WO2010001669A1 - サーモクロミック微粒子、その分散液、その製造方法、ならびに調光性塗料、調光性フィルムおよび調光性インク - Google Patents

サーモクロミック微粒子、その分散液、その製造方法、ならびに調光性塗料、調光性フィルムおよび調光性インク Download PDF

Info

Publication number
WO2010001669A1
WO2010001669A1 PCT/JP2009/059360 JP2009059360W WO2010001669A1 WO 2010001669 A1 WO2010001669 A1 WO 2010001669A1 JP 2009059360 W JP2009059360 W JP 2009059360W WO 2010001669 A1 WO2010001669 A1 WO 2010001669A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
acid
fine particles
thermochromic
tio
Prior art date
Application number
PCT/JP2009/059360
Other languages
English (en)
French (fr)
Inventor
平 金
士東 紀
真人 田澤
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to US12/999,117 priority Critical patent/US8709306B2/en
Priority to CN2009801230440A priority patent/CN102066261B/zh
Publication of WO2010001669A1 publication Critical patent/WO2010001669A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/69Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals containing vanadium
    • C09K11/691Chalcogenides
    • C09K11/693Chalcogenides with zinc or cadmium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0081Composite particulate pigments or fillers, i.e. containing at least two solid phases, except those consisting of coated particles of one compound
    • C09C1/0084Composite particulate pigments or fillers, i.e. containing at least two solid phases, except those consisting of coated particles of one compound containing titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/50Sympathetic, colour changing or similar inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • C09D17/004Pigment pastes, e.g. for mixing in paints containing an inorganic pigment
    • C09D17/007Metal oxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/26Thermosensitive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • C01P2006/33Phase transition temperatures
    • C01P2006/36Solid to solid transition temperatures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances

Definitions

  • the present invention relates to fine particles and dispersions thereof, and particularly relates to fine particles containing rutile-type crystal phase vanadium dioxide (VO 2 ) and dispersions thereof.
  • the present invention also relates to a method for producing such fine particles, as well as a light control paint, a light control film and a light control ink containing such fine particles.
  • “Automatic light control material” is a material that can control optical properties such as a transparent state / reflective state by temperature. For example, when such a material is applied to a window glass of a building, sunlight can be reflected to block heat in summer, and sunlight can be transmitted in winter to absorb heat.
  • an automatic light control material containing vanadium dioxide (VO 2 ).
  • This material utilizes the thermochromic properties (the property that the optical properties reversibly change with temperature) that occur during the phase transition between the semiconductor phase and the metal phase of vanadium dioxide (VO 2 ), Thereby, an ambient temperature-dependent light control characteristic can be obtained.
  • the glass having an automatic light control material can be obtained, for example, by sputtering treatment of vanadium dioxide (VO 2 ) on a glass substrate.
  • a vanadium dioxide (VO 2 ) thin film is sputtered on a certain substrate, this thin film is transferred to the film side, and further, the thin film transferred to the film is transferred to the final glass substrate side, thereby automatically adjusting light.
  • Glass having a material can be obtained (for example, Patent Documents 2 and 3).
  • a fine particle containing vanadium dioxide (VO 2 ) or a dispersion thereof is prepared, and this is installed on a member where automatic dimming property is to be developed, for example, via an adhesive.
  • Manufacturing a light-modulating member has been studied (for example, Patent Documents 4-6).
  • the vanadium dioxide (VO 2 ) material there are several polymorphs of crystal phases such as A phase, B phase and rutile phase. It is limited to a rutile type crystal phase (hereinafter referred to as “R phase”).
  • the R phase is also referred to as an M phase because it has a monoclinic structure below the transition temperature.
  • the particle size of the R phase needs to be a dimension of submicron or less in order to exhibit a substantially significant automatic light control property.
  • a precursor of vanadium dioxide (VO 2 ) is first synthesized from a solution containing vanadium ions, and the precursor is reduced at a high temperature of about 350 ° C. to 650 ° C., for example.
  • R-phase vanadium dioxide (VO 2 ) particles are prepared by firing or thermal decomposition.
  • the vanadium dioxide (VO 2) particles becomes micron or more dimensions There are many cases. For this reason, the vanadium dioxide (VO 2 ) particles obtained by this method have problems such that the dimming characteristics cannot be obtained or the obtained dimming characteristics are extremely inferior.
  • Non-Patent Documents 1 and 2 Recently, several reports have been made on methods for producing vanadium dioxide (VO 2 ) fine particles by hydrothermal reaction or the like (Non-Patent Documents 1 and 2).
  • the obtained vanadium dioxide (VO 2 ) fine particle precursor is an A phase, a B phase, or an amorphous phase that does not exhibit automatic dimming property, and has good dimming property for the fine particles.
  • an additional process such as reduction firing is required.
  • the present invention has been made in view of such problems, and the present invention provides fine particles containing R-phase vanadium dioxide (VO 2 ) particles and having good automatic light control properties and dispersions thereof. With the goal.
  • Another object of the present invention is to provide a method for producing such fine particles, and a light control paint, a light control film and a light control ink containing such fine particles.
  • thermochromic microparticles comprising particles of vanadium dioxide rutile (R phase) (VO 2), and particles of rutile titanium dioxide (TiO 2), Particles of at least one of the vanadium dioxide (VO 2) is on the particles of the titanium dioxide (TiO 2), larger than the particles of the titanium dioxide (TiO 2), and characterized in that growing the rod Thermochromic microparticles are provided.
  • thermochromic fine particles according to the present invention may further contain particles of anatase-type titanium dioxide (TiO 2 ).
  • thermochromic fine particles further include tungsten (W), molybdenum (Mo), niobium (Nb), tantalum (Ta), tin (Sn), rhenium (Re), iridium (Ir), and osmium (Os). ), Ruthenium (Ru), germanium (Ge), chromium (Cr), iron (Fe), gallium (Ga), aluminum (Al), fluorine (F) and phosphorus (P), at least It may contain one element.
  • the content of the at least one element may be in the range of 0.1 to 5.0 atomic% with respect to vanadium contained in the thermochromic fine particles.
  • thermochromic fine particles the weight ratio of the amount of vanadium dioxide (VO 2 ) particles to the amount of titanium dioxide (TiO 2 ) particles was in the range of 5:95 to 95: 5. May be.
  • thermochromic fine particles the content of vanadium dioxide (VO 2 ) may be in the range of 5 to 95% by weight with respect to the whole thermochromic fine particles.
  • thermochromic fine particles according to the present invention may have an average dimension in a direction perpendicular to the longitudinal axis of the rod of submicron or less.
  • thermochromic fine particles according to the present invention may have an average dimension in a direction perpendicular to the longitudinal axis of the rod of 200 nm or less.
  • thermochromic fine particles according to the present invention at least a part of the surface of the thermochromic fine particles may be subjected to coating treatment and / or surface modification treatment.
  • thermochromic fine particles according to the present invention may have both dimming characteristics and photocatalytic characteristics.
  • thermochromic fine particles having the above-described characteristics.
  • the present invention also provides a method for producing fine particles containing rutile (R phase) vanadium dioxide (VO 2 ) particles, (1) preparing a solution containing a compound containing vanadium and water; (2) adding particles of titanium dioxide (TiO 2 ) at least partly of a rutile-type crystal phase to the solution to prepare a suspension; (3) Hydrothermal reaction of the suspension, whereby fine particles containing particles of R-phase vanadium dioxide (VO 2 ) are obtained;
  • the manufacturing method characterized by having is provided.
  • the compound containing vanadium is: Divanadium pentoxide (V 2 O 5 ), ammonium vanadate (NH 4 VO 3 ), vanadyl oxalate hydrate (VOC 2 O 4 .nH 2 O), vanadium oxide sulfate (VOSO 4 .nH 2 O), It may be at least one compound selected from the group consisting of vanadium trichloride oxide (VOCl 3 ) and sodium metavanadate (NaVO 3 ).
  • the production method according to the present invention may further include a step of adding a reducing agent and / or an oxidizing agent in the step (1) or (2).
  • the reducing agent and / or oxidizing agent is Oxalic acid, acetic acid, formic acid, malonic acid, propionic acid, succinic acid, citric acid, amino acids, ascorbic acid, butyric acid, valeric acid, benzoic acid, gallic acid, melittic acid, lactic acid, malic acid, maleic acid, aconitic acid, glutar Consists of acid, methanol, phenol, ethylene glycol, cresol, ethanol, dimethylformaldehyde, acetonitrile, acetone, ethyl acetate, propanol, butanol, hydrazine, hydrogen peroxide, peracetic acid, chloramine, dimethyl sulfoxide, metachloroperbenzoic acid, and nitric acid It may be at least one compound selected from the group.
  • the production method according to the present invention may further include a step of adding a pH adjusting agent in the step (1) or (2).
  • the pH adjuster is At least one selected from the group consisting of sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, boric acid, hydrofluoric acid, ammonium hydroxide, lithium hydroxide, sodium hydroxide, potassium hydroxide, magnesium hydroxide, and calcium hydroxide It may be.
  • the production method according to the present invention comprises: In the step (1) or (2), the solution is further added to tungsten (W), molybdenum (Mo), niobium (Nb), tantalum (Ta), tin (Sn), rhenium (Re), iridium (Ir ), Osmium (Os), ruthenium (Ru), germanium (Ge), chromium (Cr), iron (Fe), gallium (Ga), aluminum (Al), fluorine (F) and phosphorus (P).
  • a step of adding at least one selected element or compound thereof may be included.
  • the step (3) may be performed at a temperature of 280 ° C. or lower, or may be performed at a temperature of 250 ° C. or lower, or may be performed at a temperature of 220 ° C. or lower.
  • step (3) may be performed within a time range of 1 hour to 5 days.
  • the manufacturing method according to the present invention further includes: (4) After the step (3), the obtained fine particles may have a step of surface treatment or surface modification.
  • the amount of the vanadium dioxide (VO 2 ) particles may be in the range of 5 to 95% by weight with respect to the total weight of the fine particles.
  • the present invention provides a light control paint, a light control film, and a light control ink containing the thermochromic fine particles having the above-mentioned characteristics.
  • thermochromic fine particles comprising rutile type (R phase) vanadium dioxide (VO 2 ) particles and rutile type titanium dioxide (TiO 2 ) particles, (1) preparing a solution containing a compound containing vanadium and water; (2) to the solution, a step of at least partially by adding particles of titanium dioxide consisting of rutile crystal phase (TiO 2), to prepare a suspension, (3) hydrothermal reaction of the suspension; Have Thereby, the thermochromic fine particles are obtained, In the thermochromic fine particles, Particles of at least one of the vanadium dioxide (VO 2) is on the particles of the titanium dioxide (TiO 2), has grown larger than the particle of the titanium dioxide (TiO 2), The manufacturing method is characterized in that the at least one vanadium dioxide (VO 2 ) particle has the same crystal axis as the titanium dioxide (TiO 2 ) particle.
  • fine particles containing R-phase vanadium dioxide (VO 2 ) particles and having good automatic light control properties and dispersions thereof.
  • fine-particles are provided.
  • FIG. 3 is a flowchart for manufacturing fine particles according to the present invention.
  • 2 is an XRD pattern of fine particles according to Example 1.
  • FIG. 2 is a SEM photograph of fine particles according to Example 1. It is a figure which shows the permeation
  • FIG. It is a figure which shows the temperature dependence of the infrared transmittance
  • FIG. 3 is an XRD pattern of fine particles according to Example 2.
  • FIG. 4 is a SEM photograph of fine particles according to Example 2.
  • FIG. 3 is an XRD pattern of particles according to Comparative Example 1.
  • 4 is a SEM photograph of particles according to Comparative Example 1.
  • 4 is a result of XRD measurement of fine particles according to Example 4.
  • FIG. 3 is an XRD pattern of particles according to Comparative Example 1.
  • 4 is a SEM photograph of particles according to Comparative Example 1.
  • 4 is a result of XRD measurement of fine particles according to Example 4.
  • TiO 2 seed crystal
  • FIG. 4 is an XRD pattern of fine particles according to Comparative Example 2.
  • vanadium dioxide (VO 2 ) particles having a rutile crystal phase (R phase) a precursor of vanadium dioxide (VO 2 ) is synthesized from a solution containing vanadium ions, and this precursor is obtained.
  • a process of heat treating the body at a high temperature (350 ° C. to 650 ° C.) was necessary.
  • A-phase or B-phase vanadium dioxide (VO 2 ) particles are prepared using a hydrothermal reaction, and this is subjected to high-temperature heat treatment (350 ° C. to 650 ° C.), whereby R-phase vanadium dioxide (VO 2). )
  • “hydrothermal reaction” means a chemical reaction that occurs in hot water (subcritical water) whose temperature and pressure are lower than the critical point of water (375 ° C., 22 MPa).
  • the inventor of the present application when a hydrothermal reaction is caused in a state where a vanadium compound and rutile-type titanium dioxide (TiO 2 ) particles are mixed in an aqueous solution, The present inventors have found that vanadium dioxide (VO 2 ) particles composed of an R phase (for example, in the order of submicron) are directly formed, leading to the present invention.
  • VO 2 vanadium dioxide
  • the vanadium dioxide (VO 2 ) containing the R phase is mixed with the titanium dioxide (TiO 2 ) particles containing the rutile-type crystal phase without performing post-heat treatment as in the prior art. Fine particles can be obtained. Moreover, since the fine particles obtained are extremely fine particles of submicron or less, good dimming properties can be expressed without any additional steps.
  • fine particles containing sub-micron R phase vanadium dioxide (VO 2 ) are obtained by hydrothermal reaction of a solution containing vanadium compounds and rutile-type titanium dioxide (TiO 2 ) particles.
  • the reason why it can be obtained directly is not fully understood. However, one of the reasons is considered that the lattice constants of the R phase of vanadium dioxide (VO 2 ) and the rutile crystal phase of titanium dioxide (TiO 2 ) are very close to each other.
  • phase vanadium dioxide has approached the lattice constant (VO 2) as preferentially species grown crystal, finally R It is considered that fine particles containing a large amount of phase vanadium dioxide (VO 2 ) can be obtained.
  • the length of the rod-like vanadium dioxide (VO 2 ) particles in the growth axis (longitudinal axis) direction is, for example, about 1.5 to 5 times larger than that of the titanium dioxide (TiO 2 ) particles in the rutile crystal phase. It has become.
  • R-phase vanadium dioxide (VO 2 ) crystals there are currently two types of growth phases of R-phase vanadium dioxide (VO 2 ) crystals: one is titanium dioxide (TiO 2).
  • TiO 2 titanium dioxide
  • Seed crystal an R-phase vanadium dioxide (VO 2 ) crystal grows in one direction.
  • the other is a form in which R-phase vanadium dioxide (VO 2 ) particles grow in opposite directions to the seed crystal of titanium dioxide (TiO 2 ) particles.
  • the R-phase vanadium dioxide (VO 2 ) 2 The crystal grows along a single growth axis on both sides of the seed crystal.
  • vanadium dioxide of R-phase (VO 2) crystal is grown in a state of uniform crystal axes a seed crystal.
  • the fine particles in the present invention are on the order of submicron or less, and have an average particle diameter in the range of 50 nm to 250 nm, for example.
  • the average particle size is, for example, 200 nm or less, particularly 100 nm or less, extremely good light control is obtained.
  • the “average particle size” of the fine particles according to the present invention was calculated as follows.
  • the “maximum length” means that the maximum length of the diameter portion of such fine particles when the selected fine particles are so-called isotropic particles such as a substantially spherical shape, a substantially elliptical shape, a substantially cubic shape, or the like. Means. The obtained “maximum length” of 10 points was averaged to obtain the “average particle diameter” of the fine particles.
  • the average particle diameter of the rod-shaped particles is the average particle diameter of rutile-type crystal phase titanium dioxide (TiO 2 ) particles (hereinafter referred to as “seed crystals”) that are initially added as raw materials. Note that it depends. That is, when a titanium dioxide (TiO 2 ) particle having a large average particle diameter is used as a seed crystal, the dimension in the direction perpendicular to the longitudinal axis of the rod-shaped particle becomes large, and titanium dioxide (TiO 2 having a small average particle diameter). 2 ) When the particle is used as a seed crystal, the dimension in the direction perpendicular to the longitudinal axis of the rod-like particle becomes small. Therefore, in the present invention, the size of the obtained rod-shaped particles can be easily controlled by changing the average particle size of the seed crystals.
  • the ratio of the amount of vanadium dioxide (VO 2 ) particles to the amount of titanium dioxide (TiO 2 ) particles is 5:95 to 95: 5. Is preferable, and a range of 10:90 to 90:10 is more preferable. This quantitative ratio (weight ratio, VO 2 : TiO 2 ) is, for example, 2: 1.
  • the content of vanadium dioxide (VO 2 ) in the fine particles according to the present invention is preferably in the range of 5 to 95% by weight, more preferably in the range of 10 to 95% by weight.
  • the content of vanadium dioxide (VO 2 ) in the fine particles according to the present invention is more preferably in the range of 50 wt% to 95 wt%.
  • the content of vanadium dioxide (VO 2 ) in the fine particles is, for example, 67% by weight.
  • fine particles according to the present invention may contain titanium dioxide of the anatase type crystal phase (TiO 2). This makes it possible to impart photocatalytic properties to the fine particles in addition to the dimming property.
  • the ratio of the rutile type crystal phase and the anatase type crystal phase contained in the titanium dioxide (TiO 2 ) particles is not particularly limited, but may be in the range of, for example, 5:95 to 95: 5.
  • the weight ratio of the rutile crystal phase and the anatase crystal phase is in the range of 70:30 to 20:80, for example, 50:50. preferable. If the ratio is less than 70:30, sufficient photocatalytic properties cannot be obtained for the fine particles. Conversely, if the ratio is more than 20:80, a sufficient amount of R-phase vanadium dioxide (VO 2 ) particles are produced. This is because it may not be obtained.
  • the fine particles according to the present invention may contain at least one element (including a compound) selected from the following substance group A.
  • Substance group A Tungsten (W), molybdenum (Mo), niobium (Nb), tantalum (Ta), tin (Sn), rhenium (Re), iridium (Ir), osmium (Os), ruthenium (Ru), germanium (Ge), chromium (Cr), iron (Fe), gallium (Ga), aluminum (Al), fluorine (F) and phosphorus (P).
  • the phase transition characteristics (particularly the light control temperature) of the fine particles can be controlled.
  • the transition temperature (dimming temperature) of pure R-phase vanadium dioxide (VO 2 ) crystal is about 68 ° C., but when a substance selected from the aforementioned substance group A is added, the transition temperature (dimming temperature) is finally obtained.
  • the transition temperature (light control temperature) of the resulting fine particles can be lowered to a predetermined temperature.
  • the total amount of substances selected from substance group A with respect to the finally obtained fine particles is sufficient to be about 0.1 to 5.0 atomic% with respect to the vanadium atoms contained in the fine particles. 0.0 atomic percent. This is because, if an amount of 5.0 atomic% or more is added, the light control performance (light control width) of the fine particles may be significantly deteriorated.
  • the surface of the fine particles according to the present invention may be subjected to coating treatment and / or surface modification treatment.
  • the surface of the fine particles can be protected, the surface properties can be modified, and the optical characteristics can be controlled.
  • the fine particles according to the present invention are dispersed in an organic solvent such as alcohol or an inorganic solvent such as water, a dispersion containing dimmable fine particles can be provided.
  • FIG. 1 shows a flowchart for producing fine particles according to the present invention.
  • any substance included in the following substance group B is prepared (step S110 in FIG. 1).
  • Substance group B vanadium pentoxide (V 2 O 5 ), ammonium vanadate (NH 4 VO 3 ), vanadyl oxalate hydrate (VOC 2 O 4 ⁇ nH 2 O), vanadium oxide sulfate (VOSO 4 ⁇ nH) 2 O), 3 chloride vanadium oxide (VOCl 3), and sodium metavanadate (NaVO 3).
  • the “solution” may be a solution in which the vanadium source is dissolved in an ionic state, or may be a suspension solution in which the vanadium source is not dissolved but suspended.
  • an oxidizing agent and / or a reducing agent may optionally be added to this solution.
  • a pH adjusting agent may optionally be added to this solution.
  • oxidizing agent and / or reducing agent examples include oxalic acid, acetic acid, formic acid, malonic acid, propionic acid, succinic acid, citric acid, amino acids, ascorbic acid, butyric acid, valeric acid, benzoic acid, gallic acid, melittic acid, Lactic acid, malic acid, maleic acid, aconitic acid, glutaric acid, methanol, phenol, ethylene glycol, cresol, ethanol, dimethylformaldehyde, acetonitrile, acetone, ethyl acetate, propanol, butanol, hydrazine, hydrogen peroxide, peracetic acid, chloramine, At least one substance selected from the group consisting of dimethyl sulfoxide, metachloroperbenzoic acid, and nitric acid may be used. As a matter of course, these substances may be hydrates (the same applies to the following pH adjusters).
  • pH adjuster examples include sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, boric acid, hydrofluoric acid, ammonium hydroxide, lithium hydroxide, sodium hydroxide, potassium hydroxide, magnesium hydroxide, and calcium hydroxide. .
  • One or more compounds may be selected from these compounds.
  • the description of the oxidizing agent, the reducing agent, and the pH adjusting agent is merely an example, and other substances may be selected.
  • titanium dioxide (TiO 2 ) particles containing a rutile crystal phase are prepared.
  • the titanium dioxide (TiO 2 ) particles commercially available particles may be used, or those prepared from raw materials containing titanium (Ti) other than titanium dioxide (TiO 2 ) may be used.
  • the average particle diameter of the titanium dioxide (TiO 2 ) particles is preferably about 10 nm to 500 nm, and more preferably about 50 nm to 100 nm.
  • the average particle size of the titanium dioxide (TiO 2 ) particles can be significantly reduced (for example, 100 nm to 200 nm or less).
  • titanium dioxide (TiO 2 ) particles containing an anatase type crystal phase in addition to the rutile type crystal phase are used.
  • the titanium dioxide (TiO 2 ) particles prepared in (3) are added to the above solution to prepare a suspension (step S130 in FIG. 1).
  • the amount of titanium dioxide (TiO 2 ) particles to be added is not particularly limited.
  • the amount ratio of vanadium dioxide (VO 2 ) converted from the weight of the vanadium source to the amount of titanium dioxide (TiO 2 ) particles added was in the range of 5:95 to 95: 5. May be.
  • the weight of titanium dioxide (TiO 2 ) contained in the finally obtained fine particles can be about 5 wt% to 95 wt%.
  • the amount ratio of vanadium dioxide (VO 2 ) converted from the weight of the vanadium source and the amount of titanium dioxide (TiO 2 ) particles added is in the range of 10:90 to 90:10.
  • the weight of titanium dioxide (TiO 2 ) contained in the finally obtained fine particles is about 10% to 90% by weight.
  • the amount ratio of vanadium dioxide (VO 2 ) converted from the weight of the vanadium source and the amount of titanium dioxide (TiO 2 ) particles added (VO 2 : TiO 2 ) is, for example, 2: 1.
  • At least one element selected from the following substance group C or a compound thereof may be further added to the suspension:
  • Material group C tungsten (W), molybdenum (Mo), niobium (Nb), tantalum (Ta), tin (Sn), rhenium (Re), iridium (Ir), osmium (Os), ruthenium (Ru), germanium (Ge), chromium (Cr), iron (Fe), gallium (Ga), aluminum (Al), fluorine (F) and phosphorus (P).
  • a hydrothermal reaction process is performed using the suspension prepared by the above-described method (step S140 in FIG. 1).
  • a hydrothermal reaction vessel such as an autoclave is used for the hydrothermal reaction treatment.
  • the treatment temperature is, for example, in the range of 200 ° C. to 300 ° C., but in the method of the present invention, the effects as described above, that is, titanium dioxide (TiO 2 ) particles containing a rutile crystal phase are converted into R phase dioxide dioxide. Since it functions as a seed crystal of vanadium (VO 2 ), fine particles having good light control can be formed with good reproducibility even at a temperature of 280 ° C., 250 ° C. or lower, or 220 ° C. or lower.
  • the treatment time varies depending on the amount of the suspension, the treatment temperature, the treatment pressure, the amount ratio of the vanadium compound and titanium dioxide (TiO 2 ) in the suspension, etc., but in the range of about 1 hour to 7 days. Yes, for example, about 24 hours.
  • the surface of the obtained fine particles may be subjected to coating treatment or surface modification treatment. Thereby, the surface of the fine particles can be protected and / or surface-modified fine particles can be obtained.
  • the optical characteristics (dimming characteristics) of the fine particles can be controlled.
  • the coating treatment or the surface modification treatment may be performed with a silane coupling agent, for example.
  • the present invention is characterized in that fine particles containing R-phase vanadium dioxide (VO 2 ) particles can be obtained basically only by a hydrothermal reaction. That is, as a basic synthesis reaction, only one step of hydrothermal reaction is required. Furthermore, the fine particles obtained are characterized in that they exist in a monodispersed state in the solution.
  • VO 2 vanadium dioxide
  • the product is filtered and collected from the solution, and this is washed and dried to obtain the fine particles according to the present invention.
  • the solvent in the solution may be replaced with a predetermined solvent.
  • the average particle size of the fine particles obtained is in the range of 50 nm to 250 nm, for example, about 100 nm.
  • a solution containing a compound containing vanadium and water is prepared.
  • Titanium dioxide at least partly composed of a rutile crystal phase is later added to this solution.
  • TiO 2 Titanium dioxide particles are added to prepare a suspension, and (3) the suspension is hydrothermally reacted to obtain R-phase vanadium dioxide (VO 2 ) fine particles.
  • VO 2 R-phase vanadium dioxide
  • a compound containing vanadium (V), titanium dioxide (TiO 2 ) particles at least partially made of a rutile-type crystal phase, and water are directly mixed, and a hydrothermal reaction is performed using this mixed solution.
  • V vanadium
  • TiO 2 titanium dioxide
  • the fine particles according to the present invention may be obtained.
  • the fine particles and the dispersion thereof according to the present invention can be applied to, for example, a light control paint, a light control film, and a light control ink.
  • the light-control paint and the light-control ink can be easily prepared by adding the fine particles or dispersion according to the present invention to a general (eg, commercially available) paint.
  • the light control film can be easily prepared by attaching the fine particles or the dispersion according to the present invention to a transparent film such as a general (eg, commercially available) resin film.
  • Example 1 First, vanadium pentoxide (V 2 O 5 , Wako special grade), oxalic acid dihydrate ((COOH) 2 ⁇ 2H 2 O, Wako reagent special grade) and 200 ml of pure water were used at 1: 2: 300 at room temperature. An aqueous solution was prepared by mixing and stirring at a molar ratio. Further, 1.5 ml of sulfuric acid was added to this aqueous solution for pH adjustment.
  • TiO 2 titanium dioxide
  • Purity 99% or more, average particle size 100 nm or less, rutile phase ratio 40% or more is added to 10 ml of this solution as a seed crystal by weight with respect to V 2 O 5 .
  • a 50% ratio was added to obtain a suspension.
  • this suspension was sealed in a commercially available autoclave for hydrothermal reaction (HU-25 type, manufactured by Sanai Kagaku Co., Ltd.) (with a SUS body equipped with a 25 ml Teflon (registered trademark) inner cylinder). It was kept at 24 ° C. for 24 hours and subjected to hydrothermal reaction. Thereby, fine particles in a monodispersed state were obtained in the solution.
  • a commercially available autoclave for hydrothermal reaction (HU-25 type, manufactured by Sanai Kagaku Co., Ltd.) (with a SUS body equipped with a 25 ml Teflon (registered trademark) inner cylinder). It was kept at 24 ° C. for 24 hours and subjected to hydrothermal reaction. Thereby, fine particles in a monodispersed state were obtained in the solution.
  • the obtained product was filtered, washed with water or ethanol, and then dried with a constant temperature dryer at 60 ° C. for 10 hours to obtain fine particles. Further, by replacing the solvent with ethanol in the solution after the hydrothermal reaction, a dispersion containing fine particles (which was found to contain R-phase vanadium dioxide (VO 2 ) fine particles in the subsequent analysis) was obtained.
  • VO 2 vanadium dioxide
  • a 5% aqueous solution of a silane coupling agent (KBM-603 manufactured by Shin-Etsu Chemical Co., Ltd.) was prepared, and the fine particles obtained in the above-described step were put into this aqueous solution, and the surface of the fine particles was subjected to silane coupling treatment. . Thereafter, the fine particles were collected and dried at 110 ° C. for 1 hour.
  • a silane coupling agent KBM-603 manufactured by Shin-Etsu Chemical Co., Ltd.
  • the crystallinity of the fine particles thus obtained was evaluated by an XRD apparatus (X'Pert-MPD type manufactured by PHILIPS). Further, the fine structure of the obtained fine particles was evaluated using an FE-SEM apparatus (Hitachi Hitachi S-4300 type).
  • the obtained fine particles were uniformly applied to a commercially available highly transparent adhesive transfer tape, and this tape was attached to a transparent resin film. This gave the sample light control film having a VO 2 microparticles.
  • the obtained fine particles were attached to a glass substrate to obtain a light control glass substrate sample (size: 25 mm long ⁇ 25 mm wide ⁇ 1 mm thick) in which VO 2 fine particles were placed.
  • the optical transmission characteristics of the light control glass substrate sample were measured using a spectrophotometer with a heating attachment (JASCO Corporation V-570 type, 190-2500 nm).
  • the measurement temperature was 20 ° C. and 80 ° C.
  • the temperature dependence of the infrared transmittance of the light control glass substrate sample was measured. The measurement was performed at a wavelength of 2000 nm.
  • the result of the XRD measurement is shown in FIG.
  • the obtained fine particles were confirmed to contain a rutile type titanium dioxide (TiO 2 ) crystal phase and a rutile type vanadium dioxide (VO 2 ) crystal phase (in FIG. 2, “R” Notation).
  • a peak of anatase type titanium dioxide (TiO 2 ) that was probably present in the seed crystal was also observed (denoted as “A”).
  • the crystalline phase of vanadium dioxide other than R-phase (VO 2) i.e. the A-phase or B phase, was hardly observed. From this, the obtained fine particles are expected to have extremely good automatic light control characteristics.
  • the anatase type titanium dioxide (TiO 2 ) is contained in the fine particles, it is expected that photocatalytic properties can be obtained.
  • FIG. 3 shows an SEM photograph of the fine particles.
  • Rutile-type titanium dioxide (TiO 2 ) nanoparticles and R-phase vanadium dioxide (VO 2 ) nanorods grown using the titanium dioxide (TiO 2 ) particles as seed crystals and larger than the titanium dioxide (TiO 2 ) particles was confirmed.
  • Vanadium dioxide (VO 2 ) is bonded to rutile titanium dioxide (TiO 2 ) in a state where crystal axes are aligned.
  • the dimension in the direction perpendicular to the crystal axis (growth axis) of the nanorod is in the nano order.
  • anatase-type titanium dioxide (TiO 2 ) particles that did not contribute to the growth reaction of R-phase vanadium dioxide (VO 2 ) are dispersed in a substantially spherical state around the rod-like particles.
  • FIG. 4 shows the optical transmission characteristics of the light control glass substrate sample at 20 ° C. and 80 ° C. As the temperature rises, the transmittance changes greatly, and it can be seen that good automatic light control properties are exhibited.
  • FIG. 5 shows the temperature dependence of the infrared transmittance at 2000 nm. From this result, it was confirmed that the infrared transmittance of the sample changed rapidly with respect to the temperature change. The transition temperature of the sample was about 64 ° C.
  • Example 2 In Example 2, rutile type titanium dioxide prepared in a laboratory was used as a seed crystal.
  • TiCl 4 titanium tetrachloride
  • Ti concentration 16.5 wt% 10 ml of titanium tetrachloride (TiCl 4 ) aqueous solution (Ti concentration 16.5 wt%) was slowly dropped into 30 ml of pure water while stirring to prepare a diluted solution of titanium chloride.
  • This diluted solution was put in a glass beaker, covered, placed in a constant temperature dryer, and kept at 55 ° C. for 6 hours.
  • the product obtained after the retention was filtered, repeatedly washed with pure water, and then dried.
  • white titanium oxide powder was obtained.
  • FIG. 6 the XRD measurement result of the microparticles
  • FIG. 7 shows an SEM photograph of the fine particles. Isotropic titanium dioxide size of about 30 ⁇ 50 nm on the particles of (TiO 2), length 100 ⁇ 200 nm of approximately rod-shaped vanadium dioxide (VO 2) crystals were observed to have grown .
  • Example 3 Fine particles according to Example 3 were prepared in the same procedure as in Example 1 described above. However, in this example, ammonium tungstate parapentahydrate (Wako Pure Chemical Industries, Ltd., composition: about 2%) was added to a solution containing vanadium pentoxide, oxalic acid dihydrate, and pure water (and a small amount of sulfuric acid). (NH 4) 10W 12 O 41 ⁇ 5H 2 O) the W: V atomic ratio was dissolved at 1.0%.
  • FIG. 8 shows the measurement results of the optical transmission characteristics of the light control glass substrate sample at 10 ° C. and 80 ° C. Also in this sample, it was confirmed that the transmittance changed due to the temperature change.
  • FIG. 9 shows the results of measuring the temperature dependence of the infrared transmittance at a wavelength of 2000 nm using this sample. As can be seen from the figure, the transmittance changes rapidly with increasing temperature. In this example, the transition temperature was about 41 ° C., and it was confirmed that the transition temperature was lowered by the addition of tungsten.
  • Comparative Example 1 Particles according to Comparative Example 1 were prepared in the same procedure as Example 1 except that seed crystals (TiO 2 ) were not added.
  • FIG. 10 shows the XRD measurement results of the obtained particles.
  • FIG. 11 shows an SEM photograph of the obtained particles.
  • Example 4 First, vanadyl oxalate n-hydrate (VOC 2 O 4 ⁇ nH 2 O manufactured by Wako Pure Chemical Industries) 0.81 grams, hydrogen peroxide (special grade of Wako Pure Chemical Industries) 0.36 grams, commercially available high-purity titanium oxide ( TiO 2 ) fine particles (purity 99.9% or more, rutile phase content 99%, average particle size about 200 nm) 0.07 g and 10 ml of pure water were mixed well to obtain a suspension.
  • VOC 2 O 4 ⁇ nH 2 O manufactured by Wako Pure Chemical Industries
  • hydrogen peroxide special grade of Wako Pure Chemical Industries
  • TiO 2 commercially available high-purity titanium oxide fine particles (purity 99.9% or more, rutile phase content 99%, average particle size about 200 nm) 0.07 g and 10 ml of pure water were mixed well to obtain a suspension.
  • This suspension was sealed in a commercially available autoclave for hydrothermal reaction (HU-25 type, manufactured by Sanai Kagaku Co., Ltd.) (with a SUS body equipped with a 25 ml volume Teflon (registered trademark) inner cylinder) at 270 ° C. The mixture was held for 16 hours and reacted hydrothermally.
  • a commercially available autoclave for hydrothermal reaction (HU-25 type, manufactured by Sanai Kagaku Co., Ltd.) (with a SUS body equipped with a 25 ml volume Teflon (registered trademark) inner cylinder) at 270 ° C.
  • the mixture was held for 16 hours and reacted hydrothermally.
  • the obtained product was filtered, washed with pure water and ethanol, and then dried with a constant temperature dryer at 60 ° C. for 10 hours, so that the weight ratio of vanadium dioxide (VO 2 ) to titanium dioxide (TiO 2 ) was About 8: 2 fine particles were obtained.
  • VO 2 vanadium dioxide
  • TiO 2 titanium dioxide
  • the crystallinity of the obtained fine particles was evaluated with an XRD apparatus (X'Pert-MPD type manufactured by PHILIPS). Further, the fine structure of the fine particles was evaluated by a scanning electron microscope (FE-SEM device manufactured by Hitachi, Hitachi S-4300 type) and a transmission electron microscope (JEOL JEM2010 type: JEOL high resolution transmission electron microscope).
  • rod-shaped fine particles were analyzed using an EDX (energy dispersive X-ray) microregion composition analyzer attached to the scanning electron microscope.
  • EDX energy dispersive X-ray
  • FIG. 12 shows the results of XRD measurement of the fine particles.
  • the obtained diffraction peak was in good agreement with that of the R-phase vanadium dioxide (VO 2 ) crystal.
  • VO 2 R-phase vanadium dioxide
  • a relatively low diffraction peak of rutile type titanium dioxide (TiO 2 ) was observed.
  • a diffraction peak of anatase type titanium dioxide (TiO 2 ) was not observed.
  • the crystallinity of the formed R-phase vanadium dioxide is presumed to be very good due to the intensity of the diffraction peak and the small half-value width.
  • FIG. 13 shows an SEM photograph of the obtained fine particles.
  • the photograph (a) shows the form of rutile-type titanium dioxide (TiO 2 ) particles used as seed crystals, and the photograph (b) shows the form of fine particles finally obtained. ing.
  • titanium dioxide (TiO 2 ) has hardly changed.
  • the vanadium dioxide (VO 2 ) crystal grows greatly in a rod shape in a state of being bonded to the titanium dioxide (TiO 2 ) particles as a nucleus.
  • the dimensions of the vanadium dioxide (VO 2 ) crystal are several times larger than the dimensions of titanium dioxide (TiO 2 ).
  • FIG. 14 shows the results of elemental analysis of one crystal selected from the obtained fine particles.
  • the photograph on the left shows an enlarged SEM photograph of the rod-shaped crystal used for the analysis
  • the figure on the right shows the concentration distribution of titanium and vanadium along the longitudinal axis (arrow in the figure) of the rod-shaped crystal. Show.
  • titanium dioxide (TiO 2 ) is present at the center of the rod-shaped crystal, and vanadium dioxide (VO 2 ) crystals are grown on both sides thereof.
  • vanadium dioxide (VO 2 ) and titanium dioxide (TiO 2 ) have the same crystal axis, and vanadium dioxide (VO 2 ) is epitaxially grown using titanium dioxide (TiO 2 ) as a seed crystal. It can be said that.
  • FIG. 15 shows a transmission electron microscope (TEM) photograph of the obtained fine particles. From this image and the result of EDX analysis of the minute area, it can be seen that a titanium dioxide (TiO 2 ) seed crystal with uniform crystal grains exists inside the vanadium dioxide (VO 2 ) particles grown slightly larger. The electron diffraction pattern confirmed that the fine particles were single crystals.
  • TiO 2 titanium dioxide
  • VO 2 vanadium dioxide
  • the size of the fine particles obtained in this example is significantly larger than that in Example 1 described above (both figures are approximately the same magnification). ). This is considered to be due to the difference in the average particle size of rutile titanium dioxide (TiO 2 ) used in both examples. That is, in Example 1, titanium dioxide (TiO 2 ) having an average particle diameter of 100 nm was used, whereas in Example 4, rutile titanium dioxide (TiO 2 ) having an average particle diameter of 200 nm as a seed crystal. This difference is considered to have influenced the size of the fine particles finally obtained.
  • thermochromic fine particles finally obtained can be adjusted by changing the average particle diameter of rutile-type titanium dioxide (TiO 2 ) serving as a seed crystal. That is, the present invention has an advantage that the dimensions of the thermochromic fine particles can be easily controlled.
  • Example 5 Vanadyl oxalate n hydrate (VOC 2 O 4 ⁇ nH 2 O manufactured by Wako Pure Chemical Industries) 0.81 grams, hydrogen peroxide (special grade of Wako Pure Chemical Industries) 0.36 grams, commercially available titanium dioxide (TiO 2 ) powder (Purity 99% or more, average particle size 100 nm or less, weight ratio of rutile phase is 40% or more, including anatase phase) 0.15 grams, and ammonium tungstate parapentahydrate (Wako Pure Chemicals, composition about the (NH 4) 10W 12 O 41 ⁇ 5H 2 O) 0.00957 grams dissolved in pure water 10 ml, to obtain a suspension.
  • the obtained product was filtered, washed with pure water and ethanol, and then dried with a constant temperature dryer at 60 ° C. for 10 hours to obtain fine particles.
  • the obtained fine particles were uniformly applied to a commercially available highly transparent adhesive transfer tape, and this tape was attached to a transparent resin film. Thereby, a light control film sample was obtained.
  • the obtained fine particles were affixed to a glass substrate to obtain a light control glass substrate sample (size: length 25 mm ⁇ width 25 mm ⁇ thickness 1 mm) provided with the fine particles.
  • the optical transmission characteristics of the light control glass substrate sample were measured by the same method as in Example 1 described above. Moreover, the temperature dependence of the infrared transmittance of the light control glass substrate sample was measured. The measurement was performed at a wavelength of 2000 nm.
  • FIG. 16 shows the measurement results of optical transmission characteristics of the light control glass substrate sample at 20 ° C. and 80 ° C. A clear change in optical transmission due to the phase transition was observed.
  • FIG. 17 shows the temperature dependence of the infrared transmittance of the light control glass substrate sample at a wavelength of 2000 nm. As is clear from this result, the transmittance changed rapidly with increasing temperature. In this example, the transition temperature was about 50 ° C.
  • Example 6 Autoclaving 0.43 grams of ammonium vanadate (NH 4 VO 3 ), 0.35 grams of oxalic acid dihydrate, 0.15 grams of titanium dioxide (TiO 2 ) (rutile phase 40% or more), and 10 ml of pure water The hydrothermal reaction was carried out at 270 ° C. for 16 hours. Other procedures are almost the same as those in the fifth embodiment.
  • FIG. 18 shows the measurement results of optical transmission characteristics at 20 ° C. and 80 ° C. of the light control glass substrate sample obtained in this example. As shown in the figure, a clear change in optical transmittance due to phase transition was observed at 20 ° C. and 80 ° C.
  • Example 7 a water-based ink containing thermochromic fine particles was made as an experiment.
  • Example 6 a small amount of the solution after the hydrothermal reaction obtained in Example 6 was collected. Using this solution, ultrasonic dispersion was performed at room temperature for about 20 minutes. Thereafter, pure water was added little by little to the solution, and the concentration was adjusted while visually confirming the color of the solution to finally obtain an aqueous ink having a golden transmitted color.
  • thermochromic characteristics of this water-based ink were evaluated.
  • the dispersed particles in the ink were sufficiently small and did not settle even after being left for a long time.
  • thermochromic properties can be applied to a medium such as paper by coating or printing.
  • Comparative Example 2 By the same procedure as Comparative Example 1, particles according to Comparative Example 2 were prepared. However, in Comparative Example 2, as a seed crystal, in place of the rutile titanium dioxide (TiO 2), anatase titanium dioxide particles (purity 99.7% or more, anatase phase almost 100%, the average particle size of about 100 nm) It was used. The anatase type titanium dioxide particles were added in an amount of 50% by weight with respect to V 2 O 5 . The obtained fine particles were not subjected to surface coating treatment with a silane carpeting agent.
  • rutile titanium dioxide TiO 2
  • anatase titanium dioxide particles purity 99.7% or more, anatase phase almost 100%, the average particle size of about 100 nm
  • the anatase type titanium dioxide particles were added in an amount of 50% by weight with respect to V 2 O 5 .
  • the obtained fine particles were not subjected to surface coating treatment with a silane carpeting agent.
  • FIG. 19 shows an XRD pattern of the obtained fine particles.
  • the obtained peaks correspond to anatase-type titanium dioxide (TiO 2 ) and B-phase vanadium dioxide (VO 2 ), and no R-phase vanadium dioxide (VO 2 ) peak was observed. This indicates that when the seed crystal does not contain rutile-type titanium dioxide (TiO 2 ), R-phase vanadium dioxide (VO 2 ) exhibiting thermochromic properties is not formed.
  • the present invention can be applied to an automatic light control type multifunctional paint and a coating, a resin film, and an ink and a printed matter thereof applied with the same. Moreover, when this invention is applied to the window of a vehicle or a building, a tent material, and the greenhouse film for agriculture, effects, such as control of infrared incident amount and prevention of overheating, can be acquired.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Surface Treatment Of Glass (AREA)
  • Catalysts (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

 ルチル型(R相)の二酸化バナジウム(VO)の粒子と、ルチル型の二酸化チタン(TiO)の粒子とを含むサーモクロミック微粒子であって、少なくとも一つの前記二酸化バナジウム(VO)の粒子は、前記二酸化チタン(TiO)の粒子上に、該二酸化チタン(TiO)の粒子よりも大きく、ロッド状に成長していることを特徴とするサーモクロミック微粒子。

Description

サーモクロミック微粒子、その分散液、その製造方法、ならびに調光性塗料、調光性フィルムおよび調光性インク
 本発明は、微粒子およびその分散液に関し、特に、ルチル型結晶相の二酸化バナジウム(VO)を含む微粒子およびその分散液に関する。また、本発明は、そのような微粒子を製造する方法、ならびにそのような微粒子を含む調光性塗料、調光性フィルムおよび調光性インクに関する。
 住宅やビル等の建物、および車両など移動体など、内部(室内、車両内)と外部環境との間で大きな熱交換が生じる箇所(例えば窓ガラス)において、省エネ性と快適性とを両立するため、自動調光材料の適用が期待されている(例えば特許文献1)。
 「自動調光材料」とは、例えば透明状態/反射状態等の光学的な性質を、温度により制御することが可能な材料である。例えば、建物の窓ガラスにそのような材料を適用した場合、夏には太陽光を反射させて熱を遮断し、冬には太陽光を透過させて熱を吸収させることが可能となる。
 現在最も着目されている自動調光材料の一つに、二酸化バナジウム(VO)を含む自動調光材料がある。この材料は、二酸化バナジウム(VO)の半導体相と金属相との間の相転移の際に生じる、サーモクロミック特性(温度により、光学特性が可逆的に変化する性質)を利用しており、これにより環境温度依存型の調光特性を得ることができる。
 自動調光材料を有するガラスは、例えばガラス基板への二酸化バナジウム(VO)のスパッタリング処理により得ることができる。あるいは、ある基板上に、二酸化バナジウム(VO)薄膜をスパッタリングした後、この薄膜をフィルム側に転写し、さらにフィルムに転写された薄膜を、最終ガラス基板側に転写させることにより、自動調光材料を有するガラスを得ることができる(例えば特許文献2、3)。
 しかしながら、このようなスパッタリング処理による自動調光材料の形成方法では、結晶性の良い二酸化バナジウム(VO)膜を得るには、成膜時に基板を例えば400℃程度まで加熱する必要があり、製造工程が複雑で、コストが高くなるという問題がある。また、既設の建物の窓ガラスに、スパッタリング処理を適用することは、難しいという問題がある。
 このため、別の方法として、二酸化バナジウム(VO)を含む微粒子またはその分散液を調製し、これを例えば接着材を介して、自動調光性を発現させたい部材に設置することにより、自動調光性を有する部材を製造することが検討されている(例えば特許文献4-6)。
特許第2735147号明細書 特許第3849008号明細書 特開2007-326276号公報 特表平10-508573号 特開2004-346260号公報 特開2004-346261号公報
Zhou Gui,et al:Chem.Mater.14(2002)5053 Jianqiu shi,et al:Solar Energy Materials and Solar Cells,91(2007)1856
 ここで、二酸化バナジウム(VO)材料には、A相、B相およびルチル相など、いくつかの結晶相の多形が存在するが、前述のような自動調光性を示す結晶構造は、ルチル型結晶相(以下、「R相」という)に限られる。なお、R相は、転移温度以下では、単斜晶系(monoclinic)の構造を有するため、M相とも呼ばれている。また、二酸化バナジウム(VO)粒子において、実質的に有意な自動調光性を発現させるためには、R相の粒子サイズは、サブミクロン以下の寸法である必要がある。
 前述の特許文献4-6に記載の技術では、最初にバナジウムイオンを含む溶液から二酸化バナジウム(VO)の前駆体を合成し、この前駆体を、例えば350℃~650℃程度の高温で還元焼成したり、熱分解したりすることにより、R相の二酸化バナジウム(VO)粒子を調製している。
 しかしながら、そのような高温の熱処理を実施すると、粒子同士が凝集してしまうため、この方法では、最終的に得られる二酸化バナジウム(VO)粒子の寸法は、ミクロンオーダー以上の寸法となってしまう場合が多い。そのため、この方法で得られた二酸化バナジウム(VO)粒子では、調光特性が得られなかったり、あるいは得られる調光特性が著しく劣るなどの問題がある。
 また最近、水熱反応等による二酸化バナジウム(VO)微粒子の製作方法について、幾つかの報告がされている(非特許文献1、2)。しかしながら、それらの文献に示す方法では、得られる二酸化バナジウム(VO)の微粒子前駆体は、自動調光性を示さないA相またはB相、またはアモルファス相であり、微粒子に良好な調光性を発現させるためには、得られた微粒子をR相に変換するため、さらに還元焼成などの追加のプロセスが必要となる。
 しかしながら、この還元焼成のため、微粒子を高温で熱処理すると、前述のように、粒子同士が凝集してしまうため、最終的にサブミクロンオーダーの微粒子を得ることは極めて難しい。従って前述のような方法で得られたVOを含む微粒子においても、調光性が劣るという問題が生じる。
 本発明は、このような問題に鑑みなされたものであり、本発明では、R相の二酸化バナジウム(VO)粒子を含み、良好な自動調光性を有する微粒子およびその分散液を提供することを目的とする。また、本発明では、そのような微粒子の製造方法、ならびにそのような微粒子を含む調光性塗料、調光性フィルムおよび調光性インクを提供することを目的とする。
 本発明では、ルチル型(R相)の二酸化バナジウム(VO)の粒子と、ルチル型の二酸化チタン(TiO)の粒子とを含むサーモクロミック微粒子であって、
 少なくとも一つの前記二酸化バナジウム(VO)の粒子は、前記二酸化チタン(TiO)の粒子上に、該二酸化チタン(TiO)の粒子よりも大きく、ロッド状に成長していることを特徴とするサーモクロミック微粒子が提供される。
 ここで、本発明によるサーモクロミック微粒子は、さらに、アナターゼ型の二酸化チタン(TiO)の粒子を含んでいても良い。
 また、本発明によるサーモクロミック微粒子は、さらに、タングステン(W)、モリブデン(Mo)、ニオブ(Nb)、タンタル(Ta)、スズ(Sn)、レニウム(Re)、イリジウム(Ir)、オスミウム(Os)、ルテニウム(Ru)、ゲルマニウム(Ge)、クロム(Cr)、鉄(Fe)、ガリウム(Ga)、アルミニウム(Al)、フッ素(F)およびリン(P)からなる群から選定された、少なくとも一つの元素を含んでも良い。
 ここで、前記少なくとも一つの元素の含有量は、当該サーモクロミック微粒子に含まれるバナジウムに対して、0.1~5.0原子%の範囲であっても良い。
 また、本発明によるサーモクロミック微粒子において、前記二酸化バナジウム(VO)の粒子の量と、前記二酸化チタン(TiO)の粒子の量の重量比は、5:95~95:5の範囲であっても良い。
 また、本発明によるサーモクロミック微粒子において、二酸化バナジウム(VO)の含有量は、当該サーモクロミック微粒子全体に対して、5~95重量%の範囲であっても良い。
 また、本発明によるサーモクロミック微粒子は、前記ロッドの長手軸に対して垂直な方向の平均寸法が、サブミクロン以下であっても良い。
 また、本発明によるサーモクロミック微粒子は、前記ロッドの長手軸に対して垂直な方向の平均寸法が、200nm以下であっても良い。
 また、本発明によるサーモクロミック微粒子において、当該サーモクロミック微粒子の表面の少なくとも一部は、コーティング処理および/または表面改質処理されていても良い。
 また、本発明によるサーモクロミック微粒子は、調光特性と、光触媒特性とをともに有しても良い。
 また、本発明では、前述の特徴を有するサーモクロミック微粒子を含む分散液が提供される。
 また、本発明では、ルチル型(R相)の二酸化バナジウム(VO)粒子を含む微粒子の製造方法であって、
(1)バナジウムを含む化合物と、水とを含む溶液を調製するステップと、
(2)前記溶液に、少なくとも一部がルチル型結晶相からなる二酸化チタン(TiO)の粒子を添加して、懸濁液を調製するステップと、
(3)前記懸濁液を水熱反応させるステップであって、これによりR相の二酸化バナジウム(VO)の粒子を含む微粒子が得られるステップと、
 を有することを特徴とする製造方法が提供される。
 本発明による製造方法において、前記バナジウムを含む化合物は、
 五酸化二バナジウム(V)、バナジン酸アンモニウム(NHVO)、シュウ酸バナジル水和物(VOC・nHO)、酸化硫酸バナジウム(VOSO・nHO)、3塩化酸化バナジウム(VOCl)、およびメタバナジン酸ナトリウム(NaVO)からなる群から選定された、少なくとも一つの化合物であっても良い。
 また本発明による製造方法は、前記ステップ(1)または(2)において、さらに、還元剤および/もしくは酸化剤を加えるステップを有しても良い。
 ここで、前記還元剤および/または酸化剤は、
 シュウ酸、酢酸、ギ酸、マロン酸、プロピオン酸、コハク酸、クエン酸、アミノ酸、アスコルビン酸、酪酸、吉草酸、安息香酸、没食子酸、メリト酸、乳酸、リンゴ酸、マレイン酸、アコニット酸、グルタル酸、メタノール、フェノール、エチレングリコール、クレゾール、エタノール、ジメチルホルムアルデヒド、アセトニトリル、アセトン、酢酸エチル、プロパノール、ブタノール、ヒドラジン、過酸化水素、過酢酸、クロラミン、ジメチルスルホキシド、メタクロロ過安息香酸、および硝酸からなる群から選定された、少なくとも一つの化合物であっても良い。
 また、本発明による製造方法は、前記ステップ(1)または(2)において、さらに、pH調整剤を加えるステップを有しても良い。
 この場合、前記pH調整剤は、
 硫酸、塩酸、硝酸、リン酸、ホウ酸、フッ酸、水酸化アンモニウム、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、および水酸化カルシウムからなる群から選定された、少なくとも一つであっても良い。
 また、本発明による製造方法は、
 前記ステップ(1)または(2)において、さらに、前記溶液に、タングステン(W)、モリブデン(Mo)、ニオブ(Nb)、タンタル(Ta)、スズ(Sn)、レニウム(Re)、イリジウム(Ir)、オスミウム(Os)、ルテニウム(Ru)、ゲルマニウム(Ge)、クロム(Cr)、鉄(Fe)、ガリウム(Ga)、アルミニウム(Al)、フッ素(F)およびリン(P)からなる群から選定された、少なくとも一つの元素またはその化合物を添加するステップを含んでも良い。
 また前記ステップ(3)は、280℃以下の温度で実施され、あるいは250℃以下の温度で実施されても良く、220℃以下の温度で実施されても良い。
 さらに、前記ステップ(3)は、1時間以上5日間以内の時間範囲で実施されても良い。
 また、本発明による製造方法は、さらに、
(4)ステップ(3)の後に、得られた前記微粒子を、表面処理または表面改質するステップを有しても良い。
 また、本発明による製造方法において、前記二酸化バナジウム(VO)粒子の量は、前記微粒子の全重量に対して、5~95重量%の範囲であっても良い。
 さらに本発明では、前述の特徴を有するサーモクロミック微粒子を含む調光性塗料、調光性フィルム、および調光性インクが提供される。
 さらに、本発明では、ルチル型(R相)の二酸化バナジウム(VO)の粒子と、ルチル型の二酸化チタン(TiO)の粒子とを含むサーモクロミック微粒子の製造方法であって、
(1)バナジウムを含む化合物と、水とを含む溶液を調製するステップと、
(2)前記溶液に、少なくとも一部がルチル型結晶相からなる二酸化チタン(TiO)の粒子を添加して、懸濁液を調製するステップと、
(3)前記懸濁液を水熱反応させるステップと、
 を有し、
 これにより前記サーモクロミック微粒子が得られ、
 該サーモクロミック微粒子において、
 少なくとも一つの前記二酸化バナジウム(VO)の粒子は、前記二酸化チタン(TiO)の粒子上に、該二酸化チタン(TiO)の粒子よりも大きく成長しており、
 前記少なくとも一つの前記二酸化バナジウム(VO)の粒子は、前記二酸化チタン(TiO)の粒子と結晶軸が揃っていることを特徴とする製造方法が提供される。
 本発明では、R相の二酸化バナジウム(VO)粒子を含み、良好な自動調光性を有する微粒子およびその分散液が提供される。また、本発明では、そのような微粒子の製造方法、ならびにそのような微粒子を含む調光性塗料、調光性フィルムおよび調光性インクが提供される。
本発明による微粒子を製造するためのフローチャートである。 実施例1に係る微粒子のXRDパターンである。 実施例1に係る微粒子のSEM写真である。 実施例1に係る微粒子を設置したガラス基板サンプルの透過特性を示す図である。 実施例1に係る微粒子を設置したガラス基板サンプルの赤外透過率の温度依存性を示す図である。 実施例2に係る微粒子のXRDパターンである。 実施例2に係る微粒子のSEM写真である。 実施例3に係る微粒子を設置したガラス基板サンプルの透過特性を示す図である。 実施例3に係る微粒子を設置したガラス基板サンプルの赤外透過率の温度依存性を示す図である。 比較例1に係る粒子のXRDパターンである。 比較例1に係る粒子のSEM写真である。 実施例4に係る微粒子のXRD測定の結果である。 実施例4に係る微粒子のSEM写真を、種結晶として使用した二酸化チタン(TiO)の粒子の写真とともに示した図である。 実施例4に係る微粒子の中から選定した一つの結晶について、元素分析を行った結果である。 実施例4に係る微粒子の中から選定した一つの結晶についての、TEM写真および電子線回折パターンを示した図である。 実施例5に係る微粒子を含む調光ガラス基板サンプルの20℃および80℃における、光学透過特性の測定結果である。 実施例5に係る微粒子を含む調光ガラス基板サンプルの赤外透過率の温度依存性を示したグラフである。 実施例6に係る微粒子を含む調光ガラス基板サンプルの20℃および80℃における、光学透過特性の測定結果を示したグラフである。 比較例2に係る微粒子のXRDパターンである。
 前述のように、従来、ルチル型結晶相(R相)の二酸化バナジウム(VO)粒子を得るには、バナジウムイオンを含む溶液から、二酸化バナジウム(VO)の前駆体を合成し、この前駆体を高温(350℃~650℃)で熱処理する工程が必要であった。あるいは、水熱反応を利用して、A相またはB相の二酸化バナジウム(VO)粒子を調製し、これを高温熱処理(350℃~650℃)することにより、R相の二酸化バナジウム(VO)粒子を得ていた。ここで、「水熱反応」とは、温度と圧力が、水の臨界点(375℃、22MPa)よりも低い熱水(亜臨界水)中において生じる化学反応を意味する。
 しかしながら、これらの方法では、いずれも高温での熱処理が必要であり、この熱処理中に粒子同士が凝集してしまうため、最終的に得られるR相の二酸化バナジウム(VO)粒子をサブミクロンオーダーまで微細化することは極めて難しいという問題があった。
 このような背景の下、本願発明者は、バナジウム化合物と、ルチル型結晶相の二酸化チタン(TiO)粒子とを水溶液中に混在させた状態で、水熱反応を生じさせると、極めて微細な(例えば、サブミクロンオーダーの)R相からなる二酸化バナジウム(VO)の粒子が直接形成されることを見出し、本願発明に至ったものである。
 すなわち、本発明では、従来のような後熱処理を実施しなくても、ルチル型結晶相を含む二酸化チタン(TiO)の粒子と混在した状態で、R相を含む二酸化バナジウム(VO)の微粒子を得ることができる。また得られる微粒子は、サブミクロン以下の極めて微細なものであるため、特に追加の工程を加えることなく、良好な調光性を発現させることができる。
 今のところ、このような、バナジウム化合物と、ルチル型結晶相の二酸化チタン(TiO)粒子とを含む溶液の水熱反応によって、サブミクロン以下のR相二酸化バナジウム(VO)を含む微粒子が直接得られる理由は、十分には把握されていない。しかしながら、二酸化バナジウム(VO)のR相と二酸化チタン(TiO)のルチル型結晶相において、両者の格子定数が非常に接近していることが、その理由の一つとして考えられる。すなわち、溶液中に存在するルチル型結晶相の二酸化チタン(TiO)が、格子定数の接近した二酸化バナジウム(VO)のR相を優先的に成長させる種結晶として機能し、最終的にR相の二酸化バナジウム(VO)を多く含む微粒子が得られるものと考えられる。
 本発明による微粒子において、その一つ一つを走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)などで観察すると、R相の二酸化バナジウム(VO)粒子は、そのほとんどが、ルチル型結晶相の二酸化チタン(TiO)粒子と同じ結晶方位に沿って、ロッド状に成長していることがわかる。これは、R相の二酸化バナジウム(VO)粒子がルチル型結晶相の二酸化チタン(TiO)粒子に対してエピタキシャル成長していることを示唆するものであり、このことからも、ルチル型結晶相の二酸化チタン(TiO)は、R相の二酸化バナジウム(VO)の成長のための種結晶として機能しているものと推察される。なお、ロッド状の二酸化バナジウム(VO)粒子の成長軸(長手軸)方向の長さは、ルチル型結晶相の二酸化チタン(TiO)粒子に比べて、例えば1.5~5倍程度大きくなっている。
 なお、電子顕微鏡レベルでの観察の結果、R相の二酸化バナジウム(VO)結晶の成長形態には、今のところ、以下の2種類のものが存在する:一つは、二酸化チタン(TiO)の種結晶に対して、R相の二酸化バナジウム(VO)結晶が一つの方向に沿って成長する形態である。他方は、二酸化チタン(TiO)粒子の種結晶に対して、R相の二酸化バナジウム(VO)粒子が相互に反対の方向に成長する形態であり、この場合、R相の二酸化バナジウム(VO)結晶は、種結晶の両側に、単一の成長軸に沿って成長する。ただし、いずれの形態の場合も、R相の二酸化バナジウム(VO)結晶は、種結晶と結晶軸が揃った状態で成長する。
 本発明における微粒子は、サブミクロン以下のオーダーであり、例えば50nm~250nmの範囲の平均粒径を有する。平均粒径が、例えば200nm以下、特に100nm以下の場合、極めて良好な調光性が得られる。
 なお、本発明による微粒子の「平均粒径」は、以下のようにして算出した。
(i)大部分の粒子がロッド状の形態の場合
 まず10000~20000倍程度の倍率で、微粒子の電子顕微鏡(SEM)写真を撮影する。各ロッド状粒子の長手軸に対して垂直な方向の寸法を測定する(最大10個)。得られた値を平均して、「平均粒径」とする。
(ii)大部分の粒子が非ロッド状の形態の場合
 まず10000~20000倍程度の倍率で、微粒子の電子顕微鏡(SEM)写真を撮影する。写真中において、寸法および形状が最も普遍的な粒子10個を選定し、その「最大長さ」を測定する(最大20個)。ここで「最大長さ」とは、選定された微粒子が略球状、略楕円状、略立方体状等、いわゆる等方性の粒子またはそれに近い形態の場合、そのような微粒子の直径部分の最大長さを意味する。得られた10点の「最大長さ」を平均化して、これをその微粒子の「平均粒径」とした。
 ここで、本発明において、ロッド状粒子の平均粒径は、最初に原料として添加されるルチル型結晶相の二酸化チタン(TiO)粒子(以下、「種結晶」と称する)の平均粒径に依存することに留意する必要がある。すなわち、大きな平均粒径の二酸化チタン(TiO)粒子を種結晶として使用した場合、ロッド状粒子の長手軸に対して垂直な方向の寸法は、大きくなり、小さな平均粒径の二酸化チタン(TiO)粒子を種結晶として使用した場合、ロッド状粒子の長手軸に対して垂直な方向の寸法は、小さくなる。従って、本発明では、種結晶の平均粒径を変化させることにより、得られるロッド状粒子の寸法を簡単に制御することができる。
 なお、本発明による微粒子において、二酸化バナジウム(VO)の粒子の量と二酸化チタン(TiO)の粒子の量の比(重量比、VO:TiO)は、5:95~95:5の範囲であることが好ましく、10:90~90:10の範囲であることがより好ましい。この量比(重量比、VO:TiO)は、例えば、2:1である。
 また、本発明による微粒子中の二酸化バナジウム(VO)の含有量は、5~95重量%の範囲であることが好ましく、10~95重量%の範囲であることがより好ましい。本発明による微粒子中の二酸化バナジウム(VO)の含有量は、50重量%~95重量%の範囲であることがさらに好ましい。
微粒子中の二酸化バナジウム(VO)の含有量は、例えば67重量%である。
 また、本発明による微粒子は、ルチル型結晶相の二酸化チタン(TiO)およびR相の二酸化バナジウム(VO)の他、アナターゼ型結晶相の二酸化チタン(TiO)を含んでも良い。これにより、微粒子に、調光性の他、光触媒特性を付与することが可能になる。
 この場合、二酸化チタン(TiO)粒子に含まれるルチル型結晶相とアナターゼ型結晶相の割合は、特に限られないが、例えば、5:95~95:5の範囲であっても良い。特に、本発明による微粒子に、好適な光触媒特性を発現させる場合は、ルチル型結晶相とアナターゼ型結晶相の重量割合は、70:30~20:80の範囲、例えば50:50であることが好ましい。前記比が70:30よりも少ないと、微粒子に十分な光触媒特性が得られず、逆に前記比が20:80よりも多くなると、十分な量のR相の二酸化バナジウム(VO)粒子が得られなくなる可能性があるからである。
 さらに、本発明による微粒子は、以下の物質群Aから選定された少なくとも一つの元素(化合物を含む)を含んでも良い。
物質群A:タングステン(W)、モリブデン(Mo)、ニオブ(Nb)、タンタル(Ta)、スズ(Sn)、レニウム(Re)、イリジウム(Ir)、オスミウム(Os)、ルテニウム(Ru)、ゲルマニウム(Ge)、クロム(Cr)、鉄(Fe)、ガリウム(Ga)、アルミニウム(Al)、フッ素(F)およびリン(P)。
 これにより、微粒子の相転移特性(特に、調光温度)を制御することができる。例えば、純粋なR相の二酸化バナジウム(VO)結晶の転移温度(調光温度)は、約68℃であるが、前述の物質群Aから選定された物質を添加した場合、最終的に得られる微粒子の転移温度(調光温度)を、所定の温度まで低下させることができる。なお、最終的に得られる微粒子に対する、物質群Aから選定された物質の総量は、当該微粒子に含まれるバナジウム原子に対して0.1~5.0原子%程度で十分であり、例えば、1.0原子%である。5.0原子%以上の量を添加すると、微粒子の調光性能(調光の幅)を著しく劣化させてしまう可能性があるからである。
 また、本発明による微粒子の表面の少なくとも一部は、コーティング処理および/または表面改質処理されていても良い。これにより、微粒子の表面を保護したり、表面性状を改質したり、光学的特性を制御したりすることが可能となる。
 さらに、本発明による微粒子をアルコールのような有機溶媒、あるいは水のような無機性の溶媒中に分散させた場合、調光性微粒子を含む分散液を提供することができる。
 (本発明による微粒子の製造方法)
 次に、図1を参照して、前述のような特徴を有する本発明による微粒子の製造方法の一例について説明する。なお、以下に示す製造方法は、一例であって、本発明による微粒子は、その他の方法で製造することも可能である。
 図1は、本発明による微粒子を製造するためのフローチャートを示したものである。
 (1)まず、バナジウム(V)源の材料として、以下の物質群Bに含まれるいずれかの物質を準備する(図1のステップS110)。
物質群B:五酸化二バナジウム(V)、バナジン酸アンモニウム(NHVO)、シュウ酸バナジル水和物(VOC・nHO)、酸化硫酸バナジウム(VOSO・nHO)、3塩化酸化バナジウム(VOCl)、およびメタバナジン酸ナトリウム(NaVO)。
 (2)次に、(1)で準備した物質と水とを混合し、溶液を調製する(図1のステップS120)。なお、この「溶液」は、バナジウム源がイオン状態で溶解した溶液であっても、バナジウム源が溶解せず、懸濁した状態の懸濁溶液であっても良い。
 この他、この溶液には、任意で、酸化剤および/または還元剤を添加しても良い。あるいは、この溶液には、任意で、pH調整剤を添加しても良い。
 酸化剤および/または還元剤としては、例えば、シュウ酸、酢酸、ギ酸、マロン酸、プロピオン酸、コハク酸、クエン酸、アミノ酸、アスコルビン酸、酪酸、吉草酸、安息香酸、没食子酸、メリト酸、乳酸、リンゴ酸、マレイン酸、アコニット酸、グルタル酸、メタノール、フェノール、エチレングリコール、クレゾール、エタノール、ジメチルホルムアルデヒド、アセトニトリル、アセトン、酢酸エチル、プロパノール、ブタノール、ヒドラジン、過酸化水素、過酢酸、クロラミン、ジメチルスルホキシド、メタクロロ過安息香酸、および硝酸からなる群から選定された、少なくとも一つの物質が使用されても良い。なお、当然のことながら、これらの物質は、水和物であっても良い(以下のpH調整剤も同様である)。
 pH調整剤としては、例えば、硫酸、塩酸、硝酸、リン酸、ホウ酸、フッ酸、水酸化アンモニウム、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、および水酸化カルシウム等がある。これらの化合物から、一つまたは複数の化合物が選定されても良い。
 なお、前記酸化剤、還元剤、pH調整剤の記載は、一例に過ぎず、これら以外の物質を選定しても良い。
 (3)次に、ルチル型結晶相を含む二酸化チタン(TiO)の粒子を準備する。二酸化チタン(TiO)粒子は、市販のものを使用しても良く、あるいは二酸化チタン(TiO)以外のチタン(Ti)を含む原料から調製したものを使用しても良い。
 ここで、二酸化チタン(TiO)粒子の平均粒径は、10nm~500nm程度であることが好ましく、50nm~100nm程度であることがより好ましい。二酸化チタン(TiO)粒子の平均粒径を、50nm~100nm程度にすることにより、最終的に得られる微粒子の平均粒径を有意に微細化することができる(例えば、100nm~200nm以下)。
 また、最終的に得られる微粒子に光触媒特性を付与する場合、ルチル型結晶相の他、アナターゼ型結晶相を含む二酸化チタン(TiO)粒子が使用される。
 (4)次に、前述の溶液中に(3)で準備した二酸化チタン(TiO)の粒子を添加し、懸濁液を調製する(図1のステップS130)。ここで、添加する二酸化チタン(TiO)粒子の量は、特に限られない。例えば、バナジウム源の重量から換算した二酸化バナジウム(VO)の量と添加する二酸化チタン(TiO)粒子の量比(VO:TiO)は、5:95~95:5の範囲であっても良い。これにより、最終的に得られる微粒子中に含まれる二酸化チタン(TiO)の重量(全微粒子に対する重量)を、5重量%~95重量%程度とすることができる。特に、バナジウム源の重量から換算した二酸化バナジウム(VO)の量と添加する二酸化チタン(TiO)粒子の量比(VO:TiO)は、10:90~90:10の範囲であることが好ましく、この場合、最終的に得られる微粒子中に含まれる二酸化チタン(TiO)の重量(全微粒子に対する重量)は、10重量%~90重量%程度となる。バナジウム源の重量から換算した二酸化バナジウム(VO)の量と添加する二酸化チタン(TiO)粒子の量比(VO:TiO)は、例えば、2:1である。
 (5)ここで、必要な場合、この懸濁液に、さらに、以下の物質群Cから選定された、少なくとも一つの元素またはその化合物を添加しても良い:
物質群C;タングステン(W)、モリブデン(Mo)、ニオブ(Nb)、タンタル(Ta)、スズ(Sn)、レニウム(Re)、イリジウム(Ir)、オスミウム(Os)、ルテニウム(Ru)、ゲルマニウム(Ge)、クロム(Cr)、鉄(Fe)、ガリウム(Ga)、アルミニウム(Al)、フッ素(F)およびリン(P)。
 これにより、最終的に得られる微粒子の相転移特性(特に、調光温度)を制御することができる。
 (6)次に、前述の方法で調製した懸濁液を用いて、水熱反応処理を行う(図1のステップS140)。水熱反応処理には、通常の場合、オートクレーブのような水熱反応容器が使用される。処理温度は、例えば、200℃~300℃の範囲であるが、本発明の方法では、前述のような効果、すなわち、ルチル型結晶相を含む二酸化チタン(TiO)粒子が、R相の二酸化バナジウム(VO)の種結晶として機能するため、280℃または250℃以下あるいは220℃以下の温度でも、良好な調光性を有する微粒子を再現性良く形成することができる。処理時間は、懸濁液の量、処理温度、処理圧力、および懸濁液中のバナジウム化合物と二酸化チタン(TiO)の量比等によっても変化するが、おおよそ1時間~7日の範囲であり、例えば、24時間程度である。
 (7)なお必要に応じて、得られた微粒子の表面に、コーティング処理または表面改質処理を行っても良い。これにより、微粒子の表面が保護され、および/または表面改質された微粒子を得ることができる。また、微粒子の光学特性(調光特性)を制御することができる。コーティング処理または表面改質処理は、例えば、シランカップリング剤により実施されても良い。
 (8)以上の工程により、R相の二酸化バナジウム(VO)を含む微粒子を含む溶液が得られる。
 ここで、本発明は、基本的に水熱反応のみによって、R相の二酸化バナジウム(VO)粒子を含む微粒子が得られるという特徴がある。すなわち基本合成反応としては、水熱反応の1ステップしか必要ではない。さらに、得られる微粒子は、溶液中において、単分散状態で存在するという特徴がある。
 その後、溶液から生成物をろ過回収して、これを洗浄、乾燥処理することにより、本発明による微粒子が得られる。あるいは、所定の溶媒中にそのような微粒子が分散された分散液を提供する場合は、溶液中の溶媒を、所定の溶媒に置換しても良い。
 なお、得られる微粒子の平均粒径は、50nm~250nmの範囲であり、例えば、100nm程度である。
 なお、前述の製造方法の例では、(1)バナジウムを含む化合物と、水とを含む溶液を調製し、(2)この溶液に、後から、少なくとも一部がルチル型結晶相からなる二酸化チタン(TiO)の粒子を添加して、懸濁液を調製し、(3)この懸濁液を水熱反応させることより、R相の二酸化バナジウム(VO)を含む微粒子を得る方法について説明した。しかしながら、係る記載は、単なる一例であって、(3)の水熱反応処理(図1のステップS140)までのステップは、いかなる手順で実施されても良いことは、明らかである。例えば、バナジウム(V)を含む化合物と、少なくとも一部がルチル型結晶相からなる二酸化チタン(TiO)の粒子と、水とを直接混合し、この混合液を用いて水熱反応を実施することにより、本発明による微粒子を得ても良い。
 (本発明による微粒子の適用例)
 本発明による微粒子およびその分散液は、例えば、調光性塗料、調光性フィルムならびに調光性インクに適用することができる。例えば、調光性塗料および調光性インクは、一般的な(例えば市販の)塗料に、本発明による微粒子または分散液を添加することにより、簡単に調製することができる。調光性フィルムは、一般的な(例えば市販の)樹脂フィルム等の透明フィルムに、本発明による微粒子または分散液を付着させることにより、簡単に調製することができる。
 次に、実施例を示して本発明を具体的に説明する。ただし、本発明は、これらの実施例に限定されるものではない。
 (1)実施例1
 まず、五酸化バナジウム(V、和光特級)、シュウ酸二水和物((COOH)・2HO、和光試薬特級)および純水200mlを、室温にて1:2:300のモル比で混合、攪拌して水溶液を調製した。さらに、pH調整のため、この水溶液に、1.5mlの硫酸を添加した。
 次に、この溶液10mlに、種結晶として、市販の二酸化チタン(TiO)粉末(純度99%以上、平均粒径100nm以下、ルチル相率40%以上)を、Vに対して重量比50%の量で添加し、懸濁液を得た。
 次に、この懸濁液を市販の水熱反応用オートクレーブ(三愛科学社製HU-25型)(SUS製本体に25ml容積のテフロン(登録商標)製内筒を備える)内に密閉し、220℃で、24時間保持し、水熱反応させた。これにより、溶液中に、単分散状態の微粒子が得られた。
 得られた生成物を濾過し、水やエタノールで洗浄した後、これを60℃の定温乾燥機で10時間乾燥して、微粒子を得た。また、水熱反応後の溶液において、溶媒をエタノールで置換することにより、微粒子(以降の分析でR相の二酸化バナジウム(VO)微粒子を含むことが判明)を含む分散液が得られた。
 次に、シランカップリング剤(信越化学工業株式会社製KBM-603)の5%水溶液を作製し、前述の工程で得られた微粒子をこの水溶液中に入れ、微粒子の表面をシランカップリング処理した。その後、微粒子を回収し、110℃で1時間、乾燥処理を行った。
 このようにして得られた微粒子の結晶性を、XRD装置(PHILIPS社製X’Pert-MPD型)により評価した。また、得られた微粒子の微細構造を、FE-SEM装置(日立製Hitachi S-4300型)により評価した。
 また、得られた微粒子を、市販の高透明接着転写テープに均一に塗布し、このテープを、透明樹脂フィルムに貼り付けた。これにより、VO微粒子を有する調光フィルムサンプルを得た。同様の方法により、得られた微粒子をガラス基板に貼り付け、VO微粒子の設置された調光ガラス基板サンプル(寸法:縦25mm×横25mm×厚さ1mm)を得た。
 加熱アタッチメント付き分光光度計(日本分光製V-570型、190-2500nm)を用いて、調光ガラス基板サンプルの光学透過特性を測定した。測定温度は、20℃および80℃とした。また、調光ガラス基板サンプルの赤外透過率の温度依存性を測定した。測定は、2000nmの波長で行った。
 XRD測定の結果を、図2に示す。図2に示すように、得られた微粒子は、ルチル型二酸化チタン(TiO)結晶相とルチル型二酸化バナジウム(VO)結晶相を含むことが確認された(図2において、「R」と表記)。また、得られた結果には、種結晶中に存在していたと思われるアナターゼ型二酸化チタン(TiO)のピークも認められた(「A」と表記)。なお、この微粒子中には、R相以外の二酸化バナジウム(VO)の結晶相、すなわちA相またはB相は、ほとんど認められなかった。このことから、得られた微粒子は、極めて良好な自動調光特性を有することが期待される。さらに、この微粒子中には、アナターゼ型の二酸化チタン(TiO)が含まれることから、光触媒特性が得られることも期待される。
 図3には、微粒子のSEM写真を示す。ルチル型の二酸化チタン(TiO)のナノ粒子と、該二酸化チタン(TiO)粒子を種結晶として成長した、該二酸化チタン(TiO)粒子よりも大きなR相二酸化バナジウム(VO)のナノロッドが確認された。二酸化バナジウム(VO)は、ルチル型の二酸化チタン(TiO)と結晶軸が揃った状態で、結合されている。ナノロッドの結晶軸(成長軸)に垂直な方向の寸法は、ナノオーダーとなっている。また、このロッド状粒子の周囲には、R相二酸化バナジウム(VO)の成長反応に寄与しなかったアナターゼ型の二酸化チタン(TiO)粒子が、ほぼ球状状態のまま分散されている。
 図4には、20℃および80℃における、調光ガラス基板サンプルの光学透過特性を示す。温度の上昇とともに、透過率が大きく変化しており、良好な自動調光性が発現していることがわかる。図5には、2000nmでの赤外透過率の温度依存性を示す。この結果から、サンプルの赤外透過率は、温度変化に対して、急激に変化することが確認された。なおサンプルの転移温度は、約64℃であった。
 (2)実施例2
 実施例2では、種結晶として、実験室で調製したルチル型二酸化チタンを使用した。
 まず、室温で、四塩化チタン(TiCl)水溶液(Ti濃度16.5重量%)10mlを、撹拌しながら、純水30ml中にゆっくり滴下し、塩化チタンの希釈溶液を作製した。この希釈溶液をガラスビーカーに入れ、蓋をして、定温乾燥機内に入れ、55℃で6時間保持した。保持後に得られた生成物を濾過し、純水による繰り返し洗浄を行った後、乾燥処理を行った。この工程により、白い酸化チタンの粉末を得た。XRD測定の結果、得られた粉末は、ルチル型二酸化チタン(TiO)であることが確認された。
 次に、このルチル型二酸化チタン(TiO)粉末を種結晶としたこと以外は、実施例1と同じ工程により、実施例2に係る微粒子を得た。
 図6には、得られた実施例2に係る微粒子のXRD測定結果を示す。この図から、微粒子の大部分は、ルチル型結晶相の二酸化チタン(TiO)および二酸化バナジウム(VO)のR相で構成されることがわかった。図7には、微粒子のSEM写真を示す。大きさが約30~50nmの等方性の二酸化チタン(TiO)の粒子上に、長さ100~200nm程度のロッド状の二酸化バナジウム(VO)結晶が成長していることが観察された。
 (3)実施例3
 前述の実施例1と同様の手順で、実施例3に係る微粒子を調製した。ただし、この実施例では、五酸化バナジウム、シュウ酸二水和物、および純水(および少量の硫酸)を添加した溶液中に、さらにタングステン酸アンモニウムパラ五水和物(和光純薬、組成約(NH)10W1241・5HO)をW:V原子比が1.0%となるように溶解させた。
 図8には、調光ガラス基板サンプルの10℃および80℃における、光学透過特性の測定結果を示す。このサンプルにおいても、温度変化により、透過率が変化することが確認された。図9には、このサンプルを用いて、波長2000nmの赤外透過率の温度依存性を測定した結果を示す。図から明らかなように、温度上昇により、透過率が急激に変化することがわかる。なお、この例では、転移温度は約41℃であり、タングステンの添加により、転移温度が低下することが確認された。
 (4)比較例1
 種結晶(TiO)を添加しないことを除き、実施例1と同様の手順で、比較例1に係る粒子を調製した。
 図10には、得られた粒子のXRD測定結果を示す。また、図11には、得られた粒子のSEM写真を示す。
 図10に示すように、この場合、二酸化バナジウム(VO)のB相(JCPDS81-2393)と一致したXRDパターンが確認され、二酸化バナジウム(VO)のR相のパターンは、認められなかった。
 また図11に示すように、この粒子中には、B相と見られる二酸化バナジウム(VO)のロッド状(または板状)粒子が観察された。しかしながら、比較例1の粒子では、温度による調光特性の変化は、全く認められなかった。この結果から、ルチル型結晶相の二酸化チタン(TiO)を混在させない場合、R相の二酸化バナジウム(VO)微粒子は、ほとんど形成されないことがわかった。
 (5)実施例4
 まず、しゅう酸バナジルn水和物(和光純薬製VOC・nHO)0.81グラム、過酸化水素(和光純薬試薬特級)0.36グラム、市販の高純度酸化チタン(TiO)微粒子(純度99.9%以上、ルチル相含有量99%、平均粒径約200nm)0.07グラム、および純水10mlをよく混合し、懸濁液を得た。
 この懸濁液を、市販の水熱反応用オートクレーブ(三愛科学社製HU-25型)(SUS製本体に25ml容積のテフロン(登録商標)製内筒を備える)内に密閉し、270℃で16時間保持し、水熱反応させた。
 得られた生成物を濾過し、純水およびエタノールで洗浄した後、これを60℃の定温乾燥機で10時間乾燥して、二酸化バナジウム(VO)と二酸化チタン(TiO)の重量比が約8:2の微粒子を得た。
 得られた微粒子の結晶性をXRD装置(PHILIPS社製X’Pert-MPD型)により評価した。また、微粒子の微細構造を、走査型電子顕微鏡(日立製FE-SEM装置、Hitachi S-4300型)、および透過型電子顕微鏡(JEOL JEM2010型:日本電子製高分解能透過電子顕微鏡)により評価した。
 さらに、走査型電子顕微鏡に付属したEDX(エネルギー分散型X線)微小領域組成分析装置を用いて、ロッド状微粒子の分析を行った。
 図12には、微粒子のXRD測定の結果を示す。図に示すように、得られた回折ピークは、R相の二酸化バナジウム(VO)結晶のものと良い一致を示した。また、ルチル型の二酸化チタン(TiO)の比較的低い回折ピークが観測された。なお、アナターゼ型の二酸化チタン(TiO)の回折ピークは、観測されなかった。回折ピークの強度および小さな半値幅により、形成したR相二酸化バナジウムの結晶性は、極めて良好であることが推察される。
 図13には、得られた微粒子のSEM写真を示す。図において、(a)の写真は、種結晶として使用したルチル型の二酸化チタン(TiO)粒子の形態を示しており、(b)の写真は、最終的に得られた微粒子の形態を示している。
 両写真の比較から、二酸化チタン(TiO)の寸法および形状は、ほとんど変化していないことがわかる。一方、二酸化バナジウム(VO)結晶は、二酸化チタン(TiO)の粒子を核として、これに結合された状態で、ロッド状に大きく成長していることがわかる。成長軸(ロッドの長手軸)方向において、二酸化バナジウム(VO)結晶の寸法は、二酸化チタン(TiO)の寸法に比べて、数倍以上大きくなっている。
 図14には、得られた微粒子の中から選定した一つの結晶について、元素分析を行った結果を示す。図において、左側の写真は、分析に使用したロッド状結晶の拡大SEM写真を示しており、右側の図は、ロッド状結晶の長手軸(図の矢印)に沿ったチタンとバナジウムの濃度分布を示している。
 この分析結果から、ロッド状結晶の中央部には、二酸化チタン(TiO)が存在し、この両側に、二酸化バナジウム(VO)結晶が成長していることがわかる。また、ロッド状結晶において、二酸化バナジウム(VO)と二酸化チタン(TiO)は、結晶軸が揃っており、二酸化バナジウム(VO)は、二酸化チタン(TiO)を種結晶として、エピタキシャル成長していると言える。
 図15には、得られた微粒子の透過型電子顕微鏡(TEM)写真を示す。この画像および微小区域のEDX分析結果から、やや大きく成長した二酸化バナジウム(VO)粒子の内部に、結晶粒の揃った二酸化チタン(TiO)種結晶が存在することがわかる。なお、電子線回折パターンより、この微粒子は、単結晶であることが確認された。
 なお、図3と図13の比較から明らかなように、本実施例で得られた微粒子の寸法は、前述の実施例1と比べて、有意に大きい(両図は、ほぼ同等の倍率である)。これは、両実施例において使用したルチル型二酸化チタン(TiO)の平均粒径の違いによるものであると考えられる。すなわち、実施例1では、平均粒径が100nmの二酸化チタン(TiO)を使用したのに対して、実施例4では、種結晶として、平均粒径が200nmのルチル型二酸化チタン(TiO)を使用しており、この差異が、最終的に得られる微粒子の寸法に影響を及ぼしたものと考えられる。このことは、種結晶となるルチル型の二酸化チタン(TiO)の平均粒径を変化させることにより、最終的に得られるサーモクロミック微粒子の寸法を調整することができることを示すものである。すなわち、本発明では、サーモクロミック微粒子の寸法を容易に制御することができるという利点を有する。
 (6)実施例5
 しゅう酸バナジルn水和物(和光純薬製VOC・nHO)0.81グラム、過酸化水素(和光純薬試薬特級)0.36グラム、市販の二酸化チタン(TiO)粉末(純度99%以上、平均粒径100nm以下、ルチル相の重量比は、40%以上で、アナターゼ相も含む)0.15グラム、およびタングステン酸アンモニウムパラ五水和物(和光純薬、組成約(NH)10W1241・5HO)0.00957グラムを、純水10mlに溶解させ、懸濁液を得た。
 次に、この懸濁液を市販の水熱反応用オートクレーブ(三愛科学社製HU-25型)(SUS製本体に25ml容積のテフロン(登録商標)製内筒を備える)内に密閉し、270℃で16時間保持し、水熱反応させた。
 得られた生成物を濾過し、純水およびエタノールで洗浄した後、これを60℃の定温乾燥機で10時間乾燥して、微粒子を得た。また、得られた微粒子を、市販の高透明接着転写テープに均一に塗布し、このテープを、透明樹脂フィルムに貼り付けた。これにより、調光フィルムサンプルを得た。同様の方法により、得られた微粒子をガラス基板に貼り付け、微粒子が設置された調光ガラス基板サンプル(寸法:縦25mm×横25mm×厚さ1mm)を得た。
 前述の実施例1と同様の方法により、調光ガラス基板サンプルの光学透過特性を測定した。また、調光ガラス基板サンプルの赤外透過率の温度依存性を測定した。測定は、2000nmの波長で行った。
 図16には、調光ガラス基板サンプルの20℃および80℃における、光学透過特性の測定結果を示す。相転移による明確な光学透過率の変化が観察された。
 図17には、波長2000nmにおける調光ガラス基板サンプルの赤外透過率の温度依存性を示す。この結果から明らかなように、温度上昇により、透過率は、急激に変化した。なお、この実施例では、転移温度は、約50℃であった。
 (7)実施例6
 バナジン酸アンモニウム(NHVO)0.43グラム、しゅう酸二水和物0.35グラム、二酸化チタン(TiO)(ルチル相40%以上)0.15グラム、および純水10mlを、オートクレーブに入れ、270℃で16時間、水熱反応を行った。その他の手順は、実施例5とほぼ同様である。
 図18には、本実施例で得られた調光ガラス基板サンプルの20℃および80℃における、光学透過特性の測定結果を示す。図に示すように、20℃と80℃において、相転移による明確な光学透過率の変化が観察された。
 (8)実施例7
 本実施例では、サーモクロミック微粒子を含む水性インクを試作した。
 まず、前述の実施例6で得られた水熱反応後の溶液を少量採取した。この溶液を用いて、常温で約20分間、超音波分散を行った。その後、溶液中に純水を少しずつ添加し、目視で溶液の色を確認しながら、濃度の調節を行うことにより、最終的に黄金の透過色を有する水性インクを得た。
 次に、この水性インクのサーモクロミック特性を評価した。
 まず、2つの石英セルを準備し、この一方に、水性インクを入れ、他方に対照液として、純水を入れた。この2つの石英セルを用いて、加熱装置付きの分光光度計(日本分光製V570型、190nm-2500nm)により、20℃および80℃における水性インクの光学透過特性を測定した。その結果、20℃と80℃では、波長2000nmにおける赤外透過率に、30%以上の差異が認められた。
 なお、インク中の分散粒子は、十分に小さく、長時間放置後も、沈降していなかった。
 このサーモクロミック特性を有する水性インクは、塗布や印刷などにより、紙などの媒体に適用することができる。
 (9)比較例2
 比較例1と同じ手順により、比較例2に係る粒子を調製した。ただし、比較例2では、種結晶として、ルチル型の二酸化チタン(TiO)の代わりに、アナターゼ型の二酸化チタン粒子(純度99.7%以上、アナターゼ相ほぼ100%、平均粒径約100nm)を使用した。アナターゼ型の二酸化チタン粒子は、Vに対して重量比50%の量で添加した。なお、得られた微粒子に対しては、シランカープリング剤による表面被覆処理を行わなかった。
 図19には、得られた微粒子のXRDパターンを示す。得られたピークは、アナターゼ型の二酸化チタン(TiO)、およびB相の二酸化バナジウム(VO)に相当し、R相の二酸化バナジウム(VO)のピークは、認められなかった。このことから、種結晶がルチル型の二酸化チタン(TiO)を含まない場合、サーモクロミック特性を示すR相の二酸化バナジウム(VO)は、形成されないことがわかった。
 本発明は、自動調光型多機能塗料およびそれを適用した被覆物、樹脂フィルム、ならびにインクおよびその印刷物等に適用することができる。また、本発明を、車両または建築物の窓、テント材、農業用温室フィルムに適用した場合、赤外線入射量の制御、過熱防止等の効果を得ることができる。
 なお、本願は、2008年6月30日に出願した日本国特許出願2008-171531号、および2009年4月20日に出願した日本国特許出願2009-102373号に基づく優先権を主張するものであり、同日本国出願の全内容を本願に参照により援用する。

Claims (28)

  1.  ルチル型(R相)の二酸化バナジウム(VO)の粒子と、ルチル型の二酸化チタン(TiO)の粒子とを含むサーモクロミック微粒子であって、
     少なくとも一つの前記二酸化バナジウム(VO)の粒子は、前記二酸化チタン(TiO)の粒子上に、該二酸化チタン(TiO)の粒子よりも大きく、ロッド状に成長していることを特徴とするサーモクロミック微粒子。
  2.  さらに、アナターゼ型の二酸化チタン(TiO)の粒子を含むことを特徴とする請求項1に記載のサーモクロミック微粒子。
  3.  さらに、タングステン(W)、モリブデン(Mo)、ニオブ(Nb)、タンタル(Ta)、スズ(Sn)、レニウム(Re)、イリジウム(Ir)、オスミウム(Os)、ルテニウム(Ru)、ゲルマニウム(Ge)、クロム(Cr)、鉄(Fe)、ガリウム(Ga)、アルミニウム(Al)、フッ素(F)およびリン(P)からなる群から選定された、少なくとも一つの元素を含むことを特徴とする請求項1または2に記載のサーモクロミック微粒子。
  4.  前記少なくとも一つの元素の含有量は、当該サーモクロミック微粒子に含まれるバナジウムに対して、0.1~5.0原子%の範囲であることを特徴とする請求項3に記載のサーモクロミック微粒子。
  5.  前記二酸化バナジウム(VO)の粒子の量と、前記二酸化チタン(TiO)の粒子の量の重量比は、5:95~95:5の範囲であることを特徴とする請求項1乃至4のいずれか一つに記載のサーモクロミック微粒子。
  6.  二酸化バナジウム(VO)の含有量は、当該サーモクロミック微粒子全体に対して、5~95重量%の範囲であることを特徴とする請求項1乃至5のいずれか一つに記載のサーモクロミック微粒子。
  7.  当該サーモクロミック微粒子は、前記ロッドの長手軸に対して垂直な方向の平均寸法が、サブミクロン以下であることを特徴とする請求項1乃至6のいずれか一つに記載のサーモクロミック微粒子。
  8.  当該サーモクロミック微粒子は、前記ロッドの長手軸に対して垂直な方向の平均寸法が、200nm以下であることを特徴とする請求項7に記載のサーモクロミック微粒子。
  9.  当該サーモクロミック微粒子の表面の少なくとも一部は、コーティング処理および/または表面改質処理されていることを特徴とする請求項1乃至8のいずれか一つに記載のサーモクロミック微粒子。
  10.  調光特性と、光触媒特性とをともに有することを特徴とする請求項1乃至9のいずれか一つに記載のサーモクロミック微粒子。
  11.  請求項1乃至10のいずれか一つに記載のサーモクロミック微粒子を含む分散液。
  12.  ルチル型(R相)の二酸化バナジウム(VO)粒子を含む微粒子の製造方法であって、
    (1)バナジウムを含む化合物と、水とを含む溶液を調製するステップと、
    (2)前記溶液に、少なくとも一部がルチル型結晶相からなる二酸化チタン(TiO)の粒子を添加して、懸濁液を調製するステップと、
    (3)前記懸濁液を水熱反応させるステップであって、これによりR相の二酸化バナジウム(VO)の粒子を含む微粒子が得られるステップと、
     を有することを特徴とする製造方法。
  13.  前記バナジウムを含む化合物は、
     五酸化二バナジウム(V)、バナジン酸アンモニウム(NHVO)、シュウ酸バナジル水和物(VOC・nHO)、酸化硫酸バナジウム(VOSO・nHO)、3塩化酸化バナジウム(VOCl)、およびメタバナジン酸ナトリウム(NaVO)からなる群から選定された、少なくとも一つの化合物であることを特徴とする請求項12に記載の製造方法。
  14.  前記ステップ(1)または(2)において、さらに、還元剤および/もしくは酸化剤を加えるステップを有することを特徴とする請求項12または13に記載の製造方法。
  15.  前記還元剤および/または酸化剤は、
     シュウ酸、酢酸、ギ酸、マロン酸、プロピオン酸、コハク酸、クエン酸、アミノ酸、アスコルビン酸、酪酸、吉草酸、安息香酸、没食子酸、メリト酸、乳酸、リンゴ酸、マレイン酸、アコニット酸、グルタル酸、メタノール、フェノール、エチレングリコール、クレゾール、エタノール、ジメチルホルムアルデヒド、アセトニトリル、アセトン、酢酸エチル、プロパノール、ブタノール、ヒドラジン、過酸化水素、過酢酸、クロラミン、ジメチルスルホキシド、メタクロロ過安息香酸、および硝酸からなる群から選定された、少なくとも一つの化合物であることを特徴とする請求項14に記載の製造方法。
  16.  前記ステップ(1)または(2)において、さらに、pH調整剤を加えるステップを有することを特徴とする請求項12乃至15のいずれか一つに記載の製造方法。
  17.  前記pH調整剤は、
     硫酸、塩酸、硝酸、リン酸、ホウ酸、フッ酸、水酸化アンモニウム、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、および水酸化カルシウムからなる群から選定された、少なくとも一つであることを特徴とする請求項16に記載の製造方法。
  18.  前記ステップ(1)または(2)において、さらに、前記溶液に、タングステン(W)、モリブデン(Mo)、ニオブ(Nb)、タンタル(Ta)、スズ(Sn)、レニウム(Re)、イリジウム(Ir)、オスミウム(Os)、ルテニウム(Ru)、ゲルマニウム(Ge)、クロム(Cr)、鉄(Fe)、ガリウム(Ga)、アルミニウム(Al)、フッ素(F)およびリン(P)からなる群から選定された、少なくとも一つの元素またはその化合物を添加するステップを含むことを特徴とする請求項12乃至17のいずれか一つに記載の製造方法。
  19.  前記ステップ(3)は、280℃以下の温度で実施されることを特徴とする請求項12乃至18のいずれか一つに記載の製造方法。
  20.  前記ステップ(3)は、250℃以下の温度で実施されることを特徴とする請求項19に記載の製造方法。
  21.  前記ステップ(3)は、220℃以下の温度で実施されることを特徴とする請求項19に記載の製造方法。
  22.  前記ステップ(3)は、1時間以上5日間以内の時間範囲で実施されることを特徴とする請求項12乃至21のいずれか一つに記載の製造方法。
  23.  さらに、
    (4)ステップ(3)の後に、得られた前記微粒子を、表面処理または表面改質するステップを有することを特徴とする請求項12乃至22のいずれか一つに記載の製造方法。
  24.  前記二酸化バナジウム(VO)粒子の量は、前記微粒子の全重量に対して、5~95重量%の範囲であることを特徴とする請求項12乃至23のいずれか一つに記載の製造方法。
  25.  請求項1乃至10のいずれか一つに記載のサーモクロミック微粒子を含む調光性塗料。
  26.  請求項1乃至10のいずれか一つに記載のサーモクロミック微粒子を含む調光性フィルム。
  27.  請求項1乃至10のいずれか一つに記載のサーモクロミック微粒子を含む調光性インク。
  28.  ルチル型(R相)の二酸化バナジウム(VO)の粒子と、ルチル型の二酸化チタン(TiO)の粒子とを含むサーモクロミック微粒子の製造方法であって、
    (1)バナジウムを含む化合物と、水とを含む溶液を調製するステップと、
    (2)前記溶液に、少なくとも一部がルチル型結晶相からなる二酸化チタン(TiO)の粒子を添加して、懸濁液を調製するステップと、
    (3)前記懸濁液を水熱反応させるステップと、
     を有し、
     これにより前記サーモクロミック微粒子が得られ、
     該サーモクロミック微粒子において、
     少なくとも一つの前記二酸化バナジウム(VO)の粒子は、前記二酸化チタン(TiO)の粒子上に、該二酸化チタン(TiO)の粒子よりも大きく成長しており、
     前記少なくとも一つの前記二酸化バナジウム(VO)の粒子は、前記二酸化チタン(TiO)の粒子と結晶軸が揃っていることを特徴とする製造方法。
PCT/JP2009/059360 2008-06-30 2009-05-21 サーモクロミック微粒子、その分散液、その製造方法、ならびに調光性塗料、調光性フィルムおよび調光性インク WO2010001669A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/999,117 US8709306B2 (en) 2008-06-30 2009-05-21 Thermochromic microparticles, dispersions thereof, and manufacturing method thereof, as well as light-modulating coatings, light-modulating films and light-modulating inks
CN2009801230440A CN102066261B (zh) 2008-06-30 2009-05-21 热变色微粒子及其分散液和制造方法以及调光性涂料、调光性膜、调光性油墨

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-171531 2008-06-30
JP2008171531 2008-06-30
JP2009102373A JP5476581B2 (ja) 2008-06-30 2009-04-20 サーモクロミック微粒子、その分散液、その製造方法、ならびに調光性塗料、調光性フィルムおよび調光性インク
JP2009-102373 2009-04-20

Publications (1)

Publication Number Publication Date
WO2010001669A1 true WO2010001669A1 (ja) 2010-01-07

Family

ID=41465772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059360 WO2010001669A1 (ja) 2008-06-30 2009-05-21 サーモクロミック微粒子、その分散液、その製造方法、ならびに調光性塗料、調光性フィルムおよび調光性インク

Country Status (4)

Country Link
US (1) US8709306B2 (ja)
JP (1) JP5476581B2 (ja)
CN (1) CN102066261B (ja)
WO (1) WO2010001669A1 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010090274A1 (ja) * 2009-02-09 2010-08-12 独立行政法人産業技術総合研究所 微粒子、その製造方法、ならびにそのような微粒子を含む塗料、フィルムおよびインク
US20120171472A1 (en) * 2010-12-30 2012-07-05 Hon Hai Precision Industry Co., Ltd. Coated article and method for making same
CN102605323A (zh) * 2011-01-25 2012-07-25 鸿富锦精密工业(深圳)有限公司 镀膜件及其制备方法
WO2012097687A1 (zh) * 2011-01-21 2012-07-26 中国科学院上海硅酸盐研究所 一种掺杂二氧化钒粉体、分散液及其制备方法和应用
WO2012161293A1 (en) * 2011-05-26 2012-11-29 Sharp Kabushiki Kaisha Core-shell nanoparticle, film, glazing unit, double glazing unit and method of making a glazing unit
JP2013075806A (ja) * 2011-09-30 2013-04-25 Sekisui Chem Co Ltd 表面保護層を有する二酸化バナジウム粒子の製造方法
CN103666444A (zh) * 2012-08-31 2014-03-26 中国科学院上海硅酸盐研究所 一种氧化硅包覆氧化钒纳微粉体的制备方法及其应用
CN103803652A (zh) * 2012-11-09 2014-05-21 深圳市润麒麟科技发展有限公司 一种高含量钨掺杂的纳米vo2粉体材料及其制备方法
WO2016152879A1 (ja) * 2015-03-24 2016-09-29 コニカミノルタ株式会社 サーモクロミックフィルム
US9573126B2 (en) 2012-03-20 2017-02-21 Valinge Photocatalytic Ab Photocatalytic composition
JP2017066323A (ja) * 2015-10-01 2017-04-06 コニカミノルタ株式会社 二酸化バナジウム含有粒子の製造方法
WO2017138264A1 (ja) * 2016-02-09 2017-08-17 コニカミノルタ株式会社 二酸化バナジウム粒子の製造方法
CN107686973A (zh) * 2017-09-08 2018-02-13 电子科技大学 一种钛钌共掺二氧化钒热敏薄膜材料及其制备方法
US9945075B2 (en) 2013-09-25 2018-04-17 Valinge Photocatalytic Ab Method of applying a photocatalytic dispersion
US9963609B2 (en) 2009-03-23 2018-05-08 Valinge Photocatalytic Ab Production of titania nanoparticle colloidal suspensions with maintained crystallinity by using a bead mill with micrometer sized beads
CN109835949A (zh) * 2017-11-24 2019-06-04 中国科学院过程工程研究所 一种钒渣清洁氯化生产高纯五氧化二钒的系统及方法
CN110129785A (zh) * 2019-06-12 2019-08-16 重庆理工大学 一种TiNb合金的表面处理方法
CN110128027A (zh) * 2019-03-27 2019-08-16 南京工业大学 一种多级渐变式自发调温的复合涂层及其制备方法
US11045798B2 (en) 2011-07-05 2021-06-29 Valinge Photocatalytic Ab Coated wood products and method of producing coated wood products
CN116173940A (zh) * 2023-02-28 2023-05-30 广东名桂环保有限公司 含氯有机废气低温催化燃烧的抗氯催化剂及其制备方法
US11666937B2 (en) 2012-12-21 2023-06-06 Valinge Photocatalytic Ab Method for coating a building panel and a building panel

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5299105B2 (ja) * 2009-06-16 2013-09-25 ソニー株式会社 二酸化バナジウムナノワイヤとその製造方法、及び二酸化バナジウムナノワイヤを用いたナノワイヤデバイス
CN102111970A (zh) * 2009-12-28 2011-06-29 深圳富泰宏精密工业有限公司 电子装置壳体及其制作方法
JP5763069B2 (ja) * 2010-06-29 2015-08-12 国立大学法人東北大学 アルデヒドを用いた水熱合成反応の制御方法
FR2963098B1 (fr) * 2010-07-26 2020-02-28 Seb Sa Article chauffant comportant un indicateur thermique colore a visibilite et precision ameliorees.
JP5768253B2 (ja) * 2010-12-28 2015-08-26 平岡織染株式会社 可変遮熱性採光シート
JP5781837B2 (ja) * 2011-06-03 2015-09-24 積水化学工業株式会社 サーモクロミック性フィルム、合わせガラス用中間膜、合わせガラス及び貼り付け用フィルム
CN103073941B (zh) * 2012-01-19 2014-09-10 中国科学院上海硅酸盐研究所 一种二氧化钒粉体浆料及其制备方法
CN103073943B (zh) * 2012-01-19 2014-09-17 中国科学院上海硅酸盐研究所 一种二氧化钒智能温控涂层
JP6004418B2 (ja) * 2012-03-06 2016-10-05 株式会社クラレ Vo2含有組成物及びvo2分散樹脂層の製造方法
CN103663546B (zh) * 2012-08-31 2015-08-19 中国科学院上海硅酸盐研究所 一种氧化钛包覆氧化钒复合纳微粉体及其制备方法和应用
US10022703B2 (en) 2013-04-17 2018-07-17 Danmarks Tekniske Universitet Method of preparation of nanoparticular metal oxide catalysts
CN103554997B (zh) * 2013-10-16 2015-02-11 中国科学院上海硅酸盐研究所 碳包覆二氧化钒纳米颗粒及其制备方法
KR101401222B1 (ko) 2013-11-07 2014-05-28 김태웅 가역성 변색 코팅 조성물 및 이의 제조 방법
JP2015193532A (ja) * 2014-03-27 2015-11-05 積水化学工業株式会社 置換酸化バナジウム粒子、該置換酸化バナジウム粒子を含有する合わせガラス用中間膜、該合わせガラス用中間膜を用いる合わせガラス及び該置換酸化バナジウム粒子を含有するサーモクロミック性フィルム
US20170131445A1 (en) * 2014-07-30 2017-05-11 Konica Minolta, Inc. Optical film and method for manufacturing optical film
CN107109207A (zh) * 2014-09-02 2017-08-29 特姆龙韩国有限公司 用于无机陶瓷涂覆组合物的无机热变色添加剂
US10816829B2 (en) * 2014-10-03 2020-10-27 Konica Minolta, Inc. Optical film and method for producing optical film
JPWO2016052720A1 (ja) * 2014-10-03 2017-07-27 コニカミノルタ株式会社 コア・シェル構造の酸化バナジウム含有粒子
JP2016166294A (ja) * 2015-03-10 2016-09-15 コニカミノルタ株式会社 酸化バナジウム含有粒子の製造方法及び酸化バナジウム含有粒子
JP2018083718A (ja) * 2015-03-23 2018-05-31 コニカミノルタ株式会社 二酸化バナジウム含有粒子の製造方法
JP2018087255A (ja) * 2015-03-31 2018-06-07 コニカミノルタ株式会社 二酸化バナジウム含有微粒子の製造方法、二酸化バナジウム含有微粒子及び分散液
WO2017006699A1 (ja) * 2015-07-09 2017-01-12 コニカミノルタ株式会社 二酸化バナジウム含有粒子、ならびにこれを含む分散液および光学フィルム、ならびにこれらの製造方法
KR101751803B1 (ko) * 2015-10-12 2017-07-06 나노에스디 주식회사 바나듐계 중공 파티클
JPWO2017086376A1 (ja) * 2015-11-20 2018-09-06 コニカミノルタ株式会社 二酸化バナジウム含有粒子の製造方法
JP6520698B2 (ja) * 2015-12-24 2019-05-29 コニカミノルタ株式会社 二酸化バナジウム含有粒子の製造方法及び二酸化バナジウム含有粒子分散液の製造方法
US20190040520A1 (en) * 2016-02-04 2019-02-07 Ecole Polytechnique Federale De Lausanne (Epfl) Coating for optical and electronic applications
CN105694615B (zh) * 2016-02-29 2019-01-29 中国科学院上海硅酸盐研究所 一种高性能二氧化钒基热致变色复合材料
WO2018021111A1 (ja) * 2016-07-29 2018-02-01 コニカミノルタ株式会社 二酸化バナジウム含有粒子の製造方法、二酸化バナジウム含有粒子及び光学フィルム
WO2018110062A1 (ja) * 2016-12-16 2018-06-21 コニカミノルタ株式会社 二酸化バナジウム含有粒子、サーモクロミックフィルム及び二酸化バナジウム含有粒子の製造方法
JP6941829B2 (ja) * 2017-02-28 2021-09-29 御国色素株式会社 二酸化バナジウム粒子含有組成物
CN106892573A (zh) * 2017-03-20 2017-06-27 武汉理工大学 一种环保型热致变色二氧化钒薄膜的制备方法
JP6846743B2 (ja) * 2017-06-23 2021-03-24 国立研究開発法人産業技術総合研究所 フッ素ドープ型酸化チタンバナジウムのナノ粒子及びその製造方法、並びに該ナノ粒子を含む分散液、塗料、透明樹脂成形体及び積層体
JP7006066B2 (ja) * 2017-09-15 2022-02-10 三桜工業株式会社 正極活物質、正極活物質の製造方法、正極および二次電池
CN112236489B (zh) * 2018-03-21 2023-09-12 阿卜杜拉国王科技大学 基于氧化钒纳米颗粒的油墨组合物
CN109701542A (zh) * 2018-12-21 2019-05-03 昆明理工大学 一种低温协同催化净化烟气中NOx和HCN的催化剂制备方法及应用
CN111170363B (zh) * 2020-01-06 2022-06-14 桂林电子科技大学 钒酸钠颗粒在吸波材料领域中的应用、一种吸波材料及其制备方法和应用
CN111830197B (zh) * 2020-07-14 2022-08-02 拓烯科技(衢州)有限公司 含氯的钒化合物组成分析方法
CN112058256A (zh) * 2020-09-04 2020-12-11 辽宁科技大学 一种VO2掺杂纳米TiO2复合材料及其制备方法及应用
CN112266018A (zh) * 2020-10-16 2021-01-26 成都先进金属材料产业技术研究院有限公司 反向水解沉淀制备纳米二氧化钒的方法
CN114647123B (zh) * 2020-12-17 2023-12-26 中国科学院上海硅酸盐研究所 一种柔性电致变色器件及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003094551A (ja) * 2001-09-20 2003-04-03 National Institute Of Advanced Industrial & Technology 高性能自動調光窓コーティング材料
JP2004004795A (ja) * 2002-04-22 2004-01-08 National Institute Of Advanced Industrial & Technology 多機能自動調光断熱ガラス及び空調方法
JP2004346261A (ja) * 2003-05-26 2004-12-09 Toagosei Co Ltd サーモクロミック材料、およびそれを用いたサーモクロミックフィルムまたはサーモクロミックガラス

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2726545B1 (fr) 1994-11-09 1997-01-31 Peintures Jefco Microparticules de dioxyde de vanadium, procede d'obtention desdites microparticules et leur utilisation, notamment pour des revetements de surface
US6358307B1 (en) 1995-11-03 2002-03-19 Les Peintures Jefco Vanadium dioxide microparticles, method for preparing same, and use thereof, in particular for surface coating
JP2003002791A (ja) * 2001-06-15 2003-01-08 Zenji Hiroi 転移温度が制御された部材
US6720386B2 (en) * 2002-02-28 2004-04-13 General Electric Company Weatherable styrenic blends with improved translucency
US20030196454A1 (en) 2002-04-22 2003-10-23 National Institute Of Advanced Industrial Science And Technology Multifunctional automatic switchable heat-insulating glass and air-conditioning method
JP2004346260A (ja) 2003-05-26 2004-12-09 Toagosei Co Ltd サーモクロミックフィルムおよびサーモクロミックガラス
JP4182210B2 (ja) * 2003-09-02 2008-11-19 独立行政法人産業技術総合研究所 ケイ酸塩でコーティングされた酸化チタン複合体の製造方法
CN1837061A (zh) * 2006-03-06 2006-09-27 复旦大学 一种相变温度可调的相变智能材料及其制备方法
JP4608682B2 (ja) 2006-06-07 2011-01-12 独立行政法人産業技術総合研究所 機能性フィルムの製法及び製品

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003094551A (ja) * 2001-09-20 2003-04-03 National Institute Of Advanced Industrial & Technology 高性能自動調光窓コーティング材料
JP2004004795A (ja) * 2002-04-22 2004-01-08 National Institute Of Advanced Industrial & Technology 多機能自動調光断熱ガラス及び空調方法
JP2004346261A (ja) * 2003-05-26 2004-12-09 Toagosei Co Ltd サーモクロミック材料、およびそれを用いたサーモクロミックフィルムまたはサーモクロミックガラス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JITAE PARK ET AL.: "Structure and magnetism in VO2 nanorods", APPL. PHYS. LETT., vol. 91, no. 15, 2007, pages 153112/1 - 153112/3 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010090274A1 (ja) * 2009-02-09 2010-08-12 独立行政法人産業技術総合研究所 微粒子、その製造方法、ならびにそのような微粒子を含む塗料、フィルムおよびインク
JP5598857B2 (ja) * 2009-02-09 2014-10-01 独立行政法人産業技術総合研究所 微粒子、その製造方法、ならびにそのような微粒子を含む塗料、フィルムおよびインク
US9963609B2 (en) 2009-03-23 2018-05-08 Valinge Photocatalytic Ab Production of titania nanoparticle colloidal suspensions with maintained crystallinity by using a bead mill with micrometer sized beads
US20120171472A1 (en) * 2010-12-30 2012-07-05 Hon Hai Precision Industry Co., Ltd. Coated article and method for making same
CN102560359A (zh) * 2010-12-30 2012-07-11 鸿富锦精密工业(深圳)有限公司 镀膜件及其制备方法
WO2012097687A1 (zh) * 2011-01-21 2012-07-26 中国科学院上海硅酸盐研究所 一种掺杂二氧化钒粉体、分散液及其制备方法和应用
US10167223B2 (en) 2011-01-21 2019-01-01 Shanghai Institute Of Ceramics, Chinese Academy Of Sciences Preparation method of doped vanadium dioxide powder
CN102605323A (zh) * 2011-01-25 2012-07-25 鸿富锦精密工业(深圳)有限公司 镀膜件及其制备方法
US20120188628A1 (en) * 2011-01-25 2012-07-26 Hon Hai Precision Industry Co., Ltd. Coated article and method for making the same
US8609253B2 (en) * 2011-01-25 2013-12-17 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Coated article and method for making the same
WO2012161293A1 (en) * 2011-05-26 2012-11-29 Sharp Kabushiki Kaisha Core-shell nanoparticle, film, glazing unit, double glazing unit and method of making a glazing unit
US11045798B2 (en) 2011-07-05 2021-06-29 Valinge Photocatalytic Ab Coated wood products and method of producing coated wood products
JP2013075806A (ja) * 2011-09-30 2013-04-25 Sekisui Chem Co Ltd 表面保護層を有する二酸化バナジウム粒子の製造方法
US9573126B2 (en) 2012-03-20 2017-02-21 Valinge Photocatalytic Ab Photocatalytic composition
CN103666444A (zh) * 2012-08-31 2014-03-26 中国科学院上海硅酸盐研究所 一种氧化硅包覆氧化钒纳微粉体的制备方法及其应用
CN103666444B (zh) * 2012-08-31 2016-08-03 中国科学院上海硅酸盐研究所 一种氧化硅包覆氧化钒纳微粉体的制备方法及其应用
CN103803652A (zh) * 2012-11-09 2014-05-21 深圳市润麒麟科技发展有限公司 一种高含量钨掺杂的纳米vo2粉体材料及其制备方法
US11666937B2 (en) 2012-12-21 2023-06-06 Valinge Photocatalytic Ab Method for coating a building panel and a building panel
US9945075B2 (en) 2013-09-25 2018-04-17 Valinge Photocatalytic Ab Method of applying a photocatalytic dispersion
WO2016152879A1 (ja) * 2015-03-24 2016-09-29 コニカミノルタ株式会社 サーモクロミックフィルム
JP2017066323A (ja) * 2015-10-01 2017-04-06 コニカミノルタ株式会社 二酸化バナジウム含有粒子の製造方法
WO2017138264A1 (ja) * 2016-02-09 2017-08-17 コニカミノルタ株式会社 二酸化バナジウム粒子の製造方法
CN108602688A (zh) * 2016-02-09 2018-09-28 柯尼卡美能达株式会社 二氧化钒粒子的制造方法
CN107686973A (zh) * 2017-09-08 2018-02-13 电子科技大学 一种钛钌共掺二氧化钒热敏薄膜材料及其制备方法
CN109835949A (zh) * 2017-11-24 2019-06-04 中国科学院过程工程研究所 一种钒渣清洁氯化生产高纯五氧化二钒的系统及方法
CN110128027A (zh) * 2019-03-27 2019-08-16 南京工业大学 一种多级渐变式自发调温的复合涂层及其制备方法
CN110128027B (zh) * 2019-03-27 2020-12-29 南京工业大学 一种多级渐变式自发调温的复合涂层及其制备方法
CN110129785B (zh) * 2019-06-12 2021-03-23 重庆理工大学 一种TiNb合金的表面处理方法
CN110129785A (zh) * 2019-06-12 2019-08-16 重庆理工大学 一种TiNb合金的表面处理方法
CN116173940A (zh) * 2023-02-28 2023-05-30 广东名桂环保有限公司 含氯有机废气低温催化燃烧的抗氯催化剂及其制备方法

Also Published As

Publication number Publication date
US20110095242A1 (en) 2011-04-28
JP2010031235A (ja) 2010-02-12
JP5476581B2 (ja) 2014-04-23
CN102066261A (zh) 2011-05-18
CN102066261B (zh) 2013-12-04
US8709306B2 (en) 2014-04-29

Similar Documents

Publication Publication Date Title
JP5476581B2 (ja) サーモクロミック微粒子、その分散液、その製造方法、ならびに調光性塗料、調光性フィルムおよび調光性インク
JP5598857B2 (ja) 微粒子、その製造方法、ならびにそのような微粒子を含む塗料、フィルムおよびインク
JP5548479B2 (ja) 単結晶微粒子の製造方法
Supothina et al. Synthesis of tungsten oxide nanoparticles by acid precipitation method
JP5625172B2 (ja) 二酸化バナジウム微粒子、その製造方法、及びサーモクロミックフィルム
JP2012116737A (ja) A相の二酸化バナジウム(vo2)粒子の製造方法
JP6004418B2 (ja) Vo2含有組成物及びvo2分散樹脂層の製造方法
JP6468457B2 (ja) 酸化チタン粒子およびその製造方法
Lu et al. Equiaxed zinc oxide nanoparticle synthesis
JP7145506B2 (ja) 二酸化バナジウム粒子の製造方法
KR101387138B1 (ko) 중공상 실리카에 담지된 텅스텐 도핑 이산화바나듐 복합체의 제조 방법
KR20140050249A (ko) 텅스텐이 도핑된 이산화바나듐의 제조 방법
Zhao et al. Thermochromic performances of tungsten-doping porous VO 2 thin films
JP6846743B2 (ja) フッ素ドープ型酸化チタンバナジウムのナノ粒子及びその製造方法、並びに該ナノ粒子を含む分散液、塗料、透明樹脂成形体及び積層体
TW202126582A (zh) 氧化鈦粒子、氧化鈦粒子分散液及氧化鈦粒子分散液的製造方法
WO2016152865A1 (ja) 二酸化バナジウム含有粒子の製造方法
JP7116473B2 (ja) バナジウム酸化物のリボン状ナノ構造体及びその製造方法、バナジウム酸化物の薄片状ナノ構造体を含む水溶液の製造方法、並びにバナジウム酸化物ナノ粒子の製造方法
CN1301933C (zh) 制备钇铝石榴石纳米粉的方法
KR102410773B1 (ko) 수열합성 공정 기반 고순도 바나듐 다이옥사이드의 제조 방법 및 상기 방법에 의해 제조되는 고순도 바나듐 다이옥사이드
Jiang et al. Crystallization behavior and hydrophilic performances of V2O5–TiO2 films prepared by sol–gel dip-coating
WO2017086068A1 (ja) 二酸化バナジウム含有粒子の製造方法及び二酸化バナジウム含有粒子分散液の製造方法
KR102578964B1 (ko) 산화 티타늄 입자 및 그의 제조 방법
WO2016158894A1 (ja) 二酸化バナジウム含有粒子の製造方法及び二酸化バナジウム含有粒子、分散液の調製方法及び分散液、並びに光学フィルム
JP2016191015A (ja) サーモクロミック性を有する二酸化バナジウム含有粒子の製造方法
WO2016158920A1 (ja) 二酸化バナジウム含有微粒子の製造方法、二酸化バナジウム含有微粒子及び分散液

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980123044.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773247

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12999117

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09773247

Country of ref document: EP

Kind code of ref document: A1