JP5201307B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP5201307B2
JP5201307B2 JP2006250382A JP2006250382A JP5201307B2 JP 5201307 B2 JP5201307 B2 JP 5201307B2 JP 2006250382 A JP2006250382 A JP 2006250382A JP 2006250382 A JP2006250382 A JP 2006250382A JP 5201307 B2 JP5201307 B2 JP 5201307B2
Authority
JP
Japan
Prior art keywords
region
conductivity type
trench
semiconductor device
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006250382A
Other languages
English (en)
Other versions
JP2007194585A (ja
Inventor
功 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2006250382A priority Critical patent/JP5201307B2/ja
Priority to DE102006060374.5A priority patent/DE102006060374B4/de
Priority to US11/614,515 priority patent/US7943991B2/en
Publication of JP2007194585A publication Critical patent/JP2007194585A/ja
Priority to US13/082,140 priority patent/US8125027B2/en
Application granted granted Critical
Publication of JP5201307B2 publication Critical patent/JP5201307B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0856Source regions
    • H01L29/0865Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

この発明は、大電力用縦型絶縁ゲート半導体装置に関する。より詳細には、トレンチとそこに形成される絶縁膜、トレンチに絶縁膜を介して埋め込まれる制御電極を有するトレンチゲートを有し、半導体基板内に超接合層を有するトレンチゲート型超接合半導体装置に関する。
近年、パワーエレクトロニクスの分野における電源機器の小型化、高性能化への要求を受けて、電力用半導体装置では、高耐圧化、大電流化と共に、低損失化、高破壊耐量化、高速化に対する性能の改善に力が注がれている。これらの高耐圧化、大電流化、低損失化が可能な電力用半導体装置の基板構造として、超接合型基板が知られている。また、電力用半導体装置の表面構造としては、プレーナ型あるいはトレンチ型MOSパワーデバイスが提案されている。
ここで、超接合型基板とは、第1導電型の半導体領域(たとえば、n型のドリフト領域)と第2導電型の半導体領域(たとえば、p型の仕切り領域)が交互に繰り返し接合された並列pn層である超接合層を含む半導体基板である。
上述した、超接合型半導体基板と縦型のトレンチ型MOSパワーデバイスの種類の構成を組み合わせた、超接合型トレンチゲートMOSFETの構造により低オン抵抗化を図る技術が知られている。
たとえば、図16に示すような、超接合層1601中のpn接合とトレンチゲート1602とが直交するように配置された超接合型半導体基板を用いた半導体装置が知られている(たとえば、下記特許文献1、特許文献2参照。)。また、図17〜図19−2に示すような、各超接合層1701、1801、1901と各トレンチゲート1702、1802、1902とが平行になるように配置された超接合型半導体基板を用いた半導体装置が知られている(たとえば、下記特許文献3、特許文献4参照。)。このような構造の超接合型トレンチゲートを形成したMOSFETによって、低オン抵抗を実現している。
特開2000−260984号公報 特開2005−19528号公報 特開2002−76339号公報 特開2001−332726号公報
しかしながら、MOSFETなどのユニポーラデバイスでは、単位面積あたりのオン抵抗とアバランシェ降伏電圧(耐圧)にトレードオフの相関関係があることが知られており、上述した特許文献1〜4に記載の半導体装置では、オン抵抗と耐圧にトレードオフの相関関係が存在する。そのため、低オン抵抗化を図ろうとすると耐圧が低下してしまう。一方、高耐圧化を図ろうとすると、オン抵抗が上昇してしまうという問題点があった。
たとえば、上述した特許文献4に記載の半導体装置の構成では、オン抵抗を低減することはできるが、耐圧が低下してしまうという問題点があった。これは、トレンチ底部が、半導体基板の電界強度が高くなる領域を横切るためである。さらに、シリコンやSiCなどでは、オン抵抗と耐圧の両者共物理的に越えることのできない限界が存在することが知られている。以下では、この限界を半導体限界と称する。
MOSFETなどの半導体装置の設計に際しては、この半導体限界は、MOSFETなどの半導体装置の基板部の特性として考慮されている。しかし、MOSFETとして動作させた場合のMOSチャネル部の電圧降下や耐圧低下の影響は考慮されていない。そのため、半導体装置のMOSFETとしての特性が低下してしまうという問題点があった。
たとえば、図19−1、図19−2に示されるような構成では、図18−1、図18−2に示される構成と比べて、チャネル長が長くなっている。そのため、電圧降下が大きくなってしまう。
また、半導体装置は、製造上発生するばらつきの要素を考慮して設計されている。そのため、必ずしも、最もよい特性を発揮できる構造とはなっていないという問題点があった。
この発明は、上述した従来技術による問題点を解消するため、半導体装置のオン抵抗の上昇を抑制し、高耐圧化および特性のばらつきの低減を図ることができる半導体装置および半導体装置の製造方法を提供することを目的とする。
上述した課題を解決し、目的を達成するため、この発明にかかる半導体装置は、第1導電型半導体基板と、前記第1導電型半導体基板の上に設けられ、交互に配列された第1導電型半導体領域および第2導電型半導体領域を有する超接合層と、前記超接合層の上に設けられた第2導電型チャネル領域と、前記第2導電型チャネル領域の表面から形成され前記第1導電型半導体領域および前記第2導電型半導体領域に達し、底部が前記第1導電型半導体領域と前記第2導電型半導体領域との境界に亘って形成されているトレンチと、を備え、前記トレンチは、隣り合う前記境界にそれぞれ形成され、前記第2導電型半導体領域の上の前記第2導電型チャネル領域の不純物濃度は、前記第1導電型半導体領域の上の前記第2導電型チャネル領域の不純物濃度よりも高濃度であることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記トレンチの開口幅は、前記第1導電型半導体領域の中央から、前記境界で隣接する前記第2導電型半導体領域の、前記境界とは反対側の境界までの範囲よりも狭いことを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記トレンチの底部における最深部が、前記境界に位置することを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記第1導電型半導体領域の上の前記第2導電型チャネル領域の表面における、前記トレンチの開口縁にのみ形成された第1導電型ソース領域を備えることを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記トレンチの開口縁に形成された第1導電型ソース領域と、前記第2導電型半導体領域の上の前記第2導電型チャネル領域の表面に、前記トレンチに接するように形成された第2導電型ボディ領域と、を備え、前記第2導電型ボディ領域は、前記第1導電型ソース領域と前記第2導電型チャネル領域との間に形成され、前記第1導電型ソース領域を囲むことを特徴とする。
また、この発明にかかる半導体装置は、上述した発明において、前記トレンチの底部は、所定の曲率を有する底面であることを特徴とする。
また、の発明にかかる半導体装置は、上述した発明において、前記第2導電型半導体領域の上の前記第2導電型チャネル領域は、前記トレンチの底部よりも浅い位置に形成されていることを特徴とする。
また、の発明にかかる半導体装置は、上述した発明において、前記第1導電型半導体領域に達している前記トレンチの、当該第1導電型半導体領域に突き出している領域の深さ方向の長さが、1.5μm以下であることを特徴とする。
また、の発明にかかる半導体装置は、上述した発明において、前記第1導電型半導体領域に達している前記トレンチの、当該第1導電型半導体領域に突き出している領域の深さ方向の長さが、1.0μm以上であることを特徴とする。また、この発明にかかる半導体装置は、上述した発明において、前記トレンチ内にゲート酸化膜を介して形成されるゲート電極を備えることを特徴とする。
上述した発明によれば、トレンチ底部の電解強度が高い部分と、接合層での電解強度の高い部分をずらした構成となっている。そのため、半導体装置の耐圧を上昇させることができる。また、上述した発明によれば、耐圧の値のばらつきを低減することができる。
また、上述した発明によれば、MOSチャネルが動作するのを防ぐことができる。そのため、半導体装置のオン抵抗の値のばらつきを低減することができる。また、上述した発明によれば、半導体装置の耐圧を上昇させ、耐圧の値のばらつきを低減することができる。
本発明にかかる半導体装置によれば、半導体装置のオン抵抗の上昇を抑制し、高耐圧化および特性のばらつきの低減を図ることができるという効果を奏する。
以下に添付図面を参照して、この発明にかかる半導体装置の好適な実施の形態を詳細に説明する。以下では、第1導電型をn型、第2導電型をp型として説明する。
(実施の形態1)
まず、この発明の実施の形態1にかかる半導体装置の構成について説明する。図1は、この発明の実施の形態1にかかる半導体装置の構成の一例を示す説明図である。図1において、n型半導体基板(第1導電型半導体基板)101の表面には、p型仕切り領域(第2導電型半導体領域)102と、n型ドリフト領域(第1導電型半導体領域)103とが交互に配列された超接合層が形成されている。以下の説明では、便宜上、超接合層のp型仕切り領域102とn型ドリフト領域103とが交互に配列されている方向を第1の方向とし、各p型仕切り領域102および各n型ドリフト領域103が伸びる方向を第2の方向とする。
p型仕切り領域102とn型ドリフト領域103は、たとえば不純物濃度がそれぞれ3.0×1015cm-3程度となっている。また、p型仕切り領域102とn型ドリフト領域103の幅はそれぞれ6μm程度であり、超接合層を構成する1つのp型仕切り領域102と1つのn型ドリフト領域103との幅は12μm程度となっている。
ここで、p型仕切り領域102あるいはn型ドリフト領域103の幅とは、第1方向の幅である。以下では、特に断りが無ければ、第1方向の幅を示すものとする。また、p型仕切り領域102とn型ドリフト領域103は、それぞれ第2の方向へその対辺まで伸びており、第1の方向に交互に繰り返し接合され、ストライプ状に形成されている。
超接合層の表面には、p型チャネル領域(第2導電型チャネル領域)104が形成されている。このp型チャネル領域104の不純物濃度は、p型仕切り領域102の上に形成されている領域の方が、n型ドリフト103の上に形成されている領域よりも高濃度である。p型チャネル領域104の表面には、トレンチ105が形成されている。
トレンチ105は、n型ドリフト領域103内に、当該n型ドリフト領域103の中央よりもp型仕切り領域102側に形成されている。トレンチ105は、n型ドリフト領域103の、第1の方向における中央から2.5μm以上離れて形成されることが好ましい。また、トレンチ105は、n型半導体基板101に対して、略90°に形成されている。トレンチ105の底部は、n型ドリフト領域103に達している。トレンチ105の深さは、たとえば4μm程度であり、p型チャネル領域104から、n型ドリフト領域103に1μm程度突き出している。
トレンチ105の開口幅は1μm程度であり、上述した超接合層を構成する1つのp型仕切り領域102と1つのn型ドリフト領域103との幅(12μm)に比べて十分小さい値となっている。また、図1では、1つのn型ドリフト領域103に1つのトレンチ105が形成されているが、複数のn型ドリフト領域103に1つあるいは2つのトレンチが形成されていてもよい。
トレンチ105の底部は、曲率が0.5μmとなっており、第2の方向に半円筒状に伸びている。また、トレンチ105の内部には、当該トレンチ105の側壁に沿って、ゲート酸化膜106が形成されている。ゲート酸化膜106の厚さは、0.1μm程度である。また、トレンチ105の内部には、ゲート酸化膜106を介してゲート電極107が形成されている。ゲート電極107の底部は、曲率が0.4μm程度となっている。
また、p型チャネル領域104の表面には、トレンチ105の外側の側壁に接するようにn型ソース領域108が形成されている。このn型ソース領域108は、トレンチ105の両側の側壁に接するように形成されている。また、トレンチ105およびn型ソース領域108の一部を覆うように層間絶縁膜109が形成されている。
また、p型チャネル領域104および層間絶縁膜109を覆うようにソース電極110が形成されている。また、n型半導体基板101の、ソース電極110が形成されている側の反対側には、ドレイン電極111が形成されている。
また、図1では、1つのn型ドリフト領域103に1つのトレンチ105が形成されているが、複数のn型ドリフト領域103に1つあるいは2つのトレンチ105が形成されていてもよい。半導体装置のオン抵抗を小さくするためには、n型ドリフト領域103に形成されるトレンチ105が多い方が好ましい。それにより、超接合層を構成する1つのp型仕切り領域102と1つのn型ドリフト領域103との幅が同じ場合には、トレンチ105が多い方が、トレンチゲートの数が増え、チャネルの密度が増大する。
以上説明したように、実施の形態1にかかる半導体装置によれば、トレンチ底部と、半導体基板の電界強度が高くなる領域とをずらして構成されている。そのため、半導体装置の耐圧を上昇させることができる。
(実施の形態2)
つぎに、この発明の実施の形態2にかかる半導体装置の構成の一例について説明する。実施の形態1では、トレンチ105は、p型仕切り領域102に接しないように形成されていたが、実施の形態2では、トレンチ105が、当該トレンチ105の第1の方向の幅の中央がp型仕切り領域102と、n型ドリフト領域103との接合上に形成されている。その他は、実施の形態1と同様のため、説明を省略する。図2は、この発明の実施の形態2にかかる半導体装置の構成の一例について示す説明図である。
図2において、トレンチ105は、当該トレンチ105の第1方向の幅の中央がp型仕切り領域102とn型ドリフト領域103との接合上に形成されている。具体的には、トレンチ105の底部の最深部が、各pn接合上に形成されている。各トレンチ105間の間隔は5μm程度となっている。半導体装置のオン抵抗を低下させるためには、n型ドリフト領域103に接するトレンチ105が多く形成されることが好ましい。
(半導体装置の製造方法1)
つぎに、上述した実施の形態1または2の半導体装置の製造方法について説明する。ここでは、一例として、耐圧600Vの超接合型MOSFETの製造方法について、その超接合層を中心に説明する。図3−1〜図3−5は、図1または2に示した半導体装置の製造途中の構成について示す断面図である。まず、図3−1に示すように、面方位(100)で十分に高濃度のn型半導体基板301(第1導電型半導体基板)を用意する。ここでは、n型半導体基板301として、たとえばアンチモンなどが2×1018cm-3程度であるn型の低抵抗シリコン基板を用いた。
そして、図3−2に示すように、n型半導体基板301の上に、たとえばリンなどの不純物濃度が3.6×1015cm-3程度であるn型シリコン層302を、たとえば約50μmの厚さにエピタキシャル成長させる。
つぎに、図3−3に示すように、n型シリコン層302の表面に、たとえば厚さ1.6μmの酸化膜(または、窒化膜など)を成長させる。この酸化膜(または窒化膜など)の厚さは、酸化膜(または、窒化膜など)とシリコンとの選択比に基づいて、たとえば50μmの深さのトレンチを形成した後でも酸化膜(または、窒化膜など)が残るように設定されている。つづいて、フォトリソグラフィーあるいはエッチングなどによって酸化膜(または、窒化膜など)のパターニングを行い、トレンチ形成用のマスク303を形成する。
マスク303の、酸化膜(または、窒化膜など)の部分および開口部分の幅は、それぞれたとえば6μmである。つまり、たとえば6μmの間隔で6μm幅のマスク303が配置されている。つづいて、たとえばドライエッチングにより、n型シリコン層302にトレンチ304を形成する。
つぎに、図3−4に示すように、トレンチ304内に、p型不純物として、たとえばボロンを所定の濃度含むp型半導体層305をエピタキシャル成長させる。その際、マスク303の上面よりも高くなるまでp型半導体層305のエピタキシャル成長層を成長させる。
そして、図3−5に示すように、CMP(化学機械研磨)および酸化膜エッチングなどにより超接合層の表面を平坦化し、超接合半導体基板310を形成する。このとき、超接合半導体基板310の超接合層の厚さを、たとえば47μmとする。その後は、従来技術により、図2に示すトレンチ105を所定の位置に、深さ3.5μm、開口幅1.2μm、ピッチ6μmで等間隔に形成する。
トレンチ105は、十分に注意深く形成することにより、トレンチ105底部の曲率を0.6μmとすることが可能である。その後、たとえば100nmのゲート酸化膜106を成長させ、ゲート電極107を埋設する。次いで、p型チャネル領域104、n型ソース領域108を形成する。つづいて、層間絶縁膜109、ソース電極110、ドレイン電極111、およびパッシベーション層などの形成を行うことで、図1あるいは図2に示した超接合型MOSFETが完成する。
(半導体装置の製造方法2)
つぎに、図1または図2に示した半導体装置の異なる製造方法について説明する。ここでは、一例として、耐圧600Vの超接合型MOSFETの製造方法について、その超接合層を中心に説明する。図4−1〜図4−5は、図1または2に示した半導体装置の製造途中の構成について示す断面図である。
まず、図4−1に示すように、高不純物濃度のn型半導体基板401の上に、エピタキシャルにより、エピタキシャル成長層402をたとえば6〜10μm程度の厚さに成長させる。次いで、図4−2に示すように、フォトレジストをマスク403にして超接合層のp型仕切り領域102となる箇所に所定濃度のたとえばボロンをイオン注入する。図4−2において、符号で示す領域404は、ボロン等のp型不純物の注入領域である。
また、図4−3に示すように、別のフォトレジストをマスク405にして超接合層のn型ドリフト領域103となる箇所に所定濃度のたとえばリンをイオン注入する。図4−3において、符号406で示す領域は、リン等のn型不純物の注入領域である。なお、図4−3の工程を先に行ってから図4−2の工程を行ってもよい。そして、図4−4に示すように、上述した図4−2の工程と図4−3の工程を交互にそれぞれ5〜8回程度繰り返す。
その後、たとえば1150℃で10時間程度の熱処理を行うことによって、図4−5に示すように、上述したようなn型半導体基板層401上に、超接合層のp型仕切り領域407(102)およびn型ドリフト領域408(103)を有する超接合基板410ができあがる。その後は、上述した、半導体装置の製造方法と同様の処理を行うことにより、図1あるいは図2に示した超接合型MOSFETが完成する。
ここで、後述する半導体装置の耐圧を比較のため、従来例の半導体装置の構成の一例について示す。図5は、従来例の半導体装置の構成の一例について示す説明図である。図5において、トレンチ105は、各n型ドリフト領域103内に、当該n型ドリフト領域103の中央に配置されている。
(半導体装置の耐圧)
つぎに、実施の形態1または2の半導体装置の耐圧の特性について説明する。図6は、トレンチの配置位置と耐圧の関係について示すグラフである。図6において、縦軸は、耐圧(V)を示しており、横軸は、n型ドリフト領域の中央からの距離(μm)を示している。以下では、このn型ドリフト領域の中央からの距離をxで表す。
x=0μmとは、n型ドリフト領域103の中央にトレンチ105が配置されている場合である(図5参照)。x=2.5μmとは、トレンチ105の一方の側壁がp型仕切り領域102に接して配置されている場合である。また、x=3μmとは、トレンチ105の第1の方向の幅の中央が、p型仕切り領域102とn型ドリフト領域103とからなるpn接合上に配置されている場合である(図2参照)。
まず、従来技術の半導体装置の耐圧について説明する。トレンチとストライプ形状の超接合層が略90°で交わる構成(図16参照)の半導体装置の耐圧は、トレンチの配置する位置には無関係に750〜760V程度であった。また、トレンチの開口幅が、超接合層を構成する一対のp型仕切り領域102とn型ドリフト領域103の幅(12μm)よりも広い構成(図18−1参照)の耐圧は、780V程度であった。
図6において、波形601は、各距離に対する耐圧の値の近似曲線である。また、矢印602は、トレンチ105が、n型ドリフト領域103内に形成される範囲を示している。具体的には、たとえば矢印602は、x=0.0μm〜2.5μmの領域である。また、矢印603は、トレンチ105が、p型仕切り領域102とn型ドリフト領域103とからなるpn接合上に形成される領域を示している。具体的には、たとえば矢印603は、x=2.5μm〜3.0μmの領域である。
図6に示されるように、耐圧の値のばらつきは、0.0μm近傍と3.0μm近傍において小さくなっている。このように、耐圧のばらつきを小さくするために好適なトレンチの配置位置は、x=0.0μm近傍と、x=3.0μm近傍であることがわかる。
また、耐圧の値は、x=0.0μmでは760V程度であった。そして、距離の値が増加すると、一度耐圧の値は下降する(波形601参照)。そして、p型仕切り領域102側に近づくにつれて、耐圧は上昇する。そして、x=3.0では、耐圧の値は約810Vとなった。このように、実施の形態2の構成の半導体装置は、従来例の構成に比べて7〜8%程度高い耐圧を有している。
実施の形態2の半導体装置の耐圧は、上述した図18−1の半導体装置の耐圧に比べて4%程度の高い耐圧を有していることがわかった。以上より、トレンチをx=3.0μm近傍に配置し、トレンチ105の開口幅を超接合層を構成する一対のp型仕切り領域102とn型ドリフト領域103の幅よりも小さくすることにより、耐圧のばらつきが少なく、高耐圧の半導体装置が得られるということがわかった。
(アバランシェ降伏時の内部電界強度)
つぎに、耐圧が、距離xの値が大きくなるにつれて(最大値3μm)上昇する原因を調査するために、シミュレーションによってアバランシェ降伏時の内部電界強度を調査した結果を示す。図7−1は、実施の形態2の超接合型トレンチゲートMOSFETの電界分布を示すグラフである。また、図7−2は、従来の構成の超接合型トレンチゲートMOSFETの電界分布を示すグラフである。
図7−1は、x=3μmの場合、即ちトレンチ105の第1の方向における中央が、p型仕切り領域102とn型ドリフト領域103とからなるpn接合上に配置されている場合の電界強度分布を示している。また、図7−2は、x=0μmの場合、即ちn型ドリフト領域103の中央にトレンチ105が配置されている場合(図5参照)の電界強度分布を示している。
図7−1および図7−2において、縦軸は、アバランシェ降伏時の内部電界強度(V/cm)を示しており、横軸は、半導体装置表面からの深さ方向の距離(μm)を示している。また、図7−1および図7−2は、いずれもトレンチ105の開口幅の中央を通るライン上の電界強度分布を示している。
また、図7−1および図7−2に示される点線701、702は、半導体装置の表面からの深さ方向の距離が4μm、即ちトレンチ105の底部を示している。図7−1および図7−2から示されるように、トレンチ105の底部の電界強度は、トレンチ105がx=3μmに配置される場合よりも、x=0μmに配置される場合の方が、電界強度の値が大きくなっていることが判明した。
(トレンチ底部の電界強度)
つぎに、さらに詳しく解析するために、n型半導体基板トレンチMOSFETとトレンチを除いたn型半導体基板ダイオードの電界強度に関するシミュレーション結果を示す。図8は、n型半導体基板トレンチゲートMOSFETとn型半導体基板ダイオードの電界分布を示すグラフである。図8において、縦軸は、電界強度(V/cm)を示しており、横軸は、半導体装置表面からの深さ方向の距離(μm)を示している。波形801は、n型半導体基板トレンチゲートMOSFETの電界強度分布を示しており、波形802は、n型半導体基板ダイオードの電界強度分布を示している。
また、点線803は、半導体装置の表面からの深さ方向の距離が4μm、即ちトレンチ105の底部に相当する深さを示している。図8において、トレンチ底部における、n型半導体基板トレンチゲートMOSFETの電界強度(波形801参照)は、n型半導体基板ダイオードの電界強度(波形802参照)に比べて急激に上昇していることがわかる。これは、曲率を持つトレンチ105の底部がp型チャネル領域104からn型ドリフト領域103に突き出した形状になっていることに起因している。
(超接合型ダイオードのアバランシェ降伏時の電界強度)
つぎに、トレンチ105を有さない超接合型ダイオードのアバランシェ降伏時の電界強度に関してシミュレーションした結果を示す。図9は、超接合型ダイオードの横方向の電界分布を示したグラフである。図9において、縦軸は、電界強度(V/cm)を示しており、横軸は、n型ドリフト領域の第1方向の幅の中央からの距離(μm)を示している。
また、各波形は、p型チャネル領域104からの所定の距離における電界強度分布である。具体的には、波形901は10μm、波形902は0.5μm、波形903は1.0μm、波形904は1.5μmにおける電界強度分布を示している。次に、p型チャネル領域からの距離について説明する。
図10は、p型チャネル領域からの距離について示す説明図である。図10において、p型チャネル領域1001からの距離は、当該p型チャネル領域1001とp型仕切り領域1002との境界を基準として、所定の位置までの距離を算出する。具体的には、直線1003を基準として、直線1003から直線1004までの距離が、所定の距離となる。
図9の説明に戻って、点線905は、p型仕切り領域102とn型ドリフト領域103との境界である。図9において、p型チャネル領域104からの距離が、少なくとも10μm(あるいはそれよりも深い)地点(波形901参照)においては、x=0μm近傍の方が、x=3μm近傍よりも電界強度が十分に低くなっている。
一方、p型チャネル領域104に近い地点(波形902、波形903、波形904)では、x=3μm近傍の方が、x=0μm近傍よりも電界強度が低くなっている。上述したように、p型チャネル領域104からの距離が1.5μm以下の場合は、x=3μm近傍の方が、x=0μm近傍よりも電界強度が低いことが判明した。
この原因については、高濃度のn型半導体基板101とn型ドリフト領域103とからなるn型領域のn型ドリフト領域103が、p型チャネル領域104とp型仕切り領域102とからなるp型領域に対して凸部となることに起因している。即ち、トレンチ105の底部の電界強度の上昇および超接合層のn型ドリフト領域103の第1の方向の幅の中央部分の電界強度の上昇は、両方ともこの凸部の形状を有していることが起因している。
従って、トレンチ105の開口幅を超接合層の幅よりも十分に小さく設定し、かつトレンチ105をx=3μm近傍に配置した超接合型トレンチゲートMOSFETは、高い耐圧を得ることが可能となる。これは、トレンチ105底部の電界強度が上昇する部分と、超接合型半導体基板のn型ドリフト領域103の第1方向の幅の中央部の電界強度が上昇する部分とをずらした構成となっているためである。
さらに、図9では、波形902、波形903に示される、p型チャネル領域104からの距離が1.0μm〜1.5μm程度の位置においては、n型ドリフト領域103の高電界部分の電界強度の変化が小さくなっている。つまり、トレンチ105の底部のn型ドリフト領域に突き出す部分の深さ方向の長さを、1.0μm〜1.5μm程度にすることにより、高耐圧化および耐圧のばらつきを低減することができる。
(オン抵抗特性)
つぎに、超接合型トレンチゲートMOSFETのトレンチの配置位置を変化させた場合のオン抵抗の依存性を示す。図11は、超接合基板に対するトレンチの配置位置によるオン抵抗の変化を示すグラフである。図11において、縦軸は、オン抵抗(mΩcm2)を示しており、横軸は、n型ドリフト領域の中央からの距離(μm)を示している。矢印1101は、トレンチ105が、n型ドリフト領域103内に形成される範囲を示している。具体的には、x=0.0μm〜2.5μmの領域である。また、矢印1102は、トレンチ105が、p型仕切り領域102とn型ドリフト領域103とからなるpn接合上に形成される領域を示している。具体的には、矢印1102は、x=2.5μm〜3.0μmの領域である。
図11において、x=0.0μmでは、オン抵抗は約15.9mΩcm2程度となっている。そして、距離(x)が大きくなるにつれてオン抵抗の値は上昇し、x=2.0μm近傍において、オン抵抗は最大となる。さらに、距離が大きくなると、オン抵抗の値は下降し、x=3.0μm近傍において最小値となっている。
つぎに、オン抵抗の値のばらつきについて説明する。矢印1103は、x=0.0μm近傍(0.0μm〜0.5μm)のオン抵抗の値のばらつきの範囲を示している。また、矢印1104は、x=3.0μm近傍(2.5μm〜3.0μm)のオン抵抗の値のばらつきを示している。
上述したように、半導体装置の低オン抵抗化を図るためには、トレンチ105をx=3μm近傍に配置することがよいことが示されている。一方、オン抵抗の値のばらつきを小さくするためには、トレンチ105の配置位置がx=3.0μm近傍よりもx=0.0μm近傍である方がよいことが示されている。
ここで、特開2004−200441号公報で同様の現象が指摘された例について示す。図12−1は、従来例におけるトレンチの配置を示す説明図である。また、図12−2は、図12−1に示すトレンチの配置がずれた場合の例について示す説明図である。図12−1に示されるトレンチ1201が図12−2に示されるトレンチ1210の位置にずれた場合に、オン電圧の上昇が確認された。このオン電圧の上昇は、トレンチ1210が、p型仕切り領域1212に接することによって、p型仕切り領域1212にMOSチャネル1211が形成され、この部分のオン抵抗が上昇するためである。
上述した従来例(特開2004−200441号公報)では、図11に示されるx=0.0μm〜3.0μmの範囲において、トレンチ105の配置位置がずれた場合にオン抵抗が上昇したり、特性がばらつくことを指摘していると推定される。
しかしながら、図11に示されるように、トレンチ105の配置のばらつきを0.5μm程度の範囲とした場合でも、トレンチ105をx=3μm近傍に配置するよりも、x=0μm近傍に配置する方が、オン抵抗の値のばらつきが小さいことが認められる。これは図12−2に示される、p型仕切り領域1212に形成されたMOSチャネル1211のオン抵抗が、p型仕切り領域1212の横方向の濃度分布やばらつきによって比較的大きく変化しているためと考えられる。即ち、図12−2のp型仕切り領域1212に形成されてMOSチャネル1211を動作させないようにすれば、オン抵抗の値のばらつきを低減することができる。実施の形態3および4では、MOSチャネル1211を動作させないように構成した半導体装置について説明する。
以上説明したように、実施の形態2にかかる半導体装置によれば、半導体装置のトレンチの中央が、p型仕切り領域とn型ドリフト領域とのpn接合上に形成されている。そのため、半導体装置の高耐圧化および耐圧の値のばらつきを低減することができる。
(実施の形態3)
つぎに、実施の形態3として、p型仕切り領域102の上のチャネル領域に形成されたMOSチャネルを動作させない構成とした半導体装置について示す。実施の形態2では、n型ソース領域108は、トレンチ105の外側の側壁の両側に形成されていたが、実施の形態3では、トレンチ105の外側の側壁の一方にのみ形成されている。その他は、実施の形態2と同様のため、説明を省略する。図13は、この発明の実施の形態3にかかる半導体装置の構成の一例について示す説明図である。
図13において、n型ソース領域108は、トレンチ105の外側の側壁の片側のみに形成されている。具体的には、n型ソース領域108は、n型ドリフト領域103の上のp型チャネル領域104に、トレンチ105の開口縁にのみ形成されている。このように、p型仕切り領域102の上のp型チャネル領域104にn型ソース領域108を形成しないことにより、MOSチャネルが動作するのを防ぐことができる。実施の形態3の半導体装置のオン抵抗の特性については後述するが、半導体装置のオン抵抗の値のばらつきを低減することができる。
(実施の形態4)
つぎに、この発明の実施の形態4にかかる半導体装置の構成の一例について説明する。実施の形態2との違いは、p型チャネル領域104の一部に、p型ボディ領域が形成されていることである。その他は、実施の形態2と同様のため、説明を省略する。図14は、この発明の実施の形態4にかかる半導体装置の構成の一例について示す説明図である。
図14において、p型チャネル領域104の表面からp型ボディ領域1401が形成されている。p型ボディ領域1401の底部、即ちp型チャネル領域104とp型ボディ領域1401の境界は、n型ソース領域108の底部よりも深い位置に形成されている。また、p型ボディ領域1401は、p型仕切り領域102の上のp型チャネル領域104内では、トレンチ105の側壁に接するように形成されている。
また、n型ドリフト領域103の上のp型チャネル領域104では、トレンチ105の側壁から離間して形成されている。このような構成とすることにより、p型仕切り領域102側のMOSチャネルが動作しないようになっている。上述した構成とすることにより、半導体装置のオン抵抗の値のばらつきを低減することができる。
(半導体装置の製造方法)
ここで、実施の形態4にかかる半導体装置の製造方法について説明する。まず、実施の形態2に示した半導体装置の製造方法と同様のプロセスによって、超接合半導体基板410を形成する。そして、所定の位置にトレンチ105を深さ3.5μm、開口幅1.2μm、ピッチ6μmで等間隔に形成する。
その後、たとえば100nmのゲート酸化膜106を成長させ、ゲート電極107を埋設する。次いで、p型チャネル領域104を形成する。続いて、p型チャネル領域104の上の所定の位置にマスクを形成する。マスクは、トレンチ105の上部、n型ドリフト領域103の上のp型チャネル領域104の一部を覆うように形成する。その後、高濃度のp型不純物をイオン注入し、熱処理を行い、図14に示す位置にp型ボディ領域1401を形成する。
そして、n型ソース領域108を形成する。つづいて、層間絶縁膜109、ソース電極110、ドレイン電極111、およびパッシベーション層などの形成を行うことで、図14に示した超接合型MOSFETが完成する。また、上述した、p型仕切り領域102の上のp型チャネル領域104に形成されるp型ボディ領域1401と、n型ドリフト領域103の上のp型チャネル領域104に形成されるp型ボディ領域1401とは、同一プロセスで形成することができる。そのため、製造プロセスを簡略化することができる。
(オン抵抗特性)
つぎに、実施の形態3と実施の形態4の半導体装置の距離とオン抵抗との関係について示す。図15は、実施の形態3と実施の形態4の半導体装置の距離とオン抵抗との関係について示すグラフである。図15において、縦軸は、半導体装置のオン抵抗(mΩcm2)を示しており、横軸は、第1の方向の距離(μm)を示している。
直線1501は、実施の形態3あるいは実施の形態4の半導体装置、即ちp型仕切り領域102側のMOSチャネルが動作しない半導体装置のオン抵抗の値の近似直線である。また、直線1502は、従来の半導体装置、即ちp型仕切り領域102側のMOSFETチャネルが動作する半導体装置のオン抵抗の値の近似直線である。図15に示されるように、半導体装置のオン抵抗の値は、直線1502に示される値よりも、直線1501に示される値の方が、ばらつきが小さくなっている。
以上説明したように、実施の形態3および4の半導体装置によれば、p型仕切り領域の上のp型チャネル領域内のMOSチャネルが動作するのを防ぐことができる。そのため、半導体装置のオン抵抗の値のばらつきを低減することができる。
以上のように、本発明にかかる半導体装置は、大電力用半導体素子の製造に有用であり、特に、超接合層をドリフト部に有するMOSFETやIGBTやバイポーラトランジスタなどの高耐圧化とオン特性の改善を両立させることのできる半導体装置に適している。
この発明の実施の形態1にかかる半導体装置の構成の一例を示す説明図である。 この発明の実施の形態2にかかる半導体装置の構成の一例について示す説明図である。 図1または図2に示した半導体装置の製造途中の構成について示す断面図である。 図1または図2に示した半導体装置の製造途中の構成について示す断面図である。 図1または図2に示した半導体装置の製造途中の構成について示す断面図である。 図1または図2に示した半導体装置の製造途中の構成について示す断面図である。 図1または図2に示した半導体装置の製造途中の構成について示す断面図である。 図1または図2に示した半導体装置の製造途中の構成について示す断面図である。 図1または図2に示した半導体装置の製造途中の構成について示す断面図である。 図1または図2に示した半導体装置の製造途中の構成について示す断面図である。 図1または図2に示した半導体装置の製造途中の構成について示す断面図である。 図1または図2に示した半導体装置の製造途中の構成について示す断面図である。 従来例の半導体装置の構成の一例について示す説明図である。 トレンチの配置位置と耐圧の関係について示すグラフである。 実施の形態2の超接合型トレンチゲートMOSFETの電界分布を示すグラフである。 従来の構成の超接合型トレンチゲートMOSFETの電界分布を示すグラフである。 n型半導体基板トレンチゲートMOSFETとn型基板ダイオードの電界分布を示すグラフである。 超接合型ダイオードの横方向の電界分布を示したグラフである。 p型チャネル領域からの距離について示す説明図である。 超接合基板に対するトレンチの配置位置によるオン抵抗の変化を示すグラフである。 従来例におけるトレンチの配置を示す説明図である。 図12−1に示すトレンチの配置がずれた場合の例について示す説明図である。 この発明の実施の形態3にかかる半導体装置の構成の一例について示す説明図である。 この発明の実施の形態4にかかる半導体装置の構成の一例について示す説明図である。 実施の形態3と実施の形態4の半導体装置の距離とオン抵抗との関係について示すグラフである。 超接合層とトレンチゲートとが直交するように配置された従来の半導体装置について示す説明図である。 超接合層とトレンチゲートが平行となるように配置された従来の半導体装置について示す説明図である。 超接合層とトレンチゲートが平行となるように配置された従来の半導体装置について示す説明図である。 図18−1の半導体装置の断面図である。 超接合層とトレンチゲートが平行となるように配置された従来の半導体装置について示す説明図である。 図19−1の半導体装置の断面図である。
符号の説明
101 n型半導体基板
102 p型仕切り領域
103 n型ドリフト領域
104 p型チャネル領域
105 トレンチ
106 ゲート酸化膜
107 ゲート電極
108 n型ソース領域
109 層間絶縁膜
110 ソース電極
111 ドレイン電極

Claims (10)

  1. 第1導電型半導体基板と、
    前記第1導電型半導体基板の上に設けられ、交互に配列された第1導電型半導体領域および第2導電型半導体領域を有する超接合層と、
    前記超接合層の上に設けられた第2導電型チャネル領域と、
    前記第2導電型チャネル領域の表面から形成され前記第1導電型半導体領域および前記第2導電型半導体領域に達し、底部が前記第1導電型半導体領域と前記第2導電型半導体領域との境界に亘って形成されているトレンチと、を備え、
    前記トレンチは、隣り合う前記境界にそれぞれ形成され、前記第2導電型半導体領域の上の前記第2導電型チャネル領域の不純物濃度は、前記第1導電型半導体領域の上の前記第2導電型チャネル領域の不純物濃度よりも高濃度であることを特徴とする半導体装置。
  2. 前記トレンチの開口幅は、前記第1導電型半導体領域の中央から、前記境界で隣接する前記第2導電型半導体領域の、前記境界とは反対側の境界までの範囲よりも狭いことを特徴とする請求項1に記載の半導体装置。
  3. 前記トレンチの底部における最深部が、前記境界に位置することを特徴とする請求項1または2に記載の半導体装置。
  4. 前記第1導電型半導体領域の上の前記第2導電型チャネル領域の表面における、前記トレンチの開口縁にのみ形成された第1導電型ソース領域を備えることを特徴とする請求項1〜3のいずれか一つに記載の半導体装置。
  5. 前記トレンチの開口縁に形成された第1導電型ソース領域と、
    前記第2導電型半導体領域の上の前記第2導電型チャネル領域の表面に、前記トレンチに接するように形成された第2導電型ボディ領域と、
    を備え、
    前記第2導電型ボディ領域は、前記第1導電型ソース領域と前記第2導電型チャネル領域との間に形成され、前記第1導電型ソース領域を囲むことを特徴とする請求項1〜3のいずれか一つに記載の半導体装置。
  6. 前記トレンチの底部は、所定の曲率を有する底面であることを特徴とする請求項1〜5のいずれか一つに記載の半導体装置。
  7. 前記第2導電型半導体領域の上の前記第2導電型チャネル領域は、前記トレンチの底部よりも浅い位置に形成されていることを特徴とする請求項1〜6のいずれか一つに記載の半導体装置。
  8. 前記第1導電型半導体領域に達している前記トレンチの、当該第1導電型半導体領域に突き出している領域の深さ方向の長さが、1.5μm以下であることを特徴とする請求項1〜7のいずれか一つに記載の半導体装置。
  9. 前記第1導電型半導体領域に達している前記トレンチの、当該第1導電型半導体領域に突き出している領域の深さ方向の長さが、1.0μm以上であることを特徴とする請求項1〜8のいずれか一つに記載の半導体装置。
  10. 前記トレンチ内にゲート酸化膜を介して形成されるゲート電極を備えることを特徴とする請求項1〜9のいずれか一つに記載の半導体装置。
JP2006250382A 2005-12-22 2006-09-15 半導体装置 Active JP5201307B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006250382A JP5201307B2 (ja) 2005-12-22 2006-09-15 半導体装置
DE102006060374.5A DE102006060374B4 (de) 2005-12-22 2006-12-20 Halbleiterbauteil
US11/614,515 US7943991B2 (en) 2005-12-22 2006-12-21 Semiconductor device
US13/082,140 US8125027B2 (en) 2005-12-22 2011-04-07 Semiconductor device having trenches extending through channel regions

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005370332 2005-12-22
JP2005370332 2005-12-22
JP2006250382A JP5201307B2 (ja) 2005-12-22 2006-09-15 半導体装置

Publications (2)

Publication Number Publication Date
JP2007194585A JP2007194585A (ja) 2007-08-02
JP5201307B2 true JP5201307B2 (ja) 2013-06-05

Family

ID=38109073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006250382A Active JP5201307B2 (ja) 2005-12-22 2006-09-15 半導体装置

Country Status (3)

Country Link
US (2) US7943991B2 (ja)
JP (1) JP5201307B2 (ja)
DE (1) DE102006060374B4 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5298488B2 (ja) 2007-09-28 2013-09-25 富士電機株式会社 半導体装置
JP5659558B2 (ja) 2010-05-20 2015-01-28 富士電機株式会社 超接合半導体装置の製造方法
DE102013112887B4 (de) * 2013-11-21 2020-07-09 Infineon Technologies Ag Halbleitervorrichtung und Verfahren zum Herstellen einer Halbleitervorrichtung
JP6146486B2 (ja) * 2014-01-16 2017-06-14 富士電機株式会社 半導体装置
JP6693131B2 (ja) * 2016-01-12 2020-05-13 富士電機株式会社 半導体装置
US10199492B2 (en) 2016-11-30 2019-02-05 Alpha And Omega Semiconductor Incorporated Folded channel trench MOSFET
JP6377302B1 (ja) * 2017-10-05 2018-08-22 三菱電機株式会社 半導体装置
TWI650862B (zh) * 2017-12-25 2019-02-11 大陸商萬國半導體(澳門)股份有限公司 折疊通道溝槽mosfet

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154977A (en) * 1978-05-29 1979-12-06 Fujitsu Ltd Semiconductor device and its manufacture
JP3788971B2 (ja) * 1994-02-04 2006-06-21 三菱電機株式会社 半導体装置
GB2314206A (en) * 1996-06-13 1997-12-17 Plessey Semiconductors Ltd Preventing voltage breakdown in semiconductor devices
JP3938964B2 (ja) * 1997-02-10 2007-06-27 三菱電機株式会社 高耐圧半導体装置およびその製造方法
JP3940518B2 (ja) 1999-03-10 2007-07-04 株式会社東芝 高耐圧半導体素子
JP2001332726A (ja) 2000-05-22 2001-11-30 Hitachi Ltd 縦形電界効果半導体装置及びその製造方法
JP4764987B2 (ja) 2000-09-05 2011-09-07 富士電機株式会社 超接合半導体素子
JP3899231B2 (ja) 2000-12-18 2007-03-28 株式会社豊田中央研究所 半導体装置
EP1396030B1 (en) * 2001-04-11 2011-06-29 Silicon Semiconductor Corporation Vertical power semiconductor device and method of making the same
JP3973395B2 (ja) 2001-10-16 2007-09-12 株式会社豊田中央研究所 半導体装置とその製造方法
JP3966151B2 (ja) * 2002-10-10 2007-08-29 富士電機デバイステクノロジー株式会社 半導体素子
JP2004200441A (ja) 2002-12-19 2004-07-15 Toyota Central Res & Dev Lab Inc 半導体装置とその製造方法
JP4194890B2 (ja) 2003-06-24 2008-12-10 株式会社豊田中央研究所 半導体装置とその製造方法
JP4470454B2 (ja) * 2003-11-04 2010-06-02 株式会社豊田中央研究所 半導体装置とその製造方法
WO2005060676A2 (en) * 2003-12-19 2005-07-07 Third Dimension (3D) Semiconductor, Inc. A method for manufacturing a superjunction device with wide mesas
JP4940535B2 (ja) * 2004-01-08 2012-05-30 株式会社豊田中央研究所 半導体装置
JP5002148B2 (ja) * 2005-11-24 2012-08-15 株式会社東芝 半導体装置

Also Published As

Publication number Publication date
JP2007194585A (ja) 2007-08-02
DE102006060374A1 (de) 2007-06-28
DE102006060374B4 (de) 2018-06-28
US8125027B2 (en) 2012-02-28
US20070145475A1 (en) 2007-06-28
US7943991B2 (en) 2011-05-17
US20110180909A1 (en) 2011-07-28

Similar Documents

Publication Publication Date Title
US9653599B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP5015488B2 (ja) 半導体装置
JP7059555B2 (ja) 半導体装置
JP5002148B2 (ja) 半導体装置
CN102420249B (zh) 功率半导体装置
KR101018870B1 (ko) 반도체 장치
JP5201307B2 (ja) 半導体装置
US20140103425A1 (en) Semiconductor device
JP2006278826A (ja) 半導体素子及びその製造方法
JP2023101770A (ja) 半導体装置
JP2008182054A (ja) 半導体装置
US9013005B2 (en) Semiconductor device and method for manufacturing same
JP5729400B2 (ja) 半導体素子の製造方法
JP6725055B2 (ja) 半導体装置および半導体装置の製造方法
JP2007300034A (ja) 半導体装置及び半導体装置の製造方法
US20210217888A1 (en) Semiconductor device having a transistor
JP6257525B2 (ja) 半導体装置
WO2017010164A1 (ja) 電力用半導体装置
US20070012998A1 (en) Semiconductor device
TWI462294B (zh) Semiconductor element and manufacturing method thereof
JP5448733B2 (ja) 半導体装置の製造方法
JP2009105219A (ja) 半導体装置
JP2013251467A (ja) 半導体装置および半導体装置の製造方法
JP2012104581A (ja) 半導体装置及びその製造方法
JP2009259968A (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080204

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080204

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090616

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121112

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130129

R150 Certificate of patent or registration of utility model

Ref document number: 5201307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250