WO2010125661A1 - 半導体装置及びその製造方法 - Google Patents
半導体装置及びその製造方法 Download PDFInfo
- Publication number
- WO2010125661A1 WO2010125661A1 PCT/JP2009/058445 JP2009058445W WO2010125661A1 WO 2010125661 A1 WO2010125661 A1 WO 2010125661A1 JP 2009058445 W JP2009058445 W JP 2009058445W WO 2010125661 A1 WO2010125661 A1 WO 2010125661A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gate
- electrode
- insulating film
- well
- gate electrode
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 62
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- 238000000034 method Methods 0.000 title description 18
- 239000000758 substrate Substances 0.000 claims abstract description 36
- 238000009792 diffusion process Methods 0.000 claims abstract description 20
- 239000000463 material Substances 0.000 claims abstract description 10
- 239000010410 layer Substances 0.000 claims description 40
- 229910052751 metal Inorganic materials 0.000 claims description 36
- 239000002184 metal Substances 0.000 claims description 36
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 26
- 229920005591 polysilicon Polymers 0.000 claims description 26
- 239000011229 interlayer Substances 0.000 claims description 24
- 239000002344 surface layer Substances 0.000 claims description 19
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 14
- 229910021332 silicide Inorganic materials 0.000 claims description 13
- 230000002093 peripheral effect Effects 0.000 claims description 11
- 150000004767 nitrides Chemical class 0.000 claims description 8
- 239000000470 constituent Substances 0.000 claims description 4
- 238000005530 etching Methods 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 238000009751 slip forming Methods 0.000 abstract description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 49
- 229910010271 silicon carbide Inorganic materials 0.000 description 49
- 238000010438 heat treatment Methods 0.000 description 14
- 239000012535 impurity Substances 0.000 description 12
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 230000003071 parasitic effect Effects 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/4966—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
- H01L29/4975—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2 being a silicide layer, e.g. TiSi2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7802—Vertical DMOS transistors, i.e. VDMOS transistors
- H01L29/7811—Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/532—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
- H01L23/53204—Conductive materials
- H01L23/53209—Conductive materials based on metals, e.g. alloys, metal silicides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0611—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0611—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
- H01L29/0615—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0638—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1095—Body region, i.e. base region, of DMOS transistors or IGBTs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/1608—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42372—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42372—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
- H01L29/4238—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/4916—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66053—Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
- H01L29/66068—Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7802—Vertical DMOS transistors, i.e. VDMOS transistors
- H01L29/7803—Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
- H01L29/7804—Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode
- H01L29/7805—Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode in antiparallel, e.g. freewheel diode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0684—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
- H01L29/0692—Surface layout
- H01L29/0696—Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/45—Ohmic electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/4916—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
- H01L29/4925—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
- H01L29/4941—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement with a barrier layer between the silicon and the metal or metal silicide upper layer, e.g. Silicide/TiN/Polysilicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the present invention relates to a semiconductor device having a switching element having a MOS structure and a manufacturing method thereof, and more particularly to a semiconductor device capable of improving reliability and a manufacturing method thereof.
- the gate electrode is formed of polysilicon having poor conductivity. Therefore, by forming a gate wiring made of a metal film containing low-resistance Al or an alloy thereof or copper on the outer periphery of the chip, it is easy to supply a potential to the gate electrode of each unit cell, and switching speed is increased. (For example, refer to Patent Documents 1 and 2).
- a p-type well is formed in the semiconductor under the gate wiring and the gate pad in order to help the depletion layer grow and prevent the breakdown voltage from deteriorating.
- FIGS. 1 and 2 of Patent Document 1 there has been proposed a semiconductor device in which fine diodes are arranged in a row on the outer peripheral portion (including the gate pad portion) of the cell region where the unit cell is formed (for example, FIGS. 1 and 2 of Patent Document 1).
- This diode absorbs holes injected from the p-type well into the n-type drain layer during forward bias when the MOSFET is switched (turned off) from the ON state (forward bias) to the OFF state (reverse bias).
- the parasitic transistor can be prevented from being turned on (see, for example, FIG. 3 of Patent Document 1).
- the drain electrode voltage (drain voltage) suddenly rises from about 0V to several hundred volts. For this reason, a displacement current flows into the p-type well through the parasitic capacitance existing between the p-type well and the n-type drain layer. This is the same for a p-type well of a MOSFET, a p-type well of a diode, or a p-type well under a gate wiring.
- the p-type well is electrically connected to the field plate through the contact hole, and the field plate is electrically connected to the source electrode. Therefore, the displacement current flowing into the p-type well under the gate wiring flows into the source electrode through the contact hole and the field plate.
- the gate wiring on the outer periphery of the chip has a width of several ⁇ m to several tens of ⁇ m and is formed with a sufficient space from the source pad. This is because a metal film serving as a gate wiring and a source pad has a thickness of several ⁇ m to 10 ⁇ m, so that a process margin in the patterning thereof is ensured. For this reason, for example, the length from the source pad to the outside of the gate wiring ranges from several ⁇ m to 100 ⁇ m. Therefore, the p-type well under the gate wiring has a much larger area than the p-type well of the MOSFET and the p-type well of the diode.
- a gate electrode connected to the gate wiring is provided via a gate insulating film on a portion away from the contact hole of the p-type well under the gate wiring.
- the voltage of the gate electrode is close to 0V. Therefore, a large electric field is applied to the gate insulating film between the gate electrode and the p-type well under the gate wiring, and the gate insulating film is destroyed. As a result, there is a problem that a short circuit occurs between the gate electrode and the source electrode, resulting in a decrease in reliability.
- switching elements MOSFETs and IGBTs
- SiC silicon carbide
- the loss of the inverter can be reduced.
- it is necessary to further increase the driving speed of the switching element increase dV / dt.
- a switching element using SiC as a substrate material has a large band gap of SiC, it is difficult to sufficiently reduce the resistance of the semiconductor layer compared to a switching element using Si as a substrate material. For this reason, the parasitic resistance is increased, and the potential generated in the p-type well is increased.
- the present invention has been made to solve the above-described problems, and an object thereof is to obtain a semiconductor device capable of improving reliability and a manufacturing method thereof.
- the first invention is A first conductivity type semiconductor substrate having a first main surface and a second main surface facing each other; A first well of a second conductivity type formed in a surface layer of the first main surface in a cell region in the first main surface; A diffusion region of a first conductivity type formed in a surface layer of the first main surface in the first well; A first gate insulating film formed on the first well; A first gate electrode formed on the first gate insulating film; A second well of a second conductivity type formed in a surface layer of the first main surface in the outer periphery of the cell region; A second gate insulating film formed on the second well; A field oxide film formed on the second well on an outer peripheral side of the second gate insulating film and thicker than the second gate insulating film; A second gate electrode formed continuously on the second gate insulating film and the field oxide film and electrically connected to the first gate electrode; A first electrode electrically connected to the first well, the second well and the diffusion region; A second electrode formed on the second main surface of the semiconductor substrate;
- the second invention is Providing a first conductivity type semiconductor substrate having a first main surface and a second main surface facing each other; A second conductivity type first well is formed in a surface layer of the first main surface in a cell region in the first main surface, and a second conductivity type is formed in a surface layer of the first main surface in an outer peripheral portion of the cell region.
- Forming a second well Forming a diffusion region of a first conductivity type in a surface layer of the first main surface in the first well; Forming a first gate insulating film on the first well and forming a second gate insulating film on the second well; Forming a field oxide film thicker than the second gate insulating film on the second well on the outer peripheral side of the second gate insulating film; Forming a first gate electrode on the first gate insulating film; Forming a second gate electrode electrically connected to the first gate electrode continuously on the second gate insulating film and the field oxide film; Forming an interlayer insulating film on the first main surface so as to cover the first gate electrode and the second gate electrode; Etching the interlayer insulating film to form a first contact hole on the first well and the diffusion region, and forming a second contact hole on the second well; Etching the interlayer insulating film to expose a portion of the second gate electrode; Forming a gate wiring on the field oxide film so as to make one round of the outer peripher
- the reliability can be improved by the present invention.
- FIG. 1 is a top view showing a semiconductor device according to Example 1.
- FIG. It is the top view to which the area
- FIG. 3 is a cross-sectional view taken along the line BB ′ of FIG.
- FIG. 3 is a perspective plan view in which a source pad, an interlayer insulating film, and a gate pad are omitted in FIG.
- FIG. 7 is a perspective plan view showing an n-type SiC drift layer located under the gate electrode and field oxide film of FIG. 6. It is a top view which shows the modification with respect to FIG.
- FIG. 6 is a cross-sectional view for explaining the method for manufacturing the semiconductor device according to the first embodiment.
- FIG. 6 is a cross-sectional view for explaining the method for manufacturing the semiconductor device according to the first embodiment.
- FIG. 6 is a cross-sectional view for explaining the method for manufacturing the semiconductor device according to the first embodiment.
- FIG. 6 is a cross-sectional view for explaining the method for manufacturing the semiconductor device according to the first embodiment.
- FIG. 6 is a cross-sectional view for explaining the method for manufacturing the semiconductor device according to the first embodiment.
- FIG. 7 is a cross-sectional view showing a semiconductor device according to Example 2.
- FIG. 10 is a cross-sectional view for explaining the method for manufacturing the semiconductor device according to the second embodiment.
- FIG. 10 is a cross-sectional view for explaining the method for manufacturing the semiconductor device according to the second embodiment.
- FIG. 10 is a cross-sectional view for explaining the method for manufacturing the semiconductor device according to the second embodiment.
- FIG. 10 is a cross-sectional view for explaining the method for manufacturing the semiconductor device according to the third embodiment.
- FIG. 10 is a cross-sectional view for explaining the method for manufacturing the semiconductor device according to the third embodiment.
- FIG. 10 is a cross-sectional view for explaining the method for manufacturing the semiconductor device according to the third embodiment.
- 7 is a cross-sectional view showing a semiconductor device according to Example 4.
- FIG. 1 is a top view of the semiconductor device according to the first embodiment.
- N-type SiC substrate 10 has an upper surface (first main surface) and a lower surface (second main surface) facing each other.
- a cell region 12 in which a plurality of unit cells (not shown in FIG. 1), which are the minimum unit structure of a MOSFET, are arranged in parallel.
- a source pad 14 (source electrode) connected to the source of each unit cell is formed on the cell region 12.
- a gate wiring 16 is formed apart from the source pad 14 so as to make one round of the outer periphery of the cell region 12 at the outer periphery of the cell region 12.
- a gate pad 18 is formed on the outer peripheral portion of the cell region 12 (specifically, the central portion of one side of the outer periphery of the upper surface of the n-type SiC substrate 10).
- the gate pad 18 is electrically connected to the gate wiring 16.
- a gate voltage is applied to the gate pad 18 from an external control circuit (not shown). This gate voltage is supplied to the gate of each unit cell via the gate wiring 16.
- FIG. 2 is an enlarged top view of region A in FIG. In FIG. 2, the gate pad 18 is seen through with a broken line.
- the gate wiring 16 protrudes from the upper left and upper right through the lower part of the drawing in the lower region of the gate pad 18.
- 3 and 4 are top views showing modifications to FIG. In FIG. 3, the gate wiring 16 protrudes from the upper left and upper right through the upper part of the drawing in the lower region of the gate pad 18. In FIG. 4, the gate wiring 16 extends over the entire area in the lower region of the gate pad 18 and protrudes from the upper left and upper right.
- FIG. 5 is a cross-sectional view taken along the line BB ′ of FIG.
- An n-type SiC drift layer 20 is formed on n-type SiC substrate 10.
- the n-type SiC drift layer 20 has an impurity concentration of 1 ⁇ 10 13 cm ⁇ 3 to 1 ⁇ 10 18 cm ⁇ 3 and a thickness of 5 ⁇ m to 200 ⁇ m.
- a p-type well 22 is formed in the surface layer on the upper surface of the n-type SiC drift layer 20 in the cell region 12.
- An n-type source region 24 and a p + -type well contact region 26 are formed in the surface layer on the upper surface of the n-type SiC drift layer 20 in the p-type well 22.
- the bottom surface of the n-type source region 24 does not exceed the bottom surface of the p-type well 22.
- the impurity concentration of the n-type source region 24 is 1 ⁇ 10 17 cm ⁇ 3 to 1 ⁇ 10 21 cm ⁇ 3 , which exceeds the impurity concentration of the p-type well 22.
- a p-type well 28 and a JTE (Junction Termination Extension) region 30 are formed in the surface layer on the upper surface of the n-type SiC drift layer 20 in the outer peripheral portion of the cell region 12.
- a p + type well contact region 32 is formed in the surface layer on the upper surface of the n type SiC drift layer 20 in the p type well 28.
- An n-type field stopper region 34 is formed in the surface layer on the upper surface of n-type SiC drift layer 20 at the outer end.
- the p-type wells 22 and 28 have a depth of 0.3 ⁇ m to 2.0 ⁇ m, for example, and do not exceed the bottom surface of the n-type SiC drift layer 20.
- the impurity concentration of the p-type wells 22 and 28 is 1 ⁇ 10 15 cm ⁇ 3 to 1 ⁇ 10 19 cm ⁇ 3 , which exceeds the impurity concentration of the n-type SiC drift layer 20.
- the impurity concentration of p-type wells 22 and 28 is the impurity concentration of n-type SiC drift layer 20 in order to increase the conductivity in the channel region of the SiC semiconductor device. May be less than Note that N (nitrogen) or P (phosphorus) is preferable as the n-type impurity, and Al (aluminum) or B (boron) is preferable as the p-type impurity.
- a gate insulating film 36 is formed on the p-type well 22.
- a gate electrode 38 is formed on the gate insulating film 36.
- a gate insulating film 40 is formed on the p-type well 28.
- a field oxide film 42 is formed on the p-type well 28 on the outer peripheral side of the gate insulating film 40.
- the film thickness of the field oxide film 42 is desirably about 10 times the film thickness of the gate insulating film 40, for example, 0.5 ⁇ m to 2 ⁇ m.
- a gate electrode 44 is continuously formed on the gate insulating film 40 and the field oxide film 42. The gate electrode 44 is electrically connected to the gate electrode 38.
- the gate electrodes 38 and 44 are made of polysilicon.
- the gate wiring 16 is formed on the field oxide film 42 on the outer peripheral side of the gate electrode 44.
- the gate wiring 16 is electrically connected to the gate electrode 44 at a position directly below or in the horizontal direction.
- the gate wiring 16 is formed by siliciding polysilicon which is a constituent material of the gate electrode 44.
- An interlayer insulating film 46 is formed on the entire surface.
- a contact hole 48 is formed on the n-type source region 24 and the p + -type well contact region 26, and a contact hole is formed on the p + -type well contact region 32.
- 50 is formed, and a contact hole 52 is formed on the gate wiring 16.
- the width of the contact holes 48, 50 and 52 is 0.1 ⁇ m to 100 ⁇ m. However, it is preferable to make the width of the contact holes 50 and 52 as short as possible (for example, several ⁇ m) because the width of the p-type well 28 can be reduced.
- the ohmic electrode 54 is in ohmic contact with the n-type source region 24 and the p + type well contact region 26 through the contact hole 48, and the ohmic electrode 56 is in ohmic contact with the p + type well contact region 32 through the contact hole 50. Yes.
- the source pad 14 is electrically connected to the p-type wells 22 and 28 and the n-type source region 24 through ohmic electrodes 54 and 56.
- the back ohmic electrode 58 is in ohmic contact with the lower surface of the n-type SiC substrate 10, and the drain electrode 60 is formed on the back ohmic electrode 58.
- a plurality of vertical MOSFET unit cells are formed in the cell region 12.
- Each unit cell includes a p-type well 22, a p + -type well contact region 26 and an n-type source region 24.
- a diode is formed on the outer periphery of the cell region 12.
- the diode includes an n-type SiC drift layer 20, a p-type well 28 and a p + -type well contact region 32.
- the diode is connected in parallel to each unit cell.
- a source pad 14 is connected to the anode of the diode, and a drain electrode 60 is connected to the cathode of the diode.
- FIG. 6 is a perspective plan view in which the source pad 14, the interlayer insulating film 46, and the gate pad 18 are omitted from FIG.
- a gate wiring 16 is connected to the outer surface of the gate electrode 44.
- the gate electrodes 38 and 44 are partially opened to form contact holes 48 and 50.
- FIG. 7 is a top view showing a modification to FIG. As shown in FIG. 7, the gate electrode 44 may protrude outward from the gate wiring 16.
- FIG. 8 is a perspective plan view showing the n-type SiC drift layer 20 located under the gate electrode 44 and the field oxide film 42 of FIG.
- p + -type well contact regions 26 and 32 are formed in the central lower portions of the contact holes 48 and 50, respectively.
- An n-type source region 24 is formed below and around the contact hole 48.
- a p-type well 22 is formed so as to include the p + -type well contact region 26 and the n-type source region 24.
- a p-type well 28 is formed so as to enclose the p + -type well contact region 32.
- the source pads 14 are electrically connected to the p-type wells 22 and 28 and the n-type source region 24 through the contact holes 48 and 50, respectively, and have substantially the same potential.
- the p-type well 28 and the JTE region 30 are formed in a part below the field oxide film 42.
- FIG. 9 is a top view showing a modification to FIG. In FIG. 8, the unit cells and the diodes are arranged at equal intervals vertically and horizontally, but the unit cells and the diodes may be arranged alternately as shown in FIG.
- n-type SiC substrate 10 is prepared as shown in FIG.
- the n-type SiC substrate 10 may be inclined to 8 ° or less with respect to the c-axis direction, may not be inclined, and may have any plane orientation.
- N-type SiC drift layer 20 is epitaxially grown on n-type SiC substrate 10.
- impurities are ion-implanted into the surface layer on the upper surface of the n-type SiC drift layer 20 by using a resist mask or an oxide film mask processed by photolithography, so that the p-type well 22, the p-type well 28, and the n-type well are formed.
- a source region 24, a JTE region 30, and an n-type field stopper region 34 are formed.
- p + -type well contact regions 26 and 32 having an impurity concentration higher than that of the p-type wells 22 and 28 are ion-implanted. Are formed in the p-type wells 22 and 28, respectively. Note that ion implantation is desirably performed at a substrate temperature of 150 ° C. or higher.
- the implanted impurities are electrically activated by performing a heat treatment at a temperature of 1500 ° C. to 2200 ° C. for 0.5 minutes to 60 minutes in an inert gas atmosphere such as argon or nitrogen or in a vacuum.
- an oxide film (not shown) is formed on the upper surface of the n-type SiC drift layer 20 by sacrificial oxidation, and the surface alteration layer is removed by removing the oxide film with hydrofluoric acid to obtain a clean surface.
- a field oxide film 42 made of a silicon oxide film is deposited by a CVD method or the like, and the field oxide film 42 is patterned to form openings in the cell region 12 and the diode portion.
- Gate insulating films 36 and 40 are formed in the opening by, for example, thermal oxidation or deposition.
- polysilicon is deposited by a CVD method and patterned by photolithography and dry etching to form gate electrodes 38 and 44.
- This polysilicon contains phosphorus or boron in order to reduce the sheet resistance. Phosphorus and boron may be taken in during the deposition of polysilicon, or may be introduced by ion implantation and subsequent heat treatment.
- the outer end face of the gate electrode 44 is made to exist on the field oxide film 42. As a result, it is possible to prevent quality deterioration of the gate insulating film 40 exposed at the end face due to overetching in the dry etching of the gate electrode 44. Further, the gate wiring 16 to be formed later can be provided on the field oxide film 42. As a result, the gate insulating film 40 can be prevented from penetrating due to silicidation of the gate wiring 16, and a short circuit between the gate and the source can be prevented.
- an interlayer insulating film 46 is formed on the n-type SiC drift layer 20 so as to cover the gate electrodes 38 and 44 by the CVD method or the like. Then, the interlayer insulating film 46 is dry-etched, for example, to form contact holes 48, 50, and 52. As shown in FIG. 13, instead of the contact hole 52, the interlayer insulating film 46 outside the outer end face of the gate electrode 44 may be completely removed to expose a part of the gate electrode 44.
- a metal film (not shown) mainly composed of Ni is formed on the entire surface.
- silicide with SiC and polysilicon is formed by heat treatment at 600 to 1100 ° C.
- the metal film remaining on the interlayer insulating film 46 is removed with sulfuric acid, nitric acid, hydrochloric acid, a hydrogen peroxide mixture thereof, or the like.
- the surfaces of the n-type SiC drift layer 20 exposed in the contact holes 48 and 50 are silicided to form ohmic electrodes 54 and 56 in a self-aligned manner.
- a part of the gate electrode 44 exposed in the contact hole 52 is silicided to form the gate wiring 16 in a self-aligning manner.
- the reaction rate between the metal film and polysilicon is faster than the reaction rate between the metal film and SiC. Therefore, when heat treatment is performed at 1000 ° C. for 2 minutes in order to form the silicide of the ohmic electrodes 54 and 56, the silicide of the gate wiring 16 is only formed in the depth direction from the upper surface of the polysilicon in contact with Ni. In addition, it is formed on the polysilicon under the interlayer insulating film 46 which is not in contact with Ni.
- the gate pad 18 and the source pad 14 are formed by forming and patterning a wiring metal such as Al by sputtering or vapor deposition. Then, a metal film is formed on the back ohmic electrode 58 to form the drain electrode 60. Through the above steps, the semiconductor device according to the first embodiment is manufactured.
- the surface side of the n-type SiC substrate 10 may be covered with a protective film such as a silicon nitride film or polyimide. However, an opening is formed in the protective film at an appropriate position of the gate pad 18 and the source pad 14 so that it can be connected to an external control circuit.
- a protective film such as a silicon nitride film or polyimide.
- silicide is used as the gate wiring 16 for supplying a potential to the gate electrodes 38 and 44.
- Silicide can be formed with a smaller area in the lateral direction than a conventional metal gate electrode. For this reason, the distance from the source pad 14 to the outside of the gate wiring 16 can be shortened.
- the p-type well 28 under the gate wiring 16 can be made smaller by this shortening. Accordingly, the displacement current generated in the p-type well 28 is reduced, and the potential increase in the p-type well 28 is reduced. Thereby, generation of a high electric field in the p-type well 28 under the gate insulating film 40 can be prevented, and destruction of the gate insulating film 40 can be prevented. Therefore, a short circuit between the gate electrodes 44 and 48 and the source pad 14 due to the breakdown of the gate insulating film 40 can be prevented, and the reliability can be improved.
- the p-type well 28 can be made small while ensuring the distance between them.
- the p-type well 28 under the gate wiring 16 and the p-type well of the diode are common to the p-type well 28.
- the source pad 14 is connected to the p-type well 28 on the inner side of the upper surface than the gate electrode 44 and the gate insulating film 40.
- the distance between the portion where the p-type well 28 is connected to the source pad 14 and the gate insulating film 40 is reduced, it is possible to prevent the potential of the p-type well 28 from increasing in the portion under the gate insulating film 40. Can do. Therefore, this configuration also has an effect of preventing the gate insulating film 40 from being broken.
- Example 1 is particularly effective when the substrate material is SiC.
- electrodes for temperature sensors and current sensors are often formed.
- the position and number of the gate pads 18 and the shape of the source pads 14 are various. However, these do not affect the effect of the semiconductor device according to the first embodiment.
- FIG. 15 is a cross-sectional view illustrating the semiconductor device according to the second embodiment.
- the gate electrodes 38 and 44 are formed of a laminated film of polysilicon 62, metal nitride 64, and metal 66.
- the metal 66 is at least one of Ti, Mo, W, Nb, Ta, and Si.
- the metal nitride 64 is at least one nitride of Ti, Mo, W, Nb, Ta, and Si.
- the gate wiring 16 is composed of a laminated film of a silicide layer 68 and alloys 70 and 72. Other configurations are the same as those of the first embodiment.
- polysilicon 62, metal nitride 64 and metal 66 are deposited by sputtering or CVD instead of the polysilicon gate electrodes 38 and 44 of FIG.
- the gate electrodes 38 and 44 are formed by patterning.
- an interlayer insulating film 46 is deposited by a CVD method or the like. Then, contact holes 48 and 50 are formed by dry etching, for example. At this time, the entire interlayer insulating film 46 outside the outer end surface of the gate electrode 44 is removed, or the interlayer insulating film 46 is patterned so that at least the outer surface of the gate electrode 44 is exposed.
- the gate wiring 16 and the ohmic electrodes 54 and 56 are formed as in the first embodiment.
- the polysilicon 62, the metal nitride 64, and the metal 66 constituting the gate electrode 44 are in contact with a metal film (not shown) on the side wall of the gate electrode 44 before the silicidation heat treatment, and the silicide layer is formed by the heat treatment. 68 and alloys 70 and 72.
- metal nitride 64 prevents diffusion of metal 66 into polysilicon 62. If the heat treatment temperature is low, it is formed into three or more layers separated by nitrogen distribution and silicon distribution. However, if the heat treatment temperature is high, an alloy layer whose boundary is unclear is formed by mutual diffusion.
- the gate pad 18, the source pad 14, and the drain electrode 60 are formed in the same manner as in the first embodiment.
- the semiconductor device according to the second embodiment is manufactured through the above steps.
- the gate electrodes 38 and 44 are formed of a laminated film of polysilicon 62, metal nitride 64, and metal 66. As a result, the sheet resistance of the gate electrodes 38 and 44 is reduced, so that a faster switching operation can be performed.
- Example 3 A method for manufacturing a semiconductor device according to the third embodiment will be described. First, the structure of FIG. Then, as shown in FIG. 19, an interlayer insulating film 46 is deposited, and contact holes 48 and 50 are formed. That is, unlike the first embodiment, the contact hole 52 is not formed at this time, and the gate electrode 44 is not exposed.
- a metal film (not shown) mainly composed of Ni is formed on the entire surface.
- silicide with SiC and polysilicon is formed by heat treatment at 600 to 1100 ° C.
- the metal film remaining on the interlayer insulating film 46 is removed with sulfuric acid, nitric acid, hydrochloric acid, a hydrogen peroxide mixture thereof, or the like.
- the surfaces of the n-type SiC drift layer 20 exposed in the contact holes 48 and 50 are silicided to form ohmic electrodes 54 and 56.
- heat treatment is performed to form the back ohmic electrode 58.
- a contact hole 52 is formed in the interlayer insulating film 46 to expose a part of the gate electrode 44.
- a metal film (not shown) mainly composed of Ni is formed on the entire surface, and heat treatment is performed to silicide part of the exposed gate electrode 44 to form the gate wiring 16.
- the gate pad 18, the source pad 14, and the drain electrode 60 are formed in the same manner as in the first embodiment.
- the semiconductor device according to Example 3 is manufactured through the above steps.
- Example 3 since the ohmic electrodes 54 and 56 and the gate wiring 16 are separately formed, the composition of the gate wiring 16 can be freely designed.
- the reaction rate between the metal film and polysilicon is faster than the reaction rate between the metal film and SiC. Therefore, in the latter case, silicide is formed at a lower temperature than in the former case. Therefore, the gate wiring 16 can be formed by heat treatment at a temperature lower than the temperature at which the ohmic electrodes 54 and 56 are formed, for example, 400 ° C.
- the metal film for forming the silicide layer with the polysilicon does not have to be the same as the metal film used when the ohmic electrodes 54 and 56 are formed, and can be freely selected. For example, when a low temperature process is preferable, a metal film that forms a silicide layer at a lower temperature can be selected.
- the gate wiring 16 By forming the gate wiring 16 at a low temperature, abnormal diffusion of metal into the polysilicon can be prevented. Thereby, the malfunction of the element by the insulation defect of the gate insulating film 40 or the field oxide film 42 by the said abnormal diffusion can be suppressed, and the yield rate can be improved.
- the semiconductor device manufacturing method according to the third embodiment can be similarly applied to the case where the gate electrodes 38 and 44 are formed of a laminated film as in the second embodiment.
- FIG. 22 is a cross-sectional view illustrating the semiconductor device according to the fourth embodiment.
- An emitter electrode 74 is provided instead of the source pad 14 of the first embodiment, an n-type emitter region 76 is provided instead of the n-type source region 24, and a collector electrode 78 is provided instead of the drain electrode 60.
- a p-type collector layer 80 is formed between the lower surface of n-type SiC substrate 10 and collector electrode 78.
- Other configurations are the same as those of the first embodiment. That is, while the vertical MOSFET is formed in the cell region 12 of the first embodiment, the IGBT is formed in the cell region 12 of the fourth embodiment. With this configuration, it is possible to improve reliability by preventing a short circuit between the gate electrodes 44 and 48 and the emitter electrode 74 due to the breakdown of the gate insulating film 40.
- the present invention can be applied to a switching element having a MOS structure such as a MOSFET or IGBT.
- the semiconductor device of the present invention includes not only the switching element but also a free wheel diode connected in antiparallel to the switching element, a control circuit for generating and applying the gate voltage of the switching element, and the like on the lead frame. Including power modules such as inverter modules sealed.
- the present invention can be used for a power converter such as an inverter.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
互いに対向する第1主面及び第2主面を有する第1導電型の半導体基板と、
前記第1主面内のセル領域において前記第1主面の表層に形成された第2導電型の第1ウェルと、
前記第1ウェル内において前記第1主面の表層に形成された第1導電型の拡散領域と、
前記第1ウェル上に形成された第1ゲート絶縁膜と、
前記第1ゲート絶縁膜上に形成された第1ゲート電極と、
前記セル領域の外周部において前記第1主面の表層に形成された第2導電型の第2ウェルと、
前記第2ウェル上に形成された第2ゲート絶縁膜と、
前記第2ゲート絶縁膜よりも外周側において前記第2ウェル上に形成され、前記第2ゲート絶縁膜よりも厚いフィールド酸化膜と、
前記第2ゲート絶縁膜及び前記フィールド酸化膜上に連続して形成され、前記第1ゲート電極に電気的に接続された第2ゲート電極と、
前記第1ウェル、前記第2ウェル及び前記拡散領域に電気的に接続された第1電極と、
前記半導体基板の前記第2主面に形成された第2電極と、
前記セル領域の外周を1周するように前記フィールド酸化膜上に形成され、前記第2ゲート電極に電気的に接続されたゲート配線と、
前記ゲート配線に電気的に接続されたゲートパッドとを備え、
前記ゲート配線は、前記第2ゲート電極の構成物質をシリサイド化させたものであることを特徴とする半導体装置である。
互いに対向する第1主面及び第2主面を有する第1導電型の半導体基板を用意する工程と、
前記第1主面内のセル領域において前記第1主面の表層に第2導電型の第1ウェルを形成し、前記セル領域の外周部において前記第1主面の表層に第2導電型の第2ウェルを形成する工程と、
前記第1ウェル内において前記第1主面の表層に第1導電型の拡散領域を形成する工程と、
前記第1ウェル上に第1ゲート絶縁膜を形成し、前記第2ウェル上に第2ゲート絶縁膜を形成する工程と、
前記第2ゲート絶縁膜よりも外周側において前記第2ウェル上に、前記第2ゲート絶縁膜よりも厚いフィールド酸化膜を形成する工程と、
前記第1ゲート絶縁膜上に第1ゲート電極を形成する工程と、
前記第2ゲート絶縁膜及び前記フィールド酸化膜上に連続して、前記第1ゲート電極に電気的に接続された第2ゲート電極を形成する工程と、
前記第1ゲート電極及び前記第2ゲート電極を覆うように前記第1主面に層間絶縁膜を形成する工程と、
前記層間絶縁膜をエッチングして、前記第1ウェル及び前記拡散領域上に第1コンタクトホールを形成し、前記第2ウェル上に第2コンタクトホールを形成する工程と、
前記層間絶縁膜をエッチングして、前記第2ゲート電極の一部を露出させる工程と、
露出させた前記第2ゲート電極の一部をシリサイド化させることにより、前記セル領域の外周を1周するように前記フィールド酸化膜上にゲート配線を形成する工程と、
前記第1コンタクトホールを介して前記第1ウェル及び前記拡散領域に電気的に接続され、前記第2コンタクトホールを介して前記第2ウェルに電気的に接続された第1電極を形成する工程と、
前記半導体基板の前記第2主面に第2電極を形成する工程と、
前記ゲート配線に電気的に接続されたゲートパッドを形成する工程とを備えることを特徴とする半導体装置の製造方法である。
12 セル領域
14 ソースパッド(第1電極)
16 ゲート配線
18 ゲートパッド
20 n型SiCドリフト層(半導体基板)
22 p型ウェル(第1ウェル)
24 n型ソース領域(拡散領域)
28 p型ウェル(第2ウェル)
36 ゲート絶縁膜(第1ゲート絶縁膜)
38 ゲート電極(第1ゲート電極)
40 ゲート絶縁膜(第2ゲート絶縁膜)
42 フィールド酸化膜
44 ゲート電極(第2ゲート電極)
46 層間絶縁膜
60 ドレイン電極(第2電極)
74 エミッタ電極(第1電極)
76 n型エミッタ領域(拡散領域)
78 コレクタ電極(第2電極)
80 p型コレクタ層(コレクタ層)
[装置の構造]
図1は、実施例1に係る半導体装置を示す上面図である。n型SiC基板10は、互いに対向する上面(第1主面)及び下面(第2主面)を有する。n型SiC基板10の上面内に、MOSFETの最小単位構造である複数のユニットセル(図1では図示せず)が並列に配置されたセル領域12が存在する。このセル領域12上に、各ユニットセルのソースに接続されたソースパッド14(ソース電極)が形成されている。セル領域12の外周部においてセル領域12の外周を1周するように、ソースパッド14とは離間してゲート配線16が形成されている。
実施例1に係る半導体装置の製造方法について説明する。図10-14は実施例1に係る半導体装置の製造方法を説明するための断面図である。
MOSFETがON状態からOFF状態へスイッチングすると、ドレイン電極の電圧(ドレイン電圧)がおよそ0Vから数百Vに急激に上昇する。そうするとp型ウェル22,28及びJTE領域30とn型SiCドリフト層20との間に存在する寄生容量を介して、変位電流がp型ウェル22,28に流れ込む。
図15は、実施例2に係る半導体装置を示す断面図である。ゲート電極38,44はポリシリコン62、金属窒化物64及び金属66の積層膜からなる。金属66はTi、Mo、W、Nb、Ta、Siの少なくとも1つである。金属窒化物64はTi、Mo、W、Nb、Ta、Siの少なくとも1つの窒化物である。ゲート配線16は、シリサイド層68及び合金70,72の積層膜からなる。その他の構成は実施例1と同様である。
まず、実施例1の図11のポリシリコンのゲート電極38,44の代わりに、図16に示すように、ポリシリコン62、金属窒化物64及び金属66をスパッタ法やCVD法などにより堆積し、パターニングしてゲート電極38,44を形成する。
実施例3に係る半導体装置の製造方法について説明する。
まず、実施例1の図11の構造を製造する。そして、図19に示すように、層間絶縁膜46を堆積し、コンタクトホール48,50を形成する。即ち、実施例1とは異なり、この時点ではコンタクトホール52を形成せず、ゲート電極44を露出させない。
図22は、実施例4に係る半導体装置を示す断面図である。実施例1のソースパッド14の代わりにエミッタ電極74、n型ソース領域24の代わりにn型エミッタ領域76、ドレイン電極60の代わりにコレクタ電極78が設けられている。そして、n型SiC基板10の下面とコレクタ電極78の間にp型コレクタ層80が形成されている。その他の構成は実施例1と同様である。即ち、実施例1のセル領域12には縦型MOSFETが形成されているのに対し、実施例4のセル領域12にはIGBTが形成されている。この構成により、ゲート絶縁膜40の破壊によるゲート電極44,48とエミッタ電極74の間の短絡を防いで信頼性を向上することができる。
Claims (9)
- 互いに対向する第1主面及び第2主面を有する第1導電型の半導体基板と、
前記第1主面内のセル領域において前記第1主面の表層に形成された第2導電型の第1ウェルと、
前記第1ウェル内において前記第1主面の表層に形成された第1導電型の拡散領域と、
前記第1ウェル上に形成された第1ゲート絶縁膜と、
前記第1ゲート絶縁膜上に形成された第1ゲート電極と、
前記セル領域の外周部において前記第1主面の表層に形成された第2導電型の第2ウェルと、
前記第2ウェル上に形成された第2ゲート絶縁膜と、
前記第2ゲート絶縁膜よりも外周側において前記第2ウェル上に形成され、前記第2ゲート絶縁膜よりも厚いフィールド酸化膜と、
前記第2ゲート絶縁膜及び前記フィールド酸化膜上に連続して形成され、前記第1ゲート電極に電気的に接続された第2ゲート電極と、
前記第1ウェル、前記第2ウェル及び前記拡散領域に電気的に接続された第1電極と、
前記半導体基板の前記第2主面に形成された第2電極と、
前記セル領域の外周を1周するように前記フィールド酸化膜上に形成され、前記第2ゲート電極に電気的に接続されたゲート配線と、
前記ゲート配線に電気的に接続されたゲートパッドとを備え、
前記ゲート配線は、前記第2ゲート電極の構成物質をシリサイド化させたものであることを特徴とする半導体装置。 - 前記第1電極は、前記第2ゲート電極及び前記第2ゲート絶縁膜よりも前記第1主面の内側において前記第2ウェルに接続されていることを特徴とする請求項2に記載の半導体装置。
- 前記半導体基板の基板材料はSiCであることを特徴とする請求項1又は2に記載の半導体装置。
- 前記第1ゲート電極及び前記第2ゲート電極はポリシリコンからなることを特徴とする請求項1-3の何れか1項に記載の半導体装置。
- 前記第1ゲート電極及び前記第2ゲート電極は、ポリシリコンと、Ti、Mo、W、Nb、Ta、Siの少なくとも1つの金属又は前記金属の窒化物を含む層との積層膜からなることを特徴とする請求項1-3の何れか1項に記載の半導体装置。
- 前記拡散領域はソース領域であり、
前記第1電極はソース電極であり、
前期第2電極はドレイン電極であることを特徴とする請求項1-5の何れか1項に記載の半導体装置。 - 前記半導体基板の前記第2主面と前記第2電極の間に形成された第2導電型のコレクタ層を更に備え、
前記拡散領域はエミッタ領域であり、
前記第1電極はエミッタ電極であり、
前記第2電極はコレクタ電極であることを特徴とする請求項1-5の何れか1項に記載の半導体装置。 - 互いに対向する第1主面及び第2主面を有する第1導電型の半導体基板を用意する工程と、
前記第1主面内のセル領域において前記第1主面の表層に第2導電型の第1ウェルを形成し、前記セル領域の外周部において前記第1主面の表層に第2導電型の第2ウェルを形成する工程と、
前記第1ウェル内において前記第1主面の表層に第1導電型の拡散領域を形成する工程と、
前記第1ウェル上に第1ゲート絶縁膜を形成し、前記第2ウェル上に第2ゲート絶縁膜を形成する工程と、
前記第2ゲート絶縁膜よりも外周側において前記第2ウェル上に、前記第2ゲート絶縁膜よりも厚いフィールド酸化膜を形成する工程と、
前記第1ゲート絶縁膜上に第1ゲート電極を形成する工程と、
前記第2ゲート絶縁膜及び前記フィールド酸化膜上に連続して、前記第1ゲート電極に電気的に接続された第2ゲート電極を形成する工程と、
前記第1ゲート電極及び前記第2ゲート電極を覆うように前記第1主面に層間絶縁膜を形成する工程と、
前記層間絶縁膜をエッチングして、前記第1ウェル及び前記拡散領域上に第1コンタクトホールを形成し、前記第2ウェル上に第2コンタクトホールを形成する工程と、
前記層間絶縁膜をエッチングして、前記第2ゲート電極の一部を露出させる工程と、
露出させた前記第2ゲート電極の一部をシリサイド化させることにより、前記セル領域の外周を1周するように前記フィールド酸化膜上にゲート配線を形成する工程と、
前記第1コンタクトホールを介して前記第1ウェル及び前記拡散領域に電気的に接続され、前記第2コンタクトホールを介して前記第2ウェルに電気的に接続された第1電極を形成する工程と、
前記半導体基板の前記第2主面に第2電極を形成する工程と、
前記ゲート配線に電気的に接続されたゲートパッドを形成する工程とを備えることを特徴とする半導体装置の製造方法。 - 前記第2ゲート電極を露出させずに、前記層間絶縁膜をエッチングして前記第1コンタクトホール及び前記第2コンタクトホールを形成し、前記第1コンタクトホール及び前記第2コンタクトホールにおいて露出させた前記半導体基板の表面をシリサイド化させ、
前記半導体基板の表面をシリサイド化させた後に、前記層間絶縁膜をエッチングして前記第2ゲート電極の一部を露出させて、露出させた前記第2ゲート電極の一部をシリサイド化させて前記ゲート配線を形成することを特徴とする請求項8に記載の半導体装置の製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112009004744.0T DE112009004744B4 (de) | 2009-04-30 | 2009-04-30 | Halbleiterbauelement und Verfahren zu dessen Herstellung |
US13/146,654 US9105715B2 (en) | 2009-04-30 | 2009-04-30 | Semiconductor device and method for manufacturing the same |
KR1020117024775A KR101230680B1 (ko) | 2009-04-30 | 2009-04-30 | 반도체 장치 및 그 제조 방법 |
PCT/JP2009/058445 WO2010125661A1 (ja) | 2009-04-30 | 2009-04-30 | 半導体装置及びその製造方法 |
JP2011511228A JP5370480B2 (ja) | 2009-04-30 | 2009-04-30 | 半導体装置及びその製造方法 |
CN200980157510.7A CN102334190B (zh) | 2009-04-30 | 2009-04-30 | 半导体装置及其制造方法 |
US14/789,364 US9502553B2 (en) | 2009-04-30 | 2015-07-01 | Semiconductor device and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/058445 WO2010125661A1 (ja) | 2009-04-30 | 2009-04-30 | 半導体装置及びその製造方法 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/146,654 A-371-Of-International US9105715B2 (en) | 2009-04-30 | 2009-04-30 | Semiconductor device and method for manufacturing the same |
US14/789,364 Continuation US9502553B2 (en) | 2009-04-30 | 2015-07-01 | Semiconductor device and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010125661A1 true WO2010125661A1 (ja) | 2010-11-04 |
Family
ID=43031828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/058445 WO2010125661A1 (ja) | 2009-04-30 | 2009-04-30 | 半導体装置及びその製造方法 |
Country Status (6)
Country | Link |
---|---|
US (2) | US9105715B2 (ja) |
JP (1) | JP5370480B2 (ja) |
KR (1) | KR101230680B1 (ja) |
CN (1) | CN102334190B (ja) |
DE (1) | DE112009004744B4 (ja) |
WO (1) | WO2010125661A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012129492A (ja) * | 2010-11-26 | 2012-07-05 | Mitsubishi Electric Corp | 炭化珪素半導体装置およびその製造方法 |
WO2012172965A1 (ja) * | 2011-06-15 | 2012-12-20 | 住友電気工業株式会社 | 炭化珪素半導体装置およびその製造方法 |
JP2014038963A (ja) * | 2012-08-17 | 2014-02-27 | Rohm Co Ltd | 半導体装置 |
JP2014107419A (ja) * | 2012-11-28 | 2014-06-09 | Sumitomo Electric Ind Ltd | 炭化珪素半導体装置およびその製造方法 |
WO2016194419A1 (ja) * | 2015-06-04 | 2016-12-08 | 三菱電機株式会社 | 半導体装置および半導体装置の製造方法 |
JP2017028219A (ja) * | 2015-07-28 | 2017-02-02 | 三菱電機株式会社 | 炭化珪素半導体装置およびその製造方法 |
JP2019041084A (ja) * | 2017-08-29 | 2019-03-14 | パナソニックIpマネジメント株式会社 | 炭化珪素半導体装置およびその製造方法 |
JP2020113712A (ja) * | 2019-01-16 | 2020-07-27 | トヨタ自動車株式会社 | 炭化珪素半導体装置の製造方法 |
JPWO2022097262A1 (ja) * | 2020-11-06 | 2022-05-12 |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5588671B2 (ja) | 2008-12-25 | 2014-09-10 | ローム株式会社 | 半導体装置の製造方法 |
US8188484B2 (en) | 2008-12-25 | 2012-05-29 | Rohm Co., Ltd. | Semiconductor device |
CN102473723B (zh) | 2009-07-15 | 2014-12-03 | 三菱电机株式会社 | 功率用半导体装置及其制造方法 |
JP5619152B2 (ja) | 2010-04-26 | 2014-11-05 | 三菱電機株式会社 | 半導体装置 |
JP5406171B2 (ja) * | 2010-12-08 | 2014-02-05 | ローム株式会社 | SiC半導体装置 |
US20120175679A1 (en) * | 2011-01-10 | 2012-07-12 | Fabio Alessio Marino | Single structure cascode device |
JP2013232533A (ja) * | 2012-04-27 | 2013-11-14 | Rohm Co Ltd | 半導体装置および半導体装置の製造方法 |
WO2013172079A1 (ja) * | 2012-05-15 | 2013-11-21 | 三菱電機株式会社 | 半導体装置及びその製造方法 |
DE102014005879B4 (de) * | 2014-04-16 | 2021-12-16 | Infineon Technologies Ag | Vertikale Halbleitervorrichtung |
CN105097795B (zh) * | 2014-05-04 | 2018-03-16 | 无锡华润上华科技有限公司 | 具esd保护结构的半导体器件 |
US9293533B2 (en) * | 2014-06-20 | 2016-03-22 | Infineon Technologies Austria Ag | Semiconductor switching devices with different local transconductance |
CN104091764B (zh) * | 2014-07-25 | 2017-10-31 | 中航(重庆)微电子有限公司 | Igbt器件制备方法及igbt器件 |
CN104157682A (zh) * | 2014-08-25 | 2014-11-19 | 株洲南车时代电气股份有限公司 | 功率半导体芯片的正面结构及其制备方法 |
JP2016174030A (ja) * | 2015-03-16 | 2016-09-29 | 株式会社東芝 | 半導体装置 |
US9614041B1 (en) * | 2015-09-11 | 2017-04-04 | Nxp Usa, Inc. | Multi-gate semiconductor devices with improved hot-carrier injection immunity |
US10559652B2 (en) | 2016-02-09 | 2020-02-11 | Mitsubishi Electric Corporation | Semiconductor device |
DE112017001788B4 (de) | 2016-03-30 | 2024-05-08 | Mitsubishi Electric Corporation | Halbleitereinheit, Verfahren zur Herstellung derselben und Leistungswandler |
KR101875634B1 (ko) * | 2016-10-27 | 2018-07-06 | 현대자동차 주식회사 | 반도체 소자 및 그 제조 방법 |
JP6844228B2 (ja) * | 2016-12-02 | 2021-03-17 | 富士電機株式会社 | 半導体装置および半導体装置の製造方法 |
JP6376629B1 (ja) * | 2017-01-24 | 2018-08-22 | 新電元工業株式会社 | 半導体装置の製造方法 |
US10601413B2 (en) * | 2017-09-08 | 2020-03-24 | Cree, Inc. | Power switching devices with DV/DT capability and methods of making such devices |
KR102463902B1 (ko) * | 2017-12-08 | 2022-11-08 | 한국전자통신연구원 | 다이오드를 내장한 mos 구조의 사이리스터 소자 |
JP7045180B2 (ja) * | 2017-12-18 | 2022-03-31 | 株式会社日立製作所 | パワー半導体装置、モジュール及び製造方法 |
US11664369B2 (en) * | 2018-03-29 | 2023-05-30 | Rohm Co., Ltd. | Semiconductor device |
WO2019202349A1 (ja) * | 2018-04-19 | 2019-10-24 | 日産自動車株式会社 | 半導体装置及びその製造方法 |
JP7370781B2 (ja) * | 2019-09-24 | 2023-10-30 | 株式会社東芝 | 半導体装置 |
US12094876B2 (en) * | 2020-04-30 | 2024-09-17 | Wolfspeed, Inc. | Conduction enhancement layers for electrical contact regions in power devices |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001044414A (ja) * | 1999-08-04 | 2001-02-16 | Hitachi Ltd | 半導体装置 |
JP2005064283A (ja) * | 2003-08-14 | 2005-03-10 | Sanken Electric Co Ltd | 絶縁ゲート型半導体素子およびその製造方法 |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5232277A (en) * | 1975-09-05 | 1977-03-11 | Toshiba Corp | Insulated gate type field-effect transistor |
DE4120394A1 (de) * | 1991-06-20 | 1992-12-24 | Bosch Gmbh Robert | Monolithisch integrierte schaltungsanordnung |
JP2817536B2 (ja) | 1991-09-27 | 1998-10-30 | 日本電気株式会社 | 半導体装置 |
JP2962136B2 (ja) * | 1994-03-16 | 1999-10-12 | 株式会社日立製作所 | 絶縁ゲート型半導体装置及びそれを用いた電力変換装置 |
US5563727A (en) * | 1994-06-30 | 1996-10-08 | Honeywell Inc. | High aperture AMLCD with nonparallel alignment of addressing lines to the pixel edges or with distributed analog processing at the pixel level |
US5597765A (en) * | 1995-01-10 | 1997-01-28 | Siliconix Incorporated | Method for making termination structure for power MOSFET |
JP3435924B2 (ja) | 1995-08-25 | 2003-08-11 | トヨタ自動車株式会社 | 車輌の制動力制御装置 |
JPH10163342A (ja) * | 1996-12-04 | 1998-06-19 | Sharp Corp | 半導体装置 |
JP3191747B2 (ja) * | 1997-11-13 | 2001-07-23 | 富士電機株式会社 | Mos型半導体素子 |
US6396147B1 (en) * | 1998-05-16 | 2002-05-28 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device with metal-oxide conductors |
JP2001024193A (ja) * | 1999-07-13 | 2001-01-26 | Hitachi Ltd | トレンチゲート型半導体装置およびその製造方法 |
JP4917709B2 (ja) * | 2000-03-06 | 2012-04-18 | ローム株式会社 | 半導体装置 |
US6599644B1 (en) * | 2000-10-06 | 2003-07-29 | Foundation For Research & Technology-Hellas | Method of making an ohmic contact to p-type silicon carbide, comprising titanium carbide and nickel silicide |
US6818958B2 (en) * | 2001-04-13 | 2004-11-16 | International Rectifier Corporation | Semiconductor device and process for its manufacture to increase threshold voltage stability |
JP3396030B2 (ja) * | 2001-04-27 | 2003-04-14 | 沖電気工業株式会社 | 半導体装置の製造方法 |
US7045859B2 (en) * | 2001-09-05 | 2006-05-16 | International Rectifier Corporation | Trench fet with self aligned source and contact |
US7217954B2 (en) * | 2003-03-18 | 2007-05-15 | Matsushita Electric Industrial Co., Ltd. | Silicon carbide semiconductor device and method for fabricating the same |
JP4860122B2 (ja) * | 2004-06-25 | 2012-01-25 | ルネサスエレクトロニクス株式会社 | 半導体装置の製造方法 |
JP2006019608A (ja) | 2004-07-05 | 2006-01-19 | Matsushita Electric Ind Co Ltd | Misfetデバイス |
JP2006339516A (ja) * | 2005-06-03 | 2006-12-14 | Rohm Co Ltd | 半導体装置およびその製造方法 |
JP2007134413A (ja) * | 2005-11-08 | 2007-05-31 | Toshiba Corp | 半導体装置の製造方法 |
KR101007478B1 (ko) | 2006-02-07 | 2011-01-12 | 미쓰비시덴키 가부시키가이샤 | 반도체 장치 및 그 제조 방법 |
JP5511124B2 (ja) * | 2006-09-28 | 2014-06-04 | セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー | 絶縁ゲート型半導体装置 |
JP2009058445A (ja) | 2007-08-31 | 2009-03-19 | Niigata Univ | 触覚センサ |
JP2009076761A (ja) * | 2007-09-21 | 2009-04-09 | Sanyo Electric Co Ltd | 半導体装置およびその製造方法 |
DE112011101254B4 (de) | 2010-04-06 | 2017-04-06 | Mitsubishi Electric Corporation | Leistungshalbleiterbauteile und Verfahren zu deren Herstellung |
JP5619152B2 (ja) | 2010-04-26 | 2014-11-05 | 三菱電機株式会社 | 半導体装置 |
-
2009
- 2009-04-30 KR KR1020117024775A patent/KR101230680B1/ko active IP Right Grant
- 2009-04-30 DE DE112009004744.0T patent/DE112009004744B4/de active Active
- 2009-04-30 WO PCT/JP2009/058445 patent/WO2010125661A1/ja active Application Filing
- 2009-04-30 US US13/146,654 patent/US9105715B2/en active Active
- 2009-04-30 CN CN200980157510.7A patent/CN102334190B/zh active Active
- 2009-04-30 JP JP2011511228A patent/JP5370480B2/ja active Active
-
2015
- 2015-07-01 US US14/789,364 patent/US9502553B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001044414A (ja) * | 1999-08-04 | 2001-02-16 | Hitachi Ltd | 半導体装置 |
JP2005064283A (ja) * | 2003-08-14 | 2005-03-10 | Sanken Electric Co Ltd | 絶縁ゲート型半導体素子およびその製造方法 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012129492A (ja) * | 2010-11-26 | 2012-07-05 | Mitsubishi Electric Corp | 炭化珪素半導体装置およびその製造方法 |
WO2012172965A1 (ja) * | 2011-06-15 | 2012-12-20 | 住友電気工業株式会社 | 炭化珪素半導体装置およびその製造方法 |
JP2013004636A (ja) * | 2011-06-15 | 2013-01-07 | Sumitomo Electric Ind Ltd | 炭化珪素半導体装置およびその製造方法 |
EP2722892A1 (en) * | 2011-06-15 | 2014-04-23 | Sumitomo Electric Industries, Ltd. | Silicon carbide semiconductor device and method for manufacturing same |
EP2722892A4 (en) * | 2011-06-15 | 2015-01-21 | Sumitomo Electric Industries | SILICON CARBIDE SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME |
JP2014038963A (ja) * | 2012-08-17 | 2014-02-27 | Rohm Co Ltd | 半導体装置 |
US9716157B2 (en) | 2012-11-28 | 2017-07-25 | Sumitomo Electric Industries, Ltd. | Silicon carbide semiconductor device |
JP2014107419A (ja) * | 2012-11-28 | 2014-06-09 | Sumitomo Electric Ind Ltd | 炭化珪素半導体装置およびその製造方法 |
US9450060B2 (en) | 2012-11-28 | 2016-09-20 | Sumitomo Electric Industries, Ltd. | Method of manufacturing a silicon carbide semiconductor device |
WO2016194419A1 (ja) * | 2015-06-04 | 2016-12-08 | 三菱電機株式会社 | 半導体装置および半導体装置の製造方法 |
JP2017028219A (ja) * | 2015-07-28 | 2017-02-02 | 三菱電機株式会社 | 炭化珪素半導体装置およびその製造方法 |
JP2019041084A (ja) * | 2017-08-29 | 2019-03-14 | パナソニックIpマネジメント株式会社 | 炭化珪素半導体装置およびその製造方法 |
JP2020113712A (ja) * | 2019-01-16 | 2020-07-27 | トヨタ自動車株式会社 | 炭化珪素半導体装置の製造方法 |
JP7176417B2 (ja) | 2019-01-16 | 2022-11-22 | 株式会社デンソー | 炭化珪素半導体装置の製造方法 |
JPWO2022097262A1 (ja) * | 2020-11-06 | 2022-05-12 | ||
WO2022097262A1 (ja) * | 2020-11-06 | 2022-05-12 | 三菱電機株式会社 | 半導体装置および電力変換装置 |
JP7459292B2 (ja) | 2020-11-06 | 2024-04-01 | 三菱電機株式会社 | 半導体装置および電力変換装置 |
Also Published As
Publication number | Publication date |
---|---|
US9105715B2 (en) | 2015-08-11 |
KR101230680B1 (ko) | 2013-02-07 |
CN102334190A (zh) | 2012-01-25 |
DE112009004744B4 (de) | 2014-11-13 |
JPWO2010125661A1 (ja) | 2012-10-25 |
US20110284874A1 (en) | 2011-11-24 |
US9502553B2 (en) | 2016-11-22 |
CN102334190B (zh) | 2014-05-14 |
US20150303297A1 (en) | 2015-10-22 |
KR20120008506A (ko) | 2012-01-30 |
DE112009004744T5 (de) | 2013-01-24 |
JP5370480B2 (ja) | 2013-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5370480B2 (ja) | 半導体装置及びその製造方法 | |
JP5606529B2 (ja) | 電力用半導体装置 | |
US9825126B2 (en) | Semiconductor device | |
KR101291838B1 (ko) | 전력용 반도체 장치 | |
JP6144674B2 (ja) | 半導体装置及びその製造方法 | |
JP6120756B2 (ja) | 炭化珪素半導体装置とその製造方法 | |
JP6172224B2 (ja) | 電力用半導体装置 | |
JP6055498B2 (ja) | 半導体装置 | |
JP5321377B2 (ja) | 電力用半導体装置 | |
JP5692227B2 (ja) | 電力用半導体装置 | |
JP6282088B2 (ja) | 半導体装置及びその製造方法 | |
JP6072432B2 (ja) | 半導体装置及びその製造方法 | |
JP6120525B2 (ja) | 炭化珪素半導体装置 | |
WO2011007387A1 (ja) | 電力用半導体装置およびその製造方法 | |
JP5687127B2 (ja) | 半導体装置およびその製造方法 | |
WO2010143376A1 (ja) | 半導体装置およびその製造方法 | |
JP2013055177A (ja) | 半導体装置及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980157510.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09844005 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011511228 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13146654 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20117024775 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112009004744 Country of ref document: DE Ref document number: 1120090047440 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09844005 Country of ref document: EP Kind code of ref document: A1 |