calcination of a desired size. Use as raw material.
  • organic compound used in the present invention examples include the following. Specifically, starch, cellulose, protein, collagen, alginic acid, dammar, kovar, rosin, guttavelca, natural rubber, etc. for natural organic polymers, cellulose resin, cellulose acetate, cellulose nitrate, cellulose for semisynthetic polymers Acetate petitate, casein plastic, soy protein plastic, synthetic resin, thermosetting resin such as phenol resin, urea resin, melamine resin, benzoguanamine resin, epoxy resin, diallyl phthalate resin, unsaturated polyester resin, bisphenol A type Epoxy resin, novolac-type epoxy resin, polyfunctional epoxy resin, alicyclic epoxy resin, alkyd resin, urethane resin, etc., and polyester resin (polyethylene terephthalate) that is thermoplastic resin (PET) resin, polytrimethylene terephthalate resin, polybutylene terephthalate resin, polyethylene naphthalate resin, polybutylene naphthalate resin
  • polystyrene resin polystyrene resin
  • hydrocarbon-based raw materials are fired at a predetermined heating rate and calcining temperature in an inert atmosphere such as in a nitrogen stream without being burned with oxygen and released as carbon dioxide or carbon monoxide.
  • an externally heated batch furnace using electricity, gas, etc. a high continuous multi-tube furnace, an internal heating rotary kiln furnace, or a swing kiln furnace is used.
  • Graphite has high conductivity such as electricity and heat, and is frequently used as a current collector and collector.
  • these devices were manufactured by mixing materials that fulfill their main functions, graphite, organic binders, etc., and then heating, drying, and pressing.
  • these functional materials are mixed with the calcining raw material to be uniform and subjected to HIP treatment to generate vapor-grown graphite, and these functional materials are uniformly dispersed and fixed in the vapor-grown graphite. It becomes possible to configure the device.
  • the calcined raw material is mixed with metal silicon, silicon oxide, titanium oxide, zinc oxide, and the like to make it uniform, and after filling the graphite crucible and heat-treating it with isotropic gas pressure, A composite material in which these functional materials are uniformly dispersed in the grown graphite can be produced.
  • the flaky graphite crystal mass of the present invention is prepared by preparing a graphite intercalation compound (in which a sulfate ion, an alkali metal organic complex, etc. penetrates between graphite layers) using this as a host material, and rapidly heating it. , A graphite crystal lump obtained by partially cleaving flaky graphite crystals can be obtained. That is, the intercalation of ions or the like between the graphite layers expands the interlayer of the flaky graphite crystals constituting the flaky graphite crystal mass, thereby generating stress at various points of the flaky graphite crystal mass.
  • the volume rapidly expands in the c-axis direction of the graphite crystal.
  • the cleaved graphite crystal block is composed of multilayer graphene and graphene in which several layers of graphene are laminated, it is useful as an additive for a transparent conductive film having both light transmittance and electrical conductivity.
  • the graphite intercalation compound is stirred by adding the graphite crystal mass of the present invention obtained above to a mixed solution of concentrated sulfuric acid and concentrated nitric acid, a tetrahydrofuran solution of alkali metal and condensed polycyclic hydrocarbon, etc. Can be prepared.
  • the method of rapidly heating the graphite intercalation compound thus obtained is not particularly limited.
  • the intercalation compound is loaded into a ceramic magnetic crucible and the like, and is placed in a heated electric furnace. Etc.
  • the temperature of the electric furnace is preferably in the range of 600 ° C. to 1000 ° C., for example. Through such an operation, the thickness of the flaky graphite crystal becomes about 0.35 to about 9 nm.
  • powdered silicon used as a raw material examples include those having a particle size of less than 500 ⁇ m, preferably less than 100 ⁇ m, more preferably less than 10 ⁇ m, still more preferably less than 5 ⁇ m, and even more preferably less than 1 ⁇ m.
  • a particle size of less than 500 ⁇ m means that 90% or more, preferably 99% or more, more preferably 99.9% or more of all particles are less than 500 ⁇ m, The same is true for “less than 100 ⁇ m”, “less than 10 ⁇ m”, “less than 5 ⁇ m”, and “less than 1 ⁇ m”.
  • Whether or not these criteria are satisfied is determined by calculating the ratio of particles that satisfy the criteria from the results of actual observation of the particle size of particles in a predetermined range using an electron microscope such as a scanning electron microscope (SEM). It can be judged by doing.
  • Mixing of the calcined raw material and powdered silicon can be performed by a conventional method using a ball mill, a powder mixer, or the like. Alternatively, it is possible to obtain a mixture of the calcined raw material and powdered silicon by adding relatively coarse silicon scraps to the calcined raw material and mixing them while pulverizing them in a mortar or the like.
  • the maximum temperature at the time of HIP treatment includes vapor phase growth reaction by silane gas generated by reaction of hydrogen generated from calcined raw materials with silicon, and formation of an interface between silicon liquid layer and solid phase by melting silicon. Therefore, it is necessary to carry out at a temperature of about 1320 ° C. or higher, which is close to the melting point of silicon.
  • the upper limit of the maximum temperature is less than 2000 ° C. as in the first aspect of the present invention.
  • a preferred maximum temperature range is from about 1350 ° C. to about 1800 ° C., more preferably from about 1400 ° C. to about 1600 ° C.
  • a preferable range of the maximum ultimate pressure at the time of HIP treatment is about 1 to about 300 MPa, more preferably about 5 to about 200 MPa.
  • the one-dimensionally shaped nanosilicon material according to the present invention is a fibrous vapor-grown silicon having a submicron size in diameter, more specifically, a Si nanowire having a diameter of about 10 to about 100 nm and / or a diameter. Includes Si nanorods of about 100 nm to less than about 1 ⁇ m. Its length is several ⁇ m to several mm. Other conditions and the like are as described in the first aspect of the present invention. That is, the description of the first aspect can be applied to the second aspect as long as it does not contradict the description of the second aspect.
  • a flaky graphite crystal aggregate formed by agglomerating flaky graphite crystals is used as a raw material, and the pulverized product is dispersed in a solvent, applied with ultrasonic waves, and centrifuged. The supernatant is collected, and the solvent is distilled off from the supernatant to produce flaky graphite crystals and / or their crimps and / or rolls.
  • the pressurized medium gas adheres to the surface of the flaky graphite crystal aggregate, if desired, the flaky graphite crystal aggregate or a pulverized one thereof is subjected to heat treatment (for example, at a temperature of 100 ° C. or higher).
  • the flake graphite crystal aggregate may be pulverized after being thinned into a thinner layer before being pulverized.
  • the flaky graphite crystal aggregate may be pulverized and then thinned.
  • the flaky graphite crystal aggregate formed by aggregating flaky graphite crystals includes any of a large number of flaky graphite crystals aggregated without being laminated together, and the shape and form thereof are not limited.
  • a bulky graphite structure comprising the graphite particles having a size of about 1 to about 1000 ⁇ m, or about 1 to about 100 ⁇ m, and the size of the flaky graphite crystals constituting the graphite particles is Alternatively, the width is about 0.1 to 500 ⁇ m, or about 0.1 to about 50 ⁇ m, and the thickness is about 0.35 to about 100 nm, preferably about 0.35 to about 10 nm, more preferably about 0.35 to about 3.5 nm, or about 1 to about 100 nm.);
  • the axially grown state is such that flaky graphite crystals are A film covering the surface as a whole (the size of the flake graphite crystals constituting the aggregate is about 1 to about 500 ⁇ m in diameter or width, or about 1 to about 50 ⁇ m, and the thickness is about 0 35 to about 100 nm, preferably about 0.35 to about 10 nm, more preferably about 0.35 to about 3.5 nm, or about 1 to about 100 nm); (C) fibrous flaky graphite crystals The aggregate is in a state in which flaky graphite crystals have grown in the a-axis direction of the graphite crystal from the center of the fiber to the outside, and a large number of such flaky graphite crystals are connected to the fiber as a whole.
  • the size of the aggregate is 1 to 500 ⁇ m in diameter or width, or 1 to 50 ⁇ m, the length is 0.01 to 30 mm, and the flakes constituting the aggregate Graphite crystals have a diameter or width of 0.1 to (00 ⁇ m, or 0.1 to 50 ⁇ m, thickness is 1 to 100 nm);
  • D Aggregation of fibrous flaky graphite crystals, and flaky graphite crystals are laminated in the c-axis direction of graphite crystals What constitutes a fibrous aggregate as a whole (referred to as graphene-laminated carbon nanofiber (CNF).
  • CNF graphene-laminated carbon nanofiber
  • the size of this aggregate is about 0.2 to several ⁇ m in diameter or width, length About 10 ⁇ m to several mm, and the thickness of the flaky graphite crystals constituting the aggregate is about several nm).
  • the “flaky graphite crystal” constituting the flaky graphite crystal aggregate can also contain a single layer of graphene.
  • Another preferable example of the “flaky graphite crystal” is a few-layer graphene (Few-Layer Graphene: 10 layers having a thickness of about 0.35 nm to about 3.5 nm) having the above-described size and the like. Multilayer graphene to the extent).
  • flaky graphite crystal aggregates are physically treated with a dry or wet mechanical pulverizer, mixer, blender, ball mill, vibration mill, ultrasonic mill, homogenizer, ultrasonic homogenizer, ultrasonic crusher, mortar, etc. It can be implemented by fragmenting.
  • the wet pulverization can be performed, for example, by physically pulverizing the flaky graphite crystal aggregate in a solvent with a rotary mixer or the like.
  • the solvent the same solvent as that used to disperse the pulverized graphite crystal aggregate can be used.
  • the ultrasonic wave can be immediately applied after wet pulverization.
  • the thinning can be performed by peeling, cleaving, etc., the flaky graphite crystal aggregate or the above-mentioned finely divided piece.
  • the cleavage can be performed, for example, in the same manner as the partial cleavage of the flaky graphite crystal mass as described above.
  • Solvents that can be used in the third aspect of the invention include 1,2 dichloroethane, benzene, thionyl chloride, acetyl chloride, tetrachloroethylene carbonate, dichloroethylene carbonate, benzoyl fluoride, benzoyl chloride, nitromethane, nitrobenzene, acetic anhydride, oxy Phosphorus chloride, benzonitrile, selenium oxychloride, acetonitrile, tetramethylsulfone, dioxane, carbonic acid-1,2-propanediol, benzyl cyanide, ethylene sulfite, isobutyronitrile, propionitrile, dimethyl carbonate, propylene carbonate, ethyl Carbonates such as methyl carbonate and ethylene carbonate, phenyl phosphite difluoride, methyl acetate, n-butyronitrile, acetone, eth
  • a dispersant can be added to these solvents in order to increase the amount of flaky graphite crystals dispersed or to prevent aggregation of the flaky graphite crystals in the solvent.
  • a dispersing agent in addition to a surfactant, it has an electric attractive force such as weak binding force and Coulomb force with respect to graphene, and has a hydrophilic functional group such as a hydroxyl group or a carboxy group in its structure. You can list what you have.
  • Examples of the latter include, for example, phenolic monomers such as phenol and naphthol having a hydroxyl group bonded to the benzene nucleus, polymers, monomers having a carbon double bond such as styrene, propylene, acrylonitrile, and vinyl acetate, polymers, collagen, and keratin. , Proteins such as actin, myosin, casein, albumin, GFP, and RFP, and amino acids such as glycine, tyrosine, threonine, and glutamine.
  • phenolic monomers such as phenol and naphthol having a hydroxyl group bonded to the benzene nucleus
  • polymers monomers having a carbon double bond such as styrene, propylene, acrylonitrile, and vinyl acetate
  • polymers collagen, and keratin.
  • Proteins such as actin, myosin, casein, albumin, GFP, and RFP, and amino acids
  • surfactants include fatty acid salts (for example, sodium dodecanoate), cholates (for example, sodium cholate), monoalkyl sulfates (for example, sodium lauryl sulfate), alkyl polyoxyethylene sulfate, alkylbenzene sulfone.
  • fatty acid salts for example, sodium dodecanoate
  • cholates for example, sodium cholate
  • monoalkyl sulfates for example, sodium lauryl sulfate
  • alkyl polyoxyethylene sulfate alkylbenzene sulfone.
  • Anionic surfactants such as acid salts (for example, sodium dodecylbenzenesulfonate) and monoalkyl phosphates , Cationic surfactants such as alkyltrimethylammonium salts (eg cetyltrimethylammonium bromide), dialkyldimethylammonium salts (eg didecyldimethylammonium chloride), alkylbenzyldimethylammonium salts (eg alkylbenzyldimethylammonium chloride) (Cationic surfactant) Amphoteric surfactants such as alkyl dimethylamine oxide and alkyl carboxy betaine (zwitter surfactants), polyoxyethylene alkyl ethers (eg, polyoxyethylene dodecyl ether), fatty acid sorbitan esters, alkyl polyglucosides, fatty acid diethanolamides, Nonionic surfactants (nonionic surfactants) such as alkyl monogly
  • the input amount of the dispersant is in the range of 0.001 to 10% by weight and preferably in the range of 0.02 to 5% by weight with respect to the solvent weight.
  • the input amount of the flake graphite crystal aggregate is in the range of 0.001 to 50% by weight, preferably in the range of 0.01 to 10% by weight, based on the solvent weight.
  • the means for applying ultrasonic waves is not particularly limited, but can be implemented using, for example, an ultrasonic cleaner.
  • the frequency of the applied ultrasonic waves is preferably in the range of about 20 to about 100 kHz.
  • the application time is preferably about 1 to 60 minutes.
  • Centrifugation is preferably carried out at an acceleration range of about 100 to about 100,000 G, preferably about 100 to about 10,000 G for about 1 to about 60 minutes, preferably about 5 to about 30 minutes.
  • flaky graphite crystals and / or a thin layered product thereof and / or a crimped product and / or a roll-like deformed product thereof are dispersed (this The dispersion is referred to as “graphene dispersion”.)
  • additives commonly used in this field for example, thickeners, dispersants, diluting agents, etc.
  • the graphene dispersion can be directly used as a transparent conductive film, a conductive film, a thermally conductive film, or an additive thereof without distilling off the solvent.
  • flaky graphite crystals and / or a thin layered product thereof, and / or a crimped product and / or a roll-like deformed product thereof are combined to be referred to as “frozen graphite crystals”.
  • the graphenes obtained in this way have a size of several ⁇ m to several tens of ⁇ m in diameter or width, and a thickness of about 10 nm or less, preferably about 3.5 nm or less (about 10 layers). However, it is highly crystalline.
  • a flaky graphite crystal (or a thin layered product thereof) is a crimped product and / or a roll-like deformed product. And those that are partly crimped and partly deformed into a roll shape. “Crimping” means that the flaky graphite crystal is shrunk when it is brought together, and it may be crimped in a single direction or may be crimped in different directions at different sites.
  • the term “deformed into a roll” means that the product is deformed into a single roll and includes a plurality of deformed products in different positions.
  • the size of the crimped body and / or the roll-shaped deformed body of the flaky graphite crystal (or a thin layer thereof) is about several tens ⁇ m in length and several ⁇ m in width.
  • a flaky graphite crystal crimped in a single direction can be cited as shown in FIG.
  • the graphene dispersion obtained above can be used, for example, as an ink used for forming a circuit / thin film in a printable electronics product. That is, by using the dispersion liquid, various printing methods such as flexographic printing (letter printing), offset printing (lithographic printing), gravure printing (intaglio printing), screen printing, ink jet printing, electrophotography, thermal transfer / laser transfer, A circuit or the like can be formed by printing on the surface of the substrate.
  • a desired circuit can be obtained by patterning using a patterning technique such as nanoimprint, EB drawing, or photolithography.
  • the graphenes obtained above may be formed on a substrate by dry coating such as vacuum deposition, sputtering, or CVD, and then patterned using the patterning technique as described above. , A desired circuit can be obtained.
  • the graphenes or dispersions obtained above are used in PET film, ionomer film (IO film), high density polyethylene (HDPE), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene ( L-LPDE), polyethylene film made of metallocene catalyst-based linear low density polyethylene (mL-LDPE), rigid / semi-rigid / soft polyvinyl chloride film (PVC film), polyvinylidene chloride film (PVDC film), polyvinyl alcohol Film (PVA film), Polypropylene film (PP film), Polyester film, Polycarbonate film (PC film), Polystyrene film (PS film), Polyacrylonitrile film (PAN) Film), ethylene-vinyl alcohol copolymer film (EVOH film), ethylene-methacrylic acid copolymer film (EMAA film), nylon film (NY film, polyamide (PA) film), cellophane, polyimide film, etc.
  • IO film high density polyethylene
  • HDPE high density poly
  • Various highly functional films such as a transparent conductive film, a highly conductive film, and a highly heat conductive film containing the graphenes can be obtained by dispersing and mixing in the graphenes, or the graphenes or the same dispersion liquid. Are laminated or coated on the surface of these films and dried to obtain various highly functional films such as a transparent conductive film, a highly conductive film, and a highly thermally conductive film coated with the graphenes.
  • melt extrusion molding method inflation method, T-die method, flat die method, solution casting method, calendar method, stretching method, multilayer processing method, co-extrusion method, co-extrusion by inflation method, multi-manifold method, Laminating method, extrusion laminating method, laminating method using adhesive, wet laminating method, lay laminating method, hot melt laminating method, heat sealing method, external heating method, internal heating method, corona treatment, plasma treatment, flame treatment, mat
  • Existing technologies such as processing, coating, wet coating, dry coating, vapor deposition, ion plating, ion plating, and sputtering can be suitably used.
  • the obtained graphenes or dispersion liquids are made from plant-derived natural resins such as rosin, dammar, dammer, mastic, copal, cocoon, balsam, natural rubber, shellac, shellac, glue, shellfish, casein, etc.
  • thermosetting resins such as thermosetting polyimide, polyethylene, high-density polyethylene, medium-density polyethylene, Low-density polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl acetate, polytetrafluoroethylene, ABS resin, AS resin, acrylic resin and other thermoplastic resins, polyamide, nylon, polyacetal, polycarbonate, modified poly Nylene ether, polybutylene terephthalate, polyethylene terephthalate, glass fiber reinforced polyethylene terephthalate, cyclic polyolefin, polyphenylene sulfide, polysulfone, polyethersulfone, amorphous polyarylate, liquid crystal polymer, polyetheretherketone, thermoplastic polyimide, polyamideimide, polyamideimide, polyamideimide, polyamideimide, polyamideimide, polyamideimide, polyamideimide, polyamideimide, polyamideimide, polyamideimide
  • the graphenes or dispersions thus obtained are mixed with acrylic rubber, nitrile rubber, isoprene rubber, urethane rubber, ethylene propylene rubber, epichlorohydrin rubber, chloroprene rubber, silicone rubber, styrene / butadiene rubber, butadiene rubber, fluoro rubber, poly Rubbers and rubbers containing the graphenes that have been improved in electrical conductivity, thermal conductivity, heat resistance, strength and flexibility by dispersing, mixing, kneading, drying, molding, etc. in synthetic rubber such as isobutylene rubber A composite material can be obtained.
  • the obtained granfen or the same dispersion is used for ceramics, glass, cement, mortar, gypsum, enamel, oxides such as alumina, zirconia, hydroxides such as hydroxyapatite, carbides such as silicon carbide and boron carbide.
  • Various composite materials containing the graphenes can be obtained.
  • the obtained graphenes or the same dispersion liquid is made of tungsten, rhenium, osmium, tantalum, molybdenum, niobium, iridium, ruthenium, hafnium, technetium, boron, rhodium, vanadium, chromium, zirconium, platinum, thorium, lutetium, titanium.
  • graphenes can incorporate various guest species to form intercalation compounds as in the case of graphite, and single-layer graphene has a variety of surfaces.
  • Guest species can be coordinated (coordination compounds).
  • semiconductor characteristics including n-type or p-type
  • band gap and carrier mobility can be adjusted.
  • alkaline metals such as Li, K, Rb, Cs, and Na
  • alkaline earth metals such as Ca, Sr, and Ba
  • metallic elements such as Sm, Eu, Yb, and Tm
  • Alloys such as K-Hg, Rb-Hg, K-TI, Ba-Na
  • hydrogen or deuterium compounds such as KH, NaH, and KD
  • ammonia and alkaline earth metals coordinated with ammonia and various organic molecules
  • compounds such as Li-THF, K-THF, Rb-THF, Cs-THF, Na-THF, K-NH3, Be-NH3, Eu-NH3, Ba-THF, and Sr-THF are preferably used. Can do.
  • halogens such as Br 2 , F 2 , ICl and IF 3 , chlorides such as MgCl 2 , FeCl 3 , FeCl 2 and NiCl 2 , AlBr 3 , CdBr 2 , HgBr 2 , FeBr 3 and AsF 5 , SbF 5 , NbF 5 and other halogen compounds, CrO 3 , MoO 3 , HNO 3 , H 2 SO 4 , HClO 4 and other oxides can be suitably used.
  • hydrogen fluoride, graphite fluoride, graphite oxide, and the like can also be suitably used as the acceptor type substance.
  • first-stage compounds in which guest species penetrate all layers
  • second-stage compounds in which every other layer penetrates
  • higher-stage compounds in the same way
  • the physical properties of materials can be controlled, and the same applies to graphene.
  • a method for adjusting the number of stages for example, a solution containing a guest species or a temperature, pressure, concentration, etc. when contacting a vaporized or liquefied guest species with a host material can be cited.
  • the synthesis method of these intercalation compounds and coordination compounds is mainly based on the host material (intrusion side) graphenes and guest species (invasion side) under vacuum and reduced pressure or in an inert gas atmosphere.
  • a two-zone method or a two-valve method in which a gas phase reaction is caused by applying a temperature difference, a pressure difference, etc. to each place in a reaction tube, or a method of simply treating a reaction tube mixed with each material at a high temperature Various synthesis methods such as a solution method or immersion method in which the host material is immersed in various solutions, a ternary solution method in which a complex or ion of alkali metal and alkaline earth metal is formed in a solvent, and the host material is contacted with this. The method can be suitably used.
  • the obtained graphenes or dispersions thereof are mixed with various carbon materials such as artificial graphite, natural graphite, quiche graphite, HOPG, activated carbon, carbon black, glassy carbon, diamond-like carbon, and mesophase spherulitic graphite. Therefore, it is also effective to improve the functionality of conventional carbon materials.
  • various carbon materials such as artificial graphite, natural graphite, quiche graphite, HOPG, activated carbon, carbon black, glassy carbon, diamond-like carbon, and mesophase spherulitic graphite. Therefore, it is also effective to improve the functionality of conventional carbon materials.
  • the obtained graphenes or dispersions are used in lithium ion batteries, lithium ion capacitors, fuel cell electrode substrates, dye-sensitized solar cells, thin film solar cells, metal-air batteries, lithium ion batteries, nickel metal hydride batteries, etc.
  • Electrode materials for various batteries, occlusion materials such as hydrogen, catalytic effects in chemical reactions using graphene surfaces, new reaction fields in the pharmaceutical and pharmaceutical fields, and application to drug delivery systems are possible or expected.
  • the flaky graphite crystal aggregates (B) and (C) can be produced in the same manner as the production method of the flaky graphite crystal mass (A) which is the object of the first aspect of the present invention.
  • the flake graphite crystal aggregate (B) is generated on the surface of the substrate using the spacer as a substrate in the method for producing a flake graphite crystal mass of (A) above.
  • the material of the substrate glassy carbon, diamond-like carbon, amorphous carbon, graphite, copper, nickel, iron, cobalt, other heat-resistant metals, ceramics, SiC, GaN, Si and other semiconductors can be used.
  • the surface of the substrate may be rough polished or mirror polished.
  • the flaky graphite crystal aggregate (D) is prepared by supporting a catalyst on a powder of an organic compound calcined so as to contain residual hydrogen, and this is a sealed container made of a heat-resistant material. And can be manufactured by hot isostatic pressing using a pressurized gas atmosphere with the container.
  • the catalyst include metals such as cobalt, iron, nickel, and subsalt, and it is desirable that the catalyst be supported in a state of being dispersed as uniformly as possible in the calcining raw material.
  • the catalyst is loaded with a metal chloride or metal complex (metal acetylacetonate) as water, alcohol, or a mixture thereof.
  • the amount of the catalyst used is usually 1000 ppm or more, preferably 2000 ppm or more, more preferably 10,000 ppm or more, and still more preferably 100,000 ppm or more with respect to the calcined raw material.
  • it can carry out similarly to the manufacturing method of the flaky graphite crystal lump (A) which is the target object of the 1st side surface of this invention.
  • the amount of hydrogen is determined according to the general rules for the determination of hydrogen in metal materials (JIS Z 2614: 1990.
  • the analysis method is based on the inert gas heating method, which is a condition of “steel.” Specifically, a sample is measured in an argon gas atmosphere. Heat to 2000 ° C and measure the cumulative amount of hydrogen generated by gas chromatography.)
  • the open porosity is the ratio of the void (open) volume that can enter liquids, gases, etc., existing in the volume determined from the outer shape of the material.
  • a material having a high open porosity has continuous pores and gas permeability.
  • the open porosity is obtained by the following calculation formula.
  • Open porosity (%) ⁇ (apparent specific gravity ⁇ bulk specific gravity) / apparent specific gravity ⁇ ⁇ 100
  • Apparent specific gravity A value measured using a density meter AccuPyc1330-PCW manufactured by Shimadzu Corporation with a helium gas displacement pycnometer method using a sample in an unpulverized state
  • Bulk specific gravity Volume calculated from the sample's external dimensions
  • the total porosity is the ratio of the total void volume (including closed pores as well as open pores) existing in the volume determined from the outer shape of the material.
  • the total porosity is obtained by the following calculation formula.
  • Total porosity (%) ⁇ (true specific gravity-bulk specific gravity) / true specific gravity ⁇ ⁇ 100
  • true specific gravity is a specific gravity measured in a state in which it is pulverized into a fine powder in order to minimize the influence of voids contained in the measurement object.
  • the powder passed through a 74 ⁇ m sieve. Measured with a sample. Apparent specific gravity, bulk specific gravity, and true specific gravity are synonymous with apparent density, bulk density, and true density, respectively.
  • the spacer and the sleeve are both used in a graphite closed container, and are inserted between the inner wall of the container and the calcined raw material so that they do not directly contact each other.
  • Spacers mainly cover the calcined raw material from above and below, and sleeves mainly cover the calcined raw material from the side, but depending on the shape of the container, there is a case where it is not meaningful to distinguish between the two. possible.
  • “Bulk” in “bulk”, “bulk state” or “bulk structure” means a series of basic structural units.
  • the average particle diameter (particle size (average)) was measured by a laser diffraction / scattering method using a laser diffraction particle size distribution measuring device. That is, the particle size distribution was obtained by calculation from the intensity distribution pattern of diffracted / scattered light emitted from a particle group irradiated with laser light.
  • the numerical range is expressed as 1200 to 1900, for example, it means 1200 or more and 1900 or less.
  • a phenol formaldehyde resin powder having an average particle diameter of 20 ⁇ m was calcined at an ultimate temperature of 600, 700, 900, and 1000 ° C. in an inert gas atmosphere.
  • the amount of residual hydrogen in the raw material after calcination was analyzed according to the general rules for determining the hydrogen content of metal materials (JIS Z 2614: 1990), and the results are shown in Table 1.
  • the calcined raw material calcined at each temperature is loaded into a screw-type (triangular screw) graphite crucible made of a material with a bulk density of 1.80 and an open porosity of 10%. Tightened and sealed the calcined raw material.
  • argon gas is used to reach a temperature and pressure of 600 ° C. and 70 MPa in 1 hour, and then heated and pressurized at a temperature rising rate of 500 ° C. per hour.
  • the temperature was increased and increased at the highest ultimate pressures of 1400 ° C., 1800 ° C., 2000 ° C., and 2500 ° C. at the highest ultimate pressure of 190 MPa, held at the highest ultimate temperature pressure for 1 hour, and the temperature was lowered and reduced to room temperature.
  • the time required from insertion to removal of the graphite crucible was 8 to 12 hours.
  • the bulk density, porosity, and true density of the treated sample were measured and shown in Table 1.
  • the density was measured by the helium gas substitution pycnometer method, using Shimadzu Density Meter AccuPyc1330-PCW, and the true density was measured in a state where the sample was pulverized into a fine powder (the same applies to the following density measurements) (Table 1). ).
  • FIG. 15 shows an electron micrograph of the surface of sample No. 1
  • FIG. 16 shows an enlarged electron micrograph of the surface of FIG. 15
  • FIG. 17 shows an electron micrograph of the sample fracture surface of sample No. 1.
  • the hexagonal graphite screen is radially grown on the surface of the raw material.
  • FIG. 18 shows an electron micrograph of the fracture surface of sample No. 5 and FIG. 19 in sample No. 6.
  • the degree of growth of the carbon hexagonal mesh surface is low.
  • traces of etching of graphite by hydrogen excited at a high temperature of 2000 ° C. or higher were observed.
  • FIG. 20 shows the measurement result of the Raman spectrum of sample number 1.
  • a sharp peak due to the SP 2 graphite bond near 1580 cm -1 was observed, and a peak near 1360 cm -1 indicating a turbulent structure was hardly observed, and the R expressed by its intensity ratio I 1360 / I 1580 (I D / I G ) The value was close to 0 and the structure was extremely excellent in graphite crystallinity.
  • the measurement result of the Raman spectrum of Sample No. 5 is shown in FIG. 21, and a peak near 1360 cm ⁇ 1 was observed, and the intensity ratio I 1360 / I 1580 (I D / I G ) showed a large value.
  • a phenol formaldehyde resin powder having an average particle diameter of 500 ⁇ m was calcined at a maximum attained temperature of 600 ° C. in an inert gas atmosphere. Thereafter, the calcined raw material was treated in the same manner as in Example 1 except that the maximum temperature reached during hot isostatic pressing was 1400 ° C. The time required from insertion to removal of the graphite crucible was 12 hours. An electron micrograph of the sample after the treatment is shown in FIG. 22, and an enlarged photograph of the surface is shown in FIG. Vapor-grown graphite grown radially on the entire surface of the spherical particles was confirmed, but a bulk structure in which the particles were bonded was not obtained. The true density of the obtained sample was 1.80.
  • the waste material of beverage bottles was finely cut to an average of about 200 ⁇ m (longest and longest dimension), and calcined at a maximum temperature of 600 ° C. in an inert gas atmosphere.
  • the calcined raw material was pulverized in a stainless mortar to be granulated, and thereafter treated in the same manner as in Example 2.
  • the time required from insertion to removal of the graphite crucible was 12 hours.
  • An electron micrograph of the treated sample is shown in FIG. Vapor-grown graphite grown almost radially on the entire surface of the amorphous particles was confirmed.
  • the true density of the obtained sample was 1.90.
  • a phenol formaldehyde resin powder having an average particle size of 20 ⁇ m was calcined at a maximum attained temperature of 700 ° C. in an inert gas atmosphere.
  • the calcined raw material was loaded into each graphite crucible shown in Table 2, the screw-type top cover was tightened, and the calcined raw material was sealed.
  • the graphite crucible was treated in the same manner as in Example 2 except that the maximum temperature reached during hot isostatic pressing was 1500 ° C.
  • the true density of the treated sample decreases (sample numbers 8 to 10).
  • the screw shape of the graphite crucible was 2 mm in pitch (sample number 13) and when the number of threads was small (sample numbers 11 and 12), the true density was lower than that of sample number 8.
  • the screw shape of the graphite crucible is a triangular screw (sample number 8)
  • a lower true density was obtained with the square screw (sample number 14) and the trapezoidal screw (sample number 15).
  • the spacer is made of glassy carbon with low gas permeability and open porosity of 0%, and is installed so as to cover the upper and lower parts of the calcined raw material.
  • FIG. 4 sample number 16
  • the true density increased to 2.19
  • the sleeves were used together so as to cover all the side portions of the calcined raw material (FIG. 6).
  • a true density of 23 was obtained.
  • Sample Nos. 2, 5, 6, 16, and 17 were pulverized in an agate mortar, then the sample, polyvinylidene fluoride, and carbon black were mixed at a weight ratio of 8: 1: 1 and kneaded with a small amount of N-methyl-2-pyrrolidone.
  • a slurry was prepared. Next, using a stainless steel guide with a 10 mm diameter hole in a nickel mesh of 200 mm size and 0.05 mm thickness, the slurry was uniformly applied to a 10 mm diameter size and vacuum dried at 120 ° C. for 12 hours. The solvent was distilled off. The dried sample was sandwiched between stainless steel plates and hot-pressed at 120 ° C. and 20 MPa to prepare a sample electrode having a diameter of 10 mm.
  • a bipolar electrode cell was constructed using a sample as a working electrode, metallic lithium as a counter electrode, and LiBF 4 as an electrolyte, with a potential range of 0 to 3 V and a current density of 40 mA / g. The charge / discharge characteristics were measured.
  • Table 3 shows the reversible capacity and coulomb efficiency at the fifth cycle as the evaluation results of the initial charge / discharge characteristics of each sample. As the true density of the material increased, the reversible capacity and coulomb efficiency improved, and in sample number 17, the reversible capacity was 312 mAh / g and the coulomb efficiency was 90.8%.
  • Sample No. 2 was sliced into a plate thickness of 10 mm in diameter and 90 ⁇ m in thickness using a fixed diamond type multi-wire saw.
  • a bipolar electrode was constructed using a metallic lithium counter electrode and LiBF 4 electrolyte in a glove box under an argon gas atmosphere.
  • the charge / discharge characteristics were measured at 3 V and a current density of 40 mA / g.
  • the reversible capacity at the 5th charge / discharge cycle was 225 mAh / g, and the coulomb efficiency was 95.3%. Because it is composed of bulk vapor-grown graphite that does not contain a binder, it showed higher coulomb efficiency compared to the case where the sample was slurried together with the binder in powder form.
  • the silicon chips generated when the silicon ingot for solar cells was cut with a diamond saw were collected in a slurry state together with the coolant.
  • the recovered slurry was dried in the air, and then dried in a dryer at 120 ° C. for 12 hours.
  • 20 parts by weight of dried silicon chips were put into 80 parts by weight of phenol resin powder having an average particle diameter of 20 ⁇ m calcined at 600 ° C. in a stainless steel mortar and mixed well while being pulverized.
  • This raw material was loaded into a screw-type graphite crucible made of a material having a bulk density of 1.80 and an open porosity of 10%, and the screw was tightened while turning the screw-type upper lid to seal the raw material.
  • argon gas is used to reach a temperature and pressure of 600 ° C. and 130 MPa in 3 hours, and then heated at a heating rate of 500 ° C. per hour.
  • the pressure was increased and the temperature was increased and increased at a maximum ultimate temperature of 1300 ° C. at a maximum ultimate pressure of 190 MPa, held at the maximum ultimate temperature and pressure for 1 hour, and the temperature was lowered and reduced to room temperature.
  • the treated sample was in a bulk state, and a composite material in which silicon fine particles were dispersed in vapor-grown graphite was obtained.
  • the treatment was performed in the same manner as in Example 7 except that the temperature and pressure of 600 ° C. and 130 MPa were reached in 3 hours in 2 hours, and the maximum temperature reached 1200 ° C.
  • the calcined raw material after the treatment maintained the shape of primary particles without being connected, and vapor-grown graphite made of multilayer graphene was grown on the surface (FIG. 25).
  • carbon nanotubes with a diameter of about 100 nm were slightly generated. Silicon mixed in the calcining raw material existed in the form of particles, and fibrous silicon-based products were not generated.
  • Fig. 26 ⁇ Graphite-silicon composite material>
  • Example 8 In the conditions of the HIP treatment, Example 8 was performed except that the pressure reached in the first 3 hours was changed from 130 MPa to 70 MPa, the maximum reached temperature was changed to 1450 ° C., and the maximum reached pressure was changed from 190 MPa to 90 MPa. Treated in the same manner.
  • the upper part of the graphite crucible after treatment (the surface portion of the charged raw material and the space between the crucible upper lid) is white in terms of visual appearance and is made of felt, silicon, silicon carbide and silicon oxide (silicon compound). A large amount of nanoscale fibrous material was formed.
  • the appearance photographs of these products attached to the surface of the graphite crucible main body and the upper lid are shown in FIG. 27 and SEM photographs are shown in FIGS. 28 to 30.
  • the diameters are about 10 to 100 nm and the length ranges from several ⁇ m to several mm.
  • a fibrous product was identified.
  • a large number of samples were formed by combining spherical and disk-shaped products in a bead shape as shown in FIGS. 31 and 32.
  • fibrous and rod-like silicon and silicon-based compounds were produced in the vapor-grown graphite produced, and a vapor-grown graphite and a composite material of these fibrous and rod-like silicon and silicon-based compounds were obtained.
  • FIG. 33 and FIG. 34 show SEM photographs of rod-like silicon formed in vapor-grown graphite.
  • FIG. 35 shows SEM photographs of fibrous silicon, silicon carbide, and silicon oxide formed in vapor-grown graphite.
  • FIG. 36 shows an SEM photograph of a portion where a large amount of rod-like silicon is formed
  • FIG. 37 shows that among the silicon-based products, a disk-like product is merged into a bead-like shape.
  • the SEM photograph of the part which has been shown is shown.
  • the products in these samples are summarized in Table 4.
  • FIG. 38 shows the X-ray diffraction patterns of the part formed in the felt shape and the part generated in the vapor-grown graphite (the upper part in the figure is the felt-shaped part and the lower part is in the vapor-grown graphite. Is the result of the generated part).
  • diffraction lines of graphite, silicon (Si), and silicon carbide (SiC) are observed, and these fibrous products should be composed of Si and SiC. Can be confirmed. Note that silicon oxide was amorphous and an X-ray diffraction pattern was not clearly obtained.
  • 39 shows the SEM of vapor-grown graphite and rod-like silicon, FIG.
  • FIG. 40 shows the measurement result of EDX (energy dispersive X-ray spectroscopy) for the part measured in FIG. 39, and FIG. A characteristic X-ray map showing the presence of each element is shown. From these results, in the case of rod-shaped silicon, as indicated by the characteristic X-ray map, since the map of C is not shown in the rod-shaped portion, it can be confirmed that it is a product of Si alone. The peak indicated as Ar in the characteristic X-ray data is due to the presence of argon gas occluded in the vapor-grown graphite.
  • FIG. 42 shows a characteristic X-ray pattern and a map of a bead shape (FIGS. 31 and 32).
  • Silicon chips generated when a solar cell silicon ingot was cut with a diamond saw were collected in a slurry state together with a coolant.
  • the recovered slurry was dried in the air, and then dried in a dryer at 120 ° C. for 12 hours.
  • 20 parts by weight of dried silicon chips were put into 80 parts by weight of phenol resin powder having an average particle diameter of 20 ⁇ m calcined at 900 ° C., 600 ° C., and 500 ° C. in a stainless steel mortar and mixed well while being pulverized.
  • This raw material was loaded into a screw-type graphite crucible made of a material having a bulk density of 1.80 and an open porosity of 10%, and the screw was tightened while turning the screw-type upper lid to seal the raw material.
  • argon gas is used to reach a temperature and pressure of 500 ° C. and 70 MPa in 3 hours, followed by heating at a heating rate of 500 ° C. per hour.
  • the pressure was increased, the temperature was raised at a maximum attained pressure of 1400 ° C. at a maximum attained pressure of 90 MPa, held at the highest attained temperature and pressure for 1 hour, and the temperature was lowered and lowered to room temperature.
  • Wire-like silicon was produced in all three types of samples with different calcining temperatures.
  • a phenol formaldehyde resin powder having an average particle size of 20 ⁇ m was calcined at a maximum temperature of 500 ° C. in an inert gas atmosphere.
  • the amount of residual hydrogen in the raw material after calcination was analyzed in accordance with the general rules for determining hydrogen of metal materials (JIS Z 2614: 1990), it contained 40000 ppm of residual hydrogen.
  • the calcined raw material was sealed in a form sandwiched between glassy carbon spacers in a screw-type graphite crucible made of a material having a bulk density of 1.80 and an open porosity of 10%. As shown in FIG.
  • each flaky graphite was found as one form of a flaky graphite crystal aggregate formed by agglomerating flaky graphite crystals extending from the inside to the outside. It was observed that crystals grew in a direction substantially perpendicular to the spacer surface. Some of them also consisted of multi-layer graphene grown like petals. (Figs. 47-51) ⁇ Fibrous flaky graphite crystal aggregate (C)>
  • a phenol formaldehyde resin powder having an average particle size of 20 ⁇ m was fired at a maximum temperature of 600 ° C. in an inert gas atmosphere.
  • the calcined calcined raw material is loaded into a screw-type graphite crucible made of a material with a bulk density of 1.80 and an open porosity of 10%, and the screw is tightened while turning the screw-type upper lid to seal the calcined raw material. did.
  • argon gas is used to reach a temperature and pressure of 700 ° C. and 70 MPa in 1 hour, and then heated at a temperature rising rate of 300 ° C. per hour.
  • the pressure was increased and the pressure was raised at the highest ultimate pressure of 190 MPa at the highest ultimate temperature of 1400 ° C., held at the highest ultimate temperature and pressure for 1 hour, and the temperature was lowered to room temperature and reduced.
  • the apparent density of the sample after the treatment was 1.60, and the true density was 2.09.
  • the density was measured by the helium gas substitution pycnometer method using a Shimadzu Density Meter AccuPyc1330-PCW in a state where the sample was pulverized into a fine powder.
  • fibrous vapor grown carbon fibers having a diameter of several ⁇ m and a length of several ⁇ m to several mm were formed (FIGS. 52 to 54).
  • This fiber has one form of a flaky graphite crystal aggregate formed by aggregating flaky graphite crystals extending from the inside to the outside, and the flaky graphite crystals are formed from the center of the fiber to the outside. It had a special shape with grown crystals. This fibrous material was also present inside the material, but it grew to a fairly long surface.
  • the treatment was performed in the same manner as in the previous embodiment except that the temperature rising rate after 700 ° C. was 700 ° C. per hour and the maximum temperature reached 1450 ° C.
  • the apparent density of the sample after the treatment was 1.66, and the true density was 2.05.
  • the density was measured by the helium gas substitution pycnometer method using a Shimadzu Density Meter AccuPyc1330-PCW in a state where the sample was pulverized into a fine powder.
  • the same form as the product of the previous example was similarly produced (FIGS. 55 to 56).
  • the spherical phenol resin was calcined at a maximum temperature of 600 ° C. in a nitrogen stream.
  • amount of residual hydrogen contained in the raw material after calcination was measured according to the general rules for determining the hydrogen content of metal materials (JIS Z 2614: 1990), it was 24,000 ppm.
  • Cobalt acetylacetonate manufactured by Nacalai Tesque, grade: special grade, hereinafter referred to as Co (AcAc) 2 1 mol was mixed with 10 L of methoxyethanol (Nacalai Tesque purity 99%). At this time, since Co (AcAc) 2 hardened immediately, it was well pulverized and stirred using a glass rod and a stirrer.
  • the mixture was loaded into a screw-type graphite crucible and the upper lid screw was tightened to seal the crucible.
  • a graphite crucible with the raw material sealed was loaded into an HIP apparatus, and the temperature was raised to 1450 ° C. at a rate of 500 ° C. per hour while applying a hydrostatic pressure of 190 MPa with argon gas.
  • the product contained graphene laminated CNF (FIG. 59) having a diameter of about 200 to about 1000 nm and a length of about 10 ⁇ m to about several mm. A large amount of long fiber was formed on the surface of the sample, and short fiber was formed around the spherical phenol resin.
  • the spherical phenol resin was calcined at a maximum temperature of 600 ° C. in a nitrogen stream.
  • Cobalt chloride hexahydrate was dissolved in ethanol to prepare a 0.6 mol / L solution.
  • 120 g of the phenol resin after calcination was added to 500 ml of this solution and well stirred with a stirrer.
  • the residue obtained by filtering ethanol was placed in a ceramic container and heated to 400 ° C. in the air in an electric furnace for 5 hours to prepare a calcined raw material carrying a catalyst.
  • the cobalt concentration measured by fluorescent X-ray analysis (SEM-EDX) was 3000 ppm.
  • the catalyst-supported calcined raw material was loaded into a screw-type graphite crucible, and the upper lid screw was tightened to seal the crucible.
  • a graphite crucible with the raw material sealed was loaded into a HIP apparatus, and the temperature was raised to 1400 ° C. at a rate of 300 ° C. per hour while applying a hydrostatic pressure of 190 MPa with argon gas.
  • a large amount of graphene laminated CNF having a diameter of about 0.5 to about several microns was generated.
  • the thickness of one layer of graphene laminated CNF was about several nm.
  • Fig. 61 ⁇ Flamed graphite crystal mass of the present invention>
  • a phenol formaldehyde resin powder having an average particle size of 20 ⁇ m was calcined at a maximum temperature of 600 ° C. in an inert gas atmosphere.
  • the amount of residual hydrogen in the raw material after calcination was analyzed in accordance with the general rules for determining hydrogen content of metal materials (JIS Z 2614: 1990), it was 20000 ppm.
  • This calcined raw material was loaded into a screw-type graphite crucible made of a material having a bulk density of 1.80 and an open porosity of 10%, and the screw was tightened while turning the screw-type upper lid to seal the calcined raw material.
  • argon gas is used to reach a temperature and pressure of 700 ° C. and 70 MPa in 1 hour, and then heated at a temperature rising rate of 500 ° C. per hour.
  • the pressure was increased and the pressure was increased at a maximum ultimate pressure of 190 MPa at a maximum ultimate temperature of 1800 ° C., held at the maximum ultimate temperature and pressure for 1 hour, and the temperature was lowered and reduced to room temperature.
  • the true density of the obtained bulk product was measured by a helium gas displacement pycnometer method using a density meter AccuPyc1330-PCW manufactured by Shimadzu Corporation and found to be 2.17.
  • FIG. 62 shows an SEM of the obtained vapor-grown graphite
  • FIG. 63 shows an enlarged view thereof, but flake-like graphite crystals (multilayer graphene) extending from the inside to the outside gather, A lump was formed.
  • Vapor-grown graphite obtained in the previous example was pulverized with an agate mortar, and the pulverized sample was put into dimethylformamide to prepare a mixed solution having a graphite amount of 5% by weight.
  • Ultrasonic waves were applied to the mixed solution with an ultrasonic cleaner (at a frequency of 42 kHz for 30 minutes), and then the solid content was precipitated by centrifugation (at an acceleration of 700 G for 30 minutes).
  • the graphene dispersed in the solution was filtered with a microgrid for TEM observation, and TEM observation was performed on the components captured on the microgrid.
  • FIG. 67 shows a TEM lattice image of the edge of multilayer graphene obtained in a thin sheet shape, and it can be confirmed that about 10 graphene layers are laminated, and this indicates that a multilayer graphene layer having a thickness of 3.5 nm is laminated. It was confirmed that a sheet was obtained.
  • the sample after the reaction was dried and then loaded into a ceramic magnetic crucible.
  • the whole magnetic crucible was poured into an electric furnace heated to 700 ° C. and subjected to rapid heat treatment.
  • rapid heat treatment in an electric furnace set at 700 ° C. the sample after heat treatment expanded to about three times the volume.
  • 68 and 69 show SEMs of the samples after the heat treatment, and it was observed that the sulfate ions were rapidly decomposed and released from the multilayer graphene layers by the heat treatment, so that they were cleaved into thinner multilayer graphene. It was. ⁇ Flaky graphite crystal mass>
  • Pellet-shaped PET resin (average particle diameter of about 3 mm) was calcined at an ultimate temperature of 600 ° C. in an inert gas atmosphere.
  • the calcined raw material (calcined raw material) was pulverized and classified to obtain a calcined raw material having an average particle size of about 10 ⁇ m to 100 ⁇ m.
  • the residual hydrogen content was 22000 ppm.
  • the calcined raw material is loaded into a screw-type (triangular screw) graphite crucible made of a material with a bulk density of 1.80 and an open porosity of 10%, and the screw is tightened while turning the screw-type upper lid, The raw material was sealed.
  • argon gas is used to reach a temperature and pressure of 600 ° C. and 70 MPa in 1 hour, and then heated and pressurized at a temperature rising rate of 500 ° C. per hour.
  • the temperature was increased at each maximum temperature of 1500 ° C. at a maximum pressure of 190 MPa, held at the maximum temperature pressure for 1 hour, and decreased to a room temperature and reduced in pressure.
  • a flaky graphite crystal mass (true density 2.08, apparent density 1.33, bulk density 0.75, total porosity 63.9) was obtained.
  • a SEM of the surface of the flaky graphite crystal mass is shown in FIG. It can be seen that the structure is composed of petal-like flaky graphite crystals having a size of several ⁇ m and a very thin thickness, and a large number of them are assembled.
  • Example 20 except that a phenol formaldehyde resin (average particle size 20 ⁇ m) is used as a raw material instead of PET resin, that the calcination raw material is not pulverized and classified, and the processing conditions shown in Table 5 are used. In the same manner as above, each sample was obtained (Example 21-1 to Example 21-6).
  • a phenol formaldehyde resin average particle size 20 ⁇ m
  • Table 6 shows the true density, apparent density, bulk density, and total porosity of each sample thus obtained.
  • the present invention relates to a flaky graphite crystal mass formed by agglomerating flaky graphite crystals extending from the inside to the outside, a one-dimensional shape nanosilicon material, and the flaky graphite crystal and the one-dimensional shape nanosilicon material It is possible to provide a graphite-silicon composite material containing: These are all useful as electrode materials such as lithium ion batteries and hybrid capacitors, high heat dissipation materials, etc., and their manufacturing methods are both efficient and highly productive.
  • the present invention also provides flaky graphite crystals and / or crimps and / or rolls thereof. These are useful as a transparent conductive film, a conductive film, a thermally conductive film, and an additive thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Textile Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochemistry (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Nonwoven Fabrics (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Inert Electrodes (AREA)

Abstract

【課題】リチウムイオン電池,ハイブリッドキャパシターなどの電極材料などとして有用な,薄片状黒鉛結晶塊など及びそれらの効率的で生産性が高い製造方法などを提供する。 【解決手段】残留水素を含むように仮焼きした有機化合物の粉粒体を,黒鉛製の容器に密閉し,所定の条件下,該容器ごと加圧された雰囲気を使用した熱間静水圧加圧処理(HIP処理)することなどによる,内側から外方へと延びた薄片状の黒鉛結晶が集合してなる薄片状黒鉛結晶塊などの製造方法。

Description

炭素材料及びその製造方法
 本発明はリチウムイオン電池,リチウムイオンキャパシタ,燃料電池,太陽電池,その他一次電池,二次電池,製鋼,精錬,電解などの電極材,拡散層や,放熱材,結晶シリコン,炭化ケイ素などの結晶成長坩堝,断熱材,原子力発電用反応容器,導電膜・半導体膜用の添加材などに使用されている人造黒鉛材料,及び,人造黒鉛と人造シリコン(Si)との複合材の新規な構成および製造方法に関する。 
 黒鉛材料は化学的に安定であり,電気,熱伝導性に優れ,高温での機械的強度に優れるために製鋼用電極,高純度けい石のアーク溶解・還元用電極,アルミ精錬電極などに多用されている。黒鉛は炭素原子のSP2混成軌道による炭素六角環が成長した炭素六角網面が積層することにより形成される結晶構造を有し,その積層形態により六方晶,菱面晶形に分類されるが,いずれも炭素六角網面内の自由電子,ホールなどのキャリア濃度,移動度が高いことから電気,熱の良伝導性を示す。
 一方で炭素六角網面間はいわゆるファンデアワルス力により弱く結合しているため,層間は比較的容易にすべり変形することから黒鉛の強度,硬度は,金属材料に比べて柔らかく,また自己潤滑性を有する。
 天然に産出される天然黒鉛は多結晶体であることからも,結晶粒子界面で破壊し,フレーク状で産出され,十分な硬度,強度をもった塊状で得られることはない。したがって天然黒鉛はその粒子サイズにより分級され,骨材(フィラー)として使用されるのが一般的である。
 一方で,黒鉛の優れた特性を利用して前述の各種の用途で使用するためには,実用可能な強度,硬度をもった構造体を製造する必要があり,天然黒鉛単体では構造体を得ることが困難であることから,いわゆる人造黒鉛材料として様々なものが開発,実用化されてきた。
(一般的な人造黒鉛材料の製造方法)
 人工的な黒鉛材料である人造黒鉛材料は,骨材であるフィラー,バインダーを混合し,成形,炭化焼成,黒鉛化処理することより製造される。フィラー,バインダーとも炭化焼成後に炭素として残留する炭化収率の高いことが必須であり,それぞれの用途により適切なものが選択される。
 フィラーとしては仮焼石油コークス,仮焼ピッチコークス,天然黒鉛,仮焼無煙炭,カーボンブラックなどが使用される。これらのフィラーと,コールタールピッチ,コールタール,高分子樹脂材料などを混ねつし,押し出し,注型,プレスなどの方法により所望の形状に成型する。
 成型後の材料を不活性雰囲気中で1000℃以上の温度で焼成し炭化した後に,2500℃以上の高温で焼成することにより黒鉛結晶構造を発達させ黒鉛化する。炭化焼成時には原料より水素,窒素などの炭素以外の構成元素が水分,二酸化炭素,水素,炭化水素ガスとして分解,発生するためにその焼成温度は低速でコントロールされ,一般的には昇温に10~20日間,冷却に5~10日間,合わせて15~30日間の極めて長い製造時間が必要になる。
 また黒鉛化処理はアチソン抵抗加熱炉など大規模な炉で通電加熱することにより製造される,黒鉛化処理においても通電加熱に2~7日間,冷却に14日間,合わせて16~21日間の期間を要し,原料,成形,炭化焼成,黒鉛化を合わせると一貫では2カ月程度の製造期間が必要である(非特許文献1)。
 一般的な人造黒鉛では成形工程で添加したフィラーがある方向に形状を揃えやすいこと,炭素化,黒鉛化にともない結晶性が高まることから異方性が増すこと,それにともない嵩密度,機械的強度が低下する傾向がある。
 使用するフィラー,バインダーとも熱処理後に炭素化する炭化水素系の物質であるが,その化学構造により黒鉛化しやすい易黒鉛化性材料と,構造中のベンゼン環が架橋して黒鉛化しにくい難黒鉛化性の材料に大別される。
(高密度等方性黒鉛材料の製造方法)
 高密度化の手段としては,メソフェース抽出分からなるメソカーボンマイクロビーズ,ギルソナイトコークス,カーボンビーズなどの易黒鉛化性のフィラーを使用する,その粒径分布の調整,バインダーピッチとの相溶性の向上,含浸処理の繰り返しなどがある。また等方性を付与するために成形段階で冷間静水圧加圧装置による等方的な加圧を行うことが効果的であり一般的な方法になっている。さらに高密度なものにするためには,いったん黒鉛化行程を終了した材料に,再度バインダーピッチを含浸し黒鉛化処理を繰り返すことが行われており,この場合の製造期間は2~3ヶ月であり極めて長期間を必要とする。
 電極材料,原子力用途などに使用する場合には材料の純度が問題になるため,2000℃程度の高温で塩素ガスなどハロゲンガスによる高純度化処理をおこなう必要もある。高純度化処理により数百ppm程度の不純物濃度であったものが,数ppm程度まで減少する。
 一般的な人造黒鉛,高密度等方性黒鉛では使用する原料は液体,固体のものであり,成形,炭素化,黒鉛化の工程においては液相―固相反応,固相反応が支配的に進行する。炭化水素系物質から水素,酸素,窒素などの元素が散逸し,しだいにベンゼン環ネットワークが拡がり,炭素六角網面の成長,積層化により黒鉛結晶構造に近づいていくのであるが,特に黒鉛化工程では固相での反応であるために,2500℃以上の高温と極めて長い反応時間が必要になる。
 人造黒鉛,高密度等方性黒鉛ではこのように液相,固相で黒鉛化が進行するために,3000℃以上の高温で長時間熱処理したとしても,完全に結晶化(黒鉛化)させることは難しく,黒鉛の理論密度2.26g/cm3には達せずに,その結晶子サイズにも限界がある。
(高分子樹脂材料の熱処理)
 ポリアクリロニトリル(PAN)などの樹脂や,石炭,石油系ピッチを原料とする炭素繊維は高分子材料の段階で繊維状に伸線し引きつづく熱処理により炭素化,黒鉛化させる。またポリイミドフィルムあるいは炭化ポリイミドフィルムに,ホウ素あるいは希土類元素あるいはそれらの化合物を蒸着あるいは塗布し,複数枚を積層させた後,2000℃以上の温度下,不活性雰囲気中でフィルム膜面に垂直方向に加圧しながら焼成することにより結晶性の高い高配向性黒鉛フィルムを製造することができるが,厚さは数ミリ程度が限界である(特許文献1)。
(気相成長による黒鉛系材料の製造方法)
 炭化水素,水素ガスを原料として,CVD(Chemical Vapor Deposition)装置などの反応容器を使用し,金属触媒と高温で接触させることにより気相成長で炭素,黒鉛材料を製造する方法がある。気相成長法で製造される炭素材料としては気相成長炭素繊維,カーボンナノチューブ,カーボンナノホーン,フラーレンなどがある。
 気相成長炭素繊維の場合は,数百オングストロームの大きさの遷移金属の酸化物をアルコールなどの溶剤に懸濁し,基材にスプレーし乾燥させることなどにより触媒担持基材を作成する。この基材を反応容器に入れて,1000℃程度の温度で炭化水素ガスを流すことにより,基材上の遷移金属の表面から炭素繊維が気相反応で成長する。また有機遷移金属化合物のガスと炭化水素系のガスを混合し,1000℃程度の反応容器を通過させる場合もある(特許文献2)。
 気相成長にて得られた炭素繊維を引き続き黒鉛化処理炉で2000℃以上の高温で熱処理することにより黒鉛化繊維が得られる(特許文献3)。気相成長にて直接,黒鉛化繊維を製造するには2000℃前後での反応温度が必要になるが,この温度域では触媒である遷移金属が液化,気化してしまい触媒の機能が発現されないため,低温で炭素化した後に別途黒鉛化することが一般的になっている。
(カーボンナノチューブ)
 カーボンナノチューブは厚さ数原子層の炭素六角網面が円筒形状となった,nmオーダーの外径の極めて微小な物質であり1991年に発見された(非特許文献1)。このカーボンナノチューブは黒鉛等の炭素材料のアーク放電により生成する陰極堆積物中に存在することが知られており,黒鉛等の炭素材料を陽極として用いるとともに耐熱性導電材料を陰極として用い,かつ陰極の堆積物の成長に伴って陽極と陰極との間隙を調整しながらアーク放電を行うことにより製造される(特許文献4)。
 カーボンナノチューブはアーク放電により生成するが,大がかりな反応装置を必要とし得られる収率は極めて低いものであり,大量合成法が検討されてきた。一般にナノチューブを製造するために用いるカーボンのアーク放電においては,不活性ガスで満たされた反応容器中でC,C2,C3等のカーボン分子種を含んだ状態でプラズマが生成され,これら小さなカーボン分子種は次の段階においてスス,フラーレン,ナノチューブ,あるいは高密度の固体へと凝固する。このためチャンバー中のガス分圧や,プラズマ温度を最適化することによりナノチューブの収率が上げられている(特許文献5)。
(ガラス状カーボン中に高配向性黒鉛を析出させる方法)
 特許第2633638号(特許文献6)では,熱硬化性樹脂をホットプレスなどにより厚い板状に成形し,炭化処理によりガラス状カーボンとし,引き続き2000℃以上で熱間静水圧加圧処理することによりガラス状カーボン中に,和菓子の最中の餡子状に黒鉛が析出することが開示されている。この方法によるとガラス状カーボンとして焼成が可能な6mm程度の厚さに限定されることと,黒鉛生成後にガラス状カーボンの殻を破壊して黒鉛析出物を取り出す必要がある。
(人造黒鉛と人造シリコン(Si)との複合材料)
 Siは,リチウムイオン電池負極剤として,黒鉛に比較して,約10倍のLiを吸蔵できるが,かかる吸蔵により体積が約3倍に膨張するため,これを粒子,薄膜,ウエハの形状として電池負極剤としても,破壊してしまう。このため安定な電池負極剤としての実用化が困難な状況にある。しかし,Siをサブミクロンサイズの一次元形状のもの(一次元形状ナノシリコン材料。例えば,Siナノワイヤ,Siナノロッドなど)とすることにより,膨張,破壊に対する耐性を高められることが見出された(非特許文献2)。
(層間化合物)
 グラフェン層は,電子と正孔(ホール)のいずれをもキャリアとして保持できることから,電子を受容するアクセプター型及び電子を供与するドナー型のいずれの層間化合物(Intercalation Compound)をも形成することが可能である。このような層間化合物については,グラフェン積層数の多い黒鉛において,種々研究開発されており,黒鉛層間化合物として知られている。(非特許文献3)。
特許第3065896号 特公昭62-49363 特許第2664819号 特許第2526408号 特許第2541434号 特許第2633638号
Nature, 354: p. 56-58, 1991 Nature nanotechnology, 3: p. 31,2008 稲垣道夫,炭素1989[No.139]207-213
 結晶性(黒鉛化度)が良い黒鉛材料を,塊状,ブロック状,円柱状,立柱状,シート状などの形状にて製造する場合には,一旦炭素化させた材料を固相反応で3000℃程度の高温で長時間かけて黒鉛化する必要があり生産性が著しく低く高コストであった。また固相で黒鉛化が進行するために,工業的に可能な黒鉛化処理期間では完全な黒鉛結晶性を得ることは困難であった。また,高密度の黒鉛材料を得るためには,固相反応でも黒鉛化が進行するように炭素化段階で炭素六角網面の構成状態をコントロールする必要があり,原料調整,成形,炭素化の工程も複雑,煩雑で極めて生産性が低く,金属不純物が残留する課題があった。
 またリチウムイオン電池,ハイブリッドキャパシタなどの二次電池の電極,燃料電池の電極,拡散板などでは開気孔率の高い多孔質な黒鉛板,シートが必要であるが,人造黒鉛材料で多孔体を構成すると材料強度が保持できないために,粉砕して粉粒状にした後にスラリーとして金属板などに塗布する必要があった。
 炭化水素ガスを原料とした気相成長炭素繊維の製造方法においては,比較的単純なプロセスで製造できるが,気相反応チャンバー(反応容器)を構成する必要があり,黒鉛化処理も別途必要になるために大量生産では設備コストが多大になる課題があった。また得られる材料は直径が1mm以下の繊維状態であり,所望の形状の黒鉛部材として十分な強度を持たせるには,バインダーに含浸,あるいは樹脂と成形するなどの複合化,再度の炭素化黒鉛化が必要であった。また金属触媒が繊維生成の必須材料であるため高純度化するためには添加した触媒金属を除去する必要があった。
 カーボンナノチューブ,フラーレン,カーボンナノホーンなどのナノカーボン材料の場合も極めて収率が低く,また構造部材にするためには添加材料として高分子材料と複合化し,再度炭化,黒鉛化する,あるいはスラリー塗布,乾燥させる必要があった。
 ポリイミド樹脂の高圧(材料に対して垂直な方向への直圧),高温処理による高配向性黒鉛の製造方法では,製造できる厚さに限界があり,異方性が大きく強度がきわめて低いなどの課題があった。
 ガラス状カーボンの厚肉材料内部に,熱間静水圧加圧処理により高配向性黒鉛を析出させる方法では,緻密なガラス状カーボンを10mm以上の厚さに焼成することが困難であり,また析出させた黒鉛をガラス状カーボンの殻を破って取り出す必要があるために,大形状のもの,多孔質なものが得られない課題があった。
 このように従来の黒鉛系材料の製造方法では,液体・固体の原料を使用して固相で炭素化,黒鉛化を進行させるため,1)炭素六角網面(黒鉛結晶構造)を発達させるには3000℃程度の最高到達温度にて,2か月程度の極めて長い製造期間を要する。2)完全な黒鉛結晶構造が得られない,3)完全な黒鉛結晶構造にすると異方性が強くなり脆弱な(面方向は強いが厚さ方向は柔らかい)強度になる,4)開気孔率が大きい多孔体を製造することが難しい課題があった。
 また気体,個体の原料を使用して気相(プラズマ中のラジカルも含む)で炭素化,黒鉛化を進行させる,あるいはカーボンナノチューブ,グラフェン,フラーレン,カーボンナノファイバー,カーボンナノホーンなどの黒鉛結晶構造主体の材料を製造させる方法においては,反応容器が必要であり生産効率が極めて低く大量生産が難しい,塊,ブロック,円柱,立柱,板などの大形状のものを直接に製造することが困難などの課題があった。
 従来の一次元形状ナノSi材料(Siナノワイヤ,Siナノロッドなど)の製造方法は,Au,In,Snなどの触媒を担持させた基板上に合成するものであるため,得られる目的物の純度が低く,低生産性乃至高コストという課題があった。
 本発明者らは,鋭意研究した結果,本発明の第一の側面として,残留水素を含むように仮焼きした有機化合物の粉粒体(仮焼原料)を耐熱性材料で構成された容器(例えば,黒鉛製の容器)に密閉し,所定の条件下,該容器ごと加圧された雰囲気を使用した熱間静水圧加圧処理(HIP処理)することにより,内側から外方へと延びた薄片状の黒鉛結晶が集合してなる薄片状黒鉛結晶塊(以下,単に,「本発明の薄片状黒鉛結晶塊」とも称する。)を製造することができ,かかる薄片状黒鉛結晶塊はリチウムイオン電池,ハイブリッドキャパシターなどの電極材料などとして有用であり,かつ,かかる製造方法は効率的で生産性が高いなどの利点を有するものであることを見出し,本発明を完成した。
 また,本発明の第二の側面として,上記HIP処理において,粉末状のシリコンを仮焼原料と混合し,HIP処理の最高到達温度を,Siの融点に近い温度(約1320℃)以上の温度にして処理することにより,上記本発明の薄片状黒鉛結晶塊の生成と同時に,一次元形状ナノシリコン(Si)材料(繊維状のSiナノワイヤやSiナノロッド)が生成することを見出し,本発明を完成した。
 さらに,本発明の第三の側面として,薄片状の黒鉛結晶が集合してなる薄片状黒鉛結晶集合物を原料として,これを粉砕したものを,溶媒に分散し,超音波印加し,遠心分離した後,上澄みを採取し,該上澄みから溶媒を留去することにより,透明導電膜の製造に適した薄片状黒鉛結晶(例えば,結晶性の高い,厚さ約10nm以下の多層グラフェン,特に,厚さ約3.5nm(積層数で10層程度)以下の多層グラフェン),及び/又は,該薄片状黒鉛結晶の皺縮体及び/又はロール状変形体を製造できることを見出し,本発明を完成した。
 すなわち,本発明は,
(1)内側から外方へと延びた薄片状の黒鉛結晶が集合してなる薄片状黒鉛結晶塊の製造方法であって,残留水素を含むように仮焼きした有機化合物の粉粒体を準備し,これを耐熱性材料で構成された密閉容器に入れ,該容器ごと加圧されたガス雰囲気を使用した熱間静水圧加圧処理することを含んでなり,熱間静水圧加圧処理における最高到達温度が900℃以上2000℃未満である,製造方法,
(2)該最高到達温度が1000℃以上2000℃未満である,上記(1)の製造方法, 
(3)該耐熱性材料で構成された密閉容器が,黒鉛製の密閉容器である,上記(1)又は(2)の製造方法,
(4)該残留水素が6500ppm以上である,上記(1)~(3)のいずれかの製造方法,
(5)該仮焼きの温度が1000℃以下である,上記(1)~(3)のいずれかの製造方法,
(6)該黒鉛製の密閉容器が,開気孔率が20%未満であり,三角ねじによるねじ式のものである,上記(1)~(5)のいずれかの製造方法,
(7) 該有機化合物が,デンプン,セルロース,タンパク質,コラーゲン,アルギン酸,ダンマル,コバール,ロジン,グッタベルカ,天然ゴム,セルロース系樹脂,セルロースアセテート,セルロースニトレート,セルロースアセテートプチレート,カゼインプラスチック,大豆タンパクプラスチック,フェノール樹脂,ユリア樹脂,メラミン樹脂,ベンゾグアナミン樹脂,エポキシ樹脂,ジアリルフタレート樹脂,不飽和ポリエステル樹脂,ビスフェノールA型エポキシ樹脂,ノボラック型エポキシ樹脂,多官能基エポキシ樹脂,脂環状エポキシ樹脂,アルキド樹脂,ウレタン樹脂,ポリエステル樹脂,塩化ビニル樹脂,ポリエチレン,ポリプロピレン,ポリスチレン,ポリイソプレン,ブタジエン,ナイロン,ビニロン,アクリル繊維,レーヨン,ポリ酢酸ビニル,ABS樹脂,AS樹脂,アクリル樹脂,ポリアセタール,ポリイミド,ポリカーボネート,変性ポリフェニレンエーテル,ポリアリレート,ポリスルホン,ポリフェニレンスルフィド,ポリエーテルエーテルケトン,フッ素樹脂,ポリアミドイミド,シリコン樹脂,石油系ピッチ,石炭系ピッチ,石油コークス,石炭コークス,カーボンブラック,活性炭,廃プラスチック,廃ペットボトル,廃木材,廃植物,生ごみからなる群から選ばれる1種又は2種以上のものである上記(1)~(6)のいずれかの製造方法,
(8)該有機化合物の粉粒体が平均粒径で100μm未満のフェノール樹脂である,上記(1)~(7)のいずれかの製造方法,
(9)黒鉛製の密閉容器に入れた,仮焼きした有機化合物の粉粒体の回りの一部又は全部を,スぺーサー及びスリーブで覆った状態で熱間静水圧加圧処理する,上記(1)~(8)のいずれかの製造方法,
(10)該スぺーサー及びスリーブが,ガラス状カーボン,ダイヤモンドライクカーボン,アモルファスカーボンからなる群から選ばれる1種又は2種以上で構成されたものである,上記(9)の製造方法,
(11)該仮焼きした有機化合物の粉粒体に,炭素繊維,天然黒鉛,人造黒鉛,ガラス状カーボン,アモルファスカーボンからなる群から選ばれる1種又は2種以上の炭素材料を混合することを特徴とする,上記(1)~(10)のいずれかの製造方法,
(12)上記(1)~(11)のいずれかの製造方法により得られた該薄片状黒鉛結晶塊をホスト材料とする黒鉛層間化合物を準備し,これを急速加熱させることを含んでなる,薄片状黒鉛結晶を部分的に劈開させた黒鉛結晶塊の製造方法,
(13)内側から外方へと延びた薄片状の黒鉛結晶が集合してなる薄片状黒鉛結晶塊,
(14)上記(13)の薄片状黒鉛結晶塊の薄片状黒鉛結晶を,部分的に劈開させた黒鉛結晶塊,
(15)残留水素を含むように仮焼きした有機化合物の粉粒体を準備し,これに粉末状のシリコンを混合し,該混合物を耐熱性材料で構成された密閉容器に入れ,該容器ごと加圧されたガス雰囲気を使用した熱間静水圧加圧処理することを含んでなり,熱間静水圧加圧処理における最高到達温度が1320℃以上2000℃未満である,一次元形状ナノシリコン材料の製造方法,
(16)残留水素を含むように仮焼きした有機化合物の粉粒体を準備し,これに粉末状のシリコンを混合し,該混合物を耐熱性材料で構成された密閉容器に入れ,該容器ごと加圧されたガス雰囲気を使用した熱間静水圧加圧処理することを含んでなり,熱間静水圧加圧処理における最高到達温度が1320℃以上2000℃未満である,内側から外方へと延びた薄片状の黒鉛結晶が集合してなる薄片状黒鉛結晶塊と一次元形状ナノシリコン材料とを含む,黒鉛-シリコン複合材料の製造方法,
(17)該最高到達温度が1350℃以上1800℃以下である,上記(15)又は(16)の製造方法,
(18)該粉末状のシリコンが,粒子径500μm未満のものである,上記(15)~(17)のいずれかの製造方法,
(19)内側から外方へと延びた薄片状の黒鉛結晶が集合してなる薄片状黒鉛結晶塊と一次元形状ナノシリコン材料とを含む,黒鉛-シリコン複合材料,
(20)薄片状の黒鉛結晶が集合してなる薄片状黒鉛結晶集合物を粉砕したものを,溶媒に分散し,超音波印加し,遠心分離した後,上澄みを採取することを含んでなる,溶媒に分散された薄片状黒鉛結晶,及び/又は,その皺縮体及び/又はロール状変形体の製造方法,
(21)上記(20)の溶媒に分散された薄片状黒鉛結晶,及び/又は,その皺縮体及び/又はロール状変形体から,溶媒を留去することを含んでなる,薄片状黒鉛結晶,及び/又は,その皺縮体及び/又はロール状変形体の製造方法,
(22)薄片状の黒鉛結晶が集合してなる薄片状黒鉛結晶集合物が,内側から外方へと延びた薄片状の黒鉛結晶が集合してなる薄片状黒鉛結晶塊である,上記(20)又は(21)の製造方法,
(23)厚さ10nm以下の多層グラフェンからなる,溶媒に分散された薄片状黒鉛結晶,及び/又は,その皺縮体及び/又はロール状変形体,
(24)厚さ10nm以下の多層グラフェンからなる,薄片状黒鉛結晶,及び/又は,その皺縮体及び/又はロール状変形体,
(25)該仮焼きした有機化合物の粉粒体に,シリコン,シリコン酸化物,酸化チタン又は酸化亜鉛を混合することを特徴とする,上記(1)~(10)のいずれかの製造方法,(26)シリコンが均一に分散している上記(13)の薄片状黒鉛結晶塊,
(27)酸化チタンが均一に分散している上記(13)の薄片状黒鉛結晶塊,
(28)酸化亜鉛が均一に分散している上記(13)の薄片状黒鉛結晶塊,
に関する。
 本発明の第一の側面である薄片状黒鉛結晶塊の製造方法によれば,結晶性に優れた人造黒鉛材料,および従来は製造することが困難であった高い結晶性を保持しながらも全体では等方性である,燃料電池,キャパシタなどに有用な黒鉛粒子又は黒鉛構造体を製造することができる。また,従来2~3カ月は必要であった人造黒鉛材料の製造期間が数時間に短縮でき,大幅に生産性が向上する。結果としてコストダウンが可能になるため,燃料電池,キャパシタなど炭素材料がコストに占める割合の大きいアプリケーションの低コスト化が進展し,その普及が進む。
 本発明では気相成長で黒鉛を製造するために,理想的な黒鉛結晶構造,結晶子サイズの黒鉛塊を高密度から多孔質まで幅広く設計し,製造することが可能である。また,炭素六角網面のエッジ部が面方向に向いている薄肉材料を製造することも可能であるために(従来は薄肉な材料を得ようとすると炭素六角網面が面方向にそろってしまう),リチウムイオン電池,ハイブリッドキャパシターなど黒鉛層間化合物の生成反応を利用する電池の電極材料として理想的な構造のものを提供することが可能になる。また燃料電池拡散板など,適度な開気孔率で燃料ガス透過性が良く,黒鉛の結晶性が高くて電気伝導性が高く,高純度,高強度である黒鉛材料が必要とされるアプリケーションにおいても,理想的な材料を製造,提供することが可能になる。
 本発明の第二の側面によれば,電極材料として,膨張や破壊に対する耐性を高めた一次元形状ナノシリコン材料,および,かかる一次元形状ナノシリコン材料と薄片状黒鉛結晶塊とを含む黒鉛-シリコン複合材料を,いずれも,無触媒,無基板の条件下,高い生産性で及び/又は低コストで,製造することができる。しかも得られるナノシリコン材料や黒鉛-シリコン複合材料を構成する薄片状黒鉛結晶塊及び一次元形状ナノシリコン材料は,いずれも純度の高いものである。このため,高性能の電極材料等を提供することができる。
 本発明の第三の側面によれば,薄片状黒鉛結晶,及び/又は,その皺縮体及び/又はロール状変形体を,効率よく製造することができる。また,これら薄片状黒鉛結晶,及び/又は,その皺縮体及び/又はロール状変形体は,透明導電膜,導電膜及び熱伝導性膜並びにそれらの添加材などとして,有用である。
本発明の一実施形態に係る黒鉛坩堝の構造を示す断面図である。 本発明の一実施形態に係る黒鉛坩堝の構造を示す断面図であり,仮焼原料が装填された状態を示す。 本発明の一実施形態に係る黒鉛坩堝の構造を示す断面図であり,仮焼原料を入れ,該坩堝を密閉した状態を示す。 本発明の一実施形態に係る黒鉛坩堝の構造を示す断面図であり,仮焼原料3の底部と上部の全てをスペーサーで覆い,該坩堝を密閉した状態を示す。 本発明の一実施形態に係る黒鉛坩堝の構造を示す断面図であり,仮焼原料3の側面部の全てをスリーブで覆い,該坩堝を密閉した状態を示す。 本発明の一実施形態に係る黒鉛坩堝の構造を示す断面図であり,仮焼原料3の底部と上部及び側面部の全てをスリーブとスペーサで覆い,該坩堝を密閉した状態を示す。 本発明の一実施形態に係る,仮焼原料の表面に気相成長黒鉛が生成する機構を説明した概念図(断面図)である。 黒鉛の結晶構造における,炭素六角網面の結晶方位を示す。 本発明の気相成長黒鉛が,仮焼原料の表面から外方(概略放射状)に,黒鉛結晶のa軸方向に成長する機構を説明する概念図である。 本発明の一実施形態に係り,粉粒状の多様な形状の仮焼原料の周囲に,気相成長黒鉛が生成することを示す概念図(断面図)である。 従来の黒鉛材料が異方的に生成,成長する機構を示す概念図である。 本発明の一実施形態に係り,気相成長黒鉛が,仮焼原料の表面より等方的に成長する機構を示す概念図である。 本発明の一実施形態に係り,球状態の仮焼原料の外表面および内部に気相成長黒鉛が生成する機構を示す概念図(断面図)である。 本発明の一実施形態に係り,球状態の仮焼原料の外表面に気相成長黒鉛が生成しバルク状の黒鉛構造物が生成する機構を示す概念図(断面図)である。 実施例1試料番号1の生成物の,表面の電子顕微鏡像を示す図面代用写真である。 図15の高倍率像を示す図面代用写真である。 実施例1試料番号1の生成物の,破面の電子顕微鏡像を示す図面代用写真である。 実施例1試料番号5の生成物の,破面の電子顕微鏡像を示す図面代用写真である。 実施例1試料番号6の生成物の,破面の電子顕微鏡像を示す図面代用写真である。 実施例1試料番号1のラマン分光スペクトルの測定結果である。 実施例1試料番号5のラマン分光スペクトルの測定結果である。 実施例2の生成物の,表面の電子顕微鏡像を示す図面代用写真である。 図22の高倍率像を示す図面代用写真である。写真中のバーは2μmである。 実施例3の生成物の,表面の電子顕微鏡像を示す図面代用写真である。写真中のバーは20μmである。
実施例8で得られた試料の走査型電子顕微鏡(SEM)写真。球状の仮焼原料表面に僅かに気相成長黒鉛が生成しており,カーボンナノチューブも観察された。 実施例8で得られた試料のSEM写真。写真の中で白く見えるのがシリコンで,粒子状態を保っていた。 実施例9で加圧加熱処理した試料の,処理後の状況を示す外観写真。黒鉛坩堝を開けて,黒鉛坩堝本体内部と黒鉛坩堝上蓋の内表面を撮影している。図中に表記したように白く見えている部分がフェルト状の生成物であり,黒く見えている部分は気相成長黒鉛と繊維状シリコン系化合物との複合材料。 前図で白色に見えていたフェルト状生成物のSEM写真。 前図の拡大図面。 前図の拡大図面。 図28で白色に見えていたフェルト状生成物の中に含まれる,ナノサイズの繊維に球状および円盤状のものが数珠状に合体して生成している部分のSEM写真。 前図と同様の生成物のSEM写真。 実施例9で生成した気相成長黒鉛とシリコン化合物のSEM写真。棒状に生成したシリコンが多数観察される。 前図で示した部分のうちの,棒状のシリコンの拡大図。 実施例9で生成した気相成長黒鉛とシリコン化合物のSEM写真。繊維状のシリコン化合物が多数生成している様子を示す。 実施例9で得られた試料の,棒状のシリコンが多量に生成している部分のSEM写真。 実施例9で得られたシリコン系生成物の中で,繊維状の生成物に円盤状の生成物が数珠状に合体した部分のSEM写真。 実施例9で加圧加熱処理した試料のX線回折パターン。図中上部は白色のフェルト状生成物の,下部は黒く見えている部分の測定結果。いずれも気相成長黒鉛,シリコン,炭化珪素の結晶構造に相当する回折線が確認された。 棒状のシリコンのSEM写真。 前図の観察部分について測定した,EDX(エネルギー分散型X線分光法)の定性分析結果。シリコンに相当する強いピークが観察された。なお,Arのピークは気相成長黒鉛中に吸蔵されたアルゴンに相当する。 図39の観察部分についての,EDX測定における,特性X線マップ。SEMと表記した部分はSEM像(二次電子像)であり,Si,C,Arと表記した写真はそれぞれの元素の特性X線マップである(該当する元素が存在している部分を白い点で示している)。Siと表記したマップでは,SEM像とで示された棒状の生成物と同様の形態が観察されており,この部分にSi元素が存在していることがわかる。Cと表記したマップでは,棒状に相当する形態は確認できないことから,SEMで観察した棒状部分は,主にSiから構成されるものである。 図27で白色に見えていたフェルト状生成物の中に含まれる,ナノサイズの繊維に球状および円盤状のものが数珠状に合体して生成している部分のEDX測定結果。図中上部の写真がSEMおよび特性X線マップ,下部がEDXの定性,および定量分析結果を示す。SEM,およびSi,Oの特性X線マップには同様の数珠状の形態が確認できるが,Cの特性X線マップではそれが観察されないことから,数珠状の生成物がSiおよびOから構成されることを確認した。 実施例10において仮焼温度900℃で生成した試料の表面のSEM写真。 実施例10において仮焼温度600℃で生成した試料の表面のSEM写真。 実施例11で使用した黒鉛坩堝,ガラス状カーボン製スペーサの構造および試料充填の状態を示す模式図である。 実施例11で,ガラス状カーボン製スペーサの表面に生成した,気相成長黒鉛(多層グラフェン)からなる膜状生成物の生成状況を示す外観写真である。 実施例11で生成した膜状生成物の端部のSEM写真。 図47で平坦に見える部分を拡大したSEM写真。 図48の拡大図面。 図47で隆起した様に見える部分を拡大したSEM写真。 図50の拡大図面。 実施例12で試料の表面部分に生成した物のSEM写真。 図52の拡大図面。 図53の拡大図面。 実施例13の生成物のSEM写真。 図55の拡大図面。 実施例14の生成物のSEM写真。 図57の拡大図面。 実施例15で生成した,グラフェン積層型カーボンナノファイバ(CNF)のSEM写真。グラフェンシートが多数積層して繊維状に成長している様子を示す。 実施例16で生成した,グラフェン積層型CNFのSEM写真。 前図の拡大図面。 実施例17で生成した,本発明の薄片状黒鉛結晶塊のSEM写真。 前図の拡大図面。 実施例18で生成した,薄片状黒鉛結晶の皺縮体(多層グラフェンが簾状に収縮)の透過型電子顕微鏡(TEM)写真。 実施例18で生成した,薄片状黒鉛結晶の皺縮体(多層グラフェンが簾状に収縮)のTEM写真。 実施例18で生成した,薄片状黒鉛結晶(多層グラフェン)の,表面の一部を写したTEM写真。 前図の薄片状黒鉛結晶(多層グラフェン)の拡大図面であって,その端部の格子像を捉えたもの。 本発明の薄片状黒鉛結晶塊の,薄片状黒鉛結晶を,部分的に劈開させた黒鉛結晶塊(実施例19)。 前図の拡大図面。 実施例20で得られた薄片状黒鉛結晶塊の表面の走査型電子顕微鏡写真(SEM)。
 本発明の第一の側面について説明する。
 本発明に係る耐熱性材料で構成された密閉容器(例えば,黒鉛製の坩堝)は,HIP処理中に仮焼原料から発生する水素,炭化水素,一酸化炭素,水などのガスによるCVD反応を生じせしめるための反応容器の役割を担う。ガス圧による等方的な高圧を保ちつつ,内部で生成する反応ガスを外部に拡散させずに化学反応を生じさせる必要があるため,適切な材質および密閉構造とする必要がある。材質が緻密過ぎると容器(例えば,坩堝)内外の圧力差が生じてしまい容器(例えば,坩堝)は爆発的に破壊する。一方,材質が多孔質すぎると内部で発生した反応ガスが容器(例えば,坩堝)外部に拡散するため化学反応の効率が低下する。
 またHIP処理後の製品を外部に取り出す必要があること,HIP処理前の原料の挿入の生産性の観点からも,できるだけ簡易に容器(例えば,坩堝)を密閉する必要があること,HIP処理時には約1000℃以上の高温に曝されること,仮焼原料からの反応ガス生成による内部圧力に耐えうる強度を高温で維持する必要があることなどを鑑み,適切な材質,構造で容器(例えば,坩堝)を構成する必要がある。
 容器を構成する耐熱性材料としては,黒鉛の他,アルミナ,マグネシア,ジルコニアなどのセラミック,鉄,ニッケル,ジルコニウム,白金などの金属などが挙げられる。
容器(例えば,坩堝)の材質には黒鉛材料が好適である。具体的には押出し成型,CIP成型,型込め成型,振動成型,ランマー成型などによる人造黒鉛材料,主に熱硬化性樹脂成型によるガラス状炭素を含む硬質炭素材料,炭素繊維強化炭素材料およびこれらの複合材料により構成することができる。黒鉛材料の気孔率は,容器(例えば,坩堝)内部で化学反応を効率的に生じさせるために重要であり,開気孔率(見掛け気孔率)が約20%未満のものが好適に使用できる。開気孔率が約20%以上の材質では反応ガスが容器(例えば,坩堝)外部に拡散するために黒鉛が生成するのに必要な濃度を保てない。但し,容器(例えば,坩堝)の体積と,これを収納するHIP処理するチャンバーの容積の間にそれ程差がない場合には,たとえ容器(例えば,坩堝)の開気孔率が約20%以上であっても,容器(例えば,坩堝)外部に拡散する反応ガスの量がそれ程多くないため,効率性に大きな影響は生じない。
 本発明に使用する容器のうち,黒鉛坩堝として,例えば,仮焼原料の坩堝内部への充填,HIP処理後の生成物の取り出しを効率的におこなうために,ねじ式の黒鉛坩堝を使用することができる(図1~図3)。坩堝本体2の上部の内壁2a,坩堝蓋部1の外周部1aには所定のタップ加工によりねじ部が刻みこまれており,仮焼原料3を充填後に坩堝蓋部1をねじ部が合わさるように旋回させて,締めこむことにより密閉する。
 仮焼原料の密閉度合いを高めるために開気孔率の低い硬質の炭素材料で構成されたスペーサ4を用いて,これを,仮焼原料3の底部及び上部の全部(又は一部)を覆う状態で熱間静水圧加圧処理することにより,仮焼原料3から発生する反応ガスの坩堝上部,底部からの散逸を制御することができる。(図4)
 さらに,開気孔率の低い硬質の炭素材料で構成されたスリーブ5を用いて,これを仮焼原料3の側面部の全部(又は一部)を覆う状態で(図5),又はスペーサ4及びスリーブ5を同時に用いて,仮焼原料の回りの全部(又は一部)を覆う状態で(図6),熱間静水圧加圧処理することにより,反応効率を高めることができる。スぺーサー及びスリーブを構成する該炭素材料としては,ガラス状カーボン,ダイヤモンドライクカーボン,アモルファスカーボンなどが挙げられ,これらの1種又は2種以上を同時に使用することができる。該炭素材料の開気孔率は,通常約0.5%未満である。なお,スぺーサーとスリーブについては,たとえ開気孔率が0%のもので仮焼原料の回り全部を覆ったとしても,スぺーサーとスリーブの合わせ目には隙間が生じるため,仮焼原料をスぺーサーとスリーブで密閉したことにはならない。
 ねじ式黒鉛坩堝における,ねじの種類としては,三角ねじ(ねじ山の断面が正三角形に近い形をしたねじである。),角ねじ,台形ねじなどが挙げられるが,このうち,三角ねじが好ましい。
 水素が残留する仮焼原料を使用して,HIP処理にて気相成長黒鉛を生成させるプロセスでは,使用する原料の種類に拘わらず,仮焼温度,仮焼原料の残留水素量,仮焼原料の形状,HIP処理温度,圧力,昇温昇圧速度などにより生成する黒鉛の結晶化度,真密度を制御することができる。
 残留水素量としては,HIP処理時に,本発明の目的物の製造の観点から,CVD反応に必要な水素,炭化水素,一酸化炭素,水などのガスが十分発生するような水素量であれば支障はなく,通常約6500ppm以上,好ましくは約10000ppm以上,更に好ましくは約20000ppm以上である。水素が残留する仮焼原料は,有機化合物の粉粒体を仮焼きすることにより得ることができる。この場合,通常,仮焼の温度に応じて,残留水素量が変化する。つまり,仮焼温度が高くなるにつれて,残留水素量が減少する。
 好ましい仮焼温度としては,約1000℃以下,好ましくは約850℃以下,より好ましくは約800℃以下,更に好ましくは約700℃以下である。
 このようにして得られた水素が残留する仮焼原料を,適切な条件下,HIP処理する。HIP処理時の温度は,約900℃以上,好ましくは約1000℃以上で気相成長黒鉛が得られる一方,あまりに高温(例えば,約2000℃)では,励起された水素によるエッチングにより目的物がダメージを受ける(図19)。したがって,本発明において,HIP処理時の最高到達温度は,約900℃(好ましくは,約1000℃)以上約2000℃未満であることが必要である。また,本発明の目的物を効率的に製造する観点からは,HIP処理時の最高到達温度は,約1200℃~約1900℃,好ましくは約1400℃~約1800℃の範囲である。なお,HIP処理時の最高到達温度は,仮焼温度よりも高いことが必要であり,通常100℃以上,好ましくは400℃以上高い温度である。
 HIP処理時の最高到達圧力として適当な値は,仮焼原料の粒子サイズなどにより変化するが,通常,約1MPa~約300MPa,好ましくは約10MPa~約200MPaの範囲,好ましくは約30MPa~約200MPaの範囲で,HIP処理を好適に実施することができる。例えば,粒径サイズが大きい場合には,該最高到達圧力としては,より大きな圧力が必要となる一方,粒径サイズが小さい場合にはより小さな圧力で十分となる。粒子サイズが数μm~数十μm以上のもの(例えば,合成樹脂など)の場合には,最高到達圧力は,70MPa以上とするのが好ましいが,粒子サイズが約1μm以下のもの(例えば,カーボンブラックなど)の場合には,10MPa程度でも,HIP処理を好適に実施することができる。
 HIP処理においては,粒子サイズが約1μm以下の如きに小さい場合などを除き,通常,仮焼きした温度付近まで温度を上昇させる前に,まず圧力を所定の圧力まで上げ(圧力先行パターン),仮焼原料が飛散しないようにした上で温度を仮焼温度付近まで上昇させ,その後,必要に応じ,昇温・加圧し,最高到達温度および最高到達圧力に達せしめるのが,生産効率の観点から望ましい。該所定の圧力としては,約70MPaが挙げられる。一方,粒子サイズが約1μm以下の如きに小さい場合などは,上記ような圧力先行パターンを特に必要とすることなく,効率よくHIP処理を実施することができる。
 このようにして得られる本発明の目的物である薄片状黒鉛結晶塊は,高い結晶化度を有する。その真密度は,通常,約1.85g/cm以上であり,好ましくは約2.0g/cm以上であり,より好ましくは約2.1g/cm以上,更に好ましくは約2.2g/cm以上の結晶性の良い薄片状黒鉛結晶塊である。なお,該真密度において,約とは,概ね±1%程度の誤差を許容する意味である。但し,仮焼原料の粒子サイズが大きい場合には,後述するように,薄片状黒鉛結晶塊の生成比率が低下する傾向にあるため,HIP処理後の生成物の真密度をそのまま測定すると,生成物全体としては,上記より低い真密度の値となる場合があり得る。しかし,生成した薄片状黒鉛結晶塊の部分の真密度が上記範囲にある限り,本発明の薄片状黒鉛結晶塊として好適に使用することができる。
 また,該薄片状黒鉛結晶塊の全気孔率としては,40%以上が好ましく,50%以上がより好ましい。薄片状黒鉛結晶塊のうち,真密度と全気孔率について上記した「好ましい範囲」の任意のものを同時に満たす薄片状黒鉛結晶塊は,それら真密度は又は全気孔率のいずれか一方のみを満たす薄片状黒鉛結晶塊よりも,より好ましい薄片状黒鉛結晶塊である。そのようなものとしては,例えば,真密度が1.85g/cm以上でありかつ全気孔率が40%以上のもの,真密度が2.0g/cm以上でありかつ全気孔率が50%以上のものなどが挙げられるがこれらに限定されるものではなく,その他のいずれの組合せも本発明の範囲内である。
 仮焼原料から気相成長黒鉛が生成する機構を図7に示した。有機化合物を仮焼きした原料粒子6を所定の条件でHIP処理すると,仮焼温度よりも高温に加熱された仮焼原料粒子6の内部から水素,炭化水素,一酸化炭素,二酸化炭素などの気体6aが発生する。気体6aは材料中の気孔を通過しながら仮焼原料粒子6の表面に到達する。この過程で,温度,圧力により励起され物理化学的に気相成長黒鉛7が生成する。仮焼原料は反応ガスの発生により収縮していき,外部,内部に気相成長黒鉛を形成する。
 HIP処理ではアルゴン,窒素などの気体により等しい方向に圧力がかかるため,図8及び図9に示したように,黒鉛結晶の成長は仮焼原料粒子6の表面6sから概略放射状に,黒鉛六角網面7の面内方向7a(黒鉛結晶のa軸方向)に成長していく。また反応初期に形成された黒鉛六角網面(グラフェン)7を起点に黒鉛六角網面7が炭素を連結しながら7aの方向に広がり,同時に黒鉛六角網面7が7cの方向に積層しながら黒鉛構造が成長する。この場合において,高圧の加圧媒体ガスが,グラフェン表面においてシールド効果を発現し,グラフェンが相互に接着・接合し,多層化することを妨げるため,グラフェンの成長が7c方向でより抑制され,放射状に7a方向により成長する結果,本発明の薄片状黒鉛結晶塊が生成すると考えられる。
 HIP処理する仮焼原料の形状は,球状,楕円球状,立柱状,円柱状,繊維状,不定形の塊状など様々な形状の粉粒体が使用できる(図10)。いずれの場合も,仮焼原料粒子6の表面6sから概略放射状に黒鉛六角網面7が炭素を連結しながら7aの方向に広がり,同時に黒鉛六角網面7が7cの方向に積層しながら黒鉛構造が成長する。このため,従来は黒鉛六角網面7が粒子の全体で一つの方向にそろい成長した黒鉛材料,たとえば粒子の表面には7a方向が,粒子の厚さ方向には7cが選択的に配向した異方性の大きな黒鉛材料しか製造することができなかったが(図11),本発明では,黒鉛六角網面7の成長が7aの方向に向かいかつ該7aへ向かう成長が概略放射状に伸び,結果として,内側から外方へと延びた薄片状の黒鉛結晶が集合してなる薄片状黒鉛結晶塊(等方性の黒鉛粒子,バルク状の黒鉛構造体を含む)を得ることができる(図12)。また,かかる薄片状黒鉛結晶塊は,等方性の黒鉛粒子の形態であり得るし,それらがバルク状に連なった黒鉛構造体でもあり得る。
 仮焼原料の焼成温度,残留水素量,黒鉛坩堝構造,HIP処理条件の選択により,仮焼原料6の内部,外部での気相成長黒鉛の生成程度は決定される。適切な条件を選択することにより図13に示したように仮焼原料6の外表面および内部に気相成長黒鉛7を生成させ,バルク状の黒鉛としての結晶化度を高め,真密度を向上させることができきる。
 より詳細に本発明の気相成長黒鉛の生成機構を説明する。仮焼きした原料は,HIP処理においてアルゴン,窒素などの圧力媒体により等方的に加圧される。したがって,まずHIP処理の初期段階において仮焼原料の粒の周囲に高圧,高密度な相が形成される。HIP処理温度が仮焼温度よりも高くなると仮焼原料からの気体発生がはじまるが,高圧高密度の圧力媒体への気体の拡散係数が小さくなるため,仮焼原料の周囲に高濃度の反応気体領域(水素,炭化水素,一酸化炭素など)が形成される。HIP処理は等方的な加圧であるために,反応気体領域は粒子の外表面に均一に,また粒子の形状に相似的に形成される。
 これらの反応気体領域では,HIP処理温度がさらに高く,具体的には約900℃以上になると励起され所謂熱CVD反応を生じて気相成長黒鉛を析出する。一般的にはCVD装置,プラズマCVD装置などを使用して基板表面に反応気体を供給してなされるCVD反応を,HIP装置を利用して黒鉛坩堝容器内の仮焼原料周囲に発生する反応気体領域にて実施することが本発明の特徴的な反応機構である。従って球状の仮焼原料の場合は,図15に示したように球の表面から概略放射状に気相成長黒鉛が生成し,不定形な仮焼原料の場合は図24に示したように各々の表面から相似的に気相成長黒鉛が成長する。
 原料の仮焼温度に最適な範囲がある理由は,効率よくCVD反応で黒鉛を生成させるために炭化水素,水素,一酸化炭素などの適切な原料気体種を構成させる必要があるためであり,たとえば約1000℃を超えた仮焼温度になると残留する水素が少なくなり効率的な黒鉛析出が生じない。またHIP処理温度に適切な範囲がある理由は,約900℃よりも低い温度では発生した気体の熱励起が生じ難くCVD反応が進行しづらいことが見出され,また約2000℃を超えた温度になると水素による析出黒鉛のエッチングが生じることを見出したためである。
 また使用する仮焼原料の粒子サイズについては,CVD反応が粒子の表面で主に生じるため,粒子サイズが大きいと体積に対する表面積の割合が小さくなり,結果として得られた材料に占める気相成長黒鉛の量が低下する。したがって,粒子サイズが小さい原料を使用した方が,バルク黒鉛材料としての気相成長黒鉛7の生成比率を高めることができる(図14)。したがって,生産効率の観点からは,球状の樹脂を使用する場合では,粒子サイズ(平均)約100μm以下のものを使用することが好ましい。ただし,ガラス状炭素などの硬質カーボン材料粒子などのごく表面に気相成長黒鉛を成長させたい用途などがあれば,必要に応じて100μmよりも大きな粒子を選択することにより容易に目的の材料を得ることができる。
 なお,原料として,仮焼の過程で一旦溶融するもの(例えば,熱可塑性樹脂など)を使用する場合には,HIP処理に付すに際し,該仮焼後の原料を予め粉砕し,分級して,所望のサイズの仮焼原料とすればよい。例えば,熱可塑性樹脂は,仮焼後,発泡体(脆いスポンジ状のもの)として得られるので,該発泡体をHIP処理に付すに際して,予め粉砕し,その後分級して,所望のサイズの仮焼原料とする。
 従来は基板の表面に炭素六角網面が膜状に積層したものなど異方性の高いものしか製造することができなかったが,本発明により,三次元的な空間で効率よく気相成長黒鉛を生成させ,結果として,内側から外方へと延びた薄片状の黒鉛結晶が集合してなる薄片状黒鉛結晶塊(等方性の黒鉛粒子,バルク状の黒鉛構造体を含む)を極めて短時間で製造することが可能になった。
 一般に,有機化合物は,加熱することにより,高分子化が進行するとともに,構造中の酸素,窒素,水素原子が熱力学的に不安定になるために放出され,炭素化が進行する。したがって,大半の有機化合物は,約300℃以上の熱処理によりこれらの反応が進行し,約400℃以上では,炭素と適度に水素,酸素,窒素などが残留した仮焼原料になるため,本発明ではこのように仮焼きした有機化合物を仮焼原料として使用することができる。
 本発明で使用する有機化合物としては以下のものを挙げることができる。具体的には,天然有機高分子では,デンプン,セルロース,タンパク質,コラーゲン,アルギン酸,ダンマル,コバール,ロジン,グッタベルカ,天然ゴム等,半合成高分子ではセルロース系樹脂,セルロースアセテート,セルロースニトレート,セルロースアセテートプチレート,カゼインプラスチック,大豆タンパクプラスチックなどを,合成高分子では熱硬化性樹脂であるフェノール樹脂,ユリア樹脂,メラミン樹脂,ベンゾグアナミン樹脂,エポキシ樹脂,ジアリルフタレート樹脂,不飽和ポリエステル樹脂,ビスフェノールA型エポキシ樹脂,ノボラック型エポキシ樹脂,多官能基エポキシ樹脂,脂環状エポキシ樹脂,アルキド樹脂,ウレタン樹脂などを,及び,熱可塑性樹脂であるポリエステル樹脂(ポリエチレンテレフタレート(PET)樹脂,ポリトリメチレンテレフタレート樹脂,ポリブチレンテレフタレート樹脂,ポリエチレンナフタレート樹脂,ポリブチレンナフタレート樹脂など),塩化ビニル樹脂,ポリエチレン,ポリプロピレン,ポリスチレンなどを,合成ゴムではポリイソプレン,ブタジエンなどを,合成繊維ではナイロン,ビニロン,アクリル繊維,レーヨンなどを,その他ポリ酢酸ビニル,ABS樹脂,AS樹脂,アクリル樹脂,ポリアセタール,ポリイミド,ポリカーボネート,変性ポリフェニレンエーテル(PPE),ポリアリレート,ポリスルホン,ポリフェニレンスルフィド,ポリエーテルエーテルケトン,フッ素樹脂,ポリアミドイミド,シリコン樹脂などを使用することができる。
 また石油,石炭などの化石燃料を精製する際などに生成する石油系ピッチ,石炭系ピッチ,石油コークス,石炭コークス,カーボンブラック,活性炭はもちろんのこと,資源循環型社会の形成に向け,廃棄物中の炭素の有効利用の観点から炭化システムの導入が各地で進められており,上記の各種樹脂などの混合物である廃プラスチック,廃ペットボトル,廃木材,廃植物,生ごみなどの食品系廃棄物なども,原料たる有機化合物として使用することができる。
 これらの炭化水素系の原料を酸素により燃焼させ二酸化炭素,一酸化炭素として放出することなく,おもに窒素気流中などの不活性雰囲気中で所定の昇温速度・仮焼温度で焼成する。仮焼には電気,ガスなどによる外熱式のバッチ炉,高い連続式多管炉,または内熱式の回転キルン炉,揺動キルン炉などを使用する。
 仮焼原料に炭素繊維,天然黒鉛,人造黒鉛,ガラス状カーボン,アモルファスカーボンなど各種炭素材料を混合し,黒鉛坩堝に充填の上等方的なガス圧により熱処理することにより,気相成長炭素,黒鉛と各種炭素材料の複合材料,たとえば炭素繊維強化炭素材料(CCコンポジット),黒鉛炭素複合材などを製造することが可能である。このため黒鉛材料の用途により,より高強度なもの,気孔率の高いもの,低いものなどの各種のニーズがある場合にも,各種炭素材を複合化した形で対応することが可能になる。
 黒鉛は電気,熱などの伝導性が高く集電,集熱体として頻繁に使用されている。従来は,主要な機能を果たす材料と黒鉛,有機バインダーなどを混合し,加熱,乾燥,加圧することなどによりこれらのデバイスが製造されていた。本発明では,これらの機能性材料を仮焼原料と混合して均一にし,HIP処理することにより,気相成長黒鉛を生成させ,気相成長黒鉛にこれらの機能材料を均一に分散させ固定したデバイスを構成することが可能になる。具体的には,仮焼原料に金属シリコン,シリコン酸化物,酸化チタン,酸化亜鉛などを混合して均一にし,黒鉛坩堝に充填の上,等方的なガス圧により熱処理することにより,気相成長黒鉛にこれらの機能性材料が均一に分散した複合材料を製造することができる。
 本発明の薄片状黒鉛結晶塊は,これをホスト材料とする黒鉛層間化合物(黒鉛層の間に,硫酸イオン,アルカリ金属有機錯体などが侵入したもの)を調製し,これを急速加熱することにより,薄片状黒鉛結晶を部分的に劈開させた黒鉛結晶塊とすることができる。即ち,黒鉛層間へのイオン等のインターカレーションにより,薄片状黒鉛結晶塊を構成する薄片状黒鉛結晶の層間が広がり,これにより薄片状黒鉛結晶塊の各所に応力が発生する。さらに,かかる黒鉛層間化合物を急速加熱することにより,黒鉛結晶のc軸方向において体積が急激に膨張する。これらの過程を通じ,薄片状黒鉛結晶が効果的に劈開された,より薄い厚みをもつグラフェンを製造することができる。該劈開させた黒鉛結晶塊は,数層のグラフェンが積層した多層グラフェンおよびグラフェンから構成されるため,光透過性と電気伝導性を兼ね備えた透明導電膜などの添加剤として有用である。
 該黒鉛層間化合物は,常法により,例えば,上記で得られる本発明の黒鉛結晶塊を,濃硫酸と濃硝酸の混合溶液,アルカリ金属と縮合多環炭化水素のテトラヒドロフラン溶液などに加えて攪拌することにより,調製することができる。このようにして得た黒鉛層間化合物を急速加熱する方法としては,特に限定はないが,例えば,該層間化合物を,セラミックス製の磁性ルツボなどに装填し,これを加熱した電気炉中に投じることなどが挙げられる。この場合の電気炉の温度としては,例えば,600℃~1000℃の範囲であることが好ましい。このような操作を経て,薄片状黒鉛結晶の厚さは,約0.35~約9nmとなる。
 本発明の第二の側面について説明する。
 原料として用いる粉末状のシリコンとしては,例えば,粒径が500μm未満のもの,好ましくは100μm未満のもの,より好ましくは10μm未満のもの,さらに好ましくは5μm未満のもの,さらに好ましくは同1μm未満のものを好適に使用することができる。ここにおいて,例えば,「粒径が500μm未満のもの」とは,全粒子の90%以上,好ましくは99%以上,より好ましくは99.9%以上の粒子が500μm未満であることをいい,「100μm未満のもの」,「10μm未満のもの」,「5μm未満のもの」,「1μm未満のもの」についても同義である。また,これらの基準を満たすか否かは,走査型電子顕微鏡(SEM)などの電子顕微鏡により,所定の範囲の粒子について,実際に粒径を観察した結果から,基準を満たす粒子の割合を計算することにより,判断できる。
 仮焼原料と粉末状のシリコンとの混合は,常法により,ボールミル,粉体ミキサーなどを用いて行うことができる。あるいは,仮焼原料に,比較的粗大なシリコン屑を投入し,これを乳鉢中などで,粉砕しながら混合することにより,仮焼原料と粉末状シリコンの混合物を得ることもできる。
 HIP処理時の最高到達温度としては,仮焼原料から発生した水素等とシリコンとの反応で生成するシランガスによる気相成長反応,およびシリコンの溶融によるシリコンの液層と固相の界面の生成が必要なため,シリコンの融点に近い,約1320℃以上の温度で実施することが必要である。一方,最高到達温度の上限としては,本発明の第一の側面と同じく,2000℃未満である。好ましい最高到達温度の範囲としては,約1350℃~約1800℃,より好ましくは,約1400℃~約1600℃である。
 HIP処理時の最高到達圧力の好ましい範囲としては,約1~約300MPa,より好ましくは約5~約200MPaが挙げられる。
 本発明に係る一次元形状ナノシリコン材料とは,直径がサブミクロンサイズの繊維状の気相成長シリコンであって,より具体的には,直径が約10~約100nmのSiナノワイヤ及び/又は直径が約100nm~約1μm未満のSiナノロッドなどを含むものである。その長さは,数μm~数mmである。
 その他の条件等については,上記本発明の第一の側面で説明のとおりである。即ち,第一の側面についての説明は,本第二の側面についての説明と矛盾しない限り,本第二の側面についても適用できるものである。
 本発明の第三の側面は,薄片状の黒鉛結晶が集合してなる薄片状黒鉛結晶集合物を原料として,これを粉砕したものを,溶媒に分散し,超音波印加し,遠心分離した後,上澄みを採取し,該上澄みから溶媒を留去することにより,薄片状黒鉛結晶,及び/又は,その皺縮体及び/又はロール状変形体を製造するものである。
 ここにおいて,薄片状黒鉛結晶集合物の表面には加圧媒体ガスが付着しているので,所望により,該薄片状黒鉛結晶集合物又はこれを粉砕したものを熱処理(例えば,100℃以上の温度)して,該加圧媒体ガスを除去してから,後の工程に供してもよい。また,薄片状黒鉛結晶集合物は,粉砕する前に更に薄い積層状態に薄層化してから,粉砕してもよい。あるいは,薄片状黒鉛結晶集合物を粉砕した後に,薄層化してもよい。
 薄片状の黒鉛結晶が集合してなる薄片状黒鉛結晶集合物とは,薄片状黒鉛結晶が互いに積層することなく多数集合したものいずれをも含むものであって,その形状や形態は問わない。具体的には,(A)本発明の第一の側面の,内側から外方へと延びた薄片状の黒鉛結晶が集合してなる薄片状黒鉛結晶塊(等方性の黒鉛粒子,及び,それらからなるバルク状の黒鉛構造体を含む。該黒鉛粒子の大きさは,約1~約1000μm,あるいは,約1~約100μm,該黒鉛粒子を構成する薄片状黒鉛結晶の大きさは,径若しくは幅が約0.1~500μm,あるいは,約0.1~約50μm,厚さが約0.35~約100nm,好ましくは約0.35~約10nm,より好ましくは約0.35~約3.5nm,あるいは,約1~約100nmである。);(B)膜状の薄片状黒鉛結晶集合物であって,各薄片状黒鉛結晶が基板に対して概略垂直にその黒鉛結晶のa軸方向を成長させた状態にあり,このような薄片状黒鉛結晶が,基板表面を覆い全体として膜状となったもの(本集合物を構成する薄片状黒鉛結晶の大きさは,径若しくは幅が約1~約500μm,あるいは,約1~約50μm,厚さが約0.35~約100nm,好ましくは約0.35~約10nm,より好ましくは約0.35~約3.5nm,あるいは,約1~約100nmである);(C)繊維状の薄片状黒鉛結晶集合物であって,薄片状黒鉛結晶が該繊維の中心から外方へとその黒鉛結晶のa軸方向を成長させた状態にあり,このような薄片状黒鉛結晶が,多数連なって全体として繊維状の集合物を構成しているもの(本集合物の大きさは,径若しくは幅が1~500μm,あるいは,1~50μm,長さが0.01~30mm,本集合物を構成する薄片状黒鉛結晶の大きさは,径若しくは幅が0.1~500μm,あるいは,0.1~50μm,厚さが1~100nmである);(D)繊維状の薄片状黒鉛結晶集合物であって,薄片状黒鉛結晶が黒鉛結晶のc軸方向に多数積層し,全体として繊維状の集合物を構成しているもの(グラフェン積層型カーボンナノファイバー(CNF)と称する。本集合物の大きさは,径若しくは幅が約0.2~数μm,長さが約10μm~数mm,本集合物を構成する薄片状黒鉛結晶の厚さが約数nmである)などが挙げられる。
 薄片状黒鉛結晶集合物を構成する「薄片状黒鉛結晶」は,単層のグラフェンをも含み得るものである。また,「薄片状黒鉛結晶」の他の好ましい例としては,上記の如き大きさなどを有する数層グラフェン(Few-Layer Graphene:厚さが約0.35nm~約3.5nmである,10層程度までの多層グラフェン)が挙げられる。
粉砕は,薄片状黒鉛結晶集合物を,乾式,湿式の機械的粉砕装置,ミキサー,ブレンダー,ボールミル,振動ミル,超音波ミル,ホモジナイザー,超音波ホモジナイザー,超音波破砕機,乳鉢などにより物理的に細片化することにより実施できる。湿式粉砕は,例えば,薄片状黒鉛結晶集合物を溶媒中で回転式のミキサーなどにより物理的に細片化することにより実施できる。該溶媒として,薄片状黒鉛結晶集合物を粉砕したものを分散するのと同じ溶媒を使用することができ,この場合,湿式粉砕後,直ちに超音波印加に付すことができる。
 また,薄層化は,薄片状黒鉛結晶集合物又は上記のとおりこれを細片化したものを,剥離,劈開などすることにより実施することができる。この場合において,劈開は,例えば,上記のとおり薄片状黒鉛結晶塊を部分的に劈開するのと同様にして実施することができる。
 本発明の第三の側面において用いることのできる溶媒としては,1,2ジクロロエタン,ベンゼン,塩化チオニル,塩化アセチル,炭酸テトラクロロエチレン,炭酸ジクロロエチレン,フッ化ベンゾイル,塩化ベンゾイル,ニトロメタン,ニトロベンゼン,無水酢酸,オキシ塩化リン,ベンゾニトリル,オキシ塩化セレン,アセトニトリル,テトラメチルスルホン,ジオキサン,炭酸-1,2-プロパンジオール,シアン化ベンジル,亜硫酸エチレン,イソブチロニトリル,プロピオニトリル,ジメチルカーボネート,プロピレンカーボネート,エチルメチルカーボネート,エチレンカーボネートなどの炭酸エステル類,フェニル亜リン酸二フッ化物,酢酸メチル,n-ブチロニトリル,アセトン,酢酸エチル,水,フェニルリン酸二塩化物,ジエチルエーテル,テトラヒドロフラン,ジフェニルリン酸塩化物,リン酸トリメチル,リン酸トリブチル,ジメチルホルムアミド,N-メチルピロリジン,n-ジメチルアセトアミド,ジメチルスルホキシド,N-ジエチルホルムアミド,N-ジエチルアセトアミド,ピリジン,ヘキサメチルリン酸アミド,ヘキサン,四塩化炭素,ジグライム,トリクロロメタン,2-プロパノール,メタノール,エタノール,プロパノール,エチレングリコールなどのアルコール類,メチルエチルケトン,2-メトキシエタノール,ジメチルアセトアミド,トルエン,ポリベンズイミダゾールなどが挙げられる。これら溶媒は単独で又は2以上を混合して用いることができる。
 また,これらの溶媒には,薄片状黒鉛結晶の分散量を増やすため,あるいは薄片状黒鉛結晶の溶媒中での凝集を防ぐために,分散剤を添加することができる。分散剤としては,界面活性剤の他に,グラフェンに対して弱い結合力およびクーロン力のような電気的な引力を有し,かつその構造中に水酸基,カルボキシ基などの親水性の官能基をもつものを挙げることができる。後者の例としては,例えば,ベンゼン核に水酸基が結合したフェノール,ナフトールなどのフェノール類のモノマー,ポリマー,スチレン,プロピレン,アクリロニトリル,酢酸ビニルなどの炭素二重結合を有するモノマー,ポリマー,コラーゲン,ケラチン,アクチン,ミオシン,カゼイン,アルブミン,GFP, RFPなどのタンパク質,グリシン,チロシン,スレオニン,グルタミンなどのアミノ酸などが挙げられる。
 
 一方,界面活性剤としては,脂肪酸塩(例えば,ドデカン酸ナトリウム),コール酸塩(例えば,コール酸ナトリウム),モノアルキル硫酸塩(例えば,ラウリル硫酸ナトリウム),アルキルポリオキシエチレン硫酸塩,アルキルベンゼンスルホン酸塩(例えば,ドデシルベンゼンスルホン酸ナトリウム),モノアルキルリン酸塩などの陰イオン系界面活性剤(アニオン性界面活性剤)
,アルキルトリメチルアンモニウム塩(例えば,セチルトリメチルアンモニウムブロミド),ジアルキルジメチルアンモニウム塩(例えば,ジデシルジメチルアンモニウムクロリド),アルキルベンジルジメチルアンモニウム塩(例えば,アルキルベンジルジメチルアンモニウムクロリド)などの陽イオン系界面活性剤(カチオン性界面活性剤)
,アルキルジメチルアミンオキシド,アルキルカルボキシベタインなどの両性界面活性剤(双性界面活性剤) ,ポリオキシエチレンアルキルエーテル(例えば,ポリオキシエチレンドデシルエーテル),脂肪酸ソルビタンエステル,アルキルポリグルコシド,脂肪酸ジエタノールアミド,アルキルモノグリセリルエーテルなどの非イオン性界面活性剤(ノニオン性界面活性剤)を使用することができ,このうち,モノアルキル硫酸塩,脂肪酸塩などが好適に使用できる。
 上記溶媒のうち,ジメチルホルムアミド,分散剤(好ましくは,界面活性剤)を添加した水,2-メトキシエタノールなどが好ましい。
 分散剤の投入量は,溶媒重量に対して,0.001~10重量%の範囲であり,0.02~5重量%の範囲であることが好ましい。
 薄片状黒鉛結晶集合物の投入量は,溶媒重量に対して,0.001~50重量%の範囲であり,好ましくは,0.01~10重量%の範囲である。
 超音波印加について,その手段は特に限定されないが,例えば,超音波洗浄機を用いて実施することができる。印加する超音波の周波数は,約20~約100kHzの範囲であることが好ましい。また,印加する時間は,1~60分程度が好ましい。
 遠心分離は,約100~約100000Gの加速度の範囲,好ましくは約100~約10000Gの加速度の範囲で,約1~約60分間,好ましくは約5~約30分間実施するのが好ましい。
 このようにして得られる遠心分離後の上澄みには,薄片状黒鉛結晶及び/又はその薄層化体,及び/又は,それらの皺縮体及び/又はロール状変形体が分散されている(該分散液を,「グラフェン類分散液」と称する。)。該分散液には,所望により,この分野で通常用いられる添加剤(例えば,増粘剤,分散剤,希薄化剤など)を加えることができる。グラフェン類分散液は,溶媒を留去することなく,そのまま透明導電膜,導電膜若しくは熱伝導性膜又はそれらの添加材として利用できる。また,該分散液から,常法により,溶媒を留去することにより,薄片状黒鉛結晶及び/又はその薄層化体,及び/又は,それらの皺縮体及び/又はロール状変形体(以下,これらを合わせて,「グラフェン類」と称する。)を得ることができ,これらもまた,透明導電膜などやそれらの添加材として利用できる。
 このようにして得られるグラフェン類は,その大きさが,径若しくは幅にして数μm~数十μm,厚さにして約10nm以下,好ましくは約3.5nm(積層数で10層程度)以下であって,結晶性の高いものである。
 本発明において,薄片状黒鉛結晶(又はその薄層化体)の皺縮体及び/又はロール状変形体とは,薄片状黒鉛結晶(又はその薄層化体)が皺縮したもの,ロール状に変形したもの,及び一部が皺縮しかつ一部がロール状に変形したもののいずれをも含むものである。「皺縮」とは,薄片状黒鉛結晶が皺を寄せることにより縮むことをいい,単一方向へ皺縮したものでもよく,異なる部位で,異なる方向に皺縮したものでもよい。「ロール状に変形」についても,単一のロール状に変形したものの他,異なる部位でロール状に複数変形したものも含む意味である。薄片状黒鉛結晶(又はその薄層化体)の皺縮体及び/又はロール状変形体の大きさとしては,その長さが約数十μm,幅が数μmのものである。なお,薄片状黒鉛結晶の皺縮体の具体例としては,図64に示すとおり,単一方向に皺縮した薄片状黒鉛結晶が挙げられる。
 上記で得られるグラフェン類分散液は,例えば,プリンタブルエレクトロニクス製品での回路・薄膜の形成に使用するインクとして,利用することができる。即ち,該分散液を用いて,フレキソ印刷(凸版印刷),オフセット印刷(平版印刷),グラビア印刷(凹版印刷),スクリーン印刷,インクジェット印刷,電子写真,熱転写・レーザー転写などの各種印刷方法により,基板表面に印刷を施すことにより,回路等を形成することができる。
 また,該分散液を,スピンコート,スリットコート,バーコート,ブレードコート,スプレーコートなどのウエットコーティングにより,基板上に塗布した後,該基板をナノマイクロコンタクトプリント,ディップペンリソグラフィー,ナノマイクロトランスファー,ナノインプリント,EB描画,フォトリソグラフフィーなどのパターニング技術を利用してパターニングすることにより,所望の回路とすることができる。
 さらに,上記で得られたグラフェン類を,真空蒸着,スパッタリング,CVDなどのドライコーティングなどにより,基板上に成膜させた後,該基板を上記の如きパターニング技術を利用してパターニングすることによっても,所望の回路を得ることができる。
 また上記で得られたグラフェン類又は同分散液を,PETフィルム,アイオノマーフィルム(IOフィルム),高密度ポリエチレン(HDPE),中密度ポリエチレン(MDPE),低密度ポリエチレン(LDPE),リニア低密度ポリエチレン(L-LPDE),メタロセン触媒系リニア低密度ポリエチレン(mL-LDPE)などからなるポリエチレンフィルム,硬質・半硬質・軟質のポリ塩化ビニルフィルム(PVCフィルム),ポリ塩化ビニリデンフィルム(PVDCフィルム),ポリビニルアルコールフィルム(PVAフィルム),ポリプロピレンフィルム(PPフィルム),ポリエステルフィルム,ポリカーボネートフィルム(PCフィルム),ポリスチレンフィルム(PSフィルム),ポリアクリロニトリルフィルム(PANフィルム),エチレン-ビニルアルコール共重合体フィルム(EVOHフィルム),エチレン-メタクリル酸共重合体フィルム(EMAAフィルム),ナイロンフィルム(NYフィルム,ポリアミド(PA)フィルム),セロファン,ポリイミドフィルムなどの原料樹脂中に分散,混合させることにより,該グラフェン類を含んでなる透明導電フィルム,高導電性フィルム,高熱伝導性フィルムなどの各種高機能フィルムを得ることができ,あるいは,該グラフェン類又は同分散液を,それぞれ,これらフィルムの表面に積層する又は塗布し乾燥することにより,該グラフェン類で被覆した透明導電フィルム,高導電性フィルム,高熱伝導性フィルムなどの各種高機能フィルムを得ることができる。
 これらの製造時には,溶融押出成型法,インフレーション法,Tダイ法,フラットダイ法,溶液流延法,カレンダー法,延伸法,多層加工法,共押出法,インフレーション法による共押出,マルチマニホールド法,ラミネート法,押し出しラミネート法,接着剤を使用したラミネート法,ウエットラミネート法,ライラミネート法,ホットメルトラミネート法,ヒートシール法,外部加熱法,内部発熱法,コロナ処理,プラズマ処理,フレーム処理,マット加工,コーティング,ウエット・コーティング,ドライ・コーティング,蒸着,イオンめっき,イオンプレーティング,スパッタリングなどの既存技術を好適に使用できる。
 また得られたグラフェン類又は同分散液を,松脂(ロジン),ダンマル,ダンマー,マスチック,コーパル,琥珀,バルサム,天然ゴムなどの植物由来の天然樹脂,シェラック(セラック),膠,鼈甲,カゼインなどの動物由来の天然樹脂,フェノール樹脂,エポキシ樹脂,メラミン樹脂,尿素樹脂,不飽和ポリエステル樹脂,アルキド樹脂,ポリウレタン,熱硬化性ポリイミドなどの熱硬化性樹脂,ポリエチレン,高密度ポリエチレン,中密度ポリエチレン,低密度ポリエチレン,ポリプロピレン,ポリ塩化ビニル,ポリ塩化ビニリデン,ポリスチレン,ポリ酢酸ビニル,ポリテトラフルオロエチレン,ABS樹脂,AS樹脂,アクリル樹脂などの熱可塑性樹脂,ポリアミド,ナイロン,ポリアセタール,ポリカーボネート,変性ポリフェニレンエーテル,ポリブチレンテレフタレート,ポリエチレンテレフタレート,グラスファイバー強化ポリエチレンテレフタレート,環状ポリオレフィン,ポリフェニレンスルファイド,ポリスルホン,ポリエーテルサルフォン,非晶ポリアリレート,液晶ポリマー,ポリエーテルエーテルケトン,熱可塑性ポリイミド,ポリアミドイミドなどのエンジニアリング・プラスチックなどのプラスチック素材に分散,混合,混練,乾燥,成形することなどにより,電気伝導性,熱伝導性,耐熱性,強度,破壊靭性,柔軟性の向上した,該グラフェン類を含んでなる樹脂成形体および繊維強化プラスチック(FRP)などの樹脂複合材を得ることができる。
 また,得られたグラフェン類又は同分散液を,アクリルゴム,ニトリルゴム,イソプレンゴム,ウレタンゴム,エチレンプロピレンゴム,エピクロルヒドリンゴム,クロロプレンゴム,シリコーンゴム,スチレン・ブタジエンゴム,ブタジエンゴム,フッ素ゴム,ポリイソブチレンゴムなどの合成ゴムに分散,混合,混練,乾燥,成形することなどにより,電気伝導性,熱伝導性,耐熱性,強度,柔軟性の向上した,該グラフェン類を含んでなるゴムおよびゴム複合材を得ることができる。
 また,得られたグランフェン類又は同分散液を,陶磁器,ガラス,セメント,モルタル,石膏,ほうろう,アルミナ,ジルコニアなどの酸化物,ハイドロキシアパタイトなどの水酸化物,炭化ケイ素,炭化ホウ素などの炭化物,炭酸塩,窒化ケイ素,窒化ホウ素,窒化アルミ,GaNなどの窒化物,蛍石などのハロゲン化物,リン酸塩,チタン酸バリウム,高温超伝導セラミックス,フェライト,チタン酸ジルコン酸鉛,ステアタイト,酸化亜鉛,GaAsなどのセラミックス材料と分散,混合,混練,乾燥,成形,焼成,焼結することにより,電気伝導性,熱伝導性,耐熱性,強度,破壊靭性,電磁波シールド特性の向上した,該グラフェン類を含んでなる各種複合材料を得ることができる。
 また,得られたグラフェン類又は同分散液を,タングステン,レニウム,オスミウム,タンタル,モリブデン,ニオブ,イリジウム,ルテニウム,ハフニウム,テクネチウム,ホウ素,ロジウム,バナジウム,クロム,ジルコニウム,白金,トリウム,ルテチウム,チタン,パラジウム,プロトアクチニウム,ツリウム,スカンジウム,鉄,鉄鋼,鋳鉄,イットリウム,エルビウム,コバルト,ホルミウム,ニッケル,ジスプロシウム,ケイ素,テルビウム,キュリウム,カドリニウム,ベリリウム,マンガン,アメリシウム,プロメチウム,ウラン,銅,サマリウム,金,アクチニウム,ネオジウム,バークリウム,銀,ゲルマニウム,プラセオジウム,ランタン,カリホルニウム,カルシウム,ユウロピウム,イッテルビウム,セリウム,ストロンチウム,バリウム,ラジウム,アルミニウム,マグネシウム,プルトニウム,ネプチニウム,アンチモン,テルル,亜鉛,鉛,カドミウム,タリウム,ビスマス,ポロニウム,スズ,リチウム,インジウム,硫黄,ナトリウム,カリウム,ルビジウム,ガリウム,セシウムなどの元素,又はこれら元素の合金,炭化物,酸化物,窒化物,水酸化物などと分散,混合,混練,乾燥,成形,押出し,プレス,溶融,鋳造,鍛造,圧延,造粒,溶射することにより,電気伝導性,熱伝導性,耐熱性,磁性,強度,弾性,破壊靭性の向上した,該グラフェン類を含んでなる各種材料を得ることができる。
 グラフェンは,物質の中で最も優れた電子移動度,強度を保有することから,グラフェン類を使用した上述の各種材料においては,このような観点からの高機能化が可能であるが,必要に応じて,炭素繊維,カーボンファイバー,グラフェン,カーボンナノファイバー,ポリパラフェニレンテレフタルアミドなどの繊維を更に混合した複合材料とすることも可能である。
 また,グラフェン類(特に,積層数の少ない多層グラフェン類)は,黒鉛の場合と同様,様々なゲスト種を取り込んで,層間化合物を形成することができ,単層のグラフェンは,その表面に多様なゲスト種を配位させることができる(配位化合物)。ゲスト種として,適当な物質を選択することにより,バンドギャップやキャリヤ移動度などの半導体特性(n型又はp型を含む)を調整することができる。
 このようなゲスト種については,ドナー型物質として,Li,K,Rb,Cs,Naのアルカリ金属,Ca,Sr,Ba等のアルカリ土類金属,Sm,Eu,Yb,Tmなどの金属元素,K-Hg,Rb-Hg,K-TI,Ba-Naなどの合金,KH,NaH,KDなどの水素又は重水素化合物,アルカリ金属およびアルカリ土類金属にアンモニア,各種有機分子などが配位した,例えばLi-THF,K-THF,Rb-THF,Cs-THF,Na-THF,K-NH3,Be-NH3,Eu-NH3,Ba-THF,Sr-THF等の化合物などを好適に用いることができる。またアクセプター型物質として,Br,F,ICl,IFなどのハロゲン,MgCl,FeCl,FeCl,NiClなどの塩化物,AlBr,CdBr,HgBr,FeBr,AsF,SbF,NbFなどのハロゲン化合物,CrO,MoO,HNO,HSO,HClOなどの酸化物等を好適に用いることができる。この他に,フッ化水素,フッ化黒鉛,酸化黒鉛などもアクセプター型物質として好適に使用することができる。
 黒鉛層間化合物については,ゲスト種がすべての層間に侵入した第一ステージ化合物,一層おき侵入した第二ステージ化合物,同様に高次ステージ化合物が存在し,そのステージ数を調整することなどにより得られる材料の物性を制御することが可能であり,グラフェンについても同様である。ステージ数の調整の方法としては,例えば,ゲスト種を含む溶液や気化あるいは液化させたゲスト種とホスト材料とを接触する際の温度,圧力,濃度などによるものが挙げられる。
 これらの層間化合物や配位化合物の合成法には,主に真空および減圧下あるいは不活性ガス雰囲気下で,ホスト材料(侵入される側)であるグラフェン類と,ゲスト種(侵入する側)を反応管の別々の場所に装填し,それぞれに温度差,圧力差などをかけて気相反応を生じさせる2ゾーン法若しくは2バルブ法,単にそれぞれの材料を混合した反応管を高温処理する方法,各種の溶液にホスト材料を浸漬する溶液法若しくは浸漬法,溶媒中でアルカリ金属およびアルカリ土類金属の錯体若しくはイオンを形成し,これにホスト材料を接触させる三元系溶液法などの各種の合成方法を好適に使用することができる。
 また,得られたグラフェン類又は同分散液を,人造黒鉛,天然黒鉛,キッシュ黒鉛,HOPG,活性炭,カーボンブラック,ガラス状炭素,ダイヤモンドライクカーボン,メソフェース球晶黒鉛などの各種炭素材料と混合することにより,従来の炭素材料を高機能化することも有効である。
 また,得られたグラフェン類又は同分散液は,リチウムイオン電池,リチウムイオンキャパシター,燃料電池電極基材,色素増感太陽電池,薄膜太陽電池,金属空気電池,リチウムイオン電池,ニッケル水素電池などの各種電池の電極材,水素などの吸蔵材料,グラフェン表面を利用した化学反応における触媒効果,医薬製薬分野での新規な反応場,ドラッグデリバリーシステムへの応用などが可能又は期待される。
 上記の薄片状黒鉛結晶集合物(B)及び(C)は,本発明の第一の側面の目的物である薄片状黒鉛結晶塊(A)の製造方法と同様にして,製造することができる。例えば,薄片状黒鉛結晶集合物(B)は,上記(A)の薄片状黒鉛結晶塊の製造方法において,スぺーサーを基板として,該基板表面に生じてくる。基板の材質としては,ガラス状カーボン,ダイヤモンドライクカーボン,アモルファスカーボン,黒鉛,銅,ニッケル,鉄,コバルト,その他の耐熱性金属,セラミックス,SiC,GaN,Siその他の半導体などを用いることができる。基板の表面は,粗研磨,鏡面研磨しておいてもよい。
 また,薄片状黒鉛結晶集合物(D)は,残留水素を含むように仮焼きした有機化合物の粉粒体に触媒を担持させたものを準備し,これを耐熱性材料で構成された密閉容器に入れ,該容器ごと加圧されたガス雰囲気を使用した熱間静水圧加圧処理することにより,製造することができる。触媒としては,コバルト,鉄,ニッケル,亜塩などの金属などが挙げられ,仮焼原料中にできるだけ均一に分散させた状態で担持することが望ましい。担持の方法としては,仮焼原料と微細な形状に調整した触媒とを混合する他,触媒である金属の塩化物や金属錯体(金属アセチルアセトナート)などを水,アルコール,又はそれらの混液に溶解したものを準備し,これに仮焼原料を投入することにより,実施することもできる。触媒の使用量は,通常,仮焼原料に対して,1000ppm以上,好ましくは2000ppm以上,より好ましくは10000ppm以上,さらに好ましくは100000ppm以上である。その他の条件については,本発明の第一の側面の目的物である薄片状黒鉛結晶塊(A)の製造方法と同様にして,実施することができる。
 本発明において,水素量は,金属材料の水素定量方法通則(JIS Z 2614:1990。分析方法は「鋼」の条件である不活性ガス加熱法による。具体的にはアルゴンガ
ス雰囲気中で試料を2000℃まで加熱し,発生した水素の積算量をガスクロマトグラフによ
って測定する。)により測定されたものである。
 また,粉粒体とは,これを構成する粒子のサイズや形に明確な限定はないが,相対的に細かな粒子よりなる粉体又は比較的粗大な粒子の集合体よりなる粒体を包含する。
 また,開気孔率(見掛け気孔率)とは,材料の外形状から求められる体積中に存在する,液体,気体などが侵入することができる空隙(開いた)容積の比率である。一般的には
開気孔率が高い材料は連続孔を有し気体透過性を有する。本明細書において,開気孔率は,以下の計算式により,求める。
開気孔率(%)={(見掛比重-かさ比重)/見掛比重}×100
見掛比重:粉砕しない状態の試料を用いて,ヘリウムガス置換ピクノメータ法により,島津製作所製密度計AccuPyc1330-PCWを使用して測定した値
かさ比重:試料重量を,試料の外形寸法より算出した体積で除した値
 また,全気孔率とは,材料の外形状から求められる体積中に存在する全空隙(開気孔の他,閉気孔も含む)容積の比率である。本明細書において,全気孔率は,以下の計算式により,求める。
  全気孔率(%)={(真比重-かさ比重)/真比重}×100
 また,真比重とは,測定対象物に含まれる空隙による影響を最小化すべく,これを微粉末に粉砕した状態で測定した比重であり,本発明中の実施例では74μmの篩を通過した粉末試料で測定している。
 なお,見掛比重,かさ比重,真比重は,それぞれ,見掛密度,かさ密度,真密度と同義である。
 本明細書において,スぺーサー及びスリーブとは,いずれも黒鉛製の密閉容器内に入れて使用するものであり,該容器の内壁と仮焼原料が直接接触しないよう両者の間に挿入するものをいう。スぺーサーは,主に仮焼原料を上下から覆うものをいい,スリーブは,主に仮焼原料を側面から覆うものをいうが,容器の形状によっては,両者を区別する意味のない場合もあり得る。
 「バルク状」,「バルク状態」又は「バルク構造体」における「バルク」とは,基本となる構成単位が連なったものを意味する。
 平均粒子径(粒子サイズ(平均))は,レーザー回折式粒度分布測定装置を使用して,レーザー回折・散乱法により測定した。すなわち,粒子群にレーザー光を照射し,そこから発せられる回折・散乱光の強度分布パターンから,計算によって粒度分布を求めた。
 本明細書において,数値の範囲を,例えば,1200~1900と表した場合には,1200以上1900以下を意味するものである。
 以下実施例を挙げて本発明を説明するが,本発明はこれらに限定されるものではない。
 平均粒子径20μmのフェノールホルムアルデヒド樹脂粉末を不活性ガス雰囲気中で600,700,900,1000℃の各最高到達温度で仮焼きした。仮焼後の原料の残留水素量を金属材料の水素定量方法通則(JIS Z 2614:1990)に従い分析し表1に結果を示した。各温度で仮焼きした仮焼原料を嵩密度1.80,開気孔率10%の材質で構成されたねじ式(三角ねじ)の黒鉛坩堝に装填し,ねじ式の上蓋を旋回しながらねじを締め,仮焼き原料を密閉した。該黒鉛坩堝を熱間静水圧加圧装置に装填した後にアルゴンガスを使用して600℃,70MPaの温度,圧力まで1時間で到達させ,その後時間あたり500℃の昇温速度で加熱,加圧して190MPaの最高到達圧力にて,1400℃,1800℃,2000℃,2500℃の各最高到達温度で昇温昇圧し,最高到達温度圧力にて1時間保持し,室温まで降温,降圧した。黒鉛坩堝挿入から取り出しまでの所要時間は8~12時間であった。処理後の試料の嵩密度,気孔率,真密度を測定し表1に示した。なお,密度測定はヘリウムガス置換ピクノメータ法により,島津製作所製密度計AccuPyc1330-PCWを使用し,真密度については試料を微粉末に粉砕した状態で測定した(以下の密度測定において同じ)(表1)。
Figure JPOXMLDOC01-appb-T000001
 
 表1に示したように仮焼温度が600℃,上記測定法による残留水素量が20000ppmの場合が最も黒鉛の理論密度に近い真密度が得られ(試料番号1,2),仮焼温度が高くなるにつれて,真密度の値は低下し(資料番号3,4),仮焼温度が900℃,上記測定方法による残留水素量が5000ppmの場合は,真密度が,1.88となった(試料番号4)。なお,仮焼温度が900℃又は1000℃において熱間静水圧加圧処理時の最高到達温度が2000℃又は2500℃においても,真密度の値は,いずれも2.0未満である。図15には試料番号1の試料表面,図16には図15の表面を拡大した電子顕微鏡写真を,図17には試料番号1の試料破面の電子顕微鏡写真を示したが球状の仮焼原料の表面に放射状に黒鉛六角網面が気相成長している。
 図18には試料番号5,図19には試料番号6の試料の破面の電子顕微鏡写真を示したが,試料番号1に比較すると炭素六角網面の成長度合が低く,特に試料番号6の場合には2000℃以上の高温で励起された水素による黒鉛のエッチングの痕跡が認められた。
 図20には試料番号1のラマン分光スペクトルの測定結果を示した。1580cm-1付近のSP黒鉛結合による鋭いピークが観察され,乱層構造を示す1360cm-1付近のピークはほとんど認められず,その強度比I1360/I1580(ID/IG)で表わされるR値は0に近い値を示し黒鉛結晶性に極めて優れる構造であった。一方,試料番号5のラマンスペクトルの測定結果を図21に示したが,1360cm-1付近のピークが観察され,その強度比I1360/I1580(ID/IG)は大きな値を示した。
 平均粒子径500μmのフェノールホルムアルデヒド樹脂粉末を不活性ガス雰囲気中で600℃の最高到達温度で仮焼きした。仮焼原料を,以後,熱間静水圧加圧処理時の最高到達温度を1400℃とすること以外は,実施例1と同様に処理した。黒鉛坩堝挿入から取り出しまでの所要時間は12時間であった。処理後の試料の電子顕微鏡写真を図22,その表面の拡大写真を図23に示した。球状の粒子の全表面に放射状に成長した気相成長黒鉛が確認されたが,粒子が結合したバルク構造体は得られなかった。得られた試料の真密度は1.80であった。
 飲料用ペットボトルの廃棄材料を細かく裁断して,平均で約200μm(縦横で一番長い部分の寸法)程度とし,不活性ガス雰囲気中で600℃の最高到達温度で仮焼きした。仮焼きした原料をステンレス乳鉢で粉砕し粒状にし,これを,以後,実施例2と同様に処理した。黒鉛坩堝挿入から取り出しまでの所要時間は12時間であった。処理後の試料の電子顕微鏡写真を図24に示した。不定形の粒子の全表面に概略放射状に成長した気相成長黒鉛が確認された。得られた試料の真密度は1.90であった。
 平均粒子径20μmのフェノールホルムアルデヒド樹脂粉末を不活性ガス雰囲気中で700℃の最高到達温度で仮焼きした。仮焼原料を表2に示した各黒鉛坩堝に装填し,ねじ式の上蓋を締め,仮焼原料を密閉した。該黒鉛坩堝を,熱間静水圧加圧処理時の最高到達温度を1500℃とする以外は,実施例2と同様に処理した。
Figure JPOXMLDOC01-appb-T000002
 
 黒鉛坩堝の材質に,より気孔率が高く嵩密度の低いものを使用するにつれて,処理後の試料の真密度が低下する(試料番号8~10)。黒鉛坩堝のねじ形状が,ピッチ2mmの場合(試料番号13),条数が少ない場合(試料番号11,12)は,試料番号8に比較して低い真密度であった。また,黒鉛坩堝のねじ形状が三角ねじ(試料番号8)の場合に比較して,角ねじ(試料番号14),台形ねじ(試料番号15)では低い真密度が得られた。
 仮焼原料を黒鉛坩堝に挿入,密閉する際に,気体透過性が低く開気孔率が0%のガラス状カーボンでスペーサを作製し,仮焼原料の上部及び下部を全て覆うように設置した場合は(図4,試料番号16),真密度は2.19まで上昇し,さらに仮焼原料の側面部を全て覆うように,スリーブを合わせて使用した(図6)試料番号17では,2.23の真密度が得られた。
 試料番号2,5,6,16,17をメノウ乳鉢で粉砕した後,試料,ポリフッ化ビニリデン,カーボンブラックを8:1:1の重量割合とし,少量のN-メチル-2-ピロリドンとともに混練しスラリーを作製した。次いで200メッシュサイズで厚さ0.05mmのニッケルメッシュに,直径10mmの穴を開けたステンレス製のガイドを使用して,スラリーを直径10mmサイズに均一に塗布し,120℃で12時間真空乾燥し,溶媒分を留去した。乾燥後の試料をステンレス製のプレートで挟み,120℃,20MPaでホットプレスすることにより,直径10mmの試料電極を作製した。アルゴンガス雰囲気のグローブボックスを使用して,試料を作用極,金属リチウムを対極,電解液にLiBFを使用して二極セルを構成し,電位範囲0~3V,電流密度40mA/gにて充放電特性を測定した。
 表3に各試料での初期充放電特性の評価結果として5サイクル目の可逆容量,クーロン効率を示した。材料の真密度の向上にともない,可逆容量,クーロン効率とも向上し,試料番号17では312mAh/gの可逆容量,90.8%のクーロン効率となった。
Figure JPOXMLDOC01-appb-T000003
 
 試料番号2を固定ダイヤモンド方式のマルチワイヤソーを使用して,直径10mm,厚さ90μmの板厚にスライス加工した。120℃で1時間乾燥後のスライスした試料を作用極として,アルゴンガス雰囲気のグローブボックス内で,金属リチウムを対極,電解液にLiBFを使用して二極セルを構成し,電位範囲0~3V,電流密度40mA/gにて充放電特性を測定した。充放電5サイクル目の可逆容量は225mAh/g,クーロン効率は95.3%であった。バインダーを含まないバルク気相成長黒鉛で構成されているため,同試料で粉末にてバインダーとともにスラリー化した場合と比較して高いクーロン効率を示した。
 太陽電池用シリコンのインゴットをダイヤモンドソーで切断した際に発生したシリコンの切屑をクーランとともにスラリー状態で回収した。回収したスラリーを大気中で乾燥させ,次いで乾燥器で120℃で12時間かけて乾燥させた。ステンレス製の乳鉢に600℃で仮焼きした平均粒径20μmのフェノール樹脂粉末80重量部に,乾燥させたシリコン切屑20重量部を投入し,粉砕させながらよく混合させた。この原料を嵩密度1.80,開気孔率10%の材質で構成されたねじ式の黒鉛坩堝に装填し,ねじ式の上蓋を旋回しながらねじを締め,原料を密閉した。密閉後の黒鉛坩堝を熱間静水圧加圧装置に装填した後にアルゴンガスを使用して600℃,130MPaの温度,圧力まで3時間で到達させ,その後時間あたり500℃の昇温速度で加熱,加圧して190MPaの最高到達圧力にて1300℃の最高到達温度で昇温昇圧し,最高到達温度,圧力にて1時間保持し,室温まで降温,降圧した。処理後の試料はバルク状態を呈しており,シリコンの微粒が気相成長黒鉛中に分散した複合材料が得られた。
 HIP処理の条件において,600℃,130MPaの温度,圧力まで3時間で到達させるのを2時間で到達させ,最高到達温度を1200℃とした以外は,実施例7と同様に処理した。
 処理後の仮焼原料は連結することなく一次粒子の形状を保ち,その表面には多層グラフェンからなる気相成長黒鉛が成長していた(図25)。また,100nm程度の直径のカーボンナノチューブも僅かに生成した。仮焼原料に混在させていたシリコンは粒子状で存在しており,繊維状のシリコン系の生成物は,生成していなかった。(図26)
<黒鉛-シリコン複合材料>
 HIP処理の条件において,初めの3時間で到達させる圧力を130MPaから70MPaとしたこと,最高到達温度を1450℃としたこと,及び,最高到達圧力を190MPaから90MPaとしたこと以外は,実施例8と同様に処理した。
 処理後の黒鉛坩堝の上部(投入した原料の表面部分と坩堝上蓋の空間)には,目視の外観上は白色でありかつフェルト状の,珪素,炭化珪素及び酸化珪素(シリコン系化合物)からなるナノスケールの繊維状物が多量に生成した。黒鉛坩堝本体および上蓋表面に付着したこれらの生成物の外観写真を図27に,SEM写真を図28~図30に示したが,直径10~100nm程度で長さは数μmから数mmにおよぶ繊維状生成物が確認された。
 また試料中には,図31,図32のように細い繊維状のものに球状,円盤状の生成物が数珠状に合体して生成したものも多数観察された。
 また,生成した気相成長黒鉛中にも,繊維状,棒状のシリコンおよびシリコン系化合物が生成し,気相成長黒鉛と,これら繊維状および棒状のシリコン並びにシリコン系化合物の複合材料が得られた。図33,図34には気相成長黒鉛中に生成した棒状のシリコンのSEM写真を示した。また図35には気相成長黒鉛中に生成した繊維状のシリコン,炭化珪素,酸化珪素のSEM写真を示した。図36には,棒状のシリコンが多量に生成している部分のSEM写真を,図37には,シリコン系生成物のうち,繊維状の生成物に円盤状の生成物が数珠状に合体している部分のSEM写真を示した。これら試料中の生成物を,表4にまとめた。
 図38には,フェルト状に生成した部分と,気相成長黒鉛中に生成した部分のX線回折パターンを示した(図中の上部がフェルト状に生成した部分,下部が気相成長黒鉛中に生成した部分の結果である)。図38のX線回折パターンには,いずれも黒鉛,シリコン(Si),炭化珪素(SiC)の回折線が観察されており,これらの繊維状生成物が,Si,SiCから構成されてるいことが確認できる。なお,酸化珪素はアモルファス状であり,X線回折パターンが明確には得られなかった。
 図39には,気相成長黒鉛および棒状のシリコンのSEMを,図40には,図39で測定した部分についてのEDX(エネルギー分散型X線分光法)の測定結果を,図41には,それぞれの元素の存在を示す特性X線マップを示した。これらの結果より,棒状のシリコンの場合は,特性X線マップで示したように,棒状部には,Cのマップが示されないことから,Si単独の生成物であることが確認できる。なお,特性X線のデータでArと示されるピークは,気相成長黒鉛中に吸蔵されたアルゴンガスの存在によるものである。
 図42には数珠状に生成した(図31,図32)ものの,特性X線パターンと,マップを示したが,この場合にはSi,Oの存在を示すピークおよびマップが観察され,酸化珪素(SiO,SiO2)の存在が確認された。但し,特性X線では,表面部分のうちでも比較的上方しか確認できないため,より内部には繊維状のSiや,数珠状Siが存在していることも考えられる。
Figure JPOXMLDOC01-appb-T000004
 太陽電池用シリコンのインゴットをダイヤモンドソーで切断した際に発生したシリコンの切屑をクーランとともにスラリー状態で回収した。回収したスラリーを大気中で乾燥させ,次いで乾燥器で120℃で12時間かけて乾燥させた。ステンレス製の乳鉢に900℃,600℃,500℃で仮焼きした平均粒径20μmのフェノール樹脂粉末80重量部に,乾燥させたシリコン切屑20重量部を投入し,粉砕させながらよく混合させた。この原料を嵩密度1.80,開気孔率10%の材質で構成されたねじ式の黒鉛坩堝に装填し,ねじ式の上蓋を旋回しながらねじを締め,原料を密閉した。密閉後の黒鉛坩堝を熱間静水圧加圧装置に装填した後にアルゴンガスを使用して500℃,70MPaの温度,圧力まで3時間で到達させ,その後時間あたり500℃の昇温速度で加熱,加圧して90MPaの最高到達圧力にて1400℃の最高到達温度で昇温昇圧し,最高到達温度,圧力にて1時間保持し,室温まで降温,降圧した。
仮焼温度の異なる3種類の試料で,いずれもワイヤー状のシリコンが生成した。仮焼温度が500℃,600℃の場合は試料の表面および内部に大量に生成し,また表面にはフェルト状のシリコンが顕著に観察できたが(図44),仮焼温度が900℃の場合は試料の表面には生成したもののフェルト状のものは観察されず,内部での生成も少量であった(図43)。
 
<膜状の薄片状黒鉛結晶集合物(B)>
 平均粒子径20μmのフェノールホルムアルデヒド樹脂粉末を,不活性ガス雰囲気中で500℃の最高到達温度で仮焼した。仮焼後の原料の残留水素量を金属材料の水素定量方法通則(JIS Z 2614:1990)に従い分析したところ40000ppmの残留水素を含んでいた。仮焼原料を嵩密度1.80,開気孔率10%の材質で構成されたねじ式の黒鉛坩堝に,ガラス状カーボン製のスペーサで挟む形態で密閉した。なお図45に示すように黒鉛坩堝の上蓋のねじを締めることにより,上部スペーサが黒鉛坩堝のガイド部に,ねじの締めつけ力により圧接し密閉度を高めるようにした。この黒鉛坩堝を熱間静水圧加圧装置に装填した後にアルゴンガスを使用して700℃,70MPaの温度,圧力まで1時間で到達させ,その後時間あたり500℃の昇温速度で加熱,加圧して190MPaの最高到達圧力にて,1800℃の最高到達温度で昇温昇圧し,最高到達温度,圧力にて1時間保持し,室温まで降温,降圧した。なお,ガラス状カーボン製のスペーサは鏡面研磨を実施したものを使用した。
 処理後の試料を取り出したところ,図46に示したようにガラス状カーボン製のスペーサ表面に銀色を呈し,金属的な光沢をもった膜状の生成物が堆積した。この膜状生成物は容易にスペーサから剥離できる一方,薄い膜として自立できる強度を有していた。得られた膜状生成物の表面を電子顕微鏡で観察したところ,内側から外方へと延びた薄片状の黒鉛結晶が集合してなる薄片状黒鉛結晶集合物の一形態として,各薄片状黒鉛結晶が,スぺーサ表面に対して,概略垂直方向に成長したものが集合している様子が観察された。また,その中には,多層グラフェンが花びら様に成長したものも含まれていた。(図47~図51)
 
<繊維状の薄片状黒鉛結晶集合物(C)>
 平均粒子径20μmのフェノールホルムアルデヒド樹脂粉末を不活性ガス雰囲気中で600℃の最高到達温度で焼成した。仮焼した仮焼原料を嵩密度1.80,開気孔率10%の材質で構成されたねじ式の黒鉛坩堝に装填し,ねじ式の上蓋を旋回しながらねじを締め,仮焼き原料を密閉した。密閉後の黒鉛坩堝を熱間静水圧加圧装置に装填した後にアルゴンガスを使用して700℃,70MPaの温度,圧力まで1時間で到達させ,その後時間あたり300℃の昇温速度で加熱,加圧して190MPaの最高到達圧力にて1400℃の最高到達温度で昇温昇圧し,最高到達温度,圧力にて1時間保持し,室温まで降温,降圧した。処理後の試料の見かけ密度は1.60,真密度は2.09であった。なお,密度測定はヘリウムガス置換ピクノメータ法により,島津製作所製密度計AccuPyc1330-PCWを使用し,試料を微粉末に粉砕した状態で測定した。
 処理後の試料には,径数μm,長さが数μmから数mmの繊維状の気相成長炭素繊維が生成した(図52~図54)。この繊維は,内側から外方へと延びた薄片状の黒鉛結晶が集合してなる薄片状黒鉛結晶集合物の一形態を呈し,薄片状黒鉛結晶が該繊維の中心から外方へとその黒鉛結晶を成長させた特殊な形状をしていた。この繊維状のものは,材料内部にも存在するが,表面部分ではかなり長いものに成長していた。
 HIP処理の条件において,700℃以降の昇温速度を時間あたり700℃とし,最高到達温度を1450℃とする以外は,直前の実施例と同様に処理した。処理後の試料の見かけ密度は1.66,真密度は2.05であった。なお,密度測定はヘリウムガス置換ピクノメータ法により,島津製作所製密度計AccuPyc1330-PCWを使用し,試料を微粉末に粉砕した状態で測定した。
 処理後の試料には,直前の実施例の生成物と同じ形態のものが,同様に生成していた(図55~図56)。
 仮焼の最高到達温度を500℃,HIP処理の条件において,700℃以降の昇温速度を時間あたり500℃,最高到達温度をを1800℃とする以外は,直前の実施例と同様に処理した。処理後の試料の見かけ密度は1.77,真密度は2.07であった。なお,密度測定はヘリウムガス置換ピクノメータ法により,島津製作所製密度計AccuPyc1330-PCWを使用し,試料を微粉末に粉砕した状態で測定した。
 処理後の試料には,直前の実施例の生成物と同じ形態のものが,同様に生成していた(図57~図58)。
 
<グラフェン積層型CNF>
 球状のフェノール樹脂を窒素気流中で600℃の最高到達温度で仮焼した。仮焼後の原料中に含まれる残留水素量を,金属材料の水素定量方法通則(JIS Z 2614:1990)に従い測定したところ24000ppmであった。コバルトアセチルアセトナート(ナカライテスク製,グレード:特級 以下 Co(AcAc)2 ) 1 mol に対し,メトキシエタノール(ナカライテスク製 純度 99 %) 10 Lを混合した。この時,すぐにCo(AcAc)2 が固まるためガラス棒,スターラーを用いてよく粉砕・撹拌した。その後,蒸留水100 mlをシリンジ,あるいはマイクロピペットを用いて,定量ずつ徐々に滴下した。滴下と共に析出した沈殿物を一昼夜静置した後,沈殿物の混合した溶液をダイヤフラムポンプ付きのアスピレーターを用いて吸引ろ過をすることにより,沈殿物のみを回収した。得られた沈殿物を,24時間ドラフト内で風乾した。該沈殿物(コバルト沈殿物)に当初用いたコバルトが全て析出されたとの仮定の下で,HIP処理に付す原料中のコバルト濃度が5000ppmになるように,コバルト沈殿物と仮焼原料とを乾式混合した。かかる混合物をねじ式の黒鉛坩堝に装填し,上ふた部のねじを締めて坩堝を密閉した。原料を密閉した黒鉛坩堝をHIP装置に装填し,アルゴンガスで190MPaの静水圧加圧をおこないながら時間あたり500℃の昇温速度で1450℃まで昇温させた。
 処理後の試料表面には多量の繊維状の炭素が生成した。生成物には径約200~約1000nmで長さが約10μm~約数mmのグラフェン積層型のCNF(図59)が存在した。試料の表面部分には多量かつ長繊維のものが,また球状フェノール樹脂の周囲には短繊維のものが生成した。
 球状のフェノール樹脂を窒素気流中で600℃の最高到達温度で仮焼した。塩化コバルトの6水和物をエタノールに溶解させ0.6 mol/Lの溶液を作成した。次いでこの溶液500mlに,仮焼後のフェノール樹脂120gを投入し,スターラーにてよく撹拌させた。エタノールをろ過した残さをセラミックス容器に入れ,電気炉で大気中で400℃に5時間加熱することにより触媒を担持させた仮焼原料を作製した。コバルトの濃度を蛍光X線分析(SEM-EDX)により測定したところ,3000ppmであった。該触媒担持仮焼原料をねじ式の黒鉛坩堝に装填し,上ふた部のねじを締めて坩堝を密閉した。原料を密閉した黒鉛坩堝をHIP装置に装填し,アルゴンガスで190MPaの静水圧加圧をおこないながら時間あたり300℃の昇温速度で1400℃まで昇温させた。
 処理後の試料中には,径約0.5~約数ミクロンのグラフェン積層型のCNFが多量に生成した。(図60)グラフェン積層型のCNFの1枚の層の厚さは約数nmであった。(図61)
 
<本発明の薄片状黒鉛結晶塊>
 平均粒子径20μmのフェノールホルムアルデヒド樹脂粉末を,不活性ガス雰囲気中で600℃の最高到達温度で仮焼した。仮焼後の原料の残留水素量を金属材料の水素定量方法通則(JIS Z 2614:1990)に従い分析したところ20000ppmであった。この仮焼原料を嵩密度1.80,開気孔率10%の材質で構成されたねじ式の黒鉛坩堝に装填し,ねじ式の上蓋を旋回しながらねじを締め,仮焼き原料を密閉した。密閉後の黒鉛坩堝を熱間静水圧加圧装置に装填した後にアルゴンガスを使用して700℃,70MPaの温度,圧力まで1時間で到達させ,その後時間あたり500℃の昇温速度で加熱,加圧して190MPaの最高到達圧力にて,1800℃の最高到達温度で昇温昇圧し,最高到達温度,圧力にて1時間保持し,室温まで降温,降圧した。得られたバルク状の生成物の真密度をヘリウムガス置換ピクノメータ法により,島津製作所製密度計AccuPyc1330-PCWを使用し,測定したところ2.17であった。また,得られた気相成長黒鉛のSEMを図62に,その拡大したものを図63示したが,内側から外方へと延びた,薄片状の黒鉛結晶(多層グラフェン)が集合して,塊を形成していた。
 
<薄片状黒鉛結晶,その皺縮体>
 直前の実施例で得られた気相成長黒鉛をメノウ乳鉢で粉砕し,粉砕後の試料をジメチルホルムアミドに投入し,黒鉛量が5重量%の混合溶液を作成した。この混合溶液を超音波洗浄機により超音波を印加(42kHzの周波数で30分間)した後に,遠心分離(700Gの加速度で30分)により固形分を沈降させた。得られた溶液の上澄みを使用して,溶液中に分散しているグラフェンをTEM観察用のマイクログリッドで濾過し,マイクログリッド上に捕捉された成分についてのTEM観察をおこなった。TEM観察の結果,図64,図65に示したような皺縮した多層グラフェン(簾状のもの)が,多数観察された。また,図66のように薄いシート状で存在しているもの(薄片状黒鉛結晶,すなわち,多層グラフェン)も多数観察された。図67に薄いシート状でえられた多層グラフェンの端部のTEMによる格子像を示したが,グラフェン層が10層程度積層した様子が確認でき,このことから厚さ3.5nmの多層グラフェン積層シートが得られていることを確認した。
 
<本発明の薄片状黒鉛結晶塊の薄片状黒鉛結晶を部分的に劈開させた黒鉛結晶塊>
 実施例1の試料番号2として得られた本発明の薄片状黒鉛結晶塊5gをガラス製三角フラスコに秤量し,濃硫酸80ml,濃硝酸20mlの混合溶液を加えて,テフロン(登録商標)製のスターラーにて撹拌させながら24時間反応させた。塊状の試料は,反応開始後30分程度から,黒鉛層間に硫酸イオンが侵入した黒鉛硫酸層間化合物の生成により,徐々に崩壊し,反応終了後には微粒の粒子が溶液中に分散した状態に至った。反応後の試料を乾燥後にセラミックス製の磁性ルツボに装填し,700℃に加熱した電気炉中に磁性ルツボごと投じて急熱処理をした。700℃に設定した電気炉での急激な熱処理により,熱処理後の試料は3倍程度の容積に膨張した。図68,図69には,熱処理後の試料のSEMを示したが,熱処理により多層グラフェン層間から急激に硫酸イオンが分解し放出されたことにより,より薄い多層グラフェンに劈開された状態が観察された。
 
<薄片状黒鉛結晶塊>
 ペレット状のPET樹脂(平均粒子径約3mm)を不活性ガス雰囲気中で600℃の最高到達温度で仮焼きした。仮焼後の原料(仮焼原料)を粉砕,分級して,平均粒子径約10μm~100μmの仮焼原料を得た。その残留水素量は22000ppmであった。該仮焼原料を,嵩密度1.80,開気孔率10%の材質で構成されたねじ式(三角ねじ)の黒鉛坩堝に装填し,ねじ式の上蓋を旋回しながらねじを締め,仮焼き原料を密閉した。該黒鉛坩堝を熱間静水圧加圧装置に装填した後にアルゴンガスを使用して600℃,70MPaの温度,圧力まで1時間で到達させ,その後時間あたり500℃の昇温速度で加熱,加圧して190MPaの最高到達圧力にて,1500℃の各最高到達温度で昇温昇圧し,最高到達温度圧力にて1時間保持し,室温まで降温,降圧した。処理後の試料として,薄片状黒鉛結晶塊(真密度2.08,見掛密度1.33,嵩密度0.75,全気孔率63.9)を得た。該薄片状黒鉛結晶塊の表面のSEMを図70に示す。大きさが数μmで厚さが極めて薄い花びら状の薄片状黒鉛結晶から成り,それらが多数集合した構造であることが分かる。
 原料としてPET樹脂に代えてフェノールホルムアルデヒド樹脂(平均粒子径20μm)を使用すること,仮焼原料の粉砕,分級は行わないこと,及び表5に示した処理条件を用いること以外は,実施例20と同様に処理して,各試料を得た(実施例21-1~実施例21-6)。
Figure JPOXMLDOC01-appb-T000005
 
 こうして得られた各試料の真密度,見掛密度,嵩密度,全気孔率を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 
 本発明は,内側から外方へと延びた薄片状の黒鉛結晶が集合してなる薄片状黒鉛結晶塊,一次元形状ナノシリコン材料,及び,該薄片状黒鉛結晶と該一次元形状ナノシリコン材料とを含む黒鉛-シリコン複合材料の提供を可能にする。これらは,いずれもリチウムイオン電池,ハイブリッドキャパシターなどの電極材料,高放熱材料などとして有用であり,かつ,それらの製造方法は,いずれも効率的で生産性が高い。
 また,本発明は,薄片状黒鉛結晶,及び/又は,その皺縮体及び/又はロール状変形体を提供する。これらは,透明導電膜,導電膜及び熱伝導性膜並びにそれらの添加材として有用である。
1    坩堝蓋部
1a  坩堝蓋部の外周部
2    坩堝本体
2a  坩堝本体の上部の内壁
3    仮焼原料
4    スペーサ
5    スリーブ
6    仮焼原料粒子
6a  気体
6s  仮焼原料粒子の表面
7    気相成長黒鉛
7a  黒鉛六角網面の面内方向(黒鉛結晶のa軸方向)
7c  黒鉛結晶のc軸方向

Claims (24)

  1.  内側から外方へと延びた薄片状の黒鉛結晶が集合してなる薄片状黒鉛結晶塊の製造方法であって,残留水素を含むように仮焼きした有機化合物の粉粒体を準備し,これを耐熱材料で構成された密閉容器に入れ,該容器ごと加圧されたガス雰囲気を使用した熱間静水圧加圧処理することを含んでなり,熱間静水圧加圧処理における最高到達温度が900℃以上2000℃未満である,製造方法。
  2.  該最高到達温度が1000℃以上2000℃未満である,請求項1の製造方法。
  3.  該耐熱性材料で構成された密閉容器が,黒鉛製の密閉容器である,請求項1又は2の製造方法。
  4.  該残留水素が6500ppm以上である,請求項1~3のいずれかの製造方法。
  5.  該仮焼きの温度が1000℃以下である,請求項1~3のいずれかの製造方法。
  6.  該黒鉛製の密閉容器が,開気孔率が20%未満であり,三角ねじによるねじ式のものである,請求項1~5のいずれかの製造方法。
  7.  該有機化合物が,デンプン,セルロース,タンパク質,コラーゲン,アルギン酸,ダンマル,コバール,ロジン,グッタベルカ,天然ゴム,セルロース系樹脂,セルロースアセテート,セルロースニトレート,セルロースアセテートプチレート,カゼインプラスチック,大豆タンパクプラスチック,フェノール樹脂,ユリア樹脂,メラミン樹脂,ベンゾグアナミン樹脂,エポキシ樹脂,ジアリルフタレート樹脂,不飽和ポリエステル樹脂,ビスフェノールA型エポキシ樹脂,ノボラック型エポキシ樹脂,多官能基エポキシ樹脂,脂環状エポキシ樹脂,アルキド樹脂,ウレタン樹脂,ポリエステル樹脂,塩化ビニル樹脂,ポリエチレン,ポリプロピレン,ポリスチレン,ポリイソプレン,ブタジエン,ナイロン,ビニロン,アクリル繊維,レーヨン,ポリ酢酸ビニル,ABS樹脂,AS樹脂,アクリル樹脂,ポリアセタール,ポリイミド,ポリカーボネート,変性ポリフェニレンエーテル,ポリアリレート,ポリスルホン,ポリフェニレンスルフィド,ポリエーテルエーテルケトン,フッ素樹脂,ポリアミドイミド,シリコン樹脂,石油系ピッチ,石炭系ピッチ,石油コークス,石炭コークス,カーボンブラック,活性炭,廃プラスチック,廃ペットボトル,廃木材,廃植物,生ごみからなる群から選ばれる1種又は2種以上のものである請求項1~6のいずれかの製造方法。
  8.  該有機化合物の粉粒体が平均粒径で100μm以下のフェノール樹脂である,請求項1~7のいずれかの製造方法。
  9.  黒鉛製の密閉容器に入れた,仮焼きした有機化合物の粉粒体の回りの一部又は全部を,スぺーサー及びスリーブで覆った状態で熱間静水圧加圧処理する,請求項1~8のいずれかの製造方法。
  10.  該スぺーサー及びスリーブが,ガラス状カーボン,ダイヤモンドライクカーボン,アモルファスカーボンからなる群から選ばれる1種又は2種以上で構成されたものである,請求項9の製造方法。
  11.  該仮焼きした有機化合物の粉粒体に,炭素繊維,天然黒鉛,人造黒鉛,ガラス状カーボン,アモルファスカーボンからなる群から選ばれる1種又は2種以上の炭素材料を混合することを特徴とする,請求項1~10のいずれかの製造方法。
  12.  請求項1~11のいずれかの製造方法により得られた該薄片状黒鉛結晶塊をホスト材料とする黒鉛層間化合物を準備し,これを急速加熱させることを含んでなる,薄片状黒鉛結晶を部分的に劈開させた黒鉛結晶塊の製造方法。
  13.  内側から外方へと延びた薄片状の黒鉛結晶が集合してなる薄片状黒鉛結晶塊。
  14.  請求項13の薄片状黒鉛結晶塊の薄片状黒鉛結晶を,部分的に劈開させた黒鉛結晶塊。
  15.  残留水素を含むように仮焼きした有機化合物の粉粒体を準備し,これに粉末状のシリコンを混合し,該混合物を耐熱性材料で構成された密閉容器に入れ,該容器ごと加圧されたガス雰囲気を使用した熱間静水圧加圧処理することを含んでなり,熱間静水圧加圧処理における最高到達温度が1320℃以上2000℃未満である,一次元形状ナノシリコン材料の製造方法。
  16.  残留水素を含むように仮焼きした有機化合物の粉粒体を準備し,これに粉末状のシリコンを混合し,該混合物を耐熱性材料で構成された密閉容器に入れ,該容器ごと加圧されたガス雰囲気を使用した熱間静水圧加圧処理することを含んでなり,熱間静水圧加圧処理における最高到達温度が1320℃以上2000℃未満である,内側から外方へと延びた薄片状の黒鉛結晶が集合してなる薄片状黒鉛結晶塊と一次元形状ナノシリコン材料とを含む,黒鉛-シリコン複合材料の製造方法。
  17.  該最高到達温度が1350℃以上1800℃以下である,請求項15又は16の製造方法。
  18.  該粉末状のシリコンが,粒子径500μm未満のものである,請求項15~17のいずれかの製造方法。
  19.  内側から外方へと延びた薄片状の黒鉛結晶が集合してなる薄片状黒鉛結晶塊と一次元形状ナノシリコン材料とを含む,黒鉛-シリコン複合材料。
  20.  薄片状の黒鉛結晶が集合してなる薄片状黒鉛結晶集合物を粉砕したものを,溶媒に分散し,超音波印加し,遠心分離した後,上澄みを採取することを含んでなる,溶媒に分散された薄片状黒鉛結晶,及び/又は,その皺縮体及び/又はロール状変形体の製造方法。
  21.  請求項20の溶媒に分散された薄片状黒鉛結晶,及び/又は,その皺縮体及び/又はロール状変形体から,溶媒を留去することを含んでなる,薄片状黒鉛結晶,及び/又は,その皺縮体及び/又はロール状変形体の製造方法。
  22.  薄片状の黒鉛結晶が集合してなる薄片状黒鉛結晶集合物が,内側から外方へと延びた薄片状の黒鉛結晶が集合してなる薄片状黒鉛結晶塊である,請求項20又は21の製造方法。
  23.  厚さ10nm以下の多層グラフェンからなる,溶媒に分散された薄片状黒鉛結晶,及び/又は,その皺縮体及び/又はロール状変形体。
  24.  厚さ10nm以下の多層グラフェンからなる,薄片状黒鉛結晶,及び/又は,その皺縮体及び/又はロール状変形体。
PCT/JP2011/053535 2010-02-19 2011-02-18 炭素材料及びその製造方法 WO2011102473A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2012500663A JP5632448B2 (ja) 2010-02-19 2011-02-18 炭素材料及びその製造方法
EP11744759.9A EP2537801B1 (en) 2010-02-19 2011-02-18 Method for producing a carbon material
KR1020147014303A KR101516610B1 (ko) 2010-02-19 2011-02-18 탄소 재료 및 그 제조 방법
SG2012060513A SG183331A1 (en) 2010-02-19 2011-02-18 Carbon material and method for producing same
CN201180010173.6A CN102791628B (zh) 2010-02-19 2011-02-18 碳材料及其制造方法
CA2789028A CA2789028C (en) 2010-02-19 2011-02-18 Carbon material and method for producing same
US13/577,536 US9221686B2 (en) 2010-02-19 2011-02-18 Carbon material and method for producing same
KR1020127024399A KR101456905B1 (ko) 2010-02-19 2011-02-18 탄소 재료 및 그 제조 방법

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010-035466 2010-02-19
JP2010035466 2010-02-19
JP2010-216523 2010-09-28
JP2010216523 2010-09-28
JP2010262449 2010-11-25
JP2010-262449 2010-11-25

Publications (1)

Publication Number Publication Date
WO2011102473A1 true WO2011102473A1 (ja) 2011-08-25

Family

ID=44483058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053535 WO2011102473A1 (ja) 2010-02-19 2011-02-18 炭素材料及びその製造方法

Country Status (9)

Country Link
US (1) US9221686B2 (ja)
EP (1) EP2537801B1 (ja)
JP (3) JP5632448B2 (ja)
KR (2) KR101456905B1 (ja)
CN (2) CN104030273B (ja)
CA (1) CA2789028C (ja)
HK (1) HK1199439A1 (ja)
SG (2) SG10201500043YA (ja)
WO (1) WO2011102473A1 (ja)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011241479A (ja) * 2010-05-18 2011-12-01 Samsung Electronics Co Ltd グラフェン薄膜を用いた樹脂のめっき方法
WO2012108371A1 (ja) * 2011-02-09 2012-08-16 株式会社インキュベーション・アライアンス 多層グラフェン被覆基板の製造方法
JP2013112604A (ja) * 2011-11-29 2013-06-10 Xerox Corp グラフェンナノシートおよびこれを製造する方法
CN103253740A (zh) * 2013-05-14 2013-08-21 上海大学 三维分级结构石墨烯/多孔碳复合电容型脱盐电极的制备方法
US20130334468A1 (en) * 2012-06-13 2013-12-19 Naoetsu Electronics Co., Ltd. Negative electrode material for nonaqueous electrolyte secondary battery and method for manufacturing the same
US8642215B2 (en) * 2012-01-06 2014-02-04 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
EP2769967A1 (en) * 2011-10-19 2014-08-27 Environment Energy Nano Technical Research Institute Dense material including carbon nanohorns and use thereof
JP2014175261A (ja) * 2013-03-12 2014-09-22 Keio Gijuku 焼結体、及び、その製造方法
WO2014171030A1 (ja) * 2013-04-19 2014-10-23 株式会社インキュベーション・アライアンス 炭素繊維およびその製造方法
WO2014185496A1 (ja) * 2013-05-15 2014-11-20 昭和電工株式会社 ホウ素を含む薄片状黒鉛、及びその製造方法
JPWO2013058383A1 (ja) * 2011-10-19 2015-04-02 株式会社環境・エネルギーナノ技術研究所 カーボンナノホーンを含む多孔質材料及びその利用
JP2015107913A (ja) * 2013-12-04 2015-06-11 エフ イー アイ カンパニFei Company ナノ結晶カーボン自立薄膜の製造方法
JP2015146328A (ja) * 2011-06-24 2015-08-13 株式会社半導体エネルギー研究所 二次電池
JP2015167127A (ja) * 2014-02-12 2015-09-24 大阪瓦斯株式会社 リチウム二次電池用負極材料及びその製造方法、並びに該負極材料を用いたリチウム二次電池用の負極活物質層用組成物、リチウム二次電池用負極及びリチウム二次電池
JP2016051128A (ja) * 2014-09-02 2016-04-11 富士ゼロックス株式会社 無端ベルト、定着装置、および画像形成装置
WO2016117616A1 (ja) * 2015-01-21 2016-07-28 Secカーボン株式会社 ルツボを用いた炭素材料の製造方法
JP2017091994A (ja) * 2015-11-17 2017-05-25 株式会社リコー 非水電解液蓄電素子
JP2017512741A (ja) * 2014-03-28 2017-05-25 ペルペトゥウス リサーチ アンド ディヴェロップメント リミテッドPerpetuus Research & Development Limited 積層されたグラフェン層を含む粒子
JP6162352B1 (ja) * 2014-07-01 2017-07-12 チーナン ションチュアン グループ シェア ホールディング カンパニー リミテッドJinan Shengquan Group Share Holding Co.,Ltd. 多孔質グラフェンの製造方法
WO2018074493A1 (ja) 2016-10-19 2018-04-26 株式会社インキュベーション・アライアンス 黒鉛/グラフェン複合材、集熱体、伝熱体、放熱体および放熱システム
JP2018516311A (ja) * 2015-03-27 2018-06-21 ユニバーシティ オブ セントラル フロリダ リサーチ ファウンデーション,インコーポレイテッド 修復及び保護コーティングの溶射
JP2018521207A (ja) * 2015-07-08 2018-08-02 ナイアガラ・ボトリング・リミテツド・ライアビリテイー・カンパニー グラフェン強化ポリエチレンテレフタレート
JP2019038744A (ja) * 2013-07-18 2019-03-14 積水化学工業株式会社 二次黒鉛の製造方法、薄片化黒鉛の製造方法、二次黒鉛及び薄片化黒鉛
WO2019208636A1 (ja) * 2018-04-27 2019-10-31 株式会社日本触媒 炭素材料複合体の製造方法
CN113429206A (zh) * 2021-06-16 2021-09-24 西南林业大学 木基TiO2电介质陶瓷及其制备方法和应用
US11495789B2 (en) 2014-05-13 2022-11-08 Kabushiki Kaisha Toshiba Composite active material
US12060465B2 (en) 2015-03-17 2024-08-13 Niagara Bottling, Llc Graphene reinforced polyethylene terephthalate
US12104036B2 (en) 2019-04-01 2024-10-01 Niagara Bottling, Llc Graphene polyethylene terephthalate composite for improving reheat energy consumption

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008010746A1 (de) * 2008-02-20 2009-09-03 I-Sol Ventures Gmbh Wärmespeicher-Verbundmaterial
CN102165632A (zh) * 2008-09-29 2011-08-24 日清奥利友集团株式会社 电池部件和电池
CA2739965A1 (en) * 2008-09-29 2010-04-01 The Nisshin Oillio Group, Ltd. Burned plant material and electromagnetic shielding member
US8598593B2 (en) * 2011-07-15 2013-12-03 Infineon Technologies Ag Chip comprising an integrated circuit, fabrication method and method for locally rendering a carbonic layer conductive
ES2471318B1 (es) * 2012-11-22 2015-04-24 Abengoa Solar New Technologies S.A. Procedimiento de obtención de suspensiones o muestras sólidas de grafeno
JP6058704B2 (ja) * 2013-01-30 2017-01-11 三洋電機株式会社 非水電解質二次電池用負極活物質、当該負極活物質を用いた非水電解質二次電池用負極、及び当該負極を用いた非水電解質二次電池
US9546294B2 (en) 2013-04-19 2017-01-17 Incubation Alliance, Inc. Carbon fiber and method for producing same
WO2015041205A1 (ja) * 2013-09-19 2015-03-26 Ntn株式会社 固体潤滑剤および固体潤滑転がり軸受
US20150166346A1 (en) * 2013-12-18 2015-06-18 Chung-Shan Institute Of Science And Technology, Armaments Bureau, M.N.D Method of fabricating graphite films
US10160650B2 (en) 2014-02-13 2018-12-25 Morris Brothers And Company Holdings Limited Method for making a three dimensional object
WO2015134904A1 (en) * 2014-03-06 2015-09-11 The Regents Of The University Of Michigan Field effect transistor memory device
CN103935103B (zh) * 2014-04-04 2015-07-15 中国航空工业集团公司北京航空材料研究院 一种石墨烯/金属复合板材的制备方法
CN103906416A (zh) * 2014-04-11 2014-07-02 江苏悦达新材料科技有限公司 一种利用催化石墨化工艺制备人工石墨散热膜的方法
US9504158B2 (en) 2014-04-22 2016-11-22 Facebook, Inc. Metal-free monolithic epitaxial graphene-on-diamond PWB
CN103929710A (zh) * 2014-04-25 2014-07-16 瑞声光电科技(常州)有限公司 一种复合振膜的制备方法
CN103929709A (zh) * 2014-04-25 2014-07-16 瑞声光电科技(常州)有限公司 一种复合振膜的制备方法
CN104130735B (zh) * 2014-07-22 2016-01-06 深圳市华星光电技术有限公司 石墨烯球导电胶的制备方法及该石墨烯球导电胶
US9442514B1 (en) * 2014-07-23 2016-09-13 Google Inc. Graphite layer between carbon layers
WO2016057109A2 (en) * 2014-08-11 2016-04-14 Vorbeck Materials Corp. Graphene-based thin conductors
US11984553B2 (en) 2014-12-02 2024-05-14 Polyplus Battery Company Lithium ion conducting sulfide glass fabrication
TWI542540B (zh) * 2014-12-11 2016-07-21 中原大學 石墨烯製造方法
US9402322B1 (en) 2015-03-04 2016-07-26 Lockheed Martin Corporation Metal-free monolithic epitaxial graphene-on-diamond PWB with optical waveguide
JP6530952B2 (ja) * 2015-04-17 2019-06-12 旭化成株式会社 導電性グラファイトの製造方法及び導電膜
CN104891485A (zh) * 2015-06-08 2015-09-09 哈尔滨工业大学(威海) 一种纳米石墨片制备方法
US10299407B2 (en) 2015-06-29 2019-05-21 Microsoft Technology Licensing, Llc Differently oriented layered thermal conduit
EP3319935B1 (en) * 2015-07-08 2023-10-25 Niagara Bottling, LLC Graphene reinforced polyethylene terephthalate
WO2017057751A1 (ja) * 2015-10-01 2017-04-06 株式会社名城ナノカーボン カーボンナノチューブの製造装置および製造方法
US11891806B2 (en) * 2015-11-11 2024-02-06 Knauf Gips Kg Building products with graphene or graphene oxide
US10435607B2 (en) * 2016-03-28 2019-10-08 Panasonic Intellectual Property Management Co., Ltd. Graphite material and production method thereof
JP6031207B1 (ja) * 2016-04-27 2016-11-24 大豊精機株式会社 燃料電池及び燃料電池用導電部材
CN105948016A (zh) * 2016-04-28 2016-09-21 广州市环境保护技术设备公司 一种香口胶制备生物碳材料的制备方法
JP6634601B2 (ja) * 2016-05-09 2020-01-22 パナソニックIpマネジメント株式会社 グラファイトプレートとその製造方法
CN107986266A (zh) * 2016-10-24 2018-05-04 林逸樵 一种生产石墨烯/纳米金属氧化物复合材料的装置及方法
KR102008761B1 (ko) * 2016-12-20 2019-08-08 인하대학교 산학협력단 피치로 코팅된 유리섬유를 포함하는 에폭시 복합재료
CN108502875B (zh) * 2017-02-23 2021-06-08 中国科学院苏州纳米技术与纳米仿生研究所 高吸光性能的放射状石墨烯团簇、其制备方法与应用
CN110495023B (zh) * 2017-04-13 2023-02-17 埃卡特有限公司 ZnO纳米颗粒涂覆的剥离石墨复合材料,该复合材料的制备方法及其在锂离子电池组中的应用
CN107128914B (zh) * 2017-07-04 2019-04-09 陕西师范大学 石油焦基柱状活性炭的制备方法
CN107814382B (zh) * 2017-09-28 2019-12-10 广东东岛新能源股份有限公司 一种长寿命的改性的天然石墨负极材料及其制备方法和用途
JP2019082275A (ja) * 2017-10-30 2019-05-30 イビデン株式会社 地熱発電用パイプ
WO2019126057A1 (en) * 2017-12-21 2019-06-27 Ionobell High performance carbonized plastics for energy storage device
US20190301814A1 (en) * 2018-04-03 2019-10-03 Nanotek Instruments, Inc. Metallized graphene foam having high through-plane conductivity
WO2020027039A1 (ja) * 2018-07-30 2020-02-06 株式会社Adeka 複合材料
CN109546115A (zh) * 2018-11-19 2019-03-29 安徽安凯汽车股份有限公司 一种高镍富锂锰基固溶体正极材料的nca三元电池
CN109520777B (zh) * 2019-01-09 2021-07-27 山东中鹏特种陶瓷有限公司 碳化硅取样勺及制造工艺
CN111500005A (zh) 2019-01-30 2020-08-07 家登精密工业股份有限公司 环烯烃组合物及应用其的半导体容器
JP7246970B2 (ja) * 2019-03-04 2023-03-28 イビデン株式会社 ブレーキ摩擦材
CN110474052B (zh) * 2019-07-29 2022-09-02 湖南文理学院 一种锂离子电池电极材料及制备方法
CN110467173A (zh) * 2019-07-31 2019-11-19 桑德新能源技术开发有限公司 无定形炭材料及其制备方法、负极材料、锂离子电池
US11946704B2 (en) * 2019-09-03 2024-04-02 Global Graphene Group, Inc. Graphene-based elastic heat spreader films
CN110911668A (zh) * 2019-12-02 2020-03-24 电子科技大学 一种锂硫电池pip@s正极材料及制备方法
US11631889B2 (en) 2020-01-15 2023-04-18 Polyplus Battery Company Methods and materials for protection of sulfide glass solid electrolytes
CN111447699B (zh) * 2020-04-15 2022-03-29 广东康烯科技有限公司 一种柔性石墨烯发热膜及其制备方法
KR20210129489A (ko) * 2020-04-20 2021-10-28 에스케이이노베이션 주식회사 배터리 모듈
US20210340048A1 (en) * 2020-04-30 2021-11-04 Polyplus Battery Company Melt Processing Li Ion Conducting Sulfide Glass
US12051824B2 (en) 2020-07-10 2024-07-30 Polyplus Battery Company Methods of making glass constructs
US12034116B2 (en) 2020-08-04 2024-07-09 Polyplus Battery Company Glass solid electrolyte layer, methods of making glass solid electrolyte layer and electrodes and battery cells thereof
US12021238B2 (en) 2020-08-04 2024-06-25 Polyplus Battery Company Glassy embedded solid-state electrode assemblies, solid-state batteries and methods of making electrode assemblies and solid-state batteries
US12021187B2 (en) 2020-08-04 2024-06-25 Polyplus Battery Company Surface treatment of a sulfide glass solid electrolyte layer
CN112599748A (zh) * 2020-12-14 2021-04-02 河南环宇惠能能源有限公司 软包装锂动力电池及其制备方法
WO2023225285A1 (en) * 2022-05-20 2023-11-23 Nabors Energy Transition Solutions Llc Silicone composition and methods of forming the same while forming a silicon dioxide doped carbon-based nanomaterial
US20230373867A1 (en) * 2022-05-20 2023-11-23 Nabors Energy Transition Solutions Llc Silicone composition and methods of forming the same while forming a silicon doped carbon-based nanomaterial
CN115382467A (zh) * 2022-08-24 2022-11-25 常州爱特恩新材料科技有限公司 一种碳纤维的制造系统
CN115440508B (zh) * 2022-08-25 2024-06-07 信阳师范学院 一种用于超级电容器的阵列型镍铁氮纳米片的制备方法
JP2024055215A (ja) * 2022-10-06 2024-04-18 株式会社インキュベーション・アライアンス 炭素構造体
CN116514550B (zh) * 2023-02-21 2024-07-02 南通扬子碳素股份有限公司 石墨烯改性石墨电极、制备方法及其用途
CN116632233B (zh) * 2023-07-19 2023-09-29 成都锂能科技有限公司 一种高性能掺杂钠离子电池硬碳负极材料及其制备方法
CN117244525B (zh) * 2023-11-16 2024-04-30 成都达奇科技股份有限公司 高甲醛吸附率的改性活性炭及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249363B2 (ja) 1983-09-06 1987-10-19 Nikkiso Co Ltd
JPS63256434A (ja) * 1987-04-15 1988-10-24 新技術開発事業団 複合グラフアイトフイルム
JPH0733420A (ja) * 1993-07-16 1995-02-03 Toho Rayon Co Ltd 特殊形状の炭素質微粒子、その成形体及びその製造方法
JP2526408B2 (ja) 1994-01-28 1996-08-21 工業技術院長 カ―ボンナノチュ―ブの連続製造方法及び装置
JP2541434B2 (ja) 1992-11-20 1996-10-09 日本電気株式会社 カ―ボンナノチュ―ブの製造方法
JP2633638B2 (ja) 1988-08-15 1997-07-23 株式会社神戸製鋼所 高配向性黒鉛結晶の製造方法
JP2664819B2 (ja) 1991-07-05 1997-10-22 日機装株式会社 黒鉛繊維およびその製造方法
JP2007533581A (ja) * 2003-12-24 2007-11-22 キンテク インコーポレーテッド 電子電界放出特性を有する、小直径カーボンナノチューブの合成方法
WO2010137592A1 (ja) * 2009-05-26 2010-12-02 株式会社インキュベーション・アライアンス 炭素材料及びその製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855091A (en) * 1985-04-15 1989-08-08 The Dow Chemical Company Method for the preparation of carbon filaments
JPS6249363A (ja) 1985-08-28 1987-03-04 Ricoh Co Ltd 静電写真用液体現像剤
US5186919A (en) 1988-11-21 1993-02-16 Battelle Memorial Institute Method for producing thin graphite flakes with large aspect ratios
JP2526408Y2 (ja) 1988-12-28 1997-02-19 レンゴー 株式会社 保冷防水包装体
JPH0477307A (ja) * 1990-07-18 1992-03-11 Mitsubishi Kasei Corp 黒鉛微粉およびその製造方法
JP2514134B2 (ja) 1991-12-27 1996-07-10 日本無線株式会社 埋設物位置探査装置
EP0551878A1 (en) * 1992-01-14 1993-07-21 Mitsubishi Chemical Corporation Carbon fibers and process for their production
JP3556270B2 (ja) * 1994-06-15 2004-08-18 株式会社東芝 リチウム二次電池
JP3065896B2 (ja) 1994-10-28 2000-07-17 日本カーボン株式会社 高配向性黒鉛体の製造法
JPH0941166A (ja) * 1995-07-31 1997-02-10 Kobe Steel Ltd エッチング用電極、及びその製造方法
JP2003020215A (ja) * 2001-07-03 2003-01-24 Japan Science & Technology Corp カーボンナノホーン集合体の製造方法
JP2003062459A (ja) * 2001-08-27 2003-03-04 Denso Corp 水素貯蔵用炭素繊維およびその製造方法
JP2008024568A (ja) * 2006-07-24 2008-02-07 Hitachi Maxell Ltd カーボンナノチューブ分散液およびカーボンナノチューブ塗膜
JP2008066053A (ja) * 2006-09-06 2008-03-21 Fuji Heavy Ind Ltd 蓄電デバイス用負極活物質およびその製造方法
CN101174683B (zh) * 2006-11-01 2010-05-12 比亚迪股份有限公司 锂离子二次电池的负极以及包括该负极的锂离子二次电池
KR101344493B1 (ko) * 2007-12-17 2013-12-24 삼성전자주식회사 단결정 그라펜 시트 및 그의 제조방법
WO2009143405A2 (en) * 2008-05-22 2009-11-26 The University Of North Carolina At Chapel Hill Synthesis of graphene sheets and nanoparticle composites comprising same
CN101474898A (zh) 2009-01-16 2009-07-08 南开大学 基于石墨烯的导电碳膜及制备方法和应用
JP2013505546A (ja) * 2009-09-22 2013-02-14 ジー4 シナジェティクス, インコーポレイテッド 高性能電極
CN101704520B (zh) * 2009-11-05 2012-05-23 华侨大学 一种生产石墨烯的方法
CN101746755B (zh) 2009-12-14 2012-07-04 重庆大学 一种多层石墨烯的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6249363B2 (ja) 1983-09-06 1987-10-19 Nikkiso Co Ltd
JPS63256434A (ja) * 1987-04-15 1988-10-24 新技術開発事業団 複合グラフアイトフイルム
JP2633638B2 (ja) 1988-08-15 1997-07-23 株式会社神戸製鋼所 高配向性黒鉛結晶の製造方法
JP2664819B2 (ja) 1991-07-05 1997-10-22 日機装株式会社 黒鉛繊維およびその製造方法
JP2541434B2 (ja) 1992-11-20 1996-10-09 日本電気株式会社 カ―ボンナノチュ―ブの製造方法
JPH0733420A (ja) * 1993-07-16 1995-02-03 Toho Rayon Co Ltd 特殊形状の炭素質微粒子、その成形体及びその製造方法
JP2526408B2 (ja) 1994-01-28 1996-08-21 工業技術院長 カ―ボンナノチュ―ブの連続製造方法及び装置
JP2007533581A (ja) * 2003-12-24 2007-11-22 キンテク インコーポレーテッド 電子電界放出特性を有する、小直径カーボンナノチューブの合成方法
WO2010137592A1 (ja) * 2009-05-26 2010-12-02 株式会社インキュベーション・アライアンス 炭素材料及びその製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MICHIO INAGAKI, CARBON, no. 139, 1989, pages 207 - 213
NATURE NANOTECHNOLOGY, vol. 3, 2008, pages 31
NATURE, vol. 354, 1991, pages 56 - 58
See also references of EP2537801A4 *

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011241479A (ja) * 2010-05-18 2011-12-01 Samsung Electronics Co Ltd グラフェン薄膜を用いた樹脂のめっき方法
WO2012108371A1 (ja) * 2011-02-09 2012-08-16 株式会社インキュベーション・アライアンス 多層グラフェン被覆基板の製造方法
US9208928B2 (en) 2011-02-09 2015-12-08 Incubation Alliance, Inc. Method for producing multilayer graphene-coated substrate
JP2015146328A (ja) * 2011-06-24 2015-08-13 株式会社半導体エネルギー研究所 二次電池
JPWO2013058383A1 (ja) * 2011-10-19 2015-04-02 株式会社環境・エネルギーナノ技術研究所 カーボンナノホーンを含む多孔質材料及びその利用
EP2769967A1 (en) * 2011-10-19 2014-08-27 Environment Energy Nano Technical Research Institute Dense material including carbon nanohorns and use thereof
EP2769967A4 (en) * 2011-10-19 2015-07-08 Environment Energy Nano Technical Res Inst SEALED MATERIAL WITH CARBON NANOTUBES AND USE THEREOF
EP2769966A4 (en) * 2011-10-19 2015-07-08 Environment Energy Nano Technical Res Inst POROUS MATERIAL WITH CARBON NANO GRAINS AND ITS USE
JP2013112604A (ja) * 2011-11-29 2013-06-10 Xerox Corp グラフェンナノシートおよびこれを製造する方法
US8642215B2 (en) * 2012-01-06 2014-02-04 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
US20130334468A1 (en) * 2012-06-13 2013-12-19 Naoetsu Electronics Co., Ltd. Negative electrode material for nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2014175261A (ja) * 2013-03-12 2014-09-22 Keio Gijuku 焼結体、及び、その製造方法
WO2014171030A1 (ja) * 2013-04-19 2014-10-23 株式会社インキュベーション・アライアンス 炭素繊維およびその製造方法
JPWO2014171030A1 (ja) * 2013-04-19 2017-02-16 株式会社インキュベーション・アライアンス 炭素繊維およびその製造方法
US10006153B2 (en) 2013-04-19 2018-06-26 Incubation Alliance, Inc. Carbon fiber and method for producing same
JP5841658B2 (ja) * 2013-04-19 2016-01-13 株式会社インキュベーション・アライアンス 炭素繊維およびその製造方法
CN103253740A (zh) * 2013-05-14 2013-08-21 上海大学 三维分级结构石墨烯/多孔碳复合电容型脱盐电极的制备方法
JP5680261B1 (ja) * 2013-05-15 2015-03-04 昭和電工株式会社 ホウ素を含む薄片状黒鉛、及びその製造方法
WO2014185496A1 (ja) * 2013-05-15 2014-11-20 昭和電工株式会社 ホウ素を含む薄片状黒鉛、及びその製造方法
JP2019038744A (ja) * 2013-07-18 2019-03-14 積水化学工業株式会社 二次黒鉛の製造方法、薄片化黒鉛の製造方法、二次黒鉛及び薄片化黒鉛
JP2015107913A (ja) * 2013-12-04 2015-06-11 エフ イー アイ カンパニFei Company ナノ結晶カーボン自立薄膜の製造方法
JP2015167127A (ja) * 2014-02-12 2015-09-24 大阪瓦斯株式会社 リチウム二次電池用負極材料及びその製造方法、並びに該負極材料を用いたリチウム二次電池用の負極活物質層用組成物、リチウム二次電池用負極及びリチウム二次電池
JP2017512741A (ja) * 2014-03-28 2017-05-25 ペルペトゥウス リサーチ アンド ディヴェロップメント リミテッドPerpetuus Research & Development Limited 積層されたグラフェン層を含む粒子
US11495789B2 (en) 2014-05-13 2022-11-08 Kabushiki Kaisha Toshiba Composite active material
JP2017525646A (ja) * 2014-07-01 2017-09-07 チーナン ションチュアン グループ シェア ホールディング カンパニー リミテッドJinan Shengquan Group Share Holding Co.,Ltd. 多孔質グラフェンの製造方法
JP6162352B1 (ja) * 2014-07-01 2017-07-12 チーナン ションチュアン グループ シェア ホールディング カンパニー リミテッドJinan Shengquan Group Share Holding Co.,Ltd. 多孔質グラフェンの製造方法
JP2016051128A (ja) * 2014-09-02 2016-04-11 富士ゼロックス株式会社 無端ベルト、定着装置、および画像形成装置
WO2016117616A1 (ja) * 2015-01-21 2016-07-28 Secカーボン株式会社 ルツボを用いた炭素材料の製造方法
US12060465B2 (en) 2015-03-17 2024-08-13 Niagara Bottling, Llc Graphene reinforced polyethylene terephthalate
JP2018516311A (ja) * 2015-03-27 2018-06-21 ユニバーシティ オブ セントラル フロリダ リサーチ ファウンデーション,インコーポレイテッド 修復及び保護コーティングの溶射
JP2022191376A (ja) * 2015-07-08 2022-12-27 ナイアガラ・ボトリング・リミテツド・ライアビリテイー・カンパニー グラフェン強化ポリエチレンテレフタレート
JP2021098861A (ja) * 2015-07-08 2021-07-01 ナイアガラ・ボトリング・リミテツド・ライアビリテイー・カンパニー グラフェン強化ポリエチレンテレフタレート
US11472938B2 (en) 2015-07-08 2022-10-18 Niagara Bottling, Llc Graphene reinforced polyethylene terephthalate
JP2018521207A (ja) * 2015-07-08 2018-08-02 ナイアガラ・ボトリング・リミテツド・ライアビリテイー・カンパニー グラフェン強化ポリエチレンテレフタレート
JP2017091994A (ja) * 2015-11-17 2017-05-25 株式会社リコー 非水電解液蓄電素子
WO2018074493A1 (ja) 2016-10-19 2018-04-26 株式会社インキュベーション・アライアンス 黒鉛/グラフェン複合材、集熱体、伝熱体、放熱体および放熱システム
WO2019208636A1 (ja) * 2018-04-27 2019-10-31 株式会社日本触媒 炭素材料複合体の製造方法
US11945723B2 (en) 2018-04-27 2024-04-02 Nippon Shokubai Co., Ltd. Method for producing carbon material complex
US12104036B2 (en) 2019-04-01 2024-10-01 Niagara Bottling, Llc Graphene polyethylene terephthalate composite for improving reheat energy consumption
CN113429206A (zh) * 2021-06-16 2021-09-24 西南林业大学 木基TiO2电介质陶瓷及其制备方法和应用

Also Published As

Publication number Publication date
CN102791628A (zh) 2012-11-21
CN104030273A (zh) 2014-09-10
KR101516610B1 (ko) 2015-05-04
KR101456905B1 (ko) 2014-10-31
KR20120121409A (ko) 2012-11-05
JPWO2011102473A1 (ja) 2013-06-17
CA2789028C (en) 2016-01-05
CN104030273B (zh) 2017-05-17
CA2789028A1 (en) 2011-08-25
KR20140077982A (ko) 2014-06-24
JP5632448B2 (ja) 2014-11-26
EP2537801A1 (en) 2012-12-26
JP2016130212A (ja) 2016-07-21
JP6209641B2 (ja) 2017-10-04
US9221686B2 (en) 2015-12-29
JP2015044737A (ja) 2015-03-12
SG10201500043YA (en) 2015-03-30
JP5937653B2 (ja) 2016-06-22
SG183331A1 (en) 2012-09-27
CN102791628B (zh) 2016-05-25
EP2537801A4 (en) 2015-05-06
US20120315482A1 (en) 2012-12-13
EP2537801B1 (en) 2019-04-03
HK1199439A1 (en) 2015-07-03

Similar Documents

Publication Publication Date Title
JP6209641B2 (ja) 薄片状黒鉛結晶集合物
JP5629681B2 (ja) 炭素材料及びその製造方法
US9403683B2 (en) Carbon nanotube and production method therefor
Xu et al. Synthesis, properties and applications of nanoscale nitrides, borides and carbides
EP2816144B1 (en) Carbon fiber and method for producing same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180010173.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744759

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011744759

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2789028

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13577536

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012500663

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 8024/DELNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127024399

Country of ref document: KR

Kind code of ref document: A