WO2009116311A1 - 電動車両 - Google Patents

電動車両 Download PDF

Info

Publication number
WO2009116311A1
WO2009116311A1 PCT/JP2009/050794 JP2009050794W WO2009116311A1 WO 2009116311 A1 WO2009116311 A1 WO 2009116311A1 JP 2009050794 W JP2009050794 W JP 2009050794W WO 2009116311 A1 WO2009116311 A1 WO 2009116311A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
switch
charging
wiring
storage device
Prior art date
Application number
PCT/JP2009/050794
Other languages
English (en)
French (fr)
Inventor
真士 市川
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP09721868.9A priority Critical patent/EP2255990B1/en
Priority to CN2009801092525A priority patent/CN102089177B/zh
Priority to US12/808,550 priority patent/US8242627B2/en
Publication of WO2009116311A1 publication Critical patent/WO2009116311A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • B60L8/003Converting light into electric energy, e.g. by using photo-voltaic systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/20AC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]

Definitions

  • the present invention relates to an electric vehicle, and more particularly to an electric system of an electric vehicle equipped with a power storage device that can be charged by a power source external to the vehicle.
  • the power storage device is powered by a power source external to the vehicle (hereinafter also simply referred to as “external power source”).
  • a power source external to the vehicle hereinafter also simply referred to as “external power source”.
  • a configuration for charging the battery has been proposed.
  • charging of the power storage device by the external power supply is also referred to as “external charging”.
  • Patent Document 1 discloses that AC power obtained via a connector that can be connected to an external commercial power supply is rectified and smoothed, and then boosted to a predetermined voltage for driving an axle. A configuration for charging the battery is described. Further, in Patent Document 1, in an automotive air conditioner that enables driving of a compressor that constitutes a refrigeration cycle using the electric charge stored in the battery, in a normal case, the compressor in the refrigeration cycle is replaced with a battery. When the vehicle is air-conditioned while parked at a campsite, etc., the battery is disconnected from the compressor drive circuit, and the rectified and smoothed power from the AC power source is directly compressed by the compressor. It is described to provide a circuit that can be used for driving.
  • Patent Document 2 describes a configuration in which the outlet can be automatically switched between an inverter and a commercial power supply in a commercial power supply apparatus for a vehicle. According to the configuration of Patent Document 2, either the AC power input from the commercial power source or the AC voltage output by the inverter converting the power from the battery is selectively shared by the commercial power source and the inverter. It is possible to connect to a power output outlet.
  • Patent Document 3 As a configuration of an electric device and a battery unit thereof, a charging path of the battery unit by a commercial power source and a charging unit, and energization from the battery unit to a load driving unit are disclosed. A circuit configuration is described in which a switch is arranged independently for each path. JP 2001-163041 A JP 2000-299988 A JP 2001-45673 A
  • Patent Document 1 air-conditioning equipment including the compressor (13) can be operated even during external charging by connecting the contacts with a switch (SW2) separate from the above switch.
  • SW2 switch
  • Patent Documents 2 and 3 disclose such an auxiliary load system. There is no mention of the composition of.
  • the present invention has been made to solve such problems, and an object of the present invention is to improve and compensate for charging efficiency during external charging in an electric vehicle equipped with a power storage device that can be charged by an external power source. It is an object of the present invention to provide a configuration of an electric system capable of both ensuring the operation of the load system.
  • An electric vehicle is an electric vehicle equipped with a power storage device configured to be rechargeable by an external power source, and includes a charging connector, a power converter, a power control unit, and first and second switches. And an auxiliary load system.
  • the charging connector receives power supplied from the external power source during external charging in which the power storage device is charged by the external power source.
  • the power converter converts power supplied from an external power source into charging power for the power storage device.
  • the power control unit is connected between the power storage device and the electric motor for generating vehicle driving force, and is configured to drive and control the electric motor.
  • the first switch is inserted and connected to an energization path between the charging connector and the power converter.
  • the second switch is inserted and connected to an energization path between the power converter and the power storage device.
  • the auxiliary load system is arranged so that electric power is supplied from the first wiring that electrically connects the second switch and the power converter.
  • the power storage device and the auxiliary device are independent of the energization path from the external power source to the vehicle driving force generation motor via the power control unit.
  • An energization path connecting between the load system and the external power supply can be secured.
  • the 1st and 2nd switch is not arrange
  • the electric vehicle further includes a third switch that is inserted and connected to an energization path between the power storage device and the power control unit, and a control unit.
  • the control unit closes the first and second switches while opening the third switch and operates the power converter to charge the power storage device.
  • the third switch provided in the energization path to the vehicle driving force generating motor having a larger current capacity than the first and second switches is opened to perform external charging. Charging efficiency can be improved by suppressing the power consumption of the switch during external charging.
  • control unit opens the second switch in response to completion of charging of the power storage device during external charging.
  • the switch (second switch) that forms the external charging path is opened to suppress unnecessary power consumption, and the first switch is connected.
  • the auxiliary load system can be operated by the electric power from the external power source.
  • the auxiliary load system includes an auxiliary power storage device having an output voltage lower than that of the power storage device, and an auxiliary power converter that converts power on the first wiring into charging power of the auxiliary power storage device. And a load device that operates with electric power from the auxiliary power storage device.
  • auxiliary power storage device (auxiliary battery) can be charged by the electric power from the external power source during external charging.
  • the electric vehicle further includes a control unit.
  • the control unit operates the auxiliary power converter to charge the auxiliary power storage device, and stops the auxiliary power converter in response to the completion of charging of the auxiliary power storage device.
  • the external power source is a system power source
  • the electric vehicle further includes an outlet and a control unit.
  • the outlet is provided to output AC power equivalent to that of the system power supply from the second wiring that electrically connects the first switch and the power converter.
  • the fourth switch is connected to the energization path between the second wiring and the outlet. The control unit closes the fourth switch when the activation of the electric system of the electric vehicle is instructed during external charging.
  • AC power from the system power supply can be output from an outlet provided in the electric vehicle during external charging. Thereby, power consumption of the power storage device can be suppressed.
  • the power converter is configured to be capable of power conversion in both directions, and can convert power from the power storage device into AC power. Then, when the external power supply is interrupted when the fourth switch is closed, the control unit operates the power converter to output the converted AC power to the second wiring.
  • AC power equivalent to the system power supply can be output from the outlet by the power of the power storage device.
  • the electric vehicle further includes a plurality of third switches that are inserted and connected to each of the energization paths between the plurality of power storage devices and the power control unit, and a control unit.
  • the control unit closes the first switch and the at least one second switch during external charging, and opens each third switch and operates the power converter to operate a plurality of switches. At least one of the power storage devices is charged. Further, the control unit opens the corresponding second switch in response to completion of charging of each power storage device during external charging.
  • the electric vehicle includes a third switch, a third wiring, and a fourth wiring that are inserted and connected to an energization path between the power storage device and the power control unit.
  • the third wiring electrically connects the third switch and the power control unit.
  • the fourth wiring electrically connects the first wiring and the third wiring.
  • the electric vehicle further includes a third wiring and a fourth wiring.
  • the third wiring electrically connects the plurality of third switches and the power control unit respectively corresponding to the plurality of power storage devices.
  • the fourth wiring electrically connects at least one of the plurality of first wirings that supplies power to the auxiliary load system and the third wiring.
  • the auxiliary load system can be operated by the electric power from the power storage device. For this reason, the fuel consumption can be improved by suppressing the power consumption by opening the second switch during normal driving. Moreover, even when the power storage device is disconnected from the electric system by opening the second and third switches when an abnormality occurs in the power storage device, the operation of the auxiliary load system can be ensured by the regenerative power from the vehicle driving motor.
  • the electric vehicle of the present invention it is possible to improve both the charging efficiency and ensure the operation of the auxiliary load system when the power storage device is charged by the external power source.
  • FIG. 1 It is a block diagram which shows the electric system structure of the electric vehicle by Embodiment 1 of this invention. It is a circuit diagram which shows the structural example of the power converter shown by FIG. FIG. 2 is a chart for explaining on / off control of each relay in the electric system of the electric vehicle shown in FIG. 1.
  • FIG. 3 is a first flowchart illustrating a relay control operation during external charging in the electric system of the electric vehicle shown in FIG. 1.
  • FIG. 6 is a second flowchart for explaining a relay control operation during external charging in the electric system of the electric vehicle shown in FIG. 1.
  • Control device 10, 10 (1) -10 (n) Main battery, 15, 15 (1) -15 (n) Battery ECU, 22 Smoothing capacitor, 25 MG-ECU, 30 Motor generator, 40 Power transmission gear, 50 driving wheels, 60 DC / DC converter, 65 air conditioner, 70 auxiliary battery, 80 auxiliary load, 100 electric vehicle, 105 charging connector, 110 power converter, 112, 114, 116 bridge circuit, 115 transformer, 117, 118 power supply wiring, 120 AC outlet (inside the car), 150A, 150B, 150B (1) to 150B (n), 150C, 150C (1) to 150C (n), 150D relay, 151 to 154 power supply wiring, 200 charging cable, 205 charging connector, 210 charging plug, 40 External power supply, 405 outlets, 500 solar cell, C1 smoothing capacitor, L1, L2 reactor, N1, N2 node (AC side), N3, N4 node (DC side), Vac AC voltage, Vdc DC voltage.
  • FIG. 1 is a block diagram showing an electric system configuration of an electric vehicle according to Embodiment 1 of the present invention.
  • an electric vehicle 100 includes a control device 5, a main battery 10, a power control unit (PCU) 20, a smoothing capacitor 22, a motor generator 30, a power transmission gear 40, and drive wheels 50.
  • PCU power control unit
  • the control device 5 controls the ON (closed) / OFF (open) of each relay and the operation (power ON) / stop (power OFF) of each relay among the functions for controlling the equipment mounted on the electric vehicle 100.
  • the functional part to be shown shall be shown.
  • the control device 5 can be configured to achieve the above functions by predetermined arithmetic processing by executing a program stored in advance in a built-in memory (not shown) or by predetermined arithmetic processing by hardware such as an electronic circuit.
  • the main battery 10 is shown as a representative example of the “power storage device”, and typically includes a secondary battery such as a lithium ion battery or a nickel metal hydride battery.
  • a secondary battery such as a lithium ion battery or a nickel metal hydride battery.
  • the output voltage of the main battery 10 is about 200V.
  • the “power storage device” may be configured by an electric double layer capacitor or a combination of a secondary battery and a capacitor.
  • the PCU 20 converts the stored power of the main battery 10 into power for driving and controlling the motor generator 30.
  • motor generator 30 is constituted by a permanent magnet type three-phase synchronous motor
  • PCU 20 is constituted by a three-phase inverter.
  • the PCU 20 may be configured by a combination of a converter that variably controls the output voltage from the main battery 10 and a three-phase inverter that converts the output voltage of the converter into an AC voltage.
  • a relay 150C corresponding to the “third switch” is connected to the energization path between the main battery 10 and the PCU 20.
  • Relay 150C corresponds to a system main relay (SMR) that is turned on in response to a start command of the electric system of electrically powered vehicle 100, for example, an ignition switch that is turned on (IG-ON).
  • SMR system main relay
  • Main battery 10 is connected to power supply wiring 153 of PCU 20 via relay 150C.
  • the smoothing capacitor 22 is connected to the power supply wiring 153 and functions to smooth the DC voltage.
  • the output torque of the motor generator 30 is transmitted to the drive wheels 50 through a power transmission gear 40 constituted by a speed reducer and a power split mechanism, and the electric vehicle 100 is caused to travel.
  • the motor generator 30 can generate electric power by the rotational force of the drive wheels 50 during the regenerative braking operation of the electric vehicle 100.
  • the generated power is converted into charging power for the main battery 10 by the PCU 20.
  • the electric vehicle 100 indicates a vehicle on which an electric motor for generating vehicle driving force is mounted, and includes a hybrid vehicle that generates vehicle driving force by an engine and an electric motor, an electric vehicle that does not have an engine, a fuel cell vehicle, and the like. .
  • An electronic control unit for managing and controlling each operation of the main battery 10 and the PCU 20 is provided.
  • a battery ECU 15 is provided for the main battery 10
  • an MG-ECU 25 is provided for the PCU 20.
  • the battery ECU 15 manages and controls the charge / discharge state of the main battery based on a temperature sensor, a current sensor, a voltage sensor, and the like (not shown) disposed in the main battery 10. Typically, the remaining capacity (SOC: State of Charge) of the main battery 10 is calculated by the battery ECU 15.
  • MG-ECU 25 performs power conversion operation in PCU 20 such that motor generator 30 operates in accordance with an operation command (typically a torque command value), specifically, the above-described inverter (not shown) or inverter and An on / off operation of a power semiconductor switching element constituting a converter (not shown) is controlled.
  • an operation command typically a torque command value
  • the electric vehicle 100 includes a charging connector 105 and a power converter 110 as a configuration for external charging of the main battery 10 (power storage device). Furthermore, the electric vehicle 100 is provided with an AC outlet 120 for taking out commercial AC power.
  • the charging connector 105 is connected to the external power source 400 via the charging cable 200.
  • the external power supply 400 is typically constituted by a system power supply.
  • the charging cable 200 is configured to have a charging connector 205 and a charging plug 210.
  • the outlet 405 of the external power source 400 is connected to the charging plug 210 and the charging connector 205 is connected to the charging connector 105 of the electric vehicle 100, so that power from the external power source 400 is supplied to the charging connector 205. Is done.
  • the charging connector 105 has a function of notifying the control device 5 when it is electrically connected to the external power source 400.
  • the power converter 110 performs power conversion between the AC voltage Vac between the nodes N1 and N2 and the DC voltage Vdc between the nodes N3 and N4.
  • Nodes N 1 and N 2 of power converter 110 are connected to power supply wiring 152.
  • the power supply wiring 152 is electrically connected to the charging connector 105 via a relay 150A corresponding to the “first switch”. Furthermore, the power supply wiring 152 is electrically connected to the AC outlet 120 via the relay 150D corresponding to the “fourth switch”.
  • the nodes N3 and N4 of the power converter 110 are connected to the power supply wiring 151. Furthermore, the power supply wiring 151 is electrically connected to the main battery 10 via the relay 150B corresponding to the “second switch”.
  • Each of relays 150A to 150D is typically closed (ON) by connecting the contacts when energized, and opened (OFF) by disconnecting the contacts when de-energized. Consists of electromagnetic relays. Note that the current passed between the motor generator 30 for driving the vehicle and the main battery 10 through the relay 150C is the current passing through the relays 150A and 150B during external charging and the AC outlet through the relay 150D. The current output from 110 is larger. For this reason, the relay 150C has a larger current capacity than the other relays 150A, 150B, and 150D, and the passing current of the exciting coil also increases when the relay 150C is on. For this reason, the power consumption when the relay 150C is on is larger than that of the other relays 150A, 150B, and 150D.
  • the electric vehicle 100 further has an auxiliary load that receives power supply (DC voltage Vdc) from the power supply wiring 151.
  • the auxiliary system load includes a DC / DC converter 60, an air conditioner 65, an auxiliary battery 70, and an auxiliary load 80.
  • the air conditioner 65 includes an inverter (not shown) that converts the DC voltage Vdc on the power supply wiring 151 into AC power for driving and controlling a compressor (not shown).
  • the output voltage of auxiliary battery 70 is lower than the output voltage of main battery 10 (for example, about 12V).
  • the auxiliary machine load 80 generally represents devices that operate with the power supplied from the auxiliary battery 70, and includes audio devices and small motors. Each ECU including the control device 5 is also operated by electric power supplied from the auxiliary battery 70.
  • DC / DC converter 60 steps down DC voltage Vdc on power supply wiring 151, that is, the output voltage of main battery 10 to the charging voltage of auxiliary battery 70.
  • Power converter 110 is configured to convert AC voltage Vac from external power supply 400 transmitted between nodes N1 and N2 to DC voltage Vdc and output between nodes N3 and N4 during external charging. .
  • the DC voltage Vdc corresponds to the output voltage of the main battery 10.
  • power converter 110 is configured to further have a function of converting DC voltage Vdc between nodes N3 and N4 into AC voltage Vac for output from AC outlet 120. Therefore, in the present embodiment, power converter 110 is configured to be capable of bidirectional DC / AC voltage conversion.
  • FIG. 2 is a circuit diagram illustrating a configuration example of the power converter 110.
  • power converter 110 includes a reactor L1 connected in series to node N1, a reactor L2 connected in series to node N2, a smoothing capacitor C1, bridge circuits 112, 114, and 116. And the transformer 115.
  • the bridge circuit 112 converts the AC voltage Vac between the nodes N1 and N2 into a DC voltage by the on / off control of the power semiconductor switching element, and outputs the DC voltage between the power supply wires 117 and 118.
  • a smoothing capacitor C1 is connected between the power supply wires 117 and 118.
  • the bridge circuit 112 converts the DC voltage between the power supply wires 117 and 118 into AC power by on / off control of the power semiconductor switching element, and outputs it to the primary side of the transformer 115.
  • the transformer 115 converts the AC voltage on the primary side according to a predetermined primary / secondary winding ratio, and outputs the voltage to the secondary side.
  • the bridge circuit 116 converts the AC voltage on the secondary side of the transformer 115 into a DC voltage by on / off control of the power semiconductor switching element, and outputs the converted DC voltage Vdc between the nodes N3 and N4.
  • AC voltage Vac for example, 100 VAC
  • DC voltage Vdc for charging main battery 10 while ensuring insulation between external power supply 400 and main battery 10. / DC conversion operation can be executed.
  • power converter 110 operates in the opposite direction to the above-described AC / DC conversion operation, converts DC voltage Vdc between nodes N3 and N4 to AC voltage Vac, and outputs the voltage between nodes N1 and N2. It is also possible.
  • the bridge circuit 116 converts the DC voltage Vdc between the nodes N3 and N4 into an AC voltage and outputs the AC voltage to the transformer 115.
  • the bridge circuit 114 converts the AC voltage transmitted by the transformer 115 into a DC voltage and outputs the DC voltage between the power supply wires 117 and 118.
  • the bridge circuit 112 converts the DC voltage between the power supply wirings 117 and 118 into an AC voltage Vac equivalent to the system power supply and outputs it between the nodes N1 and N2.
  • the electric system of electric vehicle 100 is activated by turning on the ignition switch (IG-ON).
  • IG-ON ignition switch
  • relay 150A is turned off, while each of relays 150B to 150D is turned on.
  • the control device 5 turns on the power of each on-vehicle ECU and each device.
  • relay 150A is turned off.
  • relays 150A and 150B are turned on, while relay 150C is turned off.
  • the relay 150D is controlled to be opened and closed depending on whether the ignition switch that instructs activation of the electrical system is turned on by the user.
  • relays 150A and 150B are turned on to convert power supplied from external power supply 400 (AC voltage Vac) to DC power (DC voltage Vdc) by power converter 110.
  • external power supply 400 AC voltage Vac
  • DC voltage Vdc DC voltage
  • the auxiliary load system connected to the power supply wiring 151 can be operated by the DC voltage Vdc obtained by converting the power supplied from the external power supply 400 when the relay 150A is turned on. That is, by connecting the auxiliary load system to the power supply line 151 instead of the power supply line 153 connected to the relay 150C corresponding to the system main relay, operating power is supplied to the auxiliary load system even if the relay 150C is turned off. It can be supplied.
  • the DC / DC converter 60 can supply charging power for the auxiliary battery 70 and operating power for the auxiliary load 80.
  • the relay 150D is turned off when the electric system is not activated by the user, and is turned on when the electric system is activated (IG-ON). Thereby, when the electric system is activated by the user, AC power can be output from the AC outlet 120. Since both the relays 150A and 150D are turned on during external charging, basically, the AC voltage Vac supplied from the external power source 400 is output from the AC outlet 120 without using the power from the main battery 10. Will be able to. Also from this aspect, the main battery 10 can be quickly charged during external charging.
  • the control device 5 turns on only the ECUs and devices necessary for external charging without starting up the entire electrical system. Specifically, the battery ECU 15, power converter 110, and DC / DC converter 60 are powered on, while other devices are basically turned off. By operating only the minimum equipment necessary for external charging, the efficiency of external charging is further improved.
  • the relays 150A to 150D correspond to “first switch” to “fourth switch”, respectively.
  • the power supply lines 151 to 153 correspond to “first wiring” to “third wiring”, respectively.
  • DC / DC converter 60 corresponds to “auxiliary power converter”
  • auxiliary battery 70 corresponds to “auxiliary power storage device”.
  • FIGS. 4 and 5 are realized, for example, when the control device 5 executes a program stored in advance.
  • FIG. 4 shows a processing procedure related to the control of the relays 150A to 150C.
  • control device 5 determines whether or not external power supply 400 is connected to charging connector 105 in step S100.
  • charging cable 200 is provided with a circuit that outputs an electrical signal indicating that power is supplied from external power supply 400. Then, when the charging cable 200 is connected to the charging connector 105, the electric signal from the circuit is transmitted to the control device 5, whereby the determination in step S100 is based on the presence or absence of the electric signal. Can be executed.
  • control device 5 When the external power source 400 is connected to the charging connector 105 (YES in S100), the control device 5 recognizes that it is during external charging and advances the process to step S110. In step S110, control device 5 activates battery ECU 15, power converter 110 for external charging, and DC / DC converter 60, which are the minimum necessary for external charging.
  • control device 5 turns off the relay 150C while turning on the relays 150A and 150B in step S120.
  • the power converter 110 converts the AC voltage Vac from the external power source 400 into a DC voltage Vdc for charging the main battery 10 through the energization path formed by turning on the relays 150A and 150B.
  • the external charging is executed by controlling.
  • Control device 5 proceeds to step S140 when external charging is performed, and determines whether or not charging of auxiliary battery 70 has been completed. Then, when charging of auxiliary battery 70 is completed (when YES is determined in S140), control device 5 proceeds to step S150 and stops DC / DC converter 60. Thereby, it is possible to avoid unnecessary power consumption by DC / DC converter 60 after charging of auxiliary battery 70 is completed.
  • step S150 is skipped and the operation of the DC / DC converter 60 is maintained.
  • Control device 5 further determines whether or not charging of main battery 10 is completed in step S160. For example, the determination in step S160 can be executed based on the SOC of the main battery 10 managed by the battery ECU 15. When charging of the main battery is completed (YES in S160), control device 5 proceeds to step S170 and turns off relay 150B. Thereby, when charging of the main battery 10 is completed, it is possible to turn off the relay 150B and maintain unnecessary charging paths, thereby avoiding unnecessary power consumption of the relay 150B.
  • the control device 5 supplies the power from the external power source 400 to the AC outlet by way of the relay 150A and the relay 150D even after the relay 150B is turned off. 120 can be output.
  • step S160 when the main battery 10 is not fully charged (NO in S160), the process is returned to step S130, and external charging is continued.
  • ON of relay 150B in step S120 is maintained until charging of main battery 10 is completed.
  • the DC / DC converter 60 activated in step S110 operates until the auxiliary battery 70 is completely charged.
  • FIG. 5 shows a processing procedure of the control device 5 related to the control of the relay 150D.
  • control device 5 determines whether or not the ignition switch (IG) is turned on by the user in step S200 during external charging (when YES is determined in S100).
  • IG ignition switch
  • the control device 5 turns off the relay 150D in step S240 in order to perform only external charging. Further, the auxiliary battery 70 can be quickly charged by the DC / DC converter 60 by turning off the power to the auxiliary equipment such as audio. In addition, power consumption of the auxiliary load system can be suppressed, and external charging can be performed with high efficiency.
  • control device 5 turns on relay 150D in step S210, and controls each ECU and each auxiliary device. Turn on the power. Further, the control device 5 advances the process to step S220 to determine whether or not the external power source 400 has a power failure.
  • the determination in step S220 can be performed by providing a zero-cross detector (not shown) in the charging connector 105 or the like.
  • control device 5 proceeds to step S230 at the time of a power failure of external power supply 400 (when YES is determined in S220), and direct current power from main battery 10 is equivalent to the system power supply by power converter 110.
  • a control instruction is generated so as to be converted into AC power.
  • the AC voltage Vac output to the power supply wiring 152 is output from the AC outlet 120 via the relay 150D.
  • step S220 is skipped and the DC / AC conversion operation by power converter 110 is not executed. Then, AC power from the external power source 400 is output from the AC outlet 120 when the relays 150A and 150B are turned on without consuming the power of the main battery 10.
  • the large-capacity relay 150C that forms an energization path to the vehicle driving force generation motor (motor generator 30).
  • the relays 150A and 150B turned on while being turned off, a path for charging the main battery 10 with the power supplied from the external power supply 400 can be formed, and power can be supplied to the power supply wiring 151 to which the auxiliary load system is connected. Therefore, at the time of external charging, charging efficiency can be improved by suppressing the power consumption of the relay (switch) while ensuring the operation of the auxiliary load system.
  • FIG. 6 is a block diagram showing the configuration of the electric system of the electric vehicle according to the second embodiment of the present invention.
  • n is an integer of 2 or more.
  • battery ECUs 15 (1) to 15 (n) are separately provided in order to manage the remaining capacities of the main batteries 10 (1) to 10 (n), respectively.
  • relays 150C (1) to 150C (n) are arranged between the main batteries 10 (1) to 10 (n) and the power supply wiring 153, respectively. ON / OFF is controlled independently.
  • Each of relays 150C (1) to 150C (n) is basically turned on when the electric system is started.
  • relays 150B (1) -150B (n) respectively corresponding to main batteries 10 (1) -10 (n) are separately provided. Provided. The ON / OFF of relays 150B (1) to 150B (n) is also controlled independently.
  • the power converter 110 has nodes N3 and N4 shown in FIG. 2 independently corresponding to each of the main batteries 10 (1) to 10 (n).
  • n secondary windings (bridge circuit 116 side) windings and bridge circuits 116 of the transformer 115 are arranged in parallel in accordance with the number of main batteries 10, so that FIG. The configuration shown can be realized.
  • the DC voltage Vdc corresponding to each of the main batteries 10 (1) to 10 (n) can be independently controlled by performing switching control of the n bridge circuits 116 independently.
  • the power supply wiring 151 is also arranged independently for each of the main batteries 10 (1) to 10 (n).
  • the auxiliary load system including the DC / DC converter 60, the air conditioner 65, the auxiliary battery 70, and the auxiliary load 80 is connected to at least one of the n power supply wires 151.
  • relays 150B (1) to 150B (n) are turned on, depending on the state of charge of main batteries 10 (1) to 10 (n), that is, steps S160 and S170 in FIG.
  • the relays 150B (1) to 150B (n) are controlled to be turned off independently in a mode that is executed independently for each main battery 10.
  • the relay 150B corresponding to the power supply wiring 151 connected to the auxiliary load system is kept on at least until the charging of the auxiliary battery 70 is completed even when the charging of the corresponding main battery 10 is completed. There is a need to.
  • Each of relays 150C (1) to 150C (n) is controlled in the same manner as relay 150C in the first embodiment.
  • the relay 150B (1) to 150B (n) When the vehicle is traveling, it is not necessary to turn on all of the relays 150B (1) to 150B (n). Basically, only the relay 150B corresponding to the power supply wiring 151 connected to the auxiliary load system is turned on. . When a plurality of power supply wirings 151 are connected to the auxiliary load system, the corresponding relays 150 (B) are turned on / off according to the state of the corresponding main battery 10 (SOC, etc.). May be.
  • relay 150B is turned on only for a part of the main batteries 10 (1) to 10 (n) having a large remaining capacity (SOC). It is good also as a structure.
  • the main battery 10 (i) In which an abnormality has occurred during vehicle travel and external charging, the main battery 10 (i) is disconnected from the electrical system by turning off the corresponding relays 150B (i) and 150C (i). It becomes possible.
  • the same effect as that of the electric system of the electric vehicle according to the first embodiment can be enjoyed with a configuration in which a plurality of main batteries are arranged in parallel. .
  • FIG. 7 is a block diagram showing the configuration of the electric system of the electric vehicle according to the third embodiment of the present invention.
  • FIG. 7 is compared with FIG. 1, in the electric system of the electric vehicle according to the third embodiment, compared to the configuration of the first embodiment, “ A difference is that a power supply wiring 154 corresponding to the “fourth wiring” is further arranged. Since other configurations and control of each relay are the same as those shown in FIG. 1, detailed description will not be repeated.
  • the electric vehicle 100 is evacuated.
  • a power supply path to the auxiliary battery 70 cannot be secured as described above, power is supplied to each ECU due to a voltage drop of the auxiliary battery 70. If this becomes insufficient, there is a concern that a problem arises in securing the evacuation travel distance.
  • the relay 150B in the configuration of the electrical system according to the third embodiment shown in FIG. 7, by providing the power supply wiring 154, even if the relay 150B is turned off, the power from the main battery 10 via the relay 150C is used.
  • the power supply to the auxiliary load system including the DC / DC converter 60 is possible.
  • the relay 150B can always be turned off during normal vehicle travel, so that power consumption by the relay can be reduced and fuel consumption can be improved.
  • FIG. 8 is a block diagram illustrating an electric system configuration of an electric vehicle according to a modification of the third embodiment of the present invention.
  • the electric system of the electric vehicle according to the modification of the third embodiment is different from the first embodiment in that a solar cell 500 for charging the auxiliary battery 70 is further provided. .
  • Solar cell 500 is installed at a location where sunlight can be received, such as the roof of electric vehicle 100, and generates electric power according to the amount of received light.
  • the charging power of the auxiliary battery 70 can be secured, the operating period of the auxiliary load 80 (including each ECU) to which the operating power is supplied by the auxiliary battery 70 is ensured, including during retreating. can do. Further, at the time of external charging, it can be expected that charging efficiency is improved by shortening the ON period of the relay 150B.
  • FIG. 7 and FIG. 8 can be combined to add both the power supply wiring 154 and the solar cell 500 to the configuration of FIG.
  • the present invention can be applied to an electric vehicle such as an electric vehicle or a hybrid vehicle equipped with a power storage device that can be charged by a power source external to the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 外部充電(400)によるメインバッテリ(10)の充電経路は、第1のリレー(150A)および第2のリレー(150B)のオンにより形成される。この充電経路は第3のリレー(150C)のオンにより形成される、車両駆動力発生用のモータジェネレータ(30)およびメインバッテリ(10)の間の通電経路から独立するように設けられる。さらに、補機バッテリ(70)を含む補機負荷系は、第3のリレー(150C)をオフしても動作可能なように、上記通電経路に接続されるのではなく、第2のリレー(150B)および電力変換器(110)の間の電源配線(151)から動作電力を供給される。

Description

電動車両
 この発明は、電動車両に関し、より特定的には、車両外部の電源によって充電可能な蓄電装置を搭載した電動車両の電気システムに関する。
 二次電池に代表される蓄電装置からの電力によって車両駆動用電動機を駆動する電気自動車やハイブリッド自動車等の電動車両では、車両外部の電源(以下、単に「外部電源」とも称する)によってこの蓄電装置を充電する構成が提案されている。また、以下では、外部電源による蓄電装置の充電を「外部充電」とも称する。
 たとえば、特開2001-163041号公報(特許文献1)には、外部の商用電源に接続可能な接続器を介して得られる交流電力を整流平滑した後、所定の電圧に昇圧して車軸駆動用のバッテリへ充電する構成が記載されている。さらに、特許文献1では、当該バッテリに蓄えられた電荷を用いて冷凍サイクルを構成する圧縮機の駆動を可能にした自動車用空調装置において、通常の場合には、冷凍サイクル中の圧縮機をバッテリからの電力によって電気的に駆動する一方で、キャンプ場等で駐車した状態で車内を空調する場合には、バッテリを圧縮機駆動回路から切り離して、交流電源から整流平滑された電力を直接圧縮機の駆動に用いることを可能にする回路を設けることが記載されている。
 これにより、特許文献1による自動車用空調装置では、キャンプ場等で駐車中にバッテリの消耗を気にすることなく、また発電のためにエンジンを動かし続けることなく長時間空調装置を運転することが可能となる。
 また、特開2000-299988号公報(特許文献2)には、車両用商用電源装置において、コンセントをインバータおよび商用電源で自動切換可能にした構成が記載されている。特許文献2の構成によれば、切換スイッチによって、商用電源から入力された交流電力、あるいはインバータがバッテリからの電力を変換して出力した交流電圧の一方を選択的に、商用電源およびインバータに共通の電源出力用コンセントと接続することが可能となっている。
 また、特開2001-45673号公報(特許文献3)では、電動装置およびその電池用ユニットの構成として、商用電源および充電手段による電池ユニットの充電経路と、電池ユニットから負荷の駆動手段への通電経路とのそれぞれに独立にスイッチを配置する回路構成が記載されている。
特開2001-163041号公報 特開2000-299988号公報 特開2001-45673号公報
 しかしながら、特許文献1に記載された構成では、外部電源(商用電源)によってバッテリ(B1)を充電する経路と、バッテリの電力を動力モータへ供給する経路との切換を単一のスイッチ(SW1)で実行している。このスイッチは、バッテリから動力モータへの供給電流が通過するため比較的大容量のものが必要とされるため、接点間の接続のための駆動電力が大きくなることが予想される。このため、外部充電時に当該スイッチによりB側の接点を接続する必要がある特許文献1の構成では、充電時の効率が低下することが懸念される。
 また、特許文献1では、上記スイッチとは別個のスイッチ(SW2)によって接点間を接続することによって、外部充電時にも圧縮機(13)を含む空調機器を作動させることができる。このように、このような車両の補機負荷系について、外部充電時にもユーザ要求によって動作が必要な場合が出てくる。この際に、充電効率を向上させた上で、このような補機負荷系の動作を確保するための電気システムの構成が求められるが、特許文献2および3は、このような補機負荷系の構成について全く言及していない。
 この発明は、このような問題点を解決するためになされたものであって、この発明の目的は、外部電源によって充電可能な蓄電装置を搭載した電動車両において、外部充電時に充電効率向上および補機負荷系の動作確保の両方が可能な電気システムの構成を提供することである。
 この発明による電動車両は、外部電源によって充電可能に構成された蓄電装置を搭載した電動車両であって、充電コネクタと、電力変換器と、電力制御ユニットと、第1および第2の開閉器と、補機負荷系とを備える。充電コネクタは、外部電源によって蓄電装置を充電する外部充電時に、外部電源からの供給電力を受ける。電力変換器は、外部電源からの供給電力を蓄電装置の充電電力に変換する。電力制御ユニットは、蓄電装置および車両駆動力発生用の電動機の間に接続されて、電動機を駆動制御するように構成される。第1の開閉器は、充電コネクタおよび電力変換器の間の通電経路に介挿接続される。第2の開閉器は、電力変換器および蓄電装置の間の通電経路に介挿接続される。補機負荷系は、第2の開閉器と電力変換器との間を電気的に接続する第1の配線から電力を供給されるように配置される。
 上記電動車両によれば、第1および第2の開閉器を閉成することによって、外部電源から電力制御ユニットを介した車両駆動力発生用電動機への通電経路とは独立に、蓄電装置、補機負荷系および外部電源の間を接続する通電経路を確保できる。ここで、第1および第2の開閉器は、車両駆動力発生用電動機への通電経路に配設されていないので電流容量を抑制することができる。したがって、外部充電時における開閉器(すなわち、第1および第2の開閉器)の消費電力を抑制することによって充電効率を向上しつつ、補機負荷系を動作させることが可能となる。
 好ましくは、電動車両は、蓄電装置および電力制御ユニットの間の通電経路に介挿接続される第3の開閉器と、制御部とをさらに備える。制御部は、外部充電時に、第1および第2の開閉器を閉成する一方で、第3の開閉器を開放し、かつ、電力変換器を作動させて蓄電装置を充電する。
 このようにすると、第1および第2の開閉器よりも電流容量が大きい、車両駆動力発生用電動機への通電経路に設けられた第3の開閉器を開放して外部充電を実行するので、外部充電時における開閉器の消費電力を抑制して充電効率を向上できる。
 さらに好ましくは、制御部は、外部充電時に蓄電装置の充電完了に応答して、第2の開閉器を開放する。
 このようにすると、蓄電装置の充電完了に応答して、外部充電経路を形成する開閉器(第2の開閉器)を開放して無用な電力消費を抑制するとともに、第1の開閉器を介した外部電源からの電力によって補機負荷系を動作させることができる。
 また好ましくは、補機負荷系は、蓄電装置よりも出力電圧が低い補機用蓄電装置と、第1の配線上の電力を補機用蓄電装置の充電電力に変換する補機用電力変換器と、補機用蓄電装置からの電力によって動作する負荷機器とを含む。
 このようにすると、外部充電時に、外部電源からの電力によって補機用蓄電装置(補機バッテリ)を充電することができる。
 あるいは好ましくは、電動車両は、制御部をさらに備える。制御部は、外部充電時に、補機用電力変換器を作動させて補機用蓄電装置を充電するとともに、補機用蓄電装置の充電完了に応答して補機用電力変換器を停止させる。
 このようにすると、外部充電時に、補機用蓄電装置の充電完了に応答して補機用電力変換器の動作を停止させるので、無用な電力消費を抑制することができる。
 また好ましくは、外部電源は、系統電源であり、電動車両は、コンセントと、制御部とをさらに備える。コンセントは、第1の開閉器と電力変換器との間を電気的に接続する第2の配線から系統電源と同等の交流電力を出力するために設けられる。第4の開閉器は、第2の配線とコンセントとの間の通電経路に接続される。制御部は、外部充電時において、電動車両の電気システムの起動が指示されたときに第4の開閉器を閉成する。
 このようにすると、電動車両に設けられたコンセントから、外部充電時には系統電源からの交流電力を出力することが可能となる。これにより、蓄電装置の電力消耗が抑制できる。
 さらに好ましくは、電力変換器は、双方向に電力変換可能に構成されて、蓄電装置からの電力を交流電力に変換可能である。そして、制御部は、第4の開閉器の閉成時に、外部電源が停電しているときには、電力変換器を作動させて変換した交流電力を第2の配線に出力させる。
 このようにすると、外部充電時に外部電源が停電している場合には、蓄電装置の電力によって、コンセントから系統電源と同等の交流電力を出力することができる。
 好ましくは、蓄電装置は複数個設けられ、第2の開閉器および第1の配線は、複数個の蓄電装置にそれぞれ対応して複数個設けられる。そして、補機負荷系は、複数個の第1の配線のうちの少なくとも1つから電力を供給されるように配置される。さらに好ましくは、電動車両は、複数個の蓄電装置および電力制御ユニットの間の通電経路のそれぞれに介挿接続される複数個の第3の開閉器と、制御部とをさらに備える。制御部は、外部充電時に、第1の開閉器および少なくとも1つの第2の開閉器を閉成する一方で、各第3の開閉器を開放し、かつ、電力変換器を作動させて複数個の蓄電装置のうちの少なくとも1つを充電する。さらに、制御部は、外部充電時に、各蓄電装置の充電完了に応答して、対応する第2の開閉器を開放する。
 このようにすると、蓄電装置が複数個設けられた電気システムにおいて、外部充電時における開閉器(すなわち、第1および第2の開閉器)の消費電力を抑制することによって充電効率を向上しつつ、補機負荷系を動作させることが可能となる。さらに、蓄電装置ごとに充電完了に応答して対応の第2の開閉器を開放することにより、無用な電力消費を抑制することができる。
 好ましくは、電動車両は、蓄電装置および電力制御ユニットの間の通電経路に介挿接続される第3の開閉器と、第3の配線と、第4の配線とを備える。第3の配線は、第3の開閉器と電力制御ユニットとの間を電気的に接続する。第4の配線は、第1の配線と第3の配線とを電気的に接続する。あるいは、蓄電装置が複数個設けられた構成において、電動車両は、第3の配線および第4の配線をさらに備える。第3の配線は、複数個の蓄電装置にそれぞれ対応する複数個の第3の開閉器および電力制御ユニットの間を電気的に接続する。第4の配線は、複数個の第1の配線のうちの補機負荷系へ電力を供給する少なくとも1つと第3の配線とを電気的に接続する。
 このようにすると、第2の開閉器をオフしても、蓄電装置からの電力によって補機負荷系を動作させることが可能となる。このため、通常走行時には第2の開閉器を開放することによって、消費電力抑制による燃費改善を図ることができる。また、蓄電装置の異常発生時に、第2および第3の開閉器の開放によって蓄電装置を電気システムから切り離しても、車両駆動用電動機からの回生電力によって補機負荷系の動作を確保できる。
 この発明による電動車両によれば、外部電源による蓄電装置の充電時における充電効率の向上および補機負荷系の動作確保の両方を図ることができる。
本発明の実施の形態1による電動車両の電気システム構成を示すブロック図である。 図1に示された電力変換器の構成例を示す回路図である。 図1に示した電動車両の電気システムにおける各リレーのオンオフ制御を説明する図表である。 図1に示した電動車両の電気システムにおける外部充電時のリレー制御動作を説明する第1のフローチャートである。 図1に示した電動車両の電気システムにおける外部充電時のリレー制御動作を説明する第2のフローチャートである。 本発明の実施の形態2による電動車両の電気システムの構成を示すブロック図である。 本発明の実施の形態3による電動車両の電気システム構成を説明するブロック図である。 本発明の実施の形態3の変形例による電動車両の電気システム構成を説明するブロック図である。
符号の説明
 5 制御装置、10,10(1)~10(n) メインバッテリ、15,15(1)~15(n) 電池ECU、22 平滑コンデンサ、25 MG-ECU、30 モータジェネレータ、40 動力伝達ギア、50 駆動輪、60 DC/DCコンバータ、65 空調機器、70 補機バッテリ、80 補機負荷、100 電動車両、105 充電コネクタ、110 電力変換器、112,114,116 ブリッジ回路、115 トランス、117,118 電源配線、120 ACコンセント(車内)、150A,150B,150B(1)~150B(n),150C,150C(1)~150C(n),150D リレー、151~154 電源配線、200 充電ケーブル、205 充電コネクタ、210 充電プラグ、400 外部電源、405 コンセント、500 太陽電池、C1 平滑コンデンサ、L1,L2 リアクトル、N1,N2 ノード(AC側)、N3,N4 ノード(DC側)、Vac 交流電圧、Vdc 直流電圧。
 以下において、この発明の実施の形態について図面を参照して詳細に説明する。なお、以下図中の同一または相当部分には同一の符号を付してその説明は原則として繰返さないものとする。
 [実施の形態1]
 図1は、本発明の実施の形態1による電動車両の電気システム構成を示すブロック図である。
 図1を参照して、電動車両100は、制御装置5と、メインバッテリ10と、電力制御ユニット(PCU)20と、平滑コンデンサ22と、モータジェネレータ30と、動力伝達ギア40と、駆動輪50とを備える。
 制御装置5は、電動車両100の搭載機器を制御する機能のうちの、各リレーのオン(閉成)・オフ(開放)や、各機器の作動(電源オン)・停止(電源オフ)を制御する機能部分を示すものとする。なお、制御装置5は、図示しない内蔵メモリに予め記憶されたプログラムの実行による所定の演算処理や電子回路等のハードウェアによる所定の演算処理によって、上記機能を達成するように構成できる。
 メインバッテリ10は、「蓄電装置」の代表例として示され、代表的にはリチウムイオン電池やニッケル水素電池等の二次電池により構成される。たとえば、メインバッテリ10の出力電圧は200V程度である。あるいは、電気二重層キャパシタによって、あるいは二次電池とキャパシタとの組合せ等によって「蓄電装置」を構成してもよい。
 PCU20は、メインバッテリ10の蓄積電力を、モータジェネレータ30を駆動制御するための電力に変換する。たとえば、モータジェネレータ30は永久磁石型の3相同期電動機で構成されて、PCU20は、三相インバータにより構成される。あるいは、PCU20については、メインバッテリ10からの出力電圧を可変制御するコンバータと、コンバータの出力電圧を交流電圧に変換する三相インバータとの組合せによって構成してもよい。
 メインバッテリ10とPCU20との間の通電経路には、「第3の開閉器」に対応するリレー150Cが接続される。リレー150Cは、電動車両100の電気システムの起動指令、たとえばイグニッションスイッチのオン(IG-ON)に応答してオンされるシステムメインリレー(SMR)に対応する。メインバッテリ10は、リレー150Cを介して、PCU20の電源配線153と接続される。平滑コンデンサ22は、電源配線153に接続されて、直流電圧を平滑する機能を果たす。
 モータジェネレータ30の出力トルクは、減速機や動力分割機構によって構成される動力伝達ギア40を介して駆動輪50に伝達されて、電動車両100を走行させる。
 モータジェネレータ30は、電動車両100の回生制動動作時には、駆動輪50の回転力によって発電することができる。そしてその発電電力は、PCU20によってメインバッテリ10の充電電力に変換される。
 また、モータジェネレータ30の他にエンジン(図示せず)が搭載されたハイブリッド自動車では、このエンジンおよびモータジェネレータ30を協調的に動作させることによって、必要な電動車両100の車両駆動力が発生される。この際には、エンジンの回転による発電電力を用いて、メインバッテリ10を充電することも可能である。すなわち、電動車両100は、車両駆動力発生用の電動機を搭載する車両を示すものであり、エンジンおよび電動機により車両駆動力を発生するハイブリッド自動車、エンジンを搭載しない電気自動車、燃料電池車等を含む。
 メインバッテリ10およびPCU20に対して、それぞれの動作を管理・制御するための電子制御ユニット(ECU)が設けられる。たとえば、メインバッテリ10に対しては電池ECU15が設けられ、PCU20に対してはMG-ECU25が設けられる。
 電池ECU15は、メインバッテリ10に配設された図示しない温度センサ、電流センサ、電圧センサ等に基づいて、メインバッテリの充放電状態を管理制御する。代表的には電池ECU15によってメインバッテリ10の残存容量(SOC:State of Charge)が算出される。
 MG-ECU25は、モータジェネレータ30が、動作指令(代表的にはトルク指令値)に従って動作するように、PCU20における電力変換動作、具体的には、上述のインバータ(図示せず)あるいは、インバータおよびコンバータ(図示せず)を構成する電力用半導体スイッチング素子のオンオフ動作を制御する。
 電動車両100は、メインバッテリ10(蓄電装置)の外部充電のための構成として、充電コネクタ105と、電力変換器110とを含む。さらに、電動車両100には、商用交流電源を取出すためのACコンセント120が配置される。
 充電コネクタ105は、充電ケーブル200を介して、外部電源400と接続される。外部電源400は、代表的には系統電源により構成される。充電ケーブル200は、充電コネクタ205および充電プラグ210を有するように構成される。
 外部充電時には、外部電源400のコンセント405が充電プラグ210と接続され、かつ、充電コネクタ205が電動車両100の充電コネクタ105と接続されることによって、外部電源400からの電力が充電コネクタ205へ供給される。
 充電コネクタ105は、外部電源400と電気的に接続されたときに、そのことを制御装置5に通知する機能を有する。
 電力変換器110は、ノードN1,N2間の交流電圧VacとノードN3,N4間の直流電圧Vdcとの間で電力変換を実行する。電力変換器110のノードN1およびN2は電源配線152と接続される。電源配線152は、「第1の開閉器」に対応するリレー150Aを介して充電コネクタ105と電気的に接続される。さらに、電源配線152は、「第4の開閉器」に対応するリレー150Dを介して、ACコンセント120と電気的に接続される。
 電力変換器110のノードN3およびN4は、電源配線151と接続される。さらに、電源配線151は、「第2の開閉器」に対応するリレー150Bを介してメインバッテリ10と電気的に接続される。
 リレー150A~150Dの各々は、代表的には、通電時に接点間を接続することによって閉成(オン)される一方で、非通電時には接点間を非接続とすることによって開放(オフ)される電磁リレーによって構成される。なお、リレー150Cを通過して車両駆動用のモータジェネレータ30とメインバッテリ10の間で授受される電流は、外部充電時にリレー150A,150Bを通過する電流、および、リレー150Dを通過してACコンセント110から出力される電流よりも大きい。このため、リレー150Cは、他のリレー150A,150B,150Dよりも電流容量が大きく、オン時における励磁コイルの通過電流も大きくなる。このため、リレー150Cのオン時の消費電力も、他のリレー150A,150B,150Dと比較して大きい。
 電動車両100は、さらに、電源配線151から電力供給(直流電圧Vdc)を受ける補機系負荷を有する。補機系負荷は、DC/DCコンバータ60と、空調機器65と、補機バッテリ70と、補機負荷80とを含む。
 空調機器65は、電源配線151上の直流電圧Vdcをコンプレッサ(図示せず)を駆動制御する交流電力に変換するインバータ(図示せず)を含む。補機バッテリ70の出力電圧は、メインバッテリ10の出力電圧よりも低い(たとえば、12V程度)。補機負荷80は、補機バッテリ70からの供給電力によって動作する機器類を総括的に表記するものであり、オーディオ機器や小型モータ類を含む。制御装置5を始め各ECUについても、補機バッテリ70からの供給電力によって動作する。
 DC/DCコンバータ60は、電源配線151上の直流電圧Vdc、すなわちメインバッテリ10の出力電圧を補機バッテリ70の充電電圧に降圧する。
 電力変換器110は、外部充電時において、ノードN1,N2間に伝達された外部電源400からの交流電圧Vacを、直流電圧Vdcに変換してノードN3,N4間に出力するように構成される。直流電圧Vdcは、メインバッテリ10の出力電圧に相当する。
 好ましくは、電力変換器110は、ノードN3,N4間の直流電圧Vdcを、ACコンセント120から出力するための交流電圧Vacに変換する機能をさらに有するように構成される。したがって、本実施の形態では、電力変換器110は、双方向の直流/交流電圧変換が可能に構成されているものとする。
 図2は、電力変換器110の構成例を示す回路図である。
 図2を参照して、電力変換器110は、ノードN1に直列に接続されたリアクトルL1と、ノードN2に直列に接続されたリアクトルL2と、平滑コンデンサC1と、ブリッジ回路112,114,116と、トランス115とを含む。
 ブリッジ回路112は、電力用半導体スイッチング素子のオンオフ制御によって、ノードN1,N2間の交流電圧Vacを直流電圧に変換して、電源配線117および118間に出力する。電源配線117および118間には平滑コンデンサC1が接続される。
 ブリッジ回路112は、電力用半導体スイッチング素子のオンオフ制御によって、電源配線117,118間の直流電圧を交流電力に変換して、トランス115の一次側に出力する。トランス115は、所定の一次/二次側巻線比に従って一次側の交流電圧を電圧変換して、二次側へ出力する。
 ブリッジ回路116は、電力用半導体スイッチング素子のオンオフ制御によって、トランス115の二次側の交流電圧を直流電圧に変換して、変換した直流電圧VdcをノードN3,N4間に出力する。
 このようにすると、外部電源400とメインバッテリ10との間で絶縁を確保しながら、外部電源400からの交流電圧Vac(たとえば100VAC)を、メインバッテリ10を充電する直流電圧Vdcに変換する、AC/DC変換動作を実行できる。
 あるいは、電力変換器110は、上述のAC/DC変換動作とは逆方向に動作して、ノードN3,N4間の直流電圧Vdcを交流電圧Vacに変換して、ノードN1,N2間に出力することも可能である。
 このDC/AC変換動作時には、ブリッジ回路116は、ノードN3,N4間の直流電圧Vdcを交流電圧に変換して、トランス115へ出力する。そして、ブリッジ回路114は、トランス115によって伝達された交流電圧を直流電圧に変換して電源配線117,118間に出力する。そして、ブリッジ回路112は、電源配線117,118間の直流電圧を、系統電源と同等の交流電圧Vacに変換してノードN1,N2間に出力する。
 なお、ブリッジ回路112,114,116における、AC/DC変換あるいは、DC/AC変換のための電力用半導体スイッチング素子のオンオフ制御については周知のものを適用可能であるので、詳細な説明は省略する。
 次に、図3および図1を参照して、図1に示した電動車両の電気システムにおける各リレーのオンオフ制御について説明する。
 図3を参照して、車両走行時には、イグニッションスイッチのオン(IG-ON)により、電動車両100の電気システムは起動されている。この状態では、リレー150Aがオフされる一方で、リレー150B~150Dの各々はオンされる。
 図1を参照して、車両走行時には、システムメインリレーに相当するリレー150Cのオンにより、メインバッテリ10およびモータジェネレータ30の間で電力授受が可能となり、メインバッテリ10の蓄積電力によってモータジェネレータ30を駆動制御することが可能になる。これにより、メインバッテリ10の電力によるモータジェネレータ30を用いた車両駆動力の発生や、モータジェネレータ30の回生発電電力によるメインバッテリ10の充電が可能となる。
 また、リレー150Bをオンすることにより、補機負荷系が接続された電源配線151とメインバッテリ10とが電気的に接続される。これにより、メインバッテリ10からの電力によって、補機負荷系に電力を供給することができる。さらに、リレー150Dをオンすることにより、メインバッテリ10の直流電圧を電力変換器110によって交流電圧Vacに変換して、ACコンセント120から出力することも可能である。また、制御装置5により、車載の各ECUおよび各機器の電源がオンされる。
 一方で、車両走行時には、外部充電は実行されないため、リレー150Aはオフされる。
 再び図3を参照して、外部電源400が充電コネクタ105に接続される外部充電時には、リレー150A,150Bがオンされる一方で、リレー150Cがオフされる。そして、リレー150Dは、ユーザによって、電気システムの起動を指示するイグニッションスイッチがオンされるかに応じて、その開閉が制御される。
 再び図1を参照して、外部充電時には、リレー150Aおよび150Bがオンされることにより、外部電源400からの供給電力(交流電圧Vac)を電力変換器110によって直流電力(直流電圧Vdc)に変換してメインバッテリ10に供給する通電経路を構成できる。これにより、メインバッテリ10の外部充電が可能となる。
 さらに、電源配線151に接続された補機負荷系についても、リレー150Aがオンされていることにより、外部電源400からの供給電力を変換した直流電圧Vdcによって動作することが可能である。すなわち、補機負荷系を、システムメインリレーに相当するリレー150Cと接続される電源配線153ではなく、電源配線151と接続することによって、リレー150Cをオフしても補機負荷系に動作電力を供給可能である。そして、補機負荷系では、DC/DCコンバータ60によって、補機バッテリ70の充電電力および、補機負荷80の動作電力を供給できる。
 これにより、外部充電時に、車両駆動力に相当する電力を伝達するために比較的大容量であるリレー150Cをオフしても、メインバッテリ10の充電および、補機負荷系への電力供給が可能となる。すなわち、外部充電時に、リレー150Cをオフ可能であるので、充電効率を向上することができる。
 一方、リレー150Dは、ユーザによって電気システムが起動されていないときには、オフされる一方で、電気システムが起動される(IG-ON)の場合にはオンされる。これにより、ユーザにより電気システムが起動された場合には、ACコンセント120から交流電力を出力することが可能である。外部充電時には、リレー150A,150Dの両方がオンされるため、基本的には、メインバッテリ10からの電力を用いることなく、外部電源400からの供給された交流電圧VacをACコンセント120から出力することができるようになる。この面からも、外部充電時にはメインバッテリ10を速やかに充電できる。
 外部充電時には、制御装置5は、電気システム全体を起動することなく、外部充電に必要なECUおよび機器のみの電源をオンする。具体的には、電池ECU15、電力変換器110およびDC/DCコンバータ60の電源がオンされる一方で、その他の機器については基本的にオフされる。外部充電に必要最小限の機器のみを作動させることにより、外部充電の効率がさらに向上する。
 なお、外部充電時であっても、ユーザによりイグニッションスイッチが操作されて電気システムが起動された場合(IG-ON)には、各ECUおよび各機器の電源がオンされる。
 ここで、図1の構成において、上述のように、リレー150A~150Dは、「第1の開閉器」~「第4の開閉器」にそれぞれ対応する。また、電源配線151~153は、「第1の配線」~「第3の配線」にそれぞれ対応する。さらに、DC/DCコンバータ60は、「補機用電力変換器」に対応し、補機バッテリ70は、「補機用蓄電装置」に対応する。
 次に、図4および図5を用いて、図1に示した電動車両の電気システムにおける外部充電時のリレー制御動作について説明する。図4および図5に示した制御動作は、たとえば、制御装置5が予め記憶されたプログラムを実行することによって実現される。
 図4には、リレー150A~150Cの制御に関連する処理手順が示される。
 図4を参照して、制御装置5は、ステップS100により、充電コネクタ105に外部電源400が接続されているかどうかを判定する。たとえば、充電ケーブル200には、外部電源400から電力が供給されていることを示す電気信号を出力する回路が設けられる。そして、充電ケーブル200が充電コネクタ105に接続されたときに、当該回路からの上記電気信号が制御装置5に伝達されるように構成することによって、ステップS100による判定を当該電気信号の有無に基づいて実行することができる。
 制御装置5は、外部電源400が充電コネクタ105に接続されると(S100のYES判定時)、外部充電時であることを認識して、ステップS110に処理を進める。制御装置5は、ステップS110では、外部充電に必要最小限である、電池ECU15、外部充電用の電力変換器110、およびDC/DCコンバータ60を起動する。
 さらに、制御装置5は、ステップS120により、リレー150A,150Bをオンする一方で、リレー150Cをオフする。そして、ステップS130では、リレー150A,150Bのオンによって形成された通電経路により、外部電源400からの交流電圧Vacを、メインバッテリ10を充電するための直流電圧Vdcに変換するように電力変換器110を制御することによって外部充電が実行される。
 制御装置5は、外部充電の実行時にはステップS140に処理を進めて、補機バッテリ70の充電が完了したかどうかを判定する。そして、補機バッテリ70の充電が完了すると(S140のYES判定時)、制御装置5は、ステップS150に処理を進めて、DC/DCコンバータ60を停止する。これにより、補機バッテリ70の充電の完了後に、DC/DCコンバータ60によって無用な電力が消費されることを回避できる。
 一方、補機バッテリ70の充電が未完了であるとき(S140のNO判定時)には、ステップS150の処理はスキップされて、DC/DCコンバータ60の作動が維持される。
 制御装置5は、さらにステップS160により、メインバッテリ10の充電が完了したかどうかを判定する。たとえば、電池ECU15によって管理されるメインバッテリ10のSOCに基づいて、ステップS160の判定を実行できる。制御装置5は、メインバッテリの充電完了時(S160のYES判定時)には、ステップS170に処理を進めてリレー150Bをオフする。これにより、メインバッテリ10の充電が完了すると、リレー150Bをオフして、不要となった充電経路を維持することによってリレー150Bが無用な電力が消費することを回避できる。
 このとき、制御装置5は、ステップS180により、リレー150Dがオンされているときには、リレー150Bのオフ後であっても、リレー150Aおよびリレー150Dを経由することによって外部電源400からの電力をACコンセント120より出力することができる。
 一方、メインバッテリ10の充電が未完了であるとき(S160のNO判定時)には、ステップS130に処理が戻されて、外部充電が継続される。すなわち、充電コネクタ105に外部電源が接続されている外部充電時には、ステップS120によるリレー150Bのオンは、メインバッテリ10の充電が完了するまで維持される。また、ステップS110で起動されたDC/DCコンバータ60は、補機バッテリ70の充電が完了するまで動作する。
 図5には、リレー150Dの制御に関する制御装置5の処理手順が示される。
 図5を参照して、制御装置5は、外部充電時(S100のYES判定時)には、ステップS200によりユーザによりイグニッションスイッチ(IG)がオンされているかどうかを判定する。
 制御装置5は、IGがオフされている場合(S200のNO判定時)には、制御装置5は、外部充電のみを実行するために、ステップS240により、リレー150Dをオフする。さらに、オーディオ等の補機類への電源もオフすることによって、DC/DCコンバータ60により補機バッテリ70を速やかに充電できる。また、補機負荷系の消費電力を抑制して、外部充電を高効率で実行できる。
 一方、IGがオン、すなわち、電気システムが起動されている場合(S200のYES判定時)には、制御装置5は、ステップS210により、リレー150Dをオンするとともに、各ECUおよび各補機類の電源をオンする。さらに、制御装置5は、ステップS220に処理を進めて、外部電源400が停電しているか否かを判定する。たとえば、充電コネクタ105等にゼロクロス検出器(図示せず)を設けることによって、ステップS220の判定が実行できる。
 そして、制御装置5は、外部電源400の停電時(S220のYES判定時)には、ステップS230に処理を進めて、メインバッテリ10からの直流電力を、電力変換器110によって、系統電源と同等の交流電力に変換するように制御指示を発生する。これにより、電源配線152に出力された交流電圧Vacが、リレー150Dを介してACコンセント120から出力されるようになる。
 一方、外部電源が停電していないとき(S220のNO判定時)には、ステップS220はスキップされて、電力変換器110によるDC/AC変換動作は非実行とされる。そして、ACコンセント120からは、メインバッテリ10の電力を消耗することなく、リレー150Aおよび150Bのオンによって外部電源400からの交流電力が出力される。
 このように、ユーザによる電気システムの起動有無(IGオン/オフ)に従って、ACコンセント120からの交流電力の出力を実行/停止することが可能となる。
 以上説明したように、本発明の実施の形態1による電動車両の電気システムによれば、外部充電時には、車両駆動力発生用電動機(モータジェネレータ30)へ通電経路を形成する大容量のリレー150Cをオフしたままで、リレー150Aおよび150Bのオンによって、外部電源400からの供給電力によってメインバッテリ10を充電する経路を形成するとともに、補機負荷系が接続された電源配線151に電力を供給できる。したがって、外部充電時において、補機負荷系の動作を確保した上で、リレー(開閉器)の消費電力を抑制することによって充電効率を高めることができる。
 [実施の形態2]
 図6は、本発明の実施の形態2による電動車両の電気システムの構成を示すブロック図である。
 図6を図1と比較して、実施の形態2による電動車両の電気システムでは、複数個のメインバッテリ10(1)~10(n)が設けられる点が、実施の形態1と異なる。ここで、nは2以上の整数である。電池ECUについても、メインバッテリ10(1)~10(n)の残存容量をそれぞれ管理するために、電池ECU15(1)~15(n)が別個に設けられる。
 メインバッテリ10が複数個設けられる構成では、メインバッテリ10(1)~10(n)と電源配線153との間には、別個のリレー150C(1)~150C(n)がそれぞれ配置されて、オンオフはそれぞれ独立に制御される。リレー150C(1)~150C(n)の各々は、基本的には電気システムの起動時にオンされる。
 電力変換器110とメインバッテリ10(1)~10(n)との間についても、メインバッテリ10(1)~10(n)にそれぞれ対応するリレー150B(1)~150B(n)が別個に設けられる。リレー150B(1)~150B(n)のオンオフについても、それぞれ独立に制御される。
 電力変換器110は、メインバッテリ10(1)~10(n)のそれぞれに対応して、図2に示したノードN3,N4を別個独立に有する。たとえば、図2に示す構成において、メインバッテリ10の個数に合せて、トランス115の二次側(ブリッジ回路116側)巻線およびブリッジ回路116を、n個並列に配置することによって、図6に示した構成が実現できる。この場合には、n個のブリッジ回路116を独立にスイッチング制御することにより、メインバッテリ10(1)~10(n)のそれぞれに対応する直流電圧Vdcを独立に制御することが可能となる。
 これにより、電源配線151についても、メインバッテリ10(1)~10(n)ごとに独立に配置される。DC/DCコンバータ60、空調機器65、補機バッテリ70および補機負荷80を含む補機負荷系は、これらn個の電源配線151の少なくとも1つと接続される。
 次に、図6の電気システムにおける、複数個配置されるリレー150B,150Cのオンオフ制御について説明する。
 外部充電時には、リレー150B(1)~150B(n)の各々がオンされた後、メインバッテリ10(1)から10(n)の充電状態に応じて、すなわち、図4のステップS160,S170をメインバッテリ10毎に独立に実行する態様にて、リレー150B(1)~150B(n)のオフが独立に制御される。ただし、補機負荷系と接続された電源配線151に対応するリレー150Bについては、対応のメインバッテリ10の充電が完了した場合にも、少なくとも補機バッテリ70の充電が完了するまではオンに維持する必要がある。
 リレー150C(1)~150C(n)の各々は、実施の形態1でのリレー150Cと同様に制御される。
 車両走行時には、リレー150B(1)~150B(n)については全数をオンする必要はなく、基本的には、補機負荷系と接続された電源配線151に対応するリレー150Bのみがオンされる。なお、複数個の電源配線151が補機負荷系と接続される場合には、対応する複数個のリレー150(B)のオンオフを、対応のメインバッテリ10の状態(SOC等)に応じて切換えてもよい。
 また、ACコンセント120からの出力電力を供給するために、メインバッテリ10(1)~10(n)のうちの残存容量(SOC)が大きい一部のバッテリに限定して、リレー150Bをオンする構成としてもよい。
 なお、車両走行時および外部充電時を通じて、異常が発生したメインバッテリ10(i)については、対応のリレー150B(i)および150C(i)をオフすることによって、電気システムから当該メインバッテリを切り離すことが可能となる。
 その他の部分の電気システム構成および制御については、実施の形態1と同様であるので詳細な説明は繰返さない。
 このように実施の形態2による電動車両の電気システムによれば、実施の形態1による電動車両の電気システムと同様の効果を、メインバッテリが複数個並列に配置された構成で享受することができる。
 [実施の形態3]
 図7は、本発明の実施の形態3による電動車両の電気システムの構成を示すブロック図である。
 図7を図1と比較して、実施の形態3による電動車両の電気システムでは、実施の形態1の構成と比較して、電源配線151,153の間を電気的に接続するための、「第4の配線」に対応する電源配線154がさらに配置される点で異なる。その他の構成および各リレーの制御については、図1に示したのと同様であるので詳細な説明は繰返さない。
 電源配線154が非配置である図1の電気システムの構成では、車両走行中にリレー150Bがオフ故障すると、電源配線151に接続された補機系負荷に対する電力供給経路が遮断される。また、メインバッテリ10に異常が発生して、リレー150B,150Cをオフする必要が生じた場合も同様である。
 これらの場合には、電動車両100の退避走行を行うこととなるが、上記のように補機バッテリ70への給電経路を確保できないため、補機バッテリ70の電圧低下によって各ECUへの電源供給が不十分となることによって、退避走行距離の確保に問題が生じることが懸念される。
 これに対して、図7に示された実施の形態3による電気システムの構成では、電源配線154を設けることによって、リレー150Bをオフしても、リレー150Cを介したメインバッテリ10からの電力によって、DC/DCコンバータ60を含む補機負荷系への電力供給が可能となる。これにより、通常の車両走行時には、リレー150Bを常にオフできるので、リレーによる消費電力を低減して、燃費向上を図ることも可能となる。
 また、車両走行中に、メインバッテリ10に異常が発生してリレー150B,150Cをオフしても、車両走行中にリレー150Bがオフ故障しても、モータジェネレータ30からの回生電力によって、DC/DCコンバータ60を含む補機負荷系への電力供給が可能となる。したがって、図1の構成と比較して、退避走行距離を相対的に長く確保できることが期待される。
 なお、図7の構成では、外部充電の終了時には、平滑コンデンサ22に電荷が蓄積される。したがって、外部電源の終了(たとえば、充電ケーブル200の切り離し)に応答して、MG-ECU25を一時的に起動して、平滑コンデンサ22の蓄積電力を、PCU20およびモータジェネレータ30によって無効電力として消費するように、PCU20を動作させることが好ましい。たとえば、モータジェネレータ30の出力トルクが零となるように制御して、モータジェネレータ30のコイル巻線に電流を通過させることで、平滑コンデンサ22の蓄積電力を消費できる。
 [実施の形態3の変形例]
 図8は、本発明の実施の形態3の変形例による電動車両の電気システム構成を説明するブロック図である。
 図8を図1と参照して、実施の形態3の変形例による電動車両の電気システムでは、補機バッテリ70を充電するための太陽電池500がさらに設けられる点が、実施の形態1と異なる。
 太陽電池500は、電動車両100のルーフ等の日光を受光可能な箇所に設置されて、受光量に応じて発電する。このようにすると、補機バッテリ70の充電電力を確保できるので、退避走行時を含めて、補機バッテリ70により動作電力を供給される補機負荷80(各ECUを含む)の動作期間を確保することができる。また、外部充電時には、リレー150Bのオン期間を短縮することによって充電効率を高めることも期待できる。
 なお、図7および図8の構成を組合わせて、図1の構成に対して、電源配線154および太陽電池500の両方を付加することも可能である。あるいは、メインバッテリ10が複数個配置された図6の構成に対して、図7、図8に示した構成に従って電源配線154および/または太陽電池500を付加する構成とすることも可能である。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 本発明は、車両外部の電源によって充電可能な蓄電装置を搭載した、電気自動車やハイブリッド自動車等の電動車両に適用することができる。

Claims (13)

  1.  外部電源(400)によって充電可能に構成された蓄電装置(10)を搭載した電動車両であって、
     前記外部電源によって前記蓄電装置を充電する外部充電時に、前記外部電源からの供給電力を受ける充電コネクタ(105)と、
     前記外部電源からの供給電力を前記蓄電装置の充電電力に変換する電力変換器(110)と、
     前記蓄電装置および車両駆動力発生用の電動機(30)の間に接続されて、前記電動機を駆動制御するように構成された電力制御ユニット(20)と、
     前記充電コネクタおよび前記電力変換器の間の通電経路に介挿接続される第1の開閉器(150A)と、
     前記電力変換器および前記蓄電装置の間の通電経路に介挿接続される第2の開閉器(150B)と、
     前記第2の開閉器と前記電力変換器との間を電気的に接続する第1の配線(151)から電力を供給されるように配置された補機負荷系(60,70,80)とを備える、電動車両。
  2.  前記蓄電装置(10)および前記電力制御ユニット(20)の間の通電経路に介挿接続される第3の開閉器(150C)と、
     前記外部充電時に、前記第1の開閉器(150A)および前記第2の開閉器(150B)を閉成する一方で、前記第3の開閉器(150C)を開放し、かつ、前記電力変換器(110)を作動させて前記蓄電装置を充電する制御部(5)とをさらに備える、請求の範囲第1項記載の電動車両。
  3.  前記制御部(5)は、前記外部充電時に前記蓄電装置(10)の充電完了に応答して、前記第2の開閉器(150B)を開放する、請求の範囲第2項記載の電動車両。
  4.  前記補機負荷系(60,70,80)は、
     前記蓄電装置(10)よりも出力電圧が低い補機用蓄電装置(70)と、
     前記第1の配線(151)上の電力を前記補機用蓄電装置の充電電力に変換する補機用電力変換器(60)と、
     前記補機用蓄電装置からの電力によって動作する負荷機器(80)とを含む、請求の範囲第1項記載の電動車両。
  5.  前記外部充電時に、前記補機用電力変換器(60)を作動させて前記補機用蓄電装置(70)を充電するとともに、前記補機用蓄電装置の充電完了に応答して前記補機用電力変換器を停止させる制御部をさらに備える、請求の範囲第4項記載の電動車両。
  6.  前記外部電源(400)は、系統電源であり、
     前記電動車両は、
     前記第1の開閉器(150A)と前記電力変換器(110)の間を電気的に接続する第2の配線(152)から前記系統電源と同等の交流電力を出力するためのコンセント(120)と、
     前記第2の配線と前記コンセントとの間の通電経路に接続された第4の開閉器(150D)と、
     前記外部充電時において、前記電動車両の電気システムの起動が指示されたときに前記第4の開閉器を閉成する制御部(5)とをさらに備える、請求の範囲第1項記載の電動車両。
  7.  前記電力変換器(110)は、双方向に電力変換可能に構成されて、前記蓄電装置(10)からの電力を前記交流電力に変換可能であり、
     前記制御部(5)は、前記第4の開閉器(150D)の閉成時に、前記外部電源(400)が停電しているときには、前記電力変換器を作動させて変換した前記交流電力を前記第2の配線(152)に出力させる、請求の範囲第6項記載の電動車両。
  8.  前記蓄電装置(10)は複数個設けられ、
     前記第2の開閉器(150B)および前記第1の配線(151)は、前記複数個の蓄電装置(10(1)~10(n))にそれぞれ対応して複数個設けられ、
     前記補機負荷系(60,70,80)は、前記複数個の第1の配線のうちの少なくとも1つから電力を供給されるように配置される、請求の範囲第1項記載の電動車両。
  9.  前記複数個の蓄電装置(10(1)~10(n))および前記電力制御ユニット(20)の間の通電経路のそれぞれに介挿接続される複数個の第3の開閉器(150C)と、
     前記外部充電時に、前記第1の開閉器(150A)および少なくとも1つの前記第2の開閉器(150B)を閉成する一方で、各前記第3の開閉器(150C)を開放し、かつ、前記電力変換器(110)を作動させて前記複数個の蓄電装置のうちの少なくとも1つを充電する制御部(5)とをさらに備える、請求項8記載の電動車両。
  10.  前記制御部(5)は、前記外部充電時に、各前記蓄電装置(10)の充電完了に応答して、対応する前記第2の開閉器(150B)を開放する、請求の範囲第9項記載の電動車両。
  11.  前記蓄電装置(10)および前記電力制御ユニット(20)の間の通電経路に介挿接続される第3の開閉器(150C)と、
     前記第3の開閉器と前記電力制御ユニットとの間を電気的に接続する第3の配線(153)と、
     前記第1の配線(151)および前記第3配線を電気的に接続する第4の配線(154)とをさらに備える、請求の範囲第1,4~7のいずれか1項に記載の電動車両。
  12.  前記第3の開閉器(150C)と前記電力制御ユニット(20)との間を電気的に接続する第3の配線(153)と、
     前記第1の配線(151)および前記第3の配線を電気的に接続する第4の配線(154)とをさらに備える、請求の範囲第2または3項に記載の電動車両。
  13.  前記複数個の第3の開閉器(150C(1)~150C(n))および前記電力制御ユニット(20)の間を電気的に接続する第3の配線(153)と、
     前記複数個の第1の配線のうちの前記補機負荷系(60,70,80)へ電力を供給する少なくとも1つと、前記第3の配線とを電気的に接続する第4の配線(154)とをさらに備える、請求の範囲第8~10のいずれか1項に記載の電動車両。
PCT/JP2009/050794 2008-03-17 2009-01-21 電動車両 WO2009116311A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09721868.9A EP2255990B1 (en) 2008-03-17 2009-01-21 Electric vehicle
CN2009801092525A CN102089177B (zh) 2008-03-17 2009-01-21 电动车辆
US12/808,550 US8242627B2 (en) 2008-03-17 2009-01-21 Electrically powered vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008068175A JP4315232B1 (ja) 2008-03-17 2008-03-17 電動車両
JP2008-068175 2008-03-17

Publications (1)

Publication Number Publication Date
WO2009116311A1 true WO2009116311A1 (ja) 2009-09-24

Family

ID=41076604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050794 WO2009116311A1 (ja) 2008-03-17 2009-01-21 電動車両

Country Status (5)

Country Link
US (1) US8242627B2 (ja)
EP (1) EP2255990B1 (ja)
JP (1) JP4315232B1 (ja)
CN (1) CN102089177B (ja)
WO (1) WO2009116311A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099704A2 (ko) * 2010-02-11 2011-08-18 주식회사 윌링스 배터리 충전기능이 구비된 전기 자동차의 구동시스템
US20110260531A1 (en) * 2010-04-27 2011-10-27 Denso Corporation Power supply apparatus for vehicle
JP2011250670A (ja) * 2010-04-27 2011-12-08 Denso Corp 車両用電源装置
WO2011128750A3 (en) * 2010-04-14 2012-01-05 Toyota Jidosha Kabushiki Kaisha Power supply system and vehicle equipped with power supply system
WO2011138648A3 (en) * 2010-04-14 2012-01-26 Toyota Jidosha Kabushiki Kaisha Power supply system and vehicle equipped with power supply system
CN102455703A (zh) * 2010-10-20 2012-05-16 通用汽车环球科技运作有限责任公司 用于增强混合动力车辆扭矩安全诊断鲁棒性的方法和装置
WO2012049559A3 (en) * 2010-10-14 2012-09-07 Toyota Jidosha Kabushiki Kaisha Electromotive vehicle
CN102712266A (zh) * 2010-01-18 2012-10-03 丰田自动车株式会社 车辆
EP2523248A2 (en) * 2010-01-06 2012-11-14 LG Chem, Ltd. Battery control device and method
CN103492214A (zh) * 2011-04-21 2014-01-01 丰田自动车株式会社 电动车辆的电源装置及其控制方法
EP2418750A3 (en) * 2010-07-16 2014-07-09 LSIS Co., Ltd. Structure of battery disconnection unit for electric vehicle
EP2641771A4 (en) * 2010-11-19 2015-06-03 Toyota Motor Co Ltd VEHICLE LOADING DEVICE
JP2015133769A (ja) * 2014-01-09 2015-07-23 トヨタ自動車株式会社 車両の電源装置
EP2631105A4 (en) * 2010-10-21 2015-07-29 Toyota Motor Co Ltd ELECTRIC VEHICLE POWER SUPPLY SYSTEM, METHOD OF CONTROLLING THE SYSTEM, AND ELECTRIC VEHICLE
US9278625B2 (en) 2010-12-16 2016-03-08 Denso Corporation Power supply apparatus for vehicles that selects between conductive and non-conductive power transfer

Families Citing this family (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5435920B2 (ja) * 2008-10-06 2014-03-05 富士通テン株式会社 電子制御装置、プラグイン車両、及び給電経路切替方法
JP5427416B2 (ja) * 2009-01-09 2014-02-26 三菱重工業株式会社 空気調和装置の制御システム
CN102470770B (zh) 2009-08-07 2014-11-12 丰田自动车株式会社 电动车辆的电源系统
JP4957873B2 (ja) 2009-08-07 2012-06-20 トヨタ自動車株式会社 電動車両の電源システムおよびその制御方法
JP5497381B2 (ja) * 2009-09-04 2014-05-21 株式会社日本自動車部品総合研究所 車両
JP2011083089A (ja) * 2009-10-05 2011-04-21 Panasonic Electric Works Co Ltd 直流配電システム
KR101144033B1 (ko) * 2009-12-04 2012-05-23 현대자동차주식회사 하이브리드 차량의 모터 구동 시스템 제어 방법
US8698451B2 (en) 2009-12-18 2014-04-15 General Electric Company Apparatus and method for rapid charging using shared power electronics
WO2011077505A1 (ja) * 2009-12-21 2011-06-30 トヨタ自動車株式会社 充電システム
JP5219992B2 (ja) * 2009-12-24 2013-06-26 本田技研工業株式会社 電動車両用電力供給装置
JP5288004B2 (ja) * 2009-12-28 2013-09-11 トヨタ自動車株式会社 車両
DE102010010058A1 (de) * 2010-03-03 2011-09-08 Continental Automotive Gmbh Bordnetz für ein Fahrzeug
JP5479999B2 (ja) * 2010-04-28 2014-04-23 トヨタ自動車株式会社 車両の電源装置
JP5484192B2 (ja) * 2010-05-20 2014-05-07 本田技研工業株式会社 電動車両の始動制御装置
CN102470759B (zh) * 2010-06-24 2015-04-01 松下电器产业株式会社 电力机动车用电力供给装置
JP5204157B2 (ja) * 2010-07-05 2013-06-05 株式会社日本自動車部品総合研究所 電動車両の充電装置
WO2012011176A1 (ja) 2010-07-22 2012-01-26 トヨタ自動車株式会社 電動車両およびその充電制御方法
DE102010041068A1 (de) * 2010-09-20 2012-03-22 Robert Bosch Gmbh System zum Laden eines Energiespeichers und Verfahren zum Betrieb des Ladesystems
US8552583B2 (en) * 2010-09-20 2013-10-08 Industry-Academic Cooperation Foundation, Yonsei University Power supply system and method including power generator and storage device
JP5577986B2 (ja) 2010-09-22 2014-08-27 株式会社豊田自動織機 電源装置および車載用電源装置
JP5625715B2 (ja) * 2010-10-08 2014-11-19 トヨタ自動車株式会社 車両の制御装置および制御方法
EP2628629B1 (en) 2010-10-14 2016-07-20 Toyota Jidosha Kabushiki Kaisha Vehicle power supply apparatus, vehicle having same, and method for controlling vehicle-mounted charger
WO2012056516A1 (ja) 2010-10-26 2012-05-03 トヨタ自動車株式会社 給電装置およびそれを備える車両ならびに給電方法
EP2634035B1 (en) * 2010-10-28 2018-05-16 Toyota Jidosha Kabushiki Kaisha Power supply apparatus for electric vehicle, method of controlling power supply apparatus, and electric vehicle
US8378623B2 (en) * 2010-11-05 2013-02-19 General Electric Company Apparatus and method for charging an electric vehicle
EP2639099A4 (en) * 2010-11-10 2014-08-13 Toyota Motor Co Ltd POWER SUPPLY SYSTEM FOR AN ELECTRIC VEHICLE, CONTROL PROCESS AND ELECTRIC VEHICLE
KR101210077B1 (ko) * 2010-12-01 2012-12-07 기아자동차주식회사 전기자동차의 제어기 구동 장치
CN102570511B (zh) * 2010-12-07 2015-11-25 台湾动能系统股份有限公司 双电池供电系统与控制方法
CN103260933B (zh) * 2010-12-14 2015-11-25 本田技研工业株式会社 车辆
US8963482B2 (en) 2010-12-16 2015-02-24 Toyota Jidosha Kabushiki Kaisha Power supply apparatus for electrically powered vehicle and method for controlling the same
US8651209B2 (en) * 2010-12-20 2014-02-18 Sony Corporation Kinetic energy storage systems and methods of use
CN103269898B (zh) * 2010-12-20 2015-09-23 丰田自动车株式会社 电动车辆及其控制方法
KR20120071222A (ko) * 2010-12-22 2012-07-02 한국전자통신연구원 차량용 에너지 수확 장치 및 이의 에너지 관리 방법
DE102011012316B4 (de) 2010-12-23 2022-04-21 Volkswagen Ag Verfahren und Vorrichtung zum Laden einer Niedervoltbatterie in einem elektrischen Antriebssystem
DE102011008376A1 (de) * 2011-01-12 2012-07-12 Audi Ag Verfahren zum Betrieb einer Bordnetzstruktur eines Kraftfahrzeugs
JP5632771B2 (ja) * 2011-02-25 2014-11-26 オムロンオートモーティブエレクトロニクス株式会社 交流電流供給装置の制御器、及び交流電流供給方法
JP5725544B2 (ja) * 2011-03-01 2015-05-27 オムロンオートモーティブエレクトロニクス株式会社 電力変換装置および電力制御方法
CN103460550B (zh) * 2011-03-24 2016-11-16 丰田自动车株式会社 电力转换设备、电动车辆及电动车辆的充电系统
CN102858582B (zh) 2011-04-13 2015-05-06 丰田自动车株式会社 电动车辆的电源装置及其控制方法
US9446666B2 (en) * 2011-06-16 2016-09-20 Renault S.A.S. Method to supply an electric accessory of a motor vehicle comprising an electric battery to which said accessory is connected
CN103620905A (zh) * 2011-06-17 2014-03-05 丰田自动车株式会社 电源系统、具备该电源系统的车辆以及电源系统的控制方法
JP5605320B2 (ja) * 2011-06-28 2014-10-15 株式会社オートネットワーク技術研究所 車両用電源装置
JP5683408B2 (ja) * 2011-08-09 2015-03-11 トヨタ自動車株式会社 車両駆動用モータを有する自動車
JP2013066365A (ja) * 2011-08-29 2013-04-11 Sharp Corp 車両駆動装置、車両充電システム、及び自動車
EP2752329A4 (en) 2011-08-30 2015-09-23 Toyota Motor Co Ltd POWER SUPPLY SYSTEM FOR VEHICLE
KR101251243B1 (ko) * 2011-10-27 2013-04-08 엘에스산전 주식회사 전기자동차의 전원 공급 시스템
WO2013097815A1 (zh) 2011-12-31 2013-07-04 深圳市比亚迪汽车研发有限公司 电动汽车及在充放电和驱动功能之间切换的动力系统
JP5886734B2 (ja) 2012-01-10 2016-03-16 本田技研工業株式会社 電動車両
JP2013144499A (ja) * 2012-01-13 2013-07-25 Denso Corp 車載電源システム
JP5772616B2 (ja) * 2012-01-16 2015-09-02 トヨタ自動車株式会社 車両の電源システムおよび車両
US20150001958A1 (en) * 2012-02-09 2015-01-01 Technova Inc. Bidirectional contactless power transfer system
JP6019614B2 (ja) * 2012-02-28 2016-11-02 オムロン株式会社 蓄電制御装置、蓄電制御装置の制御方法、プログラム、および蓄電システム
US20140375120A1 (en) * 2012-03-07 2014-12-25 International Truck Intellectual Property Company, Llc Vehicle electrical system state controller
CN104203639B (zh) * 2012-03-07 2016-10-26 丰田自动车株式会社 电动车辆及其控制方法
JP5722817B2 (ja) * 2012-03-19 2015-05-27 本田技研工業株式会社 電動車両および電力供給システム
JP2013209017A (ja) * 2012-03-30 2013-10-10 Toyota Industries Corp 電源回路
US9296300B2 (en) 2012-04-13 2016-03-29 General Electric Company Method and system for powering a vehicle
DE102012008687B4 (de) * 2012-04-28 2017-02-09 Audi Ag Kraftwagen mit einem Hochvolt-Energieversorgungssystem
GB201210279D0 (en) * 2012-05-11 2012-07-25 Jaguar Cars A rechargeable electric battery pack for a vehicle
JP2013240241A (ja) * 2012-05-17 2013-11-28 Toyota Motor Corp 電源装置およびそれを備える車両ならびに電源装置の制御方法
US8981727B2 (en) 2012-05-21 2015-03-17 General Electric Company Method and apparatus for charging multiple energy storage devices
JP5673633B2 (ja) * 2012-06-01 2015-02-18 株式会社デンソー 車載充電制御装置
JP5849870B2 (ja) * 2012-06-28 2016-02-03 三菱自動車工業株式会社 電動車両の充電制御装置
US9463696B2 (en) * 2012-07-18 2016-10-11 General Electric Company Systems and methods for mobile power conditioning platform
JP6031695B2 (ja) * 2012-07-31 2016-11-24 三菱自動車工業株式会社 電動車両の外部給電装置
EP2883740B1 (en) * 2012-08-13 2019-03-13 Mitsubishi Electric Corporation Propulsion control device of engine hybrid railroad vehicle
JP5578209B2 (ja) * 2012-08-22 2014-08-27 トヨタ自動車株式会社 車両用電力制御装置
CN103660967A (zh) 2012-09-24 2014-03-26 通用电气公司 具有改进的能量供应机制的移动运输设备和方法
US8975773B2 (en) * 2012-10-05 2015-03-10 Go-Tech Energy Co. Ltd. Charging system for electric vehicle
JP5772782B2 (ja) * 2012-10-15 2015-09-02 トヨタ自動車株式会社 車両
JP5478696B1 (ja) * 2012-11-01 2014-04-23 三菱電機株式会社 電動車両および電動車両の充放電制御方法
US9614399B2 (en) 2012-12-21 2017-04-04 Toyota Jidosha Kabushiki Kaisha Charging control device using in-vehicle solar cell
JP2014192956A (ja) * 2013-03-26 2014-10-06 Toyota Motor Corp 車両および車両の制御方法
JP6098011B2 (ja) * 2013-03-27 2017-03-22 パナソニックIpマネジメント株式会社 車両用電力装置
DE102013206611A1 (de) * 2013-04-12 2014-10-16 Robert Bosch Gmbh Überwachungsvorrichtung für ein Fahrzeug und Verfahren zur Überwachung eines Fahrzeugs
DE112013007089T5 (de) * 2013-05-17 2016-01-28 Toyota Jidosha Kabushiki Kaisha Ladungssteuerungseinrichtung unter Verwendung einer fahrzeugseitigen Solarzelle
JP5741635B2 (ja) * 2013-06-17 2015-07-01 三菱自動車工業株式会社 補機バッテリ用電力供給装置
CN104249630B (zh) * 2013-06-28 2017-08-04 比亚迪股份有限公司 电动汽车及电动汽车向外供电的系统
JP6193681B2 (ja) * 2013-08-30 2017-09-06 ヤンマー株式会社 エンジン発電機
US8994215B1 (en) * 2013-10-08 2015-03-31 Percy Davis Self-recharging electric generator system
JP6233173B2 (ja) * 2014-04-25 2017-11-22 トヨタ自動車株式会社 車両及び車両の制御方法
US10926649B2 (en) * 2014-12-22 2021-02-23 Flex Power Control, Inc. Method to reduce losses in a high voltage DC link converter
DE102015000593A1 (de) 2015-01-16 2016-07-21 Audi Ag Hochspannungsbatterie für ein Kraftfahrzeug und Kraftfahrzeug
JP6272971B2 (ja) * 2015-07-01 2018-01-31 三菱電機株式会社 電源切替装置及び住宅
US20180191269A1 (en) * 2015-07-02 2018-07-05 Parker-Hannifin Corporation Parallel-stacked mini inverter for continuous high efficiency low-power output during main inverter sleep mode
KR101755800B1 (ko) * 2015-07-03 2017-07-10 현대자동차주식회사 차량의 충전제어 방법
JP6718138B2 (ja) * 2016-03-22 2020-07-08 トヨタ自動車株式会社 車両用電源システム
JP6724455B2 (ja) * 2016-03-22 2020-07-15 トヨタ自動車株式会社 車両用電源システム
JP6455486B2 (ja) * 2016-06-07 2019-01-23 トヨタ自動車株式会社 電源システム
KR101886498B1 (ko) * 2016-07-08 2018-08-07 현대자동차주식회사 차량의 전력 제어 장치 및 방법
KR102485328B1 (ko) * 2016-12-09 2023-01-06 현대자동차주식회사 전기 자동차의 충전 제어 장치
CN106915265B (zh) * 2017-01-19 2019-09-03 上海电气集团股份有限公司 一种电动汽车充电机的拓扑结构及控制方法
US10875406B2 (en) * 2017-01-19 2020-12-29 Solaredge Technologies Ltd. Electric-vehicle charging apparatus
WO2018231810A1 (en) 2017-06-12 2018-12-20 Tae Technologies, Inc. Multi-level multi-quadrant hysteresis current controllers and methods for control thereof
CA3066387A1 (en) 2017-06-16 2018-12-20 Tae Technologies, Inc. Multi-level hysteresis voltage controllers for voltage modulators and methods for control thereof
CN107204715B (zh) * 2017-07-24 2023-12-01 重庆润通科技有限公司 一种数码发电机组控制系统及方法和数码发电机组
DE102017214643B4 (de) 2017-08-22 2023-06-29 Bayerische Motoren Werke Aktiengesellschaft Vorkonditionierung eines Energiespeichers eines Kraftfahrzeugs
JP6939452B2 (ja) * 2017-11-15 2021-09-22 トヨタ自動車株式会社 ソーラーシステム
JP7035571B2 (ja) * 2018-01-31 2022-03-15 トヨタ自動車株式会社 電動車両
IT201800002907A1 (it) 2018-02-21 2019-08-21 Ferrari Spa Dispositivo di controllo di interfaccia di potenza di una batteria di propulsione veicolare
JP7102773B2 (ja) * 2018-02-22 2022-07-20 トヨタ自動車株式会社 車両用電源システム
EA202092249A1 (ru) 2018-03-22 2020-12-14 Таэ Текнолоджиз, Инк. Системы и способы для регулировния и управления мощностью
JP7131028B2 (ja) * 2018-03-30 2022-09-06 スズキ株式会社 車両用電源装置
JP7214975B2 (ja) * 2018-03-30 2023-01-31 スズキ株式会社 車両用電源装置
JP7003803B2 (ja) * 2018-03-30 2022-01-21 スズキ株式会社 車両用電源装置
JP2019190104A (ja) 2018-04-24 2019-10-31 ヤンマー株式会社 電動式作業機械
DE102019206502A1 (de) * 2018-05-09 2019-11-14 Robert Bosch Gmbh Schalteinrichtung zum Laden der Batterie eines Elektrofahrzeuges an heutigen und zukünftigen DC-Lade-Infrastrukturen und ein Verfahren zum Betrieb der Schalteinrichtung
JP7187828B2 (ja) * 2018-06-07 2022-12-13 三菱自動車工業株式会社 車両
US11642965B2 (en) * 2018-10-11 2023-05-09 Keith Johnson System and method of powering an external device with a vehicular battery system
US11376977B2 (en) 2018-12-30 2022-07-05 Texas Instruments Incorporated Powertrain architecture for a vehicle utilizing an on-board charger
JP6902061B2 (ja) * 2019-02-19 2021-07-14 矢崎総業株式会社 電力分配システム
SG11202110832UA (en) * 2019-03-29 2021-10-28 Tae Technologies Inc Module-based energy systems capable of cascaded and interconnected configurations, and methods related thereto
CN110165749A (zh) * 2019-06-20 2019-08-23 爱驰汽车有限公司 电动汽车、车载充电机电路、电池电路和充放电控制方法
DE102019211553A1 (de) * 2019-08-01 2021-02-04 Audi Ag Bidirektionale DC-Wallbox für Elektrofahrzeuge
CN112406537A (zh) * 2019-08-20 2021-02-26 北汽福田汽车股份有限公司 车辆及其控制系统和方法
JP7408323B2 (ja) * 2019-09-12 2024-01-05 東海旅客鉄道株式会社 電力変換システム
US20210194258A1 (en) * 2019-12-18 2021-06-24 Carrier Corporation Refrigerated Truck/Trailer with Unified Charging Port
US11021073B1 (en) * 2020-02-26 2021-06-01 Atieva, Inc. Electric vehicle power supply system to minimize loss during vehicle rest
EP4380815A2 (en) 2020-04-14 2024-06-12 TAE Technologies, Inc. Systems, devices, and methods for charging and discharging module-based cascaded energy systems
JP2023526245A (ja) 2020-05-14 2023-06-21 ティーエーイー テクノロジーズ, インコーポレイテッド モジュール型カスケード式エネルギーシステムを伴う、レールベースおよび他の電気自動車両のためのシステム、デバイス、ならびに方法
US11091041B1 (en) * 2020-07-14 2021-08-17 Bayerische Motoren Werke Aktiengesellschaft Electric system for a motor vehicle comprising a switching matrix, and motor vehicle
JP7294286B2 (ja) * 2020-09-18 2023-06-20 トヨタ自動車株式会社 充電器、及び車両
CA3196955A1 (en) 2020-09-28 2022-03-31 Tae Technologies, Inc. Multi-phase module-based energy system frameworks and methods related thereto
JP2023543834A (ja) 2020-09-30 2023-10-18 ティーエーイー テクノロジーズ, インコーポレイテッド モジュールベースのカスケード式エネルギーシステム内の相内および相間平衡のためのシステム、デバイス、および方法
FR3116653B1 (fr) 2020-11-23 2022-12-16 Commissariat Energie Atomique Système d'alimentation électrique
CN112590563A (zh) * 2020-12-31 2021-04-02 苏州绿控传动科技股份有限公司 一种汽车提供稳压电源的结构及其控制方法
US11929632B2 (en) 2021-01-27 2024-03-12 Livewire Ev, Llc On-board charger system with integrated auxiliary power supply
JP2022124912A (ja) * 2021-02-16 2022-08-26 トヨタ自動車株式会社 車載ソーラー充電制御システム、車載ソーラー充電制御方法及びプログラム
CN113060048B (zh) * 2021-04-30 2022-06-14 重庆长安新能源汽车科技有限公司 一种动力电池脉冲加热系统及其控制方法
EP4098474B1 (en) * 2021-05-31 2023-11-22 Huawei Digital Power Technologies Co., Ltd. Energy conversion system, energy conversion method, and power system
CN114301298B (zh) 2021-05-31 2024-04-09 华为数字能源技术有限公司 能量转换系统、能量转换方法及动力系统
EP4098493B1 (en) * 2021-06-04 2024-02-14 Aptiv Technologies Limited Control device and vehicle power distribution architecture incorporating the same
CN113263919A (zh) * 2021-06-07 2021-08-17 徐州徐工矿业机械有限公司 一种矿用自卸车混合动力系统
EP4367770A1 (en) 2021-07-07 2024-05-15 TAE Technologies, Inc. Systems, devices, and methods for module-based cascaded energy systems configured to interface with renewable energy sources
US11613184B1 (en) * 2021-10-31 2023-03-28 Beta Air, Llc Systems and methods for disabling an electric vehicle during charging
CN114709496A (zh) * 2021-12-31 2022-07-05 湖北亿纬动力有限公司 开关控制电路、开关电路的控制方法、电池包以及终端
WO2023234234A1 (ja) * 2022-06-03 2023-12-07 日立Astemo株式会社 車両用充電装置、車両充電制御方法、及び車両充電システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0898324A (ja) * 1994-09-20 1996-04-12 Nissan Motor Co Ltd 電気車用充電制御装置
JP2000299988A (ja) 1999-04-09 2000-10-24 Kanto Auto Works Ltd 車両用商用電源装置
JP2001045673A (ja) 1999-08-03 2001-02-16 Tokyo R & D Co Ltd 電動装置及びその電池ユニットの充放電方法
JP2001163041A (ja) 1999-12-07 2001-06-19 Sanyo Electric Co Ltd 自動車用空調装置
JP2007195336A (ja) * 2006-01-19 2007-08-02 Toyota Motor Corp 車両の電源装置
JP2007228753A (ja) * 2006-02-24 2007-09-06 Toyota Motor Corp 電動車両

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3484251B2 (ja) * 1995-02-06 2004-01-06 本田技研工業株式会社 電気自動車用蓄電池充電制御装置
JP3524661B2 (ja) * 1995-12-08 2004-05-10 本田技研工業株式会社 電動車両の電源制御装置
US5926004A (en) * 1997-10-10 1999-07-20 Schott Power Systems Incorporated Method and apparatus for charging one or more electric vehicles
JP4285458B2 (ja) * 2005-08-08 2009-06-24 トヨタ自動車株式会社 車両の電源装置およびその制御方法
JP4830462B2 (ja) * 2005-11-18 2011-12-07 トヨタ自動車株式会社 電動車両の制御装置
JP4929689B2 (ja) * 2005-11-18 2012-05-09 株式会社日立製作所 ハイブリッド車両及び原動機の制御方法
US7595607B2 (en) * 2005-12-20 2009-09-29 General Electric Company Battery charging system and methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0898324A (ja) * 1994-09-20 1996-04-12 Nissan Motor Co Ltd 電気車用充電制御装置
JP2000299988A (ja) 1999-04-09 2000-10-24 Kanto Auto Works Ltd 車両用商用電源装置
JP2001045673A (ja) 1999-08-03 2001-02-16 Tokyo R & D Co Ltd 電動装置及びその電池ユニットの充放電方法
JP2001163041A (ja) 1999-12-07 2001-06-19 Sanyo Electric Co Ltd 自動車用空調装置
JP2007195336A (ja) * 2006-01-19 2007-08-02 Toyota Motor Corp 車両の電源装置
JP2007228753A (ja) * 2006-02-24 2007-09-06 Toyota Motor Corp 電動車両

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9108521B2 (en) 2010-01-06 2015-08-18 Lg Chem, Ltd. Battery control apparatus and method
EP2523248A4 (en) * 2010-01-06 2014-07-23 Lg Chemical Ltd DEVICE AND METHOD FOR CONTROLLING BATTERY
EP2523248A2 (en) * 2010-01-06 2012-11-14 LG Chem, Ltd. Battery control device and method
EP2527184A1 (en) * 2010-01-18 2012-11-28 Toyota Jidosha Kabushiki Kaisha Vehicle
CN102712266B (zh) * 2010-01-18 2015-05-06 丰田自动车株式会社 车辆
US9257867B2 (en) 2010-01-18 2016-02-09 Toyota Jidosha Kabushiki Kaisha Vehicle
EP2527184A4 (en) * 2010-01-18 2013-11-13 Toyota Motor Co Ltd VEHICLE
CN102712266A (zh) * 2010-01-18 2012-10-03 丰田自动车株式会社 车辆
WO2011099704A2 (ko) * 2010-02-11 2011-08-18 주식회사 윌링스 배터리 충전기능이 구비된 전기 자동차의 구동시스템
WO2011099704A3 (ko) * 2010-02-11 2012-01-05 주식회사 윌링스 배터리 충전기능이 구비된 전기 자동차의 구동시스템
WO2011138648A3 (en) * 2010-04-14 2012-01-26 Toyota Jidosha Kabushiki Kaisha Power supply system and vehicle equipped with power supply system
CN102834280A (zh) * 2010-04-14 2012-12-19 丰田自动车株式会社 电源系统以及装有电源系统的车辆
CN102844220A (zh) * 2010-04-14 2012-12-26 丰田自动车株式会社 电源系统和装有电源系统的车辆
US9007001B2 (en) 2010-04-14 2015-04-14 Toyota Jidosha Kabushiki Kaisha Power supply system and vehicle equipped with power supply system
WO2011128750A3 (en) * 2010-04-14 2012-01-05 Toyota Jidosha Kabushiki Kaisha Power supply system and vehicle equipped with power supply system
US8937400B2 (en) 2010-04-27 2015-01-20 Denso Corporation Power supply apparatus for vehicle
JP2011250670A (ja) * 2010-04-27 2011-12-08 Denso Corp 車両用電源装置
US20110260531A1 (en) * 2010-04-27 2011-10-27 Denso Corporation Power supply apparatus for vehicle
EP2418750A3 (en) * 2010-07-16 2014-07-09 LSIS Co., Ltd. Structure of battery disconnection unit for electric vehicle
WO2012049559A3 (en) * 2010-10-14 2012-09-07 Toyota Jidosha Kabushiki Kaisha Electromotive vehicle
CN102455703A (zh) * 2010-10-20 2012-05-16 通用汽车环球科技运作有限责任公司 用于增强混合动力车辆扭矩安全诊断鲁棒性的方法和装置
CN102455703B (zh) * 2010-10-20 2014-11-05 通用汽车环球科技运作有限责任公司 用于增强混合动力车辆扭矩安全诊断鲁棒性的方法和装置
EP2631105A4 (en) * 2010-10-21 2015-07-29 Toyota Motor Co Ltd ELECTRIC VEHICLE POWER SUPPLY SYSTEM, METHOD OF CONTROLLING THE SYSTEM, AND ELECTRIC VEHICLE
EP2641771A4 (en) * 2010-11-19 2015-06-03 Toyota Motor Co Ltd VEHICLE LOADING DEVICE
US9278625B2 (en) 2010-12-16 2016-03-08 Denso Corporation Power supply apparatus for vehicles that selects between conductive and non-conductive power transfer
US9172252B2 (en) 2011-04-21 2015-10-27 Toyota Jidosha Kabushiki Kaisha Power supply apparatus for electrically powered vehicle and method for controlling the same
CN103492214A (zh) * 2011-04-21 2014-01-01 丰田自动车株式会社 电动车辆的电源装置及其控制方法
JP2015133769A (ja) * 2014-01-09 2015-07-23 トヨタ自動車株式会社 車両の電源装置

Also Published As

Publication number Publication date
US20110187184A1 (en) 2011-08-04
EP2255990B1 (en) 2017-04-19
CN102089177B (zh) 2013-07-24
CN102089177A (zh) 2011-06-08
JP2009225587A (ja) 2009-10-01
EP2255990A1 (en) 2010-12-01
US8242627B2 (en) 2012-08-14
EP2255990A4 (en) 2013-02-06
JP4315232B1 (ja) 2009-08-19

Similar Documents

Publication Publication Date Title
JP4315232B1 (ja) 電動車両
JP4993036B2 (ja) 電動車両の電源システム
JP4957873B2 (ja) 電動車両の電源システムおよびその制御方法
JP5534032B2 (ja) 電動車両の電源装置およびその制御方法
JP4438887B1 (ja) 電動車両及び電動車両の充電制御方法
JP5459408B2 (ja) 電動車両の電源システムおよびその制御方法ならびに電動車両
JP4900535B2 (ja) 車両の電力変換装置およびそれを搭載する車両
WO2011099116A1 (ja) 電動車両の電源システムおよびその制御方法
WO2012066675A1 (ja) 車両の充電装置
JP2012085481A (ja) 電動車両
CN102574471A (zh) 车辆用的电源系统及其控制方法
JP2010148213A (ja) 充電制御システム、制御装置、充電制御方法及び制御方法
WO2013061442A1 (ja) 電力供給システムおよび給電装置
JP2011087408A (ja) 車両の電源システム
WO2014203549A1 (ja) 補機バッテリ用電力供給装置
WO2013061443A1 (ja) 電力供給システムおよび車両
JP5630419B2 (ja) 電力供給システムおよび車両
WO2013051103A1 (ja) 電動車両の電源システムおよびその制御方法
JP5625715B2 (ja) 車両の制御装置および制御方法
JP2015035919A (ja) 車両および車両の制御方法
JP5742709B2 (ja) 車両および車両の制御方法
JP2012070538A (ja) 車両の制御装置および制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980109252.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09721868

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12808550

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2009721868

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009721868

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE