WO2010061871A1 - 非水電解質二次電池の電極用カルボキシメチルセルロースまたはその塩、及びその水溶液 - Google Patents

非水電解質二次電池の電極用カルボキシメチルセルロースまたはその塩、及びその水溶液 Download PDF

Info

Publication number
WO2010061871A1
WO2010061871A1 PCT/JP2009/069915 JP2009069915W WO2010061871A1 WO 2010061871 A1 WO2010061871 A1 WO 2010061871A1 JP 2009069915 W JP2009069915 W JP 2009069915W WO 2010061871 A1 WO2010061871 A1 WO 2010061871A1
Authority
WO
WIPO (PCT)
Prior art keywords
salt
carboxymethyl cellulose
electrode
carboxymethylcellulose
aqueous solution
Prior art date
Application number
PCT/JP2009/069915
Other languages
English (en)
French (fr)
Inventor
康博 日高
一弘 藤原
井上 一彦
伸治 佐藤
Original Assignee
日本製紙ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製紙ケミカル株式会社 filed Critical 日本製紙ケミカル株式会社
Priority to KR1020137021974A priority Critical patent/KR101541789B1/ko
Priority to KR1020117012003A priority patent/KR101508493B1/ko
Priority to EP09829116.4A priority patent/EP2355215B1/en
Priority to CN2009801472736A priority patent/CN102232254A/zh
Priority to US13/131,395 priority patent/US9240583B2/en
Priority to JP2010540498A priority patent/JP5514734B2/ja
Publication of WO2010061871A1 publication Critical patent/WO2010061871A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to carboxymethylcellulose or a salt thereof, and an aqueous solution thereof useful as a binder capable of preventing the occurrence of defects such as streaks and pinholes on the surface of an electrode in a non-aqueous electrolyte secondary battery.
  • non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries having high energy density and high capacity are widely used.
  • a nonaqueous electrolyte secondary battery is manufactured as follows. That is, it comprises a negative electrode containing a negative electrode active material made of a carbon material capable of inserting and extracting lithium ions, and a lithium-containing transition metal composite oxide (for example, LiCoO 2 , LiNiO 2 , LiMn 2 O 4, etc.).
  • the positive electrode containing a positive electrode active material is each formed in the sheet form on the surface of metal foil as a current collection base material (current collector), and a sheet-like positive electrode and a sheet-like negative electrode are obtained.
  • a sheet-like positive electrode and a sheet-like negative electrode are wound or laminated
  • the sheet-like positive electrode and the sheet-like negative electrode have a structure including a metal foil to be a current collecting base material (current collector) and a mixture layer containing an active material formed on the surface thereof, and a negative electrode active material slurry (or A paste) or a positive electrode active material slurry (or paste) may be applied and dried on a current collector.
  • a metal foil to be a current collecting base material (current collector) and a mixture layer containing an active material formed on the surface thereof, and a negative electrode active material slurry (or A paste) or a positive electrode active material slurry (or paste) may be applied and dried on a current collector.
  • the negative electrode active material slurry (paste) contains a binder (binder) in addition to the negative electrode active material made of a carbon material that can occlude and release lithium ions.
  • a binder a negative electrode binder mainly composed of styrene / butadiene latex (SBR) is disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 5-74461).
  • carboxymethyl cellulose as a water-soluble thickener is dissolved in water to prepare an aqueous solution, and SBR and a negative electrode active material are mixed with this to produce a slurry.
  • the slurry is applied as a coating liquid on a substrate and dried to form a sheet-like negative electrode.
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode active material slurry (paste) contains a binder in addition to a lithium-containing transition metal composite oxide (eg, LiCoO 2 , LiNiO 2 , LiMn 2 O 4, etc.) as a positive electrode active material, carbon as a conductive material, and the like.
  • a binder cellulose having a viscosity of 4000 mPa ⁇ s or more in a 1% aqueous solution such as carboxymethyl cellulose is described in Patent Document 2 (Japanese Patent Laid-Open No. 2003-157847).
  • Patent Document 2 describes that an active material paste is prepared by adding carboxymethyl cellulose to pure water together with a conductive material, polytetrafluoroethylene (PTFE), and the like.
  • a doctor spaced a predetermined distance from the surface of the current collecting base material to be applied As a method of applying the negative electrode active material slurry (paste) or the positive electrode active material slurry (paste) to the current collecting base material, a doctor spaced a predetermined distance from the surface of the current collecting base material to be applied.
  • the blade is produced by a method of forming a sheet-like electrode plate by drawing the slurry in an amount corresponding to the distance from the current collector base (for example, Patent Document 3 (Japanese Patent Laid-Open No. 4-242071)). .
  • an electrode material coating liquid is ejected and applied from an extrusion type liquid injector having a slot nozzle onto a current collecting base material that is wound around a backup roll (for example, Patent Document 4 No. 7-65816)) has been proposed.
  • JP-A-5-74461 JP 2003-157847 A Japanese Patent Laid-Open No. 4-242071 JP 7-65816 A
  • streak defect may be a problem when the slurry (paste) is laminated on the current collecting base material by a coating method such as blade coating, bar coating, or die coating. Many. That is, streak-like defects (streaks) are likely to occur due to clogging between the coating apparatus used in these coating methods and the current collecting base material with undissolved carboxymethylcellulose. In particular, it is more likely to occur when the gap is narrowed for the purpose of thinly applying slurry (or paste).
  • a sheet-like electrode plate in which a mixture layer formed on a current collecting base material is thin and a surface area of the mixture layer is increased has been demanded. Therefore, it has become desirable to suppress streak-like defects, particularly when the slurry is applied thinly.
  • the undissolved material passes through the gap and is applied onto the current collecting base material, it tends to be peeled off mainly around the undissolved material applied in the electrode plate compression step. In the subsequent drying step, the undissolved material shrinks and voids are likely to be generated. Such peeling and voids can cause pinholes and the like.
  • the undissolved material can be removed to some extent by performing a filter treatment or the like before applying the slurry (or paste) to the current collecting substrate.
  • the undissolved material is often a soft polymer, and when it is pressurized (back pressure) during filtering, these undissolved material passes through the filter, so the undissolved material is sufficiently removed. It is not easy. Further, the filter is likely to be clogged during the filter treatment, and the removal efficiency of undissolved substances is significantly reduced. Therefore, in order to maintain the productivity of battery electrodes, a great deal of labor is required for filter management during operation.
  • the problem to be solved by the present invention is to prevent defects such as streaks and pinholes that can occur in the resulting electrode when used as a binder for an electrode of a non-aqueous electrolyte secondary battery. It is to provide methylcellulose or a salt thereof.
  • the present invention provides the following [1] to [12].
  • [1] Carboxymethylcellulose or a salt thereof used as a binder for an electrode of a nonaqueous electrolyte secondary battery, wherein 2 liters of a 0.3% by weight aqueous solution of the carboxymethylcellulose or a salt thereof having a dry mass B is prepared. -All the filtration with a 250 mesh filter under a reduced pressure condition of 200 mmHg, and when the dry mass A of the residue on the filter after filtration is measured, the ratio of the dry mass A to the dry mass B is less than 50 ppm. Carboxymethyl cellulose or a salt thereof.
  • a non-aqueous electrolyte secondary wherein carboxymethyl cellulose or a salt thereof is mechanically pulverized to obtain a pulverized carboxymethyl cellulose or salt thereof, and the carboxymethyl cellulose or a salt thereof is dissolved in water.
  • a method for producing an aqueous solution for a binder for battery electrodes [6] The manufacturing method according to [5], wherein the pulverization process is a dry pulverization process or a wet pulverization process.
  • the pulverized product of carboxymethylcellulose or a salt thereof has a volume total 100% particle diameter measured by a laser diffraction / scattering particle size distribution meter using methanol as a dispersion medium, and is less than 50 ⁇ m, [5] or [ 6].
  • a pulverized product of carboxymethylcellulose or a salt thereof is prepared by preparing 2 liters of a 0.3% by weight aqueous solution of the pulverized product of carboxymethylcellulose or a salt thereof having a dry weight of B under a reduced pressure condition of ⁇ 200 mmHg.
  • a nonaqueous electrolyte secondary battery comprising the electrode according to [11].
  • the carboxymethyl cellulose of the present invention or a salt thereof is suitably used for the production of a non-aqueous electrolyte secondary battery electrode. That is, by adding carboxymethylcellulose as a binder to an electrode composition such as an electrode active material slurry (or paste), the number of coarse undissolved substances derived from carboxymethylcellulose and its salts in the electrode composition is reduced. Can do. As a result, the generation of defects such as streaks and peeling on the electrode surface and pinholes is suppressed. Therefore, if the carboxymethyl cellulose of the present invention or a salt thereof is used, it is possible to omit the filter filtration for removing the undissolved material, which has been performed when forming the electrode from the electrode active material slurry (paste). it can. Accordingly, it is possible to prevent the productivity of the electrode from being lowered, and the labor for filter management is also reduced.
  • an electrode composition such as an electrode active material slurry (or paste)
  • carboxymethyl cellulose or a salt thereof has a structure in which a hydroxyl group in a glucose residue constituting cellulose is substituted with a carboxymethyl ether group.
  • Carboxymethylcellulose may be in the form of a salt.
  • the salt of carboxymethyl cellulose include metal salts such as carboxymethyl cellulose sodium salt.
  • cellulose means a polysaccharide having a structure in which D-glucopyranose (also simply referred to as “glucose residue” or “anhydroglucose”) is linked by ⁇ , 1-4 bonds.
  • D-glucopyranose also simply referred to as “glucose residue” or “anhydroglucose”
  • Cellulose is generally classified into natural cellulose, regenerated cellulose, fine cellulose, microcrystalline cellulose excluding non-crystalline regions, and the like, based on the origin, production method, and the like.
  • Examples of natural cellulose include bleached pulp or unbleached pulp (bleached wood pulp or unbleached wood pulp); linters, refined linters; cellulose produced by microorganisms such as acetic acid bacteria, and the like.
  • the raw material of bleached pulp or unbleached pulp is not specifically limited, For example, wood, cotton, straw, bamboo, etc. are mentioned.
  • the manufacturing method of bleached pulp or unbleached pulp is not specifically limited, either, a mechanical method, a chemical method, or the method which combined two in the middle may be sufficient.
  • Examples of bleached pulp or unbleached pulp classified by the production method include mechanical pulp, chemical pulp, groundwood pulp, sulfite pulp, and kraft pulp.
  • dissolving pulp may be used in addition to papermaking pulp. Dissolving pulp is chemically refined pulp, which is mainly used by dissolving in chemicals, and is a main raw material for artificial fibers, cellophane and the like.
  • regenerated cellulose examples include those obtained by dissolving cellulose in some solvent such as a copper ammonia solution, a cellulose xanthate solution, and a morpholine derivative and spinning again.
  • the fine cellulose is obtained by depolymerizing a cellulose-based material such as the above natural cellulose or regenerated cellulose (for example, acid hydrolysis, alkali hydrolysis, enzyme decomposition, explosion treatment, vibration ball mill treatment, etc.). And those obtained by mechanically treating the cellulose-based material.
  • a cellulose-based material such as the above natural cellulose or regenerated cellulose (for example, acid hydrolysis, alkali hydrolysis, enzyme decomposition, explosion treatment, vibration ball mill treatment, etc.). And those obtained by mechanically treating the cellulose-based material.
  • Carboxymethylcellulose or a salt thereof is the dry mass of the residue on the filter when 2 liters of an aqueous solution of 0.3% by weight of the carboxymethylcellulose or a salt thereof is completely filtered through a 250 mesh filter under a reduced pressure of -200 mmHg.
  • the ratio of mass A to mass B is less than 50 ppm, where A is the mass of carboxymethyl cellulose or a salt thereof dissolved in the aqueous solution is mass B.
  • A is the mass of carboxymethyl cellulose or a salt thereof dissolved in the aqueous solution is mass B.
  • the lower limit of the ratio of the mass A to the mass B is not particularly limited, and the lower the better.
  • Carboxymethylcellulose or a salt thereof is preferably water-soluble. That is, carboxymethyl cellulose or a salt thereof preferably has a degree of carboxymethyl substitution per anhydroglucose unit of 0.45 or more, and more preferably 0.6 or more. If the degree of carboxymethyl substitution is less than 0.45, there is a possibility that dissolution in water may not be sufficient.
  • the anhydroglucose unit means individual anhydroglucose (glucose residue) constituting cellulose.
  • the degree of carboxymethyl substitution (also called degree of etherification) is the ratio of those substituted with carboxymethyl ether groups (—OCH 2 COOH) out of hydroxyl groups (—OH) in glucose residues constituting cellulose. Show.
  • the degree of carboxymethyl substitution may be abbreviated as DS.
  • the upper limit of the degree of carboxymethyl substitution per anhydroglucose unit of carboxymethylcellulose or a salt thereof is not particularly limited, but is preferably 2.0 or less, more preferably 1.5 or less, and 1.0 or less. Even more preferably.
  • the degree of carboxymethyl substitution can be confirmed by measuring the amount of base such as sodium hydroxide required to neutralize carboxymethylcellulose in the sample.
  • base such as sodium hydroxide
  • carboxymethyl ether group of carboxymethyl cellulose or a salt thereof is in the form of a salt, it is previously converted to carboxymethyl cellulose before measurement.
  • an indicator such as back titration using a base and an acid, phenolphthalein and the like can be appropriately combined.
  • the carboxymethyl cellulose or a salt thereof preferably has a viscosity of 1,000 to 20,000 mPa ⁇ s as measured by a B-type viscometer at 25 ° C., preferably 1,500 to 15, More preferred is 000 mPa ⁇ s, and even more preferred is 2,000 to 10,000 mPa ⁇ s.
  • the production method of carboxymethyl cellulose or a salt thereof is not limited, and a known production method of carboxymethyl cellulose or a salt thereof can be applied. That is, after the cellulose as a raw material is treated with a mercerizing agent (alkali) to prepare mercerized cellulose (alkali cellulose), carboxymethyl cellulose or a salt thereof according to the present invention is added by an etherifying agent and subjected to an etherification reaction. Can be manufactured.
  • a mercerizing agent alkali
  • any cellulose can be used as long as it is the above-mentioned cellulose, but those having high cellulose purity are preferable, and dissolved pulp and linter are particularly preferable. By using these, highly pure carboxymethylcellulose or a salt thereof can be obtained.
  • alkali metal hydroxide salts such as sodium hydroxide and potassium hydroxide can be used.
  • etherifying agent monochloroacetic acid, sodium monochloroacetate or the like can be used.
  • the molar ratio of mercerizing agent to etherifying agent in the production method of a general water-soluble carboxymethyl cellulose is generally 2.00 to 2.45 when monochloroacetic acid is used as the etherifying agent. .
  • the reason is that if it is less than 2.00, the etherification reaction may not be performed sufficiently, so that unreacted monochloroacetic acid may remain and waste may occur, and it exceeds 2.45. And an excessive mercerizing agent and monochloroacetic acid may cause a side reaction to generate an alkali metal glycolate, which may be uneconomical.
  • carboxymethyl cellulose or a salt thereof may be a commercially available one as it is or after treatment as necessary.
  • commercially available products include “Sunrose” (a sodium salt of carboxymethyl cellulose) manufactured by Nippon Paper Chemicals Co., Ltd.
  • the carboxymethyl cellulose or the salt thereof may be the carboxymethyl cellulose or the salt thereof as described above, but may be a pulverized product (pulverized product).
  • the pulverization process is a mechanical pulverization process usually performed using a machine.
  • Examples of the method for pulverizing carboxymethyl cellulose or a salt thereof include both a dry pulverization method in which the carboxymethyl cellulose or a salt thereof is processed in a powder state and a wet pulverization method in which the carboxymethyl cellulose or a salt thereof is dispersed or dissolved in a liquid. Any of these may be selected in the present invention.
  • Examples of the pulverizer that can be used for mechanical pulverization in the present invention include the following dry pulverizers and wet pulverizers.
  • dry mills examples include cutting mills, impact mills, airflow mills, and media mills. These can be used alone or in combination, and can be further processed in several stages with the same model, but an airflow mill is preferred.
  • mesh mill manufactured by Horai Co., Ltd.
  • Atoms manufactured by Yamamoto Hyakuma Mfg. Co., Ltd.
  • knife mill manufactured by Pulman
  • granulator manufactured by Herbolt
  • rotary cutter mill manufactured by Machine Works.
  • Pulperizer manufactured by Hosokawa Micron Corporation
  • Fine Ipact Mill manufactured by Hosokawa Micron Corporation
  • Super Micron Mill manufactured by Hosokawa Micron Corporation
  • Sample Mill manufactured by Seisin Co., Ltd.
  • Bantam Mill examples thereof include Seisin Co., Ltd., Atomizer (Seisin Co., Ltd.), Tornado Mill (Nikkiso Co., Ltd.), Turbo Mill (Turbo Industry Co., Ltd.), Bevel Impactor (Aikawa Tekko Co., Ltd.), and the like.
  • CGS type jet mill manufactured by Mitsui Mining Co., Ltd.
  • jet mill manufactured by Sanjo Industry Co., Ltd.
  • Ebara Jet Micronizer manufactured by Ebara Corporation
  • selenium mirror manufactured by Mesuko Sangyo
  • supersonic jet mill manufactured by Nippon Pneumatic Industry Co., Ltd.
  • Examples of the medium mill include a vibration ball mill.
  • wet pulverizer examples include a mass collider (manufactured by Masuko Sangyo Co., Ltd.), a high-pressure homogenizer (manufactured by Sanmaru Machinery Co., Ltd.), and a media mill.
  • the medium mill examples include a bead mill (manufactured by IMEX Co., Ltd.).
  • the carboxymethyl cellulose or a salt thereof preferably has a smaller particle size. That is, the value of 100% cumulative volume particle diameter measured by a laser diffraction / scattering particle size distribution meter using methanol as a dispersant (hereinafter, sometimes referred to as “maximum particle diameter” in this specification) is less than 50 ⁇ m. It is desirable that it is less than 45 ⁇ m. When the maximum particle size of carboxymethyl cellulose or a salt thereof is 50 ⁇ m or more, undissolved substances in the aqueous solution of carboxymethyl cellulose or a salt thereof tend to increase.
  • carboxymethylcellulose or a salt thereof may be subjected to a granulation treatment. Thereby, handling becomes easy.
  • the maximum particle size of carboxymethylcellulose or a salt thereof may be 50 ⁇ m or more by performing the granulation treatment, the maximum particle size of carboxymethylcellulose or a salt thereof before the granulation treatment is preferably less than 50 ⁇ m.
  • the lower limit of the maximum particle size is not particularly limited. The smaller it is, the better.
  • the 50% cumulative volume particle size (hereinafter referred to as the average particle size) of carboxymethylcellulose or a salt thereof measured with a laser diffraction / scattering particle size distribution meter using methanol as a dispersion medium is usually 30 ⁇ m or less, and 20 ⁇ m or less. It is preferable that it is 15 micrometers or less.
  • the lower limit of the average particle size is not particularly limited, but is usually 5 ⁇ m or more, preferably 10 ⁇ m or more, and more preferably 12 ⁇ m or more.
  • carboxymethylcellulose or a salt thereof can be classified based on the particle size (preferably the maximum particle size).
  • Classification means a process of sieving the particles to be classified into those having a size larger than a certain particle size and those having a smaller particle size.
  • the classification is preferably performed based on whether the maximum particle size is less than 50 ⁇ m or 50 ⁇ m or more. Thereby, carboxymethyl cellulose having a maximum particle size of less than 50 ⁇ m or a salt thereof can be selectively collected.
  • the above classification time is not particularly limited, and may be provided in the middle of the pulverizing treatment or after the completion of the pulverizing treatment. Good.
  • the classification method may be a known method such as a method using a dry classifier or a wet classifier.
  • the dry classifier include a cyclone classifier, a DS separator, a turbo classifier, a micro separator, and an air separator.
  • examples of the wet classifier include a hydrocyclone classifier, a centrifugal settling machine, and a hydrosilator. Of these, a dry classifier is preferable, and a cyclone classifier is more preferable.
  • Nonaqueous electrolyte secondary battery In the present invention, carboxymethylcellulose or a salt thereof has preferable properties as a binder for electrodes of a nonaqueous electrolyte secondary battery. Usually, an aqueous solution containing carboxymethyl cellulose or a salt thereof is used as a binder for electrodes of a non-aqueous electrolyte secondary battery.
  • the concentration of carboxymethyl cellulose or a salt thereof in an aqueous solution of carboxymethyl cellulose or a salt thereof is usually 0.1 to 10% by mass, preferably 0.2 to 4% by mass, and more preferably 0.5 to 2% by mass. .
  • the production conditions for the aqueous solution of carboxymethyl cellulose or a salt thereof are not particularly limited.
  • it is prepared by adding carboxymethyl cellulose or a salt thereof to water (for example, distilled water, purified water, tap water, etc.) and dissolving it by stirring as necessary.
  • carboxymethyl cellulose or a salt thereof can constitute an electrode composition together with an electrode active material as a binder for an electrode.
  • the property of the electrode composition is not particularly limited, and may be either a slurry or a paste.
  • the content of carboxymethylcellulose or a salt thereof in the electrode composition is preferably 0.1 to 4.0% by mass with respect to the entire electrode composition.
  • the electrode composition may contain various components depending on whether the electrode formed from the composition is a negative electrode or a positive electrode.
  • a negative electrode active material is usually included.
  • the negative electrode active material include graphite (natural graphite, artificial graphite), coke, carbon fiber and other graphite materials; elements capable of forming an alloy with lithium, such as Al, Si, Sn, Ag, An element such as Bi, Mg, Zn, In, Ge, Pb, Ti; a compound containing an element capable of forming an alloy with lithium; an element capable of forming an alloy with lithium; and the compound; A composite with carbon and / or the graphite material; a nitride containing lithium can be used.
  • graphite materials are preferred, and graphite is more preferred.
  • a positive electrode active material is usually included.
  • a LiMe x O y (Me means a transition metal containing at least one of Ni, Co and Mn. X and y mean arbitrary numbers) based positive electrode active materials are preferable.
  • LiMe x O y based positive electrode active material is not particularly limited, LiMn 2 O 4 system, LiCoO 2 system, the positive electrode active material LiNiO 2 based preferred.
  • LiMn 2 O 4 -based, LiCoO 2 -based, and LiNiO 2 -based positive electrode active materials include compounds in which various metal elements are substituted with LiMnO 2 , LiMn 2 O 4 , LiCoO 2 , and LiNiO 2 as main skeletons. Is done. LiMn 2 O 4 -based, LiCoO 2 -based, and LiNiO 2 -based positive electrode active materials are excellent in performance as positive electrode active materials, such as excellent diffusion performance of electrons and lithium ions, and thus have high charge / discharge efficiency and good cycle characteristics. A lithium ion secondary battery having Of these, a LiCoO 2 positive electrode active material is preferable, and LiCoO 2 is more preferable. On the other hand, from the viewpoint of low material cost, it is preferable to use a LiMn 2 O 4 positive electrode active material.
  • the content of the active material in the electrode composition is usually 90 to 99% by mass, preferably 91 to 99% by mass, more preferably 92 to 99% by mass.
  • the electrode composition preferably has a conductive material.
  • the electrode composition has a conductive material, the characteristics of the manufactured positive electrode are improved.
  • the conductive material can ensure the electrical conductivity of the positive electrode. Examples of the conductive material include those obtained by mixing one or more carbon materials such as carbon black, acetylene black, and graphite. Of these, carbon black is preferred.
  • the electrode composition may contain a binder other than the aqueous solution of carboxymethyl cellulose or a salt thereof.
  • the binder in the case of the electrode composition for the negative electrode include synthetic rubber binders.
  • synthetic rubber-based binder one or more selected from the group consisting of styrene butadiene rubber (SBR), nitrile butadiene rubber, methyl methacrylate butadiene rubber, chloroprene rubber, carboxy-modified styrene butadiene rubber and latex of these synthetic rubbers are used. it can. Of these, styrene butadiene rubber (SBR) is preferred.
  • binder in the case of the electrode composition for the positive electrode include polytetrafluoroethylene (PTFE) in addition to the synthetic rubber-based binder mentioned as the binder for the negative electrode.
  • PTFE polytetrafluoroethylene
  • PTFE polytetrafluoroethylene
  • the content of the binder in the electrode composition is usually 1 to 10% by mass, preferably 1 to 6% by mass, more preferably 1 to 2% by mass.
  • the production conditions for the electrode composition are not particularly limited.
  • the other component which comprises an electrode composition is added to the aqueous solution of carboxymethylcellulose or its salt, and it mixes, stirring as needed.
  • the properties of the electrode composition are not particularly limited. For example, liquid form, paste form, slurry form, etc. are mentioned, and any of them may be used.
  • the electrode composition is used for manufacturing an electrode for a non-aqueous electrolyte secondary battery.
  • the electrode for a nonaqueous electrolyte secondary battery may be produced by a method of laminating the electrode composition on a current collecting base material (current collector).
  • the lamination method include blade coating, bar coating, and die coating, and blade coating is preferable.
  • blade coating a method of casting an electrode composition on a current collecting substrate using a coating device such as a doctor blade is exemplified.
  • the lamination method is not limited to the above specific example, and the electrode composition is ejected and applied from an extrusion type liquid injector having a slot nozzle onto a current collecting base material that is wound around a backup roll and travels.
  • blade coating after casting, if necessary, drying by heating (temperature is, for example, 80 to 120 ° C., heating time is, for example, 4 to 12 hours) or the like, and pressurization by a roll press or the like can be performed.
  • heating temperature is, for example, 80 to 120 ° C., heating time is, for example, 4 to 12 hours
  • pressurization by a roll press or the like can be performed.
  • any electrical conductor that does not cause a fatal chemical change in the constructed battery can be used.
  • the current collecting base material for the negative electrode active material stainless steel, nickel, copper, titanium, carbon, copper, or a material obtained by attaching carbon, nickel, titanium or silver to the surface of the stainless steel can be used. . Of these, copper or copper alloys are preferred, but copper is most preferred.
  • Examples of the material of the current collecting base material for the positive electrode include metals such as aluminum and stainless steel, and aluminum is preferable.
  • As the shape of the current collecting substrate a net, a punched metal, a foam metal, a foil processed into a plate shape, or the like can be used, and a foil processed into a plate shape is preferable.
  • the shape of the electrode for the nonaqueous electrolyte secondary battery formed by the electrode composition is not particularly limited, but is usually a sheet shape.
  • the thickness in the case of a sheet-like electrode plate depends on the composition of the composition, production conditions, etc. Although it is difficult, it is usually 30 to 150 ⁇ m.
  • the electrode formed from the composition is used as an electrode of a nonaqueous electrolyte secondary battery. That is, this invention also provides a nonaqueous electrolyte secondary battery provided with the electrode formed with the said composition.
  • the nonaqueous electrolyte secondary battery may have a structure in which positive electrodes and negative electrodes are alternately stacked via separators and wound many times.
  • the separator is usually impregnated with a non-aqueous electrolyte.
  • a negative electrode and / or positive electrode a negative electrode and / or a positive electrode formed of the above-described electrode composition can be used.
  • Such a non-aqueous electrolyte secondary battery uses carboxymethyl cellulose or a salt thereof having excellent solubility, and can eliminate steps such as filtration by a filter, so that it is excellent in productivity, and the initial irreversible capacity is remarkably improved, and high battery characteristics. Can be used.
  • each index is measured by the following method.
  • the maximum particle size and the average particle size of carboxymethylcellulose were measured using a laser diffraction / scattering particle size distribution analyzer (Microtrac Model-9220-SPA, manufactured by Nikkiso Co., Ltd.).
  • the maximum particle diameter is a value of a volume type 100% particle diameter
  • the average particle diameter is a value of a 50% cumulative volume particle diameter.
  • the sample was dispersed in methanol and then subjected to ultrasonic treatment for at least 1 minute.
  • Example 1 The graphite powder was weighed by 97% by mass, the styrene butadiene rubber (SBR) dispersion as a binder was 1.5% by mass in terms of SBR, and the carboxymethyl cellulose pulverized product prepared by Production Example 1 was weighed by 1.5% by mass. First, distilled water was added and dissolved by stirring so that the carboxymethyl cellulose became a 1% by mass aqueous solution. Next, graphite powder and styrene butadiene rubber (SBR) weighed in advance were mixed with the aqueous carboxymethyl cellulose solution, and ceramic balls were added thereto, which was then kneaded well for 10 hours in a plastic bottle.
  • SBR styrene butadiene rubber
  • the mixture was cast on a copper foil having a width of 15 cm ⁇ length of 30 cm and a thickness of 12 ⁇ m with a doctor blade at intervals of 150 ⁇ m to obtain a negative electrode. This was placed in an oven at about 90 ° C. and dried for about 10 hours. This electrode plate was further roll-pressed to produce a negative electrode plate (sheet-like negative electrode) having a thickness of 70 ⁇ m (not including the copper foil, the thickness of the composition layer). The surface properties of the obtained negative electrode plate were visually observed. The case where no occurrence of streak or pinhole was observed was evaluated as ⁇ , and the case where the appearance defect due to streak or pinhole was generated was evaluated as x.
  • Example 2 Using the carboxymethylcellulose pulverized product obtained in Production Example 2, the same operation as in Example 1 was performed.
  • Example 3 97% by mass of graphite powder, 1.5% by mass of styrene butadiene rubber (SBR) dispersion as a binder in terms of SBR, 1.5% by mass of carboxymethyl cellulose crushed aqueous solution prepared in Production Example 3 in terms of carboxymethyl cellulose Each was weighed. Graphite powder and styrene butadiene rubber (SBR) weighed in advance were mixed into the carboxymethylcellulose pulverized aqueous solution, and ceramic balls were added thereto, which was then kneaded well for 10 hours in a plastic bottle. Thereafter, the same operation as in Example 1 was performed.
  • SBR styrene butadiene rubber
  • Example 4 In order to improve 94% by mass of LiCoO 2 , 2 % by mass of polytetrafluoroethylene (PTFE) dispersion as a binder in terms of PTFE, 2% by mass of the carboxymethyl cellulose pulverized product prepared in Production Example 1, and electron transfer 2% by mass of the conductive material (carbon black) was weighed. First, distilled water was added to a carboxymethylcellulose pulverized product so as to be a 1% by mass aqueous solution, and the mixture was stirred and dissolved.
  • PTFE polytetrafluoroethylene
  • LiCoO 2 , polytetrafluoroethylene (PTFE), carbon conductive material and ceramic balls weighed in advance were added to the aqueous carboxymethylcellulose solution, and the mixture was put into a plastic bottle and kneaded well for 10 hours.
  • the mixture was cast on an aluminum foil having a width of 15 cm ⁇ length of 30 cm and a thickness of 15 ⁇ m with a doctor blade at intervals of 150 ⁇ m to obtain a positive electrode plate.
  • the surface properties of the obtained negative electrode plate were visually observed. The case where no occurrence of streak or pinhole was observed was evaluated as ⁇ , and the case where the appearance defect due to streak or pinhole was generated was evaluated as x.
  • Example 5 Using the carboxymethylcellulose pulverized product prepared in Production Example 2, the same operation as in Example 4 was performed.
  • Example 6 94% by mass of LiCoO 2 , 2 % by mass of polytetrafluoroethylene (PTFE) dispersion as a binder in terms of PTEF, 2% by mass of the aqueous carboxymethyl cellulose solution prepared in Production Example 3 in terms of carboxymethyl cellulose, and electrons 2% by mass of a conductive material (carbon black) for improving the movement of each was weighed.
  • LiCarO 2 , polytetrafluoroethylene (PTEF), and carbon conductive aid which have been weighed in advance, are mixed into the carboxymethylcellulose pulverized aqueous solution, and ceramic balls are added thereto, which is then kneaded well for 10 hours in a plastic bottle. It was. Thereafter, the same operation as in Example 4 was performed.
  • Example 1 Except for using commercially available carboxymethylcellulose (B-type viscosity at 25 ° C. of 1% by weight aqueous solution of 3500 mPa ⁇ s, carboxymethyl substitution degree 0.87, trade name “Sunrose” manufactured by Nippon Paper Chemicals Co., Ltd.) The same operation as in Example 1 was performed. The said mass ratio of commercially available carboxymethylcellulose was 250 ppm.
  • carboxymethylcellulose B-type viscosity at 25 ° C. of 1% by weight aqueous solution of 3500 mPa ⁇ s, carboxymethyl substitution degree 0.87, trade name “Sunrose” manufactured by Nippon Paper Chemicals Co., Ltd.
  • Table 1 shows the physical properties of carboxymethyl cellulose used in Examples and Comparative Examples, and the surface property evaluation results of the electrode plates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明は、非水電解質二次電池の電極の結合剤として用いた場合に、得られる電極において生じ得る、スジ、ピンホールといった欠陥を未然に防止しできるようなカルボキシメチルセルロースまたはその塩を提供する。 本発明は、乾燥質量Bの該カルボキシメチルセルロースまたはその塩の0.3質量%水溶液2リットルを調製して-200mmHgの減圧条件にて250メッシュのフィルターですべて濾過し、濾過後の前記フィルター上の残渣の乾燥質量Aを測定した際に、前記乾燥質量Bに対する乾燥質量Aの比率が50ppm未満である、カルボキシメチルセルロース又はその塩、及びその用途を提供する。

Description

非水電解質二次電池の電極用カルボキシメチルセルロースまたはその塩、及びその水溶液
 本発明は、非水電解質二次電池の電極において、電極表面のスジやピンホールといった欠陥の発生を未然に防止できる結合剤として有用なカルボキシメチルセルロースまたはその塩、及びその水溶液に関する。
 近年、電子機器、特に携帯電話、PDA(personal digital assistant)、ノート型パソコンなどの携帯機器が、小型化、軽量化、薄型化、高性能化し、携帯機器の普及が進んでいる。このような携帯機器の利用範囲の多様化に伴い、これらを駆動させる電池が非常に重要な部品となっている。電池のうち、高いエネルギー密度を有し高容量である、リチウムイオン二次電池に代表される非水電解質二次電池が広く利用されている。
 通常、非水電解質二次電池は以下のようにして作製される。すなわち、リチウムイオンを吸蔵・放出することが可能な炭素材料などからなる負極活物質を含有する負極と、リチウム含有遷移金属複合酸化物(例えばLiCoO2、LiNiO2、LiMn24など)からなる正極活物質を含有する正極が、集電基材(集電体)としての金属箔の表面にそれぞれシート状に形成され、シート状正極およびシート状負極を得る。そしてシート状正極及びシート状負極が、同じくシート状に形成されたセパレーターを介して、巻回あるいは積層され、ケース内に収納される。シート状正極およびシート状負極は、集電基材(集電体)となる金属箔と、その表面に形成される、活物質を含む合剤層を備える構造であり、負極活物質スラリー(あるいはペースト)または正極活物質スラリー(あるいはペースト)が集電材上に塗布、乾燥され形成され得る。
 負極活物質スラリー(ペースト)は、リチウムイオンを吸蔵・放出することが可能な炭素材料などからなる負極活物質のほかに結合剤(バインダー)を含む。結合剤として、スチレン/ブタジエンラテックス(SBR)を主成分とする負極用の結合剤が特許文献1(特開平5-74461号公報)に開示されている。
 特許文献1によると、水溶性増粘剤としてのカルボキシメチルセルロースを水に溶解させて水溶液を調製し、これにSBRと負極活物質を混合してスラリーが製造される。当該スラリーは塗工液として基材上に塗布、乾燥されることによって、シート状負極が形成される。
 一方、非水電解質二次電池の正極の製造では、溶剤には従来N-メチル-2-ピロリドン(NMP)等の有機系溶剤が用いられてきた。しかし、取り扱いに要するコストの低減や排出時の環境負荷への影響から、近年、溶剤として水が使用されてきている。
 正極活物質スラリー(ペースト)は、正極活物質としてのリチウム含有遷移金属複合酸化物(例えばLiCoO2、LiNiO2、LiMn24など)、導電材としてのカーボン等のほかに、結合剤を含む。結合剤としては、カルボキシメチルセルロースなどの、1%水溶液における粘度が4000mPa・s以上のセルロースが特許文献2(特開2003-157847号公報)に記載されている。特許文献2には、カルボキシメチルセルロースを、導電材やポリテトラフルオロエチレン(PTFE)などとともに純水に投入し、活物質ペーストを調製することが記載されている。
 上記の負極活物質スラリー(ペースト)、あるいは正極活物質スラリー(ペースト)を集電基材に塗布する方法としては、塗布されるべき集電基材の表面に対して所定の間隔を隔てたドクターブレードにより、集電基材との間隔に見合った量だけスラリーが層状に引き出されることでシート状極板を形成する方法(例えば特許文献3(特開平4-242071号公報))で製造される。
 また、別の方法として、バックアップロールに巻回して走行する集電基材上に、スロットノズルを有するエクストルージョン型注液器より電極材料塗布液を吐出させ塗布する方法(例えば特許文献4(特開平7-65816号公報))等が提案されている。
特開平5-74461号公報 特開2003-157847号公報 特開平4-242071号公報 特開平7-65816号公報
 ところが、結合剤としてカルボキシメチルセルロースを含み、溶剤として水を用いて調製される負極活物質スラリー(ペースト)、あるいは正極活物質用スラリー(ペースト)の場合、カルボキシメチルセルロースの未溶解物がスラリー中に残留することがあり、このような未溶解物の残留したスラリー(ペースト)を集電基材上に積層して電極を製造すると、塗布されたスラリーの表面にスジ状の欠陥(ストリーク)を生じてしまう。
 上述のスジ状欠陥(ストリーク)は、スラリー(ペースト)の集電基材上への積層を、ブレード塗工、バー塗工、ダイ塗工などの塗工方法により行う際に問題になることが多い。すなわち、これらの塗工方法において用いられる塗工装置と集電基材との隙間に、カルボキシメチルセルロースの未溶解物が詰まることによってスジ状欠陥(ストリーク)が発生しやすい。特に、スラリー(あるいはペースト)を薄く塗布する目的で前記隙間を狭くした場合により発生しやすくなる。近年、電池の高出力化の為に、集電基材上に形成される合剤層を薄くし、合剤層の表面積を大きくしたシート状極板が要望されるようになっている。そのため、特にスラリーを薄く塗布する場合に、スジ状の欠陥を抑制することが望まれるようになった。
 また、前記未溶解物が前記隙間を通過して集電基材上に塗布された場合、極板の圧縮工程で塗布された未溶解物の部位を中心とした剥がれが生じやすくなると共に、塗布後の乾燥工程において未溶解物が収縮し、空隙(ボイド)が発生しやすくなる。このような剥がれや空隙は、ピンホール等の発生原因となり得る。
 スラリー(あるいはペースト)を集電基材に塗布する前に、フィルター処理等を行うことで前記未溶解物をある程度除去できることは知られている。しかし、当該未溶解物は軟らかいポリマーである場合が多く、フィルター処理の際に加圧(背圧)されると、これらの未溶解物はフィルターを通過するため、未溶解物を十分に除去することは容易ではない。また、フィルター処理の際、フィルターの目詰まりが生じやすく、未溶解物の除去効率が著しく低下してしまう。そのため電池電極の生産性を維持するには、操業中のフィルター管理には多大な労力が要求される。
 本発明が解決しようとする課題は、非水電解質二次電池の電極の結合剤として用いた場合に、得られる電極において生じ得る、スジ(ストリーク)、ピンホールといった欠陥を未然に防止できる、カルボキシメチルセルロースまたはその塩を提供することである。
 鋭意検討の結果、カルボキシメチルセルロースまたはその塩が、その乾燥質量Bを水に溶かして0.3質量%水溶液2リットルを調製し、これを-200mmHgの減圧条件にて250メッシュのフィルターですべて濾過し、濾過後の前記フィルター上の残渣の乾燥質量Aを測定した際に、前記乾燥質量Bに対する乾燥質量Aの比率が50ppm未満である場合に、この水溶液を含む電極組成物により形成された非水電解質二次電池用電極を作成すると、電極表面のストリークやピンホール等の発生を抑制でき、電池電極の生産性低下を防ぐことが可能となることを見出した。
 すなわち本発明は、以下の〔1〕~〔12〕を提供するものである。
〔1〕非水電解質二次電池の電極用結合剤として使用されるカルボキシメチルセルロース又はその塩であって、乾燥質量Bの該カルボキシメチルセルロースまたはその塩の0.3質量%水溶液2リットルを調製して-200mmHgの減圧条件にて250メッシュのフィルターですべて濾過し、濾過後の前記フィルター上の残渣の乾燥質量Aを測定した際に、前記乾燥質量Bに対する乾燥質量Aの比率が50ppm未満である、カルボキシメチルセルロース又はその塩。
〔2〕カルボキシメチルセルロースまたはその塩の機械的な粉砕処理物である、上記〔1〕に記載のカルボキシメチルセルロース又はその塩。
〔3〕メタノールを分散媒としてレーザー回折・散乱式粒度分布計で測定される体積累計100%粒子径が、50μm未満である、上記〔1〕または〔2〕に記載のカルボキシメチルセルロース又はその塩。
〔4〕上記〔1〕~〔3〕のいずれか1項に記載されるカルボキシメチルセルロース又はその塩を含む、非水電解質二次電池の電極用結合剤用の水溶液。
〔5〕カルボキシメチルセルロース又はその塩を機械的に粉砕処理してカルボキシメチルセルロース又はその塩の粉砕処理物を得て、前記カルボキシメチルセルロース又はその塩の粉砕処理物を水に溶解する、非水電解質二次電池の電極用結合剤用の水溶液の製造方法。
〔6〕前記粉砕処理は、乾式粉砕処理又は湿式粉砕処理である、上記〔5〕に記載の製造方法。
〔7〕前記カルボキシメチルセルロース又はその塩の粉砕処理物は、メタノールを分散媒としてレーザー回折・散乱式粒度分布計で測定される体積累計100%粒子径が、50μm未満である、〔5〕または〔6〕に記載の製造方法。
〔8〕前記カルボキシメチルセルロース又はその塩の粉砕処理物は、乾燥質量Bの前記カルボキシメチルセルロース又はその塩の粉砕処理物の0.3質量%水溶液2リットルを調製して-200mmHgの減圧条件にて250メッシュのフィルターですべて濾過し、濾過後の前記フィルター上の残渣の乾燥質量Aを測定した際に、前記乾燥質量Bに対する乾燥質量Aの比率が50ppm未満である、上記〔5〕~〔7〕のいずれか1項に記載の製造方法。
〔9〕上記〔4〕に記載の水溶液、あるいは、上記〔5〕~〔8〕のいずれか一項に記載の水溶液を含む、非水電解質二次電池用電極組成物。
〔10〕上記〔9〕記載の電極組成物により形成される、非水電解質二次電池用電極。
〔11〕上記〔9〕記載の電極組成物を集電基材上に積層する、非水電解質二次電池用電極の製造方法。
〔12〕上記〔11〕に記載の電極を備える、非水電解質二次電池。
 本発明のカルボキシメチルセルロースまたはその塩は、非水電解質二次電池用電極の製造に好適に使用される。すなわち、カルボキシメチルセルロースを、結合剤として電極活物質スラリー(またはペースト)などの電極組成物に添加することにより、電極組成物中のカルボキシメチルセルロースおよびその塩に由来した粗大な未溶解物の数を低減させることができる。その結果、電極表面のスジや剥がれ、ピンホール等の欠陥の発生が抑制される。したがって、本発明のカルボキシメチルセルロースまたはその塩を用いれば、電極活物質スラリー(ペースト)から電極を形成する際に行われていた、前記未溶解物の除去を目的とするフィルター濾過を省略することができる。よって、電極の生産性の低下を防止することができ、また、フィルター管理の労力も低減される。
[カルボキシメチルセルロース]
 本発明において、カルボキシメチルセルロース又はその塩は、セルロースを構成するグルコース残基中の水酸基がカルボキシメチルエーテル基に置換された構造を持つ。カルボキシメチルセルロースは、塩の形態であってもよい。カルボキシメチルセルロースの塩としては、例えばカルボキシメチルセルロースナトリウム塩などの金属塩などを挙げ得る。
 本発明においてセルロースとは、D-グルコピラノース(単に「グルコース残基」、「無水グルコース」とも言う。)がβ,1-4結合で連なった構造の多糖を意味する。セルロースは、一般に起源、製法等から、天然セルロース、再生セルロース、微細セルロース、非結晶領域を除いた微結晶セルロース等に分類される。
 天然セルロースとしては、晒パルプまたは未晒パルプ(晒木材パルプまたは未晒木材パルプ);リンター、精製リンター;酢酸菌等の微生物によって生産されるセルロース、等が例示される。晒パルプ又は未晒パルプの原料は特に限定されず、例えば、木材、木綿、わら、竹等が挙げられる。また、晒パルプ又は未晒パルプの製造方法も特に限定されず、機械的方法、化学的方法、あるいはその中間で二つを組み合わせた方法でもよい。製造方法により分類される晒パルプまたは未晒パルプとしては例えば、メカニカルパルプ、ケミカルパルプ、砕木パルプ、亜硫酸パルプ、クラフトパルプ等が挙げられる。さらに、製紙用パルプの他に溶解パルプを用いてもよい。溶解パルプとは、化学的に精製されたパルプであり、主として薬品に溶解して使用され、人造繊維、セロハンなどの主原料となる。
 再生セルロースとしては、セルロースを銅アンモニア溶液、セルロースザンテート溶液、モルフォリン誘導体など何らかの溶媒に溶解し、改めて紡糸されたものが例示される。
 微細セルロースとしては、上記天然セルロースや再生セルロースをはじめとする、セルロース系素材を、解重合処理(例えば、酸加水分解、アルカリ加水分解、酵素分解、爆砕処理、振動ボールミル処理等)して得られるものや、前記セルロース系素材を、機械的に処理して得られるものが例示される。
 カルボキシメチルセルロース又はその塩は、0.3質量%の該カルボキシメチルセルロース又はその塩の水溶液2リットルを-200mmHgの減圧条件にて250メッシュのフィルターですべて濾過した際のフィルター上の残渣の乾燥質量を質量Aとし、前記水溶液に溶解したカルボキシメチルセルロース又はその塩の質量を質量Bとした場合に、質量Bに対する質量Aの比率が50ppm未満である。50ppm以上であると、カルボキシメチルセルロース又はその塩を用いて電極を形成した際に、電極にストリークやピンホールなどの外観不良が発生し、電池の品質が低下するおそれがある。前記質量Bに対する前記質量Aの比率の下限は特に限定されず、少なければ少ないほどよい。
 カルボキシメチルセルロース又はその塩は、水溶性であることが好ましい。すなわち、カルボキシメチルセルロースまたはその塩は、その無水グルコース単位当りのカルボキシメチル置換度が、0.45以上であることが好ましく、0.6以上であることがより好ましい。カルボキシメチル置換度が0.45未満であると、水への溶解が十分でなくなるおそれがある。本発明において無水グルコース単位とは、セルロースを構成する個々の無水グルコース(グルコース残基)を意味する。また、カルボキシメチル置換度(エーテル化度ともいう)とは、セルロースを構成するグルコース残基中の水酸基(-OH)のうちカルボキシメチルエーテル基(-OCH2COOH)に置換されているものの割合を示す。なお、カルボキシメチル置換度はDSと略すことがある。
 カルボキシメチルセルロースまたはその塩の無水グルコース単位当りのカルボキシメチル置換度の上限は特には限定されないが、2.0以下であることが好ましく、1.5以下であることがより好ましく、1.0以下であることがさらにより好ましい。
 当該カルボキシメチル置換度は、試料中のカルボキシメチルセルロースを中和するのに必要な水酸化ナトリウム等の塩基の量を測定して確認することができる。この場合、カルボキシメチルセルロース又はその塩のカルボキシメチルエーテル基が塩の形態である場合には、測定前に予めカルボキシメチルセルロースに変換しておく。測定の際には、塩基、酸を用いた逆滴定、フェノールフタレイン等の指示薬を適宜組み合わせることができる。
 本発明において、カルボキシメチルセルロース又はその塩は、25℃でのB型粘度計で測定された1質量%水溶液の粘度が1,000~20,000mPa・sのものが好ましく、1,500~15,000mPa・sのものがより好ましく、2,000~10,000mPa・sのものがさらにより好ましい。
 本発明において、カルボキシメチルセルロース又はその塩の製法は限定されず、公知のカルボキシメチルセルロース又はその塩の製法を適用することができる。即ち、原料であるセルロースをマーセル化剤(アルカリ)で処理してマーセル化セルロース(アルカリセルロース)を調製した後に、エーテル化剤を添加してエーテル化反応させることで本発明におけるカルボキシメチルセルロース又はその塩を製造することができる。
 原料のセルロースとしては、上述のセルロースであれば特に制限なく用いることができるが、セルロース純度が高いものが好ましく、特に、溶解パルプ、リンターを用いることが好ましい。これらを用いることにより、純度の高いカルボキシメチルセルロース又はその塩を得ることができる。
 マーセル化剤としては水酸化ナトリウム、水酸化カリウム等の水酸化アルカリ金属塩等を使用することができる。エーテル化剤としてはモノクロロ酢酸、モノクロロ酢酸ソーダ等を使用することができる。
 水溶性の一般的なカルボキシメチルセルロースの製法の場合のマーセル化剤とエーテル化剤のモル比は、エーテル化剤としてモノクロロ酢酸を使用する場合では2.00~2.45が一般的に採用される。その理由は、2.00未満であるとエーテル化反応が不十分に行われない可能性があるため、未反応のモノクロロ酢酸が残って無駄が生じる可能性があること、及び2.45を超えると過剰のマーセル化剤とモノクロロ酢酸による副反応が進行してグリコール酸アルカリ金属塩が生成するおそれがあるため、不経済となる可能性があることにある。
 本発明において、カルボキシメチルセルロース又はその塩は、市販のものをそのまま、或いは必要に応じて処理してから用いてもよい。市販品としては、例えば、日本製紙ケミカル(株)製の商品名「サンローズ」(カルボキシメチルセルロースのナトリウム塩)が挙げられる。
[粉砕処理]
 本発明において、カルボキシメチルセルロース又はその塩は、上述したようなカルボキシメチルセルロース又はその塩をそのまま用いてもよいが、さらに粉砕処理が施されたもの(粉砕処理物)であってもよい。粉砕処理は、通常は機械を用いて行われる機械的粉砕処理である。カルボキシメチルセルロース又はその塩の粉砕処理の方法としては、粉体の状態で処理する乾式粉砕法と、液体に分散、あるいは溶解させた状態で処理する湿式粉砕法との両方法が例示される。本発明においてはこれらのいずれを選択してもよい。
 カルボキシメチルセルロースまたはその塩の水溶液を調製すると、カルボキシメチルセルロースまたはその塩に由来するゲル粒子が未溶解物として、水溶液中に残存する。カルボキシメチルセルロース又はその塩を機械的に乾式あるいは湿式粉砕処理することで、カルボキシメチルセルロースまたはその塩の機械的な粉砕処理物の水溶液においては、上記のゲル粒子が微細化される。その結果、カルボキシメチルセルロースまたはその塩の機械的な粉砕処理物の水溶液を用いて電極を形成すると、電極の表面に発生するスジ状の欠陥(ストリーク)や剥がれ、ピンホール等の原因となる粗大な未溶解物を抑制することができると考えられる。
 本発明で機械的な粉砕処理のために使用可能な粉砕装置としては以下の様な乾式粉砕機および湿式粉砕機が挙げられる。
 乾式粉砕機は、カッティング式ミル、衝撃式ミル、気流式ミル、媒体ミルが例示される。これらは単独あるいは併用して、さらには同機種で数段処理することができるが、気流式ミルが好ましい。
 カッティング式ミルとしては、メッシュミル((株)ホーライ製)、アトムズ((株)山本百馬製作所製)、ナイフミル(パルマン社製)、グラニュレータ(ヘルボルト製)、ロータリーカッターミル((株)奈良機械製作所製)、等が例示される。
 衝撃式ミルとしては、パルペライザ(ホソカワミクロン(株)製)、ファインイパクトミル(ホソカワミクロン(株)製)、スーパーミクロンミル(ホソカワミクロン(株)製)、サンプルミル((株)セイシン製)、バンタムミル((株)セイシン製)、アトマイザー((株)セイシン製)、トルネードミル(日機装(株))、ターボミル(ターボ工業(株))、ベベルインパクター(相川鉄工(株))等が例示される。
 気流式ミルとしては、CGS型ジェットミル(三井鉱山(株)製)、ジェットミル(三庄インダストリー(株)製)、エバラジェットマイクロナイザ((株)荏原製作所製)、セレンミラー(増幸産業(株)製)、超音速ジェットミル(日本ニューマチック工業(株)製)等が例示される。
 媒体ミルとしては、振動ボールミル等が例示される。
 湿式粉砕機としては、マスコロイダー(増幸産業(株)製)、高圧ホモジナイザー(三丸機械工業(株)製)、媒体ミルが例示される。媒体ミルとしては、ビーズミル(アイメックス(株)製)等を例示できる。
[カルボキシメチルセルロースの粒径]
 本発明において、カルボキシメチルセルロース又はその塩の粒径は、小さい方が好ましい。すなわち、メタノールを分散剤としてレーザー回折・散乱式粒度分布計で測定される体積累計100%粒子径の値(本明細書においては、以降「最大粒子径」ということがある)が50μm未満であることが望ましく、45μm未満であることがより望ましい。カルボキシメチルセルロース又はその塩の最大粒子径が50μm以上であるとカルボキシメチルセルロース又はその塩の水溶液中の未溶解物が増加する傾向がある。
 また、本発明においてカルボキシメチルセルロース又はその塩は、造粒処理が施されていてもよい。これにより、取り扱いが容易となる。造粒処理を施すことによりカルボキシメチルセルロース又はその塩の最大粒子径は50μm以上となることがあるが、造粒処理前のカルボキシメチルセルロース又はその塩の最大粒子径は50μm未満であることが好ましい。
 なお、最大粒子径の下限は特には限定されない。小さければ小さいほど好ましく、0を超えていればよい。
 カルボキシメチルセルロースまたはその塩の、メタノールを分散媒としてレーザー回折・散乱式粒度分布計で測定される体積累計50%粒子径(以下、平均粒子径という。)は、通常は30μm以下であり、20μm以下であることが好ましく、15μm以下であることがより好ましい。また、平均粒子径の下限は特に限定されないが、通常は5μm以上であり、10μm以上であることが好ましく、12μm以上であることがより好ましい。
 本発明においては、カルボキシメチルセルロース又はその塩を粒子径の大きさ(好ましくは最大粒子径の大きさ)に基づき分級し得る。分級とは、分級の対象である粒子を、ある粒子径の大きさ以上のものとそれ以下のものとを篩い分けする処理を意味する。
 分級は、最大粒子径が50μm未満であるか50μm以上であるかを基準として行うことが好ましい。これにより、最大粒子径が50μm未満のカルボキシメチルセルロース又はその塩を選択的に収集することができる。
 カルボキシメチルセルロースまたはその塩として、カルボキシメチルセルロースまたはその塩の粉砕処理物を用いる場合、上記の分級の時期は特に限定されず、粉砕処理の途中に設けてもよいし、粉砕処理の終了後に設けてもよい。
 分級の方法は、公知の方法、例えば乾式分級機、湿式分級機を用いる方法を用いればよい。乾式分級機としては、サイクロン式分級機、DSセパレーター、ターボクラシフィア、ミクロセパレータ、エアーセパレータ等が挙げられる。一方湿式分級機としては、液体サイクロン方式の分級機、遠心沈降機、ハイドロッシレーター等が挙げられる。このうち乾式分級機が好ましく、サイクロン式分級機がより好ましい。
[非水電解質二次電池]
 本発明において、カルボキシメチルセルロース又はその塩は、非水電解質二次電池の電極用結合剤として好ましい性質を持つ。通常は、カルボキシメチルセルロース又はその塩を含む水溶液が、非水電解質二次電池の電極用結合剤として用いられる。
 カルボキシメチルセルロース又はその塩の水溶液における、カルボキシメチルセルロース又はその塩の濃度は、通常は0.1~10質量%であり、0.2~4質量%が好ましく、0.5~2質量%がより好ましい。
 カルボキシメチルセルロース又はその塩の水溶液の製造条件は特に制限はない。例えば、カルボキシメチルセルロース又はその塩を、水(例えば蒸留水、精製水、水道水など)に添加し、必要に応じて撹拌などを行い溶解させて調製される。
 本発明において、カルボキシメチルセルロース又はその塩は電極用結合剤として、電極の活物質と共に電極組成物を構成し得る。電極組成物の性状は特に限定されず、スラリー状、ペースト状のいずれであってもよい。
 本発明において、電極組成物中のカルボキシメチルセルロース又はその塩の含有量は、電極組成物の全体に対して、好ましくは0.1~4.0質量%である。
 電極組成物には、該組成物により形成される電極が負極および正極のいずれかに応じて様々な成分が含まれ得る。
 負極用の電極組成物の場合には、通常、負極活物質が含まれる。負極活物質としては、黒鉛(天然黒鉛、人造黒鉛)、コ-クス、炭素繊維のような黒鉛質材料;リチウムと合金を形成することが可能な元素、すなわち例えばAl、Si、Sn、Ag、Bi、Mg、Zn、In、Ge、Pb、Tiなどの元素;前記リチウムと合金を形成することが可能な元素を含む化合物;前記リチウムと合金を形成することが可能な元素及び前記化合物と、炭素及び/又は前記黒鉛質材料との複合化物;リチウムを含む窒化物が使用できる。このうち黒鉛質材料が好ましく、黒鉛がより好ましい。
 正極用の電極組成物の場合には、通常、正極活物質が含まれる。正極活物質としては、LiMexy(MeはNi、Co、Mnの少なくとも1種を含む遷移金属を意味する。x、yは任意の数を意味する。)系の正極活物質が好ましい。LiMexy系の正極活物質は、特に限定されるものではないが、LiMn24系、LiCoO2系、LiNiO2系の正極活物質が好ましい。LiMn24系、LiCoO2系、LiNiO2系の正極活物質としては、たとえば、LiMnO2、LiMn24、LiCoO2、LiNiO2、を主骨格として、各種金属元素が置換した化合物が例示される。LiMn24系、LiCoO2系、LiNiO2系の正極活物質は、電子とリチウムイオンの拡散性能に優れるなど正極活物質としての性能に優れているため、高い充放電効率と良好なサイクル特性とを有するリチウムイオン二次電池が得られる。このうちLiCoO2系の正極活物質が好ましく、LiCoO2がより好ましい。一方、材料コストの低さからは、LiMn24系の正極活物質を用いることが好ましい。
 電極組成物中の活物質の含有量は、通常は90~99質量%、好ましくは91~99質量%、より好ましくは92~99質量%である。
 正極用の電極組成物の場合には、電極組成物は導電材を有することが好ましい。電極組成物が導電材を有することで、製造される正極の特性が向上する。また、導電材は、正極の電気伝導性を確保し得る。導電材としては、たとえば、カーボンブラック、アセチレンブラック、黒鉛等の炭素物質の1種または2種以上を混合したものが挙げられる。このうちカーボンブラックが好ましい。
 また、電極組成物には、カルボキシメチルセルロース又はその塩の水溶液以外の結合剤が含まれ得る。負極用の電極組成物の場合の結合剤としては、合成ゴム系結合剤が例示される。合成ゴム系結合剤としては、スチレンブタジエンゴム(SBR)、ニトリルブタジエンゴム、メチルメタクリレートブタジエンゴム、クロロプレンゴム、カルボキシ変性スチレンブタジエンゴム及びこれら合成ゴムのラテックスよりなる群から選択された1種以上が使用できる。このうち、スチレンブタジエンゴム(SBR)が好ましい。また、正極用の電極組成物の場合の結合剤としては、前記負極用の結合剤として挙げた合成ゴム系結合剤のほか、ポリテトラフルオロエチレン(PTFE)が例示され、このうちポリテトラフルオロエチレン(PTFE)が好ましい。
 電極組成物中の結合剤の含有量は、通常は1~10質量%、好ましくは1~6質量%、より好ましくは1~2質量%である。
 電極組成物の製造条件は特に限定はない。例えば、カルボキシメチルセルロースまたはその塩の水溶液に、電極組成物を構成する他の成分を添加し、必要に応じて撹拌しながら混合する。
 電極組成物の性状も特に限定されない。例えば、液状、ペースト状、スラリー状などが挙げられ、いずれであってもよい。
 電極組成物は、非水電解質二次電池のための電極の製造に用いられる。非水電解質二次電池用の電極の製造は、前記電極組成物を集電基材(集電体)上に積層する方法によればよい。積層の方法としては例えば、ブレード塗工、バー塗工、ダイ塗工が挙げられ、ブレード塗工が好ましい。例えばブレード塗工の場合には、ドクターブレードなどの塗工装置を用いて電極組成物を集電基材上にキャスティングする方法が例示される。また、積層の方法は上記具体例に限定されず、バックアップロールに巻回して走行する集電基材上に、スロットノズルを有するエクストルージョン型注液器より前記電極組成物を吐出させ塗布する方法も例示される。ブレード塗工においては、キャスティング後さらに必要に応じて加熱(温度は例えば80~120℃、加熱時間は例えば4~12時間)などによる乾燥、ロールプレスなどによる加圧を行い得る。
 集電基材としては、構成された電池において致命的な化学変化を起こさない電気伝導体であれば何れも使用可能である。
 負極活物質用の集電基材としては、ステンレス鋼、ニッケル、銅、チタン、炭素、銅や前記ステンレス鋼の表面にカ-ボン、ニッケル、チタンまたは銀を付着処理させたもの等が利用できる。これらのうち、銅または銅合金が好ましいが、銅が最も好ましい。
 正極用の集電基材の材料としては、たとえば、アルミニウム、ステンレスなどの金属が例示され、アルミニウムが好ましい。集電基材の形状としては、網、パンチドメタル、フォームメタル、板状に加工された箔などを用いることができ、板状に加工された箔が好ましい。
 電極組成物により形成された非水電解質二次電池用電極の形状は特に限定されないが、通常はシート状である。シート状の極板の場合の厚さ(集電基材部分を除く、電極組成物から形成される合剤層の厚さ)は、組成物の組成や製造条件などやにもよるので規定することは困難であるが、通常は30~150μmである。
 前記組成物により形成される電極は非水電解質二次電池の電極として用いられる。すなわち本発明は、前記組成物により形成される電極を備える、非水電解質二次電池をも提供する。非水電解質二次電池は、正電極及び負電極が交互に、セパレータを介して積層され、多数回巻回された構造を取りうる。前記セパレータは通常、非水電解質で含浸される。この負電極および/または正電極として、前記した電極組成物により形成された負電極および/または正電極が用いられうる。かかる非水電解質二次電池は、溶解性に優れるカルボキシメチルセルロースまたはその塩が用いられ、フィルターによる濾過などの工程を省略できるので生産性に優れると共に、初期不可逆容量が顕著に改善され、高い電池特性を発揮しうるものである。
 以下、本発明の実施の形態を実施例により説明するが、本発明はこれにより限定されるものではない。
 本明細書において、各指標の測定は以下の方法による。
<水溶液に溶解させたカルボキシメチルセルロースの乾燥質量に対する濾過残渣の質量の質量比の測定>
 カルボキシメチルセルロース又はその塩の0.3質量%(カルボキシメチルまたはその塩の乾燥質量を基準とした質量%)水溶液2リットルを調製した。この水溶液2リットルを-200mmHgの減圧条件にて、濾過器(「セパロート」桐山製作所製)を用いて、250メッシュのフィルター(ステンレス製、目開き63μm)にて濾過した。250メッシュのフィルターに残存した残渣を、温度105℃で、16時間送風乾燥させた後、乾燥した残渣の質量を測定し、カルボキシメチルセルロース水溶液中のカルボキシメチルセルロースの質量に対する質量パーセント(ppm)で表示した。
<最大粒子径、平均粒子径および粒度分布の測定>
 カルボキシメチルセルロースの最大粒子径、及び平均粒子径は、レーザー回折・散乱式粒度分布計(マイクロトラック Model-9220-SPA、日機装(株)製)により行った。ここで、最大粒子径とは体積類型100%粒子径の値を、平均粒子径とは体積累計50%粒子径の値を示した。測定に当たっては、試料をメタノールに分散させた後、超音波処理を少なくとも1分以上行ったものについて測定を行った。
[製造例1]
 市販カルボキシメチルセルロース(1質量%水溶液の25℃におけるB型粘度が3500mPa・s、カルボキシメチル置換度0.87、日本製紙ケミカル(株)製 商品名「サンローズ」)を、気流式ミルを用いて乾式粉砕処理を行い、その後、サイクロン式分級機によって平均粒子径8μm、最大粒子径31μmのカルボキシメチルセルロース粉砕処理物を得た。この粉砕処理物についての前記質量比は8ppmであった。
[製造例2]
 市販カルボキシメチルセルロース(1質量%水溶液の25℃におけるB型粘度が3500mPa・s、カルボキシメチル置換度0.87、日本製紙ケミカル(株)製 商品名「サンローズ」)を、気流式ミルを用いて乾式粉砕処理を行い、その後、サイクロン式分級機によって平均粒子径25μm、最大粒子径44μmのカルボキシメチルセルロース粉砕処理物を得た。この粉砕処理物についての前記質量比は48ppmであった。
[製造例3]
 市販カルボキシメチルセルロース(1質量%水溶液の25℃におけるB型粘度が3500mPa・s、カルボキシメチル置換度0.87、日本製紙ケミカル(株)製 商品名「サンローズ」)を1質量%の水溶液になるように蒸留水を添加し撹拌して溶解させた。次いで、この水溶液をマスコロイダーで摩砕処理して、1質量%のカルボキシメチルセルロース粉砕処理水溶液を得た。この粉砕処理水溶液についての前記質量比は4ppmであった。
[実施例1]
 黒鉛粉末97質量%、結合剤としてスチレンブタジエンゴム(SBR)ディスパージョンをSBR換算で1.5質量%、製造例1で調製されたカルボキシメチルセルロース粉砕処理物1.5質量%をそれぞれ秤量した。まず、カルボキシメチルセルロースを1質量%の水溶液になるように蒸留水を添加し撹拌して溶解させた。次いで、該カルボキシメチルセルロース水溶液に、予め秤量した黒鉛粉末とスチレンブタジエンゴム(SBR)を混合し、ここにセラミックボールを添加した後に、プラスチック瓶に入れて10時間良く混錬させた。混合物を横15cm×縦30cm、厚さ12μmの銅箔上に150μm間隔のドクターブレードでキャスティングして負極を得た。これを約90℃のオーブンに入れて約10時間乾燥した。この極板をさらにロールプレスし、70μm厚さ(銅箔を含まない、組成物の層の厚さ)の負極極板(シート状負極)を製造した。得られた負極極板の表面性を目視で観察し、ストリークやピンホールなどの発生がみられないものを○、ストリークやピンホールによる外観不良を生じている場合を×とした。
[実施例2]
 製造例2で得られたカルボキシメチルセルロース粉砕処理物を用いて、実施例1と同様の操作を実施した。
[実施例3]
 黒鉛粉末97質量%、結合剤としてスチレンブタジエンゴム(SBR)ディスパージョンをSBR換算で1.5質量%、製造例3で調製されたカルボキシメチルセルロース粉砕処理水溶液をカルボキシメチルセルロース換算で1.5質量%をそれぞれ秤量した。該カルボキシメチルセルロース粉砕処理水溶液に、予め秤量した黒鉛粉末とスチレンブタジエンゴム(SBR)を混合し、これにセラミックボールを添加した後に、プラスチック瓶に入れて10時間良く混錬させた。以降は、実施例1と同様の操作を実施した。
[実施例4]
 LiCoO2を94質量%、結合剤としてポリテトラフルオロエチレン(PTFE)ディスパージョンをPTFE換算で2質量%、製造例1で調製されたカルボキシメチルセルロース粉砕処理物2質量%及び電子の移動を改善するための導電材(カーボンブラック)2質量%をそれぞれ秤量した。まずカルボキシメチルセルロース粉砕処理物を1質量%の水溶液になるように蒸留水を添加し撹拌して溶解させた。次いで該カルボキシメチルセルロース水溶液中に、予め秤量したLiCoO2、ポリテトラフルオロエチレン(PTFE)、カーボン導電材及びセラミックボールを添加した後、この混合物をプラスチック瓶に入れて10時間よく混錬させた。混合物を横15cm×縦30cm、厚さ15μmのアルミニウム箔上に、150μm間隔のドクターブレードでキャスティングして正極極板を得た。これを約90℃のオーブンに入れて約10時間乾燥した。これをさらにロールプレスし、厚さ73μm(アルミニウム箔を含まない、組成物の層の厚さ)の正極極板(シート状正極)を製造した。得られた負極極板の表面性を目視で観察し、ストリークやピンホールなどの発生がみられないものを○、ストリークやピンホールによる外観不良を生じている場合を×とした。
[実施例5]
 製造例2で調製されたカルボキシメチルセルロース粉砕処理物を用いて、実施例4と同様の操作を実施した。
[実施例6]
 LiCoO2を94質量%、結合剤としてポリテトラフルオロエチレン(PTFE)ディスパージョンをPTEF換算で2質量%、製造例3で調製されたカルボキシメチルセルロース粉砕処理水溶液をカルボキシメチルセルロース換算で2質量%、及び電子の移動を改善するための導電材(カーボンブラック)2質量%をそれぞれ秤量した。該カルボキシメチルセルロース粉砕処理水溶液に、予め秤量したLiCoO2、ポリテトラフルオエチレン(PTEF)、カーボン導電助剤を混合し、これにセラミックボールを添加した後に、プラスチック瓶に入れて10時間良く混錬させた。以降は、実施例4と同様の操作を実施した。
[比較例1]
 市販カルボキシメチルセルロース(1質量%水溶液の25℃におけるB型粘度が3500mPa・s、カルボキシメチル置換度0.87、日本製紙ケミカル(株)製 商品名「サンローズ」)をそのまま用いた以外は、実施例1と同様な操作を実施した。市販カルボキシメチルセルロースの前記質量比は、250ppmであった。
[比較例2]
 市販カルボキシメチルセルロース(1質量%水溶液25℃におけるB型粘度が3500mPa・s、カルボキシメチル置換度0.87、日本製紙ケミカル(株)製 商品名「サンローズ」)をそのまま用いた以外は、実施例3と同様な操作を実施した。市販カルボキシメチルセルロースの前記質量比は、250ppmであった。
 実施例、比較例に用いたカルボキシメチルセルロースの物性、及び電極板の表面性評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001

Claims (12)

  1.  非水電解質二次電池の電極用結合剤として使用されるカルボキシメチルセルロース又はその塩であって、乾燥質量Bの該カルボキシメチルセルロースまたはその塩の0.3質量%水溶液2リットルを調製して-200mmHgの減圧条件にて250メッシュのフィルターですべて濾過し、濾過後の前記フィルター上の残渣の乾燥質量Aを測定した際に、前記乾燥質量Bに対する乾燥質量Aの比率が50ppm未満である、カルボキシメチルセルロース又はその塩。
  2.  カルボキシメチルセルロースまたはその塩の機械的な粉砕処理物である、請求項1に記載のカルボキシメチルセルロース又はその塩。
  3.  メタノールを分散媒としてレーザー回折・散乱式粒度分布計で測定される体積累計100%粒子径が、50μm未満である、請求項1または2に記載のカルボキシメチルセルロース又はその塩。
  4.  請求項1~3のいずれか1項に記載されるカルボキシメチルセルロース又はその塩を含む、非水電解質二次電池の電極用結合剤用の水溶液。
  5.  カルボキシメチルセルロース又はその塩を機械的に粉砕処理してカルボキシメチルセルロース又はその塩の粉砕処理物を得て、前記カルボキシメチルセルロース又はその塩の粉砕処理物を水に溶解する、非水電解質二次電池の電極用結合剤用の水溶液の製造方法。
  6.  前記粉砕処理は、乾式粉砕処理又は湿式粉砕処理である、請求項5に記載の製造方法。
  7.  前記カルボキシメチルセルロース又はその塩の粉砕処理物は、メタノールを分散媒としてレーザー回折・散乱式粒度分布計で測定される体積累計100%粒子径が、50μm未満である、請求項5または6に記載の製造方法。
  8.  前記カルボキシメチルセルロース又はその塩の粉砕処理物は、乾燥質量Bの前記カルボキシメチルセルロース又はその塩の粉砕処理物の0.3質量%水溶液2リットルを調製して-200mmHgの減圧条件にて250メッシュのフィルターですべて濾過し、濾過後の前記フィルター上の残渣の乾燥質量Aを測定した際に、前記乾燥質量Bに対する乾燥質量Aの比率が50ppm未満である、請求項5~7のいずれか1項に記載の製造方法。
  9.  請求項4に記載の水溶液、あるいは、請求項5~8のいずれか一項に記載の水溶液を含む、非水電解質二次電池用電極組成物。
  10.  請求項9記載の電極組成物により形成される、非水電解質二次電池用電極。
  11.  請求項9記載の電極組成物を集電基材上に積層する、非水電解質二次電池用電極の製造方法。
  12.  請求項11に記載の電極を備える、非水電解質二次電池。
PCT/JP2009/069915 2008-11-26 2009-11-26 非水電解質二次電池の電極用カルボキシメチルセルロースまたはその塩、及びその水溶液 WO2010061871A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020137021974A KR101541789B1 (ko) 2008-11-26 2009-11-26 비수전해질 이차전지의 전극용 카복시메틸셀룰로오스 또는 이의 염, 및 이의 수용액
KR1020117012003A KR101508493B1 (ko) 2008-11-26 2009-11-26 비수전해질 이차전지의 전극용 카복시메틸셀룰로오스 또는 이의 염, 및 이의 수용액
EP09829116.4A EP2355215B1 (en) 2008-11-26 2009-11-26 Carboxymethylcellulose for electrode in rechargeable battery with nonaqueous electrolyte, salt thereof, and aqueous solution thereof
CN2009801472736A CN102232254A (zh) 2008-11-26 2009-11-26 非水电解质二次电池的电极用羧甲基纤维素或其盐、及其水溶液
US13/131,395 US9240583B2 (en) 2008-11-26 2009-11-26 Carboxymethylcellulose or salt thereof for electrodes of nonaqueous electrolyte secondary battery and aqueous solution thereof
JP2010540498A JP5514734B2 (ja) 2008-11-26 2009-11-26 非水電解質二次電池の電極用カルボキシメチルセルロースまたはその塩、及びその水溶液

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008300318 2008-11-26
JP2008-300318 2008-11-26

Publications (1)

Publication Number Publication Date
WO2010061871A1 true WO2010061871A1 (ja) 2010-06-03

Family

ID=42225741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069915 WO2010061871A1 (ja) 2008-11-26 2009-11-26 非水電解質二次電池の電極用カルボキシメチルセルロースまたはその塩、及びその水溶液

Country Status (7)

Country Link
US (1) US9240583B2 (ja)
EP (1) EP2355215B1 (ja)
JP (1) JP5514734B2 (ja)
KR (2) KR101541789B1 (ja)
CN (2) CN102232254A (ja)
HK (1) HK1215331A1 (ja)
WO (1) WO2010061871A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042720A1 (ja) * 2011-09-20 2013-03-28 日産化学工業株式会社 セルロースファイバーをバインダーとして含有するリチウム二次電池電極形成用スラリー組成物及びリチウム二次電池用電極
JP2013222551A (ja) * 2012-04-13 2013-10-28 Sumitomo Bakelite Co Ltd 負極用材料、負極およびリチウムイオン二次電池
JP2013222550A (ja) * 2012-04-13 2013-10-28 Sumitomo Bakelite Co Ltd 負極用材料、負極およびリチウムイオン二次電池
WO2013190655A1 (ja) * 2012-06-20 2013-12-27 トヨタ自動車株式会社 電極の製造方法、および電池
CN103515647A (zh) * 2012-06-29 2014-01-15 丰田自动车株式会社 非水电解质二次电池组及其生产方法
WO2016031449A1 (ja) * 2014-08-28 2016-03-03 第一工業製薬株式会社 非水系電解液二次電池の電極用カルボキシメチルセルロース塩の製造方法、非水系電解液二次電池用電極、および非水系電解液二次電池
JP2017068900A (ja) * 2015-09-28 2017-04-06 日本製紙株式会社 非水電解質二次電池セパレータ用カルボキシメチルセルロース又はその塩
WO2017145904A1 (ja) * 2016-02-26 2017-08-31 第一工業製薬株式会社 カルボキシメチルセルロースまたはその塩の製造方法、および電極用結着剤
WO2017154776A1 (ja) * 2016-03-08 2017-09-14 Necエナジーデバイス株式会社 リチウムイオン電池用増粘剤粉末、水系電極スラリー、リチウムイオン電池用電極、リチウムイオン電池、リチウムイオン電池用水系電極スラリーの製造方法およびリチウムイオン電池用電極の製造方法
WO2020129897A1 (ja) * 2018-12-19 2020-06-25 日本製紙株式会社 非水電解質二次電池用電極、その製造方法、及び非水電解質二次電池
JPWO2019044382A1 (ja) * 2017-09-01 2020-10-01 株式会社エンビジョンAescエナジーデバイス リチウムイオン電池用水系電極スラリーの製造方法、リチウムイオン電池用電極の製造方法、リチウムイオン電池用増粘剤粉末、水系電極スラリー、リチウムイオン電池用電極およびリチウムイオン電池
WO2021039281A1 (ja) * 2019-08-23 2021-03-04 日本製紙株式会社 非水電解質二次電池用電極、及びその製造方法
WO2023013411A1 (ja) * 2021-08-04 2023-02-09 日本製紙株式会社 非水電解質二次電池電極用結合剤、非水電解質二次電池用電極組成物非水電解質二次電池用電極および非水電解質二次電池

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5626264B2 (ja) * 2012-05-31 2014-11-19 トヨタ自動車株式会社 電極の製造方法、および電池
JP6061145B2 (ja) * 2013-08-02 2017-01-18 トヨタ自動車株式会社 二次電池
KR102231209B1 (ko) * 2014-05-22 2021-03-22 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
US10361423B2 (en) 2016-01-18 2019-07-23 Grst International Limited Method of preparing battery electrodes
KR102277227B1 (ko) * 2016-03-03 2021-07-15 주식회사 엘지에너지솔루션 CMC-Li염을 포함하는 이차전지용 음극 합제 및 이를 포함하는 리튬 이차전지
KR102272871B1 (ko) * 2016-07-01 2021-07-05 어플라이드 머티어리얼스, 인코포레이티드 낮은 용융 온도 금속 정제 및 증착
EP3521318A4 (en) * 2016-09-30 2020-04-29 Nippon Paper Industries Co., Ltd. CARBOXYMETHYLCELLULOSE OR SALT THEREOF, AND ELECTRODE COMPOSITION
CN111095438B (zh) * 2017-09-28 2021-11-16 富士胶片株式会社 固体电解质组合物以及含固体电解质的片材、全固态二次电池以及两者的制造方法
US11699785B2 (en) 2018-03-06 2023-07-11 Georgia Tech Research Corporation Composite electrodes and methods of making the same
JP7068939B2 (ja) * 2018-06-20 2022-05-17 Fdk株式会社 アルカリ電池、およびアルカリ電池用負極ゲルの製造方法
WO2020129862A1 (ja) * 2018-12-19 2020-06-25 日本製紙株式会社 非水電解質二次電池用カルボキシメチルセルロース又はその塩
KR20220049550A (ko) * 2020-02-14 2022-04-21 닛뽕세이시 가부시키가이샤 비수 전해질 이차 전지용 결합제, 비수 전해질 이차 전지용 전극 조성물, 비수 전해질 이차 전지용 전극, 비수 전해질 이차 전지 및 비수 전해질 이차 전지용 결합제의 제조 방법
JPWO2021235511A1 (ja) * 2020-05-22 2021-11-25
JP7278495B2 (ja) * 2021-01-29 2023-05-19 寧徳時代新能源科技股▲分▼有限公司 接着剤及びその製造方法、二次電池、電池モジュール、電池パックならびに電気装置
WO2022203410A1 (ko) * 2021-03-23 2022-09-29 한양대학교 에리카산학협력단 알루미늄 공기 이차 전지, 및 그 제조 방법
KR20240089570A (ko) * 2022-06-23 2024-06-20 닛뽕세이시 가부시키가이샤 카복시메틸 셀룰로스 및/또는 그 염, 비수 전해질 이차전지용 전극 조성물, 비수 전해질 이차전지용 전극 및 비수 전해질 이차전지

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04242071A (ja) 1991-01-16 1992-08-28 Matsushita Electric Ind Co Ltd シート状極板の製造方法と非水電解液電池
JPH0574461A (ja) 1991-09-13 1993-03-26 Asahi Chem Ind Co Ltd 二次電池負極
JPH0765816A (ja) 1993-06-15 1995-03-10 Fuji Photo Film Co Ltd シート状極板の製造方法及びそれにより製造された化学電池
JP2003157847A (ja) 2001-11-19 2003-05-30 Denso Corp リチウム電池用電極の製造方法およびリチウム電池用電極
JP2005285461A (ja) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd 非水電解質二次電池用負極の製造方法およびこの製造法による負極を備えた非水電解質二次電池
JP2006202724A (ja) * 2004-12-21 2006-08-03 Nissan Motor Co Ltd 非水電解質二次電池用正極及びその製造方法
JP2009094079A (ja) * 2008-12-12 2009-04-30 Hitachi Maxell Ltd リチウム含有遷移金属カルコゲナイド、その製造方法、および非水二次電池の製造方法
JP2009252398A (ja) * 2008-04-02 2009-10-29 Toyota Motor Corp リチウム二次電池の負極活物質層形成用組成物の検査方法および該電池の製造方法
JP2009252385A (ja) * 2008-04-02 2009-10-29 Panasonic Corp 耐熱層を有する電池用電極板の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4499214A (en) * 1983-05-03 1985-02-12 Diachem Industries, Inc. Method of rapidly dissolving polymers in water
US4640622A (en) * 1984-03-12 1987-02-03 Diatec Polymers Dispersion of dry polymers into water
US4820813A (en) * 1986-05-01 1989-04-11 The Dow Chemical Company Grinding process for high viscosity cellulose ethers
US4883537A (en) * 1988-12-28 1989-11-28 Aqualon Company Aqueous suspension of carboxymethylcellulose
US5147937A (en) * 1990-03-22 1992-09-15 Rohm And Haas Company Process for making controlled, uniform-sized particles in the 1 to 50 micrometer range
JPH05140876A (ja) 1991-11-21 1993-06-08 Daicel Chem Ind Ltd 捺染糊剤用カルボキシメチルセルロースアルカリ塩及びその製造法
US6800593B2 (en) * 2002-06-19 2004-10-05 Texas United Chemical Company, Llc. Hydrophilic polymer concentrates
KR100522698B1 (ko) 2003-10-01 2005-10-19 삼성에스디아이 주식회사 카르복시메틸 셀룰로오스계 결합제 및 이를 채용한 리튬전지
CN100524911C (zh) * 2004-08-30 2009-08-05 三菱化学株式会社 用于非水二次电池的负极材料、用于非水二次电池的负极、和非水二次电池
JP2007012559A (ja) 2005-07-04 2007-01-18 Sony Corp 電池
US8074906B2 (en) * 2005-07-07 2011-12-13 Nanotherapeutics, Inc. Process for milling and preparing powders and compositions produced thereby
JP2007059206A (ja) 2005-08-24 2007-03-08 Sony Corp 負極および電池
KR100762797B1 (ko) 2005-12-28 2007-10-02 한국전기연구원 에너지 저장 장치의 전극 및 그 제조방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04242071A (ja) 1991-01-16 1992-08-28 Matsushita Electric Ind Co Ltd シート状極板の製造方法と非水電解液電池
JPH0574461A (ja) 1991-09-13 1993-03-26 Asahi Chem Ind Co Ltd 二次電池負極
JPH0765816A (ja) 1993-06-15 1995-03-10 Fuji Photo Film Co Ltd シート状極板の製造方法及びそれにより製造された化学電池
JP2003157847A (ja) 2001-11-19 2003-05-30 Denso Corp リチウム電池用電極の製造方法およびリチウム電池用電極
JP2005285461A (ja) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd 非水電解質二次電池用負極の製造方法およびこの製造法による負極を備えた非水電解質二次電池
JP2006202724A (ja) * 2004-12-21 2006-08-03 Nissan Motor Co Ltd 非水電解質二次電池用正極及びその製造方法
JP2009252398A (ja) * 2008-04-02 2009-10-29 Toyota Motor Corp リチウム二次電池の負極活物質層形成用組成物の検査方法および該電池の製造方法
JP2009252385A (ja) * 2008-04-02 2009-10-29 Panasonic Corp 耐熱層を有する電池用電極板の製造方法
JP2009094079A (ja) * 2008-12-12 2009-04-30 Hitachi Maxell Ltd リチウム含有遷移金属カルコゲナイド、その製造方法、および非水二次電池の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2355215A4

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013042720A1 (ja) * 2011-09-20 2015-03-26 日産化学工業株式会社 セルロースファイバーをバインダーとして含有するリチウム二次電池電極形成用スラリー組成物及びリチウム二次電池用電極
US10020513B2 (en) 2011-09-20 2018-07-10 Nissan Chemical Industries, Ltd. Slurry composition for forming lithium secondary battery electrode containing cellulose fiber as binder, and lithium secondary battery electrode
WO2013042720A1 (ja) * 2011-09-20 2013-03-28 日産化学工業株式会社 セルロースファイバーをバインダーとして含有するリチウム二次電池電極形成用スラリー組成物及びリチウム二次電池用電極
CN103828104A (zh) * 2011-09-20 2014-05-28 日产化学工业株式会社 含有纤维素纤维作为粘合剂的锂二次电池电极形成用浆料组合物和锂二次电池用电极
JP2013222551A (ja) * 2012-04-13 2013-10-28 Sumitomo Bakelite Co Ltd 負極用材料、負極およびリチウムイオン二次電池
JP2013222550A (ja) * 2012-04-13 2013-10-28 Sumitomo Bakelite Co Ltd 負極用材料、負極およびリチウムイオン二次電池
WO2013190655A1 (ja) * 2012-06-20 2013-12-27 トヨタ自動車株式会社 電極の製造方法、および電池
JPWO2013190655A1 (ja) * 2012-06-20 2016-02-08 トヨタ自動車株式会社 電極の製造方法、および電池
CN103515647A (zh) * 2012-06-29 2014-01-15 丰田自动车株式会社 非水电解质二次电池组及其生产方法
WO2016031449A1 (ja) * 2014-08-28 2016-03-03 第一工業製薬株式会社 非水系電解液二次電池の電極用カルボキシメチルセルロース塩の製造方法、非水系電解液二次電池用電極、および非水系電解液二次電池
JPWO2016031449A1 (ja) * 2014-08-28 2017-06-22 第一工業製薬株式会社 非水系電解液二次電池の電極用カルボキシメチルセルロース塩の製造方法、非水系電解液二次電池用電極、および非水系電解液二次電池
US10355280B2 (en) 2014-08-28 2019-07-16 Dai-Ichi Kogyo Seiyaku Co., Ltd. Manufacturing method of carboxymethyl cellulose salt for electrode of nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2017068900A (ja) * 2015-09-28 2017-04-06 日本製紙株式会社 非水電解質二次電池セパレータ用カルボキシメチルセルロース又はその塩
JP2017149901A (ja) * 2016-02-26 2017-08-31 第一工業製薬株式会社 カルボキシメチルセルロースまたはその塩の製造方法、および電極用結着剤
WO2017145904A1 (ja) * 2016-02-26 2017-08-31 第一工業製薬株式会社 カルボキシメチルセルロースまたはその塩の製造方法、および電極用結着剤
US10941218B2 (en) 2016-02-26 2021-03-09 Dai-Ichi Kogyo Seiyaku Co., Ltd. Method for producing carboxymethyl cellulose or salt thereof, and binding agent for electrode
WO2017154776A1 (ja) * 2016-03-08 2017-09-14 Necエナジーデバイス株式会社 リチウムイオン電池用増粘剤粉末、水系電極スラリー、リチウムイオン電池用電極、リチウムイオン電池、リチウムイオン電池用水系電極スラリーの製造方法およびリチウムイオン電池用電極の製造方法
JPWO2017154776A1 (ja) * 2016-03-08 2019-01-10 Necエナジーデバイス株式会社 リチウムイオン電池用増粘剤粉末、水系電極スラリー、リチウムイオン電池用電極、リチウムイオン電池、リチウムイオン電池用水系電極スラリーの製造方法およびリチウムイオン電池用電極の製造方法
JP6993960B2 (ja) 2016-03-08 2022-01-14 株式会社エンビジョンAescジャパン リチウムイオン電池用増粘剤粉末、水系電極スラリー、リチウムイオン電池用電極、リチウムイオン電池、リチウムイオン電池用水系電極スラリーの製造方法およびリチウムイオン電池用電極の製造方法
US11329289B2 (en) 2016-03-08 2022-05-10 Envision Aesc Japan Ltd. Thickener powder for lithium-ion battery, water-based electrode slurry, electrode for lithium-ion battery, lithium-ion battery, method for manufacturing water-based electrode slurry for lithium-ion battery, and method for manufacturing electrode for lithium-ion battery
JPWO2019044382A1 (ja) * 2017-09-01 2020-10-01 株式会社エンビジョンAescエナジーデバイス リチウムイオン電池用水系電極スラリーの製造方法、リチウムイオン電池用電極の製造方法、リチウムイオン電池用増粘剤粉末、水系電極スラリー、リチウムイオン電池用電極およびリチウムイオン電池
JP7161478B2 (ja) 2017-09-01 2022-10-26 株式会社エンビジョンAescジャパン リチウムイオン電池用水系電極スラリーの製造方法、リチウムイオン電池用電極の製造方法、リチウムイオン電池用増粘剤粉末、水系電極スラリー、リチウムイオン電池用電極およびリチウムイオン電池
WO2020129897A1 (ja) * 2018-12-19 2020-06-25 日本製紙株式会社 非水電解質二次電池用電極、その製造方法、及び非水電解質二次電池
WO2021039281A1 (ja) * 2019-08-23 2021-03-04 日本製紙株式会社 非水電解質二次電池用電極、及びその製造方法
WO2023013411A1 (ja) * 2021-08-04 2023-02-09 日本製紙株式会社 非水電解質二次電池電極用結合剤、非水電解質二次電池用電極組成物非水電解質二次電池用電極および非水電解質二次電池

Also Published As

Publication number Publication date
JP5514734B2 (ja) 2014-06-04
HK1215331A1 (zh) 2016-08-19
EP2355215B1 (en) 2016-01-27
KR20110077020A (ko) 2011-07-06
KR20130111635A (ko) 2013-10-10
US9240583B2 (en) 2016-01-19
KR101541789B1 (ko) 2015-08-04
US20110229760A1 (en) 2011-09-22
EP2355215A4 (en) 2012-07-04
KR101508493B1 (ko) 2015-04-07
CN102232254A (zh) 2011-11-02
EP2355215A1 (en) 2011-08-10
CN105140522A (zh) 2015-12-09
JPWO2010061871A1 (ja) 2012-04-26

Similar Documents

Publication Publication Date Title
JP5514734B2 (ja) 非水電解質二次電池の電極用カルボキシメチルセルロースまたはその塩、及びその水溶液
JP7197667B2 (ja) カルボキシメチルセルロース又はその塩、及び、電極組成物
JP6669529B2 (ja) 電極用結着剤
JP2020161281A (ja) 非水電解質二次電池用電極組成物、及びそれを用いた非水電解質二次電池用電極、非水電解質二次電池。
WO2020129862A1 (ja) 非水電解質二次電池用カルボキシメチルセルロース又はその塩
JP7232951B1 (ja) カルボキシメチルセルロースおよび/又はその塩、非水電解質二次電池用電極組成物、非水電解質二次電池用電極および非水電解質二次電池
JP7262913B1 (ja) カルボキシメチルセルロースおよび/又はその塩、非水電解質二次電池用電極組成物、非水電解質二次電池用電極および非水電解質二次電池
JP2022068618A (ja) 非水電解質二次電池電極用結合剤
JP2022081947A (ja) 非水電解質二次電池の電極用結合剤用のカルボキシメチルセルロース又はその塩。
WO2023013411A1 (ja) 非水電解質二次電池電極用結合剤、非水電解質二次電池用電極組成物非水電解質二次電池用電極および非水電解質二次電池
EP4155344A1 (en) Binder for non-aqueous electrolyte secondary battery electrodes, aquoeus solution, electrode composition for nonaqueous electrolyte secondary batteries, and electrode for nonaqueous electrolyte secondary batteries
JP2024001512A (ja) カルボキシメチルセルロースおよび/又はその塩、分散液、非水電解質二次電池用電極組成物、非水電解質二次電池用電極および非水電解質二次電池
WO2023248848A1 (ja) カルボキシメチルセルロースおよび/又はその塩、非水電解質二次電池用電極組成物、非水電解質二次電池用電極および非水電解質二次電池
JP2022182384A (ja) カルボキシメチルセルロース又はその塩、及び、電極組成物
JP2023023142A (ja) 非水電解質二次電池電極用結合剤、非水電解質二次電池用電極組成物および非水電解質二次電池用電極
CN118451570A (zh) 羧甲基纤维素和/或其盐、非水电解质二次电池用电极组合物、非水电解质二次电池用电极和非水电解质二次电池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980147273.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09829116

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010540498

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117012003

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13131395

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009829116

Country of ref document: EP