WO2014185496A1 - ホウ素を含む薄片状黒鉛、及びその製造方法 - Google Patents

ホウ素を含む薄片状黒鉛、及びその製造方法 Download PDF

Info

Publication number
WO2014185496A1
WO2014185496A1 PCT/JP2014/062979 JP2014062979W WO2014185496A1 WO 2014185496 A1 WO2014185496 A1 WO 2014185496A1 JP 2014062979 W JP2014062979 W JP 2014062979W WO 2014185496 A1 WO2014185496 A1 WO 2014185496A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
conductive
resin composition
boron
resin
Prior art date
Application number
PCT/JP2014/062979
Other languages
English (en)
French (fr)
Inventor
知行 福世
鎌田 博稔
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to EP14798287.0A priority Critical patent/EP2998271A4/en
Priority to JP2014551472A priority patent/JP5680261B1/ja
Priority to CN201480026728.XA priority patent/CN105209385A/zh
Priority to US14/890,991 priority patent/US20160096964A1/en
Publication of WO2014185496A1 publication Critical patent/WO2014185496A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D129/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
    • C09D129/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D161/00Coating compositions based on condensation polymers of aldehydes or ketones; Coating compositions based on derivatives of such polymers
    • C09D161/04Condensation polymers of aldehydes or ketones with phenols only
    • C09D161/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J129/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Adhesives based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Adhesives based on derivatives of such polymers
    • C09J129/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J161/00Adhesives based on condensation polymers of aldehydes or ketones; Adhesives based on derivatives of such polymers
    • C09J161/04Condensation polymers of aldehydes or ketones with phenols only
    • C09J161/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances

Definitions

  • the present invention relates to flaky graphite containing boron, a method for producing the same, a conductive resin composition containing flaky graphite containing boron, and a conductive paint and a conductive adhesive using the same.
  • conductive paints using a conductive resin composition, conductive adhesives, and the like are increasing from the viewpoints of weight reduction of products, consideration for the environment, and reduction of manufacturing costs.
  • the conductive paint is, for example, screen-printed on a base film and widely used as a membrane circuit constituting a keyboard, a switch, and the like.
  • the conductive adhesive is used as a substitute for solder.
  • the conductive resin composition used for such applications is produced by, for example, dissolving a resin as a binder or matrix material in a solvent to form a varnish, and dispersing the conductive material in the varnish.
  • metals such as gold, silver, platinum, and palladium are used as fillers (conductive materials) for imparting conductivity, but when metals are used as the conductive materials.
  • conductive materials conductive materials
  • problems such as generation of dendrites under high humidity conditions, a decrease in reliability as a conductive resin composition due to corrosion, a decrease in conductivity due to oxidation of the metal surface, and an increase in manufacturing cost.
  • Patent Document 1 describes a conductive composition containing vapor grown carbon fiber, carbon black, a thermoplastic resin and / or a thermosetting resin.
  • Patent Document 2 discloses a conductive material in which a carbonaceous material for a conductive composition containing a vapor grown carbon fiber having a specific structure and graphite particles and / or amorphous carbon particles is blended in a resin component. Sex compositions are described.
  • the conductive resin compositions described in Patent Documents 1 and 2 are stable against oxidation and corrosion, and can be reduced in cost compared to the case of using a metal-based conductive material.
  • the carbon-based conductive material has low dispersibility in the resin and stability after dispersion, the conductive resin composition using the carbon-based conductive material has conductivity, heat resistance, water resistance, and adhesion to the substrate. There is a tendency to decrease, and improvement is desired.
  • the present invention provides a flaky graphite containing boron and a method for producing the same, which can realize a conductive resin composition excellent in conductivity, heat resistance, water resistance, and adhesion to a substrate.
  • the purpose is to provide.
  • Another object of the present invention is to provide a conductive paint and a conductive adhesive containing the conductive resin composition.
  • the present invention is as follows. [1] The average thickness of 100nm or less, the average plate diameter d c is 0.01 ⁇ 100 [mu] m, flaky graphite containing boron. [2] The average thickness of 100nm or less, an average plate diameter d c is 1 ⁇ 100 [mu] m, comprising two or more layers of graphene sheets, the average spacing d 002 by X-ray wide angle diffraction is not more than 0.337 nm, a laser Flaky graphite containing boron according to [1], wherein the intensity ratio [D / G] of the D band and G band in the Raman spectrum is 0.8 to 1.5.
  • the average thickness of 100nm or less, flakes containing boron heat treating the flake graphite is an average plate diameter d c is 0.01 ⁇ 100 [mu] m, 1 kind selected from boron and boron compounds or two or more in the presence A method for producing graphite.
  • the conductive resin composition according to [4] wherein the resin component contains 10 to 100% by mass of polyvinyl acetal.
  • this invention it is possible to provide a conductive resin composition excellent in conductivity, heat resistance, water resistance, and adhesion to a substrate, and to provide a flake graphite containing boron and a method for producing the same. Can do. Moreover, this invention can provide the conductive coating material and conductive adhesive containing the said conductive resin composition.
  • Flake-like graphite containing boron Flake graphite comprising the boron has an average thickness of 100nm or less, the average plate diameter d c is 0.01 ⁇ 100 [mu] m, is intended to include boron.
  • the flaky graphite containing boron has an average thickness exceeding the monoatomic thickness of carbon. When the average thickness is 100 nm or less, the resistivity of the flake graphite containing boron is lowered, so that a conductive path in the conductive resin composition is likely to be formed, and the conductivity blended with the flake graphite containing boron. Conductivity of the conductive resin composition is improved.
  • the flaky graphite containing boron is preferably a laminate of about 300 graphene sheets, more preferably a laminate of about 2 to 300 layers of graphene sheets due to a single layer sheet structure.
  • the average plate diameter d c is the is 0.01 ⁇ m or more to improve the dispersion of the resin, mixed as the conductive resin composition is difficult exceeds 100 [mu] m.
  • the “average thickness” means, for example, a value calculated from the specific surface area of the nitrogen adsorption BET method using the theoretical density of graphite assuming that the graphite is plate-like and ignoring the edges.
  • the “average plate diameter d c ” is a value obtained by arithmetically averaging the maximum diameter of each sample by selecting 100 flaky graphite samples at random using a scanning electron microscope or a transmission electron microscope. Say.
  • the average thickness is preferably 0.5 nm or more, more preferably 1.0 nm or more, still more preferably 2 nm or more, and further preferably 5 nm or more from the viewpoint of improving the conductivity and improving the familiarity with the flaky graphite resin. Is more preferable, and 10 nm or more is even more preferable.
  • the average thickness is preferably 80 nm or less from the viewpoint of improving the conductivity, the viewpoint of improving the formability of the conductive path in the conductive resin composition, and the familiarity of the flaky graphite resin. 70 nm or less is more preferable, 60 nm or less is more preferable, 50 nm or less is more preferable, 40 nm or less is still more preferable, and 30 nm or less is still more preferable.
  • the average plate diameter d c is the viewpoint of improving the conductivity, in view of improving the formation of the conductive paths in the conductive resin composition, and from the viewpoint of improving the conformability of the resin of the flaky graphite, 0.1 to 100 ⁇ m is preferable, 0.5 to 80 ⁇ m is more preferable, 0.5 to 50 ⁇ m is still more preferable, and 1 to 30 ⁇ m is still more preferable.
  • the ratio of the average plate diameter to the average thickness of the flaky graphite is usually 5 to 10,000.
  • Boron in the flaky graphite containing boron may be adhered to the surface of the flaky graphite as a simple boron or a boron compound, or may be in a state of being substituted with carbon atoms in the graphite crystal.
  • boron is substituted for carbon atoms in the graphite crystals, the conductivity of the flake graphite containing boron and the familiarity with the resin of the flake graphite tend to be improved.
  • Examples of the boron compound that adheres to the surface of the flaky graphite include B 4 C, B 2 O 3 , and BN.
  • the content of boron in the flake graphite containing boron is preferably 0.1 to 20% by mass, more preferably 0.5 to 10% by mass, and still more preferably 0.5 to 5% by mass.
  • the content of boron is 0.1% by mass or more, the familiarity with the resin of flaky graphite containing boron is preferably improved, and when it is 0.1% by mass or more and 20% by mass or less, It is preferable because the conductivity of the flake graphite containing boron is improved.
  • the boron content in the flake graphite containing boron can be determined by performing an ICP emission analysis on a sample pretreated according to JIS R 7223.
  • the boron content is the total amount of boron alone and a boron compound adhering to the surface of the flaky graphite and boron substituted for carbon atoms in the graphite crystal.
  • Flake graphite comprising the boron has an average thickness of 100nm or less, the average plate diameter d c is the 1 ⁇ 100 [mu] m, when it is intended to include two or more layers of graphene sheets, the flaky graphite containing boron, X-rays it is preferred that the average spacing d 002 by wide angle diffraction is not more than 0.337 nm. If the average interplanar spacing d002 is 0.337 nm or less, the graphite has a high degree of graphitization, and therefore tends to be excellent in conductivity. It said average plane spacing d 002 is more preferably equal to or less than 0.336nm from the viewpoint of improving the electrical conductivity.
  • the average spacing d 002 is tend to be improved small enough conductivity smaller, it is difficult to obtain of less than 0.334Nm, usually more than 0.334Nm are preferred.
  • the average interplanar spacing by X-ray wide angle diffraction refers to a value measured by the Japan Science and Technology method established by the Japan Society for the Promotion of Science 117 after a round robin test.
  • Gakushin Law please refer to “Carbon”, [No. 36], pp 25-34 (1963), and the like.
  • the G band is a peak around 1600 cm -1
  • the intensity (peak height) ratio [D / G] when fitting with the Lorentz function is preferably 0.8 to 1.5.
  • the intensity ratio [D / G] is correlated with the crystallinity of graphite, the average spacing d 002 indicating a correlation between the crystallinity of the graphite as well is less than or equal to 0.337 nm, usually, the The intensity ratio [D / G] is less than 0.8.
  • [D / G] becomes 0.8 to 1.5 depending on the degree. That is, if the average interplanar spacing d002 is 0.337 nm or less and the intensity ratio [D / G] is within the above range, a part of carbon atoms in the graphite crystal is substituted with boron. That is, the above-described effects can be obtained.
  • the strength ratio [D / G] is preferably 0.8 to 1.3, more preferably 0.8 to 1.1, from the viewpoint of improving the conductivity and improving the familiarity of the flake graphite with the resin. preferable.
  • the flake graphite containing boron can be produced, for example, by the production method of the present invention described later.
  • flake graphite containing boron In the method for producing flake graphite containing boron, flake graphite having an average thickness of 100 nm and an average plate diameter d c of 0.01 to 100 ⁇ m is obtained by using boron alone (hereinafter also referred to as “boron”). And a heat treatment in the presence of one or more selected from boron compounds.
  • the flaky graphite as a raw material has an average thickness exceeding the monoatomic thickness of carbon.
  • flaky graphite and boron are contacted at a high temperature of 1,600 to 3,000 ° C. in an inert gas atmosphere.
  • the method of making it include.
  • the inert gas include helium gas, argon gas, and nitrogen gas.
  • argon gas is preferable because it is particularly stable at high temperatures.
  • the temperature at which the “contacting” treatment is performed is preferably 2,000 to 2,900 ° C., more preferably 2,300 to 2,900 ° C. from the viewpoint of improving the conductivity of flake graphite containing boron. preferable.
  • the heat treatment time is preferably 10 minutes or more after the flake graphite reaches a predetermined temperature from the viewpoint of sufficiently promoting the reaction between graphite and boron.
  • the treatment time may be long, it is usually preferably 10 hours or less from the viewpoint of preventing the yield from being reduced by sublimation of graphite and suppressing the production cost.
  • boron compound examples include boron oxide (for example, B 2 O 2 , B 2 O 3 , B 4 O 3 , B 4 O 5, etc.), boron oxo acid (for example, orthoboric acid, metaboric acid, tetraboron). Acid) and salts thereof, boron carbide (eg, B 4 C, B 6 C, etc.), boron nitride (BN), and other boron compounds.
  • boron carbide such as B 4 C and B 6 C is preferable.
  • At least one selected from the group consisting of boron and a boron compound may be directly added to or mixed with the flaky graphite, and at least one selected from the group consisting of boron and a boron compound is heated.
  • the generated vapor may be brought into contact with flaky graphite.
  • the addition amount of at least one selected from the group consisting of boron and boron compounds is preferably 1 to 20 parts by mass, more preferably 1 to 10 parts by mass, with respect to 100 parts by mass of flaky graphite as a raw material. Part by mass is more preferable. Since at least one selected from the group consisting of boron and a boron compound may be volatilized and lost during the heat treatment, the amount added is not necessarily the amount of boron in the flake graphite containing the finished boron. It does not match.
  • boron is contained in the flaky graphite, the familiarity with the dispersion medium and the resin is improved, and the dispersibility is improved. Further, since boron or a boron compound acts as a graphitization catalyst, the degree of graphitization of flake graphite containing boron is increased, and the conductivity is improved.
  • the flake graphite containing boron from the viewpoint of improving the wettability to the resin and the dispersibility in the resin, acid treatment with nitric acid, sulfuric acid, hydrochloric acid or a mixed acid thereof may be performed, Surface oxidation treatment by heat treatment in the presence of air may be performed. Further, a dry pulverization process such as a Henschel mixer or airflow pulverization, or a wet pulverization process in which a solvent is added to perform ultrasonic treatment may be performed. By performing these pulverization treatments and pulverization treatments, the flake graphite containing boron is crushed and the dispersibility in the resin can be improved.
  • the conductive resin composition contains 5 to 4000 parts by mass of a carbon component containing flaky graphite containing at least boron with respect to 100 parts by mass of a general resin component.
  • the resin component preferably contains 10 to 100% by mass of polyvinyl acetal, and specific resin components listed below are preferred.
  • the polyvinyl acetal (A) is a resin acetalized by reacting polyvinyl alcohol with an aldehyde compound, and examples thereof include polyvinyl formal derived from formaldehyde, polyvinyl butyral derived from butyraldehyde, and the like. Polyvinyl butyral is preferred. Since the polyvinyl acetal (A) has a property of improving the dispersibility of the carbon component, the conductivity of the conductive resin composition is improved.
  • the aldehyde compound used as a raw material for the polyvinyl acetal (A) is preferably an aldehyde compound having 1 to 6 carbon atoms.
  • the aldehyde compound having 2 carbon atoms From the viewpoint of improving the solubility in an organic solvent and improving the dispersibility of the carbon component, the aldehyde compound having 2 carbon atoms.
  • An aldehyde compound having ⁇ 5 is more preferable, and butyraldehyde having 4 carbon atoms is still more preferable.
  • These polyvinyl acetals may be used individually by 1 type, or 2 or more types may be mixed and used for them.
  • the polyvinyl acetal (A) is preferably polyvinyl butyral from the viewpoint of dispersibility of the carbon component and solubility in a solvent, and the degree of butyralization of the polyvinyl butyral is preferably 50 to 95 mol%, more preferably 60 to 90 mol%. 65 to 85 mol% is more preferable.
  • the polyvinyl acetal resin is a polyvinyl butyral resin
  • the degree of butyralization can be calculated from a result measured by a method in accordance with JIS K6728 “Testing method for polyvinyl butyral”.
  • the resin component preferably further contains a curable resin (B).
  • a curable resin (B) examples include phenol resin, epoxy resin, urethane resin, acrylic urethane resin, silicone resin, polyimide resin, polyimide silicone resin, diallyl phthalate (DAP) resin, unsaturated polyester resin, vinyl ester resin, and Oxetane resin is mentioned.
  • the curable resin (B) is preferably at least one of a phenol resin and an epoxy resin excellent in compatibility with the polyvinyl acetal resin.
  • the said curable resin (B) when the said curable resin (B) is comprised only with an epoxy resin, since a glass transition temperature becomes high compared with the case where it comprises with a phenol resin and an epoxy resin, and heat resistance improves, it is more preferable.
  • the polyvinyl acetal (A) contributes to the development of good dispersibility of the carbon nanotubes in the resin composition
  • the curable resin (B) has good heat resistance when used as a cured product, Contributes to the development of strength and adhesiveness.
  • Phenolic resin (B-1) As the phenol resin, a resol type phenol resin that can be obtained by reacting phenols and aldehydes with a basic catalyst, a novolak type phenol resin that can be obtained by reacting with an acidic catalyst, and These mixtures are mentioned.
  • phenols used in the synthesis of the phenol resin include phenols, various butylphenols, various cresols, various alkylphenols such as xylenol, various phenylphenols, various methoxyphenols, 1,3-dihydroxybenzene, bisphenol A, and bisphenol F. Of these, phenol is preferred.
  • “various” means various structural isomers.
  • aldehydes examples include formaldehyde, paraformaldehyde, furfural, acetaldehyde, and benzaldehyde. Among these, formaldehyde and paraformaldehyde are preferable.
  • the said phenols and aldehydes may be used individually by 1 type, and 2 or more types may be mixed and used for them.
  • the modified resol type phenol resin which has at least 1 sort (s) of a carboxyl group and a glycidyl group in a molecule
  • numerator There is no restriction
  • the weight average molecular weight of the phenol resin (B-1) is preferably 300 to 30,000, more preferably 700 to 20,000, and more preferably 1,000 to 19,000 from the viewpoints of wettability to various materials and workability. Is more preferable, 3,000 to 18,000 is still more preferable, and 5,000 to 17,000 is still more preferable.
  • a weight average molecular weight means the value measured as a standard polystyrene conversion molecular weight (Mw) by gel permeation chromatography.
  • phenolic resins examples include “Shonol (registered trademark) BKS-3823A” (Resol type), “Shonol BRG-556” (Novolac type), “Shonol BRN595” (Showa Denko Co., Ltd.) Novolak type), “Hitanol (registered trademark)” manufactured by Hitachi Chemical Co., Ltd., and the like.
  • a novolak type phenol resin it is common to make it harden
  • Epoxy resin (B-2) An epoxy resin is a resin containing two or more oxirane groups in one molecule.
  • the epoxy resin include glycidyl ethers, glycidyl amines, and epoxy resins such as glycidyl esters and alicyclic epoxy resins. Among these, glycidyl ethers and epoxy resins of glycidyl amines are preferable.
  • An epoxy resin may be used individually by 1 type, and may use 2 or more types together.
  • glycidyl ether epoxy resins include bisphenol glycidyl ether, dihydroxybiphenyl glycidyl ether, dihydroxybenzene glycidyl ether, nitrogen-containing cyclic glycidyl ether, dihydroxynaphthalene glycidyl ether, phenol-formaldehyde polyglycidyl ether, and polyhydroxyphenol polyglycidyl ether. Etc.
  • bisphenol glycidyl ether examples include bisphenol A glycidyl ether, bisphenol F glycidyl ether, bisphenol AD glycidyl ether, bisphenol S glycidyl ether, and tetramethylbisphenol A glycidyl ether.
  • dihydroxybiphenyl glycidyl ether examples include 4,4′-biphenyl glycidyl ether, 3,3′-dimethyl-4,4′-biphenyl glycidyl ether, and 3,3 ′, 5,5′-tetramethyl-4. 4,4'-biphenyl glycidyl ether and the like.
  • dihydroxybenzene glycidyl ether examples include resorching glycidyl ether, hydroquinone glycidyl ether, and isobutyl hydroquinone glycidyl ether.
  • nitrogen-containing cyclic glycidyl ether examples include triglycidyl isocyanurate and triglycidyl cyanurate.
  • glycidyl ether of dihydroxynaphthalene examples include 1,6-dihydroxynaphthalene glycidyl ether and 2,6-dihydroxynaphthalene glycidyl ether.
  • phenol-formaldehyde polyglycidyl ether examples include phenol-formaldehyde polyglycidyl ether and cresol-formaldehyde polyglycidyl ether.
  • polyhydroxyphenol polyglycidyl ether examples include tris (4-hydroxyphenyl) methane polyglycidyl ether, tris (4-hydroxyphenyl) ethane polyglycidyl ether, tris (4-hydroxyphenyl) propane polyglycidyl ether, tris ( 4-hydroxyphenyl) butane polyglycidyl ether, tris (3-methyl-4-hydroxyphenyl) methane polyglycidyl ether, tris (3,5-dimethyl-4-hydroxy) methane polyglycidyl ether, tetrakis (4-hydroxyphenyl) Ethane polyglycidyl ether, tetrakis (3,5-dimethyl-4-hydroxyphenyl) ethane polyglycidyl ether, and dicyclopentene-phenol formaldehyde polyg Glycidyl ether and the like.
  • Examples of the glycidylamine epoxy resin include N, N, N ′, N′-tetraglycidyl-4,4′-diaminodiphenylmethane, triglycidyl-p-aminophenol, and the like.
  • Examples of glycidyl ester epoxy resins include phthalic acid diglycidyl ester and isophthalic acid diglycidyl ester.
  • Examples of the alicyclic epoxy resin include epoxy cyclohexane derivatives, and specifically, a Celoxide (trade name) series manufactured by Daicel Chemical Industries, Ltd.
  • the epoxy resin can be cured in the presence of a curing catalyst.
  • the curing catalyst include compounds having an action of promoting the polymerization of epoxy groups such as tertiary amine compounds and imidazole compounds.
  • the tertiary amine compound include triethylamine, dimethylcyclohexylamine, N, N-dimethylpiperazine, benzyldimethylamine, 2- (N, N-dimethylaminomethyl) phenol, 2,4,6-tris ( N, N-dimethylaminomethyl) phenol, 1,8-diazabiscyclo (5.4.0) undecene-1, and the like.
  • imidazole compounds include 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenyl.
  • Imidazole 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-methylimidazole trimellitate, 1-cyanoethyl-2-undecylimidazolium trimellitate, 2,4-diamino-6- [2'- Methylimidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-undecylimidazolyl- (1 ′)]-ethyl-s-triazine, 2-methylimidazole isocyanuric acid Adduct, 2-phenylimidazole / isocyanuric acid adduct 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine / isocyanuric acid adduct and the like.
  • a compound having a functional group that reacts with the epoxy group (curing agent) can be used in addition to the curing catalyst.
  • curing agent the compound which has a functional group added to an epoxy group, such as a phenol compound and an acid anhydride compound, is mentioned.
  • the phenol resin also acts as a curing agent.
  • the phenol compound as the curing agent include bisphenol F, bisphenol A, bisphenol S, 2,6-dihydroxynaphthalene, the novolac type phenol resin, and the like.
  • Acid anhydride compounds as curing agents include itaconic anhydride, dodecenyl succinic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride , Methylendomethylenetetrahydrophthalic anhydride, chlorendic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic anhydride, ethylene glycol bis (anhydrotrimellilate), glycerol tris (anhydrotrimellitic) Tate), polyazeline acid anhydride, polydodecanedioic anhydride, 7,12-dimethyl-7,11-octadecadien-1,18-dicarboxylic acid partial anhydride, and the like.
  • the content of the polyvinyl acetal (A) in the resin component is preferably 10 to 100% by mass, more preferably 10 to 80% by mass, further preferably 10 to 70% by mass, further preferably 10 to 60% by mass, More preferably, it is 10 to 55% by mass.
  • the content of polyvinyl acetal (A) in the resin component is 10% by mass or more, the dispersibility of the carbon component is improved.
  • the content of the phenol resin or the epoxy resin in the resin component is 40 to 90% by mass. Preferably, 50 to 85% by mass is more preferable, and 50 to 80% by mass is still more preferable.
  • the content of the resin is 40% by mass or more, the heat resistance is improved, and when it is 90% by mass or less, the dispersibility of the carbon component is improved.
  • the total content of the polyvinyl acetal (A) and the phenol resin (B-1) or the epoxy resin (B-2) is preferably 80 to 100% by mass, more preferably 85 to 100% by mass in the resin component. 90 to 100% by mass is more preferable.
  • the content of the phenol resin (B-1) in the resin component is 10 to 60 mass. %, More preferably 15 to 55% by mass, and still more preferably 25 to 55% by mass. If content of the said phenol resin is in the said range, curability will become enough and heat resistance will become favorable.
  • the content of the epoxy resin (B-2) in the resin component is preferably 10 to 60% by mass, 55% by mass is more preferable, and 15 to 35% by mass is even more preferable.
  • the content of the epoxy resin is within the above range, the curability is sufficient and the heat resistance is also good.
  • the phenol resin (B-1) and the epoxy resin (B-2) are included, the phenol resin (B-) in the three components (A), (B-1) and (B-2)
  • the content of 1) and the epoxy resin (B-2) is preferably 70 to 90% by mass, and more preferably 75% to 80% by mass.
  • the conductive resin composition may contain other thermoplastic resins in addition to the polyvinyl acetal (A) and the curable resin (B).
  • thermoplastic resins one or more selected from polyester resins, acrylic resins, and polystyrene resins can be used.
  • the thermoplastic resin may be a thermoplastic elastomer, and examples of the thermoplastic elastomer include styrene resins such as hydrogenated styrene butadiene rubber, styrene-ethylene butylene-styrene block copolymer, and styrene-ethylene propylene-styrene block copolymer.
  • thermoplastic elastomers examples include thermoplastic elastomers; polymer alloys of polypropylene and ethylene propylene rubber; olefin thermoplastic elastomers such as polymer alloys of polypropylene and ethylene propylene diene rubber; and vinyl chloride thermoplastic elastomers.
  • the other thermoplastic resin can be contained within a range not impairing the gist of the present invention, and specifically, 20% by mass or less is preferable, 15% by mass or less is more preferable, and 10% by mass or less is more preferable. , May not be contained.
  • the conductive resin composition contains 5 to 4000 parts by mass of a carbon component containing at least the flake graphite (C) containing boron with respect to 100 parts by mass of the resin component.
  • C flake graphite
  • the content of the carbon component with respect to 100 parts by mass of the resin component is preferably 5 to 1000 parts by mass, and preferably 5 to 400 parts by mass from the viewpoint of improving conductivity and improving compatibility with the resin component of the carbon component. More preferred is 10 to 300 parts by mass.
  • the content of flaky graphite (C) containing boron in the carbon component is preferably 25 to 100% by mass, more preferably 50 to 100% by mass, more preferably 60 to 100% by mass, and 70 to 95% by mass. Is more preferable.
  • the content of flaky graphite (C) containing boron is 25% by mass or more, the effect of containing flaky graphite (C) containing boron is easily obtained.
  • the conductive resin composition contains at least the flake graphite (C) containing boron, but may contain a carbon component other than the flake graphite (C) containing boron.
  • a carbon component other than the flaky graphite containing boron for example, a carbon nanotube (D) is preferable.
  • Carbon nanotube (D) When the said conductive resin composition contains the carbon nanotube (D), the electroconductivity of the conductive resin composition itself, its hardened
  • the carbon nanotube (D) preferably has an aspect ratio (ratio of fiber length to fiber diameter) of preferably 10 to 15,000, more preferably 20 to 1,000, still more preferably 30 to 500. .
  • an aspect ratio ratio of fiber length to fiber diameter
  • the average fiber diameter d D of the carbon nanotube is preferably 5 to 300 nm, more preferably 5 to 250 nm, and still more preferably 10 to 200 nm.
  • carbon nanotubes are easily dispersed in the resin component, and a conductive resin composition having excellent conductivity can be obtained.
  • the sample of 200 carbon nanotubes is selected at random by a scanning electron microscope (SEM), the fiber diameter of each sample is measured, and an average is calculated. Can be obtained.
  • the aspect ratio can be obtained by calculation from these values by selecting 200 carbon nanotube samples with a scanning electron microscope (SEM) and calculating the average fiber diameter and average fiber length.
  • the content of the carbon nanotube (D) with respect to 100 parts by mass of the resin component is preferably 2 to 70 parts by mass, more preferably 2 to 65 parts by mass, further preferably 2 to 60 parts by mass, and even more preferably 3 to 50 parts by mass. preferable.
  • the content of the carbon nanotube (D) is within the above range, the dispersibility of the filler is improved and sufficient conductivity can be obtained.
  • Examples of commercially available carbon nanotubes (D) include “VGCF (registered trademark) -X”, “VGCF (registered trademark)”, “VGCF (registered trademark) -H” manufactured by Showa Denko KK Examples include “NT-5” and “NT-7” manufactured by Hodogaya Chemical Co., Ltd.
  • the carbon nanotube As the carbon nanotube, a specific one kind may be used alone, but it is preferable to use a mixture of two kinds of carbon nanotubes satisfying the aspect ratio and the average fiber diameter, and when using two kinds of carbon nanotubes, It is preferable that the average fiber diameters d D1 and d D2 satisfy the relationship of 1.5 ⁇ d D1 ⁇ d D2 . That is, when only carbon nanotubes with low average fiber diameter and low dispersibility in the resin component are used, it becomes difficult to uniformly disperse and high conductivity may not be expressed. By using the nanotubes in combination, it is easy to secure a conductive path in the resin.
  • the difference between the average fiber diameter d D2 and the average fiber diameter d D1 is preferably 10 nm or more, more preferably 20 nm or more, and still more preferably 30 nm or more from the viewpoint of improving conductivity.
  • the carbon nanotubes are preferably those produced by chemical vapor deposition (CVD), arc discharge, or the like, and graphene sheets in which carbon atoms are regularly arranged in a hexagonal shape are rounded into a cylindrical shape.
  • CVD chemical vapor deposition
  • a single graphene sheet tube having a diameter of 1 to several nm and a length of about 1 to several ⁇ m is referred to as a single-walled carbon nanotube, and the graphene sheet tube is concentric.
  • Those having a diameter of several nm to several tens of nm are called multi-walled carbon nanotubes.
  • a graphene sheet rounded into a substantially conical shape is referred to as a carbon nanohorn, and includes a single-layer carbon nanohorn and a multi-layer carbon nanohorn. In the present invention, these are collectively referred to as carbon nanotubes.
  • carbon nanotubes There is no restriction
  • the carbon nanotube is preferably a vapor-grown carbon fiber produced by a vapor growth method, more preferably a rigid fiber having a linear fiber shape and an average value of the bending index of 5 to 15.
  • the bending index indicates the rigidity of the vapor-grown carbon fiber, and the length (Lx) and the diameter (D) of the straight portions of a large number of vapor-grown carbon fibers taken by a microscope or the like are not bent. To Lx / D. Therefore, the vapor-grown carbon fiber having a small bending index indicates that the vapor-grown carbon fiber is bent at a short interval, and the vapor-grown carbon fiber having a large bending index has a long straight portion and is not bent.
  • the vapor phase growth method is a method in which a hydrocarbon such as benzene or toluene is thermally decomposed in the gas phase to synthesize vapor phase growth carbon fiber, and specifically includes a vapor phase flow method and a substrate method.
  • Vapor-grown carbon fibers are produced by subjecting organic compounds such as benzene, toluene, and natural gas as raw materials to a thermal decomposition reaction at about 800 to 1,300 ° C. with hydrogen gas in the presence of a transition metal catalyst such as ferrocene. Obtainable.
  • the carbon nanotube is preferably produced by a gas phase flow method.
  • the substrate method is a method in which a carbon source is supplied and reacted with a catalyst fixed in advance on the substrate, and includes a fluid catalyst method, a zeolite catalyst support method, and the like.
  • the gas phase flow method is a method in which a catalyst and a carbon source are simultaneously supplied into a reactor.
  • the substrate method has the advantage of easily controlling reaction conditions such as temperature and time, and the gas-phase flow method has the advantage that the synthesis reaction can be continued because the carbon source and the catalyst are simultaneously supplied to the reaction field. Furthermore, since the fiber shape is likely to be a straight line as compared with the substrate method, there is an advantage that high conductivity is easily exhibited when mixed with a resin.
  • the carbon nanotubes produced by the above method may be dispersed in the resin component as they are without being pretreated, or may be dispersed in the resin component after being pretreated.
  • a pretreatment method a method of treating at a low temperature (800 to 1,500 ° C.) in an inert gas atmosphere, or a graphitization at a high temperature (2,000 to 3,000 ° C.) in an inert gas atmosphere.
  • Examples of the method include a method of treating, and a method of performing graphitization at a high temperature (2,000 to 3,000 ° C.) is preferable from the viewpoint of improving the conductivity of the conductive resin composition.
  • the carbon nanotubes may be subjected to an acid treatment with nitric acid, sulfuric acid, hydrochloric acid or a mixed acid thereof in the presence of air.
  • An acid treatment with nitric acid, sulfuric acid, hydrochloric acid or a mixed acid thereof in the presence of air may be subjected to an acid treatment with nitric acid, sulfuric acid, hydrochloric acid or a mixed acid thereof in the presence of air.
  • Surface oxidation treatment by heat treatment may be performed.
  • the carbon nanotubes may be subjected to heat treatment in the presence of a graphitization catalyst to improve crystallinity (degree of graphitization) for the purpose of improving conductivity.
  • a graphitization catalyst to improve crystallinity (degree of graphitization) for the purpose of improving conductivity.
  • Examples of the heat treatment method using a graphitization catalyst include a method of allowing a graphitization catalyst to act on carbon nanotubes at 2,000 to 3,300 ° C. in an inert gas atmosphere such as argon.
  • the graphitization catalyst examples include boron, boron oxide (for example, B 2 O 2 , B 2 O 3 , B 4 O 3 , B 4 O 5, etc.), boron oxoacid (for example, orthoboric acid, metaboric acid, tetraborate and the like) and salts thereof, boron carbide (e.g., B 4 C, B 6 C, etc.), can be used boron nitride (BN), other boron compounds, in this, B 4 C, B Boron carbides such as 6 C and elemental boron are preferred.
  • boron boron oxide
  • boron oxoacid for example, orthoboric acid, metaboric acid, tetraborate and the like
  • boron carbide e.g., B 4 C, B 6 C, etc.
  • BN boron nitride
  • other boron compounds in this
  • These graphitization catalysts may be directly added to or mixed with the carbon nanotubes, and the vapor generated by heating the graphitization catalyst is brought into contact with the carbon nanotubes without directly contacting the graphitization catalyst and the carbon nanotubes. May be.
  • the addition amount of the graphitization catalyst is preferably 1 to 20 parts by mass, more preferably 1 to 10 parts by mass, and still more preferably 1 to 8 parts by mass with respect to 100 parts by mass of the carbon nanotubes.
  • Carbon nanotubes that have been heat-treated with a graphitization catalyst are doped with boron in the carbon nanotubes, have good compatibility with dispersion media and resins, and improve dispersibility.
  • the carbon nanotube is preferably one that has been heat-treated with the graphitization catalyst.
  • the said conductive resin composition may contain the carbon compound different from the flaky graphite (C) and carbon nanotube (D) containing the said boron as another carbon component.
  • the content of other carbon components is preferably 8 parts by mass or less with respect to 100 parts by mass of the resin component.
  • the total content of the carbon components is preferably 10 to 70 parts by mass, more preferably 30 to 65 parts by mass, and more preferably 35 to 60 parts by mass with respect to 100 parts by mass of the resin component. Further preferred.
  • the conductive resin composition includes a coupling agent, a leveling agent, a dispersant, a rheology control agent, an antifoaming agent, an antioxidant, Various additives such as a drying regulator, a surfactant and a plasticizer may be contained.
  • the conductive resin composition preferably contains a solvent.
  • the solvent can be used without particular limitation as long as it can dissolve the resin component.
  • alcohol compounds such as methanol, butanol, benzyl alcohol and diacetone alcohol, ketone compounds such as methyl ethyl ketone and cyclohexanone, ether compounds such as dioxane and tetrahydrofuran, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl Glycol ester compounds such as ether acetate, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, butoxyethanol, glycol ether compounds such as diethylene glycol monobutyl ether, N-methylpyrrolidone, N, N-dimethylformamide, N , N-dimethylacetamide, etc.
  • diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether, butoxyethanol, and diethylene glycol monobutyl ether are preferable from the viewpoint of the solubility of the resin component and the drying speed when applied.
  • limiting in particular in the usage-amount of a solvent In consideration of the viscosity of a resin component, the mixing ratio of a resin component and a carbon component, etc., it can use suitably in the range which can prepare a uniform composition by mixing and kneading
  • a specific amount of the solvent is preferably 10 to 1000 parts by weight, more preferably 50 to 500 parts by weight, and still more preferably 100 to 300 parts by weight with respect to 100 parts by weight of the resin component.
  • the conductive resin composition includes, for example, a resin component containing polyvinyl acetal (A) and, if necessary, a curable resin (B), a carbon component, a curing catalyst, a curing agent, and other components, and these are mixed. It can be produced by kneading. A known mixing apparatus can be used for mixing. There is no restriction
  • a varnish is produced by dissolving a resin component in a solvent using a high-speed stirrer, and in the case of a large lot, the varnish and a carbon component are blended to prepare a tank mixer.
  • the carbon component and the varnish can be directly charged into an attritor, mixed and pulverized, and the viscosity can be adjusted.
  • a container drive medium mill such as a ball mill or a three-roll mill can be used instead of the medium agitation mill such as the sand mill (distribution tank mill) or the attritor (stirring tank mill).
  • the said conductive resin composition can be widely used for the use which requires electroconductivity, and it is preferable to use as a conductive paint and a conductive adhesive especially.
  • the conductive paint and the conductive adhesive may be the conductive resin composition itself, or may contain other known components used for the conductive paint and the conductive adhesive. However, from the viewpoint of the reliability of the conductive paint or conductive adhesive and the manufacturing cost, it is preferable that the metal material is not included.
  • Examples of methods for applying conductive paint and conductive adhesive to the substrate include screen printing, dispenser, dipping, transfer, applicator, brushing, and spraying.
  • a method of applying to a substrate or an electronic element there are a screen printing method, a dipping method, and a transfer method. It is preferable to change the ratio of the conductive resin composition and the solvent in accordance with each coating method, and adjust the viscosity of the conductive paint and conductive adhesive.
  • Example 1 Untreated flaky graphite and boron compound shown in Table 1 are mixed, the mixture is put into a graphite crucible, and the temperature and argon atmosphere shown in Table 1 are measured by a resistance heating type graphitization furnace (manufactured by Kurata Giken Co., Ltd.).
  • the flake graphite containing boron in Examples 1 to 6 (hereinafter also referred to as “boron-doped flake graphite”) (c-1) to (c-6) was manufactured by performing a heat treatment for 30 minutes under the above conditions. .
  • the following average thickness is a value calculated from the specific surface area of the nitrogen adsorption BET method using the theoretical density of graphite, assuming that the graphite is plate-like and ignoring the edges.
  • the boron content was determined by performing an ICP emission analysis on a sample pretreated according to JIS R 7223.
  • the detection limit is 5 ppm.
  • the average interplanar spacing d 002 of the flake graphite used as a raw material when producing (c-1) was 0.3356 nm, and the Raman peak intensity ratio [D / G] was 0.5.
  • the Raman peak intensity ratio [D / G] of the flaky graphite ((y-2)) used as a raw material when producing (c-4) was 0.6.
  • Examples 7 to 23, Comparative Examples 5 to 9 A conductive resin composition was prepared using the flaky graphite obtained in Examples 1 to 6 and Comparative Examples 1 to 4, and various evaluations described later were performed.
  • the materials used for preparing the conductive resin composition are as follows.
  • B-1 Shownol “BKS-3823A” manufactured by Showa Denko KK Resol type phenol resin, weight average molecular weight: 6,500, non-volatile content 44% by mass (32% by mass of methanol as solvent, 20% by mass of n-butanol, 4% by mass of benzyl alcohol)
  • B-2 Shownol “BRN-595” manufactured by Showa Denko KK Novolac type phenolic resin, weight average molecular weight: 16,000
  • B-3 Epototo YH-434L (epoxy resin) manufactured by Nippon Steel Chemical Co., Ltd. N, N, N ′, N′-tetraglycidyl-4,4′-diaminodiphenylmethane
  • the weight average molecular weights of (b-1) and (b-2) were measured using “Shodex (registered trademark) GPC System-21 (columns: KF-802, KF-803, KF) manufactured by Showa Denko K.K. -805) ".
  • the measurement conditions were a column temperature of 40 ° C., an eluent of tetrahydrofuran, and an elution rate of 1 ml / min.
  • (D-1) is a catalyst graphitized vapor-grown carbon fiber produced by the following procedure. That is, untreated vapor-grown carbon fiber “VGCF (registered trademark)” (manufactured by Showa Denko KK) was heat treated at 1300 ° C., and graphitization catalyst (B 4 C) was vapor-grown carbon fiber. 4 parts by mass was added to 100 parts by mass and mixed. The mixture was placed in a graphite crucible and subjected to graphitization at 2800 ° C. for 30 minutes using a resistance heating type graphitization furnace (manufactured by Kurata Giken Co., Ltd.). Average fiber diameter: 150 nm Average fiber length: 8 ⁇ m Aspect ratio: 53 Bending index: 9
  • (D-2) is a catalyst graphitized multi-walled carbon nanotube produced according to the following procedure. That is, the temperature in the furnace of a vertical tubular heating furnace (inner diameter 60 mm, length 1000 mm) was raised to 1300 ° C. and maintained there, and toluene (liquid) containing 3% by mass of ferrocene and 1.5% by mass of thiophene. The raw material was irradiated with ultrasonic waves, and hydrogen gas was supplied as a carrier gas. The flow rate of hydrogen gas was 10 L / min, and the supply amount of the liquid raw material was 1.5 g / min.
  • the shape of the carbon nanotube (D) was determined by the following method. For the average fiber diameter of carbon nanotubes, 200 samples of carbon nanotubes were randomly selected by a scanning electron microscope (SEM), the fiber diameter and fiber length of each sample were measured, and the arithmetic mean was calculated. The aspect ratio was calculated from the average fiber length and average fiber diameter. The bending index was measured at Lx / D from the length (Lx) and diameter (D) of the straight portion that was not bent, by randomly selecting 200 carbon nanotube samples using a scanning electron microscope (SEM). The arithmetic average was calculated. Further, the powder resistance value of the carbon nanotube (D) was measured in the same manner as the powder resistance value of the flaky graphite described above. The measurement results are shown in FIG.
  • a container containing each component is set in a rotating and revolving mixer “Nertaro ARE-300” (manufactured by Shinky Co., Ltd.) and dispersed (mixed) under the conditions of mixing: 2000 rpm ⁇ 30 seconds, degassing: 2200 rpm ⁇ 30 seconds.
  • the conductive resin compositions of Examples and Comparative Examples were prepared by performing a total of 8 times (degassing) treatment.
  • Hisolv MP as a solvent was appropriately added.
  • the blending amounts of the solvents shown in Tables 2 to 4 are the sum of the solid amount including the resin component as a raw material and the amount of high-solve MP added in the process of preparing the varnish and the conductive resin composition.
  • the cured coating film was produced in the following way, and the physical property was evaluated. (Conductivity test) The conductive resin composition was applied onto a glass plate using an applicator with a gap of 200 ⁇ m, and after heat-drying at 80 ° C. for 30 minutes, it was further heated at 200 ° C. for 1 hour to obtain a cured coating film.
  • the obtained cured coating film was measured by a 4-probe method using “Loresta-EP” (MCP-T360: manufactured by Dia Instruments Co., Ltd.) and an ASP probe.
  • MCP-T360 manufactured by Dia Instruments Co., Ltd.
  • the conductive resin composition of the present invention is excellent in conductivity, heat resistance, water resistance, and adhesion to a substrate, it can be suitably used as a conductive paint or a conductive adhesive.
  • the conductive paint and conductive adhesive of the present invention are industrial products such as integrated circuits, electronic components, optical components and various control components, wiring materials and connection materials with various devices, antistatic materials for various devices, electromagnetic wave shields, It can be suitably used for electrostatic coating or the like.
  • the conductive paint and conductive adhesive of the present invention are used for printed wiring electrical circuits for home appliances, industrial use, vehicles, communication information use, air vessel use, space use, watch use, photographic use, and toy use. It can be used suitably.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Geology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

 平均厚さが100nm以下、平均板径dcが0.01~100μmであり、ホウ素を含む薄片状黒鉛。 樹脂成分と、少なくとも前記ホウ素を含む薄片状黒鉛を含む炭素成分とを含有する導電性樹脂組成物であって、前記樹脂成分100質量部に対する前記炭素成分の含有量が5~4000質量部である導電性樹脂組成物、並びにこれを用いた導電性塗料及び導電性接着剤。

Description

ホウ素を含む薄片状黒鉛、及びその製造方法
 本発明は、ホウ素を含む薄片状黒鉛、その製造方法、ホウ素を含む薄片状黒鉛を含有する導電性樹脂組成物、並びにこれを用いた導電性塗料及び導電性接着剤に関する。
 近年、製品の軽量化、環境への配慮、及び製造コスト抑制の観点から、導電性樹脂組成物を使用した導電性塗料、及び導電性接着剤等が増加している。前記導電性塗料は、例えば、基材フィルムに対してスクリーン印刷され、キーボードやスイッチ等を構成するメンブレン回路として広く用いられている。また、前記導電性接着剤は、ハンダの代替品として用いられている。このような用途に用いられる導電性樹脂組成物は、例えば、溶剤に対し、バインダー又はマトリックス材料としての樹脂を溶解させてワニスとし、このワニスに対して、導電性材料を分散させることにより製造される。
 前記導電性樹脂組成物においては、導電性を付与するためのフィラー(導電性材料)として、金、銀、白金、パラジウム等の金属が用いられているが、導電性材料として金属を用いた場合には、高湿条件下でのデンドライト発生や、腐食による導電性樹脂組成物としての信頼性の低下、金属表面の酸化による導電性の低下、及び製造コストの上昇という問題が生じる。
 このような問題を解決することを目的として、炭素系導電性材料を用いた導電性樹脂組成物の研究が行われている。
 例えば、特許文献1には、気相成長炭素繊維と、カーボンブラックと、熱可塑性樹脂及び/又は熱硬化性樹脂とを含有する導電性組成物が記載されている。
 また、特許文献2には、特定の構造を有する気相法炭素繊維と、黒鉛質粒子及び/又は非晶質炭素粒子とを含む導電性組成物用炭素質材料を、樹脂成分に配合した導電性組成物が記載されている。
特開平6-122785号公報 特開2004-221071号公報
 前記特許文献1,2に記載される導電性樹脂組成物は、酸化や腐食に対して安定であり、また、金属系導電性材料を用いる場合に比べてコストを低く抑えることが可能である。しかしながら、炭素系導電性材料は樹脂への分散性、及び分散後の安定性が低いため、これを用いた導電性樹脂組成物は、導電性、耐熱性、耐水性、及び基材との密着性が低下する傾向があり、改善が望まれている。
 本発明は前記問題点を鑑み、導電性、耐熱性、耐水性、及び基材との密着性に優れる導電性樹脂組成物を実現することができる、ホウ素を含む薄片状黒鉛及びその製造方法を提供することを目的とする。
 また、本発明は前記導電性樹脂組成物を含む導電性塗料及び導電性接着剤を提供することを目的とする。
 本発明は、下記のとおりである。
[1]平均厚さが100nm以下、平均板径dcが0.01~100μmであり、ホウ素を含む薄片状黒鉛。
[2]平均厚さが100nm以下、平均板径dcが1~100μmであり、2層以上のグラフェンシートを含み、X線広角回折による平均面間隔d002が0.337nm以下であり、レーザーラマンスペクトルにおけるDバンドとGバンドとの強度比[D/G]が0.8~1.5である、[1]に記載のホウ素を含む薄片状黒鉛。
[3]平均厚さ100nm以下、平均板径dcが0.01~100μmである薄片状黒鉛を、ホウ素及びホウ素化合物から選ばれる1種又は2種以上の存在下で熱処理するホウ素を含む薄片状黒鉛の製造方法。
[4]樹脂成分と、少なくとも[1]又は[2]に記載のホウ素を含む薄片状黒鉛を含む炭素成分とを含有する導電性樹脂組成物であって、前記樹脂成分100質量部に対する前記炭素成分の含有量が5~4000質量部である導電性樹脂組成物。
[5]前記樹脂成分がポリビニルアセタールを10~100質量%含有するものである、[4]に記載の導電性樹脂組成物。
[6]前記ポリビニルアセタールがポリビニルブチラールである、[5]に記載の導電性樹脂組成物。
[7]更に溶剤を含有する、[4]~[6]のいずれかに記載の導電性樹脂組成物。
[8]前記樹脂成分が更に硬化性樹脂を含有する、[4]~[7]のいずれかに記載の導電性樹脂組成物。
[9]前記硬化性樹脂が、フェノール樹脂及びエポキシ樹脂から選ばれる1種又は2種以上である、[8]に記載の導電性樹脂組成物。
[10]前記樹脂成分100質量部に対する前記炭素成分の含有量が5~1000質量部である、[4]~[9]のいずれかに記載の導電性樹脂組成物。
[11]前記炭素成分が更にカーボンナノチューブを含む、[4]~[10]のいずれかに記載の導電性樹脂組成物。
[12][4]~[11]のいずれかに記載の導電性樹脂組成物を含む導電性塗料。
[13][4]~[11]のいずれかに記載の導電性樹脂組成物を含む導電性接着剤。
 本発明によれば、導電性、耐熱性、耐水性、及び基材との密着性に優れる導電性樹脂組成物を実現することができる、ホウ素を含む薄片状黒鉛及びその製造方法を提供することができる。
 また、本発明は前記導電性樹脂組成物を含む導電性塗料及び導電性接着剤を提供することができる。
実施例及び比較例で用いた薄片状黒鉛の嵩密度と抵抗率との関係を示す図である。 実施例で用いたカーボンナノチューブの嵩密度と抵抗率との関係を示す図である。
[ホウ素を含む薄片状黒鉛]
 前記ホウ素を含む薄片状黒鉛は、平均厚さが100nm以下で、平均板径dcが0.01~100μmであり、ホウ素を含むものである。なお、前記ホウ素を含む薄片状黒鉛は、平均厚さが炭素の1原子状厚みを超えるものである。
 平均厚さが100nm以下であると、ホウ素を含む薄片状黒鉛の抵抗率が低下するため、導電性樹脂組成物中での導電パスが形成されやすくなり、ホウ素を含む薄片状黒鉛を配合した導電性樹脂組成物の導電性が向上する。前記ホウ素を含む薄片状黒鉛は、単層のシート構造からグラフェンシートが300層程度積層したものが好ましく、グラフェンシートが2層~300層程度積層したものがより好ましい。
 また、平均板径dcが0.01μm以上であると樹脂への分散が向上し、100μmを超えると導電性樹脂組成物として混合が難しくなる。
 なお、本明細書において「平均厚さ」とは、例えば、窒素吸着BET法の比表面積から、黒鉛を板状と仮定してエッジを無視して黒鉛の理論密度を用いて算出した値いう。
 また、「平均板径dc」とは、走査型電子顕微鏡又は透過型電子顕微鏡により、薄片状黒鉛のサンプルを無作為に100個選択して各サンプルの最大径を測定し、算術平均した値をいう。
 平均厚さは、導電性を向上させる観点、及び薄片状黒鉛の樹脂とのなじみを向上させる観点から、0.5nm以上が好ましく、1.0nm以上がより好ましく、2nm以上が更に好ましく、5nm以上がより更に好ましく、10nm以上がより更に好ましい。
 また、平均厚さは、導電性を向上させる観点、導電性樹脂組成物中における導電パスの形成性を向上させる観点、及び薄片状黒鉛の樹脂とのなじみを向上させる観点から、80nm以下が好ましく、70nm以下がより好ましく、60nm以下がより好ましく、50nm以下がより好ましく、40nm以下が更に好ましく、30nm以下がより更に好ましい。
 平均板径dcは、導電性を向上させる観点、導電性樹脂組成物中における導電パスの形成性を向上させる観点、及び薄片状黒鉛の樹脂とのなじみを向上させる観点から、0.1~100μmが好ましく、0.5~80μmがより好ましく、0.5~50μmが更に好ましく、1~30μmがより更に好ましい。
 薄片状黒鉛の平均厚さに対する、平均板径の比は、通常、5~10000である。
 前記ホウ素を含む薄片状黒鉛中のホウ素は、ホウ素単体又はホウ素化合物として薄片状黒鉛の表面に付着していてもよいし、黒鉛の結晶中の炭素原子と置換した状態であってもよい。ホウ素が黒鉛の結晶中の炭素原子と置換した状態であると、ホウ素を含む薄片状黒鉛の導電性及び薄片状黒鉛の樹脂とのなじみが向上する傾向にある。薄片状黒鉛の表面に付着するホウ素化合物としては、B4C、B23、BN等が挙げられる。
 前記ホウ素を含む薄片状黒鉛中のホウ素の含有量は、0.1~20質量%が好ましく、0.5~10質量%がより好ましく、0.5~5質量%が更に好ましい。前記ホウ素の含有量が0.1質量%以上であると、ホウ素を含む薄片状黒鉛の樹脂とのなじみが向上するため好ましく、また、0.1質量%以上、20質量%以下であると、ホウ素を含む薄片状黒鉛の導電性が向上するため好ましい。ホウ素を含む薄片状黒鉛中のホウ素の含有量は、JIS R 7223に従って前処理した試料について、ICP発光分析を行うことにより求めることができる。
 なお、前記ホウ素の含有量は、薄片状黒鉛の表面に付着しているホウ素単体及びホウ素化合物と、黒鉛の結晶中の炭素原子と置換しているホウ素との合計量である。
 前記ホウ素を含む薄片状黒鉛が、平均厚さが100nm以下、平均板径dcが1~100μmであり、2層以上のグラフェンシートを含むものである場合、ホウ素を含む薄片状黒鉛としては、X線広角回折による平均面間隔d002が0.337nm以下であることが好ましい。平均面間隔d002が0.337nm以下であると黒鉛化度が高い薄片状黒鉛であるため、導電性に優れる傾向がある。前記平均面間隔d002は、導電性を向上させる観点から0.336nm以下がより好ましい。
 なお、前記平均面間隔d002は、小さければ小さいほど導電性が向上する傾向にあるが、0.334nm未満のものを得ることは難しく、通常、0.334nm以上が好ましい。
 本明細書においてX線広角回折による平均面間隔は、日本学術振興会第117委員会によってラウンドロビンテストを経て制定された学振法により測定した値をいう。学振法の詳細については、「炭素」,[No.36],pp25-34(1963年)等に記載されている。
 また、前記平均面間隔d002が0.337nm以下である場合において、励起レーザー波長785nmのレーザーラマンスペクトルにおける1300cm-1付近のピークであるDバンドと、1600cm-1付近のピークであるGバンドとの、ロレンツ関数でフィッティングしたときの強度(ピーク高さ)比[D/G]は0.8~1.5であることが好ましい。
 前記強度比[D/G]は、黒鉛の結晶化度と相関があり、同様に黒鉛の結晶化度と相関を示す前記平均面間隔d002が、0.337nm以下である場合、通常、前記強度比[D/G]は0.8未満になる。しかし、黒鉛の結晶格子中の炭素原子をホウ素原子で置換すると、その程度により[D/G]が0.8~1.5となる。すなわち、前記平均面間隔d002が0.337nm以下、かつ前記強度比[D/G]が上記の範囲内であれば、黒鉛の結晶中の炭素原子の一部がホウ素に置換されているということであり、前述の効果を得ることができる。
 前記強度比[D/G]は、導電性を向上させる観点、及び薄片状黒鉛の樹脂とのなじみを向上させる観点から0.8~1.3が好ましく、0.8~1.1がより好ましい。
 前記ホウ素を含む薄片状黒鉛は、例えば、後述の本発明の製造方法により製造することができる。
[ホウ素を含む薄片状黒鉛の製造方法]
 前記ホウ素を含む薄片状黒鉛の製造方法は、平均厚さが100nmであり、平均板径dcが0.01~100μmである薄片状黒鉛を、ホウ素単体(以下、「ホウ素」ともいう。)及びホウ素化合物から選ばれる1種又は2種以上の存在下で熱処理する方法である。なお、原料の薄片状黒鉛は、平均厚さが炭素の1原子状厚みを超えるものである。
 ホウ素及びホウ素化合物から選ばれる1種又は2種以上の存在下における熱処理の方法としては、不活性ガス雰囲気下、1,600~3,000℃の高温度で薄片状黒鉛とホウ素等とを接触させる方法が挙げられる。
 不活性ガスとしては、ヘリウムガス、アルゴンガス及び窒素ガス等が挙げられ、これらの中では高温下で特に安定であることから、アルゴンガスが好ましい。
 特に前記の「接触」させる処理を行う温度としては、ホウ素を含む薄片状黒鉛の導電性を向上させる観点から、2,000~2,900℃が好ましく、2,300~2,900℃がより好ましい。
 熱処理の時間は、黒鉛とホウ素との反応を十分に進行させる観点から、薄片状黒鉛が所定の温度に達してから10分以上とすることが好ましい。処理時間は長くてもよいが、黒鉛の昇華による収率の減少を防ぎ、製造コストを抑制する観点から、通常は10時間以下が好ましい。
 前記条件により熱処理を行うことにより、ホウ素を含む薄片状黒鉛の結晶性(黒鉛化度)が向上し、ホウ素を含む薄片状黒鉛の導電性が向上する。
 前記ホウ素化合物としては、例えば、ホウ素酸化物(例えば、B22、B23、B43、B45等)、ホウ素オキソ酸(例えば、オルトホウ酸、メタホウ酸、四ホウ酸等)及びその塩、ホウ素炭化物(例えば、B4C、B6C等)、窒化ホウ素(BN)、その他のホウ素化合物が挙げられる。これらの中では、B4C、B6C等のホウ素炭化物が好ましい。
 製造方法において、ホウ素及びホウ素化合物からなる群より選ばれる少なくとも1種は、前記薄片状黒鉛に直接添加又は混合してもよく、ホウ素及びホウ素化合物からなる群より選ばれる少なくとも1種を加熱して発生させた蒸気を薄片状黒鉛と接触させてもよい。
 ホウ素及びホウ素化合物からなる群より選ばれる少なくとも1種の添加量は、原料となる薄片状黒鉛100質量部に対して1~20質量部が好ましく、1~10質量部がより好ましく、1~8質量部が更に好ましい。
 ホウ素及びホウ素化合物からなる群より選ばれる少なくとも1種は、熱処理の過程で揮発して失われる場合があるので、前記添加量は必ずしも、できあがったホウ素を含む薄片状黒鉛中のホウ素の量とは一致しない。
 ホウ素及びホウ素化合物からなる群より選ばれる少なくとも1種によって熱処理を行うことにより、薄片状黒鉛にホウ素が含まれ、分散媒や樹脂に対してのなじみがよくなり、分散性が向上する。またホウ素あるいはホウ素化合物が黒鉛化の触媒として働くため、ホウ素を含む薄片状黒鉛の黒鉛化度が上がり、導電性が向上する。
 前記ホウ素を含む薄片状黒鉛に対しては、樹脂への濡れ性、及び樹脂への分散性を向上させる観点から、硝酸、硫酸、塩酸又はこれらの混合酸等による酸処理を行ってもよく、空気存在下での熱処理による表面酸化処理を行ってもよい。
 またヘンシェルミキサー、気流粉砕等の乾式粉砕処理や、溶剤を加えて超音波処理を行う湿式の解砕処理を行ってもよい。これらの粉砕処理、解砕処理を行うことで、ホウ素を含む薄片状黒鉛が解砕され、樹脂への分散性を向上させることができる。
[導電性樹脂組成物]
 前記導電性樹脂組成物は、一般的な樹脂成分100質量部に対して、少なくとも前記ホウ素を含む薄片状黒鉛を含む炭素成分を5~4000質量部含有するものである。
 前記樹脂成分は、ポリビニルアセタールを10~100質量%含有するものが好ましく、具体的な樹脂成分としては、以下に挙げるものが好ましい。
<樹脂成分>
(ポリビニルアセタール(A))
 前記ポリビニルアセタール(A)は、ポリビニルアルコールにアルデヒド化合物を反応させることによりアセタール化した樹脂であり、例えば、ホルムアルデヒドに由来するポリビニルホルマール、ブチルアルデヒドに由来するポリビニルブチラール等が挙げられ、これらの中では、ポリビニルブチラールが好ましい。
 前記ポリビニルアセタール(A)は、炭素成分の分散性を向上させる性質を有するため、前記導電性樹脂組成物の導電性が向上する。
 前記ポリビニルアセタール(A)の原料となるアルデヒド化合物としては、炭素数1~6のアルデヒド化合物が好ましく、有機溶剤に対する溶解性を向上させる観点、炭素成分の分散性を向上させる観点から、炭素数2~5のアルデヒド化合物がより好ましく、炭素数4のブチルアルデヒドが更に好ましい。これらのポリビニルアセタールは1種を単独で用いても、2種以上を混合して用いてもよい。
 前記ポリビニルアセタール(A)としては、炭素成分の分散性、溶剤への溶解性の観点からポリビニルブチラールが好ましく、前記ポリビニルブチラールのブチラール化度は、50~95mol%が好ましく、60~90mol%がより好ましく、65~85mol%が更に好ましい。
 なお、ポリビニルアセタール樹脂がポリビニルブチラール樹脂である場合には、上記ブチラール化度は、JIS K6728「ポリビニルブチラール試験方法」に準拠した方法により測定された結果から算出することができる。
 前記ポリビニルブチラールの市販品としては、積水化学工業(株)製エスレック、品番「BL-1」,「BL-2」,「BL-2H」,「BL-5」,「BL-10」,「BM-1」,「BM-2」,「BM-S」,「BH-3」,「BH-S」等が挙げられる。
(硬化性樹脂(B))
 前記樹脂成分は、更に硬化性樹脂(B)を含有していることが好ましい。
 前記硬化性樹脂(B)としては、フェノール樹脂、エポキシ樹脂、ウレタン樹脂、アクリルウレタン樹脂、シリコーン樹脂、ポリイミド樹脂、ポリイミドシリコーン樹脂、ジアリルフタレート(DAP)樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、及びオキセタン樹脂が挙げられる。前記硬化性樹脂(B)は、ポリビニルアセタール樹脂との相溶性に優れるフェノール樹脂及びエポキシ樹脂の少なくとも1種が好ましい。
 なお、前記硬化性樹脂(B)が、エポキシ樹脂のみで構成される場合、フェノール樹脂とエポキシ樹脂とで構成される場合に比べてガラス転移温度が高くなり、耐熱性が向上するためより好ましい。
 前記ポリビニルアセタール(A)が樹脂組成物中におけるカーボンナノチューブの良好な分散性の発現に寄与するものであるのに対して、硬化性樹脂(B)は硬化物とした場合における良好な耐熱性、強度、接着性等の発現に寄与する。
〔フェノール樹脂(B-1)〕
 フェノール樹脂としては、フェノール類とアルデヒド類とを塩基性触媒を用いて反応させることにより得ることができるレゾール型フェノール樹脂、酸性触媒を用いて反応させることにより得ることができるノボラック型フェノール樹脂、及びこれらの混合物が挙げられる。
 フェノール樹脂の合成に用いるフェノール類としては、例えば、フェノール、各種ブチルフェノール、各種クレゾール、各種キシレノール等のアルキルフェノール、各種フェニルフェノール、各種メトキシフェノール、1,3-ジヒドロキシベンゼン、ビスフェノールA、及びビスフェノールF等を挙げることができ、これらの中ではフェノールが好ましい。ここで、「各種」とは各種構造異性体を意味する。
 アルデヒド類としては、例えば、ホルムアルデヒド、パラホルムアルデヒド、フルフラール、アセトアルデヒド、及びベンズアルデヒド等を挙げることができ、これらの中では、ホルムアルデヒド、パラホルムアルデヒドが好ましい。
 前記フェノール類、アルデヒド類は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 前記フェノール樹脂としては、分子内にカルボキシル基及びグリシジル基の少なくとも1種を有する変性レゾール型フェノール樹脂を用いてもよい。変性方法に制限はなく、公知の方法を採用することができる。例えばフェノール樹脂中のメチロール基の一部にカルボキシル基含有化合物及びグリシジル基含有化合物の少なくとも1種を反応させて変性する方法が挙げられる。
 前記フェノール樹脂(B-1)の重量平均分子量は、各種材料に対する濡れ性、作業性の観点から、300~30,000が好ましく、700~20,000がより好ましく、1,000~19,000がより好ましく、3,000~18,000が更に好ましく、5,000~17,000がより更に好ましい。なお、本明細書において、重量平均分子量は、ゲル浸透クロマトグラフィーにより標準ポリスチレン換算分子量(Mw)として測定した値をいう。
 フェノール樹脂の市販品としては、例えば、昭和電工(株)製「ショウノール(登録商標)BKS-3823A」(レゾール型)、「ショウノールBRG-556」(ノボラック型)、「ショウノールBRN595」(ノボラック型)、日立化成工業(株)製「ヒタノール(登録商標)」等が挙げられる。
 なお、ノボラック型フェノール樹脂を用いる場合は硬化剤を用いて硬化させることが一般的であり、レゾール型フェノール樹脂を用いる場合は硬化剤を使用しなくてもよい。また、硬化剤以外にフェノール性ヒドロキシル基と反応する官能基を有する化合物、例えばエポキシ樹脂と組み合わせて使用してもよい。
〔エポキシ樹脂(B-2)〕
 エポキシ樹脂は1分子中に2個以上のオキシラン基を含む樹脂である。
 前記エポキシ樹脂としては、グリシジルエーテル類、グリシジルアミン類、及びグリシジルエステル類及び脂環式エポキシ樹脂等のエポキシ樹脂を挙げることができ、これらの中ではグリシジルエーテル類、グリシジルアミン類のエポキシ樹脂が好ましい。エポキシ樹脂は1種を単独で用いてもよく、2種以上を併用してもよい。
 グリシジルエーテル類のエポキシ樹脂としては、例えば、ビスフェノールグリシジルエーテル、ジヒドロキシビフェニルグリシジルエーテル、ジヒドロキシベンゼングリシジルエーテル、含窒素環状グリシジルエーテル、ジヒドロキシナフタレングリシジルエーテル、フェノール・ホルムアルデヒドポリグリシジルエーテル、及びポリヒドロキシフェノールポリグリシジルエーテル等が挙げられる。
 ビスフェノールグリシジルエーテルの具体例としては、ビスフェノールAグリシジルエーテル、ビスフェノールFグリシジルエーテル、ビスフェノールADグリシジルエーテル、ビスフェノールSグリシジルエーテル、及びテトラメチルビスフェノールAグリシジルエーテル等が挙げられる。
 ジヒドロキシビフェニルグリシジルエーテルの具体例としては、4,4'-ビフェニルグリシジルエーテル、3,3'-ジメチル-4,4'-ビフェニルグリシジルエーテル、及び3,3',5,5'-テトラメチル-4,4'-ビフェニルグリシジルエーテル等が挙げられる。
 ジヒドロキシベンゼングリシジルエーテルの具体例としては、レゾルシングリシジルエーテル、ヒドロキノングリシジルエーテル、及びイソブチルヒドロキノングリシジルエーテル等が挙げられる。
 含窒素環状グリシジルエーテルの具体例としては、トリグリシジルイソシアヌレート、トリグリシジルシアヌレート等が挙げられる。
 ジヒドロキシナフタレンのグリシジルエーテルの具体例としては、1,6-ジヒドロキシナフタレングリシジルエーテル、2,6-ジヒドロキシナフタレングリシジルエーテル等が挙げられる。
 フェノール-ホルムアルデヒドポリグリシジルエーテルの具体例としては、フェノール・ホルムアルデヒドポリグリシジルエーテル、及びクレゾール・ホルムアルデヒドポリグリシジルエーテル等が挙げられる。
 ポリヒドロキシフェノールポリグリシジルエーテルの具体例としては、トリス(4-ヒドロキシフェニル)メタンポリグリシジルエーテル、トリス(4-ヒドロキシフェニル)エタンポリグリシジルエーテル、トリス(4-ヒドロキシフェニル)プロパンポリグリシジルエーテル、トリス(4-ヒドロキシフェニル)ブタンポリグリシジルエーテル、トリス(3-メチル-4-ヒドロキシフェニル)メタンポリグリシジルエーテル、トリス(3,5-ジメチル-4-ヒドロキシ)メタンポリグリシジルエーテル、テトラキス(4-ヒドロキシフェニル)エタンポリグリシジルエーテル、テトラキス(3,5-ジメチル-4-ヒドロキシフェニル)エタンポリグリシジルエーテル、及びジシクロペンテン-フェノールホルムアルデヒドポリグリシジルエーテル等が挙げられる。
 グリシジルアミン類のエポキシ樹脂としては、N,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタン、トリグリシジル-p-アミノフェノール等が挙げられる。
 グリシジルエステル類のエポキシ樹脂としては、フタル酸ジグリシジルエステル、イソフタル酸ジグリシジルエステル等が挙げられる。
 脂環式エポキシ樹脂としては、エポキシシクロヘキサン誘導体が挙げられ、具体的にはダイセル化学工業(株)製セロキサイド(商品名)シリーズが挙げられる。
 前記エポキシ樹脂は硬化触媒の存在下で硬化させることができる。前記硬化触媒としては、3級アミン系化合物、イミダゾール化合物等のエポキシ基の重合を促進させる作用を有する化合物が挙げられる。
 前記3級アミン系化合物の具体例としては、トリエチルアミン、ジメチルシクロヘキシルアミン、N,N-ジメチルピペラジン、ベンジルジメチルアミン、2-(N,N-ジメチルアミノメチル)フェノール、2,4,6-トリス(N,N-ジメチルアミノメチル)フェノール、1,8-ジアザビスシクロ(5.4.0)ウンデセン-1等が挙げられる。
 イミダゾール系化合物の具体例としては、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-メチルイミダゾールトリメリテート、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテート、2,4-ジアミノ-6-[2'-メチルイミダゾリル-(1')]-エチル-s-トリアジン、2,4-ジアミノ-6-[2'-ウンデシルイミダゾリル-(1')]-エチル-s-トリアジン、2-メチルイミダゾール・イソシアヌル酸付加物、2-フェニルイミダゾール・イソシアヌル酸付加物、2,4-ジアミノ-6-[2'-メチルイミダゾリル-(1')]-エチル-s-トリアジン・イソシアヌル酸付加物等が挙げられる。
 またエポキシ樹脂の硬化には、硬化触媒以外にエポキシ基と反応する官能基を有する化合物(硬化剤)を用いることもできる。硬化剤としては、フェノール化合物、酸無水物化合物等エポキシ基に付加する官能基を有する化合物が挙げられる。なお、フェノール樹脂(B-1)と併用する場合には、フェノール樹脂が硬化剤としても作用する。
 硬化剤としてのフェノール系化合物の具体例としては、ビスフェノールF、ビスフェノールA、ビスフェノールS、2,6-ジヒドロキシナフタリン、前記ノボラック型フェノール樹脂等が挙げられる。
 硬化剤としての酸無水物系化合物としては、無水イタコン酸、ドデセニル無水コハク酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、メチルエンドメチレンテトラヒドロ無水フタル酸、無水クロレンド酸、トリメリット酸無水物、ピロメリット酸無水物、ベンゾフェノンテトラカルボン酸無水物、エチレングリコールビス(アンヒドロトリメリレート)、グリセロールトリス(アンヒドロトリメリテート)、ポリアゼライン酸無水物、ポリドデカン二酸無水物、7,12-ジメチル-7,11-オクタデカジエン-1,18-ジカルボン酸部分無水物等が挙げられる。
<各成分の含有量>
 前記樹脂成分中のポリビニルアセタール(A)の含有量は、10~100質量%が好ましく、10~80質量%がより好ましく、10~70質量%が更に好ましく、10~60質量%が更に好ましく、10~55質量%が更に好ましい。
 前記樹脂成分中のポリビニルアセタール(A)の含有量が10質量%以上であると炭素成分の分散性が向上する。
 硬化性樹脂(B)がフェノール樹脂(B-1)及びエポキシ樹脂(B-2)のいずれか一方のみからなる場合、樹脂成分中のフェノール樹脂又はエポキシ樹脂の含有量は40~90質量%が好ましく、50~85質量%がより好ましく、50~80質量%が更に好ましい。前記樹脂の含有量が40質量%以上であると耐熱性が向上し、90質量%以下であると炭素成分の分散性が良好になる。
 前記ポリビニルアセタール(A)と、フェノール樹脂(B-1)又はエポキシ樹脂(B-2)との合計含有量は、樹脂成分中、80~100質量%が好ましく、85~100質量%がより好ましく、90~100質量%が更に好ましい。
 前記硬化性樹脂(B)がフェノール樹脂(B-1)及びエポキシ樹脂(B-2)の両方を含む場合、前記フェノール樹脂(B-1)の樹脂成分中の含有量は、10~60質量%が好ましく、15~55質量%がより好ましく、25~55質量%が更に好ましい。前記フェノール樹脂の含有量が前記範囲内であれば硬化性が十分となり、耐熱性が良好になる。
 前記フェノール樹脂(B-1)及びエポキシ樹脂(B-2)成分の両方を含む場合、前記エポキシ樹脂(B-2)の樹脂成分中の含有量は、10~60質量%が好ましく、15~55質量%がより好ましく、15~35質量%が更に好ましい。前記エポキシ樹脂の含有量が前記範囲内であると硬化性が十分となり、耐熱性も良好になる。
 前記フェノール樹脂(B-1)及びエポキシ樹脂(B-2)の両方を含む場合、(A)成分、(B-1)成分及び(B-2)成分の3成分中のフェノール樹脂(B-1)及びエポキシ樹脂(B-2)の含有量は、70~90質量%が好ましく、75質量%~80質量%がより好ましい。
 前記導電性樹脂組成物は、前記ポリビニルアセタール(A)及び硬化性樹脂(B)の他に、その他の熱可塑性樹脂を含んでいてもよい。その他の熱可塑性樹脂としては、ポリエステル樹脂、アクリル樹脂、及びポリスチレン樹脂から選ばれる1種又は2種以上を用いることができる。
 また、熱可塑性樹脂は熱可塑性エラストマーであってもよく、熱可塑性エラストマーとしては、例えば、水添スチレンブタジエンラバー、スチレン-エチレンブチレン-スチレンブロックコポリマー、スチレン-エチレンプロピレン-スチレンブロックコポリマー等のスチレン系熱可塑性エラストマー;ポリプロピレンとエチレンプロピレンゴムとのポリマーアロイ、ポリプロピレンとエチレンプロピレンジエンゴムとのポリマーアロイ等のオレフィン系熱可塑性エラストマー;塩ビ系熱可塑性エラストマー等が挙げられる。
 前記その他の熱可塑性樹脂は、本発明の趣旨を阻害しない範囲で含有することができ、具体的には、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下が更に好ましく、含有していなくてもよい。
<炭素成分>
 前記導電性樹脂組成物は、少なくとも前記ホウ素を含む薄片状黒鉛(C)を含む炭素成分を前記樹脂成分100質量部に対して5~4000質量部含有するものである。
 前記樹脂成分100質量部に対する炭素成分の含有量が、5質量部未満であると十分な導電性を得ることができず、4000質量部を超えると炭素成分の樹脂成分とのなじみが悪くなる。前記樹脂成分100質量部に対する炭素成分の含有量は、導電性を向上させる観点、及び炭素成分の樹脂成分とのなじみを向上させる観点から、5~1000質量部が好ましく、5~400質量部がより好ましく、10~300質量部が更に好ましい。
 前記炭素成分中のホウ素を含む薄片状黒鉛(C)の含有量は、25~100質量%が好ましく、50~100質量%がより好ましく、60~100質量%がより好ましく、70~95質量%が更に好ましい。ホウ素を含む薄片状黒鉛(C)の含有量が25質量%以上であると、ホウ素を含む薄片状黒鉛(C)を含有させる効果が得られやすい。
 前記導電性樹脂組成物は、少なくとも前記ホウ素を含む薄片状黒鉛(C)を含むものであるが、前記ホウ素を含む薄片状黒鉛(C)以外の炭素成分を含んでいてもよい。前記ホウ素を含む薄片状黒鉛以外の炭素成分としては、例えば、カーボンナノチューブ(D)が好ましい。
(カーボンナノチューブ(D))
 前記導電性樹脂組成物がカーボンナノチューブ(D)を含んでいる場合、導電性樹脂組成物そのものや、その硬化物、あるいはその乾燥皮膜の導電性が向上させることができる。これは、ホウ素を含む薄片状黒鉛(C)の間をカーボンナノチューブ(D)が繋ぎ、導電パスを形成するためであると考えられる。
 カーボンナノチューブ(D)としては、アスペクト比(繊維径に対する繊維長さの比)が、好ましくは10~15,000、より好ましくは20~1,000、更に好ましくは30~500であるものが好ましい。
 アスペクト比が前記範囲内であると、マトリックス内で導電パスが形成されやすくなり、導電性が向上すると共に、樹脂成分に対する分散性が向上する。
 カーボンナノチューブの平均繊維径dDは、5~300nmが好ましく、5~250nmがより好ましく、10~200nmが更に好ましい。平均繊維径が前記範囲内であれば、樹脂成分に対してカーボンナノチューブが分散しやすくなり、優れた導電性を備える導電性樹脂組成物を得ることができる。
 なお、平均繊維径を求める方法に特に制限はないが、例えば、走査型電子顕微鏡(SEM)によりカーボンナノチューブのサンプルを無作為に200個選択し、各サンプルの繊維径を測定し、平均を算出することにより求めることができる。アスペクト比についても同様に、走査型電子顕微鏡(SEM)により、カーボンナノチューブのサンプルを200個選択して平均繊維径及び平均繊維長さを算出し、これらの値から計算により求めることができる。
 前記樹脂成分100質量部に対するカーボンナノチューブ(D)の含有量は2~70質量部が好ましく、2~65質量部がより好ましく、2~60質量部が更に好ましく、3~50質量部がより更に好ましい。カーボンナノチューブ(D)の含有量が前記範囲内であると、フィラーの分散性が向上し、十分な導電性を得ることができる。
 なお、前記カーボンナノチューブ(D)の市販品としては、例えば、昭和電工(株)製「VGCF(登録商標)-X」、「VGCF(登録商標)」、「VGCF(登録商標)-H」、保土谷化学工業(株)製「NT-5」、「NT-7」等が挙げられる。
 前記カーボンナノチューブは、特定の1種を単独で用いてもよいが、前記アスペクト比及び平均繊維径を満たす2種類のカーボンナノチューブを混合して用いることが好ましく、2種類のカーボンナノチューブを用いる場合、その平均繊維径dD1及びdD2が1.5×dD1≦dD2の関係を満たすことが好ましい。
 すなわち、樹脂成分への分散性が低い平均繊維径が小さいカーボンナノチューブのみを使用すると均一に分散させることが困難になり、高い導電性を発現できないことがあるが、前記関係を満たす2種類のカーボンナノチューブを併用することにより、樹脂中の導電経路を確保しやすくなる。
 前記平均繊維径dD2と平均繊維径dD1との差は、導電性を向上させる観点から、10nm以上が好ましく、20nm以上がより好ましく、30nm以上が更に好ましい。
 前記カーボンナノチューブとしては、化学的気相成長法(CVD法)やアーク放電法等によって生成され、炭素原子が六角形状に規則正しく並んだグラフェンシートが円筒形に丸まったものが好ましい。
 なお、本明細書においては、グラフェンシートの筒が一重であり、直径が1~数nm、長さが1~数μm程度であるものを単層カーボンナノチューブと称し、グラフェンシートの筒が同心状に何重も重なっており、直径が数nm~百数十nmであるものを多層カーボンナノチューブと称す。また、グラフェンシートが略円錐状に丸まったものをカーボンナノホーンと称し、単層カーボンナノホーン及び多層カーボンナノホーンがある。本発明においては、これらをカーボンナノチューブと総称する。カーボンナノチューブの製造方法としては、特に制限はなく、アーク放電法、気相成長法、レーザー・アブレーション法等が挙げられる。
 前記カーボンナノチューブは、気相成長法で作製された気相成長炭素繊維が好ましく、直線状の繊維形態を有し、屈曲指数の平均値が5~15の剛直な繊維であることがより好ましい。屈曲指数は、気相成長炭素繊維の剛直性を示すものであって、顕微鏡等で撮影した多数の気相成長炭素繊維の屈曲していない直線部分の長さ(Lx)と直径(D)とからLx/Dで定義される。したがって、屈曲指数が小さい気相成長炭素繊維は短い間隔で折れ曲がることを示し、屈曲指数が大きい気相成長炭素繊維は直線部分が長く、屈曲していないことを示す。
 気相成長法は、ベンゼンやトルエン等の炭化水素を気相で熱分解し、気相成長炭素繊維を合成するものであり、具体的には、気相流動法や基板法が挙げられる。気相成長炭素繊維は、例えばベンゼン、トルエン、天然ガス等の有機化合物を原料に、フェロセン等の遷移金属触媒の存在下で、水素ガスと共に800~1,300℃程度で熱分解反応させることにより得ることができる。前記カーボンナノチューブは、気相流動法により製造されたものであることが好ましい。
 基板法は、基板上へあらかじめ固定された触媒に対して炭素源を供給して反応させる方法であり、流動触媒法、ゼオライト触媒担持法等がある。気相流動法は触媒及び炭素源を同時に反応器内へ供給する方法である。基板法は、温度や時間等の反応条件を制御しやすいという利点があり、気相流動法は、炭素源と触媒とを同時に反応場へ供給するため合成反応の連続化が可能であるという利点があり、更に基板法と比較して繊維形状が直線になりやすいため、樹脂と混合した場合に高い導電性を発現しやすいという利点がある。
 前記方法により製造したカーボンナノチューブは、前処理を行わずにそのまま樹脂成分に分散させてもよく、また、前処理を行った後、樹脂成分に分散させてもよい。前処理の方法としては、不活性ガス雰囲気下、低温度(800~1,500℃)で処理する方法、又は不活性ガス雰囲気下、高温度(2,000~3,000℃)で黒鉛化処理する方法等が挙げられるが、導電性樹脂組成物の導電性を向上させる観点から、高温度(2,000~3,000℃)で黒鉛化処理を行う方法が好ましい。
 前記カーボンナノチューブに対しては、樹脂への濡れ性、及び樹脂への分散性を向上させる観点から、硝酸、硫酸、塩酸又はこれらの混合酸等による酸処理を行ってもよく、空気存在下での熱処理による表面酸化処理を行ってもよい。
 前記カーボンナノチューブは、導電性を向上させることを目的として、黒鉛化触媒の存在下、熱処理を行い結晶性(黒鉛化度)を向上させてもよい。黒鉛化触媒による熱処理の方法としては、アルゴン等の不活性ガス雰囲気下、2,000~3,300℃でカーボンナノチューブに黒鉛化触媒を作用させる方法が挙げられる。
 黒鉛化触媒としては、例えば、ホウ素、ホウ素酸化物(例えば、B22、B23、B43、B45等)、ホウ素オキソ酸(例えば、オルトホウ酸、メタホウ酸、四ホウ酸等)及びその塩、ホウ素炭化物(例えば、B4C、B6C等)、窒化ホウ素(BN)、その他のホウ素化合物を使用することができ、この中では、B4C、B6C等のホウ素炭化物、元素状ホウ素が好ましい。これらの黒鉛化触媒は、カーボンナノチューブに直接添加又は混合してもよく、黒鉛化触媒とカーボンナノチューブとを直接接触させずに、黒鉛化触媒を加熱して発生させた蒸気をカーボンナノチューブと接触させてもよい。黒鉛化触媒の添加量は、カーボンナノチューブ100質量部に対して1~20質量部が好ましく、1~10質量部がより好ましく、1~8質量部が更に好ましい。黒鉛化触媒による熱処理をおこなったカーボンナノチューブは、カーボンナノチューブにホウ素がドープされ、分散媒や樹脂に対してのなじみがよく、分散性が向上する。
 前記カーボンナノチューブにおいては、前記黒鉛化触媒による熱処理を行ったものであることが好ましい。
(その他の炭素成分)
 前記導電性樹脂組成物は、前記ホウ素を含む薄片状黒鉛(C)及びカーボンナノチューブ(D)とは異なる炭素化合物をその他の炭素成分として含有していてもよい。その他の炭素成分の含有量は、樹脂成分100質量部に対して8質量部以下が好ましい。
 その他の炭素成分を含有する場合、炭素成分の合計の含有量は、前記樹脂成分100質量部に対して10~70質量部が好ましく、30~65質量部がより好ましく、35~60質量部が更に好ましい。樹脂成分に対する炭素成分の含有量を前記範囲内とすることにより、導電性樹脂組成物の導電性をより一層向上させることができ、また、導電性塗料等の粘度が高くなり過ぎないため、フィラーを十分に分散させることができる。
<その他の成分>
 前記導電性樹脂組成物は、前記樹脂成分、炭素成分、必要に応じて硬化触媒、硬化剤の他に、カップリング剤、レベリング剤、分散剤、レオロジーコントロール剤、消泡剤、酸化防止剤、乾燥調整剤、界面活性剤及び可塑剤等の各種添加剤を含有していてもよい。
 前記導電性樹脂組成物は、溶剤を含有していることが好ましい。
 前記溶剤としては、前記樹脂成分を溶解できるものであれば特に制限なく使用することができる。例えば、メタノール、ブタノール、ベンジルアルコール、ジアセトンアルコール等のアルコール化合物、メチルエチルケトン、シクロヘキサノン等のケトン化合物、ジオキサン、テトラヒドロフラン等のエーテル化合物、プロプレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート等のグリコールエステル化合物、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロプレングリコールモノメチルエーテル、ブトキシエタノール、ジエチレングリコールモノブチルエーテル等のグリコールエーテル化合物、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド化合物から選ばれる1種又は2種以上を用いることができる。これらの溶剤の中で、樹脂成分の溶解性、及び塗布したときの乾燥速度の観点より、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテル、ブトキシエタノール、ジエチレングリコールモノブチルエーテルが好ましい。
 溶剤の使用量に特に制限はなく、樹脂成分の粘度や、樹脂成分と炭素成分との混合比等を考慮して混合及び混練により均一な組成物を調製できる範囲内で適宜使用することができる。具体的な溶剤な量としては、前記樹脂成分100質量部に対して10~1000質量部が好ましく、50~500質量部がより好ましく、100~300質量部が更に好ましい。
<導電性樹脂組成物の製造方法>
 前記導電性樹脂組成物は、例えば、ポリビニルアセタール(A)及び必要に応じて硬化性樹脂(B)を含む樹脂成分と、炭素成分、硬化触媒、硬化剤、その他の成分を加え、これらを混合、混練することにより製造することができる。混合に際しては公知の混合装置を使用することができる。各成分の配合順序に特に制限はない。
 導電樹脂組成物の製造法の一例としては、高速撹拌機を使用して樹脂成分を溶剤に溶解させてワニスを製造し、大ロットの場合には前記ワニスと炭素成分とを配合してタンクミキサーでプレミキシングを行い、これをサンドミルで連続的に混合、粉砕して粘度を調整することにより製造することができる。また、小ロットの場合には、例えば、アトライターに炭素成分と前記ワニスとを直接に仕込んで混合、粉砕し、粘度の調整をすることにより製造することができる。なお、前記サンドミル(流通槽式ミル)やアトライター(撹拌槽式ミル)等の媒体撹拌式ミルの代わりにボールミル等の容器駆動媒体ミルや3本ロールミルを使用することもできる。
[導電性塗料、導電性接着剤]
 前記導電性樹脂組成物は導電性を要する用途に広く用いることができ、中でも、導電性塗料及び導電性接着剤として用いることが好ましい。導電性塗料及び導電性接着剤は、前記導電性樹脂組成物そのものであってもよいし、その他導電性塗料や導電性接着剤に用いられる公知の成分を含んでもよい。ただし、導電性塗料や導電性接着剤の信頼性や製造コストの観点から、金属材料を含まないものであることが好ましい。
 導電性塗料及び導電性接着剤の基材への塗布方法としては、スクリーン印刷法、ディスペンサー法、ディッピング法、転写法、アプリケーター法、ハケ塗り法及びスプレー法がある。また、基板や電子素子に塗布する方法としては、スクリーン印刷法、ディッピング法、及び転写法がある。前記各塗布方法に応じて、導電性樹脂組成物と溶剤との比率を変化させ、導電性塗料及び導電性接着剤の粘度等を調整することが好ましい。
 以下に、本発明を実施例により更に詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
[実施例1~6]
 表1に示す未処理の薄片状黒鉛及びホウ素化合物をそれぞれ混合し、混合物を黒鉛製のるつぼに入れ、抵抗加熱型黒鉛化炉((株)倉田技研製)により表1に示す温度、アルゴン雰囲気下で30分間熱処理を行うことにより、実施例1~6のホウ素を含む薄片状黒鉛(以下、「ホウ素ドープ薄片状黒鉛」ともいう。)(c-1)~(c-6)を製造した。なお、原料となる未処理の薄片状黒鉛としては、以下のものを用いた(いずれもXG Science社製)。下記平均厚さは、窒素吸着BET法の比表面積から、黒鉛を板状と仮定してエッジを無視して黒鉛の理論密度を用いて算出した値である。
 「xGnP-M-5」  平均厚さ: 6nm、平均板径: 5μm
             (c-1)、(c-6)の原料
 「xGnP-M-25」 平均厚さ: 6nm、平均板径:25μm
             (c-2)の原料
 「xGnP-H-5」  平均厚さ:15nm、平均板径: 5μm
             (c-3)の原料
 「xGnP-H-25」 平均厚さ:15nm、平均板径:25μm
             (c-4)の原料
 「xGnP-C-300」平均厚さ: 2nm、平均板径: 2μm
             (c-5)の原料
[比較例1]
 未処理の薄片状黒鉛「xGnP-M-25」を(y-1)として用いた。
[比較例2]
 未処理の薄片状黒鉛「xGnP-H-25」を(y-2)として用いた。
[比較例3]
 原料として、黒鉛粉(平均厚さ250nm、平均径:15μm)100質量部に対して炭化ホウ素(B4C)を4質量部添加して混合した。混合物を黒鉛製のるつぼに入れ、抵抗加熱型黒鉛化炉((株)倉田技研製)を用いてアルゴン雰囲気下、2800℃で30分間熱処理を行い、ホウ素ドープ黒鉛(y-3)を得た。
[比較例4]
 原料として、平均厚さが1.5μmである未処理の黒鉛「Graphite Powder 40798」(Alfa Aesar製、325mesh、平均径 :30μm)100質量部に対してホウ酸(H3BO3)を18質量部添加して混合した。混合物を黒鉛製のるつぼに入れ、抵抗加熱型黒鉛化炉((株)倉田技研製)を用いてアルゴン雰囲気下、2800℃で30分間熱処理を行い、ホウ素ドープ黒鉛(y-4)を得た。
 なお、「Graphite Powder 40798」については平均厚さが大きすぎることにより、前述のBET比表面積から平均厚さを求める方法により平均厚さを算出することが困難であるため、走査型電子顕微鏡により黒鉛のサンプルを無作為に100個選択し、各サンプルの最大径を測定し、算術平均した値を平均厚さとした。
 実施例1~6及び比較例1~4で製造した薄片状黒鉛について、以下の評価を行った。なお、表1中の「-」は、未測定又は未使用であることを示す。
〔ホウ素含有量〕
 ホウ素の含有量は、JIS R 7223に従って前処理した試料について、ICP発光分析を行うことにより求めた。なお、検出限界は5ppmである。
〔平均面間隔d002
 (株)リガク製X線回折装置(型式RINT-2200V PC)を用いて、前述の方法により平均面間隔d002の測定を行った。結果を表1に示す。
 表1より、原料となる薄片状黒鉛をホウ素化合物の存在下で熱処理することにより、黒鉛化度が高く、d002が小さいホウ素を含む薄片状黒鉛が得られることがわかる。
〔レーザーラマンピーク強度比[D/G]〕
 Reninshaw社製顕微レーザーラマン分光分析装置(レーザー波長785nm)を用いて、前述の方法により強度比[D/G]の測定を行った。結果を表1に示す。
 表1より、原料となる薄片状黒鉛をホウ素化合物の存在下で熱処理することにより、黒鉛の結晶中の炭素原子の一部がホウ素原子で置換され、[D/G]が大きくなることがわかる。
〔粉体抵抗〕
 (c-1)、(c-2)、(c-4)、(c-5)、(y-1)、及び(y-2)の薄片状黒鉛をそれぞれ0.2g精秤し、粉体抵抗測定システム(MCP-PD51、(株)三菱化学アナリティック製)によって嵩密度ごとに抵抗率を測定した。結果を図1に示す。また、図1より求めた嵩密度1.7g/cm3における粉体抵抗を表1に示す。
 表1より、ホウ素化合物の存在下に熱処理することにより、粉体抵抗が低くなることが分かる。なお、(c-1)を製造する際に原料として用いた薄片状黒鉛の平均面間隔d002は、0.3356nmであり、ラマンピーク強度比[D/G]は0.5であった。(c-4)を製造する際に原料として用いた薄片状黒鉛((y-2))のラマンピーク強度比[D/G]は0.6であった。
Figure JPOXMLDOC01-appb-T000001
[実施例7~23、比較例5~9]
 実施例1~6及び比較例1~4で得られた薄片状黒鉛を用いて、導電性樹脂組成物を調製し、後述の各種評価を行った。なお、実施例1~6及び比較例1~4で得られた薄片状黒鉛の他に、導電性樹脂組成物の調製に使用した材料は以下のとおりである。
<ポリビニルアセタール(A)>
(a-1):積水化学工業(株)製ポリビニルブチラール、
      エスレック「BM-2」
      ブチラール化度:68mol%
(a-2):積水化学工業(株)製ポリビニルブチラール、
      エスレック「BL-2H」
      ブチラール化度:70mol%
<硬化性樹脂(B)>
(b-1):昭和電工(株)製、ショウノール「BKS-3823A」
 レゾール型フェノール樹脂、重量平均分子量:6,500、不揮発分44質量%(溶剤としてメタノールを32質量%、n-ブタノールを20質量%、ベンジルアルコールを4質量%含有)
(b-2):昭和電工(株)製、ショウノール「BRN-595」
 ノボラック型フェノール樹脂、重量平均分子量:16,000
(b-3):新日鐵化学(株)製、エポトートYH-434L(エポキシ樹脂)
 N,N,N',N'-テトラグリシジル-4,4'-ジアミノジフェニルメタン
 なお、(b-1)及び(b-2)の重量平均分子量の測定には、昭和電工(株)製「Shodex(登録商標) GPC System-21(カラム:KF-802,KF-803、KF-805)」を用いた。測定条件は、カラム温度を40℃、溶出液をテトラヒドロフラン、溶出速度を1ml/分とした。
<カーボンナノチューブ(D)>
(d-1)
(d-1)は以下の手順で製造した触媒黒鉛化処理気相成長炭素繊維である。
 すなわち、未処理の気相成長炭素繊維「VGCF(登録商標)」(昭和電工(株)製)を1300℃で熱処理したものを原料とし、黒鉛化触媒(B4C)を気相成長炭素繊維100質量部に対し4質量部添加して混合した。混合物を黒鉛製のるつぼに入れ、抵抗加熱型黒鉛化炉((株)倉田技研製)を用いて2800℃で30分間黒鉛化処理を行った。
   平均繊維径 :150nm
   平均繊維長 :8μm
   アスペクト比:53
   屈曲指数  :9
(d-2)
(d-2)は、以下の手順にしたがって製造した触媒黒鉛化処理多層カーボンナノチューブである。
 すなわち、縦型管状加熱炉(内径60mm,長さ1000mm)の炉内温度を1300℃に昇温、維持し、そこへ3質量%のフェロセン及び1.5質量%のチオフェンを含有するトルエン(液体原料)に超音波を照射し、水素ガスをキャリアガスとして供給した。水素ガスの流量は10L/分、液体原料の供給量は1.5g/分とした。このような条件の下で、フェロセンは熱分解して鉄微粒子を作り、これが種となってトルエンの熱分解による炭素によって多層カーボンナノチューブを成長させる。このようにして得たAs-grown多層カーボンナノチューブをアルゴン雰囲気下1000℃で熱処理したものを原料とし、B4Cを多層カーボンナノチューブ100質量部に対し4質量部添加して混合した。混合物を黒鉛製のるつぼに入れ、抵抗加熱型黒鉛化炉((株)倉田技研製)を用いて2800℃でアルゴン雰囲気下で30分間黒鉛化処理を行った。
   平均繊維径 :50nm
   平均繊維長 :8μm
   アスペクト比:160
   屈曲指数  :11
 なお、カーボンナノチューブ(D)の形状は以下の方法により求めた。
 カーボンナノチューブの平均繊維径は、走査型電子顕微鏡(SEM)によりカーボンナノチューブのサンプルを無作為に200個選択し、各サンプルの繊維径、繊維長を測定し、相加平均を算出した。アスペクト比は、平均繊維長と平均繊維径から算出した。屈曲指数は、走査型電子顕微鏡(SEM)によりカーボンナノチューブのサンプルを無作為に200個選択し、屈曲していない直線部分の長さ(Lx)と直径(D)とからLx/Dで測定し、相加平均を算出した。
 また、カーボンナノチューブ(D)の粉体抵抗値を前述の薄片状黒鉛の粉体抵抗値と同様にして測定した。測定結果を図2に示す。
<溶剤>
(e-1)ハイソルブMP(プロピレングリコールモノメチルエーテル)
     東邦化学工業(株)
(e-2)メタノール、ショウノール「BKS-3823A」由来
(e-3)n-ブタノール、ショウノール「BKS-3823A」由来
(e-4)ベンジルアルコール、ショウノール「BKS-3823A」由来
<硬化触媒>
(f-1):キュアゾールC11-CN
      1-シアノエチル-2-ウンデシルイミダゾール
      四国化成工業(株)
<導電性樹脂組成物の調製>
 表2~4に示した組成のうち、樹脂成分にハイソルブMPを加えて不揮発分が20~40質量%であるワニスを調製した後、容器に不揮発分の組成が表2~4となるように、前記ワニス、キュアゾールC11-CN、炭素成分を入れた。
 なお、表2~4に示した樹脂成分の配合量は、ワニスとしての量ではなく不揮発分に換算した量である。
 各成分を入れた容器は、自転公転ミキサー「練太郎 ARE-300」((株)シンキー製)にセットし、混合:2000rpm×30秒、脱気:2200rpm×30秒の条件下で分散(混合+脱気)処理を計8回行うことにより、実施例及び比較例の導電性樹脂組成物を調製した。なお、分散処理の過程で、粘度が上がりすぎた場合は、適宜溶剤であるハイソルブMPを添加した。
 表2~4に示す溶剤の配合量は、原料となる樹脂成分を含む有姿での量と、ワニスや導電性樹脂組成物の調製の過程で添加したハイソルブMPの量との合計である。
<硬化塗膜の作製及び評価>
 得られた導電性樹脂組成物について、下記の要領で硬化塗膜を作製し、物性の評価を行った。
(導電性試験)
 導電性樹脂組成物を、ガラス板上にギャップ200μmのアプリケーターを用いて塗布し、80℃で30分間加熱乾燥処理を行った後、更に200℃で1時間加熱して硬化塗膜を得た。
 得られた硬化塗膜について、「ロレスタ-EP」(MCP-T360:(株)ダイアインスツルメンツ製)、及びASPプローブを用いて4探針法により測定した。なお、この試験においては、比抵抗値が1×10-1Ω・cm以下である場合を合格(P)とし、そうでないものを不合格(F)とした。
(密着性試験)
 導電性試験と同様に作製した硬化塗膜について、硬化塗膜の表面に碁盤目状に切れ目を入れ、1mm2の切れ目領域を100個設けた。この100個の切れ目領域上にセロハンテープを貼り付けた後、セロハンテープを引き剥がし、セロハンテープに付着せず基材から剥がれなかった切れ目領域の数を計測した。なお、この試験においては基材から剥がれなかった切れ目領域の数が95個以上である場合を合格とした。
(耐熱性試験)
 幅14mm×長さ28mm×厚み9mmの銅/銅(C100P)基材を2枚用意し、接着面をそれぞれ#240研磨処理(JIS R6010によるP240まで研磨して仕上げた)を行った。2枚の基材に対して、それぞれ膜厚が100μmになるように導電性樹脂組成物を塗布し、80℃30分間乾燥させ、2枚の基材の塗布面を重ねるように張り合わせ、2kg/cm2の加重をかけて200℃で30分間接着を行った。この貼り合わせた2枚の銅基材について、200℃雰囲気下において、CAVER PRESS MODEL-Cにより圧縮せん断強度を測定した。評価については、5MPa以上の強度を有しているもの合格(P)とし、そうでないものを不合格(F)とした。
(耐水性試験)
 ガラス板上に膜厚が100μmとなるように導電性樹脂組成物を塗布し、80℃で30分間加熱乾燥処理を行った後、更に、200℃で30分間加熱して硬化塗膜を得た。この硬化塗膜を100℃の蒸留水に96時間浸漬し、変色、変形(膨れ、剥離等)、及び溶出物の有無を確認し、変色、変形(膨れ、剥離等)及び溶出物がないものを合格(P)とし、そうでないものを不合格(F)とした。
(塗膜外観試験)
 導電性試験と同様にして作製した硬化後の塗膜の外観を目視にて観察した。クラック、ス、膨れ、剥がれ等が生じていないものを合格(P)とし、そうでないものを不合格(F)とした。
(総合評価)
 前記導電性試験、密着性試験、耐熱性試験、耐水性試験、及び塗膜外観試験の全てにおいて合格基準を満たしたものを(P)、そうでないものを(F)として評価した。
 各測定結果を表2~4に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表2~4の結果から、ホウ素化合物の存在下で熱処理を行ったホウ素を含む薄片状黒鉛を用いた場合に良好な特性が発現することが認められ、特に、比抵抗値が小さくなることがわかる。実施例の結果から、導電性、耐熱性、耐水性、基材との密着性に優れるため、導電性塗料、導電性接着剤として好適であることがわかる。
 比較例5~7ではホウ素の存在下で熱処理していない薄片状黒鉛を用いているため、比抵抗値が実施例に比べていずれも高くなっている。比較例8,9は厚さの大きな黒鉛をホウ素の存在下で熱処理したものを用いているため、比抵抗値が実施例に比べて高くなっている。
 本発明の導電性樹脂組成物は、導電性、耐熱性、耐水性、及び基材との密着性に優れるため、導電性塗料、導電性接着剤として好適に用いることができる。本発明の導電性塗料及び導電性接着剤は、集積回路、電子部品、光学部品や各種制御部品等の工業製品、配線材料や各機器との接続材料、各種機器の帯電防止材料、電磁波シールド、静電塗装等に好適に用いることができる。本発明の導電性塗料及び導電性接着剤は、家電用、産業用、車両用、通信情報用、航空船舶用、宇宙用、時計用、写真用、及び玩具用等の印刷配線電気回路等に好適に用いることができる。

Claims (13)

  1.  平均厚さが100nm以下、平均板径dcが0.01~100μmであり、ホウ素を含む薄片状黒鉛。
  2.  平均厚さが100nm以下、平均板径dcが1~100μmであり、2層以上のグラフェンシートを含み、X線広角回折による平均面間隔d002が0.337nm以下であり、レーザーラマンスペクトルにおけるDバンドとGバンドとの強度比[D/G]が0.8~1.5である、請求項1に記載のホウ素を含む薄片状黒鉛。
  3.  平均厚さ100nm以下、平均板径dcが0.01~100μmである薄片状黒鉛を、ホウ素及びホウ素化合物から選ばれる1種又は2種以上の存在下で熱処理するホウ素を含む薄片状黒鉛の製造方法。
  4.  樹脂成分と、少なくとも請求項1又2に記載のホウ素を含む薄片状黒鉛を含む炭素成分とを含有する導電性樹脂組成物であって、前記樹脂成分100質量部に対する前記炭素成分の含有量が5~4000質量部である導電性樹脂組成物。
  5.  前記樹脂成分がポリビニルアセタールを10~100質量%含有するものである、請求項4に記載の導電性樹脂組成物。
  6.  前記ポリビニルアセタールがポリビニルブチラールである、請求項5に記載の導電性樹脂組成物。
  7.  更に溶剤を含有する、請求項4~6のいずれかに記載の導電性樹脂組成物。
  8.  前記樹脂成分が更に硬化性樹脂を含有する、請求項4~7のいずれかに記載の導電性樹脂組成物。
  9.  前記硬化性樹脂が、フェノール樹脂及びエポキシ樹脂から選ばれる1種又は2種以上である、請求項8に記載の導電性樹脂組成物。
  10.  前記樹脂成分100質量部に対する前記炭素成分の含有量が5~1000質量部である、請求項4~9のいずれかに記載の導電性樹脂組成物。
  11.  前記炭素成分が更にカーボンナノチューブを含む、請求項4~10のいずれかに記載の導電性樹脂組成物。
  12.  請求項4~11のいずれかに記載の導電性樹脂組成物を含む導電性塗料。
  13.  請求項4~11のいずれかに記載の導電性樹脂組成物を含む導電性接着剤。
PCT/JP2014/062979 2013-05-15 2014-05-15 ホウ素を含む薄片状黒鉛、及びその製造方法 WO2014185496A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14798287.0A EP2998271A4 (en) 2013-05-15 2014-05-15 Flaky graphite containing boron and production method therefor
JP2014551472A JP5680261B1 (ja) 2013-05-15 2014-05-15 ホウ素を含む薄片状黒鉛、及びその製造方法
CN201480026728.XA CN105209385A (zh) 2013-05-15 2014-05-15 含硼的薄片状石墨及其制造方法
US14/890,991 US20160096964A1 (en) 2013-05-15 2014-05-15 Flaky graphite containing boron and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013102777 2013-05-15
JP2013-102777 2013-05-15

Publications (1)

Publication Number Publication Date
WO2014185496A1 true WO2014185496A1 (ja) 2014-11-20

Family

ID=51898471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062979 WO2014185496A1 (ja) 2013-05-15 2014-05-15 ホウ素を含む薄片状黒鉛、及びその製造方法

Country Status (5)

Country Link
US (1) US20160096964A1 (ja)
EP (1) EP2998271A4 (ja)
JP (1) JP5680261B1 (ja)
CN (1) CN105209385A (ja)
WO (1) WO2014185496A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141975A1 (ja) * 2016-02-15 2017-08-24 国立大学法人東京工業大学 sp2型炭素含有組成物、グラフェン量子ドット含有組成物およびこれらの製造方法、並びにグラファイトの剥離方法
WO2021201002A1 (ja) 2020-04-03 2021-10-07 東洋インキScホールディングス株式会社 ホウ素ドープ炭素材料、導電性組成物、導電膜、および蓄電デバイス

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3299334A1 (en) * 2016-09-27 2018-03-28 ETH Zurich Boron-doped graphitic carbon
US20180155556A1 (en) * 2016-11-21 2018-06-07 Albert Subbloie Nanowire Coating For Heating And Insulation
EP3476344B1 (en) * 2017-10-05 2020-03-25 Heraeus Deutschland GmbH & Co. KG Catheter system
KR102122993B1 (ko) * 2018-06-01 2020-06-16 (주)동원엔텍 보론이 도핑된 그레핀을 이용한 중성자 차폐재 조성물 및 그 제조방법
WO2019244479A1 (ja) * 2018-06-20 2019-12-26 古河電気工業株式会社 カーボンナノチューブ含有組成物及びカーボンナノチューブ含有組成物の熱硬化物の製造方法
CN109835892A (zh) * 2018-12-13 2019-06-04 华侨大学 一种硼掺杂半导体石墨的制备方法
CN110407205A (zh) * 2019-07-11 2019-11-05 上海应用技术大学 一种复合浸渍剂提升浸渍石墨性能的方法
DE112020002761T5 (de) * 2019-07-30 2022-03-03 Sekisui Polymatech Co., Ltd. Leitfähige Zusammensetzung, leitfähige Folie, Kontaktelement und Verfahren zur Herstellung einer leitfähigen Zusammensetzung
CN112063266A (zh) * 2020-08-31 2020-12-11 广东墨睿科技有限公司 一种用于6061铝合金板材的环氧树脂石墨烯复合散热涂料及制备方法
CN115960510B (zh) * 2021-10-11 2024-03-26 中国石油化工股份有限公司 含石墨烯的重防腐涂料及其制备方法和应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5126912A (ja) * 1974-08-29 1976-03-05 Kogyo Gijutsuin
JPS5218973A (en) * 1975-07-29 1977-02-12 Kogyo Gijutsuin Manufacture of carbon fiber molding
JPS5391920A (en) * 1977-01-24 1978-08-12 Kogyo Gijutsuin Method of manufacturing high orientation thermal decomposition graphite mold articles
JPH0251412A (ja) * 1988-08-15 1990-02-21 Kobe Steel Ltd 高配向性黒鉛結晶の製造方法
JPH06122785A (ja) 1991-12-10 1994-05-06 Nikkiso Co Ltd 導電性組成物、導電性塗料、導電性インク及び電気回路基板
JPH08119613A (ja) * 1994-10-28 1996-05-14 Nippon Carbon Co Ltd 高配向性黒鉛体の製造法
JPH11185751A (ja) * 1997-12-16 1999-07-09 Asahi Glass Co Ltd 二次電源
JP2001196085A (ja) * 2000-01-14 2001-07-19 Toray Ind Inc 多孔質導電シート
JP2003073930A (ja) * 2001-08-31 2003-03-12 Showa Denko Kk 微細炭素繊維及びその製造方法
JP2004221071A (ja) 2002-12-26 2004-08-05 Showa Denko Kk 導電性組成物用炭素質材料及びその用途
WO2011102473A1 (ja) * 2010-02-19 2011-08-25 株式会社インキュベーション・アライアンス 炭素材料及びその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4102960A (en) * 1976-12-15 1978-07-25 Stackpole Carbon Company Process for making high strength flexible graphite foil
US6485864B1 (en) * 1999-02-26 2002-11-26 Adchemco Corporation Production process of material for lithium-ion secondary batteries, material obtained by the process, and batteries
TW524904B (en) * 1999-03-25 2003-03-21 Showa Denko Kk Carbon fiber, method for producing same and electrodes for electric cells
US20020054995A1 (en) * 1999-10-06 2002-05-09 Marian Mazurkiewicz Graphite platelet nanostructures
US20040232392A1 (en) * 2001-07-09 2004-11-25 Tsutomu Masuko Graphite fine powder, and production method and use thereof
DE60321047D1 (de) * 2002-12-26 2008-06-26 Showa Denko Kk Kohlenstoffmaterial zur herstellung von elektrisch leitfähigen materialien sowie deren verwendung
EP2192167A4 (en) * 2007-09-19 2013-07-03 Toray Industries ADHESIVE COMPOSITION FOR ELECTRONIC COMPONENTS AND ADHESIVE SHEET FOR ELECTRONIC COMPONENTS USING THE SAME
KR101781552B1 (ko) * 2010-06-21 2017-09-27 삼성전자주식회사 보론 및 질소로 치환된 그라핀 및 제조방법과, 이를 구비한 트랜지스터
CN102485647B (zh) * 2010-12-02 2013-10-30 中国科学院上海硅酸盐研究所 一种硼掺杂石墨烯的制备方法
TWI445775B (zh) * 2011-01-07 2014-07-21 Hon Hai Prec Ind Co Ltd 導電墨水及其製備方法
JP2012149161A (ja) * 2011-01-19 2012-08-09 Showa Denko Kk 導電性樹脂組成物及びこれを用いた導電性塗料並びに導電性接着剤
CN102306781A (zh) * 2011-09-05 2012-01-04 中国科学院金属研究所 一种掺杂石墨烯电极材料及其宏量制备方法和应用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5126912A (ja) * 1974-08-29 1976-03-05 Kogyo Gijutsuin
JPS5218973A (en) * 1975-07-29 1977-02-12 Kogyo Gijutsuin Manufacture of carbon fiber molding
JPS5391920A (en) * 1977-01-24 1978-08-12 Kogyo Gijutsuin Method of manufacturing high orientation thermal decomposition graphite mold articles
JPH0251412A (ja) * 1988-08-15 1990-02-21 Kobe Steel Ltd 高配向性黒鉛結晶の製造方法
JPH06122785A (ja) 1991-12-10 1994-05-06 Nikkiso Co Ltd 導電性組成物、導電性塗料、導電性インク及び電気回路基板
JPH08119613A (ja) * 1994-10-28 1996-05-14 Nippon Carbon Co Ltd 高配向性黒鉛体の製造法
JPH11185751A (ja) * 1997-12-16 1999-07-09 Asahi Glass Co Ltd 二次電源
JP2001196085A (ja) * 2000-01-14 2001-07-19 Toray Ind Inc 多孔質導電シート
JP2003073930A (ja) * 2001-08-31 2003-03-12 Showa Denko Kk 微細炭素繊維及びその製造方法
JP2004221071A (ja) 2002-12-26 2004-08-05 Showa Denko Kk 導電性組成物用炭素質材料及びその用途
WO2011102473A1 (ja) * 2010-02-19 2011-08-25 株式会社インキュベーション・アライアンス 炭素材料及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CARBON, 1963, pages 25 - 34
See also references of EP2998271A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141975A1 (ja) * 2016-02-15 2017-08-24 国立大学法人東京工業大学 sp2型炭素含有組成物、グラフェン量子ドット含有組成物およびこれらの製造方法、並びにグラファイトの剥離方法
CN108698831A (zh) * 2016-02-15 2018-10-23 国立大学法人东京工业大学 含sp2型碳的组合物、含石墨烯量子点的组合物和它们的制造方法、以及石墨的剥离方法
JPWO2017141975A1 (ja) * 2016-02-15 2018-12-06 国立大学法人東京工業大学 sp2型炭素含有組成物、グラフェン量子ドット含有組成物およびこれらの製造方法、並びにグラファイトの剥離方法
CN108698831B (zh) * 2016-02-15 2022-06-03 国立大学法人东京工业大学 含sp2型碳的组合物、含石墨烯量子点的组合物和它们的制造方法、以及石墨的剥离方法
WO2021201002A1 (ja) 2020-04-03 2021-10-07 東洋インキScホールディングス株式会社 ホウ素ドープ炭素材料、導電性組成物、導電膜、および蓄電デバイス
KR20220163402A (ko) 2020-04-03 2022-12-09 토요잉크Sc홀딩스주식회사 붕소 도프 탄소 재료, 도전성 조성물, 도전막, 및 축전 디바이스

Also Published As

Publication number Publication date
JPWO2014185496A1 (ja) 2017-02-23
EP2998271A1 (en) 2016-03-23
JP5680261B1 (ja) 2015-03-04
EP2998271A4 (en) 2017-03-01
CN105209385A (zh) 2015-12-30
US20160096964A1 (en) 2016-04-07

Similar Documents

Publication Publication Date Title
JP5680261B1 (ja) ホウ素を含む薄片状黒鉛、及びその製造方法
JP7202690B2 (ja) 樹脂組成物、基材付フィルム、金属/樹脂積層体および半導体装置
JP2014028900A (ja) 導電性樹脂組成物及びこれを用いた導電性塗料並びに導電性接着剤
JP2013091783A (ja) 導電性樹脂組成物及びこれを用いた導電性塗料並びに導電性接着剤
US10125298B2 (en) High thermal conductivity graphite and graphene-containing composites
JP6212660B1 (ja) 熱硬化性材料及び硬化物
JP2013007028A (ja) 封止用シートおよび電子部品装置
CN104364290A (zh) 固化性树脂组合物、树脂组合物、树脂片、及这些组合物和树脂片的固化物
JP2017128476A (ja) 複合フィラー及び熱硬化性材料
Paluvai et al. Fabrication and evaluation of acrylated epoxidized castor oil‐toughened diglycidyl ether of bisphenol A nanocomposites
JP2017132662A (ja) 窒化ホウ素ナノチューブ材料及び熱硬化性材料
JP2022097544A (ja) 窒化ホウ素粒子の凝集体及び熱硬化性材料
JP2012149161A (ja) 導電性樹脂組成物及びこれを用いた導電性塗料並びに導電性接着剤
Kumar et al. Thermal conductive epoxy adhesive composites filled with carbon-based particulate fillers: a comparative study
JP2017095555A (ja) フィラー複合体及び熱硬化性材料
JP2017095293A (ja) 窒化ホウ素ナノチューブ及び熱硬化性材料
JP7028704B2 (ja) 熱硬化性材料
JP6560599B2 (ja) 熱硬化性シート、硬化物シート及び積層体
JP6331500B2 (ja) エポキシ樹脂組成物および硬化物
JP2018188632A (ja) 熱硬化性シート及び硬化シートの製造方法
JP6606410B2 (ja) 積層体
JP6581481B2 (ja) 窒化ホウ素ナノチューブ及び熱硬化性材料
JP2018021156A (ja) 樹脂組成物、並びにこれを用いた硬化成形物、接着シート、並びに基板
JP2017128475A (ja) 複合フィラー及び熱硬化性材料
JP6909699B2 (ja) 硬化物形成用添加剤、樹脂組成物及び硬化物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014551472

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14798287

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014798287

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14890991

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE