WO2010078512A2 - Production of substituted phenylene aromatic diesters - Google Patents
Production of substituted phenylene aromatic diesters Download PDFInfo
- Publication number
- WO2010078512A2 WO2010078512A2 PCT/US2009/069942 US2009069942W WO2010078512A2 WO 2010078512 A2 WO2010078512 A2 WO 2010078512A2 US 2009069942 W US2009069942 W US 2009069942W WO 2010078512 A2 WO2010078512 A2 WO 2010078512A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tert
- butyl
- bmpd
- methylcatechol
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- PMRGVXIRSTVLJS-UHFFFAOYSA-N CC(C)(C)c(cc1O)cc(C)c1O Chemical compound CC(C)(C)c(cc1O)cc(C)c1O PMRGVXIRSTVLJS-UHFFFAOYSA-N 0.000 description 2
- 0 Cc(cccc1)c1O* Chemical compound Cc(cccc1)c1O* 0.000 description 2
- OXIGHDTWUVXGFN-UHFFFAOYSA-N CC(C)(C)C(CC1(C)Br)=CC(C)=C1O Chemical compound CC(C)(C)C(CC1(C)Br)=CC(C)=C1O OXIGHDTWUVXGFN-UHFFFAOYSA-N 0.000 description 1
- SNKLPZOJLXDZCW-UHFFFAOYSA-N CC(C)(C)c(cc1)cc(C)c1O Chemical compound CC(C)(C)c(cc1)cc(C)c1O SNKLPZOJLXDZCW-UHFFFAOYSA-N 0.000 description 1
- GXNXZJMAFGKLQI-UHFFFAOYSA-N CC(C)(C)c(cc1OC(c2ccccc2)=O)cc(C)c1OC(c1ccccc1)=O Chemical compound CC(C)(C)c(cc1OC(c2ccccc2)=O)cc(C)c1OC(c1ccccc1)=O GXNXZJMAFGKLQI-UHFFFAOYSA-N 0.000 description 1
- KXDAEFPNCMNJSK-UHFFFAOYSA-N NC(c1ccccc1)=O Chemical compound NC(c1ccccc1)=O KXDAEFPNCMNJSK-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F10/04—Monomers containing three or four carbon atoms
- C08F10/06—Propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/65—Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
- C08F4/651—Pretreating with non-metals or metal-free compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/14—Preparation of carboxylic acid esters from carboxylic acid halides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C37/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
- C07C37/01—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by replacing functional groups bound to a six-membered aromatic ring by hydroxy groups, e.g. by hydrolysis
- C07C37/02—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by replacing functional groups bound to a six-membered aromatic ring by hydroxy groups, e.g. by hydrolysis by substitution of halogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C37/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
- C07C37/11—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
- C07C37/14—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms by addition reactions, i.e. reactions involving at least one carbon-to-carbon unsaturated bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C37/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
- C07C37/11—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
- C07C37/16—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms by condensation involving hydroxy groups of phenols or alcohols or the ether or mineral ester group derived therefrom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C37/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
- C07C37/50—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions decreasing the number of carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C37/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
- C07C37/50—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions decreasing the number of carbon atoms
- C07C37/56—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions decreasing the number of carbon atoms by replacing a carboxyl or aldehyde group by a hydroxy group
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C37/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
- C07C37/60—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by oxidation reactions introducing directly hydroxy groups on a =CH-group belonging to a six-membered aromatic ring with the aid of other oxidants than molecular oxygen or their mixtures with molecular oxygen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F110/00—Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F110/04—Monomers containing three or four carbon atoms
- C08F110/06—Propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/02—Ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/28—Oxygen or compounds releasing free oxygen
- C08F4/32—Organic compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/65—Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
- C08F4/652—Pretreating with metals or metal-containing compounds
- C08F4/653—Pretreating with metals or metal-containing compounds with metals of C08F4/64 or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/65—Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
- C08F4/652—Pretreating with metals or metal-containing compounds
- C08F4/654—Pretreating with metals or metal-containing compounds with magnesium or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/10—Esters; Ether-esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/16—Ethene-propene or ethene-propene-diene copolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/04—Monomers containing three or four carbon atoms
- C08F210/06—Propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2410/00—Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
- C08F2410/06—Catalyst characterized by its size
Definitions
- the present disclosure relates to the production of substituted phenylene aromatic diesters.
- Substituted phenylene aromatic diesters are used as internal electron donors in the preparation of procatalyst compositions for the production of olefm-based polymers.
- Ziegler-Natta catalysts containing 5-tert-butyl-3-methyl-l,2-phenylene dibenzoate as internal electron donor show high catalyst activity and high selectivity during polymerization.
- such catalysts produce olefin-based polymer (such as propylene-based polymer) with high isotacticity and broad molecular weight distribution.
- the art recognizes the need for olefin-based polymers and propylene-based polymers with improved properties. Desired are multiple and/or alternate synthesis pathways for the production of substituted phenylene aromatic diester to ensure a cost-effective, and reliable supply of the same.
- the present disclosure is directed to the production of substituted phenylene aromatic diesters and 5-tert-butyl-3-methyl-l,2-phenylene dibenzoate in particular.
- Disclosed herein are synthesis pathways for the production of a precursor to the 5-tert-butyl- 3 -methyl- 1 ,2-phenylene dibenzoate, namely 5-tert-butyl-3-rnethylcatechol. Provision of this precursor, as presented in this disclosure advantageously simplifies production of 5-tert- butyl-3 -methyl- 1 ,2-phenylene dibenzoate and enables large-scale production thereof with common, inexpensive starting materials.
- a process which includes reacting, under reaction conditions, 5-tert-butyl-3-methylcatechol
- WHD/6867784 1 (BMC) with an aromatic carboxylic acid or an aromatic carboxylic acid derivative, and forming 5-tert-butyl-3-methyl-l,2-phenylene dibenzoate (BMPD).
- a process includes alkylating, under reaction conditions, 3-methylcathecol with tert- butanol or isobutylene, and forming 5-tert-butyl-3-methylcatechol.
- a process includes oxidizing, under reaction conditions, 5-tert-butyl-3-methyl-2- hydroxybenzaldehyde, and forming 5-tert-butyl-3-methylcatechol.
- a process includes oxidizing, under reaction conditions, 4-tert-butyl-2-methylphenol, and forming 5-tert-butyl-3-methylcatechol.
- a process includes hydrolyzing, under reaction conditions, 2-halo-4-tert-butyl-6-methylphenol, and forming 5-tert-butyl-3-methylcatechol.
- a process includes hydrogenolyzing, under reaction conditions, 5-tert-butyl-3- aminomethylcatechol, and forming 5-tert-butyl-3-methylcatechol.
- An advantage of the present disclosure is an improved process for the production of substituted phenylene aromatic diester, such as 5 -tert-butyl-3 -methyl- 1,2-phenylene dibenzoate.
- An advantage of the present disclosure is the provision of a precursor to 5-tert- butyl-3 -methyl 1,2-phenylene dibenzoate, namely, 5 -tert-butyl-3 -methylcatechol.
- An advantage of the present disclosure is the provision of a plurality of synthesis pathways to produce 5-tert-butyl-3 -methylcatechol.
- An advantage of the present disclosure is the production of 5 -tert-butyl-3 -methyl- 1 ,2-phenylene dibenzoate using inexpensive starting materials.
- An advantage of the present disclosure is numerous synthesis pathways for the production of substituted phenylene aromatic diester, such as 5-tert-butyl-3-methyl- 1,2- phenylene dibenzoate, thereby ensuring a reliable supply of same for the production of propylene-based polymers.
- An advantage of the present disclosure is a process for large scale production of substituted phenylene aromatic diester.
- An advantage of the present disclosure is an environmentally-safe, non-toxic production process for substituted phenylene aromatic diester.
- An advantage of the present disclosure is the large scale production of substituted phenylene aromatic diester.
- An advantage of the present disclosure is a simple, time-effective, and/or cost- effective purification process for substituted phenylene aromatic diester.
- Figure 1 is a flowchart showing a process for producing a substituted phenylene aromatic diester in accordance with an embodiment of the present disclosure.
- Figure 2 is a flowchart showing a process for producing a substituted phenylene aromatic diester in accordance with an embodiment of the present disclosure.
- the present disclosure is directed to the production of substituted phenylene aromatic diester.
- 5-tert-butyl-3-methylcatechol (or "BMC") is found to be an effective precursor for the production of the substituted phenylene aromatic diester, 5-tert-butyl-3- methyl-l,2-phenylene dibenzoate (or "BMPD”).
- BMPD is an effective internal electron donor in Ziegler-Natta catalysts.
- the processes disclosed herein advantageously provide economical (both time and monetary economies), simplified, up-scalable, synthesis pathways to BMC with yields acceptable for commercial/industrial application thereof. Economical access of BMC correspondingly contributes to economical production of 5-tert-butyl-3- methyl-l,2-phenylene dibenzoate.
- 5-tert-butyl-3-methylcatechol has the structure (I) provided below.
- a process for producing BMC includes alkylating 3-methylcathecol with tert-butanol or isobutylene under reaction
- alkylating or “alkylation,” or “alkylation reaction” is the introduction of an alkyl radical into an organic compound.
- An "organic compound” is a chemical compound that contains a carbon atom.
- reaction conditions are temperature, pressure, reactant concentrations, solvent concentrations, reactant mixing/addition parameters, and/or other conditions within a reaction vessel that promote reaction between the reagents and formation of the resultant product.
- alkylation occurs with the addition of an inorganic acid (such as sulfuric acid) to a mixture of the 3-methylcatechol and the tert- butanol in heptane.
- the process includes the preparation of the 3-methylcatechol.
- the process includes oxidizing 2-hydroxy-3-methylbenzaldehyde under reaction conditions and forming the 3-methylcatechol (Rx 2).
- the oxidizing agent is a peroxide, such as hydrogen peroxide, which is added to the 2-hydroxy-3-methylaldehyde in an aqueous basic solution.
- the process includes the preparation of the 2-hydroxy-3- methylbenzaldehyde (Rx 3).
- the process includes formylating o-cresol with paraformaldehyde under reaction conditions, and forming 2-hydroxy-3-methylbenzaldehyde.
- the 2- hydroxy-3- methylbenzaldehyde is subsequently oxidized to form the 3-methylcatechol.
- the formylation reaction may occur by formylating the o-cresol with paraformaldehyde, magnesium chloride (MgCl 2 ) and triethylamine (Et 3 N) in refluxing tetrahydrofuran (THF).
- the reaction yields ortho-formylation of the o-cresol.
- Another suitable formylation reaction is the Reimer-Tiemann reaction (i. e. , ortho-formylation of the o-cresol in chloroform/sodium hydroxide).
- 3-methylcatechol is prepared directly from o-cresol.
- the process includes oxidizing, under reaction conditions, o-cresol, and forming the 3- methylcatechol (Rx 4).
- the oxidizing agent is a peroxide, such as hydrogen peroxide.
- the process further includes alkylating the 3-methylcathecol and forming the BMC as disclosed above.
- reaction 4 A nonlimiting representation of reaction 4 is provided in pathway (III) below.
- another process for producing BMC includes oxidizing 5-tert-butyl-3-methyl-2-hydroxybenzaldehyde, under reaction conditions, and forming 5-tert-butyl-3-methylcatechol (Rx 5).
- the oxidizing agent is a peroxide, such as hydrogen peroxide.
- the process includes synthesis of the 5-tert-butyl-3-methyl-2- hydroxybenzaldehyde.
- the process includes formylating, under reaction conditions, 4-tert- butyl-2-methylphenol with paraformaldehyde and forming the 5-tert-butyl-3-methyl-2- hydroxybenzaldehyde (Rx 6).
- Formylation may occur by way of any suitable formylation reaction as disclosed herein.
- the process includes the synthesis of the 4-tert-butyl-2- methylphenol.
- the process includes alkylating, under reaction conditions, o-cresol with isobutylene or t-butanol to form 4-tert-butyl-2-methylphenol (Rx 7). Alkylation may occur by way of any suitable alkylation reaction as disclosed herein.
- the compound, o-cresol surprisingly has been found as an advantageous starting material for the production of BMC.
- the compound o-cresol is inexpensive and provides a methyl group directly adjacent to an
- the -OH group of o-cresol is a strong para-director for an electrophilic substitution reaction, enabling ready alkylation of o-cresol to 4-tert-butyl-2- methylphenol.
- the 4-tert-butyl-2-methylphenol is subsequently formylated, under reaction conditions, to form the 5-tert-butyl-3-methyl-2-hydroxybenzaldehyde.
- the present disclosure provides another process for producing BMC.
- a process is provided and includes oxidizing, under reaction conditions, 4-tert- butyl-2-methylphenol, and forming 5-tert-butyl-3-methylcatechol (Rx 8). Oxidation may occur by way of addition of a peroxide to the 4-tert-butyl-2-methylcresol in a basic aqueous solution.
- the process includes synthesis of the 4-tert-butyl-2- methylphenol.
- the process includes alkylating, under reaction conditions, o-cresol with tert- butanol or isobutylene, and forming the 4-tert-butyl-2-methylphenol (Rx 9). Alkylation may occur by way of any suitable alkylation reaction as disclosed herein.
- the 4-tert-butyl-2- methylcresol is subsequently oxidized to form the BMC.
- a process includes hydrolyzing, under reaction conditions, 2- halo-4-tert-butyl-6-methylphenol, and forming 5-tert-butyl-3-methylcatechol (Rx 10).
- hydrolyzing or “hydrolysis,” or “hydrolysis reaction” is a chemical reaction whereby water splits into H+ and OH- ions and the OH- ion replaces a functional group.
- halo is a halogen atom — F, Cl, Br, I. In an embodiment, the halogen atom is bromine yielding 2-bromo-4-tert-butyl-6-methylphenol.
- the halogen atom is chlorine yielding 2-chloro-4-tert-butyl-6-methylphenol.
- the hydrolysis reaction is catalyzed by a base and/or a salt, such as such as copper (II) sulfate.
- the process includes the synthesis of the 2-halo-4-tert-butyl-6- methylphenol.
- the process includes halogenating, under reaction conditions, 4-tert-butyl-2- methylphenol, and forming the 2-halo-4-tert-butyl-6-methylphenol (Rx 11).
- the term "halogenating,” or “halogenation,” or “halogenation reaction,” is the introduction of a halogen radical into an organic compound.
- Halogenation occurs by reacting the 4-tert-butyl- 2-methylphenol with a halogenating agent, such as a brominating agent or a chlorinating agent.
- a halogenating agent such as a brominating agent or a chlorinating agent.
- suitable halogenating agents include N-bromosuccinamine (NBS), a brominating agent, and/or N-chlorosuccinamine (NCS), a chlorinating agent.
- Halogenation may also occur by reacting the 4-tert-butyl-2-methylphenol with elemental halogen.
- the term "X 2 " in pathway (VI) below denotes the reaction with elemental halogen.
- the elemental halogen and may be Cl 2 or Br 2 .
- the process includes synthesis of the 4-tert-butyl-2- methylphenol.
- the 4-tert-butyl-2-methylphenol is formed by alkylating, under reaction conditions, o-cresol with isobutylene or t-butanol as disclosed above (Rx 12).
- the 4-tert-butyl-2-methylphenol is formed by alkylating, under reaction conditions, o-cresol with isobutylene or t-butanol as disclosed above (Rx 12).
- WHD/6867784 1 butyl-2-methylphenol is subsequently halogenated to form the 2-halo-4-tert-butyl-6- methylphenol.
- a process includes hydrogenolyzing, under reaction conditions, 5-tert-butyl-3-aminomethylcatechol, and forming 5-tert-butyl-3-methylcatechol (Rx 13).
- the term "hydrogenolyzing,” or “hydrogenolysis,” or “hydrogenolysis reaction” is a chemical reaction whereby a carbon-carbon or carbon-heteroatom single bond is cleaved by hydrogen.
- suitable hydrogenolyzing agents include catalytic hydrogenolyzing agents (such as palladium catalysts) and borohydrides, such as sodium cyano-borohydride.
- the process includes the synthesis of the 5-tert-butyl-3- aminomethylcateghol.
- the process includes an aminoalkylating, under reaction conditions, 4-tert-butylcatechol, and forming the 5-tert-butyl-3-aminomethylcatechol (Rx 14).
- the 5-tert- butyl-3-aminomethylcatechol is subsequently hydrogenolyzed to form the 5-tert-butyl-3- methylcatechol.
- Aminoalkylation occurs by way of the Mannich reaction.
- the "Mannich reaction” is an organic reaction which aminoalkylates an acidic proton located next to a carbonyl functional group with formaldehyde and ammonia or any primary or secondary amine.
- a process for producing 5-tert-butyl-3-methyl-l,2-phenylene dibenzoate includes reacting BMC, under reaction conditions, with a member selected from an aromatic carboxylic acid and/or an aromatic carboxylic acid derivative, and subsequently forming 5-tert-butyl-3-methyl-l,2-phenylene dibenzoate (BMPD).
- BMC is prepared by any of the synthesis pathways as previously disclosed herein.
- an "aromatic carboxylic acid” is a compound containing at least one benzene ring with at least one carboxyl group directly bonded to the benzene ring. It is understood that the aromatic carboxylic acid may be a monocyclic structure or a polycyclic structure. The aromatic carboxylic acid may be a mono- or a poly-carboxylic acid. Nonlimiting examples of suitable aromatic carboxylic acids include benzoic acid, 1- naphthoic acid, 2-naphthoic acid, 6H-phenalene-2-carboxylic acid, anthracene-2-carboxylic acid, phenanthrene-2-carboxylic acid, and phenanthrene-3 -carboxylic acid.
- a “derivative of an aromatic carboxylic acid” or “an aromatic carboxylic acid derivative,” as used herein, is an aromatic acyl halide, an aromatic anhydride, an aromatic carboxylate salt, or any combination thereof. It is understood that the derivative of the
- aromatic carboxylic acid may be a monocyclic structure or a poly cyclic structure.
- suitable aromatic acyl halides include halides of any of the aromatic carboxylic acids disclosed above (i.e., an acyl halide of one or more of the following: benzoic acid, 1 -naphthoic acid, 2-naphthoic acid, 6H-phenalene-2-carboxylic acid, anthracene-2- carboxylic acid, phenanthrene-2-carboxylic acid, and/or phenanthrene-3 -carboxylic acid).
- aromatic acyl halides include benzoyl chloride, benzoyl fluoride, benzoyl bromide, and benzoyl iodide, naphthoyl chloride, naphthoyl fluoride, naphthoyl bromide, naphthoyl iodide, and any combination of the foregoing aromatic acyl halides.
- Nonlimiting examples of suitable aromatic anhydrides include anhydride of the aromatic carboxylic acids disclosed above, (i.e., an anhydride of one or more of the following: benzoic acid, 1 -naphthoic acid, 2-naphthoic acid, 6H-phenalene-2-carboxylic acid, anthracene-2-carboxylic acid, phenanthrene-2-carboxylic acid, and/or phenanthrene-3 - carboxylic acid).
- suitable aromatic anhydrides include benzoic anhydride and any combination of the foregoing aromatic anhydrides.
- Nonlimiting examples of suitable aromatic carboxylate salts include potassium, sodium, or lithium salt of the aromatic carboxylic acids disclosed above (i.e., salts of one or more of the following: benzoic acid, 1 -naphthoic acid, 2-naphthoic acid, 6H- phenalene-2-carboxylic acid, anthracene-2-carboxylic acid, phenanthrene-2-carboxylic acid, and/or phenanthrene-3 -carboxylic acid).
- suitable aromatic carboxylate salts include potassium benzoate, sodium benzoate, lithium benzoate, potassium 2-naphthoate, sodium 2-naphthoate, and any combination of the foregoing aromatic carboxylate salts.
- the aromatic carboxylic acid, or derivative thereof may be substituted.
- substituted aromatic carboxylic acid or derivative thereof is an aromatic carboxylic acid, or derivative thereof, whereby at least one of the benzene-ring substituents (other than the carboxyl group) is a substituted hydrocarbyl group having 1 to 20 carbon atoms, an unsubstituted hydrocarbyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a heteroatom, and combinations thereof.
- substituted aromatic carboxylic acid or derivative thereof includes substituted aromatic
- WHD/6867784.1 carboxylic acid, substituted aromatic acyl halide, substituted aromatic anhydride, and/or substituted aromatic carboxylate salt.
- hydrocarbyl and “hydrocarbon” refer to substituents containing only hydrogen and carbon atoms, including branched or unbranched, saturated or unsaturated, cyclic, polycyclic, fused, or acyclic species, and combinations thereof.
- hydrocarbyl groups include alkyl-, cycloalkyl-, alkenyl-, alkadienyl-, cycloalkenyl-, cycloalkadienyl-, aryl-, aralkyl, alkylaryl, and alkynyl- groups.
- substituted hydrocarbyl and “substituted hydrocarbon” refer to a hydrocarbyl group that is substituted with one or more nonhydrocarbyl substituent groups.
- a nonlimiting example of a nonhydrocarbyl substituent group is a heteroatom.
- a heteroatom refers to an atom other than carbon or hydrogen.
- the heteroatom can be a non-carbon atom from Groups IV, V, VI, and VII of the Periodic Table.
- Nonlimiting examples of heteroatoms include: halogens (F, Cl, Br, I), N, O, P, B, S, and Si.
- a substituted hydrocarbyl group also includes a halohydrocarbyl group and/or a silicon-containing hydrocarbyl group.
- halohydrocarbyl group refers to a hydrocarbyl group that is substituted with one or more halogen atoms.
- sicon-containing hydrocarbyl group is a hydrocarbyl group that is substituted with one or more silicon atoms. The silicon atom(s) may or may not be in the carbon chain.
- BMPD is formed by reacting BMC, under reaction conditions, with an aromatic carboxylic acid derivative, benzoyl chloride.
- the process includes reacting BMC with benzoyl chloride in the presence of a base under reaction conditions, and forming BMPD (Rx 15).
- base include pyridine, triethylamine, trimethylamine, and/or molecular sieves.
- a nonlimiting representation of reaction 15 is provided in pathway (VIII) below.
- BMPD 5 -tert-buty 1-3 -methyl- 1 ,2-phenylene dibenzoate
- the reaction includes adding benzoyl chloride to a mixture of BMC, pyridine, and dichloromethane. Pyridine absorbs HCl, a by-product of the reaction.
- the process includes forming the BMPD by adding the benzoyl chloride to a reaction mixture composed of the BMC, acetonitrile and triethylamine. Triethylamine absorbs HCl, a by-product of the reaction.
- acetonitrile and triethylamine advantageously provides an environmentally safe, and low health risk (nontoxic) process for BMPD production, and large-scale (i.e., greater than 10 g, or greater than 1 kg) production of BMPD in particular.
- the process includes adding water to the reaction mixture (containing BMPD, acetonitrile triethylamine, benzoyl chloride, and BMC); and precipitating the BMPD.
- the solvent, acetonitrile is soluble in water. Bounded by no particular theory, addition of the water quenches the reaction and changes the solubility of the solvent to precipitate the BMPD from solution (the "BMPD-precipitate").
- Provision of the acetonitrile solvent system advantageously provides a simple, cost-effective and effective procedure for BMPD production, suitable for commercial or industrial scale.
- Figure 1 shows a nonlimiting flowchart for BMPD production.
- the process includes purifying the BMPD, and forming a BMPD composition comprising greater than 98 wt %, or greater than 99 wt % BMPD.
- WHD/6867784.1 purification of the BMPD includes performing one or more procedures on the BMPD- precipitate: recrystallization, extraction, concentration, washing, distillation, and any combination of the foregoing.
- the purification includes dissolving the BMPD-precipitate in a non-aqueous solvent (such as ethyl a cetate), and extracting with water.
- a non-aqueous solvent such as ethyl a cetate
- water extraction removes ionic impurities and/or ionic byproducts from the non-aqueous phase thereby purifying the BMPD.
- the non-aqueous phase is dried (over MgSO 4 ) and concentrated by way of roto-evaporation (the "concentrate") in conjunction with a hydrocarbon wash (heptane) to remove organic by-products/impurities. Recrystallization yields a purified BMPD composition composed of greater than 98 wt %, or greater than 99 wt %, BMPD.
- the purification includes distilling the concentrate in conjunction with a hydrocarbon wash (heptane). Filtration and drying yields a purified BMPD composition composed of greater than 98 wt %, or greater than 99 wt % BMPD.
- Figure 2 shows a nonlimiting flowchart for the purification of the BMPD-precipitate.
- the BMPD is advantageously applied as an internal electron donor in procatalyst/catalyst compositions for the production of olefm-based polymers (propylene- based polymers in particular) as disclosed in U.S. provisional application no. 61/141,902 filed on December 31, 2008 and U.S. provisional application no. 61/141,959 filed on December 31, 2008, the entire content of each application incorporated by reference herein.
- DEFINITIONS DEFINITIONS
- compositions claimed herein through use of the term “comprising” may include any additional additive, adjuvant, or compound whether polymeric or otherwise, unless stated to the contrary.
- any numerical range recited herein includes all values from the lower value to the upper value, in increments of one unit, provided that there is a separation of at least 2 units between any lower value and any higher value.
- amount of a component, or a value of a compositional or a physical property such as, for example, amount of a blend component, softening temperature, melt index, etc.
- amount of a blend component, softening temperature, melt index, etc. is between 1 and 100
- all individual values, such as, 1, 2, 3, etc., and all subranges, such as, 1 to 20, 55 to 70, 197 to 100, etc., are expressly enumerated in this specification.
- any numerical range recited herein includes any value or subrange within the stated range. Numerical ranges have been recited, as discussed herein, reference melt index, melt flow rate, and other properties.
- blend or "polymer blend,” as used herein, is a blend of two or more polymers. Such a blend may or may not be miscible (not phase separated at molecular level). Such a blend may or may not be phase separated. Such a blend may or may not contain one or more domain configurations, as determined from transmission electron spectroscopy, light scattering, x-ray scattering, and other methods known in the art.
- composition includes a mixture of materials which comprise the composition, as well as reaction products and decomposition products formed from the materials of the composition.
- polymer is a macromolecular compound prepared by polymerizing monomers of the same or different type.
- Polymer includes homopolymers, copolymers, terpolymers, interpolymers, and so on.
- interpolymer means a polymer prepared by the polymerization of at least two types of monomers or comonomers.
- copolymers which usually refers to polymers prepared from two different types of monomers or comonomers
- terpolymers which usually refers to polymers prepared from three different types of monomers or comonomers
- tetrapolymers which usually refers to polymers prepared from four different types of monomers or comonomers
- olefin-based polymer is a polymer containing, in polymerized form, a majority weight percent of an olefin, for example ethylene or propylene, based on the total weight of the polymer.
- olefin-based polymers include ethylene-based polymers and propylene-based polymers.
- propylene-based polymer refers to a polymer that comprises a majority weight percent polymerized propylene monomer (based on the total amount of polymerizable monomers), and optionally may comprise at least one polymerized comonomer.
- alkyl refers to a branched or unbranched, saturated or unsaturated acyclic hydrocarbon radical.
- suitable alkyl radicals include, for example, methyl, ethyl, n-propyl, i-propyl, 2-propenyl (or allyl), vinyl, n-butyl, t- butyl, i-butyl (or 2-methylpropyl), etc.
- the alkyls have 1 and 20 carbon atoms.
- substituted alkyl refers to an alkyl as just described in which one or more hydrogen atom bound to any carbon of the alkyl is replaced by another group such as a halogen, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heterocycloalkyl, substituted heterocycloalkyl, halogen, haloalkyl, hydroxy, amino, phosphido, alkoxy, amino, thio, nitro, and combinations thereof.
- Suitable substituted alkyls include, for example, benzyl, trifluoromethyl and the like.
- aryl refers to an aromatic substituent which may be a single aromatic ring or multiple aromatic rings which are fused together, linked covalently,
- WHD/6867784 1 or linked to a common group such as a methylene or ethylene moiety.
- the aromatic ring(s) may include phenyl, naphthyl, anthracenyl, and biphenyl, among others.
- the aryls have 1 and 20 carbon atoms.
- substituted phenylene aromatic diester includes substituted 1,2- phenylene aromatic diester, substituted 1,3 -phenylene aromatic diester, and substituted 1,4-phenylene aromatic diester.
- the substituted phenylene diester is a 1,2- phenylene aromatic diester with the structure (A) below:
- R 1 -R 14 are the same or different.
- Each of Ri-R 14 is selected from a hydrogen, substituted hydrocarbyl group having 1 to 20 carbon atoms, an unsubstituted hydrocarbyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a heteroatom, and combinations thereof.
- At least one of Ri-Ri 4 is not hydrogen
- Example 1 Conversion of 3-methylcatechol to S-tert-butyl-S-methylcatechol
- a 100-mL 3 -neck round bottom flask, equipped with stirrer, reflux condenser, thermometer, dropping funnel is charged with 6.8 g of 2-hydroxy-3-methylaldehyde and 25 mL of 2N NaOH aqueous solution.
- a diluted H 2 O 2 is added in portion of 10 mL to maintain internal temperature between 40 0 C to 50 0 C.
- the temperature rises to 45 0 C and a dark solution results.
- the temperature is allowed to fall to 4O 0 C before a second portion of hydrogen peroxide is added.
- a 1-L 4-neck round bottom flask, equipped with stirrer, reflux condenser, thermometer, nitrogen inlet and bubbler is charged with 20.64 mL of o-cresol and 14.0 g of paraformaldehyde.
- THF is charged via syringe followed by addition of triethylamine via dropping funnel.
- o-cresol is added slowly via syringe, resulting in an opaque, light pink mixture that is refluxed for 4 hours.
- the reaction is cooled and diluted with 200 mL of ether, washed with 1 N HCl, water, and dried over Na 2 SO 4 .
- a 500 mL three-neck round bottom flask with thermowell is fitted with an addition funnel/N 2 inlet, mechanical stirrer and a stopper. After the system is purged with N 2 the vessel is loaded with the 5-tert-butyl-3-methylcatechol (20.0 g, 0.11 mol) and CH 3 CN (100 mL). The mixture is stirred at ambient temperature until all the solids are dissolved. To the vessel is added triethylamine (26.8 g, 0.27 mol) and the internal temperature of the reaction is taken to 1O 0 C using a dry ice/water bath. Benzoyl chloride (34.4 g, 0.24 mol) is added dropwise keeping the temperature at 10-20 0 C. The addition takes about 30 minutes. The ice bath is removed and the thick slurry is allowed to stir at ambient temperature for 1 hour.
- a 1 -liter three neck round bottom flask with thermowell is fitted with a N 2 inlet, mechanical stirrer and a stopper.
- water 400 mL
- the slurry from above is added in eight portions over about 20 min.
- the resulting slurry is stirred at ambient temperature for 30 minutes and then the solid is collected via filtration.
- the crude solid is dissolved in EtOAc (150 mL) and extracted with water (75 mL).
- the aqueous phase is discarded and the EtOAc phase is dried over MgSO 4 .
- the MgSO 4 is removed by filtration providing 175 g of light brown solution.
- the solution is concentrated on a rotary evaporator (45-5O 0 C bath @ 150-200 mmHg) taking 96 g of solvent
- a 5L three-neck round bottom flask with thermowell is fitted with an addition funnel/N 2 inlet, mechanical stirrer and a stopper. After the system is purged with N 2 the pot is loaded with the starting 5-tert-butyl-3-methylcatechol (314.3 g, 1.75 mol) and CH 3 CN (1570 mL). The mixture is stirred at ambient temperature until all the solids are dissolved. To the pot is added triethylamine (423 g, 4.17 mol) and the internal temperature of the reaction is taken to 1O 0 C using a dry ice/water bath. Benzoyl chloride (543 g, 3.84 mol) is added dropwise keeping the temperature at 10-20 0 C. Initially only half of the benzoyl chloride is added into the additional funnel to prevent all of the material from being added at once. The entire addition takes about 2 hours. The ice bath is removed and the thick slurry is allowed to stir at ambient temperature overnight.
- a total of 1243.4 g is produced at 92% yield with a melting point 110-112 0 C.
- the material has a purity greater than 99 wt %.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Graft Or Block Polymers (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polymerisation Methods In General (AREA)
- Catalysts (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Emergency Medicine (AREA)
Priority Applications (8)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/651,142 US8507717B2 (en) | 2008-12-31 | 2009-12-31 | Production of substituted phenylene aromatic diesters |
| CN200980157529.1A CN102333749B (zh) | 2008-12-31 | 2009-12-31 | 取代的亚苯基芳族二酯的生产方法 |
| BRPI0918707A BRPI0918707A2 (pt) | 2008-12-31 | 2009-12-31 | processo para produção de diésteres aromáticos de fenileno substituídos |
| SG2011048048A SG172438A1 (en) | 2008-12-31 | 2009-12-31 | Production of substituted phenylene aromatic diesters |
| JP2011544626A JP5461583B2 (ja) | 2008-12-31 | 2009-12-31 | 置換フェニレン芳香族ジエステルの製造 |
| RU2011132141/04A RU2553475C2 (ru) | 2008-12-31 | 2009-12-31 | Получение замещенных фенилен ароматических сложных диэфиров |
| EP09796927A EP2373604A2 (en) | 2008-12-31 | 2009-12-31 | Production of substituted phenylene aromatic diesters |
| MX2011007152A MX2011007152A (es) | 2008-12-31 | 2009-12-31 | Produccion de diesteres aromaticos de fenileno substituido. |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14190208P | 2008-12-31 | 2008-12-31 | |
| US14195908P | 2008-12-31 | 2008-12-31 | |
| US61/141,959 | 2008-12-31 | ||
| US61/141,902 | 2008-12-31 |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| WO2010078512A2 true WO2010078512A2 (en) | 2010-07-08 |
| WO2010078512A3 WO2010078512A3 (en) | 2011-01-06 |
| WO2010078512A4 WO2010078512A4 (en) | 2011-03-10 |
Family
ID=44952766
Family Applications (5)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2009/069942 Ceased WO2010078512A2 (en) | 2008-12-31 | 2009-12-31 | Production of substituted phenylene aromatic diesters |
| PCT/US2009/069896 Ceased WO2010078480A1 (en) | 2008-12-31 | 2009-12-31 | Propylene impact copolymer and method |
| PCT/US2009/069901 Ceased WO2010078485A1 (en) | 2008-12-31 | 2009-12-31 | Propylene-based polymer, articles, and process for producing same |
| PCT/US2009/069929 Ceased WO2010078503A1 (en) | 2008-12-31 | 2009-12-31 | Enhanced procatalyst composition and process |
| PCT/US2009/069895 Ceased WO2010078479A1 (en) | 2008-12-31 | 2009-12-31 | Random propylene copolymer compositions, articles and process |
Family Applications After (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2009/069896 Ceased WO2010078480A1 (en) | 2008-12-31 | 2009-12-31 | Propylene impact copolymer and method |
| PCT/US2009/069901 Ceased WO2010078485A1 (en) | 2008-12-31 | 2009-12-31 | Propylene-based polymer, articles, and process for producing same |
| PCT/US2009/069929 Ceased WO2010078503A1 (en) | 2008-12-31 | 2009-12-31 | Enhanced procatalyst composition and process |
| PCT/US2009/069895 Ceased WO2010078479A1 (en) | 2008-12-31 | 2009-12-31 | Random propylene copolymer compositions, articles and process |
Country Status (11)
| Country | Link |
|---|---|
| US (7) | US8507717B2 (OSRAM) |
| EP (5) | EP2373703B1 (OSRAM) |
| JP (7) | JP5607647B2 (OSRAM) |
| KR (5) | KR20110100311A (OSRAM) |
| CN (6) | CN102333749B (OSRAM) |
| BR (5) | BRPI0918697A8 (OSRAM) |
| MX (6) | MX342632B (OSRAM) |
| MY (5) | MY156636A (OSRAM) |
| RU (5) | RU2527036C2 (OSRAM) |
| SG (5) | SG172438A1 (OSRAM) |
| WO (5) | WO2010078512A2 (OSRAM) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2012135189A3 (en) * | 2011-03-29 | 2012-12-27 | Dow Global Technologies Llc | Production of substituted phenylene aromatic diesters |
| JP2014529624A (ja) * | 2011-08-30 | 2014-11-13 | ダウ グローバル テクノロジーズ エルエルシー | 内部電子供与体として使用するための置換フェニレンジベンゾエートの生成およびポリマー調製のためのプロ触媒 |
| US10358505B2 (en) | 2010-12-21 | 2019-07-23 | W. R. Grace & Co.-Conn. | Process for production of high melt flow propylene-based polymer and product from same |
| CN120483875A (zh) * | 2025-07-10 | 2025-08-15 | 营口市向阳催化剂有限责任公司 | 取代亚苯基芳族二酯的制备方法及其在催化剂制备中的应用 |
Families Citing this family (97)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101716609B1 (ko) | 2007-08-24 | 2017-03-14 | 더블유.알. 그레이스 앤드 캄파니-콘. | 조절된 알루미늄 대 sca 비를 갖는 자기-제한성 촉매 시스템 및 방법 |
| CN102186889B (zh) * | 2008-08-21 | 2013-11-06 | 陶氏环球技术有限责任公司 | 具有混合的选择性控制剂的催化剂组合物和使用它的聚合反应方法 |
| BRPI0912920B1 (pt) * | 2008-08-21 | 2019-07-09 | W. R. Grace & Co. -Conn | Processo de polimerização e copolímero de impacto de propileno |
| US8507717B2 (en) * | 2008-12-31 | 2013-08-13 | Dow Global Technologies Llc | Production of substituted phenylene aromatic diesters |
| US8378045B2 (en) * | 2008-12-31 | 2013-02-19 | Dow Global Technologies Llc | Thermoformed article with high stiffness and good optics |
| CN102325808B (zh) | 2008-12-31 | 2014-03-12 | 陶氏环球技术有限责任公司 | 包含取代的1,2-亚苯基芳族二酯内给体的前催化剂组合物及方法 |
| JP6046349B2 (ja) * | 2008-12-31 | 2016-12-14 | ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット | 置換フェニレン芳香族ジエステルの製造 |
| KR101784537B1 (ko) * | 2009-12-02 | 2017-10-11 | 더블유.알. 그레이스 앤드 캄파니-콘. | 폴리프로필렌 제조를 위한 촉매 중 내부 공여체로서 2개의 원자로 브릿지된 디카르보네이트 화합물 |
| RU2586973C2 (ru) | 2010-02-26 | 2016-06-10 | У.Р.Грейс Энд Ко.-Конн. | Композиция прокатализатора с замещенным амидоэфиром в качестве внутреннего донора электронов |
| MY159696A (en) * | 2010-02-26 | 2017-01-13 | W R Grace & Co -Conn | Halogenated amide ester and internal electron donor with same |
| CN101845171A (zh) * | 2010-04-20 | 2010-09-29 | 广州呈和科技有限公司 | 聚丙烯增刚成核剂组合物 |
| US20140107274A1 (en) * | 2010-12-20 | 2014-04-17 | Braskem America, Inc. | Propylene-based compositions of enhanced appearance and excellent mold flowability |
| US9382342B2 (en) | 2010-12-21 | 2016-07-05 | W. R. Grace & Co.-Conn. | Procatalyst composition with alkoxyalkyl 2-propenoate internal electron donor and polymer from same |
| US9382343B2 (en) | 2010-12-21 | 2016-07-05 | W. R. Grace & Co.-Conn. | Procatalyst composition with alkoxypropyl ester internal electron donor and polymer from same |
| US9434796B2 (en) | 2010-12-21 | 2016-09-06 | W. R. Grace & Co.-Conn. | Catalyst composition with alkoxyalkyl ester internal electron donor and polymer from same |
| US20120157645A1 (en) * | 2010-12-21 | 2012-06-21 | Linfeng Chen | Procatalyst Composition with Alkoxypropyl Ester Internal Electron Donor and Polymer From Same |
| US8604146B2 (en) * | 2010-12-21 | 2013-12-10 | Dow Global Technologies Llc | Catalyst composition with alkoxyalkyl ester internal electron donor and polymer from same |
| US20120157295A1 (en) | 2010-12-21 | 2012-06-21 | Linfeng Chen | Process for Producing Procatalyst Composition with Alkoxyalkyl Ester Internal Electron Donor and Product |
| WO2012118883A1 (en) * | 2011-03-01 | 2012-09-07 | Dow Global Technologies Llc | Process for improving bulk density with multi-contact procatalyst and product |
| BR112013019990B1 (pt) | 2011-03-10 | 2020-06-09 | Basell Poliolefine Italia Srl | recipiente à base de poliolefinas e seu processo de preparação |
| CA2742454C (en) * | 2011-06-09 | 2018-06-12 | Nova Chemicals Corporation | Methods for controlling ethylene copolymer properties |
| EP2736930B1 (en) | 2011-07-28 | 2016-04-06 | W.R. Grace & Co.-Conn. | Propylene/ethylene copolymer film for heat seal |
| MX2014001146A (es) * | 2011-07-28 | 2014-05-30 | Dow Global Technologies Llc | Polimero a base de propileno con bajo contenido de ceniza y proceso. |
| EP2607384A1 (en) * | 2011-12-21 | 2013-06-26 | Basell Poliolefine Italia S.r.l. | Catalyst system for the polymerization of olefins |
| EP2610274A1 (en) * | 2011-12-30 | 2013-07-03 | Borealis AG | Propylene random copolymer |
| WO2014013401A1 (en) * | 2012-07-14 | 2014-01-23 | Indian Oil Corporation Limited | Ziegler-natta catalyst systems comprising a 1,2-phenylenedioate as internal donor and process for preparing the same |
| US9790291B2 (en) * | 2013-03-14 | 2017-10-17 | Formosa Plastics Corporation, Usa | Non-phthalate compounds as electron donors for polyolefin catalysts |
| BR112015028319B8 (pt) * | 2013-05-22 | 2021-07-06 | Borealis Ag | copolímero de propileno, artigo moldado por injeção, embalagem com pequena espessura e processo de produção do copolímero |
| KR102227838B1 (ko) * | 2013-10-29 | 2021-03-12 | 더블유.알. 그레이스 앤드 캄파니-콘. | 파이프에 적합한 프로필렌 에틸렌 랜덤 공중합체 |
| WO2015073221A1 (en) * | 2013-11-15 | 2015-05-21 | Dow Global Technologies Llc | A polyolefin composition and method of producing the same |
| RU2731442C2 (ru) | 2013-11-21 | 2020-09-02 | У.Р. Грейс Энд Ко.-Конн | Получение полимеров на основе пропилена с высоким содержанием сомономера |
| EP3071607B1 (en) | 2013-11-22 | 2018-05-09 | Borealis AG | Low emission propylene homopolymer |
| EP3074429B1 (en) | 2013-11-26 | 2024-01-24 | W.R. Grace & CO. - CONN. | Producing propylene impact copolymers and products |
| BR112016012033B1 (pt) * | 2013-11-27 | 2021-02-09 | W.R. Grace & Co.-Conn | processo de polimerização para copolímeros de impacto |
| EA034562B1 (ru) | 2013-12-20 | 2020-02-20 | Сауди Бейсик Индастриз Корпорейшн | Композиция катализатора для полимеризации олефинов |
| CN105940019B (zh) | 2013-12-20 | 2018-05-18 | 沙特基础工业公司 | 用于烯烃聚合的催化剂体系 |
| EP3083722B1 (en) * | 2013-12-20 | 2021-11-10 | Saudi Basic Industries Corporation | Catalyst system for polymerisation of an olefin |
| WO2015091940A1 (en) | 2013-12-20 | 2015-06-25 | Saudi Basic Industries Corporation | Catalyst system for polymerisation of an olefin |
| MX2016008041A (es) | 2013-12-20 | 2017-03-03 | Saudi Basic Ind Corp | Sistema catalizador para polimerizacion de una olefina. |
| WO2015100374A2 (en) * | 2013-12-23 | 2015-07-02 | Braskem America, Inc. | Propylene-based compositions of enhanced appearance and excellent mold flowability |
| US10465025B2 (en) | 2014-01-15 | 2019-11-05 | Exxonmobil Chemical Patents Inc. | Low comonomer propylene-based impact copolymers |
| WO2015108634A1 (en) | 2014-01-15 | 2015-07-23 | Exxonmobil Chemical Patents Inc. | Propylene-based impact copolymers |
| US10308740B2 (en) | 2014-02-07 | 2019-06-04 | Eastman Chemical Company | Amorphous propylene-ethylene copolymers |
| US10647795B2 (en) | 2014-02-07 | 2020-05-12 | Eastman Chemical Company | Adhesive composition comprising amorphous propylene-ethylene copolymer and polyolefins |
| US10696765B2 (en) | 2014-02-07 | 2020-06-30 | Eastman Chemical Company | Adhesive composition comprising amorphous propylene-ethylene copolymer and propylene polymer |
| US10723824B2 (en) | 2014-02-07 | 2020-07-28 | Eastman Chemical Company | Adhesives comprising amorphous propylene-ethylene copolymers |
| US9593179B2 (en) | 2014-02-07 | 2017-03-14 | Eastman Chemical Company | Amorphous propylene-ethylene copolymers |
| US11267916B2 (en) | 2014-02-07 | 2022-03-08 | Eastman Chemical Company | Adhesive composition comprising amorphous propylene-ethylene copolymer and polyolefins |
| CN107148459B (zh) * | 2014-08-21 | 2019-06-21 | 陶氏环球技术有限责任公司 | 热熔性粘合剂组合物 |
| KR102387108B1 (ko) * | 2014-08-21 | 2022-04-15 | 다우 글로벌 테크놀로지스 엘엘씨 | 접착제 조성물 |
| EP3015503A1 (en) | 2014-10-27 | 2016-05-04 | Borealis AG | Heterophasic polypropylene with improved stiffness/impact balance |
| US9593184B2 (en) | 2014-10-28 | 2017-03-14 | Formosa Plastics Corporation, Usa | Oxalic acid diamides as modifiers for polyolefin catalysts |
| CN107075207B (zh) | 2014-11-19 | 2018-07-27 | 博里利斯股份公司 | 基于丙烯均聚物的注射成型制品 |
| CN107922694B (zh) * | 2015-06-12 | 2023-08-15 | Sabic环球技术有限责任公司 | 用于制造低排放聚丙烯的方法 |
| JP2018532863A (ja) * | 2015-11-02 | 2018-11-08 | ブラスケム アメリカ インコーポレイテッドBraskem America,Inc. | 低放出プロピレンベースのポリマー樹脂 |
| EP3184587B1 (en) * | 2015-12-21 | 2020-03-18 | Borealis AG | Extruded articles with improved optical properties |
| MX2018008209A (es) | 2015-12-31 | 2018-08-28 | Braskem America Inc | Sistema catalizador sin ftalato y su uso en la polimerizacion de olefinas. |
| US9777084B2 (en) | 2016-02-19 | 2017-10-03 | Formosa Plastics Corporation, Usa | Catalyst system for olefin polymerization and method for producing olefin polymer |
| WO2017178046A1 (en) | 2016-04-13 | 2017-10-19 | Borealis Ag | Injection molded article based on propylene homopolymer |
| PL3260489T3 (pl) | 2016-06-24 | 2020-06-15 | Borealis Ag | Nowe kompozycje polipropylenowe o niskim zamgleniu |
| US11427660B2 (en) | 2016-08-17 | 2022-08-30 | Formosa Plastics Corporation, Usa | Organosilicon compounds as electron donors for olefin polymerization catalysts and methods of making and using same |
| CA3038093A1 (en) * | 2016-10-06 | 2018-04-12 | W.R. Grace & Co.-Conn. | Procatalyst composition made with a combination of internal electron donors |
| US9815920B1 (en) | 2016-10-14 | 2017-11-14 | Formosa Plastics Corporation, Usa | Olefin polymerization catalyst components and process for the production of olefin polymers therewith |
| EP3596140B1 (en) * | 2017-03-17 | 2024-03-20 | SABIC Global Technologies B.V. | Process for preparing a procatalyst for polymerization of olefins |
| CN110382555B (zh) * | 2017-03-17 | 2022-01-25 | Sabic环球技术有限责任公司 | 用于聚烯烃聚合的方法 |
| EP3609931A4 (en) * | 2017-04-12 | 2020-12-23 | W.R. Grace & Co.-Conn. | PROCESS FOR THE PRODUCTION OF LOW VOC PROPYLENE COPOLYMERS |
| US10822438B2 (en) | 2017-05-09 | 2020-11-03 | Formosa Plastics Corporation | Catalyst system for enhanced stereo-specificity of olefin polymerization and method for producing olefin polymer |
| US10124324B1 (en) | 2017-05-09 | 2018-11-13 | Formosa Plastics Corporation, Usa | Olefin polymerization catalyst components and process for the production of olefin polymers therewith |
| US11390700B2 (en) | 2017-05-18 | 2022-07-19 | Borealis Ag | Propylene-ethylene random copolymer with improved irradiation resistance |
| RU2692246C1 (ru) * | 2017-06-15 | 2019-06-24 | Индийская Нефтяная Корпорация Лимитэд | Внешний донор для полимеризации олефинов |
| TWI766025B (zh) * | 2017-06-28 | 2022-06-01 | 日商迪愛生股份有限公司 | 活性酯化合物及硬化性組成物 |
| US11292899B2 (en) * | 2017-06-30 | 2022-04-05 | Mitsui Chemicals, Inc. | Propylene-based polymer, method for producing the same, propylene-based resin composition and molded article |
| US10920053B2 (en) | 2017-10-16 | 2021-02-16 | Exxonmobil Chemical Patents Inc. | Propylene impact copolymer blends with improved gloss |
| WO2019094216A1 (en) * | 2017-11-13 | 2019-05-16 | W.R. Grace & Co.-Conn. | Catalyst components for propylene polymerization |
| CN111465625B (zh) | 2018-01-22 | 2022-11-22 | 博里利斯股份公司 | 成核的c3c4共聚物 |
| CN116143962A (zh) | 2018-04-10 | 2023-05-23 | 北欧化工公司 | 具有改善的伽马辐照耐受性的双峰聚丙烯无规共聚物 |
| CN108484810B (zh) * | 2018-05-04 | 2020-08-21 | 江苏煦和新材料有限公司 | 一种制备高熔体强度聚丙烯的方法 |
| EP3617238A1 (en) | 2018-08-28 | 2020-03-04 | Borealis AG | Propylene random copolymer with specific comonomer distribution |
| US20200270435A1 (en) * | 2019-02-27 | 2020-08-27 | Milliken & Company | Method for making heterophasic polymer compositions |
| CN113661211A (zh) * | 2019-04-05 | 2021-11-16 | 格雷斯公司 | 具有零下抗冲击性的聚丙烯共聚物组合物 |
| MX2021013692A (es) * | 2019-05-10 | 2021-12-10 | Grace W R & Co | Componentes catalizadores activados para polimerizacion de olefina. |
| CN114729074A (zh) * | 2019-09-18 | 2022-07-08 | 格雷斯公司 | 用于聚烯烃聚合物的催化剂组合物 |
| US20230312782A1 (en) * | 2020-06-29 | 2023-10-05 | W.R. Grace & Co.-Conn. | Phthalate-free polypropylene homopolymer having high stiffness properties |
| CN116018361A (zh) * | 2020-07-11 | 2023-04-25 | 格雷斯公司 | 丙烯丁烯共聚物及由其制备的组合物 |
| WO2022086782A1 (en) * | 2020-10-23 | 2022-04-28 | W.R. Grace & Co.-Conn. | Impact resistant polypropylene polymer composition having reduced voc content |
| WO2022269364A1 (en) * | 2021-06-25 | 2022-12-29 | Braskem S.A. | Propylene preliminary polymerization |
| JP2025529403A (ja) * | 2022-09-12 | 2025-09-04 | フォルモサ プラスティクス コーポレイション, ユーエスエー | 高延性で高弾性率のフタレートフリー耐衝撃性プロピレンコポリマー |
| WO2024133046A1 (en) | 2022-12-23 | 2024-06-27 | Borealis Ag | Process for producing a polypropylene copolymer |
| EP4662178A1 (en) | 2023-02-10 | 2025-12-17 | W. R. Grace & Co.-Conn | Process for the separation of solvent from waste streams |
| US20250066513A1 (en) | 2023-08-23 | 2025-02-27 | Formosa Plastics Corporation, U.S.A. | Catalyst System For Enhanced Stereo-Specificity Of Olefin Polymerization |
| US20250066514A1 (en) | 2023-08-24 | 2025-02-27 | Formosa Plastics Corporation, U.S.A. | Catalysts component and process for the production of polypropylene having high melt flow rate with high isotacticity |
| US20250109218A1 (en) | 2023-09-29 | 2025-04-03 | Formosa Plastics Corporation, U.S.A. | Method for preparing catalyst component for polymerization of polyolefin without the use of internal electron donors |
| US20250115687A1 (en) | 2023-10-06 | 2025-04-10 | Formosa Plastics Corporation, U.S.A. | Production method for solid catalyst component for polymerizing olefins, and catalyst for polymerizaing olefins |
| US20250115686A1 (en) | 2023-10-09 | 2025-04-10 | Formosa Plastics Corporation, U.S.A. | Olefin polymerization catalyst components containing silane and process for the production of polypropylene having high isotacticity at high melt flow rate |
| US20250297039A1 (en) | 2024-03-19 | 2025-09-25 | Formosa Plastics Corporation, U.S.A. | Olefin polymerization catalyst components containing diglycidylester components and its use for the production of polypropylene having high isotacticity at high melt flow rate |
| WO2025219533A1 (en) | 2024-04-18 | 2025-10-23 | Borealis Gmbh | Process for the preparation of a propylene homopolymer |
| WO2025219537A1 (en) | 2024-04-18 | 2025-10-23 | Borealis Gmbh | Process for propylene polymerization with optimized prepolymerization conditions |
Family Cites Families (101)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3214469A (en) | 1958-01-15 | 1965-10-26 | Polaroid Corp | Dihydroxyphenylalkanoic acid amide derivatives |
| US5082907A (en) | 1990-10-18 | 1992-01-21 | Shell Oil Company | Olefin polymerization catalyst |
| US5106806A (en) | 1990-10-18 | 1992-04-21 | Shell Oil Company | Olefin polymerization catalyst |
| US5066737A (en) | 1990-10-22 | 1991-11-19 | Shell Oil Company | Olefin polymerization catalyst |
| US5151399A (en) | 1990-10-18 | 1992-09-29 | Shell Oil Company | Olefin polymerization catalyst |
| US5077357A (en) | 1990-10-22 | 1991-12-31 | Shell Oil Company | Olefin polymerization catalyst |
| ZA716958B (en) | 1970-10-30 | 1973-01-31 | Hoffmann La Roche | Phenylalanine amides |
| US3925338A (en) | 1973-03-16 | 1975-12-09 | Monsanto Co | Control of polymer particle size in olefin polymerization |
| DE2658866C3 (de) * | 1976-12-24 | 1979-10-31 | Bayer Ag, 5090 Leverkusen | Verfahren zur Herstellung von mehrwertigen substituierten Phenolen |
| IT1209255B (it) * | 1980-08-13 | 1989-07-16 | Montedison Spa | Catalizzatori per la polimerizzazione di olefine. |
| US4442276A (en) * | 1982-02-12 | 1984-04-10 | Mitsui Petrochemical Industries, Ltd. | Process for polymerizing or copolymerizing olefins |
| JPS5991107A (ja) | 1982-11-17 | 1984-05-25 | Toho Titanium Co Ltd | オレフイン類重合用触媒成分の製造方法 |
| JPS6023404A (ja) | 1983-07-20 | 1985-02-06 | Toho Titanium Co Ltd | オレフィン類重合用触媒成分 |
| US4866022A (en) | 1984-03-23 | 1989-09-12 | Amoco Corporation | Olefin polymerization catalyst |
| US4612299A (en) | 1984-07-09 | 1986-09-16 | Amoco Corporation | Magnesium carboxylate supports |
| US4540679A (en) | 1984-03-23 | 1985-09-10 | Amoco Corporation | Magnesium hydrocarbyl carbonate supports |
| US4579836A (en) | 1985-05-22 | 1986-04-01 | Amoco Corporation | Exhaustively prepolymerized supported alpha-olefin polymerization catalyst |
| US4614830A (en) * | 1985-08-09 | 1986-09-30 | Sterling Drug Inc. | Esterification process |
| JPH06104693B2 (ja) | 1986-01-06 | 1994-12-21 | 東邦チタニウム株式会社 | オレフイン類重合用触媒 |
| JPS62205140A (ja) * | 1986-03-03 | 1987-09-09 | Mitsubishi Paper Mills Ltd | 重合体用可塑剤 |
| EP0268685B2 (en) | 1986-05-06 | 1996-08-07 | Toho Titanium Co. Ltd. | Catalyst for polymerizing olefins |
| US4710482A (en) | 1986-06-18 | 1987-12-01 | Shell Oil Company | Olefin polymerization catalyst component |
| JPS63277944A (ja) * | 1987-03-03 | 1988-11-15 | Kiroku Sozai Sogo Kenkyusho:Kk | 温度管理示温ラベル |
| CA1310955C (en) | 1987-03-13 | 1992-12-01 | Mamoru Kioka | Process for polymerization of olefins and polymerization catalyst |
| ES2082745T3 (es) | 1987-04-03 | 1996-04-01 | Fina Technology | Sistemas cataliticos metalocenos para la polimerizacion de las olefinas presentando un puente de hidrocarburo de silicio. |
| US4927797A (en) | 1987-04-09 | 1990-05-22 | Fina Technology, Inc. | Catalyst system for the polymerization of olefins |
| US5066738A (en) | 1987-04-09 | 1991-11-19 | Fina Technology, Inc. | Polymerization of olefins with an improved catalyst system using a new electron donor |
| US4882380A (en) * | 1987-07-07 | 1989-11-21 | Union Carbide Chemicals And Plastics Company Inc. | Process for the production of impact polypropylene copolymers |
| JPH01224351A (ja) * | 1988-03-02 | 1989-09-07 | Mitsui Petrochem Ind Ltd | 芳香族カルボン酸アリールエステル類の製造法 |
| ES2052004T5 (es) | 1988-06-17 | 2002-05-16 | Mitsui Chemicals Inc | Procedimiento de preparacion de poliolefinas y catalizador de polimerizacion. |
| US5247031A (en) | 1988-09-13 | 1993-09-21 | Mitsui Petrochemical Industries, Ltd. | Olefin polymerization catalyst component, process for production thereof, olefin polymerization catalyst, and process for polymerizing olefins |
| KR920007040B1 (ko) | 1988-09-14 | 1992-08-24 | 미쓰이세끼유 가가꾸 고오교오 가부시끼가이샤 | 올레핀 중합용 촉매와 그 촉매의 성분 및 그 촉매에 의한 올레핀 중합법과 그 폴리올레핀에 의한 필름 및 사출성형품 |
| US4946816A (en) | 1989-08-21 | 1990-08-07 | Amoco Corporation | Morphology-controlled olefin polymerization catalyst |
| JP2909550B2 (ja) * | 1989-08-31 | 1999-06-23 | 三井化学株式会社 | アルキルフェノール類の製造方法 |
| JP2940684B2 (ja) | 1989-12-29 | 1999-08-25 | 三井化学株式会社 | オレフィン重合用固体状触媒成分およびこの触媒成分を用いたオレフィンの重合方法 |
| US5247032A (en) | 1989-12-29 | 1993-09-21 | Mitsui Petrochemical Industries, Ltd. | Solid catalyst components for olefin polymerization and processes for the polymerization of olefin using same |
| US5034361A (en) | 1990-05-24 | 1991-07-23 | Shell Oil Company | Catalyst precursor production |
| US5146028A (en) | 1990-10-18 | 1992-09-08 | Shell Oil Company | Olefin polymerization catalyst and process of polymerization |
| US5229342A (en) | 1990-10-18 | 1993-07-20 | Shell Oil Company | Olefin polymerization catalyst |
| DE4117144A1 (de) * | 1991-05-25 | 1992-11-26 | Basf Ag | Hochfliessfaehige propylen-ethylen-copolymerisate |
| JP2699047B2 (ja) | 1992-10-22 | 1998-01-19 | 昭和電工株式会社 | プロピレン系重合体の製造方法 |
| GB9300318D0 (en) | 1993-01-08 | 1993-03-03 | Oxford Analytical Instr Ltd | Improvements relating to sample monitoring |
| IL117114A (en) | 1995-02-21 | 2000-02-17 | Montell North America Inc | Components and catalysts for the polymerization ofolefins |
| US5674630A (en) * | 1995-05-08 | 1997-10-07 | Union Carbide Chemicals & Plastics Technology Corporation | Polymer compositions and cast films |
| JPH09227437A (ja) * | 1995-12-19 | 1997-09-02 | Daiso Co Ltd | カテコール誘導体の製造法 |
| JP3697011B2 (ja) | 1997-02-27 | 2005-09-21 | 三井化学株式会社 | プロピレン重合体 |
| GB2323363A (en) | 1997-03-19 | 1998-09-23 | Shell Int Research | Propylene polymer composition |
| FI980342A0 (fi) * | 1997-11-07 | 1998-02-13 | Borealis As | Polymerroer och -roerkopplingar |
| CN1255436C (zh) * | 1997-12-23 | 2006-05-10 | 博里利斯技术有限公司 | 包括镁、钛、卤素和给电子体的催化剂组分、它的制备方法及用途 |
| KR100334163B1 (ko) * | 1998-12-04 | 2002-10-25 | 삼성종합화학주식회사 | 올레핀중합또는공중합방법 |
| FI991057A0 (fi) * | 1999-05-07 | 1999-05-07 | Borealis As | Korkean jäykkyyden propeenipolymeerit ja menetelmä niiden valmistamiseksi |
| JP3808243B2 (ja) * | 1999-07-27 | 2006-08-09 | 三井化学株式会社 | 軟質樹脂組成物 |
| JP3986216B2 (ja) | 1999-08-19 | 2007-10-03 | 三井化学株式会社 | 非水電解液およびそれを用いた二次電池 |
| JP2001096926A (ja) * | 1999-10-04 | 2001-04-10 | Showa Highpolymer Co Ltd | フェノール系三核体組成物及びそれからなる感熱記録材料用顕色剤 |
| US6554154B1 (en) | 2000-02-11 | 2003-04-29 | Solo Cup Company | Thermoformed container having improved strength to weight ratio in sidewall |
| JP2002012583A (ja) * | 2000-04-28 | 2002-01-15 | Sumitomo Chem Co Ltd | アミン誘導体の製造方法 |
| KR100758159B1 (ko) * | 2000-05-31 | 2007-09-12 | 바셀 테크놀로지 캄파니 비이브이 | 개선된 충격 강도 및 우수한 광학 성질을 가진 프로필렌중합체 조성물 |
| JP2004516373A (ja) | 2000-12-22 | 2004-06-03 | バセル ポリオレフィン イタリア エス.ピー.エー. | 熱成形用ポリオレフィンシート |
| US6534574B1 (en) | 2001-03-24 | 2003-03-18 | Milliken & Company | Highly nucleated thermoplastic articles |
| US6825146B2 (en) * | 2001-05-29 | 2004-11-30 | Union Carbide Chemicals & Plastics Technology Corporation | Olefin polymerization catalyst compositions and method of preparation |
| EP1270628B1 (en) * | 2001-06-27 | 2004-10-06 | Borealis Technology Oy | Propylene random copolymer and process for the production thereof |
| US6960635B2 (en) | 2001-11-06 | 2005-11-01 | Dow Global Technologies Inc. | Isotactic propylene copolymers, their preparation and use |
| CN1169845C (zh) * | 2002-02-07 | 2004-10-06 | 中国石油化工股份有限公司 | 用于烯烃聚合的固体催化剂组分和含该催化剂组分的催化剂及其应用 |
| EP1364986A1 (en) * | 2002-05-21 | 2003-11-26 | Borealis Technology Oy | Polypropylene compositions especially for pipes |
| WO2003099883A1 (en) * | 2002-05-29 | 2003-12-04 | Basell Poliolefine Italia S.P.A. | Butene-1 (co)polymers and process for their preparation |
| EP1515996A2 (en) * | 2002-06-14 | 2005-03-23 | Union Carbide Chemicals & Plastics Technology Corporation | Catalyst composition and polymerization process using mixtures of electron donors |
| ATE454407T1 (de) * | 2003-06-24 | 2010-01-15 | Union Carbide Chem Plastic | Katalysatorzusammensetzung und polymerisationsverfahren mit einer mischung von silane elektrondonoren |
| CN1229400C (zh) | 2003-09-18 | 2005-11-30 | 中国石油化工股份有限公司 | 用于烯烃聚合的催化剂组分及其催化剂 |
| KR101114748B1 (ko) * | 2003-09-23 | 2012-03-05 | 다우 글로벌 테크놀로지스 엘엘씨 | 자가 제한 촉매 조성물 및 프로필렌 중합 방법 |
| KR20060099512A (ko) | 2003-09-23 | 2006-09-19 | 유니온 카바이드 케미칼즈 앤드 플라스틱스 테크날러지 코포레이션 | 혼합된 선택성 조절제를 갖는 촉매 조성물 및 프로필렌중합 방법 |
| JP2005112764A (ja) * | 2003-10-07 | 2005-04-28 | Toagosei Co Ltd | 芳香族エステルの製造方法 |
| FR2869035B1 (fr) | 2004-04-16 | 2006-07-14 | Pierre Fabre Medicament Sa | Derives (poly)aminoalkylaminoacetamide d'epipodophyllotoxine leur procede de preparation et leurs applications en therapeutique comme agent anticancereux |
| JP4413069B2 (ja) | 2004-04-28 | 2010-02-10 | 富士フイルム株式会社 | 平版印刷原版および平版印刷方法 |
| US7351778B2 (en) | 2004-04-30 | 2008-04-01 | China Petroleum & Chemical Corporation | Catalyst component for olefin polymerization and catalyst comprising the same |
| ATE419302T1 (de) | 2004-08-18 | 2009-01-15 | Basell Poliolefine Srl | Streckblasgeformte behälter aus metallocen- propylenpolymer-zusammensetzungen |
| JP4960871B2 (ja) | 2004-08-31 | 2012-06-27 | ダウ グローバル テクノロジーズ エルエルシー | 熱成形性シートに好適な組成物および熱成形性シートから製造される物品 |
| US20070202285A1 (en) | 2004-12-15 | 2007-08-30 | Fina Technology, Inc. | Articles having improved clarity, prepared from propylene-ethylene copolymers |
| KR20070087670A (ko) | 2004-12-21 | 2007-08-28 | 다우 글로벌 테크놀로지스 인크. | 폴리프로필렌-기재의 접착제 조성물 |
| US7491781B2 (en) | 2005-03-08 | 2009-02-17 | Ineos Usa Llc | Propylene polymer catalyst donor component |
| CN101175778B (zh) | 2005-05-12 | 2011-12-07 | 巴塞尔聚烯烃意大利有限责任公司 | 丙烯-乙烯共聚物和它们的制备方法 |
| EP1940888B1 (en) | 2005-10-21 | 2010-06-02 | Basell Polyolefine GmbH | Polypropylene random copolymers having high melt flow rates for injection molding and melt brown applications |
| CN100532405C (zh) * | 2005-10-26 | 2009-08-26 | 中国石油化工股份有限公司 | 用于乙烯聚合的催化剂组分及其制备方法 |
| JP2007175028A (ja) * | 2005-12-28 | 2007-07-12 | Koojin Bio Kk | 閉鎖系細胞培養容器、閉鎖系細胞培養用キット、及び閉鎖系細胞培養容器の製造方法 |
| MX2008015361A (es) * | 2006-06-01 | 2008-12-16 | Sunoco Inc R&M | Polipropileno de alta cristalinidad de indice de flujo de fusion alto. |
| TW200817315A (en) | 2006-06-16 | 2008-04-16 | Sanol Arznei Schwarz Gmbh | Entacapone-derivatives |
| EP1873173B1 (en) | 2006-06-30 | 2015-04-22 | Borealis Technology Oy | High melt flow random polypropylene copolymer |
| WO2008010459A1 (en) * | 2006-07-18 | 2008-01-24 | Mitsui Chemicals, Inc. | Solid titanium catalyst ingredient, catalyst for olefin polymerization, and method of olefin polymerization |
| JP4857093B2 (ja) | 2006-11-29 | 2012-01-18 | 日本ポリプロ株式会社 | 深絞り容器 |
| KR101716609B1 (ko) | 2007-08-24 | 2017-03-14 | 더블유.알. 그레이스 앤드 캄파니-콘. | 조절된 알루미늄 대 sca 비를 갖는 자기-제한성 촉매 시스템 및 방법 |
| BRPI0815246A2 (pt) * | 2007-08-24 | 2015-03-31 | Dow Global Technologies Inc | Composição de catalisador |
| US20100273641A1 (en) | 2007-12-21 | 2010-10-28 | Linfeng Chen | Self-Limiting Catalyst Composition with Non-Phthalate Internal Donor |
| JP4944058B2 (ja) | 2008-03-31 | 2012-05-30 | 株式会社エフピコ | ポリプロピレン系樹脂シート及びポリプロピレン系樹脂容器 |
| CN101318886B (zh) * | 2008-07-04 | 2011-05-04 | 浙江理工大学 | 一种邻羟基苯基烷基酮的合成方法 |
| US8003558B2 (en) * | 2008-07-29 | 2011-08-23 | Basf Corporation | Internal donor for olefin polymerization catalysts |
| CN102186889B (zh) * | 2008-08-21 | 2013-11-06 | 陶氏环球技术有限责任公司 | 具有混合的选择性控制剂的催化剂组合物和使用它的聚合反应方法 |
| BRPI0912920B1 (pt) * | 2008-08-21 | 2019-07-09 | W. R. Grace & Co. -Conn | Processo de polimerização e copolímero de impacto de propileno |
| US8507717B2 (en) * | 2008-12-31 | 2013-08-13 | Dow Global Technologies Llc | Production of substituted phenylene aromatic diesters |
| CN102325808B (zh) | 2008-12-31 | 2014-03-12 | 陶氏环球技术有限责任公司 | 包含取代的1,2-亚苯基芳族二酯内给体的前催化剂组合物及方法 |
| JP6046349B2 (ja) * | 2008-12-31 | 2016-12-14 | ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット | 置換フェニレン芳香族ジエステルの製造 |
| US8378045B2 (en) * | 2008-12-31 | 2013-02-19 | Dow Global Technologies Llc | Thermoformed article with high stiffness and good optics |
| KR101784537B1 (ko) | 2009-12-02 | 2017-10-11 | 더블유.알. 그레이스 앤드 캄파니-콘. | 폴리프로필렌 제조를 위한 촉매 중 내부 공여체로서 2개의 원자로 브릿지된 디카르보네이트 화합물 |
-
2009
- 2009-12-31 US US12/651,142 patent/US8507717B2/en not_active Expired - Fee Related
- 2009-12-31 BR BRPI0918697A patent/BRPI0918697A8/pt not_active Application Discontinuation
- 2009-12-31 BR BRPI0918707A patent/BRPI0918707A2/pt not_active IP Right Cessation
- 2009-12-31 MX MX2014008822A patent/MX342632B/es unknown
- 2009-12-31 JP JP2011544619A patent/JP5607647B2/ja active Active
- 2009-12-31 EP EP09802091.0A patent/EP2373703B1/en not_active Not-in-force
- 2009-12-31 KR KR1020117017793A patent/KR20110100311A/ko not_active Ceased
- 2009-12-31 US US12/650,617 patent/US8263692B2/en not_active Expired - Fee Related
- 2009-12-31 KR KR1020117017812A patent/KR20110117124A/ko not_active Ceased
- 2009-12-31 CN CN200980157529.1A patent/CN102333749B/zh not_active Expired - Fee Related
- 2009-12-31 KR KR1020117017810A patent/KR101696943B1/ko not_active Expired - Fee Related
- 2009-12-31 JP JP2011544623A patent/JP5969210B2/ja not_active Expired - Fee Related
- 2009-12-31 KR KR1020117017813A patent/KR101676057B1/ko active Active
- 2009-12-31 BR BRPI0918691A patent/BRPI0918691B1/pt active IP Right Grant
- 2009-12-31 RU RU2011132149/04A patent/RU2527036C2/ru not_active IP Right Cessation
- 2009-12-31 RU RU2011132141/04A patent/RU2553475C2/ru not_active IP Right Cessation
- 2009-12-31 US US12/650,633 patent/US8106138B2/en active Active
- 2009-12-31 MY MYPI2011003042A patent/MY156636A/en unknown
- 2009-12-31 MY MYPI2011003065A patent/MY159689A/en unknown
- 2009-12-31 EP EP09795890A patent/EP2373699A1/en not_active Withdrawn
- 2009-12-31 MX MX2011007154A patent/MX2011007154A/es active IP Right Grant
- 2009-12-31 US US12/651,032 patent/US8778826B2/en active Active
- 2009-12-31 MX MX2011007151A patent/MX2011007151A/es not_active Application Discontinuation
- 2009-12-31 MY MYPI2011003063A patent/MY159677A/en unknown
- 2009-12-31 CN CN200980157533.8A patent/CN102741341B/zh active Active
- 2009-12-31 BR BRPI0918706-5A patent/BRPI0918706B1/pt not_active IP Right Cessation
- 2009-12-31 SG SG2011048048A patent/SG172438A1/en unknown
- 2009-12-31 SG SG2011048097A patent/SG172819A1/en unknown
- 2009-12-31 MY MYPI2011003064A patent/MY155383A/en unknown
- 2009-12-31 RU RU2011132063/04A patent/RU2518067C2/ru active
- 2009-12-31 WO PCT/US2009/069942 patent/WO2010078512A2/en not_active Ceased
- 2009-12-31 CN CN201510373023.1A patent/CN105037590B/zh active Active
- 2009-12-31 MY MYPI2011003062A patent/MY159688A/en unknown
- 2009-12-31 JP JP2011544626A patent/JP5461583B2/ja not_active Expired - Fee Related
- 2009-12-31 CN CN2009801574975A patent/CN102333796B/zh not_active Expired - Fee Related
- 2009-12-31 BR BRPI0918348A patent/BRPI0918348A8/pt not_active IP Right Cessation
- 2009-12-31 MX MX2011007153A patent/MX2011007153A/es active IP Right Grant
- 2009-12-31 EP EP09796285.6A patent/EP2373732B1/en active Active
- 2009-12-31 CN CN200980157530.4A patent/CN102482376B/zh not_active Expired - Fee Related
- 2009-12-31 SG SG2011048238A patent/SG172446A1/en unknown
- 2009-12-31 US US12/650,625 patent/US7935766B2/en active Active
- 2009-12-31 MX MX2011007155A patent/MX2011007155A/es active IP Right Grant
- 2009-12-31 JP JP2011544621A patent/JP5731988B2/ja not_active Expired - Fee Related
- 2009-12-31 WO PCT/US2009/069896 patent/WO2010078480A1/en not_active Ceased
- 2009-12-31 RU RU2011132064/04A patent/RU2518065C2/ru active
- 2009-12-31 WO PCT/US2009/069901 patent/WO2010078485A1/en not_active Ceased
- 2009-12-31 EP EP09796286.4A patent/EP2373701B1/en not_active Not-in-force
- 2009-12-31 SG SG2011048253A patent/SG172448A1/en unknown
- 2009-12-31 RU RU2011132147/04A patent/RU2522435C2/ru not_active IP Right Cessation
- 2009-12-31 KR KR1020117017808A patent/KR101695995B1/ko not_active Expired - Fee Related
- 2009-12-31 CN CN200980157206.2A patent/CN102325809B/zh not_active Expired - Fee Related
- 2009-12-31 WO PCT/US2009/069929 patent/WO2010078503A1/en not_active Ceased
- 2009-12-31 MX MX2011007152A patent/MX2011007152A/es active IP Right Grant
- 2009-12-31 EP EP09796927A patent/EP2373604A2/en not_active Withdrawn
- 2009-12-31 SG SG2011048261A patent/SG172449A1/en unknown
- 2009-12-31 WO PCT/US2009/069895 patent/WO2010078479A1/en not_active Ceased
- 2009-12-31 JP JP2011544618A patent/JP5770103B2/ja not_active Expired - Fee Related
-
2012
- 2012-08-29 US US13/597,536 patent/US20130041113A1/en not_active Abandoned
-
2014
- 2014-06-02 US US14/293,468 patent/US9464144B2/en not_active Expired - Fee Related
- 2014-08-28 JP JP2014174169A patent/JP6066968B2/ja active Active
-
2016
- 2016-05-06 JP JP2016093313A patent/JP6097435B2/ja not_active Expired - Fee Related
Non-Patent Citations (2)
| Title |
|---|
| LIEBIGS ANN. CHEM., vol. 688, 1965, pages 134 - 149 |
| Z. NATURFORSCHG., vol. 18B, 1963, pages 1002 - 1009 |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10358505B2 (en) | 2010-12-21 | 2019-07-23 | W. R. Grace & Co.-Conn. | Process for production of high melt flow propylene-based polymer and product from same |
| US11254756B2 (en) | 2010-12-21 | 2022-02-22 | W.R. Grace & Co.-Conn. | Process for production of high melt flow propylene-based polymer and product from same |
| US11993672B2 (en) | 2010-12-21 | 2024-05-28 | W.R. Grace & Co.-Conn. | Production of high melt flow propylene-based polymer and product from same |
| WO2012135189A3 (en) * | 2011-03-29 | 2012-12-27 | Dow Global Technologies Llc | Production of substituted phenylene aromatic diesters |
| US20140012035A1 (en) * | 2011-03-29 | 2014-01-09 | Linfeng Chen | Production of Substituted Phenylene Aromatic Diesters |
| CN103562172A (zh) * | 2011-03-29 | 2014-02-05 | 陶氏环球技术有限责任公司 | 取代的亚苯基芳族二酯的制备 |
| JP2014519477A (ja) * | 2011-03-29 | 2014-08-14 | ダウ グローバル テクノロジーズ エルエルシー | 置換フェニレン芳香族ジエステルの製造 |
| JP2014529624A (ja) * | 2011-08-30 | 2014-11-13 | ダウ グローバル テクノロジーズ エルエルシー | 内部電子供与体として使用するための置換フェニレンジベンゾエートの生成およびポリマー調製のためのプロ触媒 |
| US9133286B2 (en) | 2011-08-30 | 2015-09-15 | W. R. Grace & Co.-Conn | Production of substituted phenylene dibenzoate internal electron donor and procatalyst with same |
| CN120483875A (zh) * | 2025-07-10 | 2025-08-15 | 营口市向阳催化剂有限责任公司 | 取代亚苯基芳族二酯的制备方法及其在催化剂制备中的应用 |
| CN120483875B (zh) * | 2025-07-10 | 2025-10-21 | 营口市向阳催化剂有限责任公司 | 取代亚苯基芳族二酯的制备方法及其在催化剂制备中的应用 |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8507717B2 (en) | Production of substituted phenylene aromatic diesters | |
| KR101722275B1 (ko) | 치환된 페닐렌 방향족 디에스테르의 제조 | |
| Marvel et al. | o-Methoxy-, p-Benzyl-, o-Fluoro-, and o-Cyano-styrenes. Further Examples of the Disproportionation of Phenylmethylcarbinols to Ethylbenzenes1 | |
| JPH021142B2 (OSRAM) | ||
| CN107540559A (zh) | 一种抗氧剂4,4’‑双(α ,α‑二甲基苄基)二苯胺的制备方法 | |
| US4278604A (en) | Process for preparing an alkenyl-substituted dicarboxylic acid anhydride | |
| US5633411A (en) | Method for production of allyloxystyrene compounds | |
| US20140012035A1 (en) | Production of Substituted Phenylene Aromatic Diesters | |
| JP2594826B2 (ja) | p−またはm−ヒドロキシフェネチルアルコールの製造法 | |
| CN111348996B (zh) | 一种2-苯甲酰丙二酸酯类化合物、其制备方法及应用 | |
| CN107001308B (zh) | 用于生产4-叠氮基磺酰基邻苯二甲酸酐的方法 | |
| JP2557382B2 (ja) | メタ臭素化ビフュノールの製造方法 | |
| JP3004113B2 (ja) | デカブロモジフエニルアルカン方法 | |
| WO1998011039A1 (fr) | Procede de chloromethylation d'hydrocarbures aromatiques | |
| EP0148145A1 (en) | Process for making nitrodiarylamines | |
| EP0150169B1 (en) | A process for preparing substituted benzotrichloride compounds | |
| JP2586949B2 (ja) | p―又はm―ヒドロキシベンズアルデヒドの製造法 | |
| Shapiro et al. | Synthesis of the dibenzo [b, g] oxocin system | |
| JP2717689B2 (ja) | p―またはm―ヒドロキシフェニルアルキルアルコールの製造法 | |
| GB2062636A (en) | Process for the preparation of -halogenated cresol esters | |
| US2759968A (en) | Method of preparing esters from chloretone | |
| JPH07145097A (ja) | ポリアリルナフトール化合物の製造方法 | |
| JPH0853390A (ja) | ビス(ヒドロキシアリール)ペンタン酸類の製造方法 | |
| JPH01211542A (ja) | 4,4’‐ジヒドロキシテトラフェニルメタン類の製造方法 | |
| JPH07145096A (ja) | ポリアリルナフトール化合物の製造方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 200980157529.1 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09796927 Country of ref document: EP Kind code of ref document: A2 |
|
| DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
| ENP | Entry into the national phase |
Ref document number: 2011544626 Country of ref document: JP Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 4619/CHENP/2011 Country of ref document: IN |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2011/007152 Country of ref document: MX |
|
| REEP | Request for entry into the european phase |
Ref document number: 2009796927 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2009796927 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 20117017793 Country of ref document: KR Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2011132141 Country of ref document: RU |
|
| REG | Reference to national code |
Ref country code: BR Ref legal event code: B01E Ref document number: PI0918707 Country of ref document: BR Free format text: APRESENTAR DOCUMENTO DE CESSAO CORRETO PARA AS PRIORIDADES US 61/141,902 DE 31/12/2008 E US 61/141,959 DE 31/12/2008, UMA VEZ QUE O DOCUMENTO DE CESSAO APRESENTADO NA PETICAO NO 018110028291 DE 25/07/2011 NAO FAZ REFERENCIA AS PRIORIDADES REIVINDICADAS PELO DEPOSITANTE. A CESSAO DEVE CONTER, NO MINIMO, NUMERO DA PRIORIDADE A SER CEDIDA, DATA DE DEPOSITO DA PRIORIDADE, ASSINATURA DE TODOS OS INVENTORES E DATA DE CESSAO IGUAL OU ANTERIOR AO DEPOSITO INTERNACIONAL. |
|
| ENP | Entry into the national phase |
Ref document number: PI0918707 Country of ref document: BR Kind code of ref document: A2 Effective date: 20110630 |