WO2009096327A1 - 発泡性ポリスチレン系樹脂粒子とその製造方法、予備発泡粒子及び発泡成形体 - Google Patents

発泡性ポリスチレン系樹脂粒子とその製造方法、予備発泡粒子及び発泡成形体 Download PDF

Info

Publication number
WO2009096327A1
WO2009096327A1 PCT/JP2009/051049 JP2009051049W WO2009096327A1 WO 2009096327 A1 WO2009096327 A1 WO 2009096327A1 JP 2009051049 W JP2009051049 W JP 2009051049W WO 2009096327 A1 WO2009096327 A1 WO 2009096327A1
Authority
WO
WIPO (PCT)
Prior art keywords
polystyrene resin
resin particles
particles
expandable polystyrene
mass
Prior art date
Application number
PCT/JP2009/051049
Other languages
English (en)
French (fr)
Inventor
Yukio Aramomi
Original Assignee
Sekisui Plastics Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co., Ltd. filed Critical Sekisui Plastics Co., Ltd.
Priority to JP2009551492A priority Critical patent/JP5284987B2/ja
Priority to KR1020127014816A priority patent/KR101297878B1/ko
Priority to CN2009801032488A priority patent/CN101925647B/zh
Publication of WO2009096327A1 publication Critical patent/WO2009096327A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene

Definitions

  • the present invention relates to a method for producing expandable polystyrene resin particles used in the production of polystyrene resin foam molded articles useful as food containers, packaging, and cushioning materials.
  • the present invention can provide a foamed molded article having a beautiful appearance and high strength even when the pressure of water vapor used during molding is low, and can be molded at low pressure.
  • the present invention relates to a method for producing expandable polystyrene resin particles that can shorten the molding time per shot.
  • a method for producing a polystyrene-based resin foam molded body that is industrially used is to heat foamable polystyrene-based resin particles containing a volatile foaming agent or the like with a heat medium such as steam to a desired bulk density.
  • foaming pre-foaming
  • the pre-foamed particles are filled into the cavity of a mold having a cavity having a desired molding shape, and the pre-foamed particles in the cavity are heated by a heat medium such as steam.
  • In-mold foam molding is performed to obtain a foam molded body. At this time, the density of the obtained polystyrene-based resin foam molding is almost the same as the bulk density in the preliminary foaming.
  • the setting of the bulk density is determined by the strength required for the polystyrene resin foam molded article and the foaming performance of the expandable polystyrene resin particles.
  • polystyrene-based resin foam molded articles used for packaging materials such as home appliances and food containers such as fish boxes have a density of about 0.02 to 0.017 g / cm 3 on the market.
  • the appearance and strength of the foamed molded product vary depending on the heating medium temperature such as steam (heating steam pressure in the case of steam).
  • the heating medium temperature such as steam (heating steam pressure in the case of steam).
  • the heating pressure is increased, the appearance and strength of the molded product tend to be improved, but the cooling time becomes longer, so the productivity is lowered, which is not preferable.
  • the heating pressure is increased, the surface of the foam molded body is melted by heat, so that the appearance of the foam molded body is deteriorated.
  • the molding time per shot is shortened, but the adhesion between the pre-foamed particles is weakened, and the appearance and strength of the foamed molded product are lowered.
  • the steam heating vapor pressure in the molding process can be molded to some extent from low pressure to high pressure.
  • the relationship between the molding time per shot and the strength of the foamed molded product in the production of polystyrene-based resin foamed molded products is that when the molding time is long, a foamed molded product having high strength is obtained. When the molding time is short, the strength of the foamed molded product tends to decrease.
  • Patent Documents 1 to 5 can be cited.
  • Patent Document 1 proposes a method in which the surface of expandable polystyrene resin particles is coated with a powdered aliphatic carboxylic acid and aliphatic alcohol ester that is solid at room temperature and is 60 mesh or less. This method can significantly reduce the cooling time out of the molding time and is effective in reducing the molding time, but tends to be accompanied by a decrease in strength.
  • Patent Document 2 discloses a paraffin wax emulsion
  • Patent Document 3 includes liquid paraffin
  • Patent Document 4 includes a specific silicone compound
  • Patent Document 5 includes a polyether on the surface of expandable polystyrene resin particles or expanded particles. A method of coating has been proposed. However, these methods cannot avoid a decrease in strength when formed into a foamed molded product.
  • the present invention has been made in view of the above circumstances, and can obtain a foamed molded article having a beautiful appearance and high strength even when the pressure of water vapor used during molding is low, and can be molded by low pressure molding.
  • An object of the present invention is to provide expandable polystyrene resin particles that can shorten the molding time per shot.
  • the present invention provides: (1) In a dispersion obtained by dispersing polystyrene resin seed particles in water, 7.0 to 80.0 parts by mass of a styrene monomer and an acrylate ester system with respect to 100 parts by mass of the polystyrene resin seed particles.
  • a method for producing resin particles is provided.
  • the present invention is an expandable polystyrene resin particle containing a copolymer of a styrene monomer and an acrylate monomer, ATR method infrared spectroscopy of infrared absorption spectrum which is obtained by analyzing the surface of the expandable polystyrene resin particles by, obtains the absorbance D1600 at absorbance D1730 and 1600 cm -1 in 1730cm -1, D1730 / D1600 Absorbance ratio (A) calculated from Of the infrared absorption spectrum which is obtained by analyzing the central portion of the expandable polystyrene resin particles by ATR method infrared spectroscopy, it determined the absorbance D1600 at absorbance D1730 and 1600 cm -1 in 1730cm -1, D1730 /
  • the absorbance ratio (B) calculated from D1600 is (A) ⁇ (B) and (A) is 0.05 or more, Expandable polystyrene resin particles satisfying the above relationship are provided.
  • the absorbance ratio (A) is in the range of 0.05 to 0.50, and the absorbance ratio (B) is in the range of 0.20 to 0.60. Is preferred.
  • the ratio (B / A) of the absorbance ratio (A) to (B) is preferably in the range of 1.10 to 3.00.
  • the expandable polystyrene resin particles are preferably those obtained by the method for producing the expandable polystyrene resin particles.
  • the present invention also provides pre-expanded particles obtained by pre-expanding the expandable polystyrene resin particles so that the bulk density is in the range of 0.01 to 0.033 g / cm 3 .
  • the present invention also provides a foamed molded article obtained by filling the pre-expanded particles in a cavity of a molding die and heating and molding the preformed foam.
  • the expandable polystyrene resin particles of the present invention can provide a foamed molded article having a beautiful appearance and high strength even when the pressure of water vapor used during molding is low. According to the present invention, it is possible to obtain a foamed molded article in which the appearance of the molded article hardly deteriorates due to a decrease in heat resistance even in molding at a high vapor pressure. According to the present invention, it is possible to provide a foamed molded article that has a very wide range of conditions that can be molded and that satisfies the quality required during various moldings.
  • the expandable polystyrene resin particles and pre-expanded particles of the present invention have less foaming performance over time compared to conventional products, and have sufficient foaming performance even after long-term storage than conventional products. Excellent shelf life.
  • the method for producing the expandable polystyrene resin particles of the present invention (1) In a dispersion obtained by dispersing polystyrene resin seed particles in water, 7.0 to 80.0 parts by mass of a styrene monomer and an acrylate ester system with respect to 100 parts by mass of the polystyrene resin seed particles.
  • examples of the polystyrene resin that is a material of polystyrene resin seed particles include styrene or a homopolymer of a styrene derivative.
  • examples of the styrene derivative include ⁇ -methylstyrene, paramethylstyrene, t-butylstyrene, chlorostyrene, and the like.
  • the above-mentioned copolymer using a styrene copolymer such as acrylonitrile, dimethyl fumarate, and ethyl fumarate together with a copolymer of styrene and a polyfunctional monomer such as divinylbenzene or alkylene glycol methacrylate examples thereof include a resin and a resin to which an appropriate amount of a rubber-like substance is added, and a copolymer or styrene homopolymer having a styrene component of 50% by mass or more is preferable.
  • This polystyrene resin preferably has a weight average molecular weight in the range of 150,000 to 400,000.
  • the seed particles may be a polystyrene resin recovered product.
  • the particle diameter of the seed particles can be adjusted as appropriate according to the average particle diameter of the polystyrene resin particles to be produced. For example, when producing polystyrene resin particles having an average particle diameter of 1.0 mm, the average particle diameter It is preferable to use seed particles having a diameter of about 0.4 to 0.7 mm.
  • examples of the styrene monomer include styrene and styrene derivatives.
  • examples of the styrene derivative include ⁇ -methylstyrene, paramethylstyrene, t-butylstyrene, chlorostyrene, and the like.
  • styrene is preferable.
  • examples of the acrylate monomer include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, pentyl acrylate, hexyl acrylate, and the like. Preference is given to propyl acid and butyl acrylate.
  • the styrene monomer used in the first polymerization step of the present invention is 7.0 to 80.0 parts by mass with respect to 100 parts by mass of the polystyrene resin seed particles. When the amount is less than 7.0 parts by mass, the heat resistance during molding decreases, and when the amount exceeds 80.0 parts by mass, the low-pressure formability is inferior. The amount is preferably 8.0 to 72.0 parts by mass.
  • the acrylate monomer used in the first polymerization step of the present invention is 2.0 to 12.0 parts by mass with respect to 100 parts by mass of the polystyrene resin seed particles. If it is less than 2.0 mass parts, it is inferior to low-pressure moldability, and if it exceeds 12.0 mass parts, heat resistance will fall. Preferably, it is 2.0 to 11.2 parts by mass.
  • a gaseous or liquid organic compound having a boiling point below the softening point of the polystyrene resin and normal pressure is suitable.
  • hydrocarbons such as propane, n-butane, isobutane, n-pentane, isopentane, neopentane, cyclopentane, cyclopentadiene, n-hexane, petroleum ether, ketones such as acetone and methyl ethyl ketone, methanol, ethanol, isopropyl alcohol, etc.
  • foaming agents may use only 1 type and may use 2 or more types together.
  • preferred blowing agents are hydrocarbons having a boiling point of ⁇ 45 to 40 ° C., and propane, n-butane, isobutane, n-pentane, isopentane and the like are preferred.
  • the amount of the foaming agent added is preferably in the range of 5 to 15 parts by mass with respect to 100 parts by mass of the polystyrene resin particles.
  • an aqueous medium is placed in a reaction vessel such as an autoclave, and the seed particles are dispersed in the aqueous medium.
  • a reaction vessel such as an autoclave
  • the seed particles are dispersed in the aqueous medium.
  • a styrene monomer and an acrylate monomer and then in (2) the second polymerization step, only the styrene monomer is supplied continuously or intermittently to polymerize.
  • an initiator a styrene-acrylic acid ester copolymer and a polystyrene resin are grown on the seed particle surface and / or inside the seed particles to produce polystyrene resin particles having a predetermined particle diameter.
  • the proper use amount of seed particles is preferably in the range of 10 to 60% by mass and more preferably in the range of 15 to 50% by mass with respect to the total amount of polystyrene resin.
  • the polymerization initiator that can be used in the (1) first polymerization step and (2) second polymerization step is not particularly limited as long as it is conventionally used for the polymerization of styrene monomers.
  • polymerization initiators those having a decomposition temperature of 80 to 120 ° C. for obtaining a half-life of 10 hours are particularly preferable.
  • One kind of this polymerization initiator can be used alone, or two or more different kinds of polymerization initiators can be used in combination.
  • any suspension stabilizer conventionally used for suspension polymerization of polystyrene resins can be used. It can be used without being particularly limited, and examples thereof include water-soluble polymers such as polyvinyl alcohol, methyl cellulose, polyacrylamide, and polyvinyl pyrrolidone, and poorly soluble inorganic compounds such as tricalcium phosphate and magnesium pyrophosphate.
  • One type of suspension stabilizer can be used alone, or two or more types of suspension stabilizers can be used in combination.
  • anionic surfactant When using a poorly soluble inorganic compound as the suspension stabilizer, it is preferable to use an anionic surfactant in combination.
  • anionic surfactants include fatty acid soaps, N-acyl amino acids or salts thereof, carboxylates such as alkyl ether carboxylates, alkylbenzene sulfonates, alkyl naphthalene sulfonates, and dialkyl sulfosuccinates.
  • Sulfonates such as alkyl sulfoacetates and ⁇ -olefin sulfonates; sulfates such as higher alcohol sulfates, secondary higher alcohol sulfates, alkyl ether sulfates, polyoxyethylene alkylphenyl ether sulfates, etc.
  • Salt Phosphate ester salts such as alkyl ether phosphate ester salts and alkyl phosphate ester salts.
  • the amount of the styrene monomer and the acrylate monomer to be supplied to the aqueous medium is 7.0 to 70% of the styrene monomer with respect to 100 parts by mass of the seed particles.
  • the range is 80.0 parts by mass, and the acrylate monomer is in the range of 2.0 to 12.0 parts by mass.
  • the (2) second polymerization step after the completion of the (1) first polymerization step, only a styrene monomer is added to an aqueous medium in a reaction vessel such as an autoclave, and the (1) first polymerization step A polystyrene resin is grown on the grown seed particles to form polystyrene resin particles.
  • the amount of the styrene monomer used in the (2) second polymerization step is not particularly limited, but is 30.0 to 80.80 with respect to 100 parts by mass of the resin content of the polystyrene resin particles obtained after the second polymerization step. A range of 0 parts by mass is desirable.
  • polystyrene resin particles are impregnated with a foaming agent.
  • A a method of impregnating a foaming agent after producing polystyrene-based resin particles;
  • B or a method of impregnating a foaming agent during the growth of polystyrene resin particles, Either of these can be used.
  • the produced resin particles are taken out, washed and dried to obtain expandable polystyrene resin particles.
  • the expandable polystyrene resin particles of the present invention if necessary, in the polystyrene resin, other additives commonly used in the production of expandable polystyrene resin particles, for example, Bubble regulators, plasticizers, solvents, flame retardants, colorants such as dyes, and the like can be added.
  • the surface of the expandable polystyrene resin particles of the present invention is coated with a surface treatment agent such as a fatty acid metal salt, a fatty acid ester, or an antistatic agent, as is usually done for conventional expandable polystyrene resin particles. It is also possible to improve the fluidity and pre-foaming characteristics of the resin particles (beads) by coating the surface treatment agent.
  • a surface treatment agent such as a fatty acid metal salt, a fatty acid ester, or an antistatic agent
  • the expandable polystyrene resin particles of the present invention contain a copolymer of a styrene monomer and an acrylate monomer, Of the infrared absorption spectrum which is obtained by analyzing the surface of the expandable polystyrene resin particles by ATR method infrared spectroscopy, determined the absorbance D1600 at absorbance D1730 and 1600 cm -1 in 1730 cm -1, from D1730 / D1600 The calculated absorbance ratio (A), ATR method infrared spectroscopy of infrared absorption spectrum which is obtained by analyzing the heart of expandable polystyrene resin particles by, obtains the absorbance D1600 at absorbance D1730 and 1600 cm -1 in 1730cm -1, D1730 / D1600 The absorbance ratio (B) calculated from (A) ⁇ (B) and (A) is 0.05 or more, It is characterized by satisfying the
  • the ATR method infrared spectroscopic analysis is an analysis method for measuring an infrared absorption spectrum by a single reflection type ATR method using total reflection absorption.
  • This analysis method is a method in which an ATR prism having a high refractive index is brought into close contact with a sample, infrared light is irradiated to the sample through the ATR prism, and light emitted from the ATR prism is spectrally analyzed.
  • ATR infrared spectroscopic analysis includes organic substances such as polymer materials because of the simplicity of being able to measure the spectrum simply by bringing the sample and the ATR prism into close contact, and the ability to perform surface analysis up to a depth of several ⁇ m. It is widely used for surface analysis of various substances.
  • the absorbance D1730 and 1600 cm -1 in 1730 cm -1 absorbance D1730 and 1600 cm -1 in 1730 cm -1
  • the absorbance D1600 is determined.
  • the absorbance ratio (A) on the surface of the resin particle and the absorbance ratio (B) at the center of the particle are calculated from the absorbance values.
  • the absorbance D1600 at 1600 cm ⁇ 1 obtained from the infrared absorption spectrum refers to the height of a peak appearing in the vicinity of 1600 cm ⁇ 1 derived from the in-plane vibration of the benzene ring contained in the polystyrene resin.
  • the surface absorbance is a value obtained by measuring the surface A of the expandable polystyrene resin particle 1 by ATR infrared spectroscopy as shown in FIG. 1, and the absorbance at the center is shown in FIG. As shown, it is a value obtained by measuring the central part B of the cross section obtained by cutting the expandable polystyrene resin particles 1 through the center thereof by ATR infrared spectroscopy.
  • the expandable polystyrene resin particles of the present invention have an absorbance ratio (A) of the surface of the resin particles calculated as described above and an absorbance ratio (B) of the center part of the particle particles.
  • (A) ⁇ (B) and (A) is 0.05 or more, It is characterized by satisfying the relationship. That is, in the expandable polystyrene resin particles of the present invention, in the diameter direction of the particles, the ratio of the styrene-acrylic acid ester copolymer component contained is high in the central portion and low in the surface layer side. There is a tendency. Further, a certain amount of styrene-acrylate copolymer component is also present in the surface layer portion of the particles.
  • the expandable polystyrene resin particles of the present invention have the distribution structure of the styrene-acrylic ester copolymer component as described above, the appearance is good even when the pressure of water vapor used during molding is low.
  • a foamed molded article having a beautiful and high strength can be obtained, and a foamed molded article in which the appearance of the molded article hardly deteriorates due to a decrease in heat resistance even in molding at a high vapor pressure can be obtained.
  • the relationship of (A) ⁇ (B) and (A) being 0.05 or more it is difficult to obtain the above effect.
  • the absorbance ratio (A) is preferably in the range of 0.05 to 0.50, and more preferably in the range of 0.08 to 0.47.
  • the absorbance ratio (B) is preferably in the range of 0.20 to 0.60, and more preferably in the range of 0.23 to 0.55. Further, the ratio (B / A) of the absorbance ratio (A) to (B) is preferably in the range of 1.10 to 3.00, and more preferably in the range of 1.17 to 2.88.
  • the expandable polystyrene resin particles of the present invention can be efficiently produced by the production method according to the present invention described above, but the production method is not limited thereto.
  • the expandable polystyrene resin particles of the present invention are pre-expanded into pre-expanded particles so that the bulk density is in the range of 0.01 to 0.033 g / cm 3 . It is used to produce a foamed molded article by filling in, heating and molding in-mold.
  • Example 1 Manufacture of seed particles 40000 g of water, 100 g of tricalcium phosphate as a suspension stabilizer and 2.0 g of calcium dodecylbenzenesulfonate as an anionic surfactant are fed into a polymerization vessel equipped with a stirrer with an internal volume of 100 liters, and 40000 g of styrene and a polymerization initiator are stirred. After adding 96.0 g of benzoyl peroxide and 28.0 g of t-butylperoxybenzoate, the mixture was heated to 90 ° C. and polymerized. And it hold
  • the polystyrene resin particles (a) were sieved to obtain polystyrene resin particles (b) having a particle diameter of 0.5 to 0.71 mm as seed particles.
  • the absorbance ratio (D1730 / D1600) is measured as follows. That is, the ATR method red is used for the surface of each of 10 resin particles selected at random (reference A in FIG. 1) and the central portion (reference B in FIG. 2) of the cross section cut through the particle. Infrared absorption spectrum is obtained by particle surface analysis by external spectroscopic analysis. The absorbance ratio (D1730 / D1600) was calculated from each infrared absorption spectrum, the arithmetic average of the absorbance ratio calculated for surface A was defined as the absorbance ratio (A), and the arithmetic average of the absorbance ratio calculated for center B was the absorbance. The ratio (B).
  • the absorbances D1730 and D1600 are measured using, for example, a measurement apparatus sold by Nicolet under the trade name “Fourier transform infrared spectrophotometer MAGMA 560”.
  • the absorbance D1600 at 1600 cm ⁇ 1 obtained from the infrared absorption spectrum refers to the height of a peak appearing in the vicinity of 1600 cm ⁇ 1 derived from the in-plane vibration of the benzene ring contained in the polystyrene resin.
  • n-butane as a foaming agent was press-fitted into the polymerization vessel containing the polystyrene resin particles (c), held for 3 hours, cooled to 30 ° C. or lower, taken out from the polymerization vessel and dried. Above, it was left in a thermostatic chamber at 13 ° C. for 5 days to obtain expandable polystyrene resin particles.
  • Example 2 In the first polymerization step, 6.8 g of benzoyl peroxide and 1.5 g of t-butylperoxybenzoate as polymerization initiators, 200 g of styrene (40 parts by mass with respect to 100 parts by mass of seed particles), and 10 g of butyl acrylate (seed Expandable polystyrene resin particles were obtained in the same manner as in Example 1 except that it was dissolved in a mixed solution of 2 parts by mass with respect to 100 parts by mass of the particles.
  • Example 3 In the first polymerization step, 6.8 g of benzoyl peroxide and 1.5 g of t-butylperoxybenzoate as polymerization initiators, 154 g of styrene (30.8 parts by mass with respect to 100 parts by mass of seed particles), and 56 g of butyl acrylate Expandable polystyrene resin particles were obtained in the same manner as in Example 1 except that it was dissolved in a mixed liquid (11.2 parts by mass with respect to 100 parts by mass of seed particles).
  • Example 4 In the first polymerization step, 6.8 g of benzoyl peroxide and 1.5 g of t-butylperoxybenzoate as polymerization initiators, 40 g of styrene (8 parts by mass with respect to 100 parts by mass of seed particles), 30 g of butyl acrylate (seed 1430 g of styrene that is dissolved in a mixed solution of 6 parts by mass with respect to 100 parts by mass of particles and that is supplied in a certain amount by a pump into the polymerization vessel while raising the temperature in 150 minutes in the second polymerization step. Except that, expandable polystyrene resin particles were obtained in the same manner as in Example 1.
  • Example 5 In the first polymerization step, 6.8 g of benzoyl peroxide and 1.5 g of t-butylperoxybenzoate as polymerization initiators, 360 g of styrene (72 parts by mass with respect to 100 parts by mass of seed particles), 30 g of butyl acrylate (seed 1110 g of styrene that was dissolved in a mixed solution of 6 parts by mass with respect to 100 parts by mass of the particles and that was supplied in a certain amount by a pump into the polymerization vessel while raising the temperature in 150 minutes in the second polymerization step. Except that, expandable polystyrene resin particles were obtained in the same manner as in Example 1.
  • Example 6 In the first polymerization step, the acrylic ester used is ethyl acrylate, 6.8 g benzoyl peroxide and 1.5 g t-butylperoxybenzoate are used as a polymerization initiator, and 170 g of styrene (based on 100 parts by mass of seed particles). 34 parts by mass) and 40 g of ethyl acrylate (8 parts by mass with respect to 100 parts by mass of seed particles), and the temperature is raised in 150 minutes while supplying a constant amount by pump into the polymerization vessel. Expandable polystyrene resin particles were obtained in the same manner as in Example 1 except that 1290 g of the styrene monomer was used.
  • Example 7 As a polymerization initiator, 6.8 g of benzoyl peroxide and 1.5 g of t-butylperoxybenzoate were dissolved in a mixed solution of 180 g of a styrene monomer and 30 g of butyl acrylate, and the temperature was increased in 150 minutes. Expandable polystyrene resin particles were obtained in the same manner as in Example 1 except that the amount of the styrene monomer to be supplied in a constant amount by a pump was changed to 750 g.
  • Example 8 As a polymerization initiator, 6.8 g of benzoyl peroxide and 1.5 g of t-butylperoxybenzoate were dissolved in a mixed solution of 180 g of a styrene monomer and 30 g of butyl acrylate, and the temperature was increased in 150 minutes. Expandable polystyrene resin particles were obtained in the same manner as in Example 1 except that 2000 g of the styrene monomer to be supplied in a constant amount by a pump was used.
  • Example 9 As a polymerization initiator, 6.8 g of benzoyl peroxide and 1.5 g of t-butylperoxybenzoate were dissolved in a mixed solution of 180 g of a styrene monomer and 30 g of butyl acrylate, and the temperature was increased in 150 minutes. Expandable polystyrene resin particles were obtained in the same manner as in Example 1 except that the amount of the styrene monomer to be supplied in a fixed amount by a pump was changed to 500 g.
  • Example 10 As a polymerization initiator, 6.8 g of benzoyl peroxide and 1.5 g of t-butylperoxybenzoate were dissolved in a mixed solution of 180 g of a styrene monomer and 30 g of butyl acrylate, and the temperature was increased in 150 minutes. Expandable polystyrene resin particles were obtained in the same manner as in Example 1 except that the amount of the styrene monomer to be supplied in a fixed amount by a pump was changed to 2750 g.
  • Example 1 Comparative Example 1 In Example 1, 6.8 g of benzoyl peroxide and 1.5 g of t-butylperoxybenzoate were used in the first polymerization step without using an acrylate ester, and 210 g of styrene (42 parts by mass with respect to 100 parts by mass of seed particles). Except for the above, expandable polystyrene resin particles were obtained in the same manner as in the Examples. In the same manner as in Example 1, for the polystyrene resin particles (c) before impregnation with the foaming agent, the surface absorbance ratio (A) and the central absorbance ratio (B) were measured, and these ratios ((B) / (A)) was calculated. The results are shown in Table 1.
  • Comparative Example 2 In the first polymerization step, 6.8 g of benzoyl peroxide and 1.5 g of t-butylperoxybenzoate as a polymerization initiator, 202 g of styrene (40.4 parts by mass with respect to 100 parts by mass of seed particles), and 8 g of butyl acrylate Styrene that is dissolved in a mixed solution (1.6 parts by mass with respect to 100 parts by mass of seed particles) and that is supplied in a certain amount by a pump into the polymerization vessel while raising the temperature in 150 minutes in the second polymerization step. Expandable polystyrene resin particles were obtained in the same manner as in Example 1 except that 1290 parts by mass was used.
  • Comparative Example 3 In the first polymerization step, 6.8 g of benzoyl peroxide and 1.5 g of t-butylperoxybenzoate as polymerization initiators, 140 g of styrene (28 parts by mass with respect to 100 parts by mass of seed particles), 70 g of butyl acrylate (seed 1290 g of styrene that is dissolved in a mixed solution of 14 parts by mass with respect to 100 parts by mass of particles and that is supplied in a certain amount by a pump into the polymerization vessel while raising the temperature in 150 minutes in the second polymerization step. Except that, expandable polystyrene resin particles were obtained in the same manner as in Example 1.
  • Comparative Example 4 In the first polymerization step, 6.8 g of benzoyl peroxide and 1.5 g of t-butylperoxybenzoate as polymerization initiators, 30 g of styrene (6 parts by mass with respect to 100 parts by mass of seed particles), 30 g of butyl acrylate (seed 1440 parts by mass of styrene that is dissolved in a mixed solution of 6 parts by mass with respect to 100 parts by mass of particles) and that is supplied in a certain amount by a pump into the polymerization vessel while raising the temperature in 150 minutes in the second polymerization step. Except that, expandable polystyrene resin particles were obtained in the same manner as in Example 1.
  • Comparative Example 5 In the first polymerization step, 6.8 g of benzoyl peroxide and 1.5 g of t-butylperoxybenzoate as polymerization initiators, 460 g of styrene (92 parts by mass with respect to 100 parts by mass of seed particles), and 30 g of butyl acrylate (seed 1010 g of styrene that is dissolved in a mixed solution of 6 parts by mass with respect to 100 parts by mass of particles and that is supplied in a certain amount by a pump into the polymerization vessel while raising the temperature in 150 minutes in the second polymerization step. Except that, expandable polystyrene resin particles were obtained in the same manner as in Example 1.
  • Comparative Example 6 In a polymerization vessel equipped with a stirrer having an internal volume of 5 liters, 2000 parts by mass of water, 500 parts by mass of the styrene resin particles (B), 6.0 parts by mass of magnesium pyrophosphate as a suspension stabilizer, and dodecyl as an anionic surfactant The mixture was heated to 75 ° C. while supplying 0.3 parts by mass of calcium benzenesulfonate and stirring.
  • a mixed liquid of 1470 parts by mass of styrene and 30 parts by mass of butyl acrylate was prepared in advance, and 210 parts by mass of the mixed liquid (41.2 parts by mass of styrene and 0.84 of butyl acrylate with respect to 100 parts by mass of seed particles). 6.8 parts by mass of benzoyl peroxide and 1.5 parts by mass of t-butylperoxybenzoate were dissolved and fed to the 5 liter polymerization vessel and held at 75 ° C. for 60 minutes.
  • the absorbance ratio (A) of the surface of the polystyrene-based resin particles and the absorbance ratio (B) of the central portion are (A) ⁇ (B). And (A) was 0.05 or more.
  • the absorbance ratio (A) was in the range of 0.05 to 0.50
  • the absorbance ratio (B) was in the range of 0.20 to 0.60.
  • the ratio (B / A) of the absorbance ratio (A) to (B) was in the range of 1.10 to 3.00.
  • Comparative Example 1 since no acrylic acid ester was added, the absorbance D1730 at 1730 cm ⁇ 1 derived from absorption of the ester group was not measured.
  • Comparative Example 2 since the amount of butyl acrylate used in the first polymerization step was small, the surface absorbance ratio (A) was 0.02, and the lower limit (0) of the surface absorbance ratio (A) defined in the present invention. .05).
  • Comparative Example 3 since the amount of butyl acrylate used in the first polymerization step was large, the absorbance ratio (A) on the surface was larger than the absorbance ratio (B) at the center.
  • Comparative Example 4 since the amount of styrene used in the first polymerization step was small, the surface absorbance ratio (A) was larger than the central absorbance ratio (B). In Comparative Example 5, since the amount of styrene used in the first polymerization step was large, the surface absorbance ratio (A) was 0.04, which was the lower limit (0) of the surface absorbance ratio (A) defined in the present invention. .05). Further, in Comparative Example 6, the use of butyl acrylate together with styrene in the second polymerization step resulted in a surface absorbance ratio (A) that was greater than the central absorbance ratio (B).
  • the pre-expanded particles are filled into the cavities of an automatic foaming bead molding machine equipped with a mold having a rectangular parallelepiped cavity with an internal dimension of 300 mm ⁇ 400 mm ⁇ 30 mm, and the following two conditions (molding vapor pressure) are used.
  • a polystyrene resin foam molded article having a density of 0.0167 g / cm 3 was molded.
  • Molding conditions Molding Machine ACE-3SP manufactured by Sekisui Koki Co., Ltd.
  • Molding vapor pressure 2 conditions (cage pressure: 0.04 MPa, 0.09 MPa) Mold heating 5 seconds
  • One side heating set pressure 0.03MPa
  • Reverse one side heating 3 seconds
  • Double-sided heating 15 seconds
  • Water cooling 5 seconds
  • Cooling vacuum cooling QS molding mode
  • the foamed molded product in the case of 09 MPa the bending strength, the foamed molded product appearance, and the cooling time were examined and evaluated under the following conditions. The results are shown in Table 2.
  • Bending strength (MPa) 3FL / 2bh 2 (Here, F represents the maximum bending load (N), L represents the distance between supporting points (mm), b represents the width (mm) of the test piece, and h represents the thickness (mm) of the test piece. )
  • the cooling time of the present invention is the cooling time when the foaming pressure of the molded body in the cavity reaches the take-out set surface pressure of 0.02 MPa after the water cooling process is performed under the molding conditions described above. did.
  • the cooling time three sheets were molded for each condition (molding vapor pressure), and the average value was taken.
  • Comparative Example 1 in which the monomer used in the first polymerization step is only styrene and no acrylate ester is added, the appearance of the foamed molded article obtained by molding at a low water vapor pressure (0.04 MPa) is It was bad and the bending strength was low.
  • Comparative Example 2 in which an acrylic ester was added in an amount less than the range of the present invention in the first polymerization step, the appearance of the foamed molded article obtained by molding at a low water vapor pressure (0.04 MPa) was poor and the bending strength was low. It became low.
  • Comparative Example 3 in which the amount of the acrylate ester in the first polymerization step exceeds the range of the present invention, the appearance of the foamed molded article obtained by molding at a high water vapor pressure (0.09 MPa) is poor, and the bending strength. Became lower.
  • Comparative Example 4 in which the amount of styrene in the first polymerization step is less than the range of the present invention, both foamed molded products obtained by molding with both a low water vapor pressure (0.04 MPa) and a high water vapor pressure (0.09 MPa) The appearance was poor and the bending strength was low.
  • Comparative Example 4 in which the amount of styrene in the first polymerization step exceeds the range of the present invention, the appearance of the foamed molded article obtained by molding at a low water vapor pressure (0.04 MPa) is poor, and the bending strength is low. became.
  • Comparative Example 6 using a mixture of styrene and an acrylate ester has a poor appearance of a foam molded article obtained by molding at a high water vapor pressure (0.09 MPa). And the bending strength was low.
  • the pre-expanded particles are filled into the cavities of an automatic foaming bead molding machine provided with a mold having a rectangular parallelepiped-shaped cavity with an inner size of 300 mm ⁇ 400 mm ⁇ 30 mm, and the density is 0.0167 g / A polystyrene resin foam molded article of cm 3 was molded.
  • Molding conditions (Molding Machine ACE-3SP manufactured by Sekisui Koki Co., Ltd.) Molded vapor pressure Cage pressure: 0.04 MPa Mold heating 5 seconds One side heating (set pressure 0.03MPa) Reverse one side heating 3 seconds Double-sided heating 15 seconds Water cooling 5 seconds Cooling (vacuum cooling QS molding mode) Extraction set surface pressure 0.02 MPa
  • Comparative Examples 1 to 6 it was not possible to obtain foam molded articles having a beautiful appearance under the same conditions as in the Examples.
  • Table 2 Comparative Example 3 and Comparative Example 6 in which a foamed molded article having a good appearance was obtained with a low water vapor pressure (0.04 MPa)
  • a foamed molded article having a good appearance was obtained with a low water vapor pressure (0.04 MPa)
  • the pre-expanded particles that were allowed to stand for 7 days after the pre-expansion were used, it was not possible to obtain a foamed molded article having a beautiful appearance. From this test result, it can be seen that the pre-expanded particles obtained in Examples 1 to 10 according to the present invention are excellent in retention of foaming force and excellent in storage stability.
  • the expandable polystyrene resin particles of the present invention are suitable for the production of polystyrene resin foam molded articles useful as food containers, packaging, and cushioning materials.
  • the expandable polystyrene resin particles of the present invention can provide a foamed molded article having a beautiful appearance and high strength even when the pressure of water vapor used during molding is low, so that the manufacturing cost of the foamed molded article is reduced. Energy saving in manufacturing and manufacturing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

 本発明は、成形時の水蒸気圧が低圧であっても外観が美麗、且つ高い強度を有する発泡成形体が得られ、成形時間の短縮を可能とした発泡性ポリスチレン系樹脂粒子の提供を目的とする。本発明では、(1)ポリスチレン系樹脂種粒子を水中に分散させてなる分散液中に、該種粒子100質量部に対し、スチレン系単量体7.0~80.0質量部とアクリル酸エステル系単量体2.0~12.0質量部とを供給し、これらの単量体を種粒子に吸収、重合させて種粒子を成長させる第1重合工程と、(2)次いで、該分散液中にスチレン系単量体のみを供給し、これを種粒子に吸収、重合させて樹脂粒子を成長させる第2重合工程と、(3)第2重合工程後、又は該重合工程の途中で発泡剤を含浸させる工程とを行って発泡性ポリスチレン系樹脂粒子を得る。

Description

発泡性ポリスチレン系樹脂粒子とその製造方法、予備発泡粒子及び発泡成形体
 本発明は、食品容器や梱包、緩衝材として有用なポリスチレン系樹脂発泡成形体の製造に用いる発泡性ポリスチレン系樹脂粒子の製造方法に関する。また、本発明は、さらに詳しくは、成形時に使用する水蒸気の圧力が低圧であっても外観が美麗、且つ高い強度を有する発泡成形体を得ることができ、低圧成形可能なことにより、成形工程において、1ショット当たりの成形時間の短縮を可能とした発泡性ポリスチレン系樹脂粒子の製造方法に関する。
 本願は、2008年1月30日に日本に出願された特願2008-19000号に基づき優先権を主張し、その内容をここに援用する。
 従来、食品用容器や梱包、緩衝材に用いられる発泡プラスチックとしては、優れた断熱性、経済性、衛生性をもつポリスチレン系樹脂発泡成形体が多く使用されている。
 一般に、工業的に行われているポリスチレン系樹脂発泡成形体の製造方法は、揮発性発泡剤等を含有した、発泡性ポリスチレン系樹脂粒子をスチーム等の熱媒体により加熱し、所望の嵩密度まで発泡(予備発泡)させた後、この予備発泡粒子を所望の成形形状をなすキャビティを持った成形型の該キャビティ内に充填し、このキャビティ内の予備発泡粒子をスチーム等の熱媒体により加熱して型内発泡成形し、発泡成形体とする方法が行なわれている。このとき、得られるポリスチレン系樹脂発泡成形体の密度はほぼ予備発泡での嵩密度と同じとなる。嵩密度の設定は、ポリスチレン系樹脂発泡成形体に要求される強度と、発泡性ポリスチレン系樹脂粒子が有する発泡性能によって決定される。例えば、家電品等の梱包材や魚箱等の食品容器に用いられるポリスチレン系樹脂発泡成形体は、およそ0.02~0.017g/cmの密度のものが市場に供されている。
 この成形工程において、発泡成形体の外観や強度は、スチーム等の加熱媒体温度(水蒸気の場合は加熱蒸気圧力)によって変化する。例えば、水蒸気にて加熱する場合、加熱圧力を高くすると成形体の外観、強度は向上する傾向にあるが、冷却時間が長くなるために生産性が低下し好ましくない。
 更に、加熱圧力が高くなると、発泡成形体の表面が熱で融けることで、発泡成形体の外観が低下する。
 逆に加熱圧力を低くして成形すると、1ショット当たりの成形時間は短かくなるが、予備発泡粒子同士の接着が弱くなり、発泡成形体の外観、強度が低下する。
 このように、成形工程におけるスチームの加熱蒸気圧が低圧から高圧まで、ある程度自由に成形できることは、発泡性ポリスチレン系樹脂粒子の重要な特性の一つである。
 一般に、ポリスチレン系樹脂発泡成形体の製造における、1ショット当たりの成形時間と発泡成形体の強度との関係は、成形時間が長い場合には、高い強度を有する発泡成形体が得られ、逆に成形時間が短い場合には、発泡成形体の強度が低下する傾向が見られる。
 ポリスチレン系樹脂発泡成形体の成形時間を短縮するための従来技術として、例えば、特許文献1~5が挙げられる。
 特許文献1には、発泡性ポリスチレン系樹脂粒子の表面に、常温で固体で60メッシュ以下の粉末状の脂肪族カルボン酸と脂肪族アルコールのエステルを被覆する方法が提案されている。この方法は、成形時間のうち、冷却時間が大幅に短縮でき、成形時間の短縮には有効であるが、強度の低下を伴なう傾向がある。
 また特許文献2にはパラフィンワックスのエマルジョンを、特許文献3には流動パラフィンを、特許文献4には特定のシリコーン化合物を、特許文献5ではポリエーテルを発泡性ポリスチレン系樹脂粒子または発泡粒子表面に被覆する方法が提案されている。しかし、これらの方法も、発泡成形体としたときの強度の低下は避けられない。
特公昭58-56568号公報 特開昭60-195135号公報 特開昭51-135969号公報 特開昭52-865号公報 特開昭59-202235号公報
 本発明は、前記事情に鑑みてなされ、成形時に使用する水蒸気の圧力が低圧であっても外観が美麗、且つ高い強度を有する発泡成形体を得ることができ、低圧成形可能なことにより、成形工程において、1ショット当たりの成形時間の短縮を可能とした発泡性ポリスチレン系樹脂粒子の提供を目的とする。
 前記目的を達成するため、本発明は、
(1)ポリスチレン系樹脂種粒子を水中に分散させてなる分散液中に、ポリスチレン系樹脂種粒子100質量部に対し、スチレン系単量体7.0~80.0質量部とアクリル酸エステル系単量体2.0~12.0質量部とを供給し、これらの単量体を種粒子に吸収、重合させてポリスチレン系樹脂種粒子を成長させる第1重合工程と、
(2)次いで、該分散液中にスチレン系単量体のみを供給し、これを種粒子に吸収、重合させてポリスチレン系樹脂粒子を成長させる第2重合工程と、
(3)第2重合工程を行ってポリスチレン系樹脂粒子を製造した後、又はポリスチレン系樹脂粒子の成長途上で発泡剤を含浸させる工程とを行って発泡性ポリスチレン系樹脂粒子を得る発泡性ポリスチレン系樹脂粒子の製造方法を提供する。
 また本発明は、スチレン系単量体とアクリル酸エステル系単量体との共重合体を含有する発泡性ポリスチレン系樹脂粒子であって、
 ATR法赤外分光分析により前記発泡性ポリスチレン系樹脂粒子の表面を分析し得られた赤外線吸収スペクトルのうち、1730cm-1での吸光度D1730と1600cm-1での吸光度D1600とを求め、D1730/D1600から算出される吸光度比(A)と、
 ATR法赤外分光分析により前記発泡性ポリスチレン系樹脂粒子の中心部を分析し得られた赤外線吸収スペクトルのうち、1730cm-1での吸光度D1730と1600cm-1での吸光度D1600とを求め、D1730/D1600から算出される吸光度比(B)とが、
 (A)<(B)であり、且つ
 (A)が0.05以上であること、
の関係を満たす発泡性ポリスチレン系樹脂粒子を提供する。
 前記発泡性ポリスチレン系樹脂粒子において、前記吸光度比(A)が0.05~0.50の範囲内であり、且つ前記吸光度比(B)が0.20~0.60の範囲内であることが好ましい。
 前記発泡性ポリスチレン系樹脂粒子において、前記吸光度比(A)と(B)との比(B/A)が、1.10~3.00の範囲内であることが好ましい。
 前記発泡性ポリスチレン系樹脂粒子は、前記発泡性ポリスチレン系樹脂粒子の製造方法により得られたものであることが好ましい。
 また本発明は、前記発泡性ポリスチレン系樹脂粒子を嵩密度が0.01~0.033g/cmの範囲となるように予備発泡して得られた予備発泡粒子を提供する。
 また本発明は、前記予備発泡粒子を成形型のキャビティ内に充填し、加熱して型内発泡成形することにより得られた発泡成形体を提供する。
 本発明の発泡性ポリスチレン系樹脂粒子は、成形時に使用する水蒸気の圧力が低圧であっても外観が美麗、且つ高い強度を有する発泡成形体を得ることができる。
 本発明によれば、高い蒸気圧力での成形においても耐熱性低下による成形体外観の劣化が起こりにくい発泡成形体を得ることができる。
 本発明によれば、成形可能な条件範囲が非常に広く、様々な成形時に要望される品質を満足する発泡成形体を提供することができる。
 本発明の発泡性ポリスチレン系樹脂粒子及び予備発泡粒子は、従来品と比べて、発泡性能の経時変化が少なくなり、従来品よりも長期保存した後でも、十分な発泡性能を有しており、保存性に優れている。
ATR法赤外分光分析による発泡性ポリスチレン系樹脂粒子の吸光度比の測定において、発泡性ポリスチレン系樹脂粒子の表面の吸光度測定位置を示す概略図である。 ATR法赤外分光分析による発泡性ポリスチレン系樹脂粒子の吸光度比の測定において、発泡性ポリスチレン系樹脂粒子の中心部の吸光度測定位置を示す概略図である。
符号の説明
 1…発泡性ポリスチレン系樹脂粒子、A…表面、B…中心部。
発明を実施するための形態
 本発明の発泡性ポリスチレン系樹脂粒子の製造方法は、
(1)ポリスチレン系樹脂種粒子を水中に分散させてなる分散液中に、ポリスチレン系樹脂種粒子100質量部に対し、スチレン系単量体7.0~80.0質量部とアクリル酸エステル系単量体2.0~12.0質量部とを供給し、これらの単量体を種粒子に吸収、重合させてポリスチレン系樹脂種粒子を成長させる第1重合工程と、
(2)次いで、該分散液中にスチレン系単量体のみを供給し、これを種粒子に吸収、重合させてポリスチレン系樹脂粒子を成長させる第2重合工程と、
(3)第2重合工程を行ってポリスチレン系樹脂粒子を製造した後、又はポリスチレン系樹脂粒子の成長途上で発泡剤を含浸させる工程とを行って発泡性ポリスチレン系樹脂粒子を得ることを特徴としている。
 本発明の製造方法において、ポリスチレン系樹脂種粒子(以下、種粒子と略記する。)の材料であるポリスチレン系樹脂としては、スチレン又はスチレン誘導体の単独重合体が挙げられる。ここでスチレン誘導体としては、α-メチルスチレン、パラメチルスチレン、t-ブチルスチレン、クロルスチレンなどが挙げられる。その他、アクリロニトリル、ジメチルフマレート、エチルフマレート等のスチレンと共重合可能な単量体とスチレンとの共重合体、ジビニルベンゼン、アルキレングリコールメタクリレート等の多官能性単量体を併用した前記共重合体、適量のゴム状物質を添加した樹脂などが挙げられるが、スチレン成分が50質量%以上である共重体またはスチレン単独重合体であるのが好ましい。このポリスチレン系樹脂は、重量平均分子量が15万~40万の範囲のものが好ましい。また、種粒子は、一部又は全部に、ポリスチレン系樹脂回収品を用いることができる。
 さらに、種粒子の粒径は、作製するポリスチレン系樹脂粒子の平均粒子径等に応じて適宜調整でき、例えば、平均粒子径が1.0mmのポリスチレン系樹脂粒子を作製する場合には、平均粒子径が0.4~0.7mm程度の種粒子を用いることが好ましい。
 本発明の製造方法において、スチレン系単量体としては、スチレン又はスチレン誘導体が挙げられる。ここでスチレン誘導体としては、α-メチルスチレン、パラメチルスチレン、t-ブチルスチレン、クロルスチレンなどが挙げられる。本発明において、これらのスチレン系単量体の中でも、スチレンが好ましい。
 本発明の製造方法において、アクリル酸エステル系単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸ペンチル、アクリル酸ヘキシルなどが挙げられ、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチルが好ましい。
 本発明の第1重合工程に用いられるスチレン系単量体としては、ポリスチレン系樹脂種粒子100質量部に対して7.0~80.0質量部とする。7.0質量部未満の場合、成形時の耐熱性が低下し、80.0質量部を超えると低圧成形性に劣る。好ましくは、8.0~72.0質量部である。
 また、本発明の第1重合工程に用いられるアクリル酸エステル単量体としては、ポリスチレン系樹脂種粒子100質量部に対して2.0~12.0質量部とする。2.0質量部未満では、低圧成形性に劣り、12.0質量部を超えると耐熱性が低下する。好ましくは、2.0~11.2質量部である。
 本発明の発泡性ポリスチレン系樹脂粒子に添加する発泡剤としては、沸点がポリスチレン系樹脂の軟化点以下であって、常圧でガス状もしくは液状の有機化合物が適している。例えば、プロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタン、ネオペンタン、シクロペンタン、シクロペンタジエン、n-ヘキサン、石油エーテル等の炭化水素、アセトン、メチルエチルケトン等のケトン類、メタノール、エタノール、イソプロピルアルコール等のアルコール類、ジメチルエーテル、ジエチルエーテル、ジプロピルエーテル、メチルエチルエーテル等の低沸点のエーテル化合物、炭酸ガス、窒素、アンモニア等の無機ガス等が用いられる。これらの発泡剤は、一種のみを使用してもよく、また、二種以上を併用してもよい。これらのうち、好ましい発泡剤は沸点が-45~40℃の炭化水素であり、プロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタン等が好ましい。この発泡剤の添加量は、ポリスチレン系樹脂粒子100質量部に対し、5~15質量部の範囲が好ましい。
 本発明の製造方法によって発泡性ポリスチレン系樹脂粒子を製造するには、オートクレーブなどの反応容器内に水性媒体を入れ、該水性媒体に前記種粒子を分散させ、この水性媒体中に、前記(1)第1重合工程においてはスチレン系単量体とアクリル酸エステル系単量体、次いで前記(2)第2重合工程においてはスチレン系単量体のみを、連続的又は断続的に供給し、重合開始剤の存在下で種粒子表面および/又は種粒子内部に、スチレン-アクリル酸エステル系共重合体及びポリスチレン系樹脂を成長させ、所定粒径のポリスチレン系樹脂粒子を作製する。
 前記(1)第1重合工程及び(2)第2重合工程において、種粒子の使用量が少ない場合、原料単量体の重合を適正範囲に制御することができずに、ポリスチレン系樹脂が極端に高分子量化したり或いは微粉末状のポリスチレン系樹脂が多量に発生し、製造効率が低下する。又、使用量が多い場合は、1回の生産で得られる量が少なく、生産性に劣る。よって、種粒子の適正使用量としては、ポリスチレン系樹脂全量に対して、10~60質量%の範囲が好ましく、15~50質量%の範囲がより好ましい。
 前記(1)第1重合工程及び(2)第2重合工程において使用可能な重合開始剤としては、従来からスチレン系単量体の重合に用いられているものであれば、特に限定されずに使用することができ、例えば、ベンゾイルパーオキサイド、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシ-2-エチルヘキサノエート、ラウリルパーオキサイド、t-ブチルパーオキサイド、t-ブチルパーオキシピバレート、t-ブチルパーオキシイソプロピルカーボネート、t-ブチルパーオキシアセテート、2,2-t-ブチルパーオキシブタン、t-ブチルパーオキシ-3、3、5-トリメチルヘキサノエート、ジーt-ブチルパーオキシヘキサハイドロテレフタレート等の有機過酸化物、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル等のアゾ化合物等が挙げられる。これらの重合開始剤の中でも、特に10時間の半減期を得るための分解温度が80~120℃にあるものが好ましい。この重合開始剤は、1種類を単独使用することもできるし、また異なった2種以上の重合開始剤を併用することもできる。
 更に、前記種粒子及び単量体の小滴を前記水性媒体中に分散させるために用いられる懸濁安定剤としては、従来からポリスチレン系樹脂の懸濁重合に用いられているものであれば、特に限定されずに使用することができ、例えば、ポリビニルアルコール、メチルセルロース、ポリアクリルアミド、ポリビニルピロリドン等の水溶性高分子、第三リン酸カルシウム、ピロリン酸マグネシウム等の難溶性無機化合物等が挙げられる。懸濁安定剤は、1種類を単独使用することもできるし、また2種以上の懸濁安定剤を混合使用することもできる。
 前記懸濁安定剤として難溶性無機化合物を用いる場合には、アニオン界面活性剤を併用することが好ましい。このようなアニオン界面活性剤としては、例えば、脂肪酸石鹸、N-アシルアミノ酸またはその塩、アルキルエーテルカルボン酸塩などのカルボン酸塩、アルキルベンゼンスルフォン酸塩、アルキルナフタレンスルフォン酸塩、ジアルキルスルホコハク酸エステル塩、アルキルスルホ酢酸塩、α-オレフィンスルフォン酸塩等のスルフォン酸塩;高級アルコール硫酸エステル塩、第二級高級アルコール硫酸エステル塩、アルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩等の硫酸エステル塩;アルキルエーテルリン酸エステル塩、アルキルリン酸エステル塩等のリン酸エステル塩等が挙げられる。これらのアニオン界面活性剤は1種類を単独で、もしくは2種類以上を混合して用いることができる。
 前記(1)第1重合工程において、水性媒体に供給するスチレン系単量体とアクリル酸エステル系単量体の量は、種粒子100質量部に対し、スチレン系単量体が7.0~80.0質量部の範囲、またアクリル酸エステル系単量体が2.0~12.0質量部の範囲である。(1)第1重合工程におけるスチレン系単量体とアクリル酸エステル系単量体との量を前記範囲内とすることで、成形時に使用する水蒸気の圧力が低圧であっても外観が美麗、且つ高い強度を有する発泡成形体を得ることができ、低圧成形可能なことにより、成形工程において、1ショット当たりの成形時間の短縮が可能な発泡性ポリスチレン系樹脂粒子を提供できる。
 前記(2)第2重合工程は、前記(1)第1重合工程の終了後、オートクレーブなどの反応容器内の水性媒体にスチレン系単量体のみを加え、前記(1)第1重合工程によって成長した種粒子の上にポリスチレン系樹脂を成長させて、ポリスチレン系樹脂粒子とする。この(2)第2重合工程において用いるスチレン系単量体の量は、特に限定されないが、第2重合工程後に得られるポリスチレン系樹脂粒子の樹脂分100質量部に対して30.0~80.0質量部の範囲とすることが望ましい。
 本発明の製造方法において、ポリスチレン系樹脂粒子に発泡剤を含浸させるには、
(a)ポリスチレン系樹脂粒子を製造した後に、発泡剤を含浸させる方法、
(b)又はポリスチレン系樹脂粒子の成長途上で発泡剤を含浸させる方法、
のいずれかを用いることができる。
 発泡剤の含浸後、製造された樹脂粒子を取り出し、洗浄・乾燥を行い、発泡性ポリスチレン系樹脂粒子を得る。
 本発明の発泡性ポリスチレン系樹脂粒子は、前記発泡剤以外に、ポリスチレン系樹脂中に必要に応じて、発泡性ポリスチレン系樹脂粒子の製造において一般的に使用されている他の添加剤、例えば、気泡調整剤、可塑剤、溶剤、難燃剤、染料等の着色剤等を添加することができる。
 本発明の発泡性ポリスチレン系樹脂粒子の表面には、従来の発泡性ポリスチレン系樹脂粒子に対して通常行われているように、脂肪酸金属塩、脂肪酸エステル、帯電防止剤などの表面処理剤をコーティングすることができ、表面処理剤のコーティングを行うことで、樹脂粒子(ビーズ)の流動性、予備発泡特性などを改善することもできる。
 次に、本発明の発泡性ポリスチレン系樹脂粒子について説明する。
 本発明の発泡性ポリスチレン系樹脂粒子は、スチレン系単量体とアクリル酸エステル系単量体との共重合体を含有し、
 ATR法赤外分光分析により発泡性ポリスチレン系樹脂粒子の表面を分析し得られた赤外線吸収スペクトルのうち、1730cm-1での吸光度D1730と1600cm-1での吸光度D1600とを求め、D1730/D1600から算出される吸光度比(A)と、
 ATR法赤外分光分析により発泡性ポリスチレン系樹脂粒子の中心部を分析し得られた赤外線吸収スペクトルのうち、1730cm-1での吸光度D1730と1600cm-1での吸光度D1600とを求め、D1730/D1600から算出される吸光度比(B)とが、
 (A)<(B)であり、且つ
 (A)が0.05以上であること、
の関係を満たすことを特徴とする。
 ATR法赤外分光分析とは、全反射吸収を利用する一回反射型ATR法により赤外吸収スペクトルを測定する分析方法である。
 この分析方法は、高い屈折率を持つATRプリズムを試料に密着させ、ATRプリズムを通して赤外線を試料に照射し、ATRプリズムからの出射光を分光分析する方法である。ATR法赤外分光分析は、試料とATRプリズムとを密着させるだけでスペクトルを測定できるという簡便さ、深さ数μmまでの表面分析が可能である等の理由で高分子材料等の有機物をはじめ、種々の物質の表面分析に広く利用されている。
 本発明では、ATR法赤外分光分析により、発泡性ポリスチレン系樹脂粒子の表面と中心部とを分析し、得られた赤外吸収スペクトルのうち、1730cm-1での吸光度D1730と1600cm-1での吸光度D1600とを求める。そして、前記各吸光度の値から、樹脂粒子の表面の吸光度比(A)と、粒子粒子の中心部の吸光度比(B)とを算出する。
 なお、赤外吸収スペクトルから得られる1600cm-1での吸光度D1600 は、ポリスチレン系樹脂に含まれるベンゼン環の面内振動に由来する1600cm-1付近に現われるピークの高さをいう。
  また、赤外吸収スペクトルから得られる1730cm-1での吸光度D1730は、アクリル酸エステルに含まれるエステル基のC=0間の伸縮振動に由来する1730cm-1付近に現われるピークの高さをいう。
 また、表面の吸光度は、図1に示すように発泡性ポリスチレン系樹脂粒子1の表面AについてATR法赤外分光分析により測定して求めた値であり、また中心部の吸光度は、図2に示すように、発泡性ポリスチレン系樹脂粒子1をその中心を通って切断した断面の中心部BについてATR法赤外分光分析により測定して求めた値である。
 本発明の発泡性ポリスチレン系樹脂粒子は、前述したように算出された樹脂粒子の表面の吸光度比(A)と、粒子粒子の中心部の吸光度比(B)とが、
(A)<(B)であり、且つ
(A)が0.05以上であること、
の関係を満たすことを特徴とする。
 すなわち、本発明の発泡性ポリスチレン系樹脂粒子は、粒子の直径方向において、含有されているスチレン-アクリル酸エステル共重合体成分の割合が、中心部で濃度が高く、表層側で低濃度となる傾向にある。また、粒子の表層部においても、ある程度のスチレン-アクリル酸エステル共重合体成分が存在している。
 本発明の発泡性ポリスチレン系樹脂粒子は、前述したようなスチレン-アクリル酸エステル共重合体成分の分布構造を有していることから、成形時に使用する水蒸気の圧力が低圧であっても外観が美麗、且つ高い強度を有する発泡成形体を得ることができ、また、高い蒸気圧力での成形においても耐熱性低下による成形体外観の劣化が起こりにくい発泡成形体を得ることができる。前記(A)<(B)であり、且つ(A)が0.05以上であること、の関係を満たさない場合は、前記の効果を得ることが難しくなる。
 前記吸光度比(A)は、0.05~0.50の範囲内が好ましく、0.08~0.47の範囲がさらに好ましい。
 また前記吸光度比(B)は、0.20~0.60の範囲内が好ましく、0.23~0.55の範囲がさらに好ましい。
 さらに、前記吸光度比(A)と(B)との比(B/A)は、1.10~3.00の範囲内が好ましく、1.17~2.88の範囲内がさらに好ましい。
 本発明の発泡性ポリスチレン系樹脂粒子は、前述した本発明に係る製造方法によって効率よく製造することができるが、製造方法はそれに限定されない。
 本発明の発泡性ポリスチレン系樹脂粒子は、嵩密度が0.01~0.033g/cmの範囲となるように予備発泡して予備発泡粒子とし、さらにこの予備発泡粒子を成形型のキャビティ内に充填し、加熱して型内発泡成形することにより、発泡成形体を製造するために用いられる。
 以下、実施例によって本発明の具体例を示すが、以下の実施例は本発明の例示にすぎず、本発明は以下の実施例のみに限定されない。また、以下の実施例、比較例において、発泡性ポリスチレン系樹脂粒子の吸光度比の結果は、発泡剤含浸前のポリスチレン系樹脂粒子吸光度比の結果と同様であった。
実施例1
(種粒子の製造)
 内容量100リットルの撹拌機付き重合容器に、水40000g、懸濁安定剤として第三リン酸カルシウム100g及びアニオン界面活性剤としてドデシルベンゼンスルフォン酸カルシウム2.0gを供給し撹拌しながらスチレン40000g並びに重合開始剤としてベンゾイルパーオキサイド96.0g及びt-ブチルパーオキシベンゾエート28.0gを添加した上で90℃に昇温して重合した。そして、この温度で6時間保持し、更に、125℃に昇温してから2時間保持し、その後冷却してポリスチレン系樹脂粒子(a)を得た。
 前記ポリスチレン系樹脂粒子(a)を篩分けし、種粒子として粒子径0.5~0.71mmの範囲のポリスチレン系樹脂粒子(b)を得た。
 次に、内容量5リットルの撹拌機付き重合容器内に、水2000g、前記ポリスチレン系樹脂粒子(b)500g、懸濁安定剤としてピロリン酸マグネシウム6.0g及びアニオン界面活性剤としてドデシルベンゼンスルフォン酸カルシウム1.0gを供給して撹拌しながら75℃に昇温した。
(第1重合工程)
 次に、重合開始剤としてベンゾイルパーオキサイド6.8g及びt-ブチルパーオキシベンゾエート1.5gをスチレン180g(種粒子100質量部に対して36質量部)、アクリル酸ブチル30g(種粒子100質量部に対して6質量部)の混合液に溶解させたものを前記5リットルの重合容器に供給し、75℃で60分間保持した。
(第2重合工程)
 60分経過後に反応液を110℃まで150分で昇温しつつ、且つスチレン1290gを150分で重合容器内にポンプで一定量づつ供給した上で、120℃に昇温して2時間経過後に冷却しポリスチレン系樹脂粒子(c)を得た。
(樹脂粒子の吸光度比)
 得られたポリスチレン系樹脂粒子(c)について、下記<吸光度比の測定>によって樹脂粒子の表面の吸光度比(A)と中心部の吸光度比(B)とを測定した。その結果を表1に記す。
 また、吸光度比(A)と(B)との比((B)/(A))を算出し、これも表1に記す。
 また、得られた発泡性ポリスチレン系樹脂についても、下記の「吸光度比の測定」により吸光度比を測定することができる。
(吸光度比の測定)
 吸光度比(D1730/D1600)は下記の要領で測定される。
 即ち、無作為に選択した10個の各樹脂粒子の表面(図1中の符号A)、及び粒子を中心を通って切断した断面の中心部(図2中の符号B)について、ATR法赤外分光分析により粒子表面分析を行なって赤外線吸収スペクトルを得る。各赤外線吸収スペクトルから吸光度比(D1730/D1600)をそれぞれ算出し、表面Aについて算出した吸光度比の相加平均を吸光度比(A)とし、中心部Bについて算出した吸光度比の相加平均を吸光度比(B)とする。
 吸光度D1730及びD1600は、例えば、Nicolet社から商品名「フーリエ変換赤外分光光度計  MAGMA560」で販売されている測定装置を用いて測定する。
 なお、赤外吸収スペクトルから得られる1600cm-1での吸光度D1600は、ポリスチレン系樹脂に含まれるベンゼン環の面内振動に由来する1600cm-1付近に現われるピークの高さをいう。
  また、赤外吸収スペクトルから得られる1730cm-1での吸光度D1730は、アクリル酸エステルに含まれるエステル基のC=0間の伸縮振動に由来する1730cm-1付近に現われるピークの高さをいう。
(発泡剤含浸)
 続いて、別の内容量5リットルの撹拌機付き重合容器に、水2200g、ポリスチレン系樹脂粒子(c)1800g、懸濁安定剤としてピロリン酸マグネシウム6.0g及びドデシルベンゼンスルフォン酸カルシウム1.0gを供給して撹拌しながら70℃に昇温した。次に、発泡助剤としてシクロヘキサン27.0g及び可塑剤としてジイソブチルアジペート12.6gを重合容器内に入れて密閉し100℃に昇温した。次に、発泡剤としてn-ブタン90gをポリスチレン系樹脂粒子(c)が入った重合容器内に圧入して3時間保持した後、30℃以下まで冷却した上で重合容器内から取り出し乾燥させた上で13℃の恒温室内に5日間放置して発泡性ポリスチレン系樹脂粒子を得た。
実施例2
 第1重合工程において、重合開始剤としてベンゾイルパーオキサイド6.8g及びt-ブチルパーオキシベンゾエート1.5gを、スチレン200g(種粒子100質量部に対して40質量部)、アクリル酸ブチル10g(種粒子100質量部に対して2質量部)の混合液に溶解したこと以外は、実施例1と同様にして発泡性ポリスチレン系樹脂粒子を得た。
 実施例1と同様に、発泡剤含浸前のポリスチレン系樹脂粒子(c)について、表面の吸光度比(A)と中心部の吸光度比(B)とを測定し、またこれらの比((B)/(A))を算出した。結果を表1に記す。
実施例3
 第1重合工程において、重合開始剤としてベンゾイルパーオキサイド6.8g及びt-ブチルパーオキシベンゾエート1.5gを、スチレン154g(種粒子100質量部に対して30.8質量部)、アクリル酸ブチル56g(種粒子100質量部に対して11.2質量部)の混合液に溶解したこと以外は、実施例1と同様にして発泡性ポリスチレン系樹脂粒子を得た。
 実施例1と同様に、発泡剤含浸前のポリスチレン系樹脂粒子(c)について、表面の吸光度比(A)と中心部の吸光度比(B)とを測定し、またこれらの比((B)/(A))を算出した。結果を表1に記す。
実施例4
 第1重合工程において、重合開始剤としてベンゾイルパーオキサイド6.8g及びt-ブチルパーオキシベンゾエート1.5gを、スチレン40g(種粒子100質量部に対して8質量部)、アクリル酸ブチル30g(種粒子100質量部に対して6質量部)の混合液に溶解したこと、及び第2重合工程において、150分で昇温しつつ、重合容器内にポンプで一定量づつ供給するスチレンを1430gとしたこと以外は、実施例1と同様にして発泡性ポリスチレン系樹脂粒子を得た。
 実施例1と同様に、発泡剤含浸前のポリスチレン系樹脂粒子(c)について、表面の吸光度比(A)と中心部の吸光度比(B)とを測定し、またこれらの比((B)/(A))を算出した。結果を表1に記す。
実施例5
 第1重合工程において、重合開始剤としてベンゾイルパーオキサイド6.8g及びt-ブチルパーオキシベンゾエート1.5gを、スチレン360g(種粒子100質量部に対して72質量部)、アクリル酸ブチル30g(種粒子100質量部に対して6質量部)の混合液に溶解したこと、及び第2重合工程において、150分で昇温しつつ、重合容器内にポンプで一定量づつ供給するスチレンを1110gとしたこと以外は、実施例1と同様にして発泡性ポリスチレン系樹脂粒子を得た。
 実施例1と同様に、発泡剤含浸前のポリスチレン系樹脂粒子(c)について、表面の吸光度比(A)と中心部の吸光度比(B)とを測定し、またこれらの比((B)/(A))を算出した。結果を表1に記す。
実施例6
 第1重合工程において、使用するアクリル酸エステル種をアクリル酸エチルとし、重合開始剤としてベンゾイルパーオキサイド6.8g及びt-ブチルパーオキシベンゾエート1.5gを、スチレン170g(種粒子100質量部に対して34質量部)、アクリル酸エチル40g(種粒子100質量部に対して8質量部)の混合液に溶解し、且つ150分で昇温しつつ、重合容器内にポンプで一定量づつ供給するスチレン系単量体を1290gとした以外は、実施例1と同様にして発泡性ポリスチレン系樹脂粒子を得た。
 実施例1と同様に、発泡剤含浸前のポリスチレン系樹脂粒子(c)について、表面の吸光度比(A)と中心部の吸光度比(B)とを測定し、またこれらの比((B)/(A))を算出した。結果を表1に記す。
実施例7
 重合開始剤としてベンゾイルパーオキサイド6.8g及びt-ブチルパーオキシベンゾエート1.5gをスチレン系単量体180g、アクリル酸ブチル30gの混合液に溶解し、150分で昇温しつつ、重合容器内にポンプで一定量づつ供給するスチレン系単量体を750gとした以外は実施例1と同様にして発泡性ポリスチレン系樹脂粒子を得た。
 実施例1と同様に、発泡剤含浸前のポリスチレン系樹脂粒子(c)について、表面の吸光度比(A)と中心部の吸光度比(B)とを測定し、またこれらの比((B)/(A))を算出した。結果を表1に記す。
実施例8
 重合開始剤としてベンゾイルパーオキサイド6.8g及びt-ブチルパーオキシベンゾエート1.5gをスチレン系単量体180g、アクリル酸ブチル30gの混合液に溶解し、150分で昇温しつつ、重合容器内にポンプで一定量づつ供給するスチレン系単量体を2000gとした以外は実施例1と同様にして発泡性ポリスチレン系樹脂粒子を得た。
 実施例1と同様に、発泡剤含浸前のポリスチレン系樹脂粒子(c)について、表面の吸光度比(A)と中心部の吸光度比(B)とを測定し、またこれらの比((B)/(A))を算出した。結果を表1に記す。
実施例9
 重合開始剤としてベンゾイルパーオキサイド6.8g及びt-ブチルパーオキシベンゾエート1.5gをスチレン系単量体180g、アクリル酸ブチル30gの混合液に溶解し、150分で昇温しつつ、重合容器内にポンプで一定量づつ供給するスチレン系単量体を500gとした以外は実施例1と同様にして発泡性ポリスチレン系樹脂粒子を得た。
 実施例1と同様に、発泡剤含浸前のポリスチレン系樹脂粒子(c)について、表面の吸光度比(A)と中心部の吸光度比(B)とを測定し、またこれらの比((B)/(A))を算出した。結果を表1に記す。
実施例10
 重合開始剤としてベンゾイルパーオキサイド6.8g及びt-ブチルパーオキシベンゾエート1.5gをスチレン系単量体180g、アクリル酸ブチル30gの混合液に溶解し、150分で昇温しつつ、重合容器内にポンプで一定量づつ供給するスチレン系単量体を2750gとした以外は実施例1と同様にして発泡性ポリスチレン系樹脂粒子を得た。
 実施例1と同様に、発泡剤含浸前のポリスチレン系樹脂粒子(c)について、表面の吸光度比(A)と中心部の吸光度比(B)とを測定し、またこれらの比((B)/(A))を算出した。結果を表1に記す。
比較例1
 実施例1において、第1重合工程でアクリル酸エステルは使用せずに、ベンゾイルパーオキサイド6.8g及びt-ブチルパーオキシベンゾエート1.5gを、スチレン210g(種粒子100質量部に対して42質量部)とした以外は、実施例と同様にして発泡性ポリスチレン系樹脂粒子を得た。
 実施例1と同様に、発泡剤含浸前のポリスチレン系樹脂粒子(c)について、表面の吸光度比(A)と中心部の吸光度比(B)とを測定し、またこれらの比((B)/(A))を算出した。結果を表1に記す。
比較例2
 第1重合工程において、重合開始剤としてベンゾイルパーオキサイド6.8g及びt-ブチルパーオキシベンゾエート1.5gを、スチレン202g(種粒子100質量部に対して40.4質量部)、アクリル酸ブチル8g(種粒子100質量部に対して1.6質量部)の混合液に溶解したこと、及び第2重合工程において、150分で昇温しつつ、重合容器内にポンプで一定量づつ供給するスチレンを1290質量部としたこと以外は、実施例1と同様にして発泡性ポリスチレン系樹脂粒子を得た。
 実施例1と同様に、発泡剤含浸前のポリスチレン系樹脂粒子(c)について、表面の吸光度比(A)と中心部の吸光度比(B)とを測定し、またこれらの比((B)/(A))を算出した。結果を表1に記す。
比較例3
 第1重合工程において、重合開始剤としてベンゾイルパーオキサイド6.8g及びt-ブチルパーオキシベンゾエート1.5gを、スチレン140g(種粒子100質量部に対して28質量部)、アクリル酸ブチル70g(種粒子100質量部に対して14質量部)の混合液に溶解したこと、及び第2重合工程において、150分で昇温しつつ、重合容器内にポンプで一定量づつ供給するスチレンを1290gとしたこと以外は、実施例1と同様にして発泡性ポリスチレン系樹脂粒子を得た。
 実施例1と同様に、発泡剤含浸前のポリスチレン系樹脂粒子(c)について、表面の吸光度比(A)と中心部の吸光度比(B)とを測定し、またこれらの比((B)/(A))を算出した。結果を表1に記す。
比較例4
 第1重合工程において、重合開始剤としてベンゾイルパーオキサイド6.8g及びt-ブチルパーオキシベンゾエート1.5gを、スチレン30g(種粒子100質量部に対して6質量部)、アクリル酸ブチル30g(種粒子100質量部に対して6質量部)の混合液に溶解したこと、及び第2重合工程において、150分で昇温しつつ、重合容器内にポンプで一定量づつ供給するスチレンを1440質量部としたこと以外は、実施例1と同様にして発泡性ポリスチレン系樹脂粒子を得た。
 実施例1と同様に、発泡剤含浸前のポリスチレン系樹脂粒子(c)について、表面の吸光度比(A)と中心部の吸光度比(B)とを測定し、またこれらの比((B)/(A))を算出した。結果を表1に記す。
比較例5
 第1重合工程において、重合開始剤としてベンゾイルパーオキサイド6.8g及びt-ブチルパーオキシベンゾエート1.5gを、スチレン460g(種粒子100質量部に対して92質量部)、アクリル酸ブチル30g(種粒子100質量部に対して6質量部)の混合液に溶解したこと、及び第2重合工程において、150分で昇温しつつ、重合容器内にポンプで一定量づつ供給するスチレンを1010gとしたこと以外は、実施例1と同様にして発泡性ポリスチレン系樹脂粒子を得た。
 実施例1と同様に、発泡剤含浸前のポリスチレン系樹脂粒子(c)について、表面の吸光度比(A)と中心部の吸光度比(B)とを測定し、またこれらの比((B)/(A))を算出した。結果を表1に記す。
比較例6
 内容量5リットルの撹拌機付き重合容器内に、水2000質量部、前記スチレン系樹脂粒子(B)500質量部、懸濁安定剤としてピロリン酸マグネシウム6.0質量部及びアニオン界面活性剤としてドデシルベンゼンスルフォン酸カルシウム0.3質量部を供給して撹拌しながら75℃に昇温した。
 次にスチレン1470質量部とアクリル酸ブチル30質量部との混合液をあらかじめ作成し、該混合液210質量部(種粒子100質量部に対してスチレン41.2質量部、アクリル酸ブチル0.84質量部)を用いて、ベンゾイルパーオキサイド6.8質量部及びt-ブチルパーオキシベンゾエート1.5質量部を溶解し、前記5リットルの重合容器に供給してから60分間75℃で保持した。
 60分経過後に反応液を110℃まで150分で昇温しつつ、且つ前記スチレン系単量体とアクリル酸ブチルとの混合液1290質量部を150分で重合容器内にポンプで一定量づつ供給した上で、120℃に昇温して2時間経過後に冷却し、スチレン系樹脂粒子(c)を得た。以降は実施例1と同様にして発泡性ポリスチレン系樹脂粒子を得た。
 実施例1と同様に、発泡剤含浸前のポリスチレン系樹脂粒子(c)について、表面の吸光度比(A)と中心部の吸光度比(B)とを測定し、またこれらの比((B)/(A))を算出した。結果を表1に記す。
Figure JPOXMLDOC01-appb-T000001
 表1に示したように、本発明に係る実施例1~10では、ポリスチレン系樹脂粒子の表面の吸光度比(A)と中心部の吸光度比(B)とが、(A)<(B)であり、且つ(A)が0.05以上であること、との関係を満たしていた。
 また、実施例1~10では、吸光度比(A)が0.05~0.50の範囲内であり、且つ前記吸光度比(B)が0.20~0.60の範囲内であった。
 さらに、実施例1~10では、吸光度比(A)と(B)との比(B/A)が、1.10~3.00の範囲内であった。
 一方、比較例1では、アクリル酸エステルを加えていないので、エステル基の吸収に由来する1730cm-1での吸光度D1730は測定されなかった。
 また比較例2では、第1重合工程で使用したアクリル酸ブチルが少なかったために、表面の吸光度比(A)が0.02と、本発明で規定した表面の吸光度比(A)の下限(0.05)未満となった。
 また比較例3では、第1重合工程で使用したアクリル酸ブチルの量が多かったために、表面の吸光度比(A)が中心部の吸光度比(B)よりも大きくなった。
 また比較例4では、第1重合工程で使用したスチレンの量が少なかったために、表面の吸光度比(A)が中心部の吸光度比(B)よりも大きくなった。
 また比較例5では、第1重合工程で使用したスチレンの量が多かったために、表面の吸光度比(A)が0.04と、本発明で規定した表面の吸光度比(A)の下限(0.05)未満となった。
 また比較例6では、第2重合工程においてスチレンと共にアクリル酸ブチルを使用したことによって、表面の吸光度比(A)が中心部の吸光度比(B)よりも大きくなった。
(予備発泡・発泡成形)
 前述したように製造し、5日間13℃以下で保管した実施例1~10、及び比較例1~6のそれぞれの発泡性ポリスチレン系樹脂粒子は、粒子の表面に表面処理剤としてジンクステアレート及びヒドロキシステアリン酸トリグリセリドを被覆処理した上で予備発泡装置にて嵩密度0.0167g/cmに予備発泡した後に20℃で24時間熟成して予備発泡粒子を得た。
 次に、内寸300mm×400mm×30mmの直方体形状のキャビティを有する成形型を備えた発泡ビーズ自動成形機のキャビティ内に前記予備発泡粒子を充填し、下記の2条件(成形蒸気圧)にて、密度0.0167g/cmのポリスチレン系樹脂発泡成形体の成形を行った。
成形条件 (成形機 株式会社積水工機製作所製 ACE―3SP)
  成形蒸気圧  2条件(ケージ圧:0.04MPa、0.09MPa)
  金型加熱   5秒
  一方加熱 (設定圧力0.03MPa)
  逆一方加熱  3秒
  両面加熱  15秒
  水冷     5秒
  放冷   (真空放冷 QS成形モード)
  取出設定面圧 0.02MPa
 実施例1~10、及び比較例1~6のそれぞれの発泡性ポリスチレン系樹脂粒子を用いて製造した、成形時水蒸気圧が0.04MPaの場合の発泡成形体と、成形時水蒸気圧が0.09MPaの場合の発泡成形体とについて、以下に示す条件で、曲げ強度、発泡成形体外観、冷却時間を調べて評価した。その結果を表2に記す。
(曲げ強度の測定)
 実施例(及び比較例)で得られた発泡成形体について、JIS A9511:2006「発泡プラスチック保温材」記載の方法に準じて曲げ強度を測定した。
 すなわち、テンシロン万能試験機UCT-10T(オリエンテック社製)を用い、試験体サイズは75mm×300mm×50mmとし、圧縮速度を10mm/min、先端治具は加圧くさび10R、支持台10Rで、支点間距離200mmの条件として測定し、次式にて曲げ強度を算出した。試験片の数は3個とし、その平均値を求めた。
 曲げ強度(MPa)=3FL/2bh 
(ここで、Fは曲げ最大荷重(N)を表し、Lは支点間距離(mm)を表し、bは試験片の幅(mm)を表し、hは試験片の厚み(mm)を表す。)
(発泡成形体外観の評価)
 発泡成形体の表面を目視にて確認し、以下の評価基準に基づき評価した。
 ○:外観が美麗で発泡粒子間に隙間がないもの。
 ×:発泡粒子間に隙間が多い、または融けが発生したもの。
(冷却時間)
 本発明の冷却時間は前記記載の成形条件にて成形した際の、水冷工程終了後からキャビティ内の成形体の発泡圧が取出設定面圧0.02MPaになるまでの放冷時間を冷却時間とした。冷却時間は、1条件(成形蒸気圧)につき各3枚成形し、その平均値とした。
(総合評価)
 次の評価基準に基づき総合評価した。
 ◎:成形時の水蒸気圧0.04MPaの場合、0.09MPaの場合の両方ともに、得られた発泡成形体の外観が美麗なもの。
 ×:成形時の水蒸気圧0.04MPaの場合、0.09MPaの場合の少なくとも一方で発泡成形体の外観が劣るもの。
Figure JPOXMLDOC01-appb-T000002
 表2の結果から、第1重合工程において、種粒子100質量部に対し、スチレン7.0~80.0質量部とアクリル酸エステル2.0~12.0質量部とを供給し、これらの単量体を種粒子に吸収、重合させて種粒子を成長させた、本発明に係る実施例1~10の場合は、成形時に低い水蒸気圧(0.04MPa)、及び高い水蒸気圧(0.09MPa)のいずれの場合でも、外観が美麗で曲げ強度の高い発泡成形体を得ることができた。
 一方、第1重合工程で使用する単量体をスチレンのみとし、アクリル酸エステルを添加しなかった比較例1は、低い水蒸気圧(0.04MPa)での成形により得られる発泡成形体の外観が悪く、且つ曲げ強度が低くなった。
 第1重合工程でアクリル酸エステルを本発明の範囲未満の量で添加した比較例2は、低い水蒸気圧(0.04MPa)での成形により得られる発泡成形体の外観が悪く、且つ曲げ強度が低くなった。
 第1重合工程でのアクリル酸エステルの量が本発明の範囲を超えている比較例3は、高い水蒸気圧(0.09MPa)での成形により得られる発泡成形体の外観が悪く、且つ曲げ強度が低くなった。
 第1重合工程でのスチレンの量が本発明の範囲未満である比較例4は、低い水蒸気圧(0.04MPa)及び高い水蒸気圧(0.09MPa)の両方の成形で得られる発泡成形体ともに、外観が悪く、且つ曲げ強度が低くなった。
 第1重合工程でのスチレンの量が本発明の範囲を超えている比較例4は、低い水蒸気圧(0.04MPa)での成形により得られる発泡成形体の外観が悪く、且つ曲げ強度が低くなった。
 第1重合工程及び第2重合工程の両方で、スチレンとアクリル酸エステルとの混合物を用いた比較例6は、高い水蒸気圧(0.09MPa)での成形により得られる発泡成形体の外観が悪く、且つ曲げ強度が低くなった。
(予備発泡粒子の保存性の比較)
 前記(予備発泡・発泡成形)の場合と同様に、実施例1~10、及び比較例1~6のそれぞれの発泡性ポリスチレン系樹脂粒子の表面に表面処理剤としてジンクステアレート及びヒドロキシステアリン酸トリグリセリドを被覆処理した上で予備発泡装置にて嵩密度0.0167g/cmに予備発泡した。
 予備発泡後、得られた各予備発泡粒子を30℃、湿度50%の雰囲気下で7日間放置した。
 次に、内寸300mm×400mm×30mmの直方体形状のキャビティを有する成形型を備えた発泡ビーズ自動成形機のキャビティ内に前記予備発泡粒子を充填し、下記の条件にて、密度0.0167g/cmのポリスチレン系樹脂発泡成形体の成形を行った。
成形条件 (成形機 株式会社積水工機製作所製 ACE―3SP)
  成形蒸気圧  ケージ圧:0.04MPa
  金型加熱   5秒
  一方加熱 (設定圧力0.03MPa)
  逆一方加熱  3秒
  両面加熱  15秒
  水冷     5秒
  放冷   (真空放冷 QS成形モード)
  取出設定面圧 0.02MPa
 予備発泡粒子の状態で7日間放置した後のそれぞれの予備発泡粒子を用い、成形時水蒸気圧を0.04MPaとして製造した実施例1~10、及び比較例1~6のそれぞれの発泡成形体について、前記(予備発泡・発泡成形)の場合と同様に、曲げ強度、発泡成形体外観、冷却時間を調べて評価した。また、総合評価は、下記の評価基準に基づき総合評価した。その結果を表3に記す。
(総合評価)
 ◎:得られた発泡成形体の外観が美麗なもの。
 ×:発泡成形体の外観が悪いもの。
Figure JPOXMLDOC01-appb-T000003
 表3の結果から、本発明に係る実施例1~10は、予備発泡後7日間放置した予備発泡粒子を用いても、0.04MPaの低い成形時水蒸気圧で外観が美麗な発泡成形体を得ることができた。
 一方、比較例1~6では実施例と同じ条件で外観が美麗な発泡成形体を得ることができなかった。特に、前記(予備発泡・発泡成形)において、表2に示したように低い水蒸気圧(0.04MPa)で外観の良好な発泡成形体が得られている比較例3と比較例6についても、予備発泡後7日間放置した予備発泡粒子を用いた場合には、外観が美麗な発泡成形体を得ることができなかった。
 この試験結果から、本発明に係る実施例1~10で得られた予備発泡粒子は、発泡力の保持性に優れ、保存性が良好であることが分かる。
 本発明の発泡性ポリスチレン系樹脂粒子は、食品容器や梱包、緩衝材として有用なポリスチレン系樹脂発泡成形体の製造に好適である。本発明の発泡性ポリスチレン系樹脂粒子は、成形時に使用する水蒸気の圧力が低圧であっても外観が美麗、且つ高い強度を有する発泡成形体を得ることができるので、発泡成形体の製造コスト低減化、製造における省エネルギー化を図ることができる。

Claims (8)

  1.  (1)ポリスチレン系樹脂種粒子を水中に分散させてなる分散液中に、ポリスチレン系樹脂種粒子100質量部に対し、スチレン系単量体7.0~80.0質量部とアクリル酸エステル系単量体2.0~12.0質量部とを供給し、これらの単量体を種粒子に吸収、重合させてポリスチレン系樹脂種粒子を成長させる第1重合工程と、
     (2)次いで、該分散液中にスチレン系単量体のみを供給し、これを種粒子に吸収、重合させてポリスチレン系樹脂粒子を成長させる第2重合工程と、
     (3)第2重合工程を行ってポリスチレン系樹脂粒子を製造した後、又はポリスチレン系樹脂粒子の成長途上で発泡剤を含浸させる工程とを行って発泡性ポリスチレン系樹脂粒子を得る発泡性ポリスチレン系樹脂粒子の製造方法。
  2.  スチレン系単量体とアクリル酸エステル系単量体との共重合体を含有する発泡性ポリスチレン系樹脂粒子であって、
     ATR法赤外分光分析により前記発泡性ポリスチレン系樹脂粒子の表面を分析し得られた赤外線吸収スペクトルのうち、1730cm-1での吸光度D1730と1600cm-1での吸光度D1600とを求め、D1730/D1600から算出される吸光度比(A)と、
     ATR法赤外分光分析により前記発泡性ポリスチレン系樹脂粒子の中心部を分析し得られた赤外線吸収スペクトルのうち、1730cm-1での吸光度D1730と1600cm-1での吸光度D1600とを求め、D1730/D1600から算出される吸光度比(B)とが、
     (A)<(B)であり、且つ
     (A)が0.05以上であること、
    の関係を満たす発泡性ポリスチレン系樹脂粒子。
  3.  前記吸光度比(A)が0.05~0.50の範囲内であり、且つ前記吸光度比(B)が0.20~0.60の範囲内である請求項2に記載の発泡性ポリスチレン系樹脂粒子。
  4.  前記吸光度比(A)と(B)との比(B/A)が、1.10~3.00の範囲内である請求項2に記載の発泡性ポリスチレン系樹脂粒子。
  5.  前記吸光度比(A)と(B)との比(B/A)が、1.10~3.00の範囲内である請求項3に記載の発泡性ポリスチレン系樹脂粒子。
  6.  請求項1に記載の発泡性ポリスチレン系樹脂粒子の製造方法により得られた発泡性ポリスチレン系樹脂粒子。
  7.  請求項2~6のいずれか1項に記載の発泡性ポリスチレン系樹脂粒子を嵩密度が0.01~0.033g/cmの範囲となるように予備発泡して得られた予備発泡粒子。
  8.  請求項7に記載の予備発泡粒子を成形型のキャビティ内に充填し、加熱して型内発泡成形することにより得られた発泡成形体。
     
PCT/JP2009/051049 2008-01-30 2009-01-23 発泡性ポリスチレン系樹脂粒子とその製造方法、予備発泡粒子及び発泡成形体 WO2009096327A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009551492A JP5284987B2 (ja) 2008-01-30 2009-01-23 発泡性ポリスチレン系樹脂粒子とその製造方法、予備発泡粒子及び発泡成形体
KR1020127014816A KR101297878B1 (ko) 2008-01-30 2009-01-23 발포성 폴리스티렌계 수지 입자, 예비 발포 입자 및 발포 성형체
CN2009801032488A CN101925647B (zh) 2008-01-30 2009-01-23 发泡性聚苯乙烯系树脂粒子及其制造方法、预发泡粒子和发泡成型体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008019000 2008-01-30
JP2008-019000 2008-01-30

Publications (1)

Publication Number Publication Date
WO2009096327A1 true WO2009096327A1 (ja) 2009-08-06

Family

ID=40912680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051049 WO2009096327A1 (ja) 2008-01-30 2009-01-23 発泡性ポリスチレン系樹脂粒子とその製造方法、予備発泡粒子及び発泡成形体

Country Status (5)

Country Link
JP (1) JP5284987B2 (ja)
KR (2) KR101218422B1 (ja)
CN (2) CN101925647B (ja)
TW (2) TWI396707B (ja)
WO (1) WO2009096327A1 (ja)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026505A (ja) * 2009-07-28 2011-02-10 Sekisui Plastics Co Ltd 低密度発泡成形用発泡性ポリスチレン系樹脂粒子とその製造方法、低密度ポリスチレン系樹脂予備発泡粒子及び低密度ポリスチレン系樹脂発泡成形体
JP2011026508A (ja) * 2009-07-28 2011-02-10 Sekisui Plastics Co Ltd 発泡性ポリスチレン系樹脂粒子、予備発泡粒子、発泡成形体とその製造方法
JP2011068817A (ja) * 2009-09-28 2011-04-07 Sekisui Plastics Co Ltd ポリスチレン系樹脂組成物、ポリスチレン系樹脂粒子、発泡性ポリスチレン系樹脂粒子とその製造方法、ポリスチレン系樹脂予備発泡粒子、ポリスチレン系樹脂発泡成形体
JP2011195628A (ja) * 2010-03-17 2011-10-06 Sekisui Plastics Co Ltd 発泡性ポリスチレン系樹脂粒子、その製造方法、予備発泡粒子及び発泡成形体
JP2011195627A (ja) * 2010-03-17 2011-10-06 Sekisui Plastics Co Ltd 発泡性ポリスチレン系樹脂粒子、予備発泡粒子、発泡成形体及び発泡性ポリスチレン系樹脂粒子の製造方法
CN102241798A (zh) * 2010-05-11 2011-11-16 湖北大学 一种由废旧聚苯乙烯泡沫塑料制造合成树脂的方法
WO2012121084A1 (ja) * 2011-03-04 2012-09-13 積水化成品工業株式会社 複合ポリスチレン系樹脂発泡粒子及びその発泡成形体
JP2012197405A (ja) * 2011-03-10 2012-10-18 Kaneka Corp 発泡性熱可塑性樹脂粒子
JP2013014713A (ja) * 2011-07-05 2013-01-24 Kaneka Corp 発泡性熱可塑性樹脂粒子
JP2013060500A (ja) * 2011-09-12 2013-04-04 Sekisui Plastics Co Ltd ポリスチレン系樹脂粒子、発泡性樹脂粒子、発泡粒子、発泡成形体及びそれらの製造方法
US20130184363A1 (en) * 2010-09-30 2013-07-18 Sekisui Plastics Co., Ltd. Modified polystyrene resin particles and manufacturing method therefor, expandable particles and manufacturing method therefor, pre-expanded particles, and expanded molded article
WO2013141169A1 (ja) * 2012-03-21 2013-09-26 積水化成品工業株式会社 自動車部材
JP2013199547A (ja) * 2012-03-23 2013-10-03 Sekisui Plastics Co Ltd スチレン系発泡樹脂粒子及び発泡成形体
JP2014043498A (ja) * 2012-08-24 2014-03-13 Sekisui Plastics Co Ltd 発泡成形体及び樹脂発泡容器
JP2014043497A (ja) * 2012-08-24 2014-03-13 Sekisui Plastics Co Ltd 発泡成形体及び樹脂発泡容器
JP2014043496A (ja) * 2012-08-24 2014-03-13 Sekisui Plastics Co Ltd 発泡成形体及び樹脂発泡容器
JP2014129453A (ja) * 2012-12-28 2014-07-10 Sekisui Plastics Co Ltd スチレン系樹脂粒子、発泡性樹脂粒子、発泡粒子、及び発泡成形体
JP2014167062A (ja) * 2013-02-28 2014-09-11 Sekisui Plastics Co Ltd 発泡性スチレン系樹脂粒子、その製造方法、発泡粒子及び発泡成形体
JP2014193937A (ja) * 2013-03-28 2014-10-09 Sekisui Plastics Co Ltd 発泡性スチレン系樹脂粒子、発泡粒子及び発泡成形体
JP2015067697A (ja) * 2013-09-27 2015-04-13 積水化成品工業株式会社 スチレン系樹脂粒子、発泡性粒子、発泡粒子及び発泡成形体
JP2015108040A (ja) * 2013-12-03 2015-06-11 株式会社カネカ 発泡性熱可塑性樹脂粒子
JP2015203042A (ja) * 2014-04-11 2015-11-16 株式会社カネカ 発泡性熱可塑性樹脂粒子、熱可塑性予備発泡粒子、熱可塑性発泡成形体
JP2019081821A (ja) * 2017-10-27 2019-05-30 株式会社ジェイエスピー 発泡性樹脂粒子
JP2020066720A (ja) * 2018-10-26 2020-04-30 株式会社ジェイエスピー 発泡性スチレン系樹脂粒子
WO2020184007A1 (ja) * 2019-03-12 2020-09-17 株式会社カネカ 発泡性樹脂粒子及び予備発泡粒子並びに発泡成形体
CN112079610A (zh) * 2019-06-14 2020-12-15 上海圣奎塑业有限公司 一种发泡保温板的制作工艺

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6036347B2 (ja) * 2013-01-31 2016-11-30 株式会社ジェイエスピー 発泡性スチレン系樹脂粒子、及びその製造方法、並びにスチレン系樹脂発泡粒子成形体
JP6076463B2 (ja) * 2013-03-27 2017-02-08 積水化成品工業株式会社 改質ポリスチレン系架橋樹脂粒子とその製造方法、発泡性粒子とその製造方法、予備発泡粒子及び発泡成形体
JPWO2018061263A1 (ja) * 2016-09-27 2019-07-18 積水化成品工業株式会社 発泡粒子、発泡成形体、繊維強化複合体及び自動車用部品
EP3639997A1 (de) * 2018-10-15 2020-04-22 Linde Aktiengesellschaft Verfahren zum imprägnieren von polymergranulat

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03109441A (ja) * 1989-09-25 1991-05-09 Dainippon Ink & Chem Inc 発泡体
JPH07188454A (ja) * 1993-12-27 1995-07-25 Sekisui Plastics Co Ltd 発泡性スチレン系重合体粒子
JPH11147971A (ja) * 1997-09-11 1999-06-02 Mitsui Chem Inc 発泡性重合体粒子
JPH11152364A (ja) * 1989-12-21 1999-06-08 Mitsubishi Kagaku Basf Kk 発泡性スチレン系重合体粒子の製造方法
JPH11166097A (ja) * 1997-11-12 1999-06-22 Sumitomo Chem Co Ltd 水性エマルジョン組成物

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05112665A (ja) * 1991-03-20 1993-05-07 Hitachi Chem Co Ltd 発泡性樹脂組成物、これを用いた熱可塑性発泡模型及び金属鋳造物の製造法
JPH05295160A (ja) * 1992-04-16 1993-11-09 Hitachi Chem Co Ltd 発泡性スチレン系樹脂粒子の製造法
US5240967A (en) * 1993-02-17 1993-08-31 Arco Chemical Technology, L.P. Method for improving the expandability of styrenic polymer particles
JP3474995B2 (ja) * 1996-02-15 2003-12-08 鐘淵化学工業株式会社 発泡性スチレン系重合体粒子の製法
JP3649829B2 (ja) * 1996-12-11 2005-05-18 株式会社カネカ 発泡性スチレン系樹脂粒子およびその製造方法
KR100688238B1 (ko) * 2003-08-29 2007-03-02 세키스이가세이힝코교가부시키가이샤 올레핀 개질 폴리스티렌계 수지 예비발포입자, 그 제조방법 및 발포 성형체
JP4494113B2 (ja) * 2004-07-29 2010-06-30 積水化成品工業株式会社 発泡性スチレン系樹脂粒子の製造方法
JP4664148B2 (ja) * 2005-07-29 2011-04-06 積水化成品工業株式会社 発泡性ポリスチレン系樹脂粒子とその製造方法、発泡成形品及び食品包装体
JP4806551B2 (ja) * 2005-09-27 2011-11-02 積水化成品工業株式会社 発泡性ポリスチレン系樹脂粒子とその製造方法、予備発泡粒子、発泡成形品及び食品包装体
JP4718597B2 (ja) * 2006-02-28 2011-07-06 積水化成品工業株式会社 スチレン改質ポリプロピレン系樹脂粒子、発泡性スチレン改質ポリプロピレン系樹脂粒子、スチレン改質ポリプロピレン系樹脂発泡粒子、スチレン改質ポリプロピレン系樹脂発泡成形体
JP5144088B2 (ja) * 2007-02-22 2013-02-13 積水化成品工業株式会社 発泡性ポリスチレン系樹脂粒子とその製造方法、ポリスチレン系樹脂発泡粒子及びポリスチレン系樹脂発泡成形品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03109441A (ja) * 1989-09-25 1991-05-09 Dainippon Ink & Chem Inc 発泡体
JPH11152364A (ja) * 1989-12-21 1999-06-08 Mitsubishi Kagaku Basf Kk 発泡性スチレン系重合体粒子の製造方法
JPH07188454A (ja) * 1993-12-27 1995-07-25 Sekisui Plastics Co Ltd 発泡性スチレン系重合体粒子
JPH11147971A (ja) * 1997-09-11 1999-06-02 Mitsui Chem Inc 発泡性重合体粒子
JPH11166097A (ja) * 1997-11-12 1999-06-22 Sumitomo Chem Co Ltd 水性エマルジョン組成物

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011026505A (ja) * 2009-07-28 2011-02-10 Sekisui Plastics Co Ltd 低密度発泡成形用発泡性ポリスチレン系樹脂粒子とその製造方法、低密度ポリスチレン系樹脂予備発泡粒子及び低密度ポリスチレン系樹脂発泡成形体
JP2011026508A (ja) * 2009-07-28 2011-02-10 Sekisui Plastics Co Ltd 発泡性ポリスチレン系樹脂粒子、予備発泡粒子、発泡成形体とその製造方法
JP2011068817A (ja) * 2009-09-28 2011-04-07 Sekisui Plastics Co Ltd ポリスチレン系樹脂組成物、ポリスチレン系樹脂粒子、発泡性ポリスチレン系樹脂粒子とその製造方法、ポリスチレン系樹脂予備発泡粒子、ポリスチレン系樹脂発泡成形体
JP2011195628A (ja) * 2010-03-17 2011-10-06 Sekisui Plastics Co Ltd 発泡性ポリスチレン系樹脂粒子、その製造方法、予備発泡粒子及び発泡成形体
JP2011195627A (ja) * 2010-03-17 2011-10-06 Sekisui Plastics Co Ltd 発泡性ポリスチレン系樹脂粒子、予備発泡粒子、発泡成形体及び発泡性ポリスチレン系樹脂粒子の製造方法
CN102241798A (zh) * 2010-05-11 2011-11-16 湖北大学 一种由废旧聚苯乙烯泡沫塑料制造合成树脂的方法
CN103237816A (zh) * 2010-09-30 2013-08-07 积水化成品工业株式会社 改性聚苯乙烯系树脂颗粒及其制造方法、发泡性颗粒及其制造方法、预发泡颗粒及发泡成形体
US20130184363A1 (en) * 2010-09-30 2013-07-18 Sekisui Plastics Co., Ltd. Modified polystyrene resin particles and manufacturing method therefor, expandable particles and manufacturing method therefor, pre-expanded particles, and expanded molded article
EP2623521A1 (en) * 2010-09-30 2013-08-07 Sekisui Plastics Co., Ltd. Modified polystyrene resin particles and manufacturing method therefor, expandable particles and manufacturing method therefor, pre-expanded particles, and expanded molded article
EP2623521A4 (en) * 2010-09-30 2014-03-19 Sekisui Plastics MODIFIED POLYSTYRENE RESIN PARTICLES AND MANUFACTURING METHOD THEREOF, EXPANDABLE PARTICLES AND METHOD FOR THE PRODUCTION THEREOF, PRE-EXPANDED PARTICLES, AND EXPANDED MOLDED ARTICLE
CN103237816B (zh) * 2010-09-30 2015-12-16 积水化成品工业株式会社 改性聚苯乙烯系树脂颗粒及其制造方法、发泡性颗粒及其制造方法、预发泡颗粒及发泡成形体
US9127148B2 (en) 2010-09-30 2015-09-08 Sekisui Plastics Co., Ltd. Modified polystyrene resin particles and manufacturing method therefor, expandable particles and manufacturing method therefor, pre-expanded particles, and expanded molded article
WO2012121084A1 (ja) * 2011-03-04 2012-09-13 積水化成品工業株式会社 複合ポリスチレン系樹脂発泡粒子及びその発泡成形体
US20130310475A1 (en) * 2011-03-04 2013-11-21 Sekisui Plastics Co., Ltd. Expanded composite polystyrene-based resin particles and expanded molded article thereof
US9127135B2 (en) 2011-03-04 2015-09-08 Sekisui Plastics Co., Ltd. Expanded composite polystyrene-based resin particles and expanded molded article thereof
JP5592558B2 (ja) * 2011-03-04 2014-09-17 積水化成品工業株式会社 複合ポリスチレン系樹脂発泡粒子及びその発泡成形体
JP2012197405A (ja) * 2011-03-10 2012-10-18 Kaneka Corp 発泡性熱可塑性樹脂粒子
JP2013014713A (ja) * 2011-07-05 2013-01-24 Kaneka Corp 発泡性熱可塑性樹脂粒子
JP2013060500A (ja) * 2011-09-12 2013-04-04 Sekisui Plastics Co Ltd ポリスチレン系樹脂粒子、発泡性樹脂粒子、発泡粒子、発泡成形体及びそれらの製造方法
WO2013141169A1 (ja) * 2012-03-21 2013-09-26 積水化成品工業株式会社 自動車部材
JP5739057B2 (ja) * 2012-03-21 2015-06-24 積水化成品工業株式会社 自動車部材
JP2013199547A (ja) * 2012-03-23 2013-10-03 Sekisui Plastics Co Ltd スチレン系発泡樹脂粒子及び発泡成形体
JP2014043498A (ja) * 2012-08-24 2014-03-13 Sekisui Plastics Co Ltd 発泡成形体及び樹脂発泡容器
JP2014043497A (ja) * 2012-08-24 2014-03-13 Sekisui Plastics Co Ltd 発泡成形体及び樹脂発泡容器
JP2014043496A (ja) * 2012-08-24 2014-03-13 Sekisui Plastics Co Ltd 発泡成形体及び樹脂発泡容器
JP2014129453A (ja) * 2012-12-28 2014-07-10 Sekisui Plastics Co Ltd スチレン系樹脂粒子、発泡性樹脂粒子、発泡粒子、及び発泡成形体
JP2014167062A (ja) * 2013-02-28 2014-09-11 Sekisui Plastics Co Ltd 発泡性スチレン系樹脂粒子、その製造方法、発泡粒子及び発泡成形体
JP2014193937A (ja) * 2013-03-28 2014-10-09 Sekisui Plastics Co Ltd 発泡性スチレン系樹脂粒子、発泡粒子及び発泡成形体
JP2015067697A (ja) * 2013-09-27 2015-04-13 積水化成品工業株式会社 スチレン系樹脂粒子、発泡性粒子、発泡粒子及び発泡成形体
JP2015108040A (ja) * 2013-12-03 2015-06-11 株式会社カネカ 発泡性熱可塑性樹脂粒子
JP2015203042A (ja) * 2014-04-11 2015-11-16 株式会社カネカ 発泡性熱可塑性樹脂粒子、熱可塑性予備発泡粒子、熱可塑性発泡成形体
JP2019081821A (ja) * 2017-10-27 2019-05-30 株式会社ジェイエスピー 発泡性樹脂粒子
JP2020066720A (ja) * 2018-10-26 2020-04-30 株式会社ジェイエスピー 発泡性スチレン系樹脂粒子
JP7121279B2 (ja) 2018-10-26 2022-08-18 株式会社ジェイエスピー 発泡性スチレン系樹脂粒子
WO2020184007A1 (ja) * 2019-03-12 2020-09-17 株式会社カネカ 発泡性樹脂粒子及び予備発泡粒子並びに発泡成形体
CN112079610A (zh) * 2019-06-14 2020-12-15 上海圣奎塑业有限公司 一种发泡保温板的制作工艺

Also Published As

Publication number Publication date
CN102675680A (zh) 2012-09-19
CN101925647A (zh) 2010-12-22
CN102675680B (zh) 2014-09-24
TWI490256B (zh) 2015-07-01
JPWO2009096327A1 (ja) 2011-05-26
CN101925647B (zh) 2013-01-23
KR20100099255A (ko) 2010-09-10
TWI396707B (zh) 2013-05-21
JP5284987B2 (ja) 2013-09-11
KR20120083519A (ko) 2012-07-25
TW200938572A (en) 2009-09-16
TW201329140A (zh) 2013-07-16
KR101218422B1 (ko) 2013-01-03
KR101297878B1 (ko) 2013-08-19

Similar Documents

Publication Publication Date Title
JP5284987B2 (ja) 発泡性ポリスチレン系樹脂粒子とその製造方法、予備発泡粒子及び発泡成形体
JP5373524B2 (ja) 発泡性ポリスチレン系樹脂粒子とその製造方法、ポリスチレン系樹脂予備発泡粒子、ポリスチレン系樹脂発泡成形体
JP5386262B2 (ja) 発泡性ポリスチレン系樹脂粒子とその製造方法、予備発泡粒子、発泡成形体
JP5453923B2 (ja) 改質樹脂発泡粒子及びその成形体
JP5144088B2 (ja) 発泡性ポリスチレン系樹脂粒子とその製造方法、ポリスチレン系樹脂発泡粒子及びポリスチレン系樹脂発泡成形品
JPH073068A (ja) ビーズ状発泡性スチレン重合体
JP5016906B2 (ja) 発泡性ポリスチレン系樹脂粒子及びポリスチレン系樹脂発泡成形体の製造方法
JP5576678B2 (ja) スチレン系重合体粒子、その製造方法、発泡性スチレン系重合体粒子及び発泡成形体
JP5478140B2 (ja) 低密度発泡成形用発泡性ポリスチレン系樹脂粒子とその製造方法、低密度ポリスチレン系樹脂予備発泡粒子及び低密度ポリスチレン系樹脂発泡成形体
JP5447573B2 (ja) 改質樹脂発泡粒子及びその製造方法
JP2011026506A (ja) 低揮発分発泡性ポリスチレン系樹脂粒子とその製造方法、低揮発分ポリスチレン系樹脂予備発泡粒子及び低揮発分ポリスチレン系樹脂発泡成形体
JP4653278B2 (ja) 発泡性スチレン系樹脂粒子
JP5403802B2 (ja) 発泡性スチレン系樹脂粒子およびその発泡成形体
JP4777677B2 (ja) 発泡性ポリスチレン系樹脂粒子とその製造方法、ポリスチレン系樹脂発泡粒子及び発泡成形体
JP5713726B2 (ja) 発泡性ポリスチレン系樹脂粒子、発泡粒子及び発泡成形体
JP5666796B2 (ja) スチレン系重合体粒子の製造方法
JP5592678B2 (ja) 発泡性ポリスチレン系樹脂粒子、その製造方法、予備発泡粒子及び発泡成形体
JP5410874B2 (ja) 発泡性ポリスチレン系樹脂粒子の製造方法
JP5216503B2 (ja) 発泡性スチレン系樹脂粒子及びその製造方法
JP6677974B2 (ja) 発泡性スチレン系樹脂粒子の製造方法
JP2011026508A (ja) 発泡性ポリスチレン系樹脂粒子、予備発泡粒子、発泡成形体とその製造方法
JP2019156901A (ja) 発泡性スチレン系樹脂粒子、予備発泡粒子及び発泡成形体の製造方法
JP5126971B2 (ja) 発泡性ポリスチレン系樹脂粒子及びその製造方法、並びに、予備発泡粒子及び発泡成形品
JP2014070150A (ja) ポリスチレン系発泡成形体、その製造方法及び発泡樹脂容器
JP2011231915A (ja) 保温箱及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980103248.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09706677

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009551492

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20107014855

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09706677

Country of ref document: EP

Kind code of ref document: A1