WO2010125661A1 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2010125661A1
WO2010125661A1 PCT/JP2009/058445 JP2009058445W WO2010125661A1 WO 2010125661 A1 WO2010125661 A1 WO 2010125661A1 JP 2009058445 W JP2009058445 W JP 2009058445W WO 2010125661 A1 WO2010125661 A1 WO 2010125661A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate
electrode
insulating film
well
gate electrode
Prior art date
Application number
PCT/JP2009/058445
Other languages
English (en)
French (fr)
Inventor
三浦 成久
中田 修平
大塚 健一
昭裕 渡辺
油谷 直毅
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112009004744.0T priority Critical patent/DE112009004744B4/de
Priority to US13/146,654 priority patent/US9105715B2/en
Priority to KR1020117024775A priority patent/KR101230680B1/ko
Priority to PCT/JP2009/058445 priority patent/WO2010125661A1/ja
Priority to JP2011511228A priority patent/JP5370480B2/ja
Priority to CN200980157510.7A priority patent/CN102334190B/zh
Publication of WO2010125661A1 publication Critical patent/WO2010125661A1/ja
Priority to US14/789,364 priority patent/US9502553B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • H01L29/4975Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2 being a silicide layer, e.g. TiSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7804Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode
    • H01L29/7805Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode in antiparallel, e.g. freewheel diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • H01L29/4941Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement with a barrier layer between the silicon and the metal or metal silicide upper layer, e.g. Silicide/TiN/Polysilicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a semiconductor device having a switching element having a MOS structure and a manufacturing method thereof, and more particularly to a semiconductor device capable of improving reliability and a manufacturing method thereof.
  • the gate electrode is formed of polysilicon having poor conductivity. Therefore, by forming a gate wiring made of a metal film containing low-resistance Al or an alloy thereof or copper on the outer periphery of the chip, it is easy to supply a potential to the gate electrode of each unit cell, and switching speed is increased. (For example, refer to Patent Documents 1 and 2).
  • a p-type well is formed in the semiconductor under the gate wiring and the gate pad in order to help the depletion layer grow and prevent the breakdown voltage from deteriorating.
  • FIGS. 1 and 2 of Patent Document 1 there has been proposed a semiconductor device in which fine diodes are arranged in a row on the outer peripheral portion (including the gate pad portion) of the cell region where the unit cell is formed (for example, FIGS. 1 and 2 of Patent Document 1).
  • This diode absorbs holes injected from the p-type well into the n-type drain layer during forward bias when the MOSFET is switched (turned off) from the ON state (forward bias) to the OFF state (reverse bias).
  • the parasitic transistor can be prevented from being turned on (see, for example, FIG. 3 of Patent Document 1).
  • the drain electrode voltage (drain voltage) suddenly rises from about 0V to several hundred volts. For this reason, a displacement current flows into the p-type well through the parasitic capacitance existing between the p-type well and the n-type drain layer. This is the same for a p-type well of a MOSFET, a p-type well of a diode, or a p-type well under a gate wiring.
  • the p-type well is electrically connected to the field plate through the contact hole, and the field plate is electrically connected to the source electrode. Therefore, the displacement current flowing into the p-type well under the gate wiring flows into the source electrode through the contact hole and the field plate.
  • the gate wiring on the outer periphery of the chip has a width of several ⁇ m to several tens of ⁇ m and is formed with a sufficient space from the source pad. This is because a metal film serving as a gate wiring and a source pad has a thickness of several ⁇ m to 10 ⁇ m, so that a process margin in the patterning thereof is ensured. For this reason, for example, the length from the source pad to the outside of the gate wiring ranges from several ⁇ m to 100 ⁇ m. Therefore, the p-type well under the gate wiring has a much larger area than the p-type well of the MOSFET and the p-type well of the diode.
  • a gate electrode connected to the gate wiring is provided via a gate insulating film on a portion away from the contact hole of the p-type well under the gate wiring.
  • the voltage of the gate electrode is close to 0V. Therefore, a large electric field is applied to the gate insulating film between the gate electrode and the p-type well under the gate wiring, and the gate insulating film is destroyed. As a result, there is a problem that a short circuit occurs between the gate electrode and the source electrode, resulting in a decrease in reliability.
  • switching elements MOSFETs and IGBTs
  • SiC silicon carbide
  • the loss of the inverter can be reduced.
  • it is necessary to further increase the driving speed of the switching element increase dV / dt.
  • a switching element using SiC as a substrate material has a large band gap of SiC, it is difficult to sufficiently reduce the resistance of the semiconductor layer compared to a switching element using Si as a substrate material. For this reason, the parasitic resistance is increased, and the potential generated in the p-type well is increased.
  • the present invention has been made to solve the above-described problems, and an object thereof is to obtain a semiconductor device capable of improving reliability and a manufacturing method thereof.
  • the first invention is A first conductivity type semiconductor substrate having a first main surface and a second main surface facing each other; A first well of a second conductivity type formed in a surface layer of the first main surface in a cell region in the first main surface; A diffusion region of a first conductivity type formed in a surface layer of the first main surface in the first well; A first gate insulating film formed on the first well; A first gate electrode formed on the first gate insulating film; A second well of a second conductivity type formed in a surface layer of the first main surface in the outer periphery of the cell region; A second gate insulating film formed on the second well; A field oxide film formed on the second well on an outer peripheral side of the second gate insulating film and thicker than the second gate insulating film; A second gate electrode formed continuously on the second gate insulating film and the field oxide film and electrically connected to the first gate electrode; A first electrode electrically connected to the first well, the second well and the diffusion region; A second electrode formed on the second main surface of the semiconductor substrate;
  • the second invention is Providing a first conductivity type semiconductor substrate having a first main surface and a second main surface facing each other; A second conductivity type first well is formed in a surface layer of the first main surface in a cell region in the first main surface, and a second conductivity type is formed in a surface layer of the first main surface in an outer peripheral portion of the cell region.
  • Forming a second well Forming a diffusion region of a first conductivity type in a surface layer of the first main surface in the first well; Forming a first gate insulating film on the first well and forming a second gate insulating film on the second well; Forming a field oxide film thicker than the second gate insulating film on the second well on the outer peripheral side of the second gate insulating film; Forming a first gate electrode on the first gate insulating film; Forming a second gate electrode electrically connected to the first gate electrode continuously on the second gate insulating film and the field oxide film; Forming an interlayer insulating film on the first main surface so as to cover the first gate electrode and the second gate electrode; Etching the interlayer insulating film to form a first contact hole on the first well and the diffusion region, and forming a second contact hole on the second well; Etching the interlayer insulating film to expose a portion of the second gate electrode; Forming a gate wiring on the field oxide film so as to make one round of the outer peripher
  • the reliability can be improved by the present invention.
  • FIG. 1 is a top view showing a semiconductor device according to Example 1.
  • FIG. It is the top view to which the area
  • FIG. 3 is a cross-sectional view taken along the line BB ′ of FIG.
  • FIG. 3 is a perspective plan view in which a source pad, an interlayer insulating film, and a gate pad are omitted in FIG.
  • FIG. 7 is a perspective plan view showing an n-type SiC drift layer located under the gate electrode and field oxide film of FIG. 6. It is a top view which shows the modification with respect to FIG.
  • FIG. 6 is a cross-sectional view for explaining the method for manufacturing the semiconductor device according to the first embodiment.
  • FIG. 6 is a cross-sectional view for explaining the method for manufacturing the semiconductor device according to the first embodiment.
  • FIG. 6 is a cross-sectional view for explaining the method for manufacturing the semiconductor device according to the first embodiment.
  • FIG. 6 is a cross-sectional view for explaining the method for manufacturing the semiconductor device according to the first embodiment.
  • FIG. 6 is a cross-sectional view for explaining the method for manufacturing the semiconductor device according to the first embodiment.
  • FIG. 7 is a cross-sectional view showing a semiconductor device according to Example 2.
  • FIG. 10 is a cross-sectional view for explaining the method for manufacturing the semiconductor device according to the second embodiment.
  • FIG. 10 is a cross-sectional view for explaining the method for manufacturing the semiconductor device according to the second embodiment.
  • FIG. 10 is a cross-sectional view for explaining the method for manufacturing the semiconductor device according to the second embodiment.
  • FIG. 10 is a cross-sectional view for explaining the method for manufacturing the semiconductor device according to the third embodiment.
  • FIG. 10 is a cross-sectional view for explaining the method for manufacturing the semiconductor device according to the third embodiment.
  • FIG. 10 is a cross-sectional view for explaining the method for manufacturing the semiconductor device according to the third embodiment.
  • 7 is a cross-sectional view showing a semiconductor device according to Example 4.
  • FIG. 1 is a top view of the semiconductor device according to the first embodiment.
  • N-type SiC substrate 10 has an upper surface (first main surface) and a lower surface (second main surface) facing each other.
  • a cell region 12 in which a plurality of unit cells (not shown in FIG. 1), which are the minimum unit structure of a MOSFET, are arranged in parallel.
  • a source pad 14 (source electrode) connected to the source of each unit cell is formed on the cell region 12.
  • a gate wiring 16 is formed apart from the source pad 14 so as to make one round of the outer periphery of the cell region 12 at the outer periphery of the cell region 12.
  • a gate pad 18 is formed on the outer peripheral portion of the cell region 12 (specifically, the central portion of one side of the outer periphery of the upper surface of the n-type SiC substrate 10).
  • the gate pad 18 is electrically connected to the gate wiring 16.
  • a gate voltage is applied to the gate pad 18 from an external control circuit (not shown). This gate voltage is supplied to the gate of each unit cell via the gate wiring 16.
  • FIG. 2 is an enlarged top view of region A in FIG. In FIG. 2, the gate pad 18 is seen through with a broken line.
  • the gate wiring 16 protrudes from the upper left and upper right through the lower part of the drawing in the lower region of the gate pad 18.
  • 3 and 4 are top views showing modifications to FIG. In FIG. 3, the gate wiring 16 protrudes from the upper left and upper right through the upper part of the drawing in the lower region of the gate pad 18. In FIG. 4, the gate wiring 16 extends over the entire area in the lower region of the gate pad 18 and protrudes from the upper left and upper right.
  • FIG. 5 is a cross-sectional view taken along the line BB ′ of FIG.
  • An n-type SiC drift layer 20 is formed on n-type SiC substrate 10.
  • the n-type SiC drift layer 20 has an impurity concentration of 1 ⁇ 10 13 cm ⁇ 3 to 1 ⁇ 10 18 cm ⁇ 3 and a thickness of 5 ⁇ m to 200 ⁇ m.
  • a p-type well 22 is formed in the surface layer on the upper surface of the n-type SiC drift layer 20 in the cell region 12.
  • An n-type source region 24 and a p + -type well contact region 26 are formed in the surface layer on the upper surface of the n-type SiC drift layer 20 in the p-type well 22.
  • the bottom surface of the n-type source region 24 does not exceed the bottom surface of the p-type well 22.
  • the impurity concentration of the n-type source region 24 is 1 ⁇ 10 17 cm ⁇ 3 to 1 ⁇ 10 21 cm ⁇ 3 , which exceeds the impurity concentration of the p-type well 22.
  • a p-type well 28 and a JTE (Junction Termination Extension) region 30 are formed in the surface layer on the upper surface of the n-type SiC drift layer 20 in the outer peripheral portion of the cell region 12.
  • a p + type well contact region 32 is formed in the surface layer on the upper surface of the n type SiC drift layer 20 in the p type well 28.
  • An n-type field stopper region 34 is formed in the surface layer on the upper surface of n-type SiC drift layer 20 at the outer end.
  • the p-type wells 22 and 28 have a depth of 0.3 ⁇ m to 2.0 ⁇ m, for example, and do not exceed the bottom surface of the n-type SiC drift layer 20.
  • the impurity concentration of the p-type wells 22 and 28 is 1 ⁇ 10 15 cm ⁇ 3 to 1 ⁇ 10 19 cm ⁇ 3 , which exceeds the impurity concentration of the n-type SiC drift layer 20.
  • the impurity concentration of p-type wells 22 and 28 is the impurity concentration of n-type SiC drift layer 20 in order to increase the conductivity in the channel region of the SiC semiconductor device. May be less than Note that N (nitrogen) or P (phosphorus) is preferable as the n-type impurity, and Al (aluminum) or B (boron) is preferable as the p-type impurity.
  • a gate insulating film 36 is formed on the p-type well 22.
  • a gate electrode 38 is formed on the gate insulating film 36.
  • a gate insulating film 40 is formed on the p-type well 28.
  • a field oxide film 42 is formed on the p-type well 28 on the outer peripheral side of the gate insulating film 40.
  • the film thickness of the field oxide film 42 is desirably about 10 times the film thickness of the gate insulating film 40, for example, 0.5 ⁇ m to 2 ⁇ m.
  • a gate electrode 44 is continuously formed on the gate insulating film 40 and the field oxide film 42. The gate electrode 44 is electrically connected to the gate electrode 38.
  • the gate electrodes 38 and 44 are made of polysilicon.
  • the gate wiring 16 is formed on the field oxide film 42 on the outer peripheral side of the gate electrode 44.
  • the gate wiring 16 is electrically connected to the gate electrode 44 at a position directly below or in the horizontal direction.
  • the gate wiring 16 is formed by siliciding polysilicon which is a constituent material of the gate electrode 44.
  • An interlayer insulating film 46 is formed on the entire surface.
  • a contact hole 48 is formed on the n-type source region 24 and the p + -type well contact region 26, and a contact hole is formed on the p + -type well contact region 32.
  • 50 is formed, and a contact hole 52 is formed on the gate wiring 16.
  • the width of the contact holes 48, 50 and 52 is 0.1 ⁇ m to 100 ⁇ m. However, it is preferable to make the width of the contact holes 50 and 52 as short as possible (for example, several ⁇ m) because the width of the p-type well 28 can be reduced.
  • the ohmic electrode 54 is in ohmic contact with the n-type source region 24 and the p + type well contact region 26 through the contact hole 48, and the ohmic electrode 56 is in ohmic contact with the p + type well contact region 32 through the contact hole 50. Yes.
  • the source pad 14 is electrically connected to the p-type wells 22 and 28 and the n-type source region 24 through ohmic electrodes 54 and 56.
  • the back ohmic electrode 58 is in ohmic contact with the lower surface of the n-type SiC substrate 10, and the drain electrode 60 is formed on the back ohmic electrode 58.
  • a plurality of vertical MOSFET unit cells are formed in the cell region 12.
  • Each unit cell includes a p-type well 22, a p + -type well contact region 26 and an n-type source region 24.
  • a diode is formed on the outer periphery of the cell region 12.
  • the diode includes an n-type SiC drift layer 20, a p-type well 28 and a p + -type well contact region 32.
  • the diode is connected in parallel to each unit cell.
  • a source pad 14 is connected to the anode of the diode, and a drain electrode 60 is connected to the cathode of the diode.
  • FIG. 6 is a perspective plan view in which the source pad 14, the interlayer insulating film 46, and the gate pad 18 are omitted from FIG.
  • a gate wiring 16 is connected to the outer surface of the gate electrode 44.
  • the gate electrodes 38 and 44 are partially opened to form contact holes 48 and 50.
  • FIG. 7 is a top view showing a modification to FIG. As shown in FIG. 7, the gate electrode 44 may protrude outward from the gate wiring 16.
  • FIG. 8 is a perspective plan view showing the n-type SiC drift layer 20 located under the gate electrode 44 and the field oxide film 42 of FIG.
  • p + -type well contact regions 26 and 32 are formed in the central lower portions of the contact holes 48 and 50, respectively.
  • An n-type source region 24 is formed below and around the contact hole 48.
  • a p-type well 22 is formed so as to include the p + -type well contact region 26 and the n-type source region 24.
  • a p-type well 28 is formed so as to enclose the p + -type well contact region 32.
  • the source pads 14 are electrically connected to the p-type wells 22 and 28 and the n-type source region 24 through the contact holes 48 and 50, respectively, and have substantially the same potential.
  • the p-type well 28 and the JTE region 30 are formed in a part below the field oxide film 42.
  • FIG. 9 is a top view showing a modification to FIG. In FIG. 8, the unit cells and the diodes are arranged at equal intervals vertically and horizontally, but the unit cells and the diodes may be arranged alternately as shown in FIG.
  • n-type SiC substrate 10 is prepared as shown in FIG.
  • the n-type SiC substrate 10 may be inclined to 8 ° or less with respect to the c-axis direction, may not be inclined, and may have any plane orientation.
  • N-type SiC drift layer 20 is epitaxially grown on n-type SiC substrate 10.
  • impurities are ion-implanted into the surface layer on the upper surface of the n-type SiC drift layer 20 by using a resist mask or an oxide film mask processed by photolithography, so that the p-type well 22, the p-type well 28, and the n-type well are formed.
  • a source region 24, a JTE region 30, and an n-type field stopper region 34 are formed.
  • p + -type well contact regions 26 and 32 having an impurity concentration higher than that of the p-type wells 22 and 28 are ion-implanted. Are formed in the p-type wells 22 and 28, respectively. Note that ion implantation is desirably performed at a substrate temperature of 150 ° C. or higher.
  • the implanted impurities are electrically activated by performing a heat treatment at a temperature of 1500 ° C. to 2200 ° C. for 0.5 minutes to 60 minutes in an inert gas atmosphere such as argon or nitrogen or in a vacuum.
  • an oxide film (not shown) is formed on the upper surface of the n-type SiC drift layer 20 by sacrificial oxidation, and the surface alteration layer is removed by removing the oxide film with hydrofluoric acid to obtain a clean surface.
  • a field oxide film 42 made of a silicon oxide film is deposited by a CVD method or the like, and the field oxide film 42 is patterned to form openings in the cell region 12 and the diode portion.
  • Gate insulating films 36 and 40 are formed in the opening by, for example, thermal oxidation or deposition.
  • polysilicon is deposited by a CVD method and patterned by photolithography and dry etching to form gate electrodes 38 and 44.
  • This polysilicon contains phosphorus or boron in order to reduce the sheet resistance. Phosphorus and boron may be taken in during the deposition of polysilicon, or may be introduced by ion implantation and subsequent heat treatment.
  • the outer end face of the gate electrode 44 is made to exist on the field oxide film 42. As a result, it is possible to prevent quality deterioration of the gate insulating film 40 exposed at the end face due to overetching in the dry etching of the gate electrode 44. Further, the gate wiring 16 to be formed later can be provided on the field oxide film 42. As a result, the gate insulating film 40 can be prevented from penetrating due to silicidation of the gate wiring 16, and a short circuit between the gate and the source can be prevented.
  • an interlayer insulating film 46 is formed on the n-type SiC drift layer 20 so as to cover the gate electrodes 38 and 44 by the CVD method or the like. Then, the interlayer insulating film 46 is dry-etched, for example, to form contact holes 48, 50, and 52. As shown in FIG. 13, instead of the contact hole 52, the interlayer insulating film 46 outside the outer end face of the gate electrode 44 may be completely removed to expose a part of the gate electrode 44.
  • a metal film (not shown) mainly composed of Ni is formed on the entire surface.
  • silicide with SiC and polysilicon is formed by heat treatment at 600 to 1100 ° C.
  • the metal film remaining on the interlayer insulating film 46 is removed with sulfuric acid, nitric acid, hydrochloric acid, a hydrogen peroxide mixture thereof, or the like.
  • the surfaces of the n-type SiC drift layer 20 exposed in the contact holes 48 and 50 are silicided to form ohmic electrodes 54 and 56 in a self-aligned manner.
  • a part of the gate electrode 44 exposed in the contact hole 52 is silicided to form the gate wiring 16 in a self-aligning manner.
  • the reaction rate between the metal film and polysilicon is faster than the reaction rate between the metal film and SiC. Therefore, when heat treatment is performed at 1000 ° C. for 2 minutes in order to form the silicide of the ohmic electrodes 54 and 56, the silicide of the gate wiring 16 is only formed in the depth direction from the upper surface of the polysilicon in contact with Ni. In addition, it is formed on the polysilicon under the interlayer insulating film 46 which is not in contact with Ni.
  • the gate pad 18 and the source pad 14 are formed by forming and patterning a wiring metal such as Al by sputtering or vapor deposition. Then, a metal film is formed on the back ohmic electrode 58 to form the drain electrode 60. Through the above steps, the semiconductor device according to the first embodiment is manufactured.
  • the surface side of the n-type SiC substrate 10 may be covered with a protective film such as a silicon nitride film or polyimide. However, an opening is formed in the protective film at an appropriate position of the gate pad 18 and the source pad 14 so that it can be connected to an external control circuit.
  • a protective film such as a silicon nitride film or polyimide.
  • silicide is used as the gate wiring 16 for supplying a potential to the gate electrodes 38 and 44.
  • Silicide can be formed with a smaller area in the lateral direction than a conventional metal gate electrode. For this reason, the distance from the source pad 14 to the outside of the gate wiring 16 can be shortened.
  • the p-type well 28 under the gate wiring 16 can be made smaller by this shortening. Accordingly, the displacement current generated in the p-type well 28 is reduced, and the potential increase in the p-type well 28 is reduced. Thereby, generation of a high electric field in the p-type well 28 under the gate insulating film 40 can be prevented, and destruction of the gate insulating film 40 can be prevented. Therefore, a short circuit between the gate electrodes 44 and 48 and the source pad 14 due to the breakdown of the gate insulating film 40 can be prevented, and the reliability can be improved.
  • the p-type well 28 can be made small while ensuring the distance between them.
  • the p-type well 28 under the gate wiring 16 and the p-type well of the diode are common to the p-type well 28.
  • the source pad 14 is connected to the p-type well 28 on the inner side of the upper surface than the gate electrode 44 and the gate insulating film 40.
  • the distance between the portion where the p-type well 28 is connected to the source pad 14 and the gate insulating film 40 is reduced, it is possible to prevent the potential of the p-type well 28 from increasing in the portion under the gate insulating film 40. Can do. Therefore, this configuration also has an effect of preventing the gate insulating film 40 from being broken.
  • Example 1 is particularly effective when the substrate material is SiC.
  • electrodes for temperature sensors and current sensors are often formed.
  • the position and number of the gate pads 18 and the shape of the source pads 14 are various. However, these do not affect the effect of the semiconductor device according to the first embodiment.
  • FIG. 15 is a cross-sectional view illustrating the semiconductor device according to the second embodiment.
  • the gate electrodes 38 and 44 are formed of a laminated film of polysilicon 62, metal nitride 64, and metal 66.
  • the metal 66 is at least one of Ti, Mo, W, Nb, Ta, and Si.
  • the metal nitride 64 is at least one nitride of Ti, Mo, W, Nb, Ta, and Si.
  • the gate wiring 16 is composed of a laminated film of a silicide layer 68 and alloys 70 and 72. Other configurations are the same as those of the first embodiment.
  • polysilicon 62, metal nitride 64 and metal 66 are deposited by sputtering or CVD instead of the polysilicon gate electrodes 38 and 44 of FIG.
  • the gate electrodes 38 and 44 are formed by patterning.
  • an interlayer insulating film 46 is deposited by a CVD method or the like. Then, contact holes 48 and 50 are formed by dry etching, for example. At this time, the entire interlayer insulating film 46 outside the outer end surface of the gate electrode 44 is removed, or the interlayer insulating film 46 is patterned so that at least the outer surface of the gate electrode 44 is exposed.
  • the gate wiring 16 and the ohmic electrodes 54 and 56 are formed as in the first embodiment.
  • the polysilicon 62, the metal nitride 64, and the metal 66 constituting the gate electrode 44 are in contact with a metal film (not shown) on the side wall of the gate electrode 44 before the silicidation heat treatment, and the silicide layer is formed by the heat treatment. 68 and alloys 70 and 72.
  • metal nitride 64 prevents diffusion of metal 66 into polysilicon 62. If the heat treatment temperature is low, it is formed into three or more layers separated by nitrogen distribution and silicon distribution. However, if the heat treatment temperature is high, an alloy layer whose boundary is unclear is formed by mutual diffusion.
  • the gate pad 18, the source pad 14, and the drain electrode 60 are formed in the same manner as in the first embodiment.
  • the semiconductor device according to the second embodiment is manufactured through the above steps.
  • the gate electrodes 38 and 44 are formed of a laminated film of polysilicon 62, metal nitride 64, and metal 66. As a result, the sheet resistance of the gate electrodes 38 and 44 is reduced, so that a faster switching operation can be performed.
  • Example 3 A method for manufacturing a semiconductor device according to the third embodiment will be described. First, the structure of FIG. Then, as shown in FIG. 19, an interlayer insulating film 46 is deposited, and contact holes 48 and 50 are formed. That is, unlike the first embodiment, the contact hole 52 is not formed at this time, and the gate electrode 44 is not exposed.
  • a metal film (not shown) mainly composed of Ni is formed on the entire surface.
  • silicide with SiC and polysilicon is formed by heat treatment at 600 to 1100 ° C.
  • the metal film remaining on the interlayer insulating film 46 is removed with sulfuric acid, nitric acid, hydrochloric acid, a hydrogen peroxide mixture thereof, or the like.
  • the surfaces of the n-type SiC drift layer 20 exposed in the contact holes 48 and 50 are silicided to form ohmic electrodes 54 and 56.
  • heat treatment is performed to form the back ohmic electrode 58.
  • a contact hole 52 is formed in the interlayer insulating film 46 to expose a part of the gate electrode 44.
  • a metal film (not shown) mainly composed of Ni is formed on the entire surface, and heat treatment is performed to silicide part of the exposed gate electrode 44 to form the gate wiring 16.
  • the gate pad 18, the source pad 14, and the drain electrode 60 are formed in the same manner as in the first embodiment.
  • the semiconductor device according to Example 3 is manufactured through the above steps.
  • Example 3 since the ohmic electrodes 54 and 56 and the gate wiring 16 are separately formed, the composition of the gate wiring 16 can be freely designed.
  • the reaction rate between the metal film and polysilicon is faster than the reaction rate between the metal film and SiC. Therefore, in the latter case, silicide is formed at a lower temperature than in the former case. Therefore, the gate wiring 16 can be formed by heat treatment at a temperature lower than the temperature at which the ohmic electrodes 54 and 56 are formed, for example, 400 ° C.
  • the metal film for forming the silicide layer with the polysilicon does not have to be the same as the metal film used when the ohmic electrodes 54 and 56 are formed, and can be freely selected. For example, when a low temperature process is preferable, a metal film that forms a silicide layer at a lower temperature can be selected.
  • the gate wiring 16 By forming the gate wiring 16 at a low temperature, abnormal diffusion of metal into the polysilicon can be prevented. Thereby, the malfunction of the element by the insulation defect of the gate insulating film 40 or the field oxide film 42 by the said abnormal diffusion can be suppressed, and the yield rate can be improved.
  • the semiconductor device manufacturing method according to the third embodiment can be similarly applied to the case where the gate electrodes 38 and 44 are formed of a laminated film as in the second embodiment.
  • FIG. 22 is a cross-sectional view illustrating the semiconductor device according to the fourth embodiment.
  • An emitter electrode 74 is provided instead of the source pad 14 of the first embodiment, an n-type emitter region 76 is provided instead of the n-type source region 24, and a collector electrode 78 is provided instead of the drain electrode 60.
  • a p-type collector layer 80 is formed between the lower surface of n-type SiC substrate 10 and collector electrode 78.
  • Other configurations are the same as those of the first embodiment. That is, while the vertical MOSFET is formed in the cell region 12 of the first embodiment, the IGBT is formed in the cell region 12 of the fourth embodiment. With this configuration, it is possible to improve reliability by preventing a short circuit between the gate electrodes 44 and 48 and the emitter electrode 74 due to the breakdown of the gate insulating film 40.
  • the present invention can be applied to a switching element having a MOS structure such as a MOSFET or IGBT.
  • the semiconductor device of the present invention includes not only the switching element but also a free wheel diode connected in antiparallel to the switching element, a control circuit for generating and applying the gate voltage of the switching element, and the like on the lead frame. Including power modules such as inverter modules sealed.
  • the present invention can be used for a power converter such as an inverter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

 第1導電型の半導体基板の第1主面内のセル領域において表層に第2導電型の第1ウェルが形成されている。第1ウェル内において表層に第1導電型の拡散領域が形成されている。第1ウェル上に第1ゲート絶縁膜が形成され、その上に第1ゲート電極が形成されている。セル領域の外周部において第1主面の表層に第2導電型の第2ウェルが形成されている。第2ウェル上に第2ゲート絶縁膜が形成され、その外周側に厚いフィールド酸化膜が形成されている。ゲート絶縁膜及びフィールド酸化膜上に連続して、第1ゲート電極に接続された第2ゲート電極が形成されている。第1,第2ウェル及び拡散領域に第1電極が接続されている。半導体基板の第2主面に第2電極が形成されている。セル領域の外周を1周するようにフィールド酸化膜上に、第2ゲート電極に接続されたゲート配線が形成されている。ゲート配線は、第2ゲート電極の構成物質をシリサイド化させたものである。

Description

半導体装置及びその製造方法
 本発明は、MOS構造のスイッチング素子を有する半導体装置及びその製造方法に関し、特に信頼性を向上することができる半導体装置及びその製造方法に関する。
 従来の電力用縦型MOSFETにおいて、ゲート電極は導電性が良くないポリシリコンで形成されている。そこで、低抵抗のAl又はその合金や銅を含む金属膜からなるゲート配線をチップ外周に形成することで、各ユニットセルのゲート電極に電位を供給し易くし、スイッチングの高速化を図っている(例えば特許文献1,2参照)。このゲート配線やゲートパッドの下の半導体には、空乏層の伸びを助け耐圧の劣化を防ぐためにp型ウェルが形成されている。
 また、ユニットセルが形成されたセル領域の外周部(ゲートパッド部を含む)に微細なダイオードを一列に配置した半導体装置が提案されている(例えば特許文献1の図1,2)。このダイオードは、MOSFETがON状態(順方向バイアス)からOFF状態(逆方向バイアス)にスイッチング(ターンオフ)する際に、順方向バイアス時にp型ウェルからn型ドレイン層に注入されたホールを吸収し、寄生トランジスタがONするのを防止できる(例えば特許文献1の図3参照)。
 MOSFETがターンオフすると、ドレイン電極の電圧(ドレイン電圧)がおよそ0Vから数百Vに急激に上昇する。このため、p型ウェルとn型ドレイン層との間に存在する寄生容量を介して、変位電流がp型ウェル内に流れ込む。これはMOSFETのp型ウェルでも、ダイオードのp型ウェルでも、ゲート配線下のp型ウェルでも同様である。
 p型ウェルはコンタクトホールを介してフィールドプレートに電気的に接続され、フィールドプレートはソース電極に電気的に接続されている。従って、ゲート配線下のp型ウェル内に流れ込んだ変位電流は、コンタクトホール及びフィールドプレートを介してソース電極に流入する。
特開平5-198816 特開2006-19608
 チップ外周のゲート配線は、数μmから数10μmの幅を持ち、ソースパッドから十分な間隔を空けて形成される。これは、ゲート配線及びソースパッドとなる金属膜の厚さが数μmから10μmにも及ぶため、それらのパターニングにおけるプロセスマージンを確保するためである。このため、例えばソースパッドからゲート配線の外側までの長さは、数μmから100μmに及ぶ。従って、ゲート配線下のp型ウェルは、MOSFETのp型ウェルやダイオードのp型ウェルに比べて面積が非常に大きい。
 p型ウェル自体に抵抗が存在するため、面積が大きいゲート配線下のp型ウェルに変位電流が流れると、当該p型ウェル内に無視し得ない値の電位降下が発生する。従って、当該p型ウェルのコンタクトホールから離れた箇所は比較的大きな電位を有する。この電位は、ドレイン電圧Vの時間tに対する変動dV/dtが大きくなるほど大きくなる。
 また、ゲート配線下のp型ウェルのコンタクトホールから離れた箇所の上に、ゲート配線に接続されたゲート電極がゲート絶縁膜を介して設けられている。そして、MOSFETがターンオフした直後に、ゲート電極の電圧は0Vに近い。従って、ゲート電極とゲート配線下のp型ウェルの間のゲート絶縁膜に大きな電界がかかり、ゲート絶縁膜が破壊される。これにより、ゲート電極とソース電極の間の短絡が発生し、信頼性が低下するという問題があった。
 また、昨今では、SiC(炭化珪素)を基板材料とするスイッチング素子(MOSFETやIGBT)が、低消費電力のスイッチング素子として期待されている。このSiCデバイスをインバータのスイッチング素子として用いることにより、インバータの損失を低減できる。損失を更に低減するには、スイッチング素子の更なる高速駆動化(dV/dtを大きくする)が必要である。しかし、SiCを基板材料とするスイッチング素子は、SiCのバンドギャップが大きいために、Siを基板材料とするスイッチング素子と比較して半導体層の十分な低抵抗化が困難である。このため、寄生抵抗が大きくなり、p型ウェルに発生する電位が大きくなるため、上記の問題が深刻であった。
 本発明は、上述のような課題を解決するためになされたもので、その目的は、信頼性を向上することができる半導体装置及びその製造方法を得るものである。
 第1の発明は、
 互いに対向する第1主面及び第2主面を有する第1導電型の半導体基板と、
 前記第1主面内のセル領域において前記第1主面の表層に形成された第2導電型の第1ウェルと、
 前記第1ウェル内において前記第1主面の表層に形成された第1導電型の拡散領域と、
 前記第1ウェル上に形成された第1ゲート絶縁膜と、
 前記第1ゲート絶縁膜上に形成された第1ゲート電極と、
 前記セル領域の外周部において前記第1主面の表層に形成された第2導電型の第2ウェルと、
 前記第2ウェル上に形成された第2ゲート絶縁膜と、
 前記第2ゲート絶縁膜よりも外周側において前記第2ウェル上に形成され、前記第2ゲート絶縁膜よりも厚いフィールド酸化膜と、
 前記第2ゲート絶縁膜及び前記フィールド酸化膜上に連続して形成され、前記第1ゲート電極に電気的に接続された第2ゲート電極と、
 前記第1ウェル、前記第2ウェル及び前記拡散領域に電気的に接続された第1電極と、
 前記半導体基板の前記第2主面に形成された第2電極と、
 前記セル領域の外周を1周するように前記フィールド酸化膜上に形成され、前記第2ゲート電極に電気的に接続されたゲート配線と、
 前記ゲート配線に電気的に接続されたゲートパッドとを備え、
 前記ゲート配線は、前記第2ゲート電極の構成物質をシリサイド化させたものであることを特徴とする半導体装置である。
 第2の発明は、
 互いに対向する第1主面及び第2主面を有する第1導電型の半導体基板を用意する工程と、
 前記第1主面内のセル領域において前記第1主面の表層に第2導電型の第1ウェルを形成し、前記セル領域の外周部において前記第1主面の表層に第2導電型の第2ウェルを形成する工程と、
 前記第1ウェル内において前記第1主面の表層に第1導電型の拡散領域を形成する工程と、
 前記第1ウェル上に第1ゲート絶縁膜を形成し、前記第2ウェル上に第2ゲート絶縁膜を形成する工程と、
 前記第2ゲート絶縁膜よりも外周側において前記第2ウェル上に、前記第2ゲート絶縁膜よりも厚いフィールド酸化膜を形成する工程と、
 前記第1ゲート絶縁膜上に第1ゲート電極を形成する工程と、
 前記第2ゲート絶縁膜及び前記フィールド酸化膜上に連続して、前記第1ゲート電極に電気的に接続された第2ゲート電極を形成する工程と、
 前記第1ゲート電極及び前記第2ゲート電極を覆うように前記第1主面に層間絶縁膜を形成する工程と、
 前記層間絶縁膜をエッチングして、前記第1ウェル及び前記拡散領域上に第1コンタクトホールを形成し、前記第2ウェル上に第2コンタクトホールを形成する工程と、
 前記層間絶縁膜をエッチングして、前記第2ゲート電極の一部を露出させる工程と、
 露出させた前記第2ゲート電極の一部をシリサイド化させることにより、前記セル領域の外周を1周するように前記フィールド酸化膜上にゲート配線を形成する工程と、
 前記第1コンタクトホールを介して前記第1ウェル及び前記拡散領域に電気的に接続され、前記第2コンタクトホールを介して前記第2ウェルに電気的に接続された第1電極を形成する工程と、
 前記半導体基板の前記第2主面に第2電極を形成する工程と、
 前記ゲート配線に電気的に接続されたゲートパッドを形成する工程とを備えることを特徴とする半導体装置の製造方法である。
 本発明により、信頼性を向上することができる。
実施例1に係る半導体装置を示す上面図である。 図1の領域Aを拡大した上面図である。 図2に対する変形例を示す上面図である。 図2に対する変形例を示す上面図である。 図2のB-B´における断面図である。 図2においてソースパッド、層間絶縁膜及びゲートパッドを省略した透視平面図である。 図6に対する変形例を示す上面図である。 図6のゲート電極やフィールド酸化膜の下に位置するn型SiCドリフト層を示す透視平面図である。 図8に対する変形例を示す上面図である。 実施例1に係る半導体装置の製造方法を説明するための断面図である。 実施例1に係る半導体装置の製造方法を説明するための断面図である。 実施例1に係る半導体装置の製造方法を説明するための断面図である。 実施例1に係る半導体装置の製造方法を説明するための断面図である。 実施例1に係る半導体装置の製造方法を説明するための断面図である。 実施例2に係る半導体装置を示す断面図である。 実施例2に係る半導体装置の製造方法を説明するための断面図である。 実施例2に係る半導体装置の製造方法を説明するための断面図である。 実施例2に係る半導体装置の製造方法を説明するための断面図である。 実施例3に係る半導体装置の製造方法を説明するための断面図である。 実施例3に係る半導体装置の製造方法を説明するための断面図である。 実施例3に係る半導体装置の製造方法を説明するための断面図である。 実施例4に係る半導体装置を示す断面図である。
10 n型SiC基板(半導体基板)
12 セル領域
14 ソースパッド(第1電極)
16 ゲート配線
18 ゲートパッド
20 n型SiCドリフト層(半導体基板)
22 p型ウェル(第1ウェル)
24 n型ソース領域(拡散領域)
28 p型ウェル(第2ウェル)
36 ゲート絶縁膜(第1ゲート絶縁膜)
38 ゲート電極(第1ゲート電極)
40 ゲート絶縁膜(第2ゲート絶縁膜)
42 フィールド酸化膜
44 ゲート電極(第2ゲート電極)
46 層間絶縁膜
60 ドレイン電極(第2電極)
74 エミッタ電極(第1電極)
76 n型エミッタ領域(拡散領域)
78 コレクタ電極(第2電極)
80 p型コレクタ層(コレクタ層)
実施例1.
[装置の構造]
 図1は、実施例1に係る半導体装置を示す上面図である。n型SiC基板10は、互いに対向する上面(第1主面)及び下面(第2主面)を有する。n型SiC基板10の上面内に、MOSFETの最小単位構造である複数のユニットセル(図1では図示せず)が並列に配置されたセル領域12が存在する。このセル領域12上に、各ユニットセルのソースに接続されたソースパッド14(ソース電極)が形成されている。セル領域12の外周部においてセル領域12の外周を1周するように、ソースパッド14とは離間してゲート配線16が形成されている。
 セル領域12の外周部(具体的にはn型SiC基板10の上面の外周の一辺の中央部)にゲートパッド18が形成されている。ゲートパッド18はゲート配線16に電気的に接続されている。ゲートパッド18には外部の制御回路(図示せず)からゲート電圧が印加される。このゲート電圧がゲート配線16を介して各ユニットセルのゲートに供給される。
 図2は、図1の領域Aを拡大した上面図である。図2においてゲートパッド18を透視して破線で示している。ゲート配線16は、ゲートパッド18の下側領域において図面下方を通って左上及び右上から出ている。図3,図4は図2に対する変形例を示す上面図である。図3ではゲート配線16はゲートパッド18の下側領域において図面上方を通って左上及び右上から出ている。図4ではゲート配線16はゲートパッド18の下側領域において全面に広がって左上及び右上から出ている。
 図5は図2のB-B´における断面図である。n型SiC基板10上にn型SiCドリフト層20が形成されている。n型SiCドリフト層20の不純物濃度は1×1013cm-3~1×1018cm-3、厚みは5μm~200μmである。
 セル領域12においてn型SiCドリフト層20の上面の表層にp型ウェル22が形成されている。p型ウェル22内においてn型SiCドリフト層20の上面の表層にn型ソース領域24及びp型ウェルコンタクト領域26が形成されている。n型ソース領域24の底面はp型ウェル22の底面を超えない。n型ソース領域24の不純物濃度は1×1017cm-3~1×1021cm-3であり、p型ウェル22の不純物濃度を超えている。
 セル領域12の外周部においてn型SiCドリフト層20の上面の表層にp型ウェル28及びJTE(Junction Termination Extension)領域30が形成されている。p型ウェル28内においてn型SiCドリフト層20の上面の表層にp型ウェルコンタクト領域32が形成されている。外端部においてn型SiCドリフト層20の上面の表層にn型フィールドストッパ領域34が形成されている。
 p型ウェル22,28は、深さが例えば0.3μm~2.0μmであり、n型SiCドリフト層20の底面を超えない。p型ウェル22,28の不純物濃度は1×1015cm-3~1×1019cm-3であり、n型SiCドリフト層20の不純物濃度を超えている。ただし、n型SiCドリフト層20の最表面近傍に限っては、SiC半導体装置のチャネル領域における導電性を高めるために、p型ウェル22,28の不純物濃度がn型SiCドリフト層20の不純物濃度を下回っていてもよい。なお、n型不純物としてN(窒素)又はP(リン)が好適であり、p型不純物としてAl(アルミニュウム)又はB(ホウ素)が好適である。
 p型ウェル22上にゲート絶縁膜36が形成されている。ゲート絶縁膜36上にゲート電極38が形成されている。一方、p型ウェル28上にゲート絶縁膜40が形成されている。ゲート絶縁膜40よりも外周側においてp型ウェル28上にフィールド酸化膜42が形成されている。このフィールド酸化膜42の膜厚はゲート絶縁膜40の膜厚の10倍程度であることが望ましく、例えば0.5μm~2μmである。そして、ゲート絶縁膜40及びフィールド酸化膜42上に連続してゲート電極44が形成されている。このゲート電極44はゲート電極38に電気的に接続されている。ゲート電極38,44はポリシリコンからなる。
 ゲート配線16が、ゲート電極44よりも外周側においてフィールド酸化膜42上に形成されている。ゲート配線16は、その直下または水平方向の位置でゲート電極44に電気的に接続されている。ゲート配線16は、ゲート電極44の構成物質であるポリシリコンをシリサイド化させたものである。
 全面に層間絶縁膜46が形成され、この層間絶縁膜46にはn型ソース領域24及びp型ウェルコンタクト領域26上にコンタクトホール48が形成され、p型ウェルコンタクト領域32上にコンタクトホール50が形成され、ゲート配線16上にコンタクトホール52が形成されている。コンタクトホール48,50,52の幅は0.1μm~100μmである。ただし、コンタクトホール50,52の幅をできるだけ短く(例えば数μm)すれば、p型ウェル28の幅を縮小できるため好ましい。
 オーミック電極54がコンタクトホール48を介してn型ソース領域24及びp型ウェルコンタクト領域26にオーミック接触し、オーミック電極56がコンタクトホール50を介してp型ウェルコンタクト領域32にオーミック接触している。ソースパッド14は、オーミック電極54,56を介してp型ウェル22,28及びn型ソース領域24に電気的に接続されている。また、裏面オーミック電極58がn型SiC基板10の下面にオーミック接触し、裏面オーミック電極58上にドレイン電極60が形成されている。
 セル領域12に縦型MOSFETの複数のユニットセルが形成されている。各ユニットセルはp型ウェル22、p型ウェルコンタクト領域26及びn型ソース領域24を含む。一方、セル領域12の外周部においてダイオードが形成されている。ダイオードはn型SiCドリフト層20、p型ウェル28及びp型ウェルコンタクト領域32を含む。ダイオードは各ユニットセルに並列接続されている。ダイオードのアノードにソースパッド14が接続され、ダイオードのカソードにドレイン電極60が接続されている。
 図6は、図2においてソースパッド14、層間絶縁膜46及びゲートパッド18を省略した透視平面図である。ゲート電極44の外側面にゲート配線16が接続されている。ゲート電極38,44は、コンタクトホール48,50を形成するために、一部開口されている。図7は図6に対する変形例を示す上面図である。図7に示すように、ゲート電極44がゲート配線16よりも外側にせり出していてもよい。
 図8は、図6のゲート電極44やフィールド酸化膜42の下に位置するn型SiCドリフト層20を示す透視平面図である。n型SiCドリフト層20の上面の表層には、コンタクトホール48,50の中央下部にそれぞれp型ウェルコンタクト領域26,32が形成されている。コンタクトホール48の下部及びその周囲にn型ソース領域24が形成されている。p型ウェルコンタクト領域26及びn型ソース領域24を内包するようにp型ウェル22が形成されている。p型ウェルコンタクト領域32を内包するようにp型ウェル28が形成されている。p型ウェル22,28及びn型ソース領域24は、コンタクトホール48,50を介してソースパッド14が電気的に接続され、ほぼ同電位になる。p型ウェル28及びJTE領域30はフィールド酸化膜42の下方の一部に形成されている。
 図9は図8に対する変形例を示す上面図である。図8ではユニットセル及びダイオードが上下左右に等間隔で配置されていているが、図9に示すようにユニットセル及びダイオードが互い違いに配置されていてもよい。
[装置の製造方法]
 実施例1に係る半導体装置の製造方法について説明する。図10-14は実施例1に係る半導体装置の製造方法を説明するための断面図である。
 まず、図10に示すように、n型SiC基板10を用意する。n型SiC基板10は、c軸方向に対して8°以下に傾斜されていてもよいし、傾斜していなくてもよく、どの様な面方位を有していてもよい。n型SiC基板10上にn型SiCドリフト層20をエピタキシャル成長させる。
 次に、フォトリソグラフィーにより加工されたレジストマスクまたは酸化膜マスクなどを利用してn型SiCドリフト層20の上面の表層に不純物をイオン注入して、p型ウェル22、p型ウェル28、n型ソース領域24及びJTE領域30、n型フィールドストッパ領域34を形成する。
 次に、p型ウェル22,28とソースパッド14の良好な金属接触を実現するために、p型ウェル22,28よりも濃い不純物濃度を有するp型ウェルコンタクト領域26,32を、イオン注入によりそれぞれp型ウェル22,28内に形成する。なお、イオン注入は、150℃以上の基板温度で行うことが望ましい。
 次に、アルゴンや窒素等の不活性ガス雰囲気又は真空中において、温度1500℃~2200℃で0.5分~60分の熱処理を行うことで、注入された不純物を電気的に活性化する。その後、犠牲酸化によってn型SiCドリフト層20の上面に酸化膜(図示せず)を形成し、この酸化膜のフッ酸による除去で表面変質層を除去して清浄な面を得る。
 次に、図11に示すように、シリコン酸化膜からなるフィールド酸化膜42をCVD法などによって堆積し、フィールド酸化膜42をパターニングしてセル領域12及びダイオードの部分に開口を形成する。この開口部分に例えば熱酸化法又は堆積法によってゲート絶縁膜36,40を形成する。
 次に、ポリシリコンをCVD法により堆積し、フォトリソグラフィー及びドライエッチングによってパターニングしてゲート電極38,44を形成する。このポリシリコンには、シート抵抗を低くするためにリンやホウ素を含有させる。リンやホウ素は、ポリシリコンの成膜中に取り込んでもよいし、イオン注入とその後の熱処理によって導入してもよい。
 ここで、ゲート電極44の外端面がフィールド酸化膜42上に存在するようにする。これにより、ゲート電極44のドライエッチングにおけるオーバーエッチによって、端面でむき出しになるゲート絶縁膜40の品質劣化を防ぐことができる。さらに、後に形成されるゲート配線16をフィールド酸化膜42上に設けることができる。これにより、ゲート配線16のシリサイド化によるゲート絶縁膜40の突き抜けを防ぎ、ゲート/ソース間の短絡を防ぐことができる。
 次に、図12に示すように、ゲート電極38,44を覆うようにn型SiCドリフト層20上に層間絶縁膜46をCVD法などによって形成する。そして、層間絶縁膜46を例えばドライエッチングして、コンタクトホール48,50,52を形成する。なお、図13に示すように、コンタクトホール52の代わりに、ゲート電極44の外端面よりも外側の層間絶縁膜46を全て除去して、ゲート電極44の一部を露出させてもよい。
 次に、全面にNiを主とした金属膜(図示せず)を成膜する。そして、600~1100℃での熱処理によってSiC及びポリシリコンとのシリサイドを形成する。さらに、層間絶縁膜46上に残留した金属膜を硫酸や硝酸や塩酸やそれらの過酸化水素混合液などで除去する。これにより、図14に示すように、コンタクトホール48,50において露出させたn型SiCドリフト層20の表面をシリサイド化させることにより、オーミック電極54,56を自己整合的に形成する。そして、コンタクトホール52において露出させたゲート電極44の一部をシリサイド化させることにより、ゲート配線16を自己整合的に形成する。
 ここで、金属膜とSiCの反応速度よりも金属膜とポリシリコンの反応速度の方が速い。従って、オーミック電極54,56のシリサイドを形成するために1000℃で2分間の熱処理を行うと、ゲート配線16のシリサイドは、Niと接触しているポリシリコン上面から深さ方向に形成されるだけでなく、Niと接触していない層間絶縁膜46下のポリシリコンにも形成される。
 また、ゲート配線16及びオーミック電極54,56を形成する過程で、n型SiC基板10の裏面に同様の金属膜を成膜した後に、熱処理を行って裏面オーミック電極58を形成する。これにより、n型SiC基板10とドレイン電極60の間で良好なオーミック接触が形成される。
 次に、Al等の配線金属をスパッタ法又は蒸着法によって形成してパターニングすることで、ゲートパッド18及びソースパッド14を形成する。そして、裏面オーミック電極58上に金属膜を形成してドレイン電極60を形成する。以上の工程により、実施例1に係る半導体装置が製造される。
 なお、図示しないが、n型SiC基板10の表面側をシリコン窒化膜やポリイミドなどの保護膜で覆ってもよい。ただし、ゲートパッド18及びソースパッド14のしかるべき位置で保護膜に開口を形成して、外部の制御回路と接続できるようにする。
[効果]
 MOSFETがON状態からOFF状態へスイッチングすると、ドレイン電極の電圧(ドレイン電圧)がおよそ0Vから数百Vに急激に上昇する。そうするとp型ウェル22,28及びJTE領域30とn型SiCドリフト層20との間に存在する寄生容量を介して、変位電流がp型ウェル22,28に流れ込む。
 p型ウェル22は面積が小さいので内部の寄生抵抗が小さく、ある程度大きな変位電流が流れてもp型ウェル22の電位上昇は小さい。一方、p型ウェル28とJTE領域30を合わせたp型領域は面積が大きいので内部の寄生抵抗が大きく、p型ウェル28の電位上昇は大きい。
 そこで、実施例1では、ゲート電極38,44に電位を供給するゲート配線16としてシリサイドを用いている。シリサイドは、従来の金属製のゲート電極よりも横方向面積を小さく形成できる。このため、ソースパッド14からゲート配線16の外側までの距離を短くすることができる。この短くした分だけゲート配線16の下のp型ウェル28を小さくすることができる。従って、p型ウェル28で発生する変位電流が小さくなり、p型ウェル28の電位上昇が小さくなる。これにより、ゲート絶縁膜40の下のp型ウェル28における高電界の発生を防ぎ、ゲート絶縁膜40の破壊を防ぐことができる。よって、ゲート絶縁膜40の破壊によるゲート電極44,48とソースパッド14の間の短絡を防いで信頼性を向上することができる。
 また、p型ウェル28(JTE領域30)の外端部には、MOSFETがON状態からOFF状態へスイッチングした時に高電界が集中しやすい。そこで、ゲート絶縁膜40の破壊によるゲート電極44,48とソースパッド14の間の短絡を防ぐために、p型ウェル28(JTE領域30)の外端部とゲート電極44及びゲート配線16の距離を確保する必要がある。これに対して、実施例1では、両者の距離を確保しつつ、p型ウェル28を小さくすることができる。
 また、実施例1では、ゲート配線16の下のp型ウェルとダイオードのp型ウェルがp型ウェル28で共通である。このため、ソースパッド14は、ゲート電極44及びゲート絶縁膜40よりも上面の内側においてp型ウェル28に接続されている。これにより、ゲート配線16の下のp型ウェルに電位を与えるフィールドプレートを別途設ける必要が無いので、構造が簡単になり、装置を縮小できる。さらに、p型ウェル28がソースパッド14に接続された部分とゲート絶縁膜40との距離が小さくなるので、ゲート絶縁膜40の下の部分でp型ウェル28の電位が大きくなるのを防ぐことができる。よって、この構成にもゲート絶縁膜40の破壊を防ぐ効果が有る。
 また、SiCは低抵抗化が困難であるため、p型ウェル28に発生する電位が大きくなる。従って、基板材料がSiCである場合に実施例1の構成は特に有効である。
 また、ゲート電極38,44はポリシリコンからなる。ポリシリコンは導電性がよくないため、ゲートパッド18とゲート電極38,44の位置が離れると、両者の電位に時間的なずれが発生する。この時間的なずれは、ポリシリコンの抵抗と、ソースパッド14及びゲート取り出し配線層で決まる寄生容量との時定数で決定される。そこで、セル領域12の外周を1周するように低抵抗のシリサイドから成るゲート配線16を形成することで、各ユニットセルのゲート電極38,44に電位を供給し易くし、スイッチングの高速化を図っている。さらに、ゲート配線16は、ゲート電極44の構成物質であるポリシリコンをシリサイド化させたものである。これにより、ゲート電極44に連続してゲート配線16を自己整合的に形成することができる。
 なお、通常の製品では、温度センサーや電流センサー用の電極が形成されている場合が多い。また、ゲートパッド18の位置及び個数やソースパッド14の形状等も多種多様である。しかし、これらは、実施例1に係る半導体装置の効果に何らの影響を及ぼすものでは無い。
実施例2.
 図15は、実施例2に係る半導体装置を示す断面図である。ゲート電極38,44はポリシリコン62、金属窒化物64及び金属66の積層膜からなる。金属66はTi、Mo、W、Nb、Ta、Siの少なくとも1つである。金属窒化物64はTi、Mo、W、Nb、Ta、Siの少なくとも1つの窒化物である。ゲート配線16は、シリサイド層68及び合金70,72の積層膜からなる。その他の構成は実施例1と同様である。
 実施例2に係る半導体装置の製造方法について説明する。
 まず、実施例1の図11のポリシリコンのゲート電極38,44の代わりに、図16に示すように、ポリシリコン62、金属窒化物64及び金属66をスパッタ法やCVD法などにより堆積し、パターニングしてゲート電極38,44を形成する。
 次に、図17に示すように、層間絶縁膜46をCVD法などによって堆積する。そして、例えばドライエッチング法によってコンタクトホール48,50を形成する。この際に、ゲート電極44の外端面よりも外側の層間絶縁膜46を全て除去するか、少なくともゲート電極44の外側面が露出するように層間絶縁膜46をパターニングする。
 次に、図18に示すように、実施例1と同様にゲート配線16及びオーミック電極54,56を形成する。ここで、ゲート電極44を構成するポリシリコン62、金属窒化物64及び金属66は、シリサイド化の熱処理前にそれぞれゲート電極44の側壁において金属膜(図示せず)に接し、熱処理によってそれぞれシリサイド層68及び合金70,72になる。この熱処理において、金属窒化物64はポリシリコン62への金属66の拡散を防ぐ。なお、熱処理温度が低温であれば、窒素分布及び珪素分布によって分別される3層以上に形成されるが、熱処理温度が高温であれば相互拡散によって境界が不明瞭な合金層が形成される。
 次に、実施例1と同様にゲートパッド18、ソースパッド14及びドレイン電極60を形成する。以上の工程により実施例2に係る半導体装置が製造される。
 実施例2では、ゲート電極38,44は、ポリシリコン62、金属窒化物64及び金属66の積層膜からなる。これにより、ゲート電極38,44のシート抵抗が低減するため、より高速のスイッチング動作を行うことができる。
実施例3.
 実施例3に係る半導体装置の製造方法について説明する。
 まず、実施例1の図11の構造を製造する。そして、図19に示すように、層間絶縁膜46を堆積し、コンタクトホール48,50を形成する。即ち、実施例1とは異なり、この時点ではコンタクトホール52を形成せず、ゲート電極44を露出させない。
 次に、全面にNiを主とした金属膜(図示せず)を成膜する。そして、600~1100℃での熱処理によってSiC及びポリシリコンとのシリサイドを形成する。さらに、層間絶縁膜46上に残留した金属膜を硫酸や硝酸や塩酸やそれらの過酸化水素混合液などで除去する。これにより、図20に示すように、コンタクトホール48,50において露出させたn型SiCドリフト層20の表面をシリサイド化させてオーミック電極54,56を形成する。この際に、n型SiC基板10の裏面に同様の金属膜を成膜した後に、熱処理を行って裏面オーミック電極58を形成する。
 次に、図21に示すように、層間絶縁膜46にコンタクトホール52を形成してゲート電極44の一部を露出させる。そして、全面にNiを主とした金属膜(図示せず)を成膜し、熱処理を行って、露出させたゲート電極44の一部をシリサイド化させてゲート配線16を形成する。
 次に、実施例1と同様にゲートパッド18、ソースパッド14及びドレイン電極60を形成する。以上の工程により実施例3に係る半導体装置が製造される。
 実施例3では、オーミック電極54,56とゲート配線16を別々に形成するため、ゲート配線16の組成を自由に設計することができる。
 ここで、金属膜とSiCの反応速度よりも金属膜とポリシリコンの反応速度の方が速い。従って、後者の場合、前者の場合よりも低温でシリサイドが形成される。従って、オーミック電極54,56を形成した温度よりもより低温、例えば400℃での熱処理によってゲート配線16を形成することができる。そして、ポリシリコンとシリサイド層を形成する金属膜は、オーミック電極54,56の形成時に用いた金属膜と同一でなくてもよく、自由に選択できる。例えば、低温プロセスが好ましい場合には、より低温でシリサイド層を形成する金属膜を選択できる。ゲート配線16の形成を低温で行うことで、金属のポリシリコン中への異常拡散を防ぐことができる。これにより、当該異常拡散によるゲート絶縁膜40やフィールド酸化膜42の絶縁不良による素子の不具合を抑えることができ、良品率を向上できる。
 なお、実施例3に係る半導体装置の製造方法は、実施例2のようにゲート電極38,44が積層膜からなる場合にも同様に適用することができる。
実施例4.
 図22は、実施例4に係る半導体装置を示す断面図である。実施例1のソースパッド14の代わりにエミッタ電極74、n型ソース領域24の代わりにn型エミッタ領域76、ドレイン電極60の代わりにコレクタ電極78が設けられている。そして、n型SiC基板10の下面とコレクタ電極78の間にp型コレクタ層80が形成されている。その他の構成は実施例1と同様である。即ち、実施例1のセル領域12には縦型MOSFETが形成されているのに対し、実施例4のセル領域12にはIGBTが形成されている。この構成により、ゲート絶縁膜40の破壊によるゲート電極44,48とエミッタ電極74の間の短絡を防いで信頼性を向上することができる。
 このように、本発明はMOSFETやIGBT等のMOS構造のスイッチング素子に適用することができる。ただし、本発明の半導体装置は、スイッチング素子だけでなく、スイッチング素子に対して逆並列に接続されるフリーホイールダイオードや、スイッチング素子のゲート電圧を生成・印加する制御回路などをリードフレームに搭載して封止したインバータモジュールなどのパワーモジュールも含む。
 本発明は、例えばインバータのような電力変換器に利用可能である。

Claims (9)

  1.  互いに対向する第1主面及び第2主面を有する第1導電型の半導体基板と、
     前記第1主面内のセル領域において前記第1主面の表層に形成された第2導電型の第1ウェルと、
     前記第1ウェル内において前記第1主面の表層に形成された第1導電型の拡散領域と、
     前記第1ウェル上に形成された第1ゲート絶縁膜と、
     前記第1ゲート絶縁膜上に形成された第1ゲート電極と、
     前記セル領域の外周部において前記第1主面の表層に形成された第2導電型の第2ウェルと、
     前記第2ウェル上に形成された第2ゲート絶縁膜と、
     前記第2ゲート絶縁膜よりも外周側において前記第2ウェル上に形成され、前記第2ゲート絶縁膜よりも厚いフィールド酸化膜と、
     前記第2ゲート絶縁膜及び前記フィールド酸化膜上に連続して形成され、前記第1ゲート電極に電気的に接続された第2ゲート電極と、
     前記第1ウェル、前記第2ウェル及び前記拡散領域に電気的に接続された第1電極と、
     前記半導体基板の前記第2主面に形成された第2電極と、
     前記セル領域の外周を1周するように前記フィールド酸化膜上に形成され、前記第2ゲート電極に電気的に接続されたゲート配線と、
     前記ゲート配線に電気的に接続されたゲートパッドとを備え、
     前記ゲート配線は、前記第2ゲート電極の構成物質をシリサイド化させたものであることを特徴とする半導体装置。
  2.  前記第1電極は、前記第2ゲート電極及び前記第2ゲート絶縁膜よりも前記第1主面の内側において前記第2ウェルに接続されていることを特徴とする請求項2に記載の半導体装置。
  3.  前記半導体基板の基板材料はSiCであることを特徴とする請求項1又は2に記載の半導体装置。
  4.  前記第1ゲート電極及び前記第2ゲート電極はポリシリコンからなることを特徴とする請求項1-3の何れか1項に記載の半導体装置。
  5.  前記第1ゲート電極及び前記第2ゲート電極は、ポリシリコンと、Ti、Mo、W、Nb、Ta、Siの少なくとも1つの金属又は前記金属の窒化物を含む層との積層膜からなることを特徴とする請求項1-3の何れか1項に記載の半導体装置。
  6.  前記拡散領域はソース領域であり、
     前記第1電極はソース電極であり、
     前期第2電極はドレイン電極であることを特徴とする請求項1-5の何れか1項に記載の半導体装置。
  7.  前記半導体基板の前記第2主面と前記第2電極の間に形成された第2導電型のコレクタ層を更に備え、
     前記拡散領域はエミッタ領域であり、
     前記第1電極はエミッタ電極であり、
     前記第2電極はコレクタ電極であることを特徴とする請求項1-5の何れか1項に記載の半導体装置。
  8.  互いに対向する第1主面及び第2主面を有する第1導電型の半導体基板を用意する工程と、
     前記第1主面内のセル領域において前記第1主面の表層に第2導電型の第1ウェルを形成し、前記セル領域の外周部において前記第1主面の表層に第2導電型の第2ウェルを形成する工程と、
     前記第1ウェル内において前記第1主面の表層に第1導電型の拡散領域を形成する工程と、
     前記第1ウェル上に第1ゲート絶縁膜を形成し、前記第2ウェル上に第2ゲート絶縁膜を形成する工程と、
     前記第2ゲート絶縁膜よりも外周側において前記第2ウェル上に、前記第2ゲート絶縁膜よりも厚いフィールド酸化膜を形成する工程と、
     前記第1ゲート絶縁膜上に第1ゲート電極を形成する工程と、
     前記第2ゲート絶縁膜及び前記フィールド酸化膜上に連続して、前記第1ゲート電極に電気的に接続された第2ゲート電極を形成する工程と、
     前記第1ゲート電極及び前記第2ゲート電極を覆うように前記第1主面に層間絶縁膜を形成する工程と、
     前記層間絶縁膜をエッチングして、前記第1ウェル及び前記拡散領域上に第1コンタクトホールを形成し、前記第2ウェル上に第2コンタクトホールを形成する工程と、
     前記層間絶縁膜をエッチングして、前記第2ゲート電極の一部を露出させる工程と、
     露出させた前記第2ゲート電極の一部をシリサイド化させることにより、前記セル領域の外周を1周するように前記フィールド酸化膜上にゲート配線を形成する工程と、
     前記第1コンタクトホールを介して前記第1ウェル及び前記拡散領域に電気的に接続され、前記第2コンタクトホールを介して前記第2ウェルに電気的に接続された第1電極を形成する工程と、
     前記半導体基板の前記第2主面に第2電極を形成する工程と、
     前記ゲート配線に電気的に接続されたゲートパッドを形成する工程とを備えることを特徴とする半導体装置の製造方法。
  9.  前記第2ゲート電極を露出させずに、前記層間絶縁膜をエッチングして前記第1コンタクトホール及び前記第2コンタクトホールを形成し、前記第1コンタクトホール及び前記第2コンタクトホールにおいて露出させた前記半導体基板の表面をシリサイド化させ、
     前記半導体基板の表面をシリサイド化させた後に、前記層間絶縁膜をエッチングして前記第2ゲート電極の一部を露出させて、露出させた前記第2ゲート電極の一部をシリサイド化させて前記ゲート配線を形成することを特徴とする請求項8に記載の半導体装置の製造方法。
PCT/JP2009/058445 2009-04-30 2009-04-30 半導体装置及びその製造方法 WO2010125661A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE112009004744.0T DE112009004744B4 (de) 2009-04-30 2009-04-30 Halbleiterbauelement und Verfahren zu dessen Herstellung
US13/146,654 US9105715B2 (en) 2009-04-30 2009-04-30 Semiconductor device and method for manufacturing the same
KR1020117024775A KR101230680B1 (ko) 2009-04-30 2009-04-30 반도체 장치 및 그 제조 방법
PCT/JP2009/058445 WO2010125661A1 (ja) 2009-04-30 2009-04-30 半導体装置及びその製造方法
JP2011511228A JP5370480B2 (ja) 2009-04-30 2009-04-30 半導体装置及びその製造方法
CN200980157510.7A CN102334190B (zh) 2009-04-30 2009-04-30 半导体装置及其制造方法
US14/789,364 US9502553B2 (en) 2009-04-30 2015-07-01 Semiconductor device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058445 WO2010125661A1 (ja) 2009-04-30 2009-04-30 半導体装置及びその製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/146,654 A-371-Of-International US9105715B2 (en) 2009-04-30 2009-04-30 Semiconductor device and method for manufacturing the same
US14/789,364 Continuation US9502553B2 (en) 2009-04-30 2015-07-01 Semiconductor device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2010125661A1 true WO2010125661A1 (ja) 2010-11-04

Family

ID=43031828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058445 WO2010125661A1 (ja) 2009-04-30 2009-04-30 半導体装置及びその製造方法

Country Status (6)

Country Link
US (2) US9105715B2 (ja)
JP (1) JP5370480B2 (ja)
KR (1) KR101230680B1 (ja)
CN (1) CN102334190B (ja)
DE (1) DE112009004744B4 (ja)
WO (1) WO2010125661A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012129492A (ja) * 2010-11-26 2012-07-05 Mitsubishi Electric Corp 炭化珪素半導体装置およびその製造方法
WO2012172965A1 (ja) * 2011-06-15 2012-12-20 住友電気工業株式会社 炭化珪素半導体装置およびその製造方法
JP2014038963A (ja) * 2012-08-17 2014-02-27 Rohm Co Ltd 半導体装置
JP2014107419A (ja) * 2012-11-28 2014-06-09 Sumitomo Electric Ind Ltd 炭化珪素半導体装置およびその製造方法
WO2016194419A1 (ja) * 2015-06-04 2016-12-08 三菱電機株式会社 半導体装置および半導体装置の製造方法
JP2017028219A (ja) * 2015-07-28 2017-02-02 三菱電機株式会社 炭化珪素半導体装置およびその製造方法
JP2019041084A (ja) * 2017-08-29 2019-03-14 パナソニックIpマネジメント株式会社 炭化珪素半導体装置およびその製造方法
JP2020113712A (ja) * 2019-01-16 2020-07-27 トヨタ自動車株式会社 炭化珪素半導体装置の製造方法
JPWO2022097262A1 (ja) * 2020-11-06 2022-05-12

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5588671B2 (ja) 2008-12-25 2014-09-10 ローム株式会社 半導体装置の製造方法
US8188484B2 (en) 2008-12-25 2012-05-29 Rohm Co., Ltd. Semiconductor device
CN102473723B (zh) 2009-07-15 2014-12-03 三菱电机株式会社 功率用半导体装置及其制造方法
JP5619152B2 (ja) 2010-04-26 2014-11-05 三菱電機株式会社 半導体装置
JP5406171B2 (ja) * 2010-12-08 2014-02-05 ローム株式会社 SiC半導体装置
US20120175679A1 (en) * 2011-01-10 2012-07-12 Fabio Alessio Marino Single structure cascode device
JP2013232533A (ja) * 2012-04-27 2013-11-14 Rohm Co Ltd 半導体装置および半導体装置の製造方法
WO2013172079A1 (ja) * 2012-05-15 2013-11-21 三菱電機株式会社 半導体装置及びその製造方法
DE102014005879B4 (de) * 2014-04-16 2021-12-16 Infineon Technologies Ag Vertikale Halbleitervorrichtung
CN105097795B (zh) * 2014-05-04 2018-03-16 无锡华润上华科技有限公司 具esd保护结构的半导体器件
US9293533B2 (en) * 2014-06-20 2016-03-22 Infineon Technologies Austria Ag Semiconductor switching devices with different local transconductance
CN104091764B (zh) * 2014-07-25 2017-10-31 中航(重庆)微电子有限公司 Igbt器件制备方法及igbt器件
CN104157682A (zh) * 2014-08-25 2014-11-19 株洲南车时代电气股份有限公司 功率半导体芯片的正面结构及其制备方法
JP2016174030A (ja) * 2015-03-16 2016-09-29 株式会社東芝 半導体装置
US9614041B1 (en) * 2015-09-11 2017-04-04 Nxp Usa, Inc. Multi-gate semiconductor devices with improved hot-carrier injection immunity
US10559652B2 (en) 2016-02-09 2020-02-11 Mitsubishi Electric Corporation Semiconductor device
DE112017001788B4 (de) 2016-03-30 2024-05-08 Mitsubishi Electric Corporation Halbleitereinheit, Verfahren zur Herstellung derselben und Leistungswandler
KR101875634B1 (ko) * 2016-10-27 2018-07-06 현대자동차 주식회사 반도체 소자 및 그 제조 방법
JP6844228B2 (ja) * 2016-12-02 2021-03-17 富士電機株式会社 半導体装置および半導体装置の製造方法
JP6376629B1 (ja) * 2017-01-24 2018-08-22 新電元工業株式会社 半導体装置の製造方法
US10601413B2 (en) * 2017-09-08 2020-03-24 Cree, Inc. Power switching devices with DV/DT capability and methods of making such devices
KR102463902B1 (ko) * 2017-12-08 2022-11-08 한국전자통신연구원 다이오드를 내장한 mos 구조의 사이리스터 소자
JP7045180B2 (ja) * 2017-12-18 2022-03-31 株式会社日立製作所 パワー半導体装置、モジュール及び製造方法
US11664369B2 (en) * 2018-03-29 2023-05-30 Rohm Co., Ltd. Semiconductor device
WO2019202349A1 (ja) * 2018-04-19 2019-10-24 日産自動車株式会社 半導体装置及びその製造方法
JP7370781B2 (ja) * 2019-09-24 2023-10-30 株式会社東芝 半導体装置
US12094876B2 (en) * 2020-04-30 2024-09-17 Wolfspeed, Inc. Conduction enhancement layers for electrical contact regions in power devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044414A (ja) * 1999-08-04 2001-02-16 Hitachi Ltd 半導体装置
JP2005064283A (ja) * 2003-08-14 2005-03-10 Sanken Electric Co Ltd 絶縁ゲート型半導体素子およびその製造方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232277A (en) * 1975-09-05 1977-03-11 Toshiba Corp Insulated gate type field-effect transistor
DE4120394A1 (de) * 1991-06-20 1992-12-24 Bosch Gmbh Robert Monolithisch integrierte schaltungsanordnung
JP2817536B2 (ja) 1991-09-27 1998-10-30 日本電気株式会社 半導体装置
JP2962136B2 (ja) * 1994-03-16 1999-10-12 株式会社日立製作所 絶縁ゲート型半導体装置及びそれを用いた電力変換装置
US5563727A (en) * 1994-06-30 1996-10-08 Honeywell Inc. High aperture AMLCD with nonparallel alignment of addressing lines to the pixel edges or with distributed analog processing at the pixel level
US5597765A (en) * 1995-01-10 1997-01-28 Siliconix Incorporated Method for making termination structure for power MOSFET
JP3435924B2 (ja) 1995-08-25 2003-08-11 トヨタ自動車株式会社 車輌の制動力制御装置
JPH10163342A (ja) * 1996-12-04 1998-06-19 Sharp Corp 半導体装置
JP3191747B2 (ja) * 1997-11-13 2001-07-23 富士電機株式会社 Mos型半導体素子
US6396147B1 (en) * 1998-05-16 2002-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with metal-oxide conductors
JP2001024193A (ja) * 1999-07-13 2001-01-26 Hitachi Ltd トレンチゲート型半導体装置およびその製造方法
JP4917709B2 (ja) * 2000-03-06 2012-04-18 ローム株式会社 半導体装置
US6599644B1 (en) * 2000-10-06 2003-07-29 Foundation For Research & Technology-Hellas Method of making an ohmic contact to p-type silicon carbide, comprising titanium carbide and nickel silicide
US6818958B2 (en) * 2001-04-13 2004-11-16 International Rectifier Corporation Semiconductor device and process for its manufacture to increase threshold voltage stability
JP3396030B2 (ja) * 2001-04-27 2003-04-14 沖電気工業株式会社 半導体装置の製造方法
US7045859B2 (en) * 2001-09-05 2006-05-16 International Rectifier Corporation Trench fet with self aligned source and contact
US7217954B2 (en) * 2003-03-18 2007-05-15 Matsushita Electric Industrial Co., Ltd. Silicon carbide semiconductor device and method for fabricating the same
JP4860122B2 (ja) * 2004-06-25 2012-01-25 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
JP2006019608A (ja) 2004-07-05 2006-01-19 Matsushita Electric Ind Co Ltd Misfetデバイス
JP2006339516A (ja) * 2005-06-03 2006-12-14 Rohm Co Ltd 半導体装置およびその製造方法
JP2007134413A (ja) * 2005-11-08 2007-05-31 Toshiba Corp 半導体装置の製造方法
KR101007478B1 (ko) 2006-02-07 2011-01-12 미쓰비시덴키 가부시키가이샤 반도체 장치 및 그 제조 방법
JP5511124B2 (ja) * 2006-09-28 2014-06-04 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー 絶縁ゲート型半導体装置
JP2009058445A (ja) 2007-08-31 2009-03-19 Niigata Univ 触覚センサ
JP2009076761A (ja) * 2007-09-21 2009-04-09 Sanyo Electric Co Ltd 半導体装置およびその製造方法
DE112011101254B4 (de) 2010-04-06 2017-04-06 Mitsubishi Electric Corporation Leistungshalbleiterbauteile und Verfahren zu deren Herstellung
JP5619152B2 (ja) 2010-04-26 2014-11-05 三菱電機株式会社 半導体装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044414A (ja) * 1999-08-04 2001-02-16 Hitachi Ltd 半導体装置
JP2005064283A (ja) * 2003-08-14 2005-03-10 Sanken Electric Co Ltd 絶縁ゲート型半導体素子およびその製造方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012129492A (ja) * 2010-11-26 2012-07-05 Mitsubishi Electric Corp 炭化珪素半導体装置およびその製造方法
WO2012172965A1 (ja) * 2011-06-15 2012-12-20 住友電気工業株式会社 炭化珪素半導体装置およびその製造方法
JP2013004636A (ja) * 2011-06-15 2013-01-07 Sumitomo Electric Ind Ltd 炭化珪素半導体装置およびその製造方法
EP2722892A1 (en) * 2011-06-15 2014-04-23 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device and method for manufacturing same
EP2722892A4 (en) * 2011-06-15 2015-01-21 Sumitomo Electric Industries SILICON CARBIDE SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME
JP2014038963A (ja) * 2012-08-17 2014-02-27 Rohm Co Ltd 半導体装置
US9716157B2 (en) 2012-11-28 2017-07-25 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device
JP2014107419A (ja) * 2012-11-28 2014-06-09 Sumitomo Electric Ind Ltd 炭化珪素半導体装置およびその製造方法
US9450060B2 (en) 2012-11-28 2016-09-20 Sumitomo Electric Industries, Ltd. Method of manufacturing a silicon carbide semiconductor device
WO2016194419A1 (ja) * 2015-06-04 2016-12-08 三菱電機株式会社 半導体装置および半導体装置の製造方法
JP2017028219A (ja) * 2015-07-28 2017-02-02 三菱電機株式会社 炭化珪素半導体装置およびその製造方法
JP2019041084A (ja) * 2017-08-29 2019-03-14 パナソニックIpマネジメント株式会社 炭化珪素半導体装置およびその製造方法
JP2020113712A (ja) * 2019-01-16 2020-07-27 トヨタ自動車株式会社 炭化珪素半導体装置の製造方法
JP7176417B2 (ja) 2019-01-16 2022-11-22 株式会社デンソー 炭化珪素半導体装置の製造方法
JPWO2022097262A1 (ja) * 2020-11-06 2022-05-12
WO2022097262A1 (ja) * 2020-11-06 2022-05-12 三菱電機株式会社 半導体装置および電力変換装置
JP7459292B2 (ja) 2020-11-06 2024-04-01 三菱電機株式会社 半導体装置および電力変換装置

Also Published As

Publication number Publication date
US9105715B2 (en) 2015-08-11
KR101230680B1 (ko) 2013-02-07
CN102334190A (zh) 2012-01-25
DE112009004744B4 (de) 2014-11-13
JPWO2010125661A1 (ja) 2012-10-25
US20110284874A1 (en) 2011-11-24
US9502553B2 (en) 2016-11-22
CN102334190B (zh) 2014-05-14
US20150303297A1 (en) 2015-10-22
KR20120008506A (ko) 2012-01-30
DE112009004744T5 (de) 2013-01-24
JP5370480B2 (ja) 2013-12-18

Similar Documents

Publication Publication Date Title
JP5370480B2 (ja) 半導体装置及びその製造方法
JP5606529B2 (ja) 電力用半導体装置
US9825126B2 (en) Semiconductor device
KR101291838B1 (ko) 전력용 반도체 장치
JP6144674B2 (ja) 半導体装置及びその製造方法
JP6120756B2 (ja) 炭化珪素半導体装置とその製造方法
JP6172224B2 (ja) 電力用半導体装置
JP6055498B2 (ja) 半導体装置
JP5321377B2 (ja) 電力用半導体装置
JP5692227B2 (ja) 電力用半導体装置
JP6282088B2 (ja) 半導体装置及びその製造方法
JP6072432B2 (ja) 半導体装置及びその製造方法
JP6120525B2 (ja) 炭化珪素半導体装置
WO2011007387A1 (ja) 電力用半導体装置およびその製造方法
JP5687127B2 (ja) 半導体装置およびその製造方法
WO2010143376A1 (ja) 半導体装置およびその製造方法
JP2013055177A (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980157510.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844005

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011511228

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13146654

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117024775

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112009004744

Country of ref document: DE

Ref document number: 1120090047440

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09844005

Country of ref document: EP

Kind code of ref document: A1