WO2011093473A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2011093473A1
WO2011093473A1 PCT/JP2011/051831 JP2011051831W WO2011093473A1 WO 2011093473 A1 WO2011093473 A1 WO 2011093473A1 JP 2011051831 W JP2011051831 W JP 2011051831W WO 2011093473 A1 WO2011093473 A1 WO 2011093473A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
conductivity type
type
main surface
surface side
Prior art date
Application number
PCT/JP2011/051831
Other languages
English (en)
French (fr)
Inventor
泰彦 大西
睦美 北村
祥夫 杉
学 武井
Original Assignee
富士電機システムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機システムズ株式会社 filed Critical 富士電機システムズ株式会社
Priority to CN201180007576.5A priority Critical patent/CN102804386B/zh
Priority to US13/575,984 priority patent/US9087893B2/en
Priority to EP11737183.1A priority patent/EP2530721A4/en
Priority to JP2011551946A priority patent/JP5652407B2/ja
Publication of WO2011093473A1 publication Critical patent/WO2011093473A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs

Definitions

  • the present invention relates to a semiconductor device.
  • a semiconductor device is classified into a horizontal element in which electrodes are formed on one side of a semiconductor substrate and a vertical element having electrodes on both sides of a semiconductor substrate.
  • the direction in which the drift current flows in the on state and the direction in which the depletion layer due to the reverse bias voltage extends in the off state are the same.
  • MOSFET Metal Oxide Field Effect Transistor: MOS type field effect transistor
  • the portion of the high resistance n ⁇ drift layer has a drift current in the vertical direction when it is in the ON state. It works as an area to flow. Therefore, if the current path of the n ⁇ drift layer is shortened, the drift resistance is lowered, so that an effect that the substantial on-resistance of the MOSFET can be lowered is obtained.
  • the portion of the high resistance n ⁇ drift layer is depleted in the off state to increase the breakdown voltage. Therefore, when the n ⁇ drift layer is thinned, the width of the drain-base depletion layer extending from the pn junction between the p base region and the n ⁇ drift layer becomes narrow, and the breakdown voltage decreases. On the contrary, in a semiconductor device with a high breakdown voltage, since the n ⁇ drift layer is thick, the on-resistance is increased and the conduction loss is increased. Thus, there is a trade-off relationship between on-resistance and breakdown voltage.
  • FIG. 39 is a cross-sectional view showing a conventional superjunction semiconductor device.
  • the superjunction in which the drift layer is a parallel pn layer 120 in which the n-type region 101 and the p-type region 102 with increased impurity concentration are alternately and repeatedly joined is used.
  • SJ Semiconductor devices are known.
  • the element active portion includes a p base region 103, an n-type surface region 104, a p + contact region 105, an n + source region 106, a gate insulating film 107, a gate electrode 108, an interlayer insulating film 109 and a source as the surface structure of the element.
  • An electrode 110 is provided.
  • a drain electrode 112 in contact with the n + drain region 111 is provided on the second main surface (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3 below).
  • the parallel pn layer 120 is provided between the surface structure of the element and the n + drain region 111.
  • FIG. 40 is a characteristic diagram showing an impurity concentration distribution of the superjunction semiconductor device shown in FIG.
  • FIG. 40 shows an n-type impurity concentration distribution (cutting) from the end (hereinafter referred to as the upper end) of the n-type surface region 104 on the first main surface side to the second main surface side (hereinafter referred to as the depth direction).
  • a line AA-AA ′) and a p-type impurity concentration distribution (cut line BB-BB ′) in the depth direction from the upper end of the p + contact region 105 are shown.
  • the first depth d 0 is the depth from the upper end of the p base region 103 to the end portion (hereinafter referred to as the lower end) of the p base region 103 on the second main surface side.
  • the second depth d 10 is a depth from the lower end of the p base region 103 to the lower end of the p-type region 102.
  • the impurity concentrations of the n-type region 101 and the p-type region 102 are uniform in the depth direction.
  • the depletion layer spreads laterally from each pn junction extending in the vertical direction of the parallel pn layer in the off state, and the entire drift layer Therefore, a high breakdown voltage can be achieved.
  • the following devices have been proposed as another super-junction semiconductor device that has improved breakdown voltage and reduced on-resistance.
  • On the n + -type drain layer there is a super junction structure in which the first n-type pillar layer, the p-type pillar layer, and the second n-type pillar layer are alternately arranged.
  • the p-type pillar layer and the second n-type pillar layer have a higher impurity concentration on the source electrode side than on the drain electrode side (see, for example, Patent Document 4 below).
  • the carrier concentration in the upper region of the first to third semiconductor pillar layers is set higher than the carrier concentration in the lower region (see, for example, Patent Document 5 below).
  • n-type drift regions and p-type partition regions are alternately arranged on the n + drain region, and a p base region is formed on the p-type partition region, and the surface of the p base region
  • An n + source region and a p + contact region are selectively formed in the layer.
  • a surface n-type drift region having a high impurity concentration is formed above the n-type drift region.
  • a gate electrode is provided on the surface of the p base region sandwiched between the surface n-type drift region and the n + source region via a gate insulating film.
  • a source electrode is provided in common contact with the surfaces of the n + source region and the p + contact region, and a drain electrode is provided in contact with the back surface of the n + drain region.
  • An insulating film is provided to insulate the gate electrode from the source electrode (see, for example, Patent Document 6 below).
  • a vertical power MOSFET a) a drain contact provided on one surface of the MOSFET, comprising a first conductivity type highly doped substrate on the drain contact; b) A blocking layer provided on the substrate opposite the drain contact, wherein i) each of the first plurality of vertical sections is a parallelepiped having six rectangular faces, A plurality of first vertical sections having a horizontal thickness shorter than a thickness in a direction, wherein ii) a P conductivity type vertical section and an N conductivity type vertical section are alternately arranged; A blocking layer comprising a plurality of vertical sections, and c) opposite to the first conductivity type provided on one surface of the blocking layer opposite the substrate A second plurality of well regions of the second conductivity type; and d) a third plurality of highly doped source regions of the first conductivity type, two of the source regions being the second A third plurality of highly doped source regions disposed in each of the plurality of well regions; and e) the first conductivity type
  • a fourth plurality of regions of the first conductivity type each of the regions extending between two well regions of the second plurality of well regions, and f )
  • a fifth plurality of gate poly regions each of the gate poly regions covering one source region in each of two adjacent well regions and one of the fourth plurality of regions.
  • a plurality of gate poly regions (for example, the following patent documents) 7 reference.).
  • the first semiconductor layer has a distribution in which an impurity concentration increases in a vertical direction from the second main electrode toward the first main electrode, and the second semiconductor layer includes the second main electrode.
  • the impurity concentration is constant in the vertical direction from 1 to the first main electrode (see, for example, Patent Document 8 below).
  • the following device has been proposed.
  • the impurity concentration of the second conductivity type region on the first main surface side is greater than the impurity concentration of the adjacent first conductivity type region.
  • the impurity concentration of the second conductivity type region on the second main surface side is higher than the impurity concentration of the adjacent first conductivity type region.
  • the impurity concentration of the second conductivity type region is uniform in the thickness direction, and the impurity concentration of the first conductivity type region on the first main surface side is the impurity concentration of the first conductivity type region on the second main surface side. It is lower (for example, see Patent Document 9 below).
  • the apparatus has a first conductivity type second semiconductor layer and a second conductivity type third semiconductor layer alternately disposed on the first conductivity type first semiconductor layer.
  • the device further includes a second conductivity type fourth semiconductor layer disposed in contact with the upper portion of the third semiconductor layer between the second semiconductor layers, and a first conductivity type formed on a surface of the fourth semiconductor layer, respectively.
  • a fifth semiconductor layer disposed in contact with the upper portion of the third semiconductor layer between the second semiconductor layers, and a first conductivity type formed on a surface of the fourth semiconductor layer, respectively.
  • a fifth semiconductor layer is provided.
  • the first semiconductor layer has a lower concentration of impurities of the first conductivity type than the second semiconductor layer.
  • the third semiconductor layer includes a basic portion and a high impurity amount portion locally formed so that the impurity amount is larger than the basic portion in the depth direction (see, for example, Patent Document 10 below).
  • the power MOSFET Since the power MOSFET is used as a switching device, it is required to reduce the switching loss that occurs during switching, in addition to reducing the conduction loss that occurs in the on state.
  • turn-off loss can be cited.
  • the time change rate of the drain voltage at the time of turn-off hereinafter referred to as turn-off dv / dt
  • turn-off dv / dt the time change rate of the drain voltage at the time of turn-off
  • increasing the turn-off dv / dt causes noise. For this reason, it is desirable that the turn-off dv / dt is low.
  • there is a trade-off relationship between turn-off loss and turn-off dv / dt there is a trade-off relationship between turn-off loss and turn-off dv / dt.
  • the depletion layer completely spreads in the parallel pn layer with a drain voltage as low as about 50 to 100V.
  • the gate-drain capacitance becomes extremely low, and the turn-off dv / dt becomes high.
  • the turn-off dv / dt can be lowered by using the gate resistance, it is necessary to use a larger gate resistance than that of the conventional MOSFET because the SJ-MOSFET has a very small gate-drain capacitance.
  • the gate resistance is increased, the mirror period becomes longer and the turn-off loss increases.
  • FIG. 41 is a characteristic diagram showing electrical characteristics at turn-off in a conventional superjunction semiconductor device.
  • FIG. 41 is a simulation result showing a trade-off relationship between the turn-off loss and the turn-off dv / dt.
  • the turn-off loss of the conventional SJ-MOSFET is about 0.5 mJ.
  • the turn-off loss of the conventional MOSFET is about 0.1 mJ.
  • the trade-off relationship between the turn-off loss and the turn-off dv / dt is deteriorated by about 5 times as compared with the conventional semiconductor device. For this reason, for example, even if the on-resistance can be reduced to about 1/5, the effect is impaired.
  • the trade-off relationship between on-resistance and breakdown voltage can be improved, but the trade-off relationship between turn-off loss and turn-off dv / dt is deteriorated.
  • the drain voltage decreases when the current flowing between the drain and the source increases. That is, a negative resistance is generated when the avalanche enters, and the avalanche resistance is reduced.
  • An object of the present invention is to provide a semiconductor device that improves the trade-off relationship between the turn-off loss and the turn-off dv / dt in order to eliminate the above-described problems caused by the prior art. It is another object of the present invention to provide a semiconductor device that improves avalanche resistance.
  • the semiconductor device has the following characteristics.
  • An element active portion provided on the first main surface side, a low resistance layer provided on the second main surface side, and provided between the element active portion and the low resistance layer;
  • a base region provided on the first main surface side of the first conductivity type region, located closer to the second main surface side than an end of the second conductivity type base region on the second main surface side;
  • a first conductivity type high concentration region having an impurity concentration higher than the impurity concentration on the second main surface side of the first conductivity type region.
  • the semiconductor device is the semiconductor device according to the first aspect, wherein the first conductivity type high concentration region is from an end of the second conductivity type base region on the second main surface side.
  • the first conductivity type region located at a depth to the end on the second main surface side of the second conductivity type region, 1.2 times to 3 times the region excluding the first conductivity type high concentration region. It has the following impurity concentration.
  • a semiconductor device is the semiconductor device according to the first aspect, wherein the semiconductor device is provided on the first main surface side of the first conductivity type region, and the first conductivity type high concentration region is the first device. It is further characterized by further comprising a first conductivity type surface region in contact with the end portion on the one main surface side.
  • the first conductivity type surface region has the same depth as the second conductivity type base region, or the second conductivity type base. It is provided shallower on the first main surface side than the region.
  • the first conductivity type surface region has a higher impurity concentration than the first conductivity type high concentration region. To do.
  • the semiconductor device is the semiconductor device according to the third aspect, wherein the first conductive type high concentration region includes the first conductive type surface region and the second conductive type base region.
  • the first conductivity type high concentration region is The impurity concentration is 1.2 to 3 times that of the excluded region.
  • the semiconductor device according to a seventh aspect of the present invention is the semiconductor device according to the first aspect, wherein the first conductivity type high-concentration region is from an end of the second conductivity type base region on the second main surface side.
  • the second conductivity type region has a thickness of 1/3 or less of the thickness of the first conductivity type region located at a depth to the end on the second main surface side of the second conductivity type region.
  • the semiconductor device is the semiconductor device according to the first aspect, wherein the first conductivity type high-concentration region is from an end of the second conductivity type base region on the second main surface side.
  • the second conductivity type region has a thickness not less than 1/8 and not more than 1/4 of the thickness of the first conductivity type region located at a depth to the end on the second main surface side of the second conductivity type region. .
  • the semiconductor device according to claim 9 is the semiconductor device according to claim 1, wherein the first conductivity type high concentration region is adjacent to the first conductivity type high concentration region in the second conductivity type region.
  • the impurity concentration is 1.2 times or more and 3 times or less that of the region to be formed.
  • a semiconductor device is the semiconductor device according to the first aspect, wherein the first conductivity having a higher impurity concentration than the impurity concentration on the second main surface side in the second conductivity type region.
  • a second conductivity type high concentration region on the main surface side is further provided.
  • the semiconductor device according to an eleventh aspect of the present invention is the semiconductor device according to the tenth aspect, wherein the first conductivity type high-concentration region is from an end of the second conductivity type base region on the second main surface side.
  • the first conductivity type region located at a depth to the end on the second main surface side of the second conductivity type region 1.5 times or more and 3 times the region excluding the first conductivity type high concentration region. It has the following impurity concentration.
  • the semiconductor device according to a twelfth aspect of the present invention is the semiconductor device according to the tenth aspect, wherein the second conductivity type high-concentration region is ⁇ or more and 1 ⁇ 2 or less of the thickness of the second conductivity type region. It has the thickness of.
  • a semiconductor device is the semiconductor device according to the tenth aspect, wherein the second conductivity type high concentration region has the same thickness as the first conductivity type high concentration region. To do.
  • the semiconductor device according to a fourteenth aspect of the present invention is the semiconductor device according to the tenth aspect of the present invention, wherein a region excluding the second conductive type high concentration region in the second conductive type region is the first conductive type region.
  • the impurity amount is the same as that of the region excluding the first conductivity type high concentration region.
  • the region of the second conductivity type region excluding the second conductivity type high concentration region is from the first main surface side.
  • the impurity concentration is gradually lowered toward the second main surface side.
  • the first conductive type high concentration region and the second conductive type high concentration region are formed on the first main surface side from the first main surface side. 2
  • the impurity concentration is gradually lowered toward the principal surface side.
  • the semiconductor device according to claim 17 is the semiconductor device according to claim 10, wherein the second conductivity type high concentration region is an end portion of the first conductivity type high concentration region on the second main surface side. It is characterized by being provided deeper on the second main surface side.
  • an end of the first conductive type high concentration region on the second main surface side in the second conductive type high concentration region in the semiconductor device according to the seventeenth aspect, an end of the first conductive type high concentration region on the second main surface side in the second conductive type high concentration region.
  • the region provided deeper on the second main surface side than the portion has a higher impurity concentration than the first conductivity type region adjacent to the region, and is lower than the second conductivity type high concentration region. It has an impurity concentration.
  • an end of the first conductive type high concentration region on the second main surface side in the second conductive type high concentration region in the semiconductor device according to the seventeenth aspect, an end of the first conductive type high concentration region on the second main surface side in the second conductive type high concentration region.
  • the region provided deeper on the second main surface side than the portion has an impurity concentration of 1.2 times or more that of the first conductivity type region adjacent to the region.
  • a semiconductor device is the semiconductor device according to any one of the first to twentieth aspects, wherein the planar shape of the first conductivity type region and the second conductivity type region is a stripe shape, It is a hexagonal lattice shape or a square shape.
  • the first main surface side of the first conductivity type region is more than the second main surface side.
  • the n-type impurity amount is large. This makes it difficult for the depletion layer to expand on the first main surface side of the parallel pn layer, and prevents the parallel pn layer from being completely depleted with a low drain voltage. Therefore, the gate / drain capacitance can be prevented from becoming extremely low, and the turn-off dv / dt can be prevented from becoming high. Accordingly, since it is not necessary to increase the gate resistance in order to reduce the turn-off dv / dt, it is possible to prevent an increase in turn-off loss.
  • the first main surface of the parallel pn layer is provided.
  • the p-type impurity amount on the side is larger than the n-type impurity amount.
  • the semiconductor device according to the present invention has an effect that the trade-off relationship between the turn-off loss and the turn-off dv / dt can be improved. In addition, the avalanche resistance can be improved.
  • FIG. 1 is a cross-sectional view of the semiconductor device according to the first embodiment.
  • FIG. 2 is a characteristic diagram showing an impurity concentration distribution of the semiconductor device according to the first embodiment.
  • FIG. 3 is a sectional view of the semiconductor device according to the second embodiment.
  • FIG. 4 is a sectional view of the semiconductor device according to the third embodiment.
  • FIG. 5 is a characteristic diagram showing the impurity concentration distribution of the semiconductor device according to the third embodiment.
  • FIG. 6 is a cross-sectional view of the semiconductor device according to the fourth embodiment.
  • FIG. 7 is a characteristic diagram showing an impurity concentration distribution of the semiconductor device according to the fourth embodiment.
  • FIG. 8 is a cross-sectional view of the semiconductor device according to the fifth embodiment.
  • FIG. 9 is a characteristic diagram showing an impurity concentration distribution of the semiconductor device according to the fifth embodiment.
  • FIG. 10 is a cross-sectional view of the semiconductor device according to the sixth embodiment.
  • FIG. 11 is a characteristic diagram showing the impurity concentration distribution of the semiconductor device according to the sixth embodiment.
  • 12 is a characteristic diagram showing electrical characteristics at turn-off in the semiconductor device of Example 1.
  • FIG. 13 is a characteristic diagram illustrating an n-type impurity concentration distribution of the semiconductor device according to the second embodiment.
  • FIG. 14 is a characteristic diagram showing electrical characteristics at turn-off in the semiconductor device of Example 2.
  • FIG. 15 is a conceptual diagram illustrating the expansion of the depletion layer of the semiconductor device according to the second embodiment.
  • FIG. 16 is a conceptual diagram illustrating the expansion of the depletion layer of the semiconductor device according to the second embodiment.
  • FIG. 17 is a conceptual diagram illustrating the expansion of the depletion layer of the semiconductor device according to the second embodiment.
  • FIG. 18 is a characteristic diagram showing electrical characteristics at turn-off in the semiconductor device according to Example 2.
  • FIG. 19 is a characteristic diagram illustrating a relationship between breakdown voltage and on-resistance in the semiconductor device according to the third example.
  • FIG. 20 is a characteristic diagram illustrating electrical characteristics of the semiconductor device according to the fourth example.
  • FIG. 21 is a characteristic diagram showing electrical characteristics at turn-off in the semiconductor device according to Working Example 4.
  • FIG. 22 is a characteristic diagram showing the p-type impurity concentration distribution of the semiconductor device according to Working Example 5.
  • FIG. 23 is a characteristic diagram illustrating electrical characteristics of the semiconductor device according to the fifth example.
  • FIG. 24 is a characteristic diagram showing electrical characteristics at turn-off in the semiconductor device according to Working Example 5.
  • FIG. 25 is a characteristic diagram showing the impurity concentration distribution of the semiconductor device according to Working Example 6.
  • FIG. 26 is a characteristic diagram illustrating electrical characteristics of the semiconductor device according to the sixth example.
  • FIG. 27A is a characteristic diagram of an electrical characteristic when the semiconductor device according to Example 6 is turned off.
  • FIG. 27-2 is a characteristic diagram illustrating electrical characteristics at the time of turn-off of the semiconductor device according to Example 6.
  • FIG. 28A is a characteristic diagram of an electrical characteristic of the semiconductor device according to the seventh embodiment.
  • FIG. 28-2 is a characteristic diagram illustrating electrical characteristics of the semiconductor device according to the seventh example.
  • FIG. 29A is a characteristic diagram illustrating an electrical characteristic when the semiconductor device according to Working Example 7 is turned off.
  • FIG. 29-2 is a characteristic diagram illustrating electrical characteristics during turn-off of the semiconductor device according to the seventh embodiment.
  • FIG. 30 is a characteristic diagram showing electrical characteristics at turn-off in the semiconductor device according to Working Example 8.
  • FIG. 31 is a cross-sectional view illustrating the semiconductor device manufacturing process (No. 1) according to the seventh embodiment.
  • FIG. 32 is a cross-sectional view illustrating the manufacturing process (No. 2) of the semiconductor device according to the seventh embodiment.
  • FIG. 33 is a cross-sectional view illustrating the manufacturing process of the semiconductor device according to the eighth embodiment.
  • FIG. 34 is a cross-sectional view illustrating the manufacturing process of the semiconductor device according to the ninth embodiment.
  • FIG. 35 is a cross-sectional view illustrating the manufacturing process of the semiconductor device according to the tenth embodiment.
  • FIG. 36 is a cross-sectional view illustrating the semiconductor device manufacturing process (No. 1) according to the eleventh embodiment.
  • FIG. 37 is a cross-sectional view illustrating the semiconductor device manufacturing process (No. 2) according to the eleventh embodiment.
  • FIG. 38 is a cross-sectional view illustrating the manufacturing process of the semiconductor device according to the twelfth embodiment.
  • FIG. 39 is a cross-sectional view showing a conventional superjunction semiconductor device.
  • FIG. 40 is a characteristic diagram showing an impurity concentration distribution of the superjunction semiconductor device shown in FIG.
  • FIG. 41 is a characteristic diagram showing electrical characteristics during turn-off in a conventional superjunction semiconductor device.
  • FIG. 1 is a cross-sectional view of the semiconductor device according to the first embodiment.
  • the semiconductor device shown in FIG. 1 has an element active portion on the first main surface side and an n + drain region (low resistance layer) 11 on the second main surface side.
  • the element active portion includes, for example, a p-type base region (second conductivity type base region) 3, an n-type surface region (first conductivity type surface region) 4, a p + contact region 5, n + as a planar MOSFET surface structure.
  • a source region 6, a gate insulating film 7, a gate electrode 8, an interlayer insulating film 9, and a source electrode 10 are provided.
  • a drain electrode 12 in contact with the n + drain region 11 is provided on the second main surface.
  • a parallel pn layer 20 is provided as a drift layer between the element active portion and the n + drain region 11.
  • the parallel pn layer 20 is formed by alternately and repeatedly joining n-type regions (first conductivity type regions) 1 and p-type regions (second conductivity type regions) 2.
  • the p-type region 2 is provided so as not to reach the n + drain region 11.
  • the planar shape of the n-type region 1 and the p-type region 2 is a stripe shape, a hexagonal lattice shape, or a square shape.
  • the p base region 3 is provided on the first main surface side of the p-type region 2.
  • the p base region 3 has a higher impurity concentration than the p type region 2.
  • the n-type surface region 4 is provided on the first main surface side of the n-type region 1. That is, the n-type surface region 4 is provided between the adjacent p base regions 3 and is adjacent to the p base region 3.
  • the n-type surface region 4 may have a higher impurity concentration than an n-type high concentration region 21 described later, or may have the same impurity concentration.
  • the n-type surface region 4 may be provided at the same depth as the p base region 3 or may be provided shallower than the p base region 3.
  • the impurity concentration in the vicinity of the corner on the second main surface side of the p base region 3 is the same as the impurity concentration on the first main surface side of the p type region 2. Impurity concentration can be achieved. Thereby, it is possible to prevent the electric field from concentrating near the corner on the second main surface side of the p base region 3 and to prevent the breakdown voltage from being reduced.
  • the p + contact region 5 and the n + source region 6 are provided in the surface layer of the p base region 3 and are in contact with each other.
  • the gate electrode 8 straddles the n + source region 6, the p base region 3, and the n-type region 1 through the gate insulating film 7.
  • Source electrode 10 is in contact with p + contact region 5 and n + source region 6.
  • the source electrode 10 is insulated from the gate electrode 8 by the interlayer insulating film 9.
  • the n-type high concentration region (first conductivity type high concentration region) 21 is provided on the first main surface side of the n-type region 1.
  • the n-type high concentration region 21 is in contact with the end (hereinafter referred to as the lower end) of the n-type surface region 4 on the second main surface side.
  • the n-type high concentration region 21 is a region excluding the n-type high concentration region 21 in the n-type region 1 located at a depth from the lower end of the p base region 3 to the lower end of the p-type region 2 (hereinafter referred to as n
  • the impurity concentration is higher than that of the low-density region 22.
  • the n-type high concentration region 21 is a thickness of the n-type region 1 located at a depth from the lower end of the p base region 3 to the lower end of the p-type region 2 (hereinafter, the p-type region of the n-type region 1).
  • the n-type high concentration region 21 may have a thickness of 1/8 to 1/4 of the thickness of the n-type region 1 adjacent to the p-type region 2.
  • the thickness of the n-type high concentration region 21 may be, for example, 5.5 ⁇ m.
  • the thickness of the p-type region 2 may be 40 ⁇ m, for example.
  • the thickness of the region adjacent to the p-type region 2 in the n-type region 1 is, for example, 40 ⁇ m.
  • FIG. 2 is a characteristic diagram showing an impurity concentration distribution of the semiconductor device according to the first embodiment.
  • FIG. 2 shows an n-type impurity concentration distribution along the cutting line AA ′ in FIG. 1 and a p-type impurity concentration distribution along the cutting line BB ′ in FIG.
  • the n-type impurity concentration distribution is such that the n-type region 1 in the n-type surface region 4 from the end on the first main surface side (hereinafter referred to as the upper end) to the second main surface side direction (hereinafter referred to as the depth direction).
  • the p-type impurity concentration distribution is an impurity concentration distribution of the p-type region 2 in the depth direction from the upper end of the p + contact region 5 (hereinafter the same as in the second to sixth embodiments).
  • the first depth d 0 is the depth from the upper end to the lower end of the p base region 3.
  • the second depth d 1 is the depth from the lower end of the p base region 3 to the lower end of the n-type high concentration region 21.
  • the third depth d 2 is a depth from the lower end of the n-type high concentration region 21 to the lower end of the p-type region 2.
  • the n-type impurity concentration distribution shown in FIG. 2 has an n-type high concentration region 21 (second depth d 1 ) and a p-type base region 3 (first depth d 0 ) extending from the lower end to the second main surface side.
  • the n-type low concentration region 22 shows the impurity concentration distribution in which this exists.
  • the p-type impurity concentration distribution shown in FIG. 2 is an impurity in which the p-type region 2 (second depth d 1 + third depth d 2 ) exists from the lower end of the p base region 3 to the second main surface side. The concentration distribution is shown.
  • the n-type region 1 is a region on the second main surface side from the lower end of the p base region 3, and includes two different stages of impurities composed of an n-type high concentration region 21 and an n-type low concentration region 22. It has a concentration distribution.
  • the n-type high concentration region 21 may have an impurity concentration that is 1.2 to 3 times, preferably 2.5 times or less, that of the n-type low concentration region 22. That is, the n-type region 1 is configured to have a large amount of n-type impurities on the first main surface side.
  • the impurity concentration of the n-type high concentration region 21 may be, for example, 4.8 ⁇ 10 15 / cm 3 .
  • the impurity concentration of the n-type low concentration region 22 may be, for example, 3.0 ⁇ 10 15 / cm 3 .
  • the n-type region 1 may have different three-stage impurity concentration distributions including the n-type surface region 4, the n-type high concentration region 21, and the n-type low concentration region 22. That is, in the n-type impurity concentration distribution shown in FIG. 2, the n-type surface region 4 (first depth d 0 ), the n-type high concentration region 21 (second depth) from the first main surface side to the second main surface side. , D 1 ) and the n-type low concentration region 22 (third depth d 2 ) may be a three-stage impurity concentration distribution in this order.
  • the n-type high concentration region 21 including the n-type surface region 4 has an impurity concentration that is 1.2 to 3 times, preferably 2.5 times or less, that of the n-type low concentration region 22. Also good.
  • the p-type region 2 has a uniform impurity concentration distribution. That is, the impurity concentration of the n-type high concentration region 21 has an impurity concentration of 1.2 times to 3 times, preferably 2.5 times or less that of the p-type region 2 adjacent to the n-type high concentration region 21. .
  • the first main surface side of the n-type region 1 is set to the second main surface side.
  • the n-type impurity amount is larger than that on the main surface side.
  • FIG. 3 is a sectional view of the semiconductor device according to the second embodiment.
  • a trench structure may be applied.
  • a trench structure in which a gate electrode 18 is provided inside the trench via a gate insulating film 17 is formed on the upper end side of the n-type region 1.
  • P base region 3 and n + source region 6 are in contact with gate insulating film 17 provided on the sidewall of the trench.
  • the source electrode 10 is insulated from the gate electrode 18 by the interlayer insulating film 19. No n-type surface region is provided.
  • the n-type impurity concentration distribution in the n-type region 1 at the cutting line CC ′ in FIG. 3 is the same as the n-type impurity concentration distribution in the n-type region 1 at the cutting line AA ′ in the first embodiment (FIG. 1, see FIG. In the semiconductor device shown in FIG. 3, since the n-type surface region is not provided, the n-type impurity concentration distribution is only the second depth d 1 and the third depth d 2 . Further, the p-type impurity concentration distribution of the p-type region 2 in the cutting line DD ′ is the same as the p-type impurity concentration distribution of the p-type region 2 in the cutting line BB ′ of the first embodiment. Other configurations are the same as those in the first embodiment.
  • the same effect as that of the first embodiment can be obtained even in the semiconductor device having the trench gate structure.
  • FIG. 4 is a sectional view of the semiconductor device according to the third embodiment.
  • FIG. 4 shows only one pn junction in the parallel pn layer 20 (hereinafter the same applies to FIGS. 6 and 8).
  • the impurity concentration on the first main surface side of p-type region 2 may be higher than the impurity concentration on the second main surface side of p-type region 2.
  • the p-type high concentration region (second conductivity type high concentration region) 23 is provided on the first main surface side of the p-type region 2.
  • the p-type high concentration region 23 is in contact with the lower end of the p base region 3.
  • the p-type high concentration region 23 has a higher impurity concentration than a region (hereinafter referred to as a p-type low concentration region) 24 excluding the p-type high concentration region 23 in the p-type region 2.
  • the p-type high concentration region 23 has the same thickness as the n-type high concentration region 21. Desirably, the p-type high concentration region 23 has a thickness of 1/8 or more and 1/2 or less of the thickness of the p-type region 2. The thickness of the p-type high concentration region 23 may be 11 ⁇ m, for example. The thickness of the p-type region 2 may be 37 ⁇ m, for example.
  • the n-type high concentration region 21 desirably has an impurity concentration that is 1.5 times or more and 3 times or less, preferably 2.5 times or less that of the n-type low concentration region 22.
  • FIG. 5 is a characteristic diagram showing the impurity concentration distribution of the semiconductor device according to the third embodiment.
  • FIG. 5 shows the n-type impurity concentration distribution at the cutting line EE ′ in FIG. 4 from the lower end of the first depth d 0 to the second main surface side, and the p-type at the cutting line FF ′ in FIG. An impurity concentration distribution is shown.
  • the n-type impurity concentration distribution of the n-type region 1 at the cutting line EE ′ is the same as that in the first embodiment (see FIG. 2).
  • the p-type region 2 has two different impurity concentration distributions composed of a p-type high concentration region 23 and a p-type low concentration region 24. That is, the p-type region 2 is configured to have a large amount of p-type impurities on the first main surface side.
  • the p-type high concentration region 23 has substantially the same impurity concentration at substantially the same depth as the n-type high concentration region 21.
  • the p-type low concentration region 24 has substantially the same impurity concentration at substantially the same depth as the n-type low concentration region 22. That is, the p-type impurity concentration distribution in the p-type region 2 has the same distribution shape as the n-type impurity concentration distribution in the n-type region 1.
  • the impurity concentration of the p-type high concentration region 23 may be 4.7 ⁇ 10 15 / cm 3 , for example.
  • the impurity concentration of the p-type low concentration region 24 may be, for example, 2.7 ⁇ 10 15 / cm 3 .
  • Other configurations are the same as those in the first embodiment.
  • the same effect as in the first embodiment can be obtained. Further, by providing the p-type high concentration region 23 on the first main surface side of the p-type region 2, the first main surface side of the p-type region 2 has a larger amount of p-type impurities than the second main surface side. Yes. Further, the p-type high concentration region 23 is provided with substantially the same depth as that of the n-type high concentration region 21 and substantially the same impurity concentration as that of the n-type high concentration region 21. For this reason, it is possible to avoid charge imbalance at the joint surface of the parallel pn layer 20 on the first main surface side. Thereby, it can prevent that a proof pressure falls.
  • FIG. 6 is a cross-sectional view of the semiconductor device according to the fourth embodiment.
  • the p-type high concentration region 23 may be provided deeper on the second main surface side than the lower end of the n-type high concentration region 21.
  • the p-type high concentration region 23 has the same impurity concentration as that of the n-type high concentration region 21 and is provided deeper on the second main surface side than the lower end of the n-type high concentration region 21. Therefore, the p-type impurity amount on the first main surface side can be made larger than the n-type impurity amount by the difference between the thickness of the p-type high concentration region 23 and the thickness of the n-type high concentration region 21.
  • the thickness of the n-type high concentration region 21 may be 9 ⁇ m, for example.
  • the thickness of the p-type high concentration region 23 may be 16 ⁇ m, for example.
  • the thickness of the p-type region 2 may be 37 ⁇ m, for example.
  • FIG. 7 is a characteristic diagram showing an impurity concentration distribution of the semiconductor device according to the fourth embodiment.
  • FIG. 7 shows the n-type impurity concentration distribution at the cutting line GG ′ in FIG. 6 from the lower end of the first depth d 0 to the second main surface side, and the p-type at the cutting line HH ′ in FIG. The impurity concentration distribution is shown.
  • the n-type impurity concentration distribution of the n-type region 1 at the cutting line GG ′ is the same as that in the first embodiment (see FIG. 2).
  • the fourth depth d 3 is a depth from the lower end of the n-type high concentration region 21 to the lower end of the p-type high concentration region 23.
  • the fifth depth d 4 is a depth from the lower end of the p-type high concentration region 23 to the lower end of the p-type region 2.
  • the p-type region 2 has a p-type high concentration region 23 (second depth d 1 + fourth depth) provided deep from the lower end of the n-type high concentration region 21 by the fourth depth d 3.
  • a is a d 3
  • the impurity concentration distribution of the p-type low concentration region 24 (the fifth depth d 4) consisting of different two stages. That is, the p-type impurity concentration distribution in the p-type region 2 has a different distribution shape from the n-type impurity concentration distribution in the n-type region 1.
  • the impurity concentration of the p-type high concentration region 23 may be, for example, 5.0 ⁇ 10 15 / cm 3 .
  • the impurity concentration of the p-type low concentration region 24 may be, for example, 3.0 ⁇ 10 15 / cm 3 .
  • the p-type high concentration region 23 has substantially the same impurity concentration as the n-type high concentration region 21.
  • the p-type low concentration region 24 has substantially the same impurity concentration as the n-type low concentration region 22.
  • Other configurations are the same as those in the third embodiment.
  • the same effect as in the third embodiment can be obtained. Further, by providing the p-type high concentration region 23 deeper than the n-type high concentration region 21 on the second main surface side, the p-type impurity amount on the first main surface side of the parallel pn layer 20 is larger than the n-type impurity amount. The structure is also increased. Thereby, it is possible to make it difficult for negative resistance during avalanche to occur, and to improve avalanche resistance. Therefore, it is possible to prevent the drain voltage from decreasing when the current flowing between the drain and the source increases.
  • FIG. 8 is a cross-sectional view of the semiconductor device according to the fifth embodiment.
  • a region of the p-type high concentration region 23 that is provided deeper on the second main surface side than the lower end of the n-type high concentration region 21 is the first main region than the lower end of the n-type high concentration region 21.
  • the impurity concentration may be lower than that of the p-type high concentration region 23 on the surface side.
  • the impurity concentration between the p-type high concentration region 23 and the p-type low concentration region 24 is lower than that of the p-type high concentration region 23 and higher than that of the n-type low concentration region 22.
  • a region (hereinafter referred to as a p-type medium concentration region) 25 having a thickness of 25 is provided.
  • the p-type medium concentration region 25 is adjacent to the n-type low concentration region 22 on the first main surface side of the n-type low concentration region 22.
  • the p-type high concentration region 23 is provided with the same thickness as the n-type high concentration region 21.
  • the thickness of the p-type high concentration region 23 may be 9 ⁇ m, for example.
  • the thickness of the p-type medium concentration region 25 may be 7 ⁇ m, for example.
  • FIG. 9 is a characteristic diagram showing an impurity concentration distribution of the semiconductor device according to the fifth embodiment.
  • FIG. 9 shows the n-type impurity concentration distribution at the cutting line II ′ in FIG. 8 from the lower end of the first depth d 0 to the second main surface side, and the p-type at the cutting line JJ ′ in FIG. The impurity concentration distribution is shown.
  • the n-type impurity concentration distribution of the n-type region 1 at the cutting line II ′ is the same as that of the first embodiment (see FIG. 2).
  • the fifth depth d 4 is a depth from the lower end of the p-type medium concentration region 25 to the lower end of the p-type region 2.
  • the p-type region 2 includes a p-type high concentration region 23 (second depth d 1 ), a p-type medium concentration region 25 (fourth depth d 3 ), and a p-type low concentration region 24 ( It has different three-stage impurity concentration distributions of the fifth depth d 4 ). That is, the p-type impurity concentration distribution in the p-type region 2 has a different distribution shape from the n-type impurity concentration distribution in the n-type region 1. Further, the p-type medium concentration region 25 preferably has an impurity concentration of 1.2 times or more of the n-type region 1 adjacent to the p-type medium concentration region 25.
  • the impurity concentration of the p-type intermediate concentration region 25 may be 4.0 ⁇ 10 15 / cm 3 , for example. Other configurations are the same as those in the fourth embodiment.
  • FIG. 10 is a cross-sectional view of the semiconductor device according to the sixth embodiment.
  • the p-type low concentration region 24 may have an impurity concentration distribution that gradually decreases from the first main surface side to the second main surface side.
  • the parallel pn layer 20 has a configuration in which, for example, epitaxial layers are stacked.
  • the n-type region 1 and the p-type region 2 have a wave-type impurity concentration distribution (hereinafter referred to as a wave type) formed by laminating parallel pn layers 20 having, for example, a substantially arc-shaped pn junction surface formed by diffusing introduced impurities. Type impurity concentration distribution).
  • the p-type low concentration region 24 has an impurity concentration distribution that gradually decreases from the first main surface side to the second main surface side.
  • the total impurity amount of the p-type low concentration region 24 is the same as the total impurity amount of the n-type low concentration region 22.
  • FIG. 11 is a characteristic diagram showing the impurity concentration distribution of the semiconductor device according to the sixth embodiment.
  • FIG. 11 shows the n-type impurity concentration distribution along the cutting line K-K ′ in FIG. 10 and the p-type impurity concentration distribution along the cutting line L-L ′ in FIG. 10.
  • the n-type impurity concentration distribution of the n-type region 1 at the cutting line K-K ′ is the same as that of the first embodiment except that it has a wave-shaped impurity concentration distribution shape.
  • the n-type region 1 has different two-stage impurity concentration distributions composed of the n-type high concentration region 21 and the n-type low concentration region 22.
  • the p-type region 2 includes two different stages of p-type high-concentration regions 23 and p-type low-concentration regions 24 having an impurity concentration distribution that gradually decreases from the first main surface side to the second main surface side. It has an impurity concentration distribution.
  • n-type epitaxial layer is stacked.
  • n-type impurities are introduced into the entire epitaxial layer to perform thermal diffusion.
  • a mask in which the formation region of the p-type region 2 is opened is formed.
  • p-type impurities are introduced into the formation region of the p-type region 2 and thermal diffusion is performed. Thereby, p-type region 2 is formed.
  • the region where the p-type impurity is not introduced becomes the n-type region 1.
  • an n-type impurity is introduced into the epitaxial layer to be the n-type high concentration region 21 so that the n-type impurity concentration is higher than that of the second main surface side.
  • Each epitaxial layer contains p-type impurities so that the impurity concentration of the p-type low concentration region 24 formed in the epitaxial layer gradually increases from the second main surface side to the first main surface side. be introduced.
  • a p-type impurity is introduced into the epitaxial layer forming the p-type high concentration region 23 so as to have a higher p-type impurity concentration than the second main surface side.
  • Other configurations are the same as those in the third embodiment.
  • the thermal diffusion may be performed for each epitaxial layer, or the thermal diffusion may be performed by finally annealing the epitaxial layer and introducing impurities, and finally annealing.
  • Example 1 12 is a characteristic diagram showing electrical characteristics at turn-off in the semiconductor device of Example 1.
  • FIG. FIG. 12 is a simulation result showing a trade-off relationship between the turn-off loss and the turn-off dv / dt (hereinafter, FIG. 14, FIG. 21, FIG. 24, FIG. 27-1, FIG. 27-2, FIG. 29-1, FIG. 29-2 and FIG. 30).
  • a planar type MOSFET was prepared in which the impurity concentration of the n-type high concentration region 21 was 1.2 times the impurity concentration of the n-type low concentration region 22 (hereinafter referred to as the first example).
  • a planar MOSFET was prepared in which the impurity concentration of the n-type high concentration region 21 was 1.6 times the impurity concentration of the n-type low concentration region 22 (hereinafter referred to as a second embodiment).
  • the thickness and surface impurity concentration of the p base region 3 were 3.0 ⁇ m and 3.0 ⁇ 10 17 cm ⁇ 3 , respectively.
  • the thickness and surface impurity concentration of the n-type surface region 4 were 2.5 ⁇ m and 2.0 ⁇ 10 16 cm ⁇ 3 , respectively.
  • the thickness of n + source region 6 and the surface impurity concentration were 0.5 ⁇ m and 3.0 ⁇ 10 20 cm ⁇ 3 , respectively.
  • the thickness of n + drain region 11 and the surface impurity concentration were 300 ⁇ m and 2.0 ⁇ 10 18 cm ⁇ 3 , respectively.
  • the thickness of the drift layer was 53.0 ⁇ m.
  • the width of the n-type region 1 was 6.0 ⁇ m.
  • the thickness and impurity concentration of the n-type high concentration region 21 were set to 5.5 ⁇ m and 3.6 ⁇ 10 15 cm ⁇ 3 , respectively.
  • the impurity concentration of the n-type low concentration region 22 was set to 3.0 ⁇ 10 15 cm ⁇ 3 .
  • the width, height, and impurity concentration of the p-type region 2 were 6.0 ⁇ m, 40.0 ⁇ m, and 3.0 ⁇ 10 15 cm ⁇ 3 , respectively.
  • the breakdown voltage class was set to 600V.
  • the impurity concentration of the n-type high concentration region 21 is 4.8 ⁇ 10 15 cm ⁇ 3 .
  • the other configuration is the same as that of the first embodiment.
  • a planar type MOSFET was prepared in which the impurity concentration of the n-type high concentration region 21 was one time the impurity concentration of the n-type low concentration region 22 (hereinafter referred to as a conventional example). That is, the conventional n-type region 1 has a uniform impurity concentration distribution. Other configurations of the conventional example are the same as those of the first embodiment. In each sample, turn-off loss and turn-off dv / dt were measured.
  • the indicators for determining the performance of the semiconductor device are low turn-off loss and low turn-off dv / dt.
  • the closer to the origin (lower left) of the graph the higher the performance of the semiconductor device, and the trade-off relationship between turn-off loss and turn-off dv / dt is improved.
  • the lower the turn-off loss the better the trade-off relationship between the turn-off loss and the turn-off dv / dt.
  • the turn-off loss is compared when the turn-off dv / dt satisfies the power supply harmonic regulation, for example, 10 kV / ⁇ s.
  • the measured value when the turn-off dv / dt is 10 kV / ⁇ s is not shown.
  • the other measured values of the second embodiment are assumed to be on an extension of the approximate value line connecting the illustrated measured values of the second embodiment (hereinafter, FIG. 14, FIG. 21, FIG. 24, FIG. 27-1, FIG. 27-2, FIG. 29-1, FIG. 29-2 and FIG. 30).
  • the turn-off loss decreases as the impurity concentration of the n-type high concentration region 21 with respect to the n-type low concentration region 22 increases. That is, it can be seen that the trade-off relationship between the turn-off loss and the turn-off dv / dt is most improved in the second embodiment. Further, it was found that the turn-off loss can be reduced to 1 ⁇ 2 or less of the conventional example by setting the impurity concentration of the n-type high concentration region 21 to 1.2 times or more of the impurity concentration of the n-type low concentration region 22. .
  • FIG. 13 is a characteristic diagram illustrating an n-type impurity concentration distribution of the semiconductor device according to the second embodiment.
  • FIG. 14 is a characteristic diagram showing electrical characteristics at turn-off in the semiconductor device of Example 2.
  • a planar type MOSFET was prepared according to the third embodiment (hereinafter referred to as a third example).
  • the thickness and impurity concentration of the n-type high concentration region 21 were set to 8.0 ⁇ m and 4.7 ⁇ 10 15 cm ⁇ 3 , respectively.
  • the impurity concentration of the n-type low concentration region 22 is, for example, 2.7 ⁇ 10 15 / cm 3 .
  • the thickness of the p-type region 2 was 37 ⁇ m.
  • the thickness and impurity concentration of the p-type high concentration region 23 are the same as those of the n-type high concentration region 21.
  • the impurity concentration of the p-type low concentration region 24 is the same as that of the n-type low concentration region 22.
  • a conventional example was prepared in the same manner as in Example 1.
  • a planar MOSFET having an n-type impurity concentration gradually lowered from the first main surface side to the second main surface side of the n-type region 1 was prepared (hereinafter referred to as an inclined embodiment).
  • the total impurity amount of the n-type region 1 is the same. In each sample, turn-off loss and turn-off dv / dt were measured.
  • the results shown in FIG. 14 show that the turn-off loss is the lowest in the third example and the highest in the conventional example, when the turn-off dv / dt is 10 kV / ⁇ s, for example.
  • the turn-off loss of the third embodiment is about 1.7 mJ.
  • the turn-off loss of the conventional example is about 5.0 mJ (not shown). That is, in the third example, it can be seen that the turn-off loss can be reduced to about 1/3 of the conventional example.
  • the third example best improved the trade-off relationship between the turn-off loss and the turn-off dv / dt as compared with the conventional example.
  • the reason is as follows.
  • the trade-off relationship between the turn-off loss and the turn-off dv / dt is also improved in the tilted example as compared with the conventional example.
  • 15 to 17 are conceptual diagrams showing the spread of the depletion layer of the semiconductor device according to the second embodiment.
  • FIG. 18 is a characteristic diagram showing electrical characteristics at turn-off in the semiconductor device according to the second embodiment.
  • 15 to 17 show the expansion of the depletion layer 31 in the third embodiment, the expansion of the depletion layer 32 in the conventional example, and the expansion of the depletion layer 33 in the inclined embodiment when the drain voltage is increased.
  • FIG. 18 is a simulation result showing the turn-off dv / dt of the third example, the conventional example, and the inclined example when the drain voltage is increased.
  • the depletion layer 32 in the conventional example extends in parallel with the junction surface between the n-type region 1 and the p-type region 2.
  • the parallel pn layer is completely depleted.
  • the depletion layer 33 in the inclined embodiment spreads quickly on the second main surface side of the parallel pn layer having a low impurity concentration when a drain voltage is applied, and the parallel pn layer having a high impurity concentration. It spreads slowly on the first main surface side.
  • the parallel pn layer is completely depleted at a drain voltage of 100V.
  • the second main surface side (n-type) of the parallel pn layer having a low impurity concentration is applied as in the tilted embodiment. It spreads quickly in the low-concentration region 22 and the p-type low-concentration region 24), and slowly spreads on the first main surface side (the n-type high-concentration region 21 and the p-type high-concentration region 23) of the parallel pn layer having a high impurity concentration.
  • a region that is not depleted hereinafter referred to as a neutral region remains on the first main surface side of the parallel pn layer even when the drain voltage becomes 100V.
  • the drain voltage suddenly rises and the turn-off dv / dt suddenly increases accordingly.
  • the parallel pn layer is easily depleted (see FIG. 16).
  • the time from when the drain voltage is applied until the drain voltage starts to rise is slower than in the conventional example.
  • the drain voltage rises slowly as a whole, and the turn-off dv / dt also rises slowly.
  • the impurity concentration in the n-type region 1 and the p-type region 2 is gradually increased from the second main surface side to the first main surface side, so that the depletion layer is This is because it gradually expands from the second principal surface side to the first principal surface side (see FIG. 17).
  • the time from when the drain voltage is applied to when the drain voltage starts to rise is earlier than in the gradient embodiment.
  • the turn-off dv / dt is lower than that in the inclined embodiment. The reason is that in the third embodiment, there is a portion where the impurity concentration changes abruptly in the n-type region 1 and the p-type region 2, so that the first main surface side of the parallel pn layer is compared with the inclined embodiment. This is because the depletion layer is difficult to expand (see FIG. 15), and the drain voltage is difficult to increase.
  • the third embodiment and the tilted embodiment can reduce the turn-off loss almost in the same manner as the conventional example (see FIG. 14).
  • the turn-off dv / dt can be reduced as compared with the inclined example (see FIG. 18).
  • the third example can improve the trade-off relationship between the turn-off loss and the turn-off dv / dt as compared with the conventional example.
  • FIG. 19 is a characteristic diagram illustrating a relationship between breakdown voltage and on-resistance in the semiconductor device according to the third example.
  • FIG. 19 is a simulation result showing a trade-off relationship between breakdown voltage and on-resistance.
  • a third example was prepared.
  • a conventional example was prepared in the same manner as in Example 1.
  • an inclined example was prepared.
  • the breakdown voltage and on-resistance were measured.
  • the index that determines the performance of the semiconductor device is that the breakdown voltage is high and the on-resistance is low. That is, the closer to the lower right of the graph, the higher the performance of the semiconductor device and the better the trade-off relationship between on-resistance and breakdown voltage (the same applies to FIGS. 26 and 28-1 below).
  • the breakdown voltages of the third example, the conventional example, and the inclined example were almost the same value.
  • the on-resistance is the lowest in the conventional example. This is because the impurity concentration distribution in the n-type region 1 is uniform. For this reason, the trade-off relationship between on-resistance and breakdown voltage is most improved in the conventional example.
  • the third embodiment is compared with the inclined embodiment, the on-resistance of the third embodiment is lower than the on-resistance with the inclined embodiment. The reason is estimated as follows.
  • the on-resistance is determined by the impurity concentration of the n-type region 1.
  • the impurity concentration on the second main surface side is low, a depletion layer spreads in the n-type region 1 due to a voltage drop due to a current flowing through the n-type region 1 and a resistance of the n-type region 1, and the current path is narrowed. As a result, the on-resistance is increased.
  • the third example, and the inclined example decreases in the order of the conventional example, the third example, and the inclined example, the on-resistance of the conventional example Is the lowest, and the tilted example results in the highest. Further, since the difference in on-resistance between the third embodiment and the conventional example is about 5%, the third embodiment can improve the trade-off relationship between the withstand voltage and the on-resistance almost similarly to the conventional example. It can be said. Furthermore, as described above, the third embodiment can reduce the turn-off loss (see the second embodiment). Therefore, it can be seen that the third example has higher performance than the conventional example.
  • FIG. 20 is a characteristic diagram illustrating electrical characteristics of the semiconductor device according to the fourth example.
  • FIG. 21 is a characteristic diagram showing electrical characteristics when the semiconductor device according to Working Example 4 is turned off.
  • FIG. 20 is a simulation result showing current-voltage characteristics after entering an avalanche (hereinafter, the same applies to FIG. 23).
  • a third example was prepared.
  • a planar MOSFET was prepared according to the fourth embodiment (hereinafter referred to as a fourth example).
  • the thickness of the n-type high concentration region 21 is 9 ⁇ m.
  • the thickness of the p-type high concentration region 23 was 16 ⁇ m.
  • the impurity concentration of the n-type high concentration region 21 and the p-type high concentration region 23 was set to 5.0 ⁇ 10 15 / cm 3 .
  • the impurity concentration of the n-type low concentration region 22 and the p-type low concentration region 24 was set to 3.0 ⁇ 10 15 / cm 3 .
  • the other configuration is the same as that of the third embodiment.
  • the current-voltage waveform after entering the avalanche was observed. In each sample, turn-off loss and turn-off dv / dt were measured.
  • the drain voltage decreased when the current flowing between the drain and the source increased.
  • the n-type region 1 and the p-type region 2 have substantially the same impurity concentration distribution in the depth direction, and thus negative resistance is generated after entering the avalanche.
  • the drain voltage increased when the current flowing between the drain and the source increased.
  • the p-type impurity amount is larger than the n-type impurity amount in the portion of the p-type high concentration region 23 that is deeper than the n-type high concentration region 21 on the second main surface side. This is because negative resistance is less likely to occur.
  • the trade-off relationship between the turn-off loss and the turn-off dv / dt in the fourth embodiment can be considerably improved as compared with the conventional example, as in the third embodiment. It was. Specifically, the turn-off loss of the fourth embodiment can be reduced to about half as compared with the turn-off loss of the conventional example (not shown) when the turn-off dv / dt is, for example, 10 kV / ⁇ s. That is, in the fourth example, it was found that the trade-off relationship between the turn-off loss and the turn-off dv / dt can be improved as compared with the conventional example, and the avalanche resistance can be improved.
  • FIG. 22 is a characteristic diagram showing the p-type impurity concentration distribution of the semiconductor device according to Working Example 5.
  • FIG. 23 is a characteristic diagram showing electrical characteristics of the semiconductor device according to Working Example 5.
  • FIG. 24 is a characteristic diagram showing electrical characteristics at turn-off in the semiconductor device according to Working Example 5.
  • fifth to ninth embodiments Five planar MOSFETs were prepared (hereinafter referred to as fifth to ninth embodiments).
  • the thickness (second depth d 1 ) of the p-type high concentration region 23 is 9 ⁇ m.
  • the thickness (fourth depth d 3 ) of the p-type medium concentration region 25 was 7 ⁇ m.
  • the other configuration is the same as that of the fourth embodiment.
  • a conventional example was prepared in the same manner as in Example 1.
  • the current-voltage waveform after the avalanche rush was observed.
  • turn-off loss and turn-off dv / dt were measured.
  • the impurity concentration of the p-type medium concentration region 25 be about 3.5 ⁇ 10 15 / cm 3 (sixth embodiment) ). Therefore, it is desirable that the impurity concentration of the p-type medium concentration region 25 is 1.2 times or more the impurity concentration of the n-type low concentration region 22 adjacent to the p-type medium concentration region 25.
  • the trade-off relationship between the turn-off loss and the turn-off dv / dt deteriorates as the impurity concentration in the p-type medium concentration region 25 increases.
  • the turn-off loss in the fifth to ninth embodiments can be suppressed to an increase of about 10% of the turn-off loss in the third embodiment (not shown). For this reason, it was found that the trade-off relationship between the turn-off loss and the turn-off dv / dt can be improved in the fifth to ninth embodiments as in the third embodiment.
  • the impurity concentration distribution in the p-type region 2 is gradually changed from the first main surface side to the second main surface side. be able to. For this reason, it is presumed that the time from when the drain voltage is applied until the drain voltage starts to rise can be delayed (see the tilting example in FIG. 18). As a result, the depletion layer is less likely to expand and the drain voltage is less likely to increase, and it is assumed that the turn-off dv / dt can be further reduced.
  • FIG. 25 is a characteristic diagram showing the impurity concentration distribution of the semiconductor device according to Working Example 6.
  • FIG. 26 is a characteristic diagram showing electrical characteristics of the semiconductor device according to Working Example 6.
  • FIGS. 27A and 27B are characteristic diagrams showing electrical characteristics at turn-off in the semiconductor device according to Working Example 6.
  • FIGS. First as shown in FIG. 25, according to the sixth embodiment, a planar type MOSFET is prepared in which the impurity concentration of the p-type low concentration region 24 is gradually lowered from the first main surface side to the second main surface side (hereinafter referred to as “the p-type low concentration region 24”). The tenth embodiment).
  • the impurity concentration of the n-type high concentration region 21 is set to 7.5 ⁇ 10 15 / cm 3 .
  • the impurity concentration of the n-type low concentration region 22 was set to 3.0 ⁇ 10 15 / cm 3 . That is, the impurity concentration of the n-type high concentration region 21 is set to 2.5 times the impurity concentration of the n-type low concentration region 22.
  • the impurity concentration of the p-type high concentration region 23 was 1.5 ⁇ 10 16 / cm 3 .
  • the impurity concentration of the p-type low concentration region 24 is set to 6.6 ⁇ 10 15 / cm 3 on the first main surface side, and 5.4 ⁇ 10 15 / cm 3 on the second main surface side, and from the first main surface side.
  • the impurity concentration distribution was decreased by 0.3 ⁇ 10 15 / cm 3 toward the second main surface side.
  • the depth from the upper end of the p-type region 2 for changing the impurity concentration in the p-type region 2 (hereinafter referred to as the concentration change depth), that is, the thickness of the p-type high concentration region 23 was set to 5 ⁇ m.
  • the impurity concentration of the p-type low concentration region 24 is set to 7.2 ⁇ 10 15 / cm 3 on the first main surface side and 4.8 ⁇ 10 15 / cm 3 on the second main surface side, and the first main surface An impurity concentration distribution that decreases by 0.6 ⁇ 10 15 / cm 3 from the side to the second main surface side was used, and the other example 10-1 was prepared in the same manner as the tenth example. Further, the n-type high concentration region 21 has an impurity concentration of 3.6 ⁇ 10 15 / cm 3 and the n-type low concentration region 22 has an impurity concentration of 3.0 ⁇ 10 15 / cm 3.
  • the impurity concentration of the p-type low concentration region 24 is 1.2 times the impurity concentration of the n-type low concentration region 22 and the impurity concentration of the p-type high concentration region 23 is 7.2 ⁇ 10 15 / cm 3.
  • the concentration is 6.0 ⁇ 10 15 / cm 3
  • the impurity concentration of the p-type high concentration region 23 is 1.2 times the impurity concentration of the p-type low concentration region 24, and the others are the same as in the tenth embodiment.
  • Example 10-2 was also prepared. For comparison, a conventional example was prepared in the same manner as in Example 1.
  • a planar MOSFET having a uniform impurity concentration distribution in the p-type low concentration region 24 was prepared (hereinafter referred to as a first comparative example).
  • the impurity concentration of the p-type low concentration region 24 is 6.0 ⁇ 10 15 / cm 3 .
  • the other configuration is the same as that of the tenth embodiment.
  • the breakdown voltage and on-resistance were measured.
  • turn-off loss and turn-off dv / dt were measured.
  • net doping net carrier concentration
  • net doping of the p-type region in FIG. 25 subtracts the phosphorus concentration from the boron concentration. Value.
  • the tenth and tenth embodiments have lower on-resistance than the conventional example.
  • the tenth embodiment and the tenth embodiment have a higher breakdown voltage than the first comparative example.
  • the trade-off relationship between on-resistance and breakdown voltage is most improved in the tenth embodiment.
  • the turn-off loss is reduced in the tenth embodiment, the tenth embodiment, and the tenth embodiment as compared with the conventional example.
  • the turn-off dv / dt is, for example, 10 kV / ⁇ s
  • the turn-off loss of the tenth embodiment is about 0.1 mJ.
  • the turn-off loss of the conventional example is about 0.4 mJ. That is, in the tenth embodiment, the turn-off loss can be reduced to about 1 ⁇ 4 of the conventional example. As a result, in the tenth example, it was found that both the trade-off relationship between the on-resistance and the withstand voltage and the trade-off relationship between the turn-off loss and the turn-off dv / dt can be improved better than the conventional example. . Further, the turn-off loss is reduced in the 10-1 and 10-2 embodiments as compared with the conventional example, and the trade-off relationship between the on-resistance and the breakdown voltage and the trade-off relationship between the turn-off loss and the turn-off dv / dt. It has been found that both can be improved better than the conventional example.
  • FIG. 27-2 shows the trade-off between the turn-off loss and the turn-off dv / dt when the point of the depth y changing from the high concentration region of both p-type and n-type to the low concentration region is changed between 5 ⁇ m and 12 ⁇ m. It is the characteristic view which showed the relationship.
  • y is deeper than 5 ⁇ m, the trade-off relationship between the turn-off loss and the turn-off dv / dt is improved, but in the case of 12 ⁇ m, the trade-off relationship is not as good as 10 ⁇ m.
  • Example 7 28A and 28B are characteristic diagrams illustrating electrical characteristics of the semiconductor device according to Working Example 7.
  • FIG. FIGS. 29A and 29B are characteristic diagrams showing electrical characteristics at turn-off in the semiconductor device according to Working Example 7.
  • FIGS. First according to the sixth embodiment, seven planar MOSFETs were prepared in which the concentration change depth (thickness of the n-type high concentration region 21) was 1 ⁇ m, 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m, and 30 ⁇ m (hereinafter, referred to as the following). The eleventh embodiment to the seventeenth embodiment).
  • the thickness of the p-type high concentration region 23 is the same as that of each n-type high concentration region 21.
  • the impurity concentration of the n-type high concentration region 21 was set to 4.5 ⁇ 10 15 / cm 3 .
  • the impurity concentration on the first main surface side of the n-type region 1 was set to 3.0 ⁇ 10 15 / cm 3 .
  • the impurity concentration of the p-type high concentration region 23 was set to 9.0 ⁇ 10 15 / cm 3, and the impurity concentration of the p-type low concentration region 24 was set to 6.0 ⁇ 10 15 / cm 3 .
  • Other configurations are the same as those in the sixth embodiment.
  • the concentration change depth is set to 1 ⁇ m, 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m, and 30 ⁇ m.
  • the impurity concentration of the concentration region 21 is 7.5 ⁇ 10 15 / cm 3
  • the impurity concentration on the first main surface side of the n-type region 1 is 3.0 ⁇ 10 15 / cm 3
  • the p-type high concentration region 23 Seven planar MOSFETs having double the concentration difference were prepared, in which the impurity concentration was 1.5 ⁇ 10 16 / cm 3 and the impurity concentration of the p-type low concentration region 24 was 6.0 ⁇ 10 15 / cm 3 (hereinafter referred to as “concentration difference”). 11-11 embodiment to 17-1 embodiment).
  • a conventional example was prepared in the same manner as in Example 1. In each sample, the breakdown voltage and on-resistance were measured. In each sample, turn-off loss and turn-off dv / dt were measured.
  • the on-resistance is reduced in the eleventh embodiment to the seventeenth embodiment and the eleventh embodiment to the seventeenth embodiment in comparison with the conventional example. I found out that I could do it. It was also found that the on-resistance can be lowered as the concentration change depth is increased. In contrast, in the eleventh embodiment to the seventeenth embodiment and the eleventh embodiment to the seventeenth embodiment, it was found that the withstand voltage was reduced as compared with the conventional example. It was also found that the breakdown voltage decreases as the concentration change depth increases. Further, from the results shown in FIGS.
  • the trade-off relationship between the turn-off loss and the turn-off dv / dt can be improved as the concentration change depth is increased.
  • the concentration change depth is too deep, the trade-off relationship between the turn-off loss and the turn-off dv / dt is worse than in the conventional example.
  • the trade-off relationship between the turn-off loss and the turn-off dv / dt should be realized to the same extent as in the conventional example and not worse than that in the conventional example. I understand. For this reason, it has been found that the concentration change depth needs to be 1 ⁇ 2 or less of the thickness of the p-type region 2.
  • the twelfth embodiment, the twelfth embodiment, the thirteenth embodiment, and the thirteenth embodiment are compared.
  • the concentration change depth is 1/3 or less of the thickness of the p-type region 2 (see the thirteenth and thirteenth embodiments).
  • the thickness of the p-type region 2 is not less than 1/8 and not more than 1/4 (see the twelfth embodiment and the twelfth embodiment).
  • FIG. 30 is a characteristic diagram showing electrical characteristics at turn-off in the semiconductor device according to Working Example 8.
  • the impurity concentration of the n-type high concentration region 21 is set to 1.33 times, 1.67 times, 2 times, and 2.33 times the impurity concentration of the n-type low concentration region 22.
  • Planar MOSFETs were prepared (hereinafter referred to as 18th to 21st examples).
  • the tenth example was prepared in which the impurity concentration of the n-type high concentration region 21 was 2.5 times the impurity concentration of the n-type low concentration region 22.
  • turn-off loss and turn-off dv / dt were measured. From the result shown in FIG.
  • the trade-off relationship between the turn-off loss and the turn-off dv / dt can be improved as the ratio of the impurity concentration of the n-type high concentration region 21 to the impurity concentration of the n-type low concentration region 22 increases. I knew it was possible. In the eighteenth to twenty-first embodiments, the trade-off relationship between the turn-off loss and the turn-off dv / dt can be improved almost similarly. In the tenth embodiment, the impurity concentration ratio is tripled, and the impurity concentration of the p-type low concentration region 24 is decreased by 0.45 ⁇ 10 15 / cm 3 from the first main surface side to the second main surface side.
  • the ratio of the impurity concentration of the n-type high concentration region 21 to the impurity concentration of the n-type low concentration region 22 is preferably 1.2 times or more and 3 times or less, and preferably 2.5 times or less.
  • the main methods for manufacturing the SJ-MOSFET include a multi-stage epi method and a trench filling method.
  • the trench embedding method is simpler than the multi-stage epi method because a parallel pn structure can be formed by forming a deep trench once in the n epi layer and embedding the p-type epi layer.
  • the avalanche resistance is weak because the current-voltage characteristics during avalanche are negative under charge balance conditions where the withstand voltage reaches a peak.
  • a device capable of improving the Eoff-dv / dt trade-off can be manufactured by a trench filling method that is simpler than the multi-stage epi method.
  • FIG. 31 and 32 are cross-sectional views sequentially showing the manufacturing process of the semiconductor device according to the seventh embodiment.
  • an n-type low concentration region 42 and a high concentration n-type surface region 43 are sequentially deposited in an n + drain region 41, and a resist 45 is patterned on the mask oxide film 44 on the surface.
  • the mask oxide film 44 is etched to open the surface of the n-type surface region 43, and then deep trench etching is performed as shown in FIG. A trench 46 is formed.
  • FIG. 31D a low-concentration p-epi layer 47 is epitaxially grown and buried in the deep trench 46.
  • the surface of the low concentration p-epi layer 47 is etched back by plasma etching or the like so that the height of the low concentration p-epi layer 47 and the n-type low concentration region 42 are substantially equal.
  • a high concentration p layer 48 is buried in the deep trench 46 by epitaxial growth, and a high concentration p layer 48 is formed on the surface of the low concentration p epi layer 47.
  • the surface is flattened by chemical mechanical polishing (CMP) or the like.
  • FIG. 32D which is a subsequent process, follows the same process as the process for forming the planar MOS structure of the first embodiment, and a final device shape is obtained.
  • 49 is a p base region
  • 50 is an n + source region
  • 51 is a gate insulating film
  • 52 is a gate electrode
  • 53 is an interlayer insulating film
  • 54 is a source electrode.
  • the low-concentration p-epi layer 47 and the n-type low-concentration region 42 are generally in charge balance
  • the n-type surface region 43 and high-concentration p-layer 48 are generally in charge balance.
  • the depths of the n-type surface region 43 and the high-concentration p layer 48 are not less than 1/8 and not more than 1/2 of the depth of all parallel pn layer portions with respect to the first main surface.
  • the seventh embodiment since a device capable of improving the Eoff-dv / dt trade-off can be manufactured by the embedded epi method, compared with the case where a similar device is manufactured in the multi-stage epi method.
  • the process can be simplified.
  • FIG. 33 is a cross-sectional view sequentially illustrating manufacturing steps of the semiconductor device according to the eighth embodiment.
  • manufacturing is performed in the same procedure as in FIGS. 31 (a) to 31 (d).
  • the surface of the low-concentration p-epi layer 47 is not etched back, and the high-concentration p-epi layer 47 is buried on the low-concentration p-epi layer 47 buried in the deep trench 46 as shown in FIG. Layer 55 is formed.
  • the surface is planarized by chemical mechanical polishing (CMP) or the like.
  • CMP chemical mechanical polishing
  • the eighth embodiment is a manufacturing method that omits the etch-back of the low-concentration p-epi layer 47 shown in FIG. 32A in the seventh embodiment, the process is simpler than the seventh embodiment. be able to.
  • the low-concentration p-epi layer 47 and the n-type low-concentration region 42 are substantially in charge balance, and the n-type surface region 43 and high-concentration p-layer 55 are in general charge balance.
  • the depths of the n-type surface region 43 and the high-concentration p layer 55 are 1 / or more and 1 ⁇ 2 or less of the depth of all parallel pn layer portions with respect to the first main surface.
  • the eighth embodiment since a device capable of improving the Eoff-dv / dt trade-off can be produced by the embedded epi method, compared to the case where a similar device is manufactured in the multi-stage epi method.
  • the process can be simplified.
  • the depths of the n-type surface region 43 and the high-concentration p layers 48 and 55 are substantially equal.
  • the high-concentration p-layers 48 and 55 are formed on the n-type surface. What is necessary is just to form so that it may become deeper than the area
  • FIG. 34 is a cross-sectional view sequentially illustrating manufacturing steps of the semiconductor device according to the ninth embodiment.
  • the manufacturing is performed in the same procedure as that shown in FIGS.
  • a low-concentration p-epi layer 47 is buried in the deep trench 46 by epitaxial growth. It is desirable that the low-concentration p-epi layer 47 has a smaller amount of filling than that in FIG. This is because the amount of etch back in the subsequent process can be reduced.
  • FIG. 34B the surface of the low-concentration p-epi layer 47 is etched back by plasma etching or the like.
  • the low-concentration p-epi layer 47 is etched back deeply so that the height is lower than the lower end of the n-type surface region 43. .
  • the high-concentration p layer 48 is buried in the deep trench 46 by epitaxial growth, and the high-concentration p layer 48 is formed on the surface of the low-concentration p epi layer 47.
  • the surface is planarized by CMP or the like.
  • the structure shown in FIG. 34E is obtained as the final device shape.
  • the low-concentration p-epi layer 47 and the n-type low-concentration region 42 are substantially in charge balance, and the high-concentration p-layer 48 facing the n-type surface region 43 is substantially charge-balanced. It has become.
  • the lower end of the high concentration p layer 48 is formed deeper than the lower end of the n type surface region 43, the high concentration p layer 48 and the n type low concentration region 42 face each other. The part which becomes is p rich.
  • the depths of the n-type surface region 43 and the high-concentration p layer 48 are not less than 1/8 and not more than 1/2 of the depth of all parallel pn layer portions with respect to the first main surface.
  • a device capable of achieving not only the Eoff-dv / dt trade-off improvement similar to the seventh embodiment but also the avalanche resistance improvement by providing the p-rich region can be produced by the embedded epi method.
  • a region facing a certain region is a portion located at substantially the same depth as a certain region and adjacent to a certain region (hereinafter, the same applies to Embodiments 10 to 12).
  • FIG. 35 is a cross-sectional view of the manufacturing process when the manufacturing process of the semiconductor device according to the ninth embodiment is applied to the manufacturing method of manufacturing the semiconductor device according to the second embodiment.
  • FIG. 35 is a cross-sectional view sequentially illustrating the manufacturing steps of the semiconductor device according to the tenth embodiment.
  • the manufacturing is performed in the same procedure as that shown in FIGS.
  • FIG. 35A as in FIG. 34A, a low-concentration p-epi layer 47 is buried in the deep trench 46 by epitaxial growth.
  • FIG. 35A a low-concentration p-epi layer 47 is buried in the deep trench 46 by epitaxial growth.
  • the low-concentration p-epi layer 47 is not etched back, and the high-concentration p-layer 55 is formed on the low-concentration p-epi layer 47. Thereafter, as shown in FIG. 35C, the surface is flattened by CMP or the like. The final device shape is as shown in FIG.
  • the tenth embodiment is different from the ninth embodiment in that the average concentration of the low-concentration p-epi layer 47 and the high-concentration p-layer 55 facing the n-type surface region 43 on the first main surface side is almost the same.
  • the charge balance is the same as in the ninth embodiment.
  • the depths of n-type surface region 43 and high-concentration p layer 55 are not less than 1/8 and not more than 1/2 of the depth of all parallel pn layer portions with reference to the first main surface. ing.
  • FIG. 36A is cross-sectional views sequentially showing manufacturing steps of the semiconductor device according to the eleventh embodiment.
  • the manufacturing is performed in the same procedure as that shown in FIGS.
  • FIG. 36B a low-concentration p-epi layer 47 is buried in the deep trench 46 by epitaxial growth.
  • the low-concentration p-epi layer 47 is etched back, and then the medium-concentration p-layer 56 is buried by epitaxial growth as shown in FIG.
  • FIG. 36B shows that the manufacturing is performed in the same procedure as that shown in FIGS.
  • the intermediate concentration p layer 56 is etched back so that the upper surface of the intermediate concentration p layer 56 and the upper surface of the n-type low concentration region 42 have substantially the same height.
  • a high concentration p layer 57 is buried in the deep trench 46 by epitaxial growth, and a high concentration p layer 57 is formed on the surface of the intermediate concentration p layer 56.
  • the surface is planarized by CMP or the like.
  • the final device shape is as shown in FIG.
  • the low-concentration p-epi layer 47 and the n-type low-concentration region 42 opposed thereto are almost in charge balance, and the n-type surface region 43 is a high-concentration p-layer on the first main surface side. 57 is almost in charge balance.
  • the portion where the medium concentration p layer 56 and the n-type low concentration region 42 opposed to the medium concentration p layer 56 are p-rich so that the avalanche resistance can be improved by avoiding the negative resistance.
  • the depth of the n-type surface region 43 is not less than 1/8 and not more than 1/2 of the depth of all parallel pn layer portions with respect to the first main surface.
  • the depths of the high-concentration p layer 57 and the medium-concentration p layer 56 are 8 or more and 1 ⁇ 2 or less of the depth of all parallel pn layer portions.
  • the portion where the high-concentration p layer 48 and the n-type low concentration region 42 face each other is the portion where the medium concentration p layer 56 and the n-type low concentration region 42 face each other in the eleventh embodiment.
  • the degree of p-riching in the eleventh embodiment is lower than that in the ninth embodiment, and the Eoff-dv / dt tradeoff is improved.
  • the manufacturing method of the eleventh embodiment it is possible to easily manufacture a device that can simultaneously achieve the Eoff-dv / dt trade-off and the avalanche resistance improvement.
  • FIG. 38 is a main cross-sectional view of the manufacturing process when the manufacturing process of the semiconductor device according to the tenth embodiment is used in the manufacturing process of the semiconductor device according to the eighth embodiment.
  • FIG. 38 is a cross-sectional view sequentially illustrating the manufacturing steps of the semiconductor device according to the twelfth embodiment.
  • the manufacturing is performed in the same procedure as that shown in FIGS.
  • FIG. 38A a low concentration p-epi layer 47 is buried in the deep trench 46 by epitaxial growth.
  • a medium concentration p layer 58 is buried by epitaxial growth inside the low concentration p epi layer 47.
  • FIG. 38C a high concentration p layer 59 is embedded in the low concentration p epi layer 47 by epitaxial growth.
  • the surface is flattened by CMP or the like.
  • the final device shape is as shown in FIG.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made.
  • the dimensions and concentrations described in the embodiments are examples, and the present invention is not limited to these values.
  • the first conductivity type is n-type and the second conductivity type is p-type.
  • the first conductivity type is p-type and the second conductivity type is n-type. It holds.
  • the present invention is not limited to MOSFETs but can be applied to IGBTs, bipolar transistors, FWDs (Free Wheeling Diodes), Schottky diodes, and the like.
  • a structure having a trench gate structure may be used instead of the planar gate structure.
  • the semiconductor device according to the present invention is useful for a high-power semiconductor device, and in particular, has a high breakdown voltage such as a MOSFET, IGBT, bipolar transistor, FWD, or Schottky diode having a parallel pn structure in the drift portion. And suitable for a semiconductor device capable of achieving both a large current capacity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 素子活性部とn+ドレイン領域(11)との間には、ドリフト層として、並列pn層(20)が設けられている。並列pn層(20)は、n型領域(1)とp型領域(2)とが交互に繰り返し接合されてできている。n型領域(1)の第1主面側には、n型高濃度領域(21)が設けられている。n型高濃度領域(21)は、n型領域(1)の第2主面側に設けられたn型低濃度領域(22)よりも高い不純物濃度を有する。n型高濃度領域(21)は、n型低濃度領域(22)の1.2倍以上3倍以下の不純物濃度、望ましくは1.5倍以上2.5倍以下の不純物濃度を有する。また、n型高濃度領域(21)は、n型領域(1)のうち、p型領域(2)に隣接する領域の厚さの1/3以下の厚さ、望ましくは1/8以上1/4以下の厚さを有する。

Description

半導体装置
 この発明は、半導体装置に関する。
 一般に、半導体装置は、電極が半導体基板の片面に形成された横型の素子と、半導体基板の両面に電極を有する縦型の素子に分類される。縦型半導体装置は、オン状態のときにドリフト電流が流れる方向と、オフ状態のときに逆バイアス電圧による空乏層が伸びる方向とが同じである。通常のプレーナ型のnチャネル縦型MOSFET(MOSFET:Metal Oxide Semiconductor Field Effect Transistor:MOS型電界効果トランジスタ)では、高抵抗のn-ドリフト層の部分は、オン状態のときに、縦方向にドリフト電流を流す領域として働く。従って、このn-ドリフト層の電流経路を短くすれば、ドリフト抵抗が低くなるので、MOSFETの実質的なオン抵抗を下げることができるという効果が得られる。
 その一方で、高抵抗のn-ドリフト層の部分は、オフ状態のときには空乏化して耐圧を高める。従って、n-ドリフト層が薄くなると、pベース領域とn-ドリフト層との間のpn接合から進行するドレイン-ベース間空乏層の広がる幅が狭くなり、耐圧が低下してしまう。逆に、耐圧の高い半導体装置では、n-ドリフト層が厚いため、オン抵抗が大きくなり、導通損失が増えてしまう。このように、オン抵抗と耐圧との間には、トレードオフ関係がある。
 このトレードオフ関係は、IGBT(Insulated Gate Bipolar Transistor:絶縁ゲート型バイポーラトランジスタ)やバイポーラトランジスタやダイオード等の半導体装置においても同様に成立することが知られている。また、このトレードオフ関係は、オン状態のときにドリフト電流が流れる方向と、オフ状態のときの逆バイアスによる空乏層の伸びる方向とが異なる横型半導体装置にも共通である。
 本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および-は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。
 図39は、従来の超接合半導体装置を示す断面図である。上述したトレードオフ関係による問題の解決法として、ドリフト層を、不純物濃度を高めたn型領域101とp型領域102とを交互に繰り返し接合した構成の並列pn層120とした超接合(Super Junction:SJ)半導体装置が公知である。素子活性部には、素子の表面構造として、pベース領域103、n型表面領域104、p+コンタクト領域105、n+ソース領域106、ゲート絶縁膜107、ゲート電極108、層間絶縁膜109およびソース電極110が設けられている。第2主面には、n+ドレイン領域111に接するドレイン電極112が設けられている(例えば、下記特許文献1、下記特許文献2、下記特許文献3参照。)。並列pn層120は、素子の表面構造とn+ドレイン領域111との間に設けられている。
 図40は、図39に示す超接合半導体装置の不純物濃度分布を示す特性図である。図40には、n型表面領域104の第1主面側の端部(以下、上端とする)から第2主面側方向(以下、深さ方向とする)におけるn型不純物濃度分布(切断線AA-AA’)と、p+コンタクト領域105の上端から深さ方向におけるp型不純物濃度分布(切断線BB-BB’)とを示す。第1深さd0は、pベース領域103の上端からpベース領域103の第2主面側の端部(以下、下端とする)までの深さである。第2深さd10は、pベース領域103の下端からp型領域102の下端までの深さである。図39では、n型領域101およびp型領域102の不純物濃度は、深さ方向に均一となっている。
 このような構造の半導体装置では、並列pn層の不純物濃度が高くても、オフ状態のときに、空乏層が、並列pn層の縦方向に伸びる各pn接合から横方向に広がり、ドリフト層全体を空乏化するため、高耐圧化を図ることができる。
 また、耐圧向上やオン抵抗の低減を図った別の超接合半導体装置として、次のような装置が提案されている。n+型ドレイン層上に、第1n型ピラー層と、p型ピラー層と、第2n型ピラー層とを周期的に交互に配置してなるスーパージャンクション構造を有している。p型ピラー層、第2n型ピラー層は、ドレイン電極の側よりもソース電極の側の方が不純物濃度が大きい(例えば、下記特許文献4参照。)。
 また、別の装置として、次のような装置が提案されている。第1導電型半導体基板の主面に形成された第1導電型の第1半導体ピラー層と第1半導体ピラー層に隣接した第2導電型の第2半導体ピラー層と、第2半導体ピラー層に隣接した第1導電型の第3半導体ピラー層と、第2半導体ピラー層の上部表面に設けられた第2導電型の半導体ベース層とを有し、半導体ベース層にMOSトランジスタが形成されている。第1乃至第3半導体ピラー層の上側領域のキャリア濃度が下側領域のキャリア濃度より高く設定されている(例えば、下記特許文献5参照。)。
 また、別の装置として、次のような装置が提案されている。n+ドレイン領域の上にn型ドリフト領域とp型仕切り領域とを交互に配置した並列pn構造部があり、そのp型仕切り領域の上にpベース領域が形成され、そのpベース領域の表面層に選択的にn+ソース領域とp+コンタクト領域とが形成されている。n型ドリフト領域の上方には不純物濃度の高い表面n型ドリフト領域が形成されている。表面n型ドリフト領域とn+ソース領域とに挟まれたpベース領域の表面上にはゲート絶縁膜を介してゲート電極が設けられている。n+ソース領域とp+コンタクト領域との表面に共通に接触してソース電極が設けられ、n+ドレイン領域の裏面に接してドレイン電極が設けられている。ゲート電極とソース電極とを絶縁するための絶縁膜が設けられている(例えば、下記特許文献6参照。)。
 また、別の装置として、次のような装置が提案されている。縦型パワーMOSFETであって、a)当該MOSFETの一の表面に設けられたドレインコンタクトであって、当該ドレインコンタクト上に第1導電型の高度にドープされた基板を備えるドレインコンタクトと、b)前記ドレインコンタクトの反対側の前記基板上に設けられたブロッキング層であって、i)第1の複数の縦型セクションそれぞれが、6つの四角形の面を有する平行六面体であり、前記ブロッキング層の縦方向の厚さよりも短い水平方向の厚さを有する第1の複数の縦型セクションであって、ii)P導電型の縦型セクションとN導電型の縦型セクションが交互に配置された第1の複数の縦型セクションを具えるブロッキング層と、c)前記基板と反対側の前記ブロッキング層の一の面に設けられた、前記第1導電型と反対の第2導電型の第2の複数のウェル領域と、d)前記第1導電型の第3の複数の高度にドープされたソース領域であって、当該ソース領域のうちの2つが前記第2の複数の各ウェル領域内に配置された、前記第3の複数の高度にドープされたソース領域と、e)前記基板と反対側の前記ブロッキング層の一の面に設けられた前記第1導電型の第4の複数の領域であって、当該領域がそれぞれ、前記第2の複数のウェル領域の2つのウェル領域の間に延在する前記第1導電型の第4の複数の領域と、f)第5の複数のゲートポリ領域であって、当該ゲートポリ領域がそれぞれ、2つの隣接する各ウェル領域内の一のソース領域と、前記第4の複数の領域のうちの一つに覆い被さる第5の複数のゲートポリ領域と、を具える(例えば、下記特許文献7参照。)。
 また、別の装置として、次のような装置が提案されている。第1導電型の第1の半導体層と、前記第1の半導体層に電気的に接続された第1の主電極と、前記第1の半導体層内に形成され、横方向に周期的に配置され、縦方向における不純物量の分布が前記第1の半導体層内の縦方向における不純物量の分布とは異なる第2導電型の第2の半導体層と、前記第1の半導体層および第2の半導体層の表面に選択的に形成された第2導電型の第3の半導体層と、前記第3の半導体層の表面に選択的に形成された第1導電型の第4の半導体層と、前記第3の半導体層および前記第4の半導体層の表面に接合するように形成された第2の主電極と、前記第1の半導体層、第3の半導体層および第4の半導体層の表面にゲート絶縁膜を介して形成された制御電極とを具備する。前記第1の半導体層は、前記第2の主電極から前記第1の主電極に向かう縦方向において不純物濃度が大きくなる分布を有し、前記第2の半導体層は、前記第2の主電極から前記第1の主電極に向かう縦方向において不純物濃度が一定である(例えば、下記特許文献8参照。)。
 また、別の装置として、次のような装置が提案されている。第1と第2の主面と、第1と第2の主面にそれぞれ設けられた主電極と、第1と第2の主面間に第1導電型低抵抗層と、第1導電型領域と第2導電型領域とを交互に配置した並列pn層とを備える半導体素子において、第1主面側における前記第2導電型領域の不純物濃度が隣接する第1導電型領域の不純物濃度より高く、第2主面側における前記第2導電型領域の不純物濃度が隣接する第1導電型領域の不純物濃度より低くなっている。前記第2導電型領域の不純物濃度が厚さ方向に均一であり、かつ第1主面側における前記第1導電型領域の不純物濃度が第2主面側における前記第1導電型領域の不純物濃度より低くなっている(例えば、下記特許文献9参照。)。
 また、別の装置として、次のような装置が提案されている。装置は、第1導電型の第1半導体層上に交互に配設された、第1導電型の第2半導体層と第2導電型の第3半導体層とを有する。装置は更に、第2半導体層間で第3半導体層の上部と夫々接するように配設された第2導電型の第4半導体層と、第4半導体層の表面にそれぞれ形成された第1導電型の第5半導体層と、を有する。第1半導体層は第2半導体層よりも第1導電型の不純物の濃度が低い。第3半導体層は、基本部分と、深さ方向において不純物量が基本部分よりも大きくなるように局所的に形成された高不純物量部分とを含む(例えば、下記特許文献10参照。)。
米国特許第5216275号明細書 米国特許第5438215号明細書 特開平9-266311号公報 特開2007-019146号公報 特開2006-066421号公報 特許第4304433号公報 特許第4263787号公報 特開2004-119611号公報 特開2004-072068号公報 特開2006-179598号公報
 パワーMOSFETはスイッチングデバイスとして使用されるため、オン状態のときに発生する導通損失を低減することに加え、スイッチング時に発生するスイッチング損失を低減することが求められる。スイッチング損失を増大させる主な要因として、例えばターンオフ損失が挙げられる。ターンオフ損失を低減するためには、例えばターンオフ時のドレイン電圧の時間変化率(以下、ターンオフdv/dtとする)を高めればよい。しかし、ターンオフdv/dtを高くすることは、ノイズを発生させる原因となる。このため、ターンオフdv/dtは低いことが望ましい。このように、ターンオフ損失とターンオフdv/dtとの間には、トレードオフ関係がある。
 しかしながら、上述した超接合半導体装置では、50~100V程度の低いドレイン電圧で、並列pn層に空乏層が完全に拡がりきってしまう。このため、ゲート-ドレイン間容量(ミラー容量)が極端に低くなり、ターンオフdv/dtは高くなる。ゲート抵抗を用いることでターンオフdv/dtを低くすることができるが、SJ-MOSFETのゲート-ドレイン間容量が非常に小さいため、従来のMOSFETよりも大きなゲート抵抗を用いる必要がある。ゲート抵抗を大きくした場合、ミラー期間が長くなり、ターンオフ損失が増大してしまう。
 図41は、従来の超接合半導体装置におけるターンオフ時の電気的特性を示す特性図である。図41は、ターンオフ損失とターンオフdv/dtとのトレードオフ関係を示すシミュレーション結果である。図41に示す結果では、ターンオフdv/dtが電源高調波規制を満たす例えば10kV/μsのときに、従来のSJ-MOSFETのターンオフ損失は0.5mJ程度となった。従来のMOSFETのターンオフ損失は0.1mJ程度となった。
 つまり、従来の超接合半導体装置では、従来の半導体装置に比べて、ターンオフ損失とターンオフdv/dtとのトレードオフ関係が5倍程度悪化してしまう。このため、例えばオン抵抗を1/5程度に低減することができたとしても、その効果は損なわれてしまう。このように、超接合半導体装置では、オン抵抗と耐圧とのトレードオフ関係を改善することができる反面、ターンオフ損失とターンオフdv/dtとのトレードオフ関係が悪化してしまう。
 また、超接合半導体装置では、並列pn層のチャージバランスを、装置の耐圧が最も高くなるチャージバランス条件とした場合、ドレイン-ソース間に流れる電流が増加したときにドレイン電圧が低下してしまう。つまり、アバランシェ突入時に負性抵抗が発生し、アバランシェ耐量が低減してしまう。
 この発明は、上述した従来技術による問題点を解消するため、ターンオフ損失とターンオフdv/dtとのトレードオフ関係を改善する半導体装置を提供することを目的とする。また、アバランシェ耐量を向上する半導体装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するため、請求項1の発明にかかる半導体装置は、以下の特徴を有する。第1主面側に設けられた素子活性部と、第2主面側に設けられた低抵抗層と、前記素子活性部と前記低抵抗層との間に設けられ、第1導電型領域および第2導電型領域が交互に配置された並列pn層と、前記第2導電型領域の前記第1主面側に設けられ、当該第2導電型領域よりも高い不純物濃度を有する第2導電型ベース領域と、前記第1導電型領域の前記第1主面側に設けられ、前記第2導電型ベース領域の前記第2主面側の端部よりも当該第2主面側に位置し、当該第1導電型領域の当該第2主面側の不純物濃度よりも高い不純物濃度を有する第1導電型高濃度領域と、を備える。
 また、請求項2の発明にかかる半導体装置は、請求項1に記載の発明において、前記第1導電型高濃度領域は、前記第2導電型ベース領域の前記第2主面側の端部から前記第2導電型領域の第2主面側の端部までの深さに位置する前記第1導電型領域のうち、当該第1導電型高濃度領域を除く領域の1.2倍以上3倍以下の不純物濃度を有することを特徴とする。
 また、請求項3の発明にかかる半導体装置は、請求項1に記載の発明において、前記第1導電型領域の前記第1主面側に設けられ、前記第1導電型高濃度領域の前記第1主面側の端部に接する第1導電型表面領域を、さらに備えることを特徴とする。
 また、請求項4の発明にかかる半導体装置は、請求項3に記載の発明において、前記第1導電型表面領域は、前記第2導電型ベース領域と同じ深さ、または前記第2導電型ベース領域よりも前記第1主面側に浅く設けられていることを特徴とする。
 また、請求項5の発明にかかる半導体装置は、請求項3に記載の発明において、前記第1導電型表面領域は、前記第1導電型高濃度領域よりも高い不純物濃度を有することを特徴とする。
 また、請求項6の発明にかかる半導体装置は、請求項3に記載の発明において、前記第1導電型高濃度領域は、前記第1導電型表面領域も含めて、前記第2導電型ベース領域の第2主面側の端部から前記第2導電型領域の第2主面側の端部までの深さに位置する前記第1導電型領域のうち、当該第1導電型高濃度領域を除く領域の1.2倍以上3倍以下の不純物濃度を有することを特徴とする。
 また、請求項7の発明にかかる半導体装置は、請求項1に記載の発明において、前記第1導電型高濃度領域は、前記第2導電型ベース領域の前記第2主面側の端部から前記第2導電型領域の第2主面側の端部までの深さに位置する前記第1導電型領域の厚さの1/3以下の厚さを有することを特徴とする。
 また、請求項8の発明にかかる半導体装置は、請求項1に記載の発明において、前記第1導電型高濃度領域は、前記第2導電型ベース領域の前記第2主面側の端部から前記第2導電型領域の第2主面側の端部までの深さに位置する前記第1導電型領域の厚さの1/8以上1/4以下の厚さを有することを特徴とする。
 また、請求項9の発明にかかる半導体装置は、請求項1に記載の発明において、前記第1導電型高濃度領域は、前記第2導電型領域のうち当該第1導電型高濃度領域の隣接する領域の1.2倍以上3倍以下の不純物濃度を有することを特徴とする。
 また、請求項10の発明にかかる半導体装置は、請求項1に記載の発明において、前記第2導電型領域のうち、前記第2主面側の不純物濃度よりも高い不純物濃度を有する前記第1主面側の第2導電型高濃度領域を、さらに備えることを特徴とする。
 また、請求項11の発明にかかる半導体装置は、請求項10に記載の発明において、前記第1導電型高濃度領域は、前記第2導電型ベース領域の前記第2主面側の端部から前記第2導電型領域の第2主面側の端部までの深さに位置する前記第1導電型領域のうち、当該第1導電型高濃度領域を除く領域の1.5倍以上3倍以下の不純物濃度を有することを特徴とする。
 また、請求項12の発明にかかる半導体装置は、請求項10に記載の発明において、前記第2導電型高濃度領域は、前記第2導電型領域の厚さの1/8以上1/2以下の厚さを有することを特徴とする。
 また、請求項13の発明にかかる半導体装置は、請求項10に記載の発明において、前記第2導電型高濃度領域は、前記第1導電型高濃度領域と同じ厚さを有することを特徴とする。
 また、請求項14の発明にかかる半導体装置は、請求項10に記載の発明において、前記第2導電型領域のうち前記第2導電型高濃度領域を除く領域は、前記第1導電型領域のうち前記第1導電型高濃度領域を除く領域と同じ不純物量を有することを特徴とする。
 また、請求項15の発明にかかる半導体装置は、請求項10に記載の発明において、前記第2導電型領域のうち前記第2導電型高濃度領域を除く領域は、前記第1主面側から前記第2主面側にかけて、不純物濃度が徐々に低くなっていることを特徴とする。
 また、請求項16の発明にかかる半導体装置は、請求項10に記載の発明において、前記第1導電型高濃度領域および前記第2導電型高濃度領域が、前記第1主面側から前記第2主面側にかけて、不純物濃度が徐々に低くなっていることを特徴とする。
 また、請求項17の発明にかかる半導体装置は、請求項10に記載の発明において、前記第2導電型高濃度領域は、前記第1導電型高濃度領域の前記第2主面側の端部よりも当該第2主面側に深く設けられていることを特徴とする。
 また、請求項18の発明にかかる半導体装置は、請求項17に記載の発明において、前記第2導電型高濃度領域のうち、前記第1導電型高濃度領域の前記第2主面側の端部よりも当該第2主面側に深く設けられている領域は、当該領域の隣接する前記第1導電型領域よりも高い不純物濃度を有し、かつ当該第2導電型高濃度領域よりも低い不純物濃度を有することを特徴とする。
 また、請求項19の発明にかかる半導体装置は、請求項17に記載の発明において、前記第2導電型高濃度領域のうち、前記第1導電型高濃度領域の前記第2主面側の端部よりも当該第2主面側に深く設けられている領域は、当該領域の隣接する前記第1導電型領域の1.2倍以上の不純物濃度を有することを特徴とする。
 また、請求項20の発明にかかる半導体装置は、請求項1~19のいずれか一つに記載の発明において、前記第1導電型領域および前記第2導電型領域の平面形状は、ストライプ状、六方格子状または正方状であることを特徴とする。
 上述した発明によれば、第1導電型領域の第1主面側に第1導電型高濃度領域を設けることで、第1導電型領域の第1主面側を第2主面側よりもn型不純物量が多い構成としている。これにより、並列pn層の第1主面側で空乏層が拡がりにくくなり、低いドレイン電圧で並列pn層が完全に空乏化することを防ぐことができる。このため、ゲート・ドレイン容量が極端に低くなることを防止することができ、ターンオフdv/dtが高くなることを回避することができる。したがって、ターンオフdv/dtを低くするためにゲート抵抗を大きくする必要がなくなるので、ターンオフ損失が増大することを防止することができる。
 また、請求項17~19の発明によれば、第2導電型高濃度領域を、第1導電型高濃度領域よりも第2主面側に深く設けることで、並列pn層の第1主面側のp型不純物量がn型不純物量よりも多くなる構成としている。これにより、アバランシェ時の電流-電圧の負性抵抗を回避することができ、アバランシェ耐量を向上することができる。
 本発明にかかる半導体装置によれば、ターンオフ損失とターンオフdv/dtとのトレードオフ関係を改善することができるという効果を奏する。また、アバランシェ耐量を向上することができるという効果を奏する。
図1は、実施の形態1にかかる半導体装置を示す断面図である。 図2は、実施の形態1にかかる半導体装置の不純物濃度分布を示す特性図である。 図3は、実施の形態2にかかる半導体装置を示す断面図である。 図4は、実施の形態3にかかる半導体装置を示す断面図である。 図5は、実施の形態3にかかる半導体装置の不純物濃度分布を示す特性図である。 図6は、実施の形態4にかかる半導体装置を示す断面図である。 図7は、実施の形態4にかかる半導体装置の不純物濃度分布を示す特性図である。 図8は、実施の形態5にかかる半導体装置を示す断面図である。 図9は、実施の形態5にかかる半導体装置の不純物濃度分布を示す特性図である。 図10は、実施の形態6にかかる半導体装置を示す断面図である。 図11は、実施の形態6にかかる半導体装置の不純物濃度分布を示す特性図である。 図12は、実施例1の半導体装置におけるターンオフ時の電気的特性を示す特性図である。 図13は、実施例2にかかる半導体装置のn型不純物濃度分布を示す特性図である。 図14は、実施例2の半導体装置におけるターンオフ時の電気的特性を示す特性図である。 図15は、実施例2にかかる半導体装置の空乏層の拡がりを示す概念図である。 図16は、実施例2にかかる半導体装置の空乏層の拡がりを示す概念図である。 図17は、実施例2にかかる半導体装置の空乏層の拡がりを示す概念図である。 図18は、実施例2にかかる半導体装置におけるターンオフ時の電気的特性を示す特性図である。 図19は、実施例3にかかる半導体装置における耐圧とオン抵抗との関係を示す特性図である。 図20は、実施例4にかかる半導体装置における電気的特性を示す特性図である。 図21は、実施例4にかかる半導体装置におけるターンオフ時の電気的特性を示す特性図である。 図22は、実施例5にかかる半導体装置のp型不純物濃度分布を示す特性図である。 図23は、実施例5にかかる半導体装置における電気的特性を示す特性図である。 図24は、実施例5にかかる半導体装置におけるターンオフ時の電気的特性を示す特性図である。 図25は、実施例6にかかる半導体装置の不純物濃度分布を示す特性図である。 図26は、実施例6にかかる半導体装置における電気的特性を示す特性図である。 図27-1は、実施例6にかかる半導体装置におけるターンオフ時の電気的特性を示す特性図である。 図27-2は、実施例6にかかる半導体装置におけるターンオフ時の電気的特性を示す特性図である。 図28-1は、実施例7にかかる半導体装置における電気的特性を示す特性図である。 図28-2は、実施例7にかかる半導体装置における電気的特性を示す特性図である。 図29-1は、実施例7にかかる半導体装置におけるターンオフ時の電気的特性を示す特性図である。 図29-2は、実施例7にかかる半導体装置におけるターンオフ時の電気的特性を示す特性図である。 図30は、実施例8にかかる半導体装置におけるターンオフ時の電気的特性を示す特性図である。 図31は、実施の形態7にかかる半導体装置の製造工程(その1)を示す断面図である。 図32は、実施の形態7にかかる半導体装置の製造工程(その2)を示す断面図である。 図33は、実施の形態8にかかる半導体装置の製造工程を示す断面図である。 図34は、実施の形態9にかかる半導体装置の製造工程を示す断面図である。 図35は、実施の形態10にかかる半導体装置の製造工程を示す断面図である。 図36は、実施の形態11にかかる半導体装置の製造工程(その1)を示す断面図である。 図37は、実施の形態11にかかる半導体装置の製造工程(その2)を示す断面図である。 図38は、実施の形態12にかかる半導体装置の製造工程を示す断面図である。 図39は、従来の超接合半導体装置を示す断面図である。 図40は、図39に示す超接合半導体装置の不純物濃度分布を示す特性図である。 図41は、従来の超接合半導体装置におけるターンオフ時の電気的特性を示す特性図である。
 以下に添付図面を参照して、この発明にかかる半導体装置の好適な実施の形態を詳細に説明する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。
(実施の形態1)
 図1は、実施の形態1にかかる半導体装置を示す断面図である。図1に示す半導体装置は、第1主面側に素子活性部を有し、第2主面側にn+ドレイン領域(低抵抗層)11を有する。素子活性部には、例えばプレーナ型MOSFETの表面構造として、pベース領域(第2導電型ベース領域)3、n型表面領域(第1導電型表面領域)4、p+コンタクト領域5、n+ソース領域6、ゲート絶縁膜7、ゲート電極8、層間絶縁膜9およびソース電極10が設けられている。第2主面には、n+ドレイン領域11に接するドレイン電極12が設けられている。
 素子活性部とn+ドレイン領域11との間には、ドリフト層として、並列pn層20が設けられている。並列pn層20は、n型領域(第1導電型領域)1とp型領域(第2導電型領域)2とが交互に繰り返し接合されてできている。p型領域2は、n+ドレイン領域11に達しないように設けられている。n型領域1およびp型領域2の平面形状は、ストライプ状、六方格子状または正方状である。
 pベース領域3は、p型領域2の第1主面側に設けられている。また、pベース領域3は、p型領域2よりも高い不純物濃度を有する。n型表面領域4は、n型領域1の第1主面側に設けられている。つまり、n型表面領域4は、隣り合うpベース領域3の間に設けられ、pベース領域3に隣接する。n型表面領域4は、後述するn型高濃度領域21よりも高い不純物濃度を有していてもよいし、同じ不純物濃度を有していてもよい。また、n型表面領域4は、pベース領域3と同じ深さで設けられてもよいし、pベース領域3よりも浅く設けられてもよい。n型表面領域4をpベース領域3よりも浅く設けることで、pベース領域3の第2主面側のコーナー近傍の不純物濃度を、p型領域2の第1主面側の不純物濃度と同じ不純物濃度にすることができる。これにより、pベース領域3の第2主面側のコーナー近傍に電界が集中することを防ぎ、耐圧が低減することを防止することができる。
 p+コンタクト領域5およびn+ソース領域6は、pベース領域3の表面層に設けられ、互いに接する。ゲート電極8は、ゲート絶縁膜7を介して、n+ソース領域6、pベース領域3およびn型領域1に跨がっている。ソース電極10は、p+コンタクト領域5およびn+ソース領域6に接する。また、ソース電極10は、層間絶縁膜9によってゲート電極8と絶縁されている。
 n型高濃度領域(第1導電型高濃度領域)21は、n型領域1の第1主面側に設けられている。n型高濃度領域21は、n型表面領域4の第2主面側の端部(以下、下端とする)に接する。また、n型高濃度領域21は、pベース領域3の下端からp型領域2の下端までの深さに位置するn型領域1のうち、n型高濃度領域21を除く領域(以下、n型低濃度領域とする)22よりも高い不純物濃度を有する。
 また、n型高濃度領域21は、pベース領域3の下端からp型領域2の下端までの深さに位置するn型領域1の厚さ(以下、n型領域1のうち、p型領域2に隣接する領域の厚さとする)の1/3以下の厚さを有する。望ましくは、n型高濃度領域21は、n型領域1のうち、p型領域2に隣接する領域の厚さの1/8以上1/4以下の厚さを有するのがよい。n型高濃度領域21をこのような厚さで設けることで、並列pn層20の第1主面側の接合部でチャージインバランスとなることを低減し、耐圧が低下することを防止する。n型高濃度領域21の厚さは例えば5.5μmであってもよい。p型領域2の厚さは例えば40μmであってもよい。このとき、n型領域1のうち、p型領域2に隣接する領域の厚さは例えば40μmである。
 次に、n型領域1およびp型領域2の不純物濃度分布について説明する。図2は、実施の形態1にかかる半導体装置の不純物濃度分布を示す特性図である。図2には、図1の切断線A-A’におけるn型不純物濃度分布と、図1の切断線B-B’におけるp型不純物濃度分布を示す。n型不純物濃度分布は、n型表面領域4の第1主面側の端部(以下、上端とする)から第2主面側方向(以下、深さ方向とする)におけるn型領域1の不純物濃度分布である。p型不純物濃度分布は、p+コンタクト領域5の上端から深さ方向におけるp型領域2の不純物濃度分布である(以下、実施の形態2~実施の形態6において同様)。
 第1深さd0は、pベース領域3の上端から下端までの深さである。第2深さd1は、pベース領域3の下端からn型高濃度領域21の下端までの深さである。第3深さd2は、n型高濃度領域21の下端からp型領域2の下端までの深さである。そして、図2に示すn型不純物濃度分布は、pベース領域3(第1深さd0)の下端から第2主面側にかけて、n型高濃度領域21(第2深さd1)およびn型低濃度領域22(第3深さd2)がこの順に存在する不純物濃度分布を示している。また、図2に示すp型不純物濃度分布は、pベース領域3の下端から第2主面側にかけて、p型領域2(第2深さd1+第3深さd2)が存在する不純物濃度分布を示している。
 図2に示すように、n型領域1は、pベース領域3の下端から第2主面側の領域で、n型高濃度領域21とn型低濃度領域22とからなる異なる2段の不純物濃度分布を有する。n型高濃度領域21は、n型低濃度領域22の1.2倍以上3倍以下好ましくは2.5倍以下の不純物濃度を有するのがよい。つまり、n型領域1は、第1主面側でn型不純物量が多い構成となっている。n型高濃度領域21の不純物濃度は、例えば4.8×1015/cm3であってもよい。n型低濃度領域22の不純物濃度は、例えば3.0×1015/cm3であってもよい。
 また、n型領域1は、n型表面領域4、n型高濃度領域21およびn型低濃度領域22とからなる異なる3段の不純物濃度分布を有してもよい。つまり、図2に示すn型不純物濃度分布では、第1主面側から第2主面側にかけて、n型表面領域4(第1深さd0)、n型高濃度領域21(第2深さd1)およびn型低濃度領域22(第3深さd2)がこの順に存在する3段の不純物濃度分布であってもよい。この場合、n型高濃度領域21は、n型表面領域4も含めて、n型低濃度領域22の1.2倍以上3倍以下好ましくは2.5倍以下の不純物濃度を有していてもよい。
 p型領域2は、均一な不純物濃度分布を有する。つまり、n型高濃度領域21の不純物濃度は、p型領域2のうちn型高濃度領域21の隣接する領域の1.2倍以上3倍以下好ましくは2.5倍以下の不純物濃度を有する。
 以上、説明したように、実施の形態1によれば、n型領域1の第1主面側にn型高濃度領域21を設けることで、n型領域1の第1主面側を第2主面側よりもn型不純物量が多い構成としている。これにより、並列pn層20の第1主面側で空乏層が拡がりにくくなり、低いドレイン電圧で並列pn層20が完全に空乏化することを防ぐことができる。このため、ゲート・ドレイン容量が極端に低くなることを防止することができ、ターンオフdv/dtが高くなることを回避することができる。したがって、ターンオフdv/dtを低くするためにゲート抵抗を大きくする必要がなくなるので、ターンオフ損失が増大することを防止することができる。すなわち、ターンオフ損失とターンオフdv/dtとのトレードオフ関係を、従来よりも改善することができる。
(実施の形態2)
 図3は、実施の形態2にかかる半導体装置を示す断面図である。実施の形態1において、トレンチ構造を適用してもよい。
 実施の形態2では、n型領域1の上端側に、トレンチの内部にゲート絶縁膜17を介してゲート電極18が設けられたトレンチ構造が構成されている。pベース領域3およびn+ソース領域6は、トレンチ側壁に設けられたゲート絶縁膜17に接する。ソース電極10は、層間絶縁膜19によって、ゲート電極18と絶縁されている。n型表面領域は設けられていない。
 図3の切断線C-C’におけるn型領域1のn型不純物濃度分布は、実施の形態1の切断線A-A’におけるn型領域1のn型不純物濃度分布と同様である(図1、図2参照)。図3に示す半導体装置では、n型表面領域が設けられていないため、n型不純物濃度分布は、第2深さd1および第3深さd2のみとなる。また、切断線D-D’におけるp型領域2のp型不純物濃度分布は、実施の形態1の切断線B-B’におけるp型領域2のp型不純物濃度分布と同様である。それ以外の構成は、実施の形態1と同様である。
 以上、説明したように、実施の形態2によれば、トレンチゲート構造を有する半導体装置においても、実施の形態1と同様の効果を得ることができる。
(実施の形態3)
 図4は、実施の形態3にかかる半導体装置を示す断面図である。図4では、並列pn層20のうち、1つのpn接合のみを示す(以下、図6および図8においても同様)。実施の形態1において、p型領域2の第1主面側の不純物濃度を、p型領域2の第2主面側の不純物濃度よりも高くしてもよい。
 実施の形態3では、p型高濃度領域(第2導電型高濃度領域)23は、p型領域2の第1主面側に設けられている。p型高濃度領域23は、pベース領域3の下端に接する。また、p型高濃度領域23は、p型領域2のうちp型高濃度領域23を除く領域(以下、p型低濃度領域とする)24よりも高い不純物濃度を有する。
 また、p型高濃度領域23は、n型高濃度領域21と同様の厚さを有する。望ましくは、p型高濃度領域23は、p型領域2の厚さの1/8以上1/2以下の厚さを有する。p型高濃度領域23の厚さは例えば11μmであってもよい。p型領域2の厚さは例えば37μmであってもよい。また、n型高濃度領域21は、n型低濃度領域22の1.5倍以上3倍以下好ましくは2.5倍以下の不純物濃度を有するのが望ましい。
 次に、p型領域2およびn型領域1の不純物濃度分布について説明する。図5は、実施の形態3にかかる半導体装置の不純物濃度分布を示す特性図である。図5には、第1深さd0の下端から第2主面側にかけての図4の切断線E-E’におけるn型不純物濃度分布と、図4の切断線F-F’におけるp型不純物濃度分布を示す。切断線E-E’におけるn型領域1のn型不純物濃度分布は、実施の形態1と同様である(図2参照)。図5に示すp型不純物濃度分布は、pベース領域3(第1深さd0)の下端から第2主面側にかけて、p型高濃度領域23(第2深さd1)およびp型低濃度領域24(第3深さd2)がこの順に存在する不純物濃度分布を示している。
 図5に示すように、p型領域2は、p型高濃度領域23とp型低濃度領域24とからなる異なる2段の不純物濃度分布を有する。つまり、p型領域2は、第1主面側でp型不純物量が多い構成となっている。p型高濃度領域23は、n型高濃度領域21とほぼ同じ深さでほぼ同じ不純物濃度を有する。p型低濃度領域24は、n型低濃度領域22とほぼ同じ深さでほぼ同じ不純物濃度を有する。つまり、p型領域2のp型不純物濃度分布は、n型領域1のn型不純物濃度分布と同じ分布形状となる。p型高濃度領域23の不純物濃度は、例えば4.7×1015/cm3であってもよい。p型低濃度領域24の不純物濃度は、例えば2.7×1015/cm3であってもよい。それ以外の構成は、実施の形態1と同様である。
 以上、説明したように、実施の形態3によれば、実施の形態1と同様の効果を得ることができる。また、p型領域2の第1主面側にp型高濃度領域23を設けることで、p型領域2の第1主面側を第2主面側よりもp型不純物量が多い構成としている。また、p型高濃度領域23を、n型高濃度領域21とほぼ同じ深さで、かつn型高濃度領域21とほぼ同じ不純物濃度で設けている。このため、並列pn層20の第1主面側の接合面でチャージインバランスとなることを回避することができる。これにより、耐圧が低下することを防止することができる。
(実施の形態4)
 図6は、実施の形態4にかかる半導体装置を示す断面図である。実施の形態3において、p型高濃度領域23を、n型高濃度領域21の下端よりも第2主面側に深く設けてもよい。
 実施の形態4では、p型高濃度領域23が、n型高濃度領域21と同じ不純物濃度で、n型高濃度領域21の下端よりも第2主面側に深く設けられている。このため、p型高濃度領域23の厚さとn型高濃度領域21の厚さの差分だけ、第1主面側におけるp型不純物量をn型不純物量よりも多くすることができる。n型高濃度領域21の厚さは例えば9μmであってもよい。p型高濃度領域23の厚さは例えば16μmであってもよい。p型領域2の厚さは例えば37μmであってもよい。
 次に、p型領域2のn型不純物濃度分布について説明する。図7は、実施の形態4にかかる半導体装置の不純物濃度分布を示す特性図である。図7には、第1深さd0の下端から第2主面側にかけての図6の切断線G-G’におけるn型不純物濃度分布と、図6の切断線H-H’におけるp型不純物濃度分布とを示す。切断線G-G’におけるn型領域1のn型不純物濃度分布は、実施の形態1と同様である(図2参照)。第4深さd3は、n型高濃度領域21の下端からp型高濃度領域23の下端までの深さである。第5深さd4は、p型高濃度領域23の下端からp型領域2の下端までの深さである。
 図7に示すように、p型領域2は、n型高濃度領域21の下端から第4深さd3だけ深く設けられたp型高濃度領域23(第2深さd1+第4深さd3)と、p型低濃度領域24(第5深さd4)とからなる異なる2段の不純物濃度分布を有する。つまり、p型領域2のp型不純物濃度分布は、n型領域1のn型不純物濃度分布と異なる分布形状となる。p型高濃度領域23の不純物濃度は、例えば5.0×1015/cm3であってもよい。p型低濃度領域24の不純物濃度は、例えば3.0×1015/cm3であってもよい。また、p型高濃度領域23は、n型高濃度領域21とほぼ同じ不純物濃度を有する。p型低濃度領域24は、n型低濃度領域22とほぼ同じ不純物濃度を有する。それ以外の構成は、実施の形態3と同様である。
 以上、説明したように、実施の形態4によれば、実施の形態3と同様の効果を得ることができる。また、p型高濃度領域23を、n型高濃度領域21よりも第2主面側に深く設けることで、並列pn層20の第1主面側のp型不純物量がn型不純物量よりも多くなる構成としている。これにより、アバランシェ時の負性抵抗を発生しにくくすることができ、アバランシェ耐量を向上することができる。したがって、ドレイン-ソース間に流れる電流が増加したときに、ドレイン電圧が低下することを防止することができる。
(実施の形態5)
 図8は、実施の形態5にかかる半導体装置を示す断面図である。実施の形態4において、p型高濃度領域23のうち、n型高濃度領域21の下端よりも第2主面側に深く設けた領域を、n型高濃度領域21の下端よりも第1主面側のp型高濃度領域23よりも低い不純物濃度としてもよい。
 実施の形態5では、p型高濃度領域23とp型低濃度領域24の間に、p型高濃度領域23よりも低い不純物濃度を有し、かつn型低濃度領域22よりも高い不純物濃度を有する領域(以下、p型中濃度領域)25が設けられている。p型中濃度領域25は、n型低濃度領域22の第1主面側において、n型低濃度領域22に隣接する。p型高濃度領域23は、n型高濃度領域21と同じ厚さで設けられている。p型高濃度領域23の厚さは例えば9μmであってもよい。p型中濃度領域25の厚さは例えば7μmであってもよい。
 次に、p型領域2のn型不純物濃度分布について説明する。図9は、実施の形態5にかかる半導体装置の不純物濃度分布を示す特性図である。図9には、第1深さd0の下端から第2主面側にかけての図8の切断線I-I’におけるn型不純物濃度分布と、図8の切断線J-J’におけるp型不純物濃度分布とを示す。切断線I-I’におけるn型領域1のn型不純物濃度分布は、実施の形態1と同様である(図2参照)。第5深さd4は、p型中濃度領域25の下端からp型領域2の下端までの深さである。
 図9に示すように、p型領域2は、p型高濃度領域23(第2深さd1)、p型中濃度領域25(第4深さd3)およびp型低濃度領域24(第5深さd4)からなる異なる3段の不純物濃度分布を有する。つまり、p型領域2のp型不純物濃度分布は、n型領域1のn型不純物濃度分布と異なる分布形状となる。また、p型中濃度領域25は、n型領域1のうち、p型中濃度領域25の隣接する領域の1.2倍以上の不純物濃度を有するのがよい。p型中濃度領域25の不純物濃度は、例えば4.0×1015/cm3であってもよい。それ以外の構成は、実施の形態4と同様である。
 以上、説明したように、実施の形態5によれば、実施の形態4と同様の効果を得ることができる。
(実施の形態6)
 図10は、実施の形態6にかかる半導体装置を示す断面図である。実施の形態3において、p型低濃度領域24は、第1主面側から第2主面側にかけて徐々に低くなる不純物濃度分布を有してもよい。
 実施の形態6では、並列pn層20は、例えばエピタキシャル層が積層されてなる構成を有する。n型領域1およびp型領域2は、導入した不純物が拡散して形成される例えば略円弧状のpn接合面を有する並列pn層20が積層されてなる波型の不純物濃度分布(以下、波型の不純物濃度分布とする)を有する。さらに、p型低濃度領域24は、第1主面側から第2主面側にかけて徐々に低くなる不純物濃度分布を有する。p型低濃度領域24の全体の不純物量は、n型低濃度領域22の全体の不純物量と同様である。
 次に、n型領域1およびp型領域2のn型不純物濃度分布について説明する。図11は、実施の形態6にかかる半導体装置の不純物濃度分布を示す特性図である。図11には、図10の切断線K-K’におけるn型不純物濃度分布と、図10の切断線L-L’におけるp型不純物濃度分布を示す。切断線K-K’におけるn型領域1のn型不純物濃度分布は、波型の不純物濃度分布形状である点を除き、実施の形態1と同様である。つまり、n型領域1は、n型高濃度領域21とn型低濃度領域22とからなる異なる2段の不純物濃度分布を有する。また、p型領域2は、p型高濃度領域23と、第1主面側から第2主面側にかけて徐々に低くなる不純物濃度分布を有するp型低濃度領域24とからなる異なる2段の不純物濃度分布を有する。
 次に、半導体装置の製造方法について説明する。まず、n型エピタキシャル層を積層する。ついで、エピタキシャル層全体にn型不純物を導入して熱拡散を行う。ついで、p型領域2の形成領域が開口したマスクを形成する。ついで、p型領域2の形成領域に、p型不純物を導入して熱拡散を行う。これにより、p型領域2が形成される。ここで、p型不純物が導入されていない領域が、n型領域1となる。この工程を繰り返し行い、エピタキシャル層を積層することで、並列pn層20が形成される。このとき、n型高濃度領域21となるエピタキシャル層には、第2主面側よりも高いn型不純物濃度となるようにn型不純物が導入される。また、各エピタキシャル層には、エピタキシャル層内にそれぞれ形成されるp型低濃度領域24の不純物濃度が、第2主面側から第1主面側にかけて徐々に高くなるように、p型不純物が導入される。また、p型高濃度領域23を形成するエピタキシャル層には、第2主面側よりも高いp型不純物濃度となるようにp型不純物を導入する。それ以外の構成は、実施の形態3と同様である。なお、熱拡散は、各エピタキシャル層毎に行ってもよいし、エピタキシャル層の形成と不純物の導入を繰り返し最後にアニールして熱拡散してもよい。
 以上、説明したように、実施の形態6によれば、実施の形態3と同様の効果を得ることができる。
(実施例1)
 図12は、実施例1の半導体装置におけるターンオフ時の電気的特性を示す特性図である。図12は、ターンオフ損失とターンオフdv/dtとのトレードオフ関係を示すシミュレーション結果である(以下、図14、図21、図24、図27-1、図27-2、図29-1、図29-2および図30において同様)。実施の形態1に従い、n型高濃度領域21の不純物濃度をn型低濃度領域22の不純物濃度の1.2倍としたプレーナ型MOSFETを準備した(以下、第1実施例とする)。また、n型高濃度領域21の不純物濃度をn型低濃度領域22の不純物濃度の1.6倍としたプレーナ型MOSFETを準備した(以下、第2実施例とする)。
 第1実施例では、pベース領域3の厚さおよび表面不純物濃度を、それぞれ3.0μmおよび3.0×1017cm-3とした。n型表面領域4の厚さおよび表面不純物濃度を、それぞれ2.5μmおよび2.0×1016cm-3とした。n+ソース領域6の厚さおよび表面不純物濃度を、それぞれ0.5μmおよび3.0×1020cm-3とした。n+ドレイン領域11の厚さおよび表面不純物濃度を、それぞれ300μmおよび2.0×1018cm-3とした。ドリフト層の厚さを、53.0μmとした。n型領域1の幅を、6.0μmとした。n型高濃度領域21の厚さおよび不純物濃度を、それぞれ5.5μmおよび3.6×1015cm-3とした。n型低濃度領域22の不純物濃度を、3.0×1015cm-3とした。p型領域2の幅、高さおよび不純物濃度を、それぞれ6.0μm、40.0μmおよび3.0×1015cm-3とした。また、耐圧クラスを600Vとした。第2実施例は、n型高濃度領域21の不純物濃度を、4.8×1015cm-3とした。それ以外の構成は、第1実施例と同様である。比較として、n型高濃度領域21の不純物濃度をn型低濃度領域22の不純物濃度の1倍としたプレーナ型MOSFETを準備した(以下、従来例とする)。つまり、従来例のn型領域1は、均一の不純物濃度分布を有する。従来例のその他の構成は、第1実施例と同様である。そして、各試料において、ターンオフ損失およびターンオフdv/dtを測定した。
 図12に示す結果では、半導体装置の性能を決定する指標は、ターンオフ損失が低く、かつターンオフdv/dtが低いことである。つまり、グラフの原点(左下)に近づくほど、半導体装置の性能は高くなり、ターンオフ損失とターンオフdv/dtとのトレードオフ関係が改善されている。このため、同じターンオフdv/dtで比較したときに、ターンオフ損失が低いほど、ターンオフ損失とターンオフdv/dtとのトレードオフ関係が改善されているということができる。そこで、ターンオフdv/dtが電源高調波規制を満たす例えば10kV/μsの場合におけるターンオフ損失を比較する。また、ここでは、第2実施例において、ターンオフdv/dtが10kV/μsの場合の測定値は図示されていない。しかし、第2実施例のその他の測定値は、第2実施例の図示された測定値を結ぶ近似値直線の延長線上にあると推測される(以下、図14、図21、図24、図27-1、図27-2、図29-1、図29-2および図30において同様)。
 図12に示す結果により、n型低濃度領域22に対するn型高濃度領域21の不純物濃度が高くなるほど、ターンオフ損失が低くなることがわかる。つまり、第2実施例において、最も、ターンオフ損失とターンオフdv/dtとのトレードオフ関係が改善されていることがわかる。また、n型高濃度領域21の不純物濃度をn型低濃度領域22の不純物濃度の1.2倍以上とすることで、ターンオフ損失を従来例の1/2以下とすることができることがわかった。
(実施例2)
 図13は、実施例2にかかる半導体装置のn型不純物濃度分布を示す特性図である。また、図14は、実施例2の半導体装置におけるターンオフ時の電気的特性を示す特性図である。まず、図13に示すように、実施の形態3に従い、プレーナ型MOSFETを準備した(以下、第3実施例とする)。第3実施例では、n型高濃度領域21の厚さおよび不純物濃度を、それぞれ8.0μmおよび4.7×1015cm-3とした。n型低濃度領域22の不純物濃度を、例えば2.7×1015/cm3とした。p型領域2の厚さを、37μmとした。p型高濃度領域23の厚さおよび不純物濃度は、n型高濃度領域21と同様である。p型低濃度領域24の不純物濃度は、n型低濃度領域22と同じである。比較として、実施例1と同様に、従来例を準備した。また、n型領域1の第1主面側から第2主面側にかけて、n型不純物濃度を徐々に低くしたプレーナ型MOSFETを準備した(以下、傾斜実施例とする)。第3実施例、従来例および傾斜実施例ともに、n型領域1の全体の不純物量は同じである。そして、各試料において、ターンオフ損失およびターンオフdv/dtを測定した。
 図14に示す結果では、ターンオフdv/dtが例えば10kV/μsの場合で比較すると、ターンオフ損失は、第3実施例で最も低く、従来例で最も高くなることがわかった。詳細には、ターンオフdv/dtが例えば10kV/μsのときに、第3実施例のターンオフ損失は1.7mJ程度となった。従来例のターンオフ損失は5.0mJ程度となった(図示省略)。つまり、第3実施例では、ターンオフ損失を従来例の1/3程度に低減することができることがわかる。これにより、第3実施例は、従来例に比べて、ターンオフ損失とターンオフdv/dtとのトレードオフ関係を最もよく改善することがわかった。その理由は、次に示すとおりである。また、傾斜実施例においても従来例に比べて、ターンオフ損失とターンオフdv/dtとのトレードオフ関係を改善することがわかった。
 図15~図17は、実施例2にかかる半導体装置の空乏層の拡がりを示す概念図である。また、図18は、実施例2にかかる半導体装置におけるターンオフ時の電気的特性を示す特性図である。図15~図17には、ドレイン電圧を上げたときの、第3実施例における空乏層31の拡がり、従来例における空乏層32の拡がり、および傾斜実施例における空乏層33の拡がりを示す。図18は、ドレイン電圧を上げたときの、第3実施例、従来例および傾斜実施例のターンオフdv/dtを示すシミュレーション結果である。
 図16に示すように、従来例における空乏層32は、n型領域1とp型領域2との接合面に平行に拡がる。そして、ドレイン電圧80Vで、並列pn層は完全に空乏化する。また、図17に示すように、傾斜実施例における空乏層33は、ドレイン電圧が印加されると、不純物濃度の低い並列pn層の第2主面側で早く拡がり、不純物濃度の高い並列pn層の第1主面側で遅く拡がる。そして、ドレイン電圧100Vで、並列pn層は完全に空乏化する。
 一方、図15に示すように、第3実施例における空乏層31は、ドレイン電圧が印加されると、傾斜実施例と同様に、不純物濃度の低い並列pn層の第2主面側(n型低濃度領域22およびp型低濃度領域24)で早く拡がり、不純物濃度の高い並列pn層の第1主面側(n型高濃度領域21およびp型高濃度領域23)で遅く拡がる。そして、第3実施例では、ドレイン電圧が100Vになっても、並列pn層の第1主面側に、空乏化されていない領域(以下、中性領域とする)が残る。
 また、図18に示す結果より、従来例では、ドレイン電圧が急激に上昇し、それに伴ってターンオフdv/dtが急激に大きくなっている。その理由は、従来例では並列pn層が完全に空乏化しやすいからである(図16参照)。また、傾斜実施例では、ドレイン電圧が印加されてからドレイン電圧が上がり始めるまでの時間が、従来例よりも遅くなっている。また、ドレイン電圧が全体的にゆっくり上昇し、ターンオフdv/dtもゆっくり上がっている。その理由は、傾斜実施例では、n型領域1内およびp型領域2内の不純物濃度が、第2主面側から第1主面側にかけて緩やかに高くなっていることで、空乏層が第2主面側から第1主面側にかけて徐々に拡がるからである(図17参照)。
 一方、第3実施例では、ドレイン電圧が印加されてからドレイン電圧が上がり始めるまでの時間は、傾斜実施例よりも早い。しかし、第3実施例では、ターンオフdv/dtは、傾斜実施例よりも低くなっている。その理由は、第3実施例では、n型領域1およびp型領域2内に急激に不純物濃度が変化する部分があることで、傾斜実施例に比べて、並列pn層の第1主面側で空乏層が拡がりにくくなり(図15参照)、ドレイン電圧が上昇しにくくなるからである。
 上述したように、第3実施例および傾斜実施例は、従来例に比べて、ターンオフ損失をほぼ同様に低減することができることがわかった(図14参照)。また、第3実施例では、傾斜実施例に比べてターンオフdv/dtを小さくすることができることがわかった(図18参照)。これにより、第3実施例は、従来例に比べて、ターンオフ損失とターンオフdv/dtとのトレードオフ関係を改善することができることがわかった。
(実施例3)
 図19は、実施例3にかかる半導体装置における耐圧とオン抵抗との関係を示す特性図である。図19は、耐圧とオン抵抗とのトレードオフ関係を示すシミュレーション結果である。まず、実施例2と同様に、第3実施例を準備した。比較として、実施例1と同様に、従来例を準備した。実施例2と同様に、傾斜実施例を準備した。そして、各試料において、耐圧およびオン抵抗を測定した。図19に示す結果では、半導体装置の性能を決定する指標は、耐圧が高く、かつオン抵抗が低いことである。つまり、グラフの右下に近づくほど、半導体装置の性能は高くなり、オン抵抗と耐圧とのトレードオフ関係が改善されている(以下、図26および図28-1においても同様)。
 図19に示す結果では、第3実施例、従来例および傾斜実施例の耐圧は、ほぼ同様の値となった。オン抵抗は、従来例が最も低くなった。この理由は、n型領域1内の不純物濃度分布が均一であるからである。このため、オン抵抗と耐圧とのトレードオフ関係は、従来例が最も改善されている。一方、第3実施例と傾斜実施例とを比較した場合、第3実施例のオン抵抗は、傾斜実施例とのオン抵抗に比べて低くなっている。この理由は、次のように推測される。SJ-MOSFETはチャネル長の長いJFET(接合型電界効果トランジスタ)構造と見なすことができるので、n型領域1の不純物濃度によってオン抵抗が決定される。特に、第2主面側の不純物濃度が低いとn型領域1を流れる電流とn型領域1の抵抗による電圧降下によりn型領域1に空乏層が拡がり、電流経路を狭くしてしまう。その結果、オン抵抗を増加させることになる。従来例、第3実施例、傾斜実施例の第2主面側のn型領域1の不純物濃度は従来例、第3実施例、傾斜実施例の順に低くなっているため、従来例のオン抵抗が最も低く、傾斜実施例が最も高い結果となる。また、第3実施例と従来例のオン抵抗の差は5%程度であるため、第3実施例は、従来例とほぼ同様に、耐圧とオン抵抗とのトレードオフ関係を改善することができるということができる。さらに、上述したように、第3実施例は、ターンオフ損失を低減することができる(実施例2参照)。このため、第3実施例は、従来例に比べて高い性能を有することがわかる。
(実施例4)
 図20は、実施例4にかかる半導体装置における電気的特性を示す特性図である。また、図21は、実施例4にかかる半導体装置におけるターンオフ時の電気的特性を示す特性図である。図20は、アバランシェ突入後の電流-電圧特性について示すシミュレーション結果である(以下、図23において同様)。まず、実施例2と同様に、第3実施例を準備した。また、実施の形態4に従い、プレーナ型MOSFETを準備した(以下、第4実施例とする)。第4実施例では、n型高濃度領域21の厚さを9μmとした。p型高濃度領域23の厚さを16μmとした。n型高濃度領域21およびp型高濃度領域23の不純物濃度を5.0×1015/cm3とした。n型低濃度領域22およびp型低濃度領域24の不純物濃度を3.0×1015/cm3とした。それ以外の構成は、第3実施例と同様である。そして、第3実施例および第4実施例において、アバランシェ突入後の電流-電圧波形を観測した。また、各試料において、ターンオフ損失およびターンオフdv/dtを測定した。
 図20に示す結果により、第3実施例では、ドレイン-ソース間に流れる電流が増大したときに、ドレイン電圧が低下した。その理由は、第3実施例では、n型領域1とp型領域2とが深さ方向にほぼ同様の不純物濃度分布となっていることで、アバランシェ突入後に負性抵抗が発生するからである。一方、第4実施例では、ドレイン-ソース間に流れる電流が増大したときに、ドレイン電圧が上昇した。その理由は、第4実施例では、p型高濃度領域23のうち、n型高濃度領域21よりも第2主面側に深く設けられた部分でp型不純物量がn型不純物量よりも多くなっており、負性抵抗が発生しにくくなるからである。このように、第4実施例では、負性抵抗を発生しにくくすることができるので、アバランシェ耐量を向上することができる。
 また、図21に示す結果より、第4実施例におけるターンオフ損失とターンオフdv/dtとのトレードオフ関係を、第3実施例とほぼ同様に、従来例に比べてかなり改善することができることがわかった。具体的には、第4実施例のターンオフ損失は、ターンオフdv/dtが例えば10kV/μsの場合で比較すると、図示省略する従来例のターンオフ損失に比べて半分程度まで低くすることができる。すなわち、第4実施例では、ターンオフ損失とターンオフdv/dtとのトレードオフ関係を従来例よりも改善し、かつアバランシェ耐量を向上することができることがわかった。
(実施例5)
 図22は、実施例5にかかる半導体装置のp型不純物濃度分布を示す特性図である。また、図23は、実施例5にかかる半導体装置における電気的特性を示す特性図である。また、図24は、実施例5にかかる半導体装置におけるターンオフ時の電気的特性を示す特性図である。まず、図22に示すように第1深さd0の下端から第2主面側にかけて、実施の形態5に従い、p型中濃度領域25(第4深さd3)の不純物濃度を、3.0×1015/cm3、3.5×1015/cm3、4.0×1015/cm3、4.5×1015/cm3、5.0×1015/cm3とした、5つのプレーナ型MOSFETを準備した(以下、第5実施例~第9実施例とする)。また、第5実施例~第9実施例では、p型高濃度領域23の厚さ(第2深さd1)を9μmとした。p型中濃度領域25の厚さ(第4深さd3)を7μmとした。それ以外の構成は、第4実施例と同様である。また、比較として、実施例1と同様に、従来例を準備した。そして、第5実施例~第9実施例において、アバランシェ突入後の電流-電圧波形を観測した。また、第5実施例~第9実施例および従来例において、ターンオフ損失およびターンオフdv/dtを測定した。
 図23に示す結果より、p型中濃度領域25の不純物濃度が高い場合、ドレイン-ソース間に流れる電流が増大したときに、ドレイン電圧が上昇することがわかった。具体的には、ドレイン-ソース間に流れる電流が増大したときに、第5実施例や第6実施例ではドレイン電圧が低下しているが、第7実施例~第9実施例ではドレイン電圧が上昇している。つまり、第7実施例~第9実施例では、負性抵抗が発生しにくく、アバランシェ耐量が向上することがわかった。このとき、640V程度の耐圧を確保することができた。また、定格電流密度130A/cm2程度のアバランシェ耐量を確保するためには、p型中濃度領域25の不純物濃度を3.5×1015/cm3程度とするのが望ましい(第6実施例)。したがって、p型中濃度領域25の不純物濃度は、p型中濃度領域25の隣接するn型低濃度領域22の不純物濃度の1.2倍以上とすることが望ましい。
 また、図24に示す結果より、p型中濃度領域25の不純物濃度が高くなるほど、ターンオフ損失とターンオフdv/dtとのトレードオフ関係が悪化している。しかし、第5実施例~第9実施例のターンオフ損失は、第3実施例のターンオフ損失の10%程度の増大に抑えることができる(図示省略)。このため、第5実施例~第9実施例においても、実施例3と同じように、ターンオフ損失とターンオフdv/dtとのトレードオフ関係を改善することができることがわかった。
 また、第5実施例~第9実施例では、p型中濃度領域25を設けることで、第1主面側から第2主面側にかけてp型領域2内の不純物濃度分布を緩やかに変化させることができる。このため、ドレイン電圧が印加されてからドレイン電圧が上がり始めるまでの時間を遅くすることができると推測される(図18の傾斜実施例参照)。これにより、さらに空乏層が拡がりにくくなり、ドレイン電圧が上昇しにくくなるため、ターンオフdv/dtをさらに低くすることができると推測される。
(実施例6)
 図25は、実施例6にかかる半導体装置の不純物濃度分布を示す特性図である。また、図26は、実施例6にかかる半導体装置における電気的特性を示す特性図である。また、図27-1、図27-2は、実施例6にかかる半導体装置におけるターンオフ時の電気的特性を示す特性図である。まず、図25に示すように、実施の形態6に従い、p型低濃度領域24の不純物濃度を、第1主面側から第2主面側にかけて徐々に低くしたプレーナ型MOSFETを準備した(以下、第10実施例とする)。第10実施例では、n型高濃度領域21の不純物濃度を7.5×1015/cm3とした。n型低濃度領域22の不純物濃度を3.0×1015/cm3とした。つまり、n型高濃度領域21の不純物濃度を、n型低濃度領域22の不純物濃度の2.5倍とした。p型高濃度領域23の不純物濃度を1.5×1016/cm3とした。p型低濃度領域24の不純物濃度を、第1主面側で6.6×1015/cm3、第2主面側で5.4×1015/cm3とし、第1主面側から第2主面側にかけて0.3×1015/cm3ずつ減少する不純物濃度分布とした。p型領域2内の不純物濃度を変更するp型領域2の上端からの深さ(以下、濃度変更深さとする)、つまり、p型高濃度領域23の厚さを5μmとした。また、p型低濃度領域24の不純物濃度を、第1主面側で7.2×1015/cm3、第2主面側で4.8×1015/cm3とし、第1主面側から第2主面側にかけて0.6×1015/cm3ずつ減少する不純物濃度分布とし、その他は第10実施例と同様である第10-1実施例も準備した。更に、n型高濃度領域21の不純物濃度を3.6×1015/cm3とし、n型低濃度領域22の不純物濃度を3.0×1015/cm3とし、n型高濃度領域21の不純物濃度を、n型低濃度領域22の不純物濃度の1.2倍とし、p型高濃度領域23の不純物濃度を7.2×1015/cm3とし、p型低濃度領域24の不純物濃度を6.0×1015/cm3とし、p型高濃度領域23の不純物濃度をp型低濃度領域24の不純物濃度の1.2倍として、その他は第10実施例と同様である第10-2実施例も準備した。比較として、実施例1と同様に、従来例を準備した。また、p型低濃度領域24の不純物濃度分布が均一なプレーナ型MOSFETを準備した(以下、第1比較例とする)。第1比較例では、p型低濃度領域24の不純物濃度を6.0×1015/cm3とした。それ以外の構成は、第10実施例と同様である。そして、各試料において、耐圧およびオン抵抗を測定した。また、各試料において、ターンオフ損失およびターンオフdv/dtを測定した。なお、図25では、ネットドーピング(正味のキャリア濃度)で示している。つまり、半導体基板の全面にリンでn型領域を形成し、ボロンを導入してp型領域を形成しているので、図25におけるp型領域のネットドーピングは、ボロン濃度からリン濃度を差し引いた値である。
 図26に示す結果では、第10実施例と第10-1実施例は、従来例に比べてオン抵抗が低くなっている。また、第10実施例と第10-1実施例は、第1比較例に比べて耐圧が高くなっている。これにより、オン抵抗と耐圧とのトレードオフ関係は、第10実施例が最も改善されていることがわかる。また、図27-1に示す結果より、第10実施例、第10-1実施例および第10-2実施例では、従来例よりもターンオフ損失が低減することがわかる。具体的には、ターンオフdv/dtが例えば10kV/μsのときに、第10実施例のターンオフ損失は0.1mJ程度となった。従来例のターンオフ損失は0.4mJ程度となった。つまり、第10実施例では、ターンオフ損失を従来例の1/4程度に低減することができる。これにより、第10実施例では、オン抵抗と耐圧とのトレードオフ関係と、ターンオフ損失とターンオフdv/dtとのトレードオフ関係の両方を、ともに従来例よりもよく改善することができることがわかった。また、第10-1実施例と第10-2実施例でも従来例よりターンオフ損失が低減されており、オン抵抗と耐圧とのトレードオフ関係と、ターンオフ損失とターンオフdv/dtとのトレードオフ関係の両方を、ともに従来例よりもよく改善することができることがわかった。
 図27-2は、p型とn型の双方の高濃度領域から低濃度領域に変わる深さyの点を5μm~12μmの間で変更した場合のターンオフ損失とターンオフdv/dtとのトレードオフ関係を示した特性図である。図27-2において、yを5μmより深くしていくとターンオフ損失とターンオフdv/dtとのトレードオフ関係がよくなっていくが、12μmの場合10μmよりもトレードオフ関係がよくない。
(実施例7)
 図28-1および図28-2は、実施例7にかかる半導体装置における電気的特性を示す特性図である。また、図29-1および図29-2は、実施例7にかかる半導体装置におけるターンオフ時の電気的特性を示す特性図である。まず、実施の形態6に従い、濃度変更深さ(n型高濃度領域21の厚さ)を1μm、5μm、10μm、15μm、20μm、25μm、30μmとした、7つのプレーナ型MOSFETを準備した(以下、第11実施例~第17実施例とする)。第11実施例~第17実施例では、p型高濃度領域23の厚さは、それぞれのn型高濃度領域21と同様である。n型高濃度領域21の不純物濃度を4.5×1015/cm3とした。n型領域1の第1主面側の不純物濃度を3.0×1015/cm3とした。p型高濃度領域23の不純物濃度を9.0×1015/cm3とし、p型低濃度領域24の不純物濃度を6.0×1015/cm3とした。それ以外の構成は、実施例6と同様である。また、第11実施例~第17実施例の変形例として、濃度変更深さ(n型高濃度領域21の厚さ)を1μm、5μm、10μm、15μm、20μm、25μm、30μmとし、n型高濃度領域21の不純物濃度を7.5×1015/cm3とし、n型領域1の第1主面側の不純物濃度を3.0×1015/cm3とし、p型高濃度領域23の不純物濃度を1.5×1016/cm3とし、p型低濃度領域24の不純物濃度を6.0×1015/cm3とした濃度差2倍の7つのプレーナ型MOSFETを準備した(以下、第11-1実施例~第17-1実施例とする)。比較として、実施例1と同様に、従来例を準備した。そして、各試料において、耐圧およびオン抵抗を測定した。また、各試料において、ターンオフ損失およびターンオフdv/dtを測定した。
 図28-1と図28-2に示す結果より、第11実施例~第17実施例および第11-1実施例~第17-1実施例では、従来例に比べて、オン抵抗を低減することができることがわかった。また、濃度変更深さを深くするほど、オン抵抗を低くすることができることがわかった。それに対して、第11実施例~第17実施例および第11-1実施例~第17-1実施例では、従来例に比べて、耐圧が低減してしまうことがわかった。また、濃度変更深さを深くするほど、耐圧は低減してしまうことがわかった。また、図29-1と図29-2に示す結果より、濃度変更深さを深くするほど、ターンオフ損失とターンオフdv/dtとのトレードオフ関係を改善することができることがわかった。しかし、濃度変更深さが深すぎる場合、従来例よりも、ターンオフ損失とターンオフdv/dtとのトレードオフ関係が悪化してしまうことがわかった。具体的には、第15実施例と第15-1実施例の場合に、ターンオフ損失とターンオフdv/dtとのトレードオフ関係を従来例と同程度に実現し、かつ従来例よりも悪化させないことがわかる。このため、濃度変更深さは、p型領域2の厚さの1/2以下とする必要があることがわかった。また、図28-1と図28-2および図29-1と図29-2に示す結果より、第12実施例と第12-1実施例および第13実施例と第13-1実施例の場合に、オン抵抗と耐圧とのトレードオフ関係と、ターンオフ損失とターンオフdv/dtとのトレードオフ関係の両方を、ともに従来例よりもよく改善することができることがわかる。このため、濃度変更深さは、p型領域2の厚さの1/3以下とするのがよい(第13実施例と第13-1実施例参照)。望ましくは、p型領域2の厚さの1/8以上1/4以下とするのがよい(第12実施例と第12-1実施例参照)。
(実施例8)
 図30は、実施例8にかかる半導体装置におけるターンオフ時の電気的特性を示す特性図である。まず、実施の形態6に従い、n型高濃度領域21の不純物濃度をn型低濃度領域22の不純物濃度の1.33倍、1.67倍、2倍、2.33倍とした、4つのプレーナ型MOSFETを準備した(以下、第18実施例~第21実施例とする)。また、実施例6と同様に、n型高濃度領域21の不純物濃度をn型低濃度領域22の不純物濃度の2.5倍とした第10実施例を準備した。そして、各試料において、ターンオフ損失およびターンオフdv/dtを測定した。図30に示す結果より、n型高濃度領域21の不純物濃度の、n型低濃度領域22の不純物濃度に対する割合が高いほど、ターンオフ損失とターンオフdv/dtとのトレードオフ関係を改善することができることがわかった。また、第18実施例~第21実施例では、ターンオフ損失とターンオフdv/dtとのトレードオフ関係をほぼ同様に改善することができる。また、第10実施例において、不純物濃度比を3倍とし、p型低濃度領域24の不純物濃度を、第1主面側から第2主面側にかけて0.45×1015/cm3ずつ減少する不純物濃度分布とした実施例で600Vの耐圧を確認した。これらより、n型高濃度領域21の不純物濃度の、n型低濃度領域22の不純物濃度に対する割合は、1.2倍以上3倍以下好ましくは2.5倍以下とすることがよいことがわかる。
(実施の形態7)
 SJ-MOSFETを製造する主な方法としては多段エピ方式とトレンチ埋め込み方式とがある。トレンチ埋め込み方式ではnエピ層に深掘りトレンチを1回形成してp型エピ層を埋め込むだけで並列pn構造をつくることができるので、多段エピ方式よりも簡便である。
 その一方、SJ-MOSFETは、導通状態からオフ状態になると並列pn部が急激に空乏化するため、ターンオフ時のドレイン電圧の時間変化率(dv/dt)が大きくなってしまう。つまり、Eoffとdv/dtとのトレードオフは従来MOSFETと比較して更なる改善の余地がある。
 また、耐圧がピークとなるチャージバランス条件ではアバランシェ時の電流-電圧特性が負性となるためアバランシェ耐量が弱い。これらのことは、多段エピ方式とトレンチ埋め込み方式の製造方式によらず共通する課題である。
 以降の実施の形態の製造工程を用いることで、Eoff-dv/dtトレードオフを改善できるデバイスを多段エピ方式よりも簡便なトレンチ埋め込み方式でつくることができる。
 図31および図32は、実施の形態7にかかる半導体装置の製造工程を順に示した断面図である。まず、図31(a)のように、n+ドレイン領域41にn型低濃度領域42と高濃度のn型表面領域43を順に堆積し、表面のマスク酸化膜44にレジスト45のパターニングを施す。次に、図31(b)に示すようにマスク酸化膜44をエッチングしてn型表面領域43の表面を開口し、さらに図31(c)に示すように深掘りトレンチエッチングを行い、深掘りトレンチ46を形成する。次に、図31(d)に示すように深掘りトレンチ46内部に低濃度pエピ層47をエピタキシャル成長させ埋め込む。
 続いて、図32(a)の工程で低濃度pエピ層47表面をプラズマエッチングなどでエッチバックし、低濃度pエピ層47とn型低濃度領域42の高さとが概ね等しくなるようにする。さらに、図32(b)に示すように、深掘りトレンチ46内部に高濃度p層48をエピタキシャル成長で埋め込み、低濃度pエピ層47表面に高濃度p層48を形成する。次に、図32(c)に示すように化学機械研磨(CMP)などで表面の平坦化を行う。これより後の工程である図32(d)は前記実施の形態1のプレーナMOS構造を形成する工程と同じ工程に従い、最終デバイス形状が得られる。なお、49がpベース領域、50がn+ソース領域、51がゲート絶縁膜、52がゲート電極、53が層間絶縁膜、54がソース電極である。図32(d)の構造では、低濃度pエピ層47とn型低濃度領域42が概ねチャージバランスとなり、n型表面領域43と高濃度p層48とが概ねチャージバランスとなっている。第1主面を基準とした全並列pn層部分の深さに対してn型表面領域43と高濃度p層48の深さはその1/8以上1/2以下となっている。
 以上、説明したように、実施の形態7によれば、Eoff-dv/dtトレードオフの改善できるデバイスを埋め込みエピ方式でつくることができるので、多段エピ方式において同様なデバイスを製造した場合よりもプロセスを簡便にすることができる。
(実施の形態8)
 図33は、実施の形態8にかかる半導体装置の製造工程を順に示した断面図である。まず、図31(a)~(d)と同様な手順で製造を行う。ただし、続く工程ではまず、低濃度pエピ層47表面はエッチバックせずに、図33(a)に示すように深掘りトレンチ46内部に埋め込んだ低濃度pエピ層47の上に高濃度p層55を形成する。続いて、図33(b)に示すように化学機械研磨(CMP)などで表面の平坦化を行う。これより後の工程である図33(c)は前記実施の形態1のプレーナMOS構造を形成する工程と同じ工程に従い、最終デバイス形状が得られる。つまり、実施の形態8は、実施の形態7において図32(a)に示した低濃度pエピ層47のエッチバックを省いた製造方法であるので、実施の形態7よりも工程を簡便化することができる。
 図33(c)の構造では、低濃度pエピ層47とn型低濃度領域42が概ねチャージバランスとなり、n型表面領域43と高濃度p層55とが概ねチャージバランスとなっている。第1主面を基準とした全並列pn層部分の深さに対してn型表面領域43と高濃度p層55の深さはその1/8以上1/2以下となっている。
 以上、説明したように、実施の形態8によれば、Eoff-dv/dtトレードオフの改善できるデバイスを埋め込みエピ方式でつくることができるので、多段エピ方式において同様なデバイスを製造した場合よりもプロセスを簡便にすることができる。
(実施の形態9)
 実施の形態7と実施の形態8ではn型表面領域43と高濃度p層48,55の深さが概ね等しかったが、アバランシェ耐量を上げるためには高濃度p層48,55がn型表面領域43よりも深くなるように形成すればよい。
 図34は、実施の形態9にかかる半導体装置の製造工程を順に示した断面図である。まず、図31(a)~(c)と同様な手順で製造を行う。続く工程ではまず、図34(a)に示すように深掘りトレンチ46内部に低濃度pエピ層47をエピタキシャル成長で埋め込む。低濃度pエピ層47は、図31(d)に比べて埋め込み量を減らしておくのが望ましい。なぜならば、後の工程でのエッチバック量を減らすことができるからである。続く図34(b)で低濃度pエピ層47表面をプラズマエッチングなどでエッチバックするが、低濃度pエピ層47がn型表面領域43の下端よりも高さが低くなるよう深くエッチバックする。続く図34(c)では、深掘りトレンチ46内部に高濃度p層48をエピタキシャル成長で埋め込み、低濃度pエピ層47表面に高濃度p層48を形成する。その後、図34(d)に示すようにCMPなどで表面の平坦化を行う。最終デバイス形状として図34(e)の構造を得る。
 以上、説明したように、実施の形態9では、低濃度pエピ層47とn型低濃度領域42が概ねチャージバランスとなり、n型表面領域43が対向する高濃度p層48と概ねチャージバランスとなっている。ただし、実施の形態7とは異なり高濃度p層48の下端がn型表面領域43の下端よりも深く形成されているため、高濃度p層48とn型低濃度領域42とが対向している部分がpリッチとなる。第1主面を基準とした全並列pn層部分の深さに対してn型表面領域43と高濃度p層48の深さはその1/8以上1/2以下となっている。このようにすることで、実施の形態7と同様なEoff-dv/dtトレードオフ改善のみならず、pリッチ領域を設けたことによるアバランシェ耐量改善を達成できるデバイスを埋め込みエピ方式でつくることができる。ここで、ある領域に対向する領域とは、ある領域とほぼ同じ深さに位置し、ある領域が隣接している部分をいう(以下、実施の形態10~12においても同様)。
(実施の形態10)
 なお、実施の形態9にかかる半導体装置の製造工程を、実施の形態2にかかる半導体装置を作製する製造方法に当てはめた場合の製造工程の断面図は図35のようになる。図35は、実施の形態10にかかる半導体装置の製造工程を順に示した断面図である。まず、図31(a)~(c)と同様な手順で製造を行う。次に、図35(a)では図34(a)と同様に、深掘りトレンチ46内部に低濃度pエピ層47をエピタキシャル成長で埋め込む。続く図35(b)の工程では低濃度pエピ層47のエッチバックは行わず、低濃度pエピ層47の上に高濃度p層55を形成する。その後、図35(c)に示すようにCMPなどで表面の平坦化を行う。最終デバイス形状は図35(d)のようになる。
 以上、説明したように、実施の形態10は実施の形態9と異なり、第1主面側のn型表面領域43が対向する低濃度pエピ層47と高濃度p層55の平均濃度と概ねチャージバランスとなっているが、その他は実施の形態9と共通している。実施の形態10では第1主面を基準とした全並列pn層部分の深さに対してn型表面領域43と高濃度p層55の深さはその1/8以上1/2以下となっている。
(実施の形態11)
 実施の形態9において高濃度p層48を深くする代わりにn型表面領域43と高濃度p層57の深さが概ね同じになるようにし、高濃度p層57と低濃度pエピ層47との間に中濃度p層56を設けてもかまわない。このような構造としたのが、実施の形態11である。
 図36および図37は、実施の形態11にかかる半導体装置の製造工程を順に示した断面図である。まず、図31(a)~(c)と同様な手順で製造を行う。次に、図36(a)では図35(a)と同様に、深掘りトレンチ46内部に低濃度pエピ層47をエピタキシャル成長で埋め込む。続く図36(b)に示すように低濃度pエピ層47のエッチバックを行った後、図36(c)のように中濃度p層56をエピタキシャル成長で埋め込む。そして、図36(d)に示すように中濃度p層56をエッチバックし、中濃度p層56上面とn型低濃度領域42の上面とがほぼ同じ高さになるようにする。その後、図37(a)に示すように、深掘りトレンチ46内部に高濃度p層57をエピタキシャル成長で埋め込み、中濃度p層56表面に高濃度p層57を形成する。そして、図37(b)に示すようにCMPなどで表面の平坦化を行う。最終デバイス形状は図37(c)のようになる。
 図37(c)の最終デバイス形状では、低濃度pエピ層47とそれに対向するn型低濃度領域42とが概ねチャージバランスとなり、第1主面側ではn型表面領域43が高濃度p層57と概ねチャージバランスとなっている。ただし、中濃度p層56とそれに対向するn型低濃度領域42とが対向している部分がpリッチとなり、負性抵抗回避によりアバランシェ耐量が改善できるようになっている。第1主面を基準とした全並列pn層部分の深さに対してn型表面領域43の深さはその1/8以上1/2以下となっている。また、高濃度p層57と中濃度p層56の深さは全並列pn層部分の深さの1/8以上1/2以下となっている。実施の形態9で高濃度p層48とn型低濃度領域42とが対向している部分は実施の形態11では中濃度p層56とn型低濃度領域42とが対向している部分に置き換えられるので、実施の形態11のpリッチ化の度合いは実施の形態9よりも低くなり、Eoff-dv/dtトレードオフは改善する。
 以上、説明したように、実施の形態11の製造方法では、Eoff-dv/dtトレードオフとアバランシェ耐量改善とを同時に達成するデバイスを簡便に製造できる。
(実施の形態12)
 実施の形態10にかかる半導体装置の製造工程を、実施の形態8にかかる半導体装置の製造工程に用いた場合の製造工程の主要断面図は図38のようになる。図38は、実施の形態12にかかる半導体装置の製造工程を順に示した断面図である。まず、図31(a)~(c)と同様な手順で製造を行う。次に、図38(a)のように深掘りトレンチ46内部に低濃度pエピ層47をエピタキシャル成長で埋め込む。さらに、図38(b)に示すように、低濃度pエピ層47の内部に中濃度p層58をエピタキシャル成長で埋め込む。続いて、図38(c)に示すように、低濃度pエピ層47の内部に高濃度p層59をエピタキシャル成長で埋め込む。その後、図38(d)に示すようにCMPなどで表面の平坦化を行う。最終デバイス形状は図38(e)のようになる。
 以上において本発明は、上述した実施の形態に限らず、種々変更可能である。例えば、実施の形態中に記載した寸法や濃度などは一例であり、本発明はそれらの値に限定されるものではない。また、各実施の形態では第1導電型をn型とし、第2導電型をp型としたが、本発明は第1導電型をp型とし、第2導電型をn型としても同様に成り立つ。また、本発明は、MOSFETに限らず、IGBT、バイポーラトランジスタ、FWD(Free Wheeling Diode、フリーホイールダイオード)またはショットキーダイオード等にも適用可能である。また、実施の形態3~実施の形態12において、実施の形態2と同様に、プレーナゲート構造に代えてトレンチゲート構造を有する構成としてもよい。
 以上のように、本発明にかかる半導体装置は、大電力用半導体装置に有用であり、特に、並列pn構造をドリフト部に有するMOSFET、IGBT、バイポーラトランジスタ、FWDまたはショットキーダイオード等の高耐圧化と大電流容量化を両立させることのできる半導体装置に適している。
 1 n型領域
 2 p型領域
 3 pベース領域
 4 n型表面領域
 5 p+コンタクト領域
 6 n+ソース領域
 7 ゲート絶縁膜
 8 ゲート電極
 9 層間絶縁膜
 10 ソース電極
 11 n+ドレイン領域
 12 ドレイン電極
 20 並列pn層
 21 n型高濃度領域
 22 n型低濃度領域

Claims (20)

  1.  第1主面側に設けられた素子活性部と、
     第2主面側に設けられた低抵抗層と、
     前記素子活性部と前記低抵抗層との間に設けられ、第1導電型領域および第2導電型領域が交互に配置された並列pn層と、
     前記第2導電型領域の前記第1主面側に設けられ、当該第2導電型領域よりも高い不純物濃度を有する第2導電型ベース領域と、
     前記第1導電型領域の前記第1主面側に設けられ、前記第2導電型ベース領域の前記第2主面側の端部よりも当該第2主面側に位置し、当該第1導電型領域の当該第2主面側の不純物濃度よりも高い不純物濃度を有する第1導電型高濃度領域と、
     を備えることを特徴とする半導体装置。
  2.  前記第1導電型高濃度領域は、前記第2導電型ベース領域の前記第2主面側の端部から前記第2導電型領域の第2主面側の端部までの深さに位置する前記第1導電型領域のうち、当該第1導電型高濃度領域を除く領域の1.2倍以上3倍以下の不純物濃度を有することを特徴とする請求項1に記載の半導体装置。
  3.  前記第1導電型領域の前記第1主面側に設けられ、前記第1導電型高濃度領域の前記第1主面側の端部に接する第1導電型表面領域を、さらに備えることを特徴とする請求項1に記載の半導体装置。
  4.  前記第1導電型表面領域は、前記第2導電型ベース領域と同じ深さ、または前記第2導電型ベース領域よりも前記第1主面側に浅く設けられていることを特徴とする請求項3に記載の半導体装置。
  5.  前記第1導電型表面領域は、前記第1導電型高濃度領域よりも高い不純物濃度を有することを特徴とする請求項3に記載の半導体装置。
  6.  前記第1導電型高濃度領域は、前記第1導電型表面領域も含めて、前記第2導電型ベース領域の第2主面側の端部から前記第2導電型領域の第2主面側の端部までの深さに位置する前記第1導電型領域のうち、当該第1導電型高濃度領域を除く領域の1.2倍以上3倍以下の不純物濃度を有することを特徴とする請求項3に記載の半導体装置。
  7.  前記第1導電型高濃度領域は、前記第2導電型ベース領域の前記第2主面側の端部から前記第2導電型領域の第2主面側の端部までの深さに位置する前記第1導電型領域の厚さの1/3以下の厚さを有することを特徴とする請求項1に記載の半導体装置。
  8.  前記第1導電型高濃度領域は、前記第2導電型ベース領域の前記第2主面側の端部から前記第2導電型領域の第2主面側の端部までの深さに位置する前記第1導電型領域の厚さの1/8以上1/4以下の厚さを有することを特徴とする請求項1に記載の半導体装置。
  9.  前記第1導電型高濃度領域は、前記第2導電型領域のうち当該第1導電型高濃度領域の隣接する領域の1.2倍以上3倍以下の不純物濃度を有することを特徴とする請求項1に記載の半導体装置。
  10.  前記第2導電型領域のうち、前記第2主面側の不純物濃度よりも高い不純物濃度を有する前記第1主面側の第2導電型高濃度領域を、さらに備えることを特徴とする請求項1に記載の半導体装置。
  11.  前記第1導電型高濃度領域は、前記第2導電型ベース領域の前記第2主面側の端部から前記第2導電型領域の第2主面側の端部までの深さに位置する前記第1導電型領域のうち、当該第1導電型高濃度領域を除く領域の1.5倍以上3倍以下の不純物濃度を有することを特徴とする請求項10に記載の半導体装置。
  12.  前記第2導電型高濃度領域は、前記第2導電型領域の厚さの1/8以上1/2以下の厚さを有することを特徴とする請求項10に記載の半導体装置。
  13.  前記第2導電型高濃度領域は、前記第1導電型高濃度領域と同じ厚さを有することを特徴とする請求項10に記載の半導体装置。
  14.  前記第2導電型領域のうち前記第2導電型高濃度領域を除く領域は、前記第1導電型領域のうち前記第1導電型高濃度領域を除く領域と同じ不純物量を有することを特徴とする請求項10に記載の半導体装置。
  15.  前記第2導電型領域のうち前記第2導電型高濃度領域を除く領域は、前記第1主面側から前記第2主面側にかけて、不純物濃度が徐々に低くなっていることを特徴とする請求項10に記載の半導体装置。
  16.  前記第1導電型高濃度領域および前記第2導電型高濃度領域が、前記第1主面側から前記第2主面側にかけて、不純物濃度が徐々に低くなっていることを特徴とする請求項10に記載の半導体装置。
  17.  前記第2導電型高濃度領域は、前記第1導電型高濃度領域の前記第2主面側の端部よりも当該第2主面側に深く設けられていることを特徴とする請求項10に記載の半導体装置。
  18.  前記第2導電型高濃度領域のうち、前記第1導電型高濃度領域の前記第2主面側の端部よりも当該第2主面側に深く設けられている領域は、当該領域の隣接する前記第1導電型領域よりも高い不純物濃度を有し、かつ当該第2導電型高濃度領域よりも低い不純物濃度を有することを特徴とする請求項17に記載の半導体装置。
  19.  前記第2導電型高濃度領域のうち、前記第1導電型高濃度領域の前記第2主面側の端部よりも当該第2主面側に深く設けられている領域は、当該領域の隣接する前記第1導電型領域の1.2倍以上の不純物濃度を有することを特徴とする請求項17に記載の半導体装置。
  20.  前記第1導電型領域および前記第2導電型領域の平面形状は、ストライプ状、六方格子状または正方状であることを特徴とする請求項1~19のいずれか一つに記載の半導体装置。
PCT/JP2011/051831 2010-01-29 2011-01-28 半導体装置 WO2011093473A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180007576.5A CN102804386B (zh) 2010-01-29 2011-01-28 半导体器件
US13/575,984 US9087893B2 (en) 2010-01-29 2011-01-28 Superjunction semiconductor device with reduced switching loss
EP11737183.1A EP2530721A4 (en) 2010-01-29 2011-01-28 Semiconductor device
JP2011551946A JP5652407B2 (ja) 2010-01-29 2011-01-28 半導体装置および半導体装置の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010017901 2010-01-29
JP2010-017901 2010-01-29

Publications (1)

Publication Number Publication Date
WO2011093473A1 true WO2011093473A1 (ja) 2011-08-04

Family

ID=44319451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051831 WO2011093473A1 (ja) 2010-01-29 2011-01-28 半導体装置

Country Status (5)

Country Link
US (1) US9087893B2 (ja)
EP (1) EP2530721A4 (ja)
JP (1) JP5652407B2 (ja)
CN (1) CN102804386B (ja)
WO (1) WO2011093473A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023272A (ja) * 2010-07-16 2012-02-02 Toshiba Corp 半導体装置
CN102832245A (zh) * 2011-11-29 2012-12-19 电子科技大学 一种具有优化雪崩击穿电流路径的超结mosfet器件
CN102881595A (zh) * 2012-08-17 2013-01-16 西安龙腾新能源科技发展有限公司 一种超结高压功率器件的制造方法
WO2013187017A1 (ja) * 2012-06-13 2013-12-19 株式会社デンソー 炭化珪素半導体装置およびその製造方法
US20140110779A1 (en) * 2012-10-24 2014-04-24 Renesas Electronics Corporation Vertical power mosfet
JP2014165306A (ja) * 2013-02-25 2014-09-08 Fuji Electric Co Ltd 超接合半導体装置の製造方法
JP2014179595A (ja) * 2013-02-14 2014-09-25 Fuji Electric Co Ltd 半導体装置およびその製造方法
JP2015233089A (ja) * 2014-06-10 2015-12-24 株式会社サイオクス 化合物半導体素子用エピタキシャルウェハ及び化合物半導体素子
EP2613357A3 (en) * 2012-01-05 2017-05-03 Vanguard International Semiconductor Corporation Field-effect transistor and manufacturing method thereof
US9653595B2 (en) 2012-07-19 2017-05-16 Fuji Electric Co., Ltd. Semiconductor device and semiconductor device fabrication method
JP2019054169A (ja) * 2017-09-15 2019-04-04 株式会社東芝 半導体装置

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120273916A1 (en) 2011-04-27 2012-11-01 Yedinak Joseph A Superjunction Structures for Power Devices and Methods of Manufacture
KR102017836B1 (ko) * 2011-04-27 2019-09-04 페어차일드 세미컨덕터 코포레이션 전력 소자들을 위한 슈퍼정션 구조물 및 제조방법들
US8901623B2 (en) * 2013-02-18 2014-12-02 Infineon Technologies Austria Ag Super junction semiconductor device with overcompensation zones
CN103199104B (zh) * 2013-03-05 2016-04-27 矽力杰半导体技术(杭州)有限公司 一种晶圆结构以及应用其的功率器件
JP2014187200A (ja) * 2013-03-22 2014-10-02 Toshiba Corp 半導体装置の製造方法
TWI488309B (zh) * 2013-05-31 2015-06-11 碩頡科技股份有限公司 溝渠式閘極金氧半場效電晶體及其製造方法
CN104241127A (zh) * 2013-06-06 2014-12-24 硕颉科技股份有限公司 沟道式栅极金氧半场效晶体管及其制造方法
CN103489908A (zh) * 2013-09-16 2014-01-01 电子科技大学 一种能消除负阻效应的rc-igbt
JP5821925B2 (ja) * 2013-10-21 2015-11-24 トヨタ自動車株式会社 バイポーラトランジスタ
DE102013112887B4 (de) * 2013-11-21 2020-07-09 Infineon Technologies Ag Halbleitervorrichtung und Verfahren zum Herstellen einer Halbleitervorrichtung
JP6341074B2 (ja) * 2014-01-24 2018-06-13 株式会社デンソー 半導体装置の製造方法
JP6324805B2 (ja) * 2014-05-19 2018-05-16 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
JP6375743B2 (ja) * 2014-07-15 2018-08-22 富士電機株式会社 半導体装置の製造方法
JP6301861B2 (ja) 2014-07-31 2018-03-28 株式会社東芝 半導体装置
JP6782529B2 (ja) * 2015-01-29 2020-11-11 富士電機株式会社 半導体装置
JP2016174041A (ja) * 2015-03-16 2016-09-29 株式会社東芝 半導体装置
KR102117465B1 (ko) * 2015-04-09 2020-06-02 삼성전기주식회사 반도체 소자 및 그 제조 방법
JP6557123B2 (ja) * 2015-11-26 2019-08-07 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
CN107482061B (zh) * 2016-06-08 2020-12-04 深圳尚阳通科技有限公司 超结器件及其制造方法
US10600649B2 (en) 2017-09-21 2020-03-24 General Electric Company Systems and method for charge balanced semiconductor power devices with fast switching capability
JP2019161103A (ja) * 2018-03-15 2019-09-19 株式会社東芝 半導体装置
US11056586B2 (en) * 2018-09-28 2021-07-06 General Electric Company Techniques for fabricating charge balanced (CB) trench-metal-oxide-semiconductor field-effect transistor (MOSFET) devices
DE102022119520A1 (de) 2022-08-03 2024-02-08 Infineon Technologies Austria Ag Verfahren zum herstellen eines superjunction-bauelements und superjunction-transistor-bauelement

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62150769A (ja) * 1985-12-24 1987-07-04 Fuji Electric Co Ltd 半導体装置
US5216275A (en) 1991-03-19 1993-06-01 University Of Electronic Science And Technology Of China Semiconductor power devices with alternating conductivity type high-voltage breakdown regions
US5438215A (en) 1993-03-25 1995-08-01 Siemens Aktiengesellschaft Power MOSFET
JPH09266311A (ja) 1996-01-22 1997-10-07 Fuji Electric Co Ltd 半導体装置及びその製造方法
JP2000040822A (ja) * 1998-07-24 2000-02-08 Fuji Electric Co Ltd 超接合半導体素子およびその製造方法
JP2004072068A (ja) 2002-06-14 2004-03-04 Fuji Electric Holdings Co Ltd 半導体素子
JP2004119611A (ja) 2002-09-25 2004-04-15 Toshiba Corp 電力用半導体素子
JP2006066421A (ja) 2004-08-24 2006-03-09 Toshiba Corp 半導体装置およびその製造方法
JP2006170598A (ja) 2004-05-11 2006-06-29 Showa Denko Kk 熱交換器
JP2007019146A (ja) 2005-07-06 2007-01-25 Toshiba Corp 半導体素子
JP2007150142A (ja) * 2005-11-30 2007-06-14 Toshiba Corp 半導体装置
JP2008091450A (ja) * 2006-09-29 2008-04-17 Toshiba Corp 半導体素子
JP4263787B2 (ja) 1997-11-10 2009-05-13 フェアーチャイルド セミコンダクター コーポレイション 高電圧mosfet構造

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4803533A (en) * 1986-09-30 1989-02-07 General Electric Company IGT and MOSFET devices having reduced channel width
GB2309336B (en) 1996-01-22 2001-05-23 Fuji Electric Co Ltd Semiconductor device
WO2000062345A1 (fr) * 1999-04-09 2000-10-19 Shindengen Electric Manufacturing Co., Ltd. Dispositif a semi-conducteur haute tension
JP4240752B2 (ja) * 2000-05-01 2009-03-18 富士電機デバイステクノロジー株式会社 半導体装置
JP4635304B2 (ja) * 2000-07-12 2011-02-23 富士電機システムズ株式会社 双方向超接合半導体素子およびその製造方法
EP1363332B1 (en) * 2001-02-21 2016-10-12 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same
JP4839519B2 (ja) * 2001-03-15 2011-12-21 富士電機株式会社 半導体装置
JP4126915B2 (ja) * 2002-01-30 2008-07-30 富士電機デバイステクノロジー株式会社 半導体装置
DE10245049B4 (de) 2002-09-26 2007-07-05 Infineon Technologies Ag Kompensationshalbleiterbauelement
DE10346838A1 (de) * 2002-10-08 2004-05-13 International Rectifier Corp., El Segundo Superjunction-Bauteil
US7166890B2 (en) * 2003-10-21 2007-01-23 Srikant Sridevan Superjunction device with improved ruggedness
JP4289123B2 (ja) * 2003-10-29 2009-07-01 富士電機デバイステクノロジー株式会社 半導体装置
JP4068597B2 (ja) * 2004-07-08 2008-03-26 株式会社東芝 半導体装置
JP4768259B2 (ja) 2004-12-21 2011-09-07 株式会社東芝 電力用半導体装置
EP1696490A1 (en) * 2005-02-25 2006-08-30 STMicroelectronics S.r.l. Charge compensation semiconductor device and relative manufacturing process
JP4939760B2 (ja) 2005-03-01 2012-05-30 株式会社東芝 半導体装置
DE102006055131A1 (de) 2005-11-28 2007-06-06 Fuji Electric Holdings Co., Ltd., Kawasaki Halbleiterbauteil und Verfahren zu seiner Herstellung
JP5369372B2 (ja) 2005-11-28 2013-12-18 富士電機株式会社 半導体装置および半導体装置の製造方法
US20080017897A1 (en) * 2006-01-30 2008-01-24 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing same
JP2007281034A (ja) * 2006-04-03 2007-10-25 Toshiba Corp 電力用半導体素子

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62150769A (ja) * 1985-12-24 1987-07-04 Fuji Electric Co Ltd 半導体装置
US5216275A (en) 1991-03-19 1993-06-01 University Of Electronic Science And Technology Of China Semiconductor power devices with alternating conductivity type high-voltage breakdown regions
US5438215A (en) 1993-03-25 1995-08-01 Siemens Aktiengesellschaft Power MOSFET
JPH09266311A (ja) 1996-01-22 1997-10-07 Fuji Electric Co Ltd 半導体装置及びその製造方法
JP4263787B2 (ja) 1997-11-10 2009-05-13 フェアーチャイルド セミコンダクター コーポレイション 高電圧mosfet構造
JP2000040822A (ja) * 1998-07-24 2000-02-08 Fuji Electric Co Ltd 超接合半導体素子およびその製造方法
JP2004072068A (ja) 2002-06-14 2004-03-04 Fuji Electric Holdings Co Ltd 半導体素子
JP4304433B2 (ja) 2002-06-14 2009-07-29 富士電機デバイステクノロジー株式会社 半導体素子
JP2004119611A (ja) 2002-09-25 2004-04-15 Toshiba Corp 電力用半導体素子
JP2006170598A (ja) 2004-05-11 2006-06-29 Showa Denko Kk 熱交換器
JP2006066421A (ja) 2004-08-24 2006-03-09 Toshiba Corp 半導体装置およびその製造方法
JP2007019146A (ja) 2005-07-06 2007-01-25 Toshiba Corp 半導体素子
JP2007150142A (ja) * 2005-11-30 2007-06-14 Toshiba Corp 半導体装置
JP2008091450A (ja) * 2006-09-29 2008-04-17 Toshiba Corp 半導体素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2530721A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8829608B2 (en) 2010-07-16 2014-09-09 Kabushiki Kaisha Toshiba Semiconductor device
JP2012023272A (ja) * 2010-07-16 2012-02-02 Toshiba Corp 半導体装置
CN102832245A (zh) * 2011-11-29 2012-12-19 电子科技大学 一种具有优化雪崩击穿电流路径的超结mosfet器件
CN102832245B (zh) * 2011-11-29 2014-12-10 电子科技大学 一种具有优化雪崩击穿电流路径的超结mosfet器件
EP2613357A3 (en) * 2012-01-05 2017-05-03 Vanguard International Semiconductor Corporation Field-effect transistor and manufacturing method thereof
WO2013187017A1 (ja) * 2012-06-13 2013-12-19 株式会社デンソー 炭化珪素半導体装置およびその製造方法
US9653595B2 (en) 2012-07-19 2017-05-16 Fuji Electric Co., Ltd. Semiconductor device and semiconductor device fabrication method
CN102881595A (zh) * 2012-08-17 2013-01-16 西安龙腾新能源科技发展有限公司 一种超结高压功率器件的制造方法
US9536943B2 (en) * 2012-10-24 2017-01-03 Renesas Electronics Corporation Vertical power MOSFET
US20140110779A1 (en) * 2012-10-24 2014-04-24 Renesas Electronics Corporation Vertical power mosfet
JP2014086569A (ja) * 2012-10-24 2014-05-12 Renesas Electronics Corp 縦型パワーmosfet
JP2014179595A (ja) * 2013-02-14 2014-09-25 Fuji Electric Co Ltd 半導体装置およびその製造方法
US9035376B2 (en) 2013-02-14 2015-05-19 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing the same
US9048250B2 (en) 2013-02-25 2015-06-02 Fuji Electric Co., Ltd. Method of manufacturing a super-junction semiconductor device
JP2014165306A (ja) * 2013-02-25 2014-09-08 Fuji Electric Co Ltd 超接合半導体装置の製造方法
JP2015233089A (ja) * 2014-06-10 2015-12-24 株式会社サイオクス 化合物半導体素子用エピタキシャルウェハ及び化合物半導体素子
JP2019054169A (ja) * 2017-09-15 2019-04-04 株式会社東芝 半導体装置

Also Published As

Publication number Publication date
JPWO2011093473A1 (ja) 2013-06-06
JP5652407B2 (ja) 2015-01-14
EP2530721A1 (en) 2012-12-05
CN102804386A (zh) 2012-11-28
US9087893B2 (en) 2015-07-21
EP2530721A4 (en) 2017-11-29
US20130026560A1 (en) 2013-01-31
CN102804386B (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
JP5652407B2 (ja) 半導体装置および半導体装置の製造方法
JP3964819B2 (ja) 絶縁ゲート型半導体装置
JP5002148B2 (ja) 半導体装置
JP4764987B2 (ja) 超接合半導体素子
TWI453919B (zh) 用於快速開關的帶有可控注入效率的二極體結構
US20210183995A1 (en) Superjunction silicon carbide semiconductor device and method of manufacturing superjunction silicon carbide semiconductor device
US6849880B1 (en) Power semiconductor device
CN102420249B (zh) 功率半导体装置
US8188521B2 (en) Power semiconductor device
KR101396611B1 (ko) 반도체 장치
US20160300905A1 (en) Semiconductor Device Including a Superjunction Structure with Drift Regions and Compensation Structures
US8680608B2 (en) Power semiconductor device with a low on resistence
JP2018107168A (ja) 半導体装置および半導体装置の製造方法
US20090273031A1 (en) Semiconductor device
JP2010147477A (ja) シリコンウェハ上にパワートランジスタデバイスを製造する方法
JP2000040822A (ja) 超接合半導体素子およびその製造方法
US9013005B2 (en) Semiconductor device and method for manufacturing same
JP2010147475A (ja) 半導体ダイ上に製造されるパワートランジスタデバイス
JP6345378B1 (ja) 半導体装置
JP5201307B2 (ja) 半導体装置
US11264475B2 (en) Semiconductor device having a gate electrode formed in a trench structure
JP2014154739A (ja) 半導体装置
WO2017010164A1 (ja) 電力用半導体装置
WO2022062941A1 (zh) 一种功率器件及其制作方法
JP7213398B2 (ja) 絶縁ゲートバイポーラトランジスタ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180007576.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11737183

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011551946

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011737183

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13575984

Country of ref document: US