WO2012121084A1 - 複合ポリスチレン系樹脂発泡粒子及びその発泡成形体 - Google Patents

複合ポリスチレン系樹脂発泡粒子及びその発泡成形体 Download PDF

Info

Publication number
WO2012121084A1
WO2012121084A1 PCT/JP2012/055122 JP2012055122W WO2012121084A1 WO 2012121084 A1 WO2012121084 A1 WO 2012121084A1 JP 2012055122 W JP2012055122 W JP 2012055122W WO 2012121084 A1 WO2012121084 A1 WO 2012121084A1
Authority
WO
WIPO (PCT)
Prior art keywords
polystyrene resin
particles
composite polystyrene
composite
resin
Prior art date
Application number
PCT/JP2012/055122
Other languages
English (en)
French (fr)
Inventor
恭孝 筒井
慎悟 寺崎
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Priority to EP12754988.9A priority Critical patent/EP2682420A4/en
Priority to CN201280011338.6A priority patent/CN103415559B/zh
Priority to JP2013503471A priority patent/JP5592558B2/ja
Priority to US13/984,040 priority patent/US9127135B2/en
Publication of WO2012121084A1 publication Critical patent/WO2012121084A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F257/00Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00
    • C08F257/02Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00 on to polymers of styrene or alkyl-substituted styrenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F285/00Macromolecular compounds obtained by polymerising monomers on to preformed graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/224Surface treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/35Composite foams, i.e. continuous macromolecular foams containing discontinuous cellular particles or fragments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1808C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/034Post-expanding of foam beads or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/036Use of an organic, non-polymeric compound to impregnate, bind or coat a foam, e.g. fatty acid ester
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2433/08Homopolymers or copolymers of acrylic acid esters

Definitions

  • the present invention relates to a composite polystyrene resin expanded particle and an expanded molded body thereof.
  • ADVANTAGE OF THE INVENTION According to this invention, the composite polystyrene-type resin expanded particle used as the foaming molding which is excellent in impact resistance also in the high expansion ratio, and has a favorable external appearance can be provided.
  • Foam molded articles made of polystyrene resins are widely used as packaging materials and heat insulating materials because they have excellent buffering properties and heat insulating properties and are easy to mold.
  • a foam molded article made of polypropylene resin is a foam molded article excellent in impact resistance and flexibility, but requires large-scale equipment at the time of molding.
  • due to the nature of the resin it must be transported from the raw material manufacturer to the molding processing manufacturer in the form of expanded particles, which causes the problem that the bulky material is transported and the manufacturing cost increases.
  • Patent Document 1 discloses foamed particles having improved impact resistance, which are made of a resin in which non-oriented rubber particles are dispersed in polystyrene.
  • the rubber particles are non-oriented, deformation of the rubber particles hardly occurs, and in the thin bubble film forming the foam, the rubber particles are easily exposed from the bubble film surface, and the pre-expanded particles having a particularly high expansion ratio.
  • the retention of the blowing agent gas becomes insufficient due to the exposure of the rubber particles.
  • Patent Document 2 discloses a resin foam in which HIPS and a hydrogenated styrene-butadiene block copolymer are mechanically mixed.
  • this foam contains a rubber component mechanically mixed, if the dispersion of the mixed rubber component is insufficient, the dispersion of the rubber component of the foam cell membrane becomes non-uniform and the bubbles are connected. There is a problem that it is easy to pass (open bubbles). This tendency is particularly remarkable when high-magnification foaming is performed, and the expansion force of the high-magnification foamed particles is reduced, inter-particle voids are formed in the foam-molded product, and the appearance of the foam-molded product becomes poor. Further, although the impact resistance of the foamed molded product is improved as compared with the conventional polystyrene-based foamed molded product, it is still at a practically insufficient level.
  • Patent Document 5 discloses a foam-molded product of a rubber-modified styrene resin composition in which diene rubber particles encapsulating a polystyrene resin are dispersed in a continuous phase made of a polystyrene resin. It is disclosed.
  • the polystyrene resin foam molded article disclosed in the above-mentioned prior art obtained a foam molded article having a particularly high expansion ratio.
  • the foaming molding cannot be used with high foaming ratio, and there was a limit to resource saving of packaging materials. This is because when foamable polystyrene resin particles are produced using HIPS, the thickness of the foam film of the foamed particles is particularly low when the blended butadiene rubber or other elastic body has poor flexibility, particularly when the expansion ratio is high.
  • this invention solves said subject, and makes it a subject to provide the composite polystyrene-type resin foam particle and foaming molding which become a foaming molding which is excellent in impact resistance also in the high foaming ratio, and an external appearance. .
  • a polystyrene resin having a plurality of bubbles and a bubble film partitioning them, the bubble film forming a continuous phase, and a polydisperse dispersed in the continuous phase to form a dispersed phase.
  • Acrylic acid alkyl ester resin fine particles, and the polystyrene resin is a composite polystyrene resin foamed particle in which the polyacrylic acid alkyl ester resin fine particles are combined,
  • a composite polystyrene resin foam particle in which the dispersed phase is plural and present in a layered manner in the thickness direction of the bubble film in the cross section of the foam film of the composite polystyrene resin foam particle.
  • a plurality of bubbles and a bubble film partitioning them the polystyrene film in which the bubble film forms a continuous phase, and a polycrystal that is dispersed in the continuous phase to form a dispersed phase.
  • An acrylic acid alkyl ester resin fine particle, and the polystyrene resin is a composite polystyrene resin foam molded article obtained by compounding the polyacrylic acid alkyl ester resin fine particles,
  • the composite polystyrene-type resin foaming particle and foaming molding which become the foaming molding which is excellent in impact resistance also in the high foaming ratio, and with the favorable external appearance can be provided.
  • the composite polystyrene resin foamed particle of the present invention is a foamed particle composed of a composite polystyrene resin in which polyacrylic acid alkyl ester resin fine particles are dispersed in a continuous phase of the polystyrene resin.
  • the polyacrylic acid alkyl ester resin fine particles When viewed in a cross-section in the thickness direction, the polyacrylic acid alkyl ester resin fine particles have a distributed structure in which a plurality of polyacrylic acid alkyl ester resin fine particles are present in the thickness direction.
  • the polyacrylic acid alkyl ester resin fine particles are present in layers in the thickness direction of the cell membrane, that is, The polyacrylic acid alkyl ester resin fine particles are well oriented in the bubble film, and the polyacrylic acid alkyl ester resin fine particles are exposed from the bubble film surface to keep the bubbles from communicating, and the volatile foaming agent is retained. Therefore, it is possible to provide a composite polystyrene-based resin foam molded article excellent in all of mechanical strength, moldability and impact resistance.
  • the dispersed phase has a dimension in the bubble film thickness direction (thickness of the polyacrylic acid alkyl ester resin fine particles) and a dimension in the bubble film surface direction (the thickness of the polystyrene resin resin expanded particles).
  • the aspect ratio (b / a) is 7 or more and 60 or less, preferably 20 or more and 50 or less, where the lengths of the polyacrylic acid alkyl ester resin fine particles are a and b, respectively, a superior machine A composite polystyrene resin foam molded article having strength, moldability and impact resistance can be provided.
  • the polystyrene resin has a weight average molecular weight (MW) of 200,000 to 350,000 and a ratio of the Z average molecular weight (MZ) to the weight average molecular weight (MW) (MZ / MW) of 2 to 4.
  • MW weight average molecular weight
  • MZ Z average molecular weight
  • MZ / MW weight average molecular weight
  • polyacrylic acid alkyl ester resin fine particles are formed from a polymer of ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, or a mixture thereof, polyacrylic acid is further added.
  • a composite polystyrene resin foam molded article having better mechanical strength, moldability and impact resistance when the alkyl ester resin fine particles are 5 to 100 parts by weight with respect to 100 parts by weight of the polystyrene resin. can do.
  • the polystyrene resin expanded particles further contain a component derived from polybutadiene terminal acrylate
  • the polystyrene resin and the polyacrylate resin are compatibilized to further improve the impact resistance.
  • a composite polystyrene-based resin foam molded article can be provided.
  • compatibilization does not mean that the polyacrylic ester resin fine particles are present in the polystyrene resin simply by phase separation, but some or all of them are bonded by some bond, for example, a graft bond. This means that it exists in a mixture and is thought to contribute to the improvement of impact resistance.
  • the composite polystyrene-based resin expanded particles have a bulk density of 0.015 g / cm 3 or more and 0.1 g / cm 3 or less, more excellent mechanical strength, moldability and impact resistance. It is possible to provide a composite polystyrene-based resin foam-molded article having the following.
  • the expanded polystyrene-based resin particles contain 2 to 10% by weight of a volatile foaming agent containing pentane as a main component based on the expanded polystyrene-based resin particles.
  • a volatile foaming agent containing pentane as a main component based on the expanded polystyrene-based resin particles.
  • the material is pre-foamed, it is possible to provide a composite polystyrene-based resin foam molded article having more excellent mechanical strength, moldability and impact resistance.
  • the composite polystyrene resin foamed particles are surface-coated with an antistatic agent-containing component, a composite polystyrene resin foam molded article having excellent antistatic performance can be provided.
  • 18 is a scanning electron microscope (SEM) photograph of a cross-section of expanded particles of Example 15.
  • the composite polystyrene-based resin expanded particles (hereinafter also referred to as “expanded particles”) of the present invention have a plurality of bubbles and a bubble film partitioning them, and the bubble-based film forms a continuous phase, and a continuous phase.
  • a plurality of the dispersed phases are present in layers in the thickness direction of the bubble film in the cross section of the bubble film of the composite polystyrene-based resin foamed particles.
  • the “composite polystyrene resin” in the foamed particles of the present invention means a resin obtained by combining (compositing) a polystyrene resin and a polyacrylic acid alkyl ester resin.
  • the “composite polystyrene resin” is a form in which a dispersoid composed of polyacrylic acid alkyl ester resin fine particles is dispersed in a dispersion medium composed of a polystyrene resin. Is called “dispersed phase”.
  • the polystyrene resin constituting the continuous phase of the composite polystyrene resin foamed particles of the present invention is not particularly limited as long as it is a resin mainly composed of a styrene monomer, and a styrene or styrene derivative homopolymer or copolymer. Is mentioned.
  • the styrene derivative include ⁇ -methylstyrene, vinyl toluene, chlorostyrene, ethyl styrene, isopropyl styrene, dimethyl styrene, bromostyrene, and the like. These styrenic monomers may be used alone or in combination.
  • the polystyrene resin may be a combination of a vinyl monomer copolymerizable with a styrene monomer.
  • the vinyl monomer include divinylbenzene such as o-divinylbenzene, m-divinylbenzene and p-divinylbenzene, alkylene glycol di (meth) acrylate such as ethylene glycol di (meth) acrylate and polyethylene glycol di (meth) acrylate.
  • Multifunctional monomers such as (meth) acrylate; ⁇ -methylstyrene, (meth) acrylonitrile, methyl (meth) acrylate, butyl (meth) acrylate and the like.
  • polyfunctional monomers are preferable, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate having n of 4 to 16 and divinylbenzene are more preferable, and divinylbenzene and ethylene glycol di (meth) acrylate are more preferable.
  • the monomer used together may be used independently or may be used together.
  • the content is set so that it may become the quantity (for example, 50 weight% or more) which a styrene-type monomer becomes a main component.
  • “(meth) acryl” means “acryl” or “methacryl”.
  • the polystyrene resin preferably has a weight average molecular weight (MW) of 200,000 to 350,000 and a ratio of the Z average molecular weight (MZ) to the weight average molecular weight (MW) (MZ / MW) of 2 to 4.
  • MW weight average molecular weight
  • MZ Z average molecular weight
  • MZ / MW weight average molecular weight
  • MW weight average molecular weight
  • Specific MWs are, for example, 200,000, 250,000, 300,000 and 350,000.
  • the ratio (MZ / MW) of the Z average molecular weight (MZ) to the weight average molecular weight (MW) is less than 2, the polyacrylic acid alkyl ester resin fine particles in the bubble film are difficult to be oriented, and a foam molded article is obtained. Sometimes the impact resistance is reduced.
  • the ratio (MZ / MW) of the Z average molecular weight (MZ) to the weight average molecular weight (MW) exceeds 4, the foamability of the foamed composite polystyrene resin particles is reduced, and the surface of the foam molded product is reduced. In some cases, the appearance of the foamed molded article is inferior due to insufficient elongation.
  • the more preferred weight average molecular weight (MW) is 230,000 to 330,000, and the ratio of the Z average molecular weight (MZ) to the more preferred weight average molecular weight (MW) (MZ / MW) is 2 to 3.
  • Specific MZ / MW is, for example, 2.0, 2.5, 3.0, or the like.
  • the polyacrylic acid alkyl ester resin fine particles constituting the dispersed phase of the composite polystyrene resin foamed particles of the present invention are not particularly limited as long as the resin is mainly composed of an acrylic acid alkyl ester monomer, for example, Examples include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, pentyl acrylate, 2-ethylhexyl acrylate, hexyl acrylate, etc. Among them, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate Is preferred.
  • alkyl acrylate monomers may be used alone or in combination.
  • the above “alkyl” has 1 to 30 carbon atoms. Therefore, the polyacrylic acid alkyl ester resin fine particles are preferably formed from a polymer of ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, or a mixture thereof.
  • the polyacrylic acid alkyl ester resin fine particles are preferably 5 to 100 parts by weight with respect to 100 parts by weight of the polystyrene resin.
  • the weight ratio of the resin fine particles is within the above range, a composite polystyrene resin foam molded article having more excellent mechanical strength, moldability and impact resistance can be provided.
  • the resin fine particles are less than 5 parts by weight based on 100 parts by weight of the polystyrene resin, the effect of improving the impact resistance of the obtained composite polystyrene resin foam molded article may not be sufficiently obtained.
  • the resin fine particle exceeds 100 parts by weight with respect to 100 parts by weight of the polystyrene resin, it is difficult to foam the obtained expandable composite polystyrene resin particles at a high magnification, and the density of the foamed molded product cannot be reduced.
  • a more preferable resin fine particle is 10 to 70 parts by weight with respect to 100 parts by weight of the polystyrene resin.
  • Specific polyacrylic acid alkyl ester resin fine particles are, for example, 5, 10, 15, 20, 25, 30, 50, 70, 75, and 100 parts by weight with respect to 100 parts by weight of the polystyrene resin.
  • the ratio of the raw material resin and monomer is substantially the same as the ratio of the expanded particles and the expanded molded body.
  • the dispersed phase of the composite polystyrene resin foamed particles of the present invention has a plurality of polyacrylic acid alkyl ester resin fine particles in the thickness direction in a layered manner when the cell membrane of the composite polystyrene resin foamed particles is viewed in the cross section in the thickness direction. It is an existing structure. In the present invention, it is considered that the fine particles are dispersed substantially uniformly when viewed in terms of the foam film and the foam film unit in the foam molded article. From this point of view, the distribution state of the fine particles in the dispersed phase is as follows. It is substantially uniform in the foamed molded product.
  • the dispersed phase When the cell phase of the foamed particles is viewed in a cross section in the thickness direction, the dispersed phase has a size in the thickness direction of the dispersed phase (resin fine particle thickness a) and a size in the direction of the cell phase of the dispersed phase (resin fine particle size). It is preferable to have an aspect ratio (b / a) of 7 or more and 60 or less when the length is b). If the aspect ratio (b / a) is less than 7, the resin fine particles are easily exposed from the bubble film surface, and the retention of the foaming agent gas may be lowered.
  • a more preferable aspect ratio (b / a) is 10 or more and 60 or less, and a more preferable aspect ratio (b / a) is 20 or more and 50 or less.
  • Specific b / a is, for example, 10, 15, 20, 25, 30, 35, 45, 50, 55 and 60.
  • the aspect ratio and the measuring method thereof will be described in detail in Examples.
  • the shape of the resin fine particles in the composite polystyrene resin particles before foaming is not particularly limited, and may be, for example, spherical, elliptical spherical, indefinite shape, or the like.
  • the shape of the resin fine particles in the cell membrane cross section of the foamed particles after foaming is not particularly limited, and may be, for example, a circle, an ellipse, an indeterminate shape, or the like.
  • the average particle size of the resin fine particles in the composite polystyrene resin particles before foaming is preferably 100 to 1000 nm.
  • the average particle size of the resin fine particles is less than 100 nm, the impact resistance of the obtained foamed molded product may be insufficient.
  • the average particle diameter of the resin fine particles exceeds 1000 nm, the dissipation rate of the foaming agent may be increased.
  • a more preferable average particle diameter of the resin fine particles is 200 to 500 nm. Specific average particle diameters are, for example, 100, 200, 250, 500, 750, and 1000 nm.
  • the shape of the composite polystyrene resin particles is not particularly limited, and may be, for example, spherical, elliptical spherical, cylindrical or the like. Preferably, it is spherical.
  • the average particle size thereof is then expanded into the mold of the expanded particles obtained by further expanding the expandable composite polystyrene-based resin particles impregnated with the volatile foaming agent.
  • the thickness is preferably 0.3 to 2.0 mm, more preferably 0.5 to 1.5 mm. Specific average particle diameters are, for example, 0.3, 0.5, 0.8, 1.0, 1.5, and 2.0 mm.
  • the composite polystyrene resin particles preferably further contain a component derived from polybutadiene terminal acrylate.
  • the polystyrene and the polyacrylic acid ester are made compatible, and the composite polystyrene-type resin foaming molded object which improved the impact resistance further can be provided.
  • the polybutadiene-terminated acrylate a monomer having a structure in which one or more (meth) acryloyl groups are bonded to a polybutadiene molecule containing 80% or more of 1,2-bonds and 1,4-bonds can be used.
  • This monomer preferably has a structure in which a (meth) acryloyl group is introduced at the polybutadiene molecular end.
  • the polybutadiene-terminated acrylate is composed of a polybutadiene molecule containing the following repeating unit (1) having 1,2-bonds and the following repeating unit (2) having 1,4-bonds, one terminal or both of the polybutadiene molecules. It is a monomer having a functional group ((meth) acryloyl group) represented by the following formula (3) at the terminal.
  • the molar ratio between the units (1) and (2) is preferably (1) / [(1) + (2)] ⁇ 0.8.
  • the unit (2) may be a trans structure or a cis structure. Units (1) and (2) may be present in the monomer in various repeating forms such as random, block, and alternating.
  • R is preferably a hydrogen atom or a lower alkyl group having 1 to 4 carbon atoms.
  • the functional groups of formula (3) are preferably located at both ends of the polybutadiene molecule.
  • the polybutadiene-terminated acrylate for example, trade names BAC-45 and BAC-15 available from Osaka Organic Chemical Industry Co., Ltd. can be used. In addition, those newly synthesized by the following known methods can also be used.
  • a method of introducing a (meth) acryl group into a polybutadiene structure by reacting a hydroxyl group-containing polybutadiene with a compound having a (meth) acryl group examples include (i) a method in which a hydroxyl group of a hydroxyl group-containing polybutadiene and a carboxyl group of a compound having a (meth) acryl group are subjected to a dehydration reaction using a dehydration catalyst such as p-toluenesulfonic acid.
  • a transesterification reaction between a (meth) acrylic acid ester and a hydroxyl group of polybutadiene is performed using a transesterification catalyst such as a titanium catalyst or a tin catalyst.
  • a transesterification catalyst such as a titanium catalyst or a tin catalyst.
  • the compound having a (meth) acrylic group include (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and the like.
  • Propyl and butyl include structural isomers).
  • the polybutadiene terminated acrylate preferably has a number average molecular weight in the range of 200 to 10,000. If the number average molecular weight is less than 200, the elasticity of the composite polystyrene resin particles may be lowered. If it exceeds 10,000, it may be difficult to charge and dissolve in the reaction system.
  • a more preferred number average molecular weight is in the range of 2500 to 3000.
  • the number average molecular weight here is a value obtained by measurement with a gel permeation chromatograph. Specific number average molecular weights are, for example, 200, 1000, 1500, 2000, 2500, 3000, 3500, 5000 and 10,000.
  • the polybutadiene-terminated acrylate preferably has a viscosity (25 ° C.) in the range of 500 to 9000 Pa ⁇ s.
  • a viscosity 25 ° C.
  • the viscosity is a value obtained by measuring with a rotary viscometer.
  • the component derived from the polybutadiene-terminated acrylate is preferably contained in the composite polystyrene resin particles in the range of 0.1 to 3.0 parts by weight with respect to 100 parts by weight of the composite polystyrene resin particles. If the content of this component is less than 0.1 parts by weight, the elasticity of the composite polystyrene resin particles may be lowered. If it exceeds 3.0 parts by weight, it may be difficult to be absorbed by the composite polystyrene resin particles. A more preferred content is in the range of 0.1 to 2.0 parts by weight, particularly 0.5 to 1.0 parts by weight.
  • Specific polybutadiene-terminated acrylates are, for example, 0.1, 0.3, 0.5, 0.8, 1.0, 1.5, 2.0 and 3 with respect to 100 parts by weight of the composite polystyrene resin particles. 0.0 parts by weight and the like.
  • the composite polystyrene-based resin expanded particles preferably have a bulk density of 0.015 g / cm 3 or more and 0.1 g / cm 3 or less.
  • a composite polystyrene resin foam molded article having more excellent mechanical strength, moldability and impact resistance can be provided.
  • the bulk density of the expanded particles is less than 0.015 g / cm 3 , the impact resistance of the expanded molded article may be lowered.
  • the foamed molded product becomes large in weight when used as a packaging material or a cushioning material, which may be economically disadvantageous.
  • the bulk density of the preferred foam particles is less 0.018 g / cm 3 or more 0.05 g / cm 3. Specific bulk densities are, for example, 0.015, 0.018, 0.02, 0.03, 0.04, 0.05, 0.08, and 0.1.
  • the resin fine particles in the cross section of the foam film of the foam particles have a specific flat shape because the polystyrene system that forms a continuous phase in the process of foaming the resin, that is, in the process of stretching the foam film as the foam expands
  • the resin fine particles in the dispersed phase are appropriately stretched with the elongation of the resin.
  • the viscoelasticity of the polystyrene resin forming the continuous phase that is, the molecular weight needs to be in a specific range.
  • the polystyrene resin preferably has a weight average molecular weight (MW) and a ratio (MZ / MW) of the Z average molecular weight (MZ) to the weight average molecular weight (MW) in the above range.
  • the composite polystyrene resin foamed particles of the present invention are prepared by preliminarily expanding the expandable composite polystyrene resin particles impregnated with a volatile foaming agent to a predetermined bulk density (eg, 0.015 to 0.1 g / cm3) by a known method. It can be manufactured by foaming.
  • the foamable composite polystyrene resin particles of the present invention for example, polymerize a monomer mixture after absorbing a monomer mixture containing an alkyl acrylate ester into seed particles made of polystyrene resin in an aqueous medium.
  • a step of dispersing and forming the polyacrylic acid alkyl ester resin fine particles in the seed particles followed by adding a styrene monomer to the seed particles in which the polyacrylic acid alkyl ester resin fine particles are dispersed and formed in the aqueous medium.
  • the monomer mixture may be polymerized to further grow polystyrene resin particles, and to be produced by a step of impregnating a foaming agent after the polymerization or in the middle of the polymerization. it can.
  • the expandable composite polystyrene resin particle of the present invention is based on 100 parts by weight of seed particles made of polystyrene resin in a dispersion obtained by dispersing seed particles made of polystyrene resin in water.
  • the acrylic acid alkyl ester monomer used in the first polymerization step and the amount of use thereof and the styrene monomer used in the second polymerization step are (polyacrylic acid alkyl ester resin fine particles) and (polystyrene resin particles). ).
  • the seed particles made of polystyrene resin are not particularly limited and can be produced by a known method.
  • a suspension polymerization method or a method in which a raw material resin is melt-kneaded with an extruder, extruded into a strand shape, and cut with a desired particle diameter can be mentioned.
  • a part or all of a polystyrene-based resin recovered product can be used, and particles obtained by a suspension polymerization method or a cutting method are used as they are, or styrene monomers are added to the particles in an aqueous medium. Particles obtained by impregnation and polymerization may be used.
  • the particle diameter of the seed particles can be adjusted as appropriate according to the average particle diameter of the composite polystyrene resin particles to be prepared. For example, when preparing composite polystyrene resin particles having an average particle diameter of 1 mm, the average particle diameter is 0.4. It is preferable to use seed particles of about 0.7 mm.
  • the weight average molecular weight of the seed particles is not particularly limited, but is preferably 150,000 to 700,000, more preferably 200,000 to 500,000. (Other ingredients)
  • additives such as plasticizers, anti-binding agents, bubble regulators, crosslinking agents, fillers, flame retardants, flame retardant aids, lubricants, and colorants are added to the seed particles within the range that does not impair the physical properties. May be.
  • the polymerization initiator used in the above production method is not particularly limited as long as it is conventionally used for the polymerization of styrene monomers.
  • a suspension stabilizer may be used in order to stabilize the dispersibility of the styrene monomer droplets and the polystyrene resin seed particles.
  • a suspension stabilizer is not particularly limited as long as it is conventionally used for suspension polymerization of a styrene-based monomer.
  • a water-soluble solution such as polyvinyl alcohol, methyl cellulose, polyacrylamide, polyvinyl pyrrolidone, etc.
  • poorly soluble inorganic compounds such as tribasic calcium phosphate and magnesium pyrophosphate.
  • an anionic surfactant is used together normally.
  • anionic surfactants include fatty acid soaps, N-acyl amino acids or salts thereof, carboxylates such as alkyl ether carboxylates, alkylbenzene sulfonates, alkylnaphthalene sulfonates, and dialkyl sulfosuccinate esters.
  • Sulfates such as alkyl sulfoacetates, ⁇ -olefin sulfonates, higher alcohol sulfates, secondary higher alcohol sulfates, alkyl ether sulfates, polyoxyethylene alkylphenyl ether sulfates, etc.
  • phosphoric acid ester salts such as alkyl ether phosphoric acid ester salts and alkyl phosphoric acid ester salts.
  • the composite polystyrene resin particles can contain a plasticizer having a boiling point of more than 200 ° C. under 1 atm in order to maintain good foam moldability even when the pressure of water vapor used during heat foaming is low.
  • the plasticizer include glycerin fatty acid esters such as phthalic acid esters, glycerin diacetomonolaurate, glycerin tristearate, and glycerin diacetomonostearate, adipic acid esters such as diisobutyl adipate, and plasticizers such as coconut oil. .
  • the content of the plasticizer in the composite polystyrene resin particles is less than 2% by weight.
  • the foamed composite polystyrene resin particles of the present invention are preferably surface-coated with an antistatic agent-containing component.
  • the surface coating include a method of applying an antistatic agent to the surface of the composite polystyrene resin particles. Specifically, it is preferable to stir the composite polystyrene resin particles together with the antistatic agent in a stirrer.
  • a stirrer such as a tumbler mixer or a Redige mixer is used.
  • Antistatic agents include, for example, nonionic surfactants such as hydroxyalkylamines, hydroxyalkyl monoetheramines, glycerin fatty acid esters, polyoxyethylene alkyl ethers, and anionic surfactants such as alkylsulfonates and alkylbenzenesulfonates. Agents, cationic surfactants such as tetraalkylammonium salts and trialkylbenzylammonium salts. Nonionic surfactants such as hydroxyalkylamine, hydroxyalkyl monoetheramine, glycerin fatty acid ester, polyoxyethylene alkyl ether and the like can be mentioned.
  • antistatic agent examples include, for example, N, N-bis (hydroxyethyl) dodecylamine, N, N-bis (hydroxyethyl) tetradecylamine, and N, N-bis (hydroxyethyl) hexadecylamine.
  • the antistatic agent is preferably in the range of 0.5 to 5.0 parts by weight with respect to 100 parts by weight of the composite polystyrene resin particles. If the coating amount of the antistatic agent is small and less than 0.5 part by weight, sufficient antistatic performance may not be obtained. On the other hand, when the coating amount of the antistatic agent exceeds 5.0 parts by weight, the fusion-bonding property of the foamed molded product may be impaired. A more preferable content is in the range of 0.8 to 2.0 parts by weight, and a further preferable content is in the range of 0.9 to 1.5 parts by weight. Specific antistatic agents are, for example, 0.5, 0.8, 0.9, 1.0, 1.5, 2.0, and 5.0 with respect to 100 parts by weight of the composite polystyrene resin particles. It is.
  • the expandable composite polystyrene resin particles of the present invention include composite polystyrene resin particles and a volatile foaming agent, and are produced by impregnating a volatile foaming agent after the polymerization in the second polymerization step or during the polymerization. be able to. If the temperature at which the volatile foaming agent is impregnated is low, the impregnation takes time, and the production efficiency of the expandable polystyrene resin particles may be lowered. On the other hand, if it is high, a large amount of coalescence between the expandable polystyrene resin particles may occur, so 70 to 130 ° C is preferable, and 80 to 120 ° C is more preferable.
  • the volatile foaming agent is not particularly limited as long as it is conventionally used for foaming polystyrene-based resins.
  • carbon such as isobutane, n-butane, n-pentane, isopentane, neopentane, cyclopentane, etc.
  • volatile foaming agents such as aliphatic hydrocarbons of several tens or less, and in particular, butane-based foaming agents and pentane-based foaming agents are preferable, and volatile foaming agents containing pentane as a main component (for example, 50% by weight or more). Particularly preferred.
  • pentane can be expected to act as a plasticizer.
  • the content of the volatile foaming agent in the expandable composite polystyrene resin particles is usually in the range of 2 to 10% by weight, preferably in the range of 3 to 10% by weight, and particularly preferably in the range of 3 to 8% by weight.
  • the content of the volatile foaming agent is small, for example, less than 2% by weight, a low-density composite polystyrene resin foam molding may not be obtained from the foamable composite polystyrene resin particles, and at the time of in-mold foam molding Since the effect of increasing the secondary foaming power cannot be obtained, the appearance of the composite polystyrene resin foamed molded product may be deteriorated.
  • the content of the volatile foaming agent is large, for example, if it exceeds 10% by weight, the time required for the cooling process in the production process of the composite polystyrene resin foamed product using the composite polystyrene resin foam particles becomes long, and the productivity is increased. May decrease.
  • the foamed composite polystyrene resin particles of the present invention can contain a foaming aid together with a volatile foaming agent.
  • the foaming aid is not particularly limited as long as it is conventionally used for foaming polystyrene resins.
  • aromatic organic compounds such as styrene, toluene, ethylbenzene, xylene, cyclohexane, methylcyclohexane, etc.
  • solvents having a boiling point of 200 ° C. or less under 1 atm such as cycloaliphatic hydrocarbons, ethyl acetate, and butyl acetate.
  • the content of the foaming aid in the composite polystyrene resin particles is usually in the range of 0.2 to 2.5% by weight, and preferably in the range of 0.3 to 2% by weight.
  • the content of the foaming aid is small, for example, less than 0.2% by weight, the plasticizing effect of the polystyrene resin may not be exhibited.
  • the content of the foaming auxiliary agent is large and exceeds 2.5% by weight, shrinkage or melting occurs in the composite polystyrene resin foam molded product obtained by foam molding of the foamable composite polystyrene resin particles. The appearance may be deteriorated, or the time required for the cooling step in the production process of the composite polystyrene resin foam molded article using the composite polystyrene resin foam particles may be long.
  • the foamable composite polystyrene resin particles impregnated with the volatile foaming agent are pre-foamed to a predetermined bulk density (for example, 0.015 to 0.1 g / cm 3 ) by a known method, whereby The composite polystyrene resin expanded particles of the invention can be obtained.
  • a predetermined bulk density for example, 0.015 to 0.1 g / cm 3
  • air may be introduced simultaneously with steam when foaming as necessary.
  • the pre-foaming conditions may be appropriately selected depending on the resin particles to be used and desired physical properties.
  • the pressure is about 0.01 to 0.04 MPa, more preferably 0.01 to 0.03 MPa, and still more preferably 0.015 to 0.02 MPa.
  • Specific examples include 0.01 MPa, 0.015 MPa, 0.02 MPa, 0.03 MPa, and 0.04 MPa.
  • the time is about 30 to 240 seconds, more preferably 60 to 180 seconds, and still more preferably 90 to 150 seconds. Specific examples include 30 seconds, 60 seconds, 90 seconds, 120 seconds, 150 seconds, 180 seconds, and 240 seconds.
  • the composite polystyrene resin expanded particles of the present invention preferably have a bulk density of 0.015 g / cm 3 or more and 0.1 g / cm 3 or less.
  • a composite polystyrene resin foam molded article having more excellent mechanical strength, moldability and impact resistance can be provided.
  • the bulk density of the expanded particles is less than 0.015 g / cm 3 , the impact resistance of the expanded molded article may be lowered.
  • the bulk density of the foamed particles exceeds 0.1 g / cm 3 , the foamed molded product becomes large in weight when used as a packaging material or a cushioning material, which may be economically disadvantageous.
  • the bulk density of the preferred foam particles is less 0.018 g / cm 3 or more 0.05 g / cm 3.
  • Specific bulk densities are, for example, 0.015, 0.018, 0.02, 0.03, 0.04, 0.05, 0.08, and 0.1.
  • the composite polystyrene resin foam particles of the present invention include expandable composite polystyrene resin particles containing 2 to 10% by weight of a volatile foaming agent mainly composed of pentane with respect to the expandable composite polystyrene resin particles. A pre-foamed one is preferred.
  • the composite polystyrene resin foam molded article of the present invention can be obtained by treating the composite polystyrene resin foam particles of the present invention by a known method, and the composite polystyrene resin foam particles of the present invention are incorporated in a molding machine. It is preferable to obtain it by fusing and integrating in a mold. Specifically, the composite polystyrene resin foamed particles of the present invention are filled in a mold of a foam molding machine and heated again, so that the foamed particles are thermally fused together while foaming to form a foamed molded product. Is obtained.
  • the conditions for foam molding may be appropriately selected depending on the resin particles to be used, desired physical properties, and the like.
  • the pressure is about 0.06 to 0.10 MPa, more preferably 0.07 to 0.09 MPa, and still more preferably 0.075 to 0.08 MPa.
  • Specific examples include 0.06 MPa, 0.07 MPa, 0.075 MPa, 0.08 MPa, 0.09 MPa, and 0.10 MPa.
  • the heating time is about 20 to 60 seconds, more preferably 25 to 50 seconds, and still more preferably 30 to 40 seconds. Specific examples include 20 seconds, 25 seconds, 30 seconds, 40 seconds, 50 seconds, 60 seconds, and the like.
  • the composite polystyrene-based resin foam molded article of the present invention preferably has a falling ball impact value according to JIS K7211 of 11 cm or more, a bending break point displacement amount according to JIS K7221-1 of 12 mm or more, and a crack amount according to JIS Z0235 of less than 50%.
  • the falling ball impact value, the bending break point displacement amount, and the crack amount are more preferably 13 cm or more, 14 mm or more and less than 45%, respectively.
  • the properties were measured and evaluated according to the following measurement methods and evaluation criteria. Further, the surface resistivity of the foamed molded product was measured by the following method to evaluate the antistatic property.
  • the average particle diameter is a value expressed by D50.
  • sieve openings are 4.00 mm, 3.35 mm, 2.80 mm, 2.36 mm, 2.00 mm, 1.70 mm, 1.40 mm. 1.18mm, 1.00mm, 0.85mm, 0.71mm, 0.60mm, 0.50mm, 0.425mm, 0.355mm, 0.300mm, 0.250mm, 0.212mm and 0.180mm JIS
  • About 50 g of the sample is classified with a standard sieve for 10 minutes, and the sample weight on the sieve mesh is measured.
  • a cumulative weight distribution curve is created from the obtained results, and the particle diameter (median diameter) at which the cumulative weight is 50% is defined as the average particle diameter.
  • the bulk density and bulk multiple of the composite polystyrene resin foamed particles are measured as follows.
  • the weight (a) of about 5 g of expanded particles is weighed at the second decimal place, and the measured expanded particles are put into a 500 cm 3 graduated cylinder having a minimum memory unit of 5 cm 3 .
  • a pressing tool which is a round resin plate slightly smaller than the diameter of the graduated cylinder, with a rod-shaped resin plate having a width of about 1.5 cm and a length of about 30 cm standing upright and fixed at the center thereof. Apply the volume (b) of the foamed particles.
  • the photographed photograph was enlarged and printed on an A4 sheet so as to form one image, and 30 particles were selected in order from the longest polyacrylic acid alkyl ester resin fine particles that can be confirmed at both ends in the range of 150 mm ⁇ 200 mm in the image. Then, the thickness a (dimension in the bubble film thickness direction) and the length b (dimension in the bubble film surface direction) of these particles are measured, and the aspect ratio (b / a) is calculated. Each dimension is the longest part. That is, the distance between both ends of the particle that can be confirmed even when the particle is curved is defined as b, and the distance between the line connecting the both ends of the particle and the longest portion in the vertical direction is defined as a.
  • the total average aspect ratio is calculated from the obtained aspect ratio, and is defined as the aspect ratio of the polyacrylic acid alkyl ester resin fine particles in the composite polystyrene resin foamed particles (see FIG. 2).
  • the skin is removed from the foamed molded product, a section is cut out from the vicinity of the center of the surface from which the skin has been removed, the section is embedded in an epoxy resin, and the epoxy resin containing the section is made into an ultramicrotome (Leica Microsystems, LEICA). Ultrathin sections are processed by using ULTRACUT UCT). Ruthenium tetroxide is used as the staining agent.
  • the ultrathin section is photographed with a transmission electron microscope (H-7600, manufactured by Hitachi High-Technologies Corporation) at a magnification of 5000 times (in some cases, 10,000 times or 20000 times).
  • the photographed photograph was enlarged and printed on an A4 sheet so as to form one image, and 30 particles were selected in order from the longest polyacrylic acid alkyl ester resin fine particles that can be confirmed at both ends in the range of 150 mm ⁇ 200 mm in the image.
  • the thickness c dimension in the bubble film thickness direction
  • the length d dimension in the bubble film surface direction
  • the aspect ratio (d / c) is calculated. Each dimension is the longest part.
  • the total average aspect ratio is calculated from the obtained aspect ratio and is defined as the aspect ratio of the polyacrylic acid alkyl ester resin fine particles in the composite polystyrene resin foam molded article.
  • the molecular weight means an average molecular weight in terms of polystyrene (PS) measured using a gel permeation chromatography (GPC) method (internal standard method). Divide it into two so as to pass through the center of the expanded particles, dissolve 30 mg ⁇ 3 mg of the divided expanded particles in 4 mL of chloroform containing 0.1 wt% BHT (butylhydroxytoluene), and filter through a non-aqueous 0.45 ⁇ m chromatodisc. The obtained filtrate is measured using a chromatograph under the following conditions. The average molecular weight of the sample is obtained from a standard polystyrene calibration curve that has been measured and prepared in advance.
  • GPC gel permeation chromatography
  • Measuring apparatus Tosoh HPLC (pump DP-8020, autosampler AS-8020, detector UV-8020, RI-8020)
  • the molecular weight means an average molecular weight in terms of polystyrene (PS) measured using a gel permeation chromatography (GPC) method (internal standard method).
  • PS polystyrene
  • GPC gel permeation chromatography
  • a sample of 30 mg ⁇ 3 mg was taken from the foam molded article, this sample was dissolved in 4 mL of chloroform containing 0.1 wt% BHT (butylhydroxytoluene), filtered through a non-aqueous 0.45 ⁇ m chromatodisc, and the obtained filtrate was Measure using a chromatograph under the following conditions.
  • the average molecular weight of the sample is obtained from a standard polystyrene calibration curve that has been measured and prepared in advance.
  • Measuring apparatus Tosoh HPLC (pump DP-8020, autosampler AS-8020, detector UV-8020, RI-8020)
  • both ends of the test piece are fixed with clamps so that the distance between the fulcrums is 150 mm, and a hard ball having a weight of 321 g is dropped from a predetermined height onto the center of the test piece to check whether the test piece is broken or not.
  • the test piece was tested by changing the falling height (test height) of the hard sphere at 5 cm intervals from the lowest height at which all five specimens were destroyed to the highest height at which all were not destroyed, and the falling ball impact value (cm), ie 50%
  • the fracture height is calculated by the following formula.
  • H50 Hi + d [ ⁇ (i ⁇ ni) /N ⁇ 0.5]
  • H50 50% fracture height (cm)
  • Hi Test height (cm) when the height level (i) is 0, and the height at which the test piece is expected to break
  • d Height interval (cm) when the test height is raised or lowered
  • ni Number of test pieces destroyed (or not destroyed) at each level, whichever data is used (if the number is the same, either may be used)
  • ⁇ 0.5 Use a negative number when using destroyed data, and a positive number when using data that was not destroyed
  • the obtained falling ball impact value is evaluated according to the following criteria. The larger the falling ball impact value, the greater the impact resistance of the foamed molded product. ⁇ (excellent): Falling ball impact value is 13 cm or more. ⁇ (Good): Falling ball impact value is in the range of 11 cm to less than 13 cm. ⁇ (possible): Falling ball impact value is in the range of 9 cm to less than 11 cm. Less than 9cm
  • press wedge 5R and support base 5R are mounted on the universal testing machine (Orientec, Tensilon (registered trademark) UCT-10T) as the tip jig, and the test piece is set at a distance of 100 mm between the fulcrums, and the compression speed is 10 mm.
  • Bending test is performed under the conditions of / min. In this test, the fracture detection sensitivity was set to 0.5%, and when the decrease exceeded the set value of 0.5% compared to the previous load sampling point, the previous sampling point was changed to the bending fracture point displacement ( mm).
  • the obtained bending break point displacement is evaluated according to the following criteria. It shows that the flexibility of a foaming molding is so large that a bending fracture point displacement amount is large.
  • ⁇ Crack amount of foamed molded product The amount of cracking is measured according to the method described in JIS Z0235: 1976 “Packaging Buffer Material—Evaluation Test Method”. The obtained foam molded article having a bulk multiple of 50 times is dried at a temperature of 50 ° C. for 1 day, and then a test piece of 75 mm ⁇ 300 mm ⁇ 50 mm (thickness) is cut out from the foam molded article. Next, the test piece is lightly fixed on the center of the base of the shock absorber for shock absorbing material (CST-320S, manufactured by Yoshida Seiki Co., Ltd.) so that it does not move when impacted, as shown in FIG. The weight of 13.5 kg was dropped from a height of 60 cm so as to cover the entire lengthwise direction of the test piece and the entire width direction, and the cracks of the test piece generated at this time were observed. The amount of cracks (%) is calculated by the following formula.
  • the surface resistivity is measured according to the method described in JIS K6911: 1995 “General Test Method for Thermosetting Plastics”.
  • the obtained foamed molded article having a bulk multiple of 50 times is dried at a temperature of 50 ° C. for 1 day, and then 10 test pieces of 100 mm ⁇ 100 mm ⁇ original thickness (10 mm or less) are cut out from the same foamed molded article.
  • a digital ultrahigh resistance / microammeter and a resiliency chamber Advancedest Co., Ltd., R8340 and R12702A
  • an electrode is crimped to the sample piece with a load of about 30 N, and a voltage of 500 V is applied for 1 minute.
  • the resistance value of the sample piece is measured, and the surface resistivity is calculated by the following formula.
  • ⁇ s ⁇ (D + d) / (D ⁇ d) ⁇ Rs
  • ⁇ s Surface resistivity (M ⁇ )
  • D Inner diameter (cm) of the annular electrode on the surface
  • d outer diameter of inner circle of surface electrode (cm)
  • Rs Surface resistance (M ⁇ )
  • the obtained surface resistivity is evaluated according to the following criteria.
  • Example 1 Manufacture of seed (nuclear PS) particles
  • 100 kg of water, 100 g of tribasic calcium phosphate as a suspension stabilizer and 2.0 g of sodium dodecylbenzenesulfonate as an anionic surfactant are fed into a polymerization vessel equipped with a stirrer with an internal volume of 100 liters, and 40 kg of styrene monomer and polymerization are started while stirring.
  • n-pentane / isopentane 75/25 to 85/15 pentane (gas type a: product name pentane, manufactured by Cosmo Oil Co., Ltd.) as a blowing agent was injected into the 5 liter polymerization vessel and held for 3 hours. Then, it cooled to 30 degrees C or less, and took out from the inside of a polymerization container. Subsequently, it was dried and left in a thermostatic chamber at 13 ° C. for 7 days to obtain expandable composite polystyrene resin particles.
  • FIG. 1 shows a scanning electron microscope (SEM) photograph (a) of a cross section of the composite polystyrene-based resin foamed particles and a transmission electron microscope (TEM) photograph (b) of the internal cell membrane.
  • SEM scanning electron microscope
  • Example 2 In the production of composite polystyrene resin particles, composite polystyrene resin particles, expandable composite polystyrene resin particles, composite polystyrene were used in the same manner as in Example 1 except that 2-ethylhexyl acrylate was used instead of butyl acrylate. System resin foamed particles and foamed molded products were obtained and measured and evaluated. The results are shown in Tables 1 and 2.
  • Example 3 In the production of composite polystyrene resin particles, composite polystyrene resin particles, expandable composite polystyrene resin particles, composite polystyrene resin were used in the same manner as in Example 1 except that ethyl acrylate was used instead of butyl acrylate. Foamed particles and a foamed molded article were obtained and measured and evaluated. The results are shown in Tables 1 and 2.
  • Example 4 Manufacture of composite polystyrene resin particles
  • a polymerization vessel equipped with a stirrer with an internal volume of 5 liters, 2000 g of water, 600 g of the above polystyrene resin seed particles (B-1), 10.0 g of magnesium pyrophosphate as a suspension stabilizer and sodium dodecylbenzenesulfonate as an anionic surfactant 0.4 g was supplied and the temperature was raised to 75 ° C. while stirring.
  • 400 g of butyl acrylate in which 1.2 g of dicumyl peroxide was dissolved as a polymerization initiator was supplied to the 5 liter polymerization vessel, and then absorbed into the seed particles, held at 75 ° C.
  • Example 5 In the production of composite polystyrene resin particles, the polystyrene resin seed particles (B-2) were used instead of the polystyrene resin seed particles (B-1), and 4.0 g of benzoyl peroxide was changed to 3.0 g. Except that, composite polystyrene resin particles, expandable composite polystyrene resin particles, composite polystyrene resin foam particles and foamed molded articles were obtained, measured and evaluated in the same manner as in Example 4. The results are shown in Tables 1 and 2.
  • Example 6 In the production of composite polystyrene resin particles, composite polystyrene resin particles, expandable composite polystyrene resin particles, composite polystyrene series are the same as in Example 1 except that 5.2 g of benzoyl peroxide is changed to 6.5 g. Resin foam particles and a foam-molded article were obtained and measured and evaluated. The results are shown in Tables 1 and 2.
  • Example 7 In the production of composite polystyrene resin particles, 200 g of butyl acrylate in which 0.2 g of divinylbenzene was dissolved in addition to 0.6 g of dicumyl peroxide as a polymerization initiator was supplied to a 5-liter polymerization vessel, and benzoyl peroxide was added. Except having changed 2g to 7.15g, it carried out similarly to Example 1, and obtained the composite polystyrene-type resin particle, the expandable composite polystyrene-type resin particle, the composite polystyrene-type resin foam particle, and the foaming molding, and measured and evaluated. . The results are shown in Tables 1 and 2.
  • Example 8 In the production of composite polystyrene resin particles, composite polystyrene resin particles, expandable composite polystyrene resin particles, composite polystyrene resin were used in the same manner as in Example 1 except that 5.2 g of benzoyl peroxide was changed to 2.6 g. Resin foam particles and a foam-molded article were obtained and measured and evaluated. The results are shown in Tables 1 and 2.
  • Example 10 Example 4 except that 400 g of butyl acrylate in which 1.0 g of divinylbenzene was dissolved in addition to 1.2 g of dicumyl peroxide as a polymerization initiator was supplied to a 5-liter polymerization vessel in the production of composite polystyrene resin particles.
  • composite polystyrene resin particles, expandable composite polystyrene resin particles, composite polystyrene resin foam particles, and foamed molded articles were obtained and measured and evaluated. The results are shown in Tables 1 and 2.
  • Example 11 In the production of the composite polystyrene resin particles, a composite polystyrene system was prepared in the same manner as in Example 1 except that 6.5 g of t-butylperoxy-2-ethylhexanoate was used instead of 5.2 g of benzoyl peroxide. Resin particles, expandable composite polystyrene resin particles, composite polystyrene resin foam particles and a foamed molded article were obtained, and measured and evaluated. The results are shown in Tables 1 and 2.
  • Example 12 In the production of composite polystyrene resin particles, composite polystyrene resin particles, expandable composite polystyrene resin particles, composite polystyrene resin were used in the same manner as in Example 1 except that 5.2 g of benzoyl peroxide was changed to 9.1 g. Foamed particles and a foamed molded article were obtained and measured and evaluated. The results are shown in Tables 1 and 2.
  • Comparative Example 1 Manufacture of polystyrene resin particles
  • a polymerization vessel equipped with a stirrer having an internal volume of 5 liters, 2000 g of water, 500 g of the above polystyrene resin seed particles (B-1), 8.0 g of magnesium pyrophosphate as a suspension stabilizer and sodium dodecylbenzenesulfonate as an anionic surfactant 0.4 g was supplied and the temperature was raised to 75 ° C. while stirring.
  • the polystyrene resin foam particles and the foam molded article were produced according to the production of the composite polystyrene resin foam particles and the foam molded article of Example 1, and a foam molded article was obtained, measured and evaluated. The results are shown in Tables 1 and 2.
  • Comparative Example 2 Manufacture of rubber-modified polystyrene resin particles
  • To 100 parts by weight of this solution 5 parts by weight of ethylbenzene, 0.05 part by weight of 1,1-bis (t-butylperoxy) cyclohexane and 0.05 part by weight of t-dodecyl mercaptan were added to obtain a polymerization raw material liquid.
  • the obtained polymerization raw material liquid was supplied to a polymerization vessel equipped with a stirrer having an internal volume of 5 liters, and polymerization was performed under the following conditions.
  • Polymerization temperature is 105 ° C. for 3 hours
  • temperature is raised to 130 ° C. for 2 hours
  • temperature is further raised and polymerization is conducted at 145 ° C. for 1 hour
  • the resulting polymerization solution is sent to a devolatilizer under heating vacuum to unreacted styrene monomer
  • ethylbenzene was removed to obtain a polymer.
  • the obtained polymer was supplied to an extruder, kneaded, a strand was drawn from the pores of the die, immediately cooled with water, and then cut into pellets having a diameter of about 1 mm and a length of about 1.5 mm.
  • the content of the butadiene component in the obtained pellet-shaped rubber-modified polystyrene resin particles was 10.5% by weight as calculated from the mass balance of styrene-butadiene block copolymer and styrene.
  • n-pentane / isopentane 75/25 to 85/15 pentane (gas type a: product name pentane, manufactured by Cosmo Oil Co., Ltd.) as a blowing agent is injected into the 5 liter polymerization vessel and held for 5 hours.
  • pentane gas type a: product name pentane, manufactured by Cosmo Oil Co., Ltd.
  • expandable rubber-modified polystyrene resin particles were obtained.
  • the foamed rubber-modified polystyrene resin particles were taken out from the polymerization container after being cooled to 30 ° C. or lower, dried, and left in a thermostatic chamber at 13 ° C. for 5 days.
  • Example 13 Manufacture of composite polystyrene resin particles
  • butyl acrylate in which 0.6 g of dicumyl peroxide and 10 g of polybutadiene terminal acrylate (product name: BAC-45, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was dissolved as a polymerization initiator was supplied to the 5 liter polymerization vessel. Then, butyl acrylate was absorbed in the seed particles, held at 75 ° C. for 60 minutes, then heated to 130 ° C. and held for 2 hours.
  • dicumyl peroxide and 10 g of polybutadiene terminal acrylate product name: BAC-45, manufactured by Osaka Organic Chemical Industry Co., Ltd.
  • Example 14 In the production of the composite polystyrene resin particles, the composite polystyrene resin particles, the expandable composite polystyrene resin particles, the composite polystyrene resin foam particles, and the composite polystyrene resin particles, except that 10 g of the polybutadiene terminal acrylate is 16 g, and A foamed molded product was obtained and measured and evaluated. The results are shown in Tables 3 and 4.
  • Example 15 In the production of composite polystyrene resin particles, except that 10 g of polybutadiene terminal acrylate is changed to 20 g, composite polystyrene resin particles, expandable composite polystyrene resin particles, composite polystyrene resin foam particles and A foamed molded product was obtained and measured and evaluated. The results are shown in Tables 3 and 4.
  • Example 16 In the production of the composite polystyrene resin particles, the composite polystyrene resin particles, the expandable composite polystyrene resin particles, the composite polystyrene resin foam particles, and the composite polystyrene resin particles, except that 10 g of the polybutadiene terminal acrylate is 40 g, and A foamed molded product was obtained and measured and evaluated. The results are shown in Tables 3 and 4.
  • Example 17 Coating of expandable particles
  • the foamable composite polystyrene resin particles 1500 g were charged into a tumbler mixer having an internal volume of 20 L.
  • polyoxyethylene hydroxyalkylamine trade name Antistar 80FS, manufactured by Tanaka Chemical Laboratory
  • FIGS. 4 to 6 show scanning electron microscope (SEM) photographs of the expanded particle cross sections of Examples 13 to 15, respectively, and FIG. 7 shows a transmission electron microscope (TEM) photograph of the expanded molded article cross section of Example 14. Show.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 複数の気泡とそれらを区画する気泡膜を有し、前記気泡膜が連続相を形成するポリスチレン系樹脂と、前記連続相中に分散されて分散相を形成するポリアクリル酸アルキルエステル系樹脂微粒子とを含み、前記ポリスチレン系樹脂が前記ポリアクリル酸アルキルエステル系樹脂微粒子で複合化された複合ポリスチレン系樹脂発泡粒子であり、前記分散相が、前記複合ポリスチレン系樹脂発泡粒子の気泡膜断面の気泡膜厚み方向に複数でかつ層状に存在する複合ポリスチレン系樹脂発泡粒子。

Description

複合ポリスチレン系樹脂発泡粒子及びその発泡成形体
 本発明は、複合ポリスチレン系樹脂発泡粒子及びその発泡成形体に関する。本発明によれば、高発泡倍率でも耐衝撃性に優れ、外観も良好な発泡成形体となる複合ポリスチレン系樹脂発泡粒子を提供できる。
 ポリスチレン系樹脂からなる発泡成形体は、優れた緩衝性及び断熱性を有しかつ成形が容易であることから、包装材や断熱材として多用されている。しかしながら、耐衝撃性や柔軟性が不十分であるため、割れや欠けが発生し易く、例えば精密機器製品の包装等には適さないという問題がある。
 一方、ポリプロピレン系樹脂からなる発泡成形体は、耐衝撃性や柔軟性に優れた発泡成形体ではあるが、その成形時に大掛かりな設備を必要とする。また、樹脂の性質上、発泡粒子の形態で原料メーカーから成形加工メーカーに輸送しなければならず、嵩高いものを輸送することになり、製造コストが上昇するという問題がある。
 近年、ポリスチレン系樹脂からなる発泡体よりも耐衝撃性及び柔軟性が改良され、かつ成形が容易なゴム変性スチレン系樹脂発泡成形体、すなわちポリスチレン系樹脂にブタジエンゴム等の弾性体を配合したハイインパクトポリスチレン樹脂(以下「HIPS」ともいう)を用いた発泡成形体が提案されている(例えば、特開昭56-67344号公報(特許文献1)、特許第2841303号公報(特許文献2)、特許第4101379号公報(特許文献3)及び特開平3-182529号公報(特許文献4)参照)。
 例えば、特許文献1には、ポリスチレン中に非配向性のゴム粒子を分散させた樹脂からなる、耐衝撃性の改善された発泡粒子が開示されている。
 しかしながら、ゴム粒子が非配向性であるために、ゴム粒子の変形が起こり難く、発泡体を形成する薄い気泡膜中ではゴム粒子が気泡膜面から露出し易く、特に発泡倍率の高い予備発泡粒子においてはゴム粒子の露出により発泡剤ガスの保持性が不十分になるという問題がある。
 また、特許文献2には、HIPSと水素添加したスチレン-ブタジエンのブロック共重合体とを機械的に混合した樹脂の発泡体が開示されている。
 しかしながら、この発泡体では機械的に混合したゴム成分を含むために、混合されたゴム成分の分散が不十分であると、発泡体気泡膜のゴム成分の分散が不均一になり、気泡が連通化(連続気泡化)し易いという問題がある。この傾向は特に高倍率発泡させた時に著しく、高倍発泡粒子の膨張力が低下して、発泡成形体には粒子間空隙が生じ、発泡成形体の外観が劣るものになる。また、この発泡成形体の耐衝撃性は、従来のポリスチレン系発泡成形体に比べて向上しているものの、依然実用上不十分なレベルである。
 また、特許第3462775号公報(特許文献5)には、ポリスチレン系樹脂からなる連続相に、ポリスチレン系樹脂を内包するジエン系ゴムの粒子が分散したゴム変性スチレン系樹脂組成物の発泡成形体が開示されている。
特開昭56-67344号公報 特許第2841303号公報 特許第4101379号公報 特開平3-182529号公報 特許第3462775号公報
 本来、HIPSは、ポリスチレン系樹脂の耐衝撃性を向上させたものであるにもかかわらず、上記の従来技術に開示されたポリスチレン系樹脂発泡成形体は、特に発泡倍率の高い発泡成形体を得ようとした場合、収縮等により発泡成形体の外観の悪化のみならず、耐衝撃性も低下した。このため、高い発泡倍率で発泡成形体を使用することができず、包装材料の省資源化に限界があった。これは、HIPSを使用して発泡性ポリスチレン系樹脂粒子を製造した場合、配合したブタジエンゴム等の弾性体に柔軟性が乏しいと、特に発泡倍率が高い場合には、発泡粒子の気泡膜の厚みが薄くなるために、気泡膜中にうまく配向できず、ゴム粒子が気泡膜面から露出し易くなり、揮発性発泡剤の保持性が低下すると共に気泡が連通化し易くなることが原因であると推測される。
 そこで、本発明は、上記の課題を解決し、高発泡倍率でも耐衝撃性に優れ、外観も良好な発泡成形体となる複合ポリスチレン系樹脂発泡粒子及び発泡成形体を提供することを課題とする。
 かくして、本発明によれば、複数の気泡とそれらを区画する気泡膜を有し、前記気泡膜が連続相を形成するポリスチレン系樹脂と、前記連続相中に分散されて分散相を形成するポリアクリル酸アルキルエステル系樹脂微粒子とを含み、前記ポリスチレン系樹脂が前記ポリアクリル酸アルキルエステル系樹脂微粒子で複合化された複合ポリスチレン系樹脂発泡粒子であり、
 前記分散相が、前記複合ポリスチレン系樹脂発泡粒子の気泡膜断面の気泡膜厚み方向に複数でかつ層状に存在する複合ポリスチレン系樹脂発泡粒子が提供される。
 また、本発明によれば、複数の気泡とそれらを区画する気泡膜を有し、前記気泡膜が連続相を形成するポリスチレン系樹脂と、前記連続相中に分散されて分散相を形成するポリアクリル酸アルキルエステル系樹脂微粒子とを含み、前記ポリスチレン系樹脂が前記ポリアクリル酸アルキルエステル系樹脂微粒子で複合化された複合ポリスチレン系樹脂発泡成形体であり、
 前記分散相が、前記複合ポリスチレン系樹脂発泡成形体の気泡膜断面の気泡膜厚み方向に複数でかつ層状に存在する複合ポリスチレン系樹脂発泡成形体が提供される。
 本発明によれば、高発泡倍率でも耐衝撃性に優れ、外観も良好な発泡成形体となる複合ポリスチレン系樹脂発泡粒子及び発泡成形体を提供することができる。
 すなわち、本発明の複合ポリスチレン系樹脂発泡粒子は、ポリスチレン系樹脂の連続相中にポリアクリル酸アルキルエステル系樹脂微粒子が分散した複合ポリスチレン系樹脂からなる発泡粒子であって、発泡粒子の気泡膜を厚み方向の断面でみたときに、ポリアクリル酸アルキルエステル系樹脂微粒子が厚み方向に複数でかつ層状に存在している分布構造を有する。
 したがって、これを成形型のキャビティ内に充填して加熱し型内発泡成形して発泡成形体を製造した際に、ポリアクリル酸アルキルエステル系樹脂微粒子が気泡膜の厚み方向に層状に存在、すなわち気泡膜中にポリアクリル酸アルキルエステル系樹脂微粒子がうまく配向しており、ポリアクリル酸アルキルエステル系樹脂微粒子が気泡膜面から露出して気泡を連通化させることなく、また揮発性発泡剤の保持性を良好に保つため、機械強度、成形性及び耐衝撃性の全てにおいて優れた複合ポリスチレン系樹脂発泡成形体を提供することができる。
 また、本発明によれば、分散相が、複合ポリスチレン系樹脂発泡粒子の気泡膜断面の気泡膜厚み方向の寸法(ポリアクリル酸アルキルエステル系樹脂微粒子の厚さ)及び気泡膜面方向の寸法(ポリアクリル酸アルキルエステル系樹脂微粒子の長さ)をそれぞれa及びbとしたときに、7以上60以下、好ましくは20以上50以下のアスペクト比(b/a)を有する場合に、より優れた機械強度、成形性及び耐衝撃性を有する複合ポリスチレン系樹脂発泡成形体を提供することができる。
 また、本発明によれば、ポリスチレン系樹脂が、重量平均分子量(MW)200,000~350,000及び重量平均分子量(MW)に対するZ平均分子量(MZ)の比(MZ/MW)2~4を有する場合に、より優れた機械強度、成形性及び耐衝撃性を有する複合ポリスチレン系樹脂発泡成形体を提供することができる。
 また、本発明によれば、ポリアクリル酸アルキルエステル系樹脂微粒子が、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル又はこれらの混合物の重合体から形成されてなる場合に、さらにポリアクリル酸アルキルエステル系樹脂微粒子が、前記ポリスチレン系樹脂100重量部に対して5~100重量部である場合に、より優れた機械強度、成形性及び耐衝撃性を有する複合ポリスチレン系樹脂発泡成形体を提供することができる。
 また、本発明によれば、複合ポリスチレン系樹脂発泡粒子が、ポリブタジエン末端アクリレート由来の成分をさらに含む場合に、ポリスチレン系樹脂とポリアクリル酸エステル系樹脂を相溶化して、さらに耐衝撃性を向上させた複合ポリスチレン系樹脂発泡成形体を提供することができる。
 ここで、相溶化とは、ポリアクリル酸エステル系樹脂微粒子がポリスチレン系樹脂中に単に相分離して存在しているのではなく、両者の一部またはすべてが何らかの結合、例えばグラフト結合により結合し、混和して存在し、耐衝撃性の向上に寄与していると考えられることを意味する。
 また、本発明によれば、複合ポリスチレン系樹脂発泡粒子が、0.015g/cm3以上0.1g/cm3以下の嵩密度を有する場合に、より優れた機械強度、成形性及び耐衝撃性を有する複合ポリスチレン系樹脂発泡成形体を提供することができる。
 また、本発明によれば、複合ポリスチレン系樹脂発泡粒子が、ペンタンを主成分とする揮発性発泡剤を発泡性ポリスチレン系樹脂粒子に対して2~10重量%含有させた発泡性ポリスチレン系樹脂粒子を予備発泡させたものである場合に、より優れた機械強度、成形性及び耐衝撃性を有する複合ポリスチレン系樹脂発泡成形体を提供することができる。
 また、本発明によれば、複合ポリスチレン系樹脂発泡粒子が、帯電防止剤含有成分で表面被覆されてなる場合に、帯電防止性能に優れた複合ポリスチレン系樹脂発泡成形体を提供することができる。
(a)実施例1の発泡粒子断面の走査型電子顕微鏡(SEM)写真、(b)発泡粒子気泡膜断面の透過型電子顕微鏡(TEM)写真である。 発泡粒子気泡膜断面のアスペクト比の測定方法を説明するための透過型電子顕微鏡(TEM)写真である。 発泡成形体の割れ量の測定方法を説明するための概略図である。 実施例13の発泡粒子断面の走査型電子顕微鏡(SEM)写真である。 実施例14の発泡粒子断面の走査型電子顕微鏡(SEM)写真である。 実施例15の発泡粒子断面の走査型電子顕微鏡(SEM)写真である。 実施例14の発泡成形体断面の透過型電子顕微鏡(TEM)写真である。
 本発明の複合ポリスチレン系樹脂発泡粒子(以下「発泡粒子」ともいう)は、複数の気泡とそれらを区画する気泡膜を有し、前記気泡膜が連続相を形成するポリスチレン系樹脂と、連続相中に分散されて分散相を形成するポリアクリル酸アルキルエステル系樹脂微粒子とを含み、ポリスチレン系樹脂がポリアクリル酸アルキルエステル系樹脂微粒子で複合化された複合ポリスチレン系樹脂発泡粒子であり、
 前記分散相が、複合ポリスチレン系樹脂発泡粒子の気泡膜断面の気泡膜厚み方向に複数でかつ層状に存在することを特徴とする。
 すなわち、本発明の発泡粒子における「複合ポリスチレン系樹脂」とは、ポリスチレン系樹脂とポリアクリル酸アルキルエステル系樹脂とを組み合わせた(複合した)樹脂を意味する。
 また、「複合ポリスチレン系樹脂」は、ポリスチレン系樹脂からなる分散媒中に、ポリアクリル酸アルキルエステル系樹脂微粒子からなる分散質が分散された形態であることから、前者を「連続相」、後者を「分散相」という。
(ポリスチレン系樹脂粒子:連続相)
 本発明の複合ポリスチレン系樹脂発泡粒子の連続相を構成するポリスチレン系樹脂としては、スチレン系単量体を主成分とする樹脂であれば特に限定されず、スチレン又はスチレン誘導体の単独又は共重合体が挙げられる。
 スチレン誘導体としては、α-メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、イソプロピルスチレン、ジメチルスチレン、ブロモスチレン等が挙げられる。これらのスチレン系単量体は、単独で用いられても、併用されてもよい。
 ポリスチレン系樹脂は、スチレン系単量体と共重合可能なビニル系単量体を併用したものであってもよい。
 ビニル系単量体としては、例えば、o-ジビニルベンゼン、m-ジビニルベンゼン、p-ジビニルベンゼン等のジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート等のアルキレングリコールジ(メタ)アクリレート等の多官能性単量体;α-メチルスチレン、(メタ)アクリロニトリル、メチル(メタ)アクリレート、ブチル(メタ)アクリレート等が挙げられる。これらの中でも、多官能性モノマーが好ましく、エチレングリコールジ(メタ)アクリレート、nが4~16のポリエチレングリコールジ(メタ)アクリレート、ジビニルベンゼンがより好ましく、ジビニルベンゼン、エチレングリコールジ(メタ)アクリレートが特に好ましい。尚、併用される単量体は、単独で用いられても、併用されてもよい。
 また、併用される単量体を使用する場合、その含有量は、スチレン系単量体が主成分となる量(例えば、50重量%以上)になるように設定されることが好ましい。
 本発明において「(メタ)アクリル」とは、「アクリル」又は「メタクリル」を意味する。
 ポリスチレン系樹脂は、重量平均分子量(MW)200,000~350,000及び重量平均分子量(MW)に対するZ平均分子量(MZ)の比(MZ/MW)2~4であるのが好ましい。
 重量平均分子量(MW)が200,000未満では、気泡膜中のポリアクリル酸アルキルエステル系樹脂微粒子が配向され難くなり、発泡成形体としたときに耐衝撃性が低下することがある。一方、重量平均分子量(MW)350,000を超えると、複合ポリスチレン系樹脂発泡粒子を発泡成形するときに発泡性が低下し、発泡成形体表面の伸びが不足して発泡成形体の外観が劣ることがある。
 具体的なMWは、例えば、200,000、250,000、300,000及び350,000等である。
 また、重量平均分子量(MW)に対するZ平均分子量(MZ)の比(MZ/MW)が2未満では、気泡膜中のポリアクリル酸アルキルエステル系樹脂微粒子が配向され難くなり、発泡成形体としたときに耐衝撃性が低下することがある。一方、重量平均分子量(MW)に対するZ平均分子量(MZ)の比(MZ/MW)が4を超えると、複合ポリスチレン系樹脂発泡粒子を発泡成形するときに発泡性が低下し、発泡成形体表面の伸びが不足して発泡成形体の外観が劣ることがある。
 より好ましい重量平均分子量(MW)は230,000~330,000であり、より好ましい重量平均分子量(MW)に対するZ平均分子量(MZ)の比(MZ/MW)は2~3である。
 具体的なMZ/MWは、例えば、2.0、2.5及び3.0等である。
(ポリアクリル酸アルキルエステル系樹脂微粒子:分散相)
 本発明の複合ポリスチレン系樹脂発泡粒子の分散相を構成するポリアクリル酸アルキルエステル系樹脂微粒子としては、アクリル酸アルキルエステル系単量体を主成分とする樹脂であれば特に限定されず、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸ペンチル、アクリル酸2-エチルヘキシル、アクリル酸ヘキシル等が挙げられ、これらの中でもアクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシルが好ましい。これらのアクリル酸アルキルエステル系単量体は、単独で用いられても、併用されてもよい。なお、上記「アルキル」の炭素数は1~30を意味する。
 したがって、ポリアクリル酸アルキルエステル系樹脂微粒子は、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル又はこれらの混合物の重合体から形成されてなるのが好ましい。
 ポリアクリル酸アルキルエステル系樹脂微粒子は、ポリスチレン系樹脂100重量部に対して5~100重量部であるのが好ましい。
 樹脂微粒子の重量割合が上記の範囲であれば、より優れた機械強度、成形性及び耐衝撃性を有する複合ポリスチレン系樹脂発泡成形体を提供することができる。
 樹脂微粒子がポリスチレン系樹脂100重量部に対して5重量部未満では、得られた複合ポリスチレン系樹脂発泡成形体の耐衝撃性向上の効果が十分に得られないことがある。一方、樹脂微粒子がポリスチレン系樹脂100重量部に対して100重量部を超えると、得られた発泡性複合ポリスチレン系樹脂粒子を高倍率発泡させることが困難となり、発泡成形体を低密度化できないことがある。より好ましい樹脂微粒子は、ポリスチレン系樹脂100重量部に対して10~70重量部である。
 具体的なポリアクリル酸アルキルエステル系樹脂微粒子は、例えば、ポリスチレン系樹脂100重量部に対して5、10、15、20、25、30、50、70、75及び100重量部等である。
 本発明において、原材料となる樹脂及び単量体の比率は、発泡粒子及び発泡成形体におけるそれらの比率と略同一である。
 本発明の複合ポリスチレン系樹脂発泡粒子の分散相は、複合ポリスチレン系樹脂発泡粒子の気泡膜を厚み方向の断面でみたときに、ポリアクリル酸アルキルエステル系樹脂微粒子が厚み方向に複数でかつ層状に存在する構造である。
 本発明において、発泡粒子及び発泡成形体中の気泡膜単位でみれば、微粒子が略均一に分散しているものと考えられ、このような観点で、分散相における微粒子の分布状態は発泡粒子及び発泡成形体において略均一である。
 分散相は、発泡粒子の気泡膜を厚み方向の断面で見たとき、分散相の気泡膜厚み方向の寸法(樹脂微粒子の厚さa)と分散相の気泡膜面方向の寸法(樹脂微粒子の長さb)としたときに、7以上60以下のアスペクト比(b/a)を有するのが好ましい。
 アスペクト比(b/a)が7未満では、気泡膜面から樹脂微粒子が露出し易くなり、発泡剤ガスの保持性が低下することがある。一方、アスペクト比(b/a)が60を超えると、樹脂微粒子が扁平になり過ぎ、薄くなって亀裂の伝播を抑制し難くなり、発泡成形体の耐衝撃性が低下することがある。より好ましいアスペクト比(b/a)は10以上60以下であり、さらに好ましいアスペクト比(b/a)は20以上50以下である。
 具体的なb/aは、例えば、10、15、20、25、30、35、45、50、55及び60等である。
 なお、発泡成形体についても同様であり、発泡粒子における厚さa及び長さbをそれぞれc及びdに置き換えて表す。
 このアスペクト比及びその測定方法については、実施例において詳述する。
 本発明において、発泡前の複合ポリスチレン系樹脂粒子中の樹脂微粒子の形状は特に限定されず、例えば、球状、楕円球状及び不定形状等をとりうる。
 また、発泡後の発泡粒子の気泡膜断面の樹脂微粒子の形状は、特に限定されず、例えば、円、楕円、不定形等をとりうる。
 また、発泡前の複合ポリスチレン系樹脂粒子中の樹脂微粒子の平均粒径は、100~1000nmであるのが好ましい。
 樹脂微粒子の平均粒径が100nm未満では、得られた発泡成形体の耐衝撃性が不十分になることがある。一方、樹脂微粒子の平均粒径が1000nmを超えると、発泡剤の逸散速度が早くなることがある。より好ましい樹脂微粒子の平均粒径は200~500nmである。
 具体的な平均粒径は、例えば、100、200、250、500、750及び1000nm等である。
(複合ポリスチレン系樹脂粒子)
 本発明において、複合ポリスチレン系樹脂粒子の形状は特に限定されず、例えば、球状、楕円球状、円柱状等をとりうる。好ましくは、球状である。
 本発明の複合ポリスチレン系樹脂粒子が球状であるとき、その平均粒子径は、その後、揮発性発泡剤を含浸させた発泡性複合ポリスチレン系樹脂粒子をさらに発泡させた発泡粒子の成形型内への充填性等を考慮すると、0.3~2.0mmであるのが好ましく、より好ましくは0.5~1.5mmである。
 具体的な平均粒径は、例えば、0.3、0.5、0.8、1.0、1.5及び2.0mm等である。
(ポリブタジエン末端アクリレート)
 複合ポリスチレン系樹脂粒子には、ポリブタジエン末端アクリレート由来の成分がさらに含まれているのが好ましい。
 これにより、ポリスチレンとポリアクリル酸エステルを相溶化して、さらに耐衝撃性を向上させた複合ポリスチレン系樹脂発泡成形体を提供することができる。
 ポリブタジエン末端アクリレートには、80%以上の1,2-結合と、1,4-結合とを含有するポリブタジエン分子に1以上の(メタ)アクリロイル基が結合した構造の単量体を使用できる。この単量体は、ポリブタジエン分子末端に(メタ)アクリロイル基を導入した構造が好ましい。具体的には、ポリブタジエン末端アクリレートは、1,2-結合による下記繰り返し単位(1)及び1,4-結合による下記繰り返し単位(2)を含有するポリブタジエン分子と、ポリブタジエン分子の一方の末端又は両末端に下記式(3)で表される官能基((メタ)アクリロイル基)を有する単量体である。
Figure JPOXMLDOC01-appb-C000001
 単位(1)と(2)のモル比は、(1)/〔(1)+(2)〕≧0.8であることが好ましい。単位(2)は、トランス構造であっても、シス構造であってもよい。また、単位(1)と(2)はランダム、ブロック、交互等の種々の繰り返し形態で単量体中に存在しうる。
 式(3)中、Rは、水素原子又は炭素数1~4の低級アルキル基であることが好ましい。式(3)の官能基は、ポリブタジエン分子の両末端に位置していることが好ましい。
 ポリブタジエン末端アクリレートは、例えば、大阪有機化学工業社から入手可能な商品名BAC-45、BAC-15等を使用できる。また、以下の公知の方法により、新たに合成したものも使用できる。
 すなわち、水酸基含有ポリブタジエンと(メタ)アクリル基を有する化合物とを反応させることにより、ポリブタジエン構造に(メタ)アクリル基を導入する方法が挙げられる。
 上記方法には、例えば、(i)p-トルエンスルホン酸のような脱水触媒を用いて、水酸基含有ポリブタジエンの水酸基と、(メタ)アクリル基を有する化合物のカルボキシル基とを脱水反応させる方法、(ii)チタン触媒、スズ触媒等のエステル交換触媒を用いて、(メタ)アクリル酸エステルとポリブタジエンの水酸基とのエステル交換反応させる方法が挙げられる。
 (メタ)アクリル基を有する化合物としては、例えば、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル等が挙げられる(プロピル及びブチルは構造異性体を含む)。
 ポリブタジエン末端アクリレートは、200~10,000の範囲の数平均分子量を有することが好ましい。数平均分子量が200未満では、複合ポリスチレン系樹脂粒子の弾性が低下することがある。10,000を超えると、反応系内に投入、溶解させにくいことがある。より好ましい数平均分子量は、2500~3000の範囲である。ここでの数平均分子量は、ゲル浸透クロマトグラフで測定することにより得られた値である。
 具体的な数平均分子量は、例えば、200、1000、1500、2000、2500、3000、3500、5000及び10,000等である。
 ポリブタジエン末端アクリレートは、500~9000Pa・sの範囲の粘度(25℃)を有していることが好ましい。粘度が500Pa・s未満では、複合ポリスチレン系樹脂粒子の弾性が低下することがある。9000Pa・sを超えると、反応系内に投入、溶解させにくいことがある。より好ましい粘度は、4000~8000Pa・sの範囲である。ここでの粘度は、回転式粘度計で測定することにより得られた値である。
 ポリブタジエン末端アクリレートに由来の成分は、複合ポリスチレン系樹脂粒子100重量部に対して、0.1~3.0重量部の範囲で複合ポリスチレン系樹脂粒子中に含まれていることが好ましい。この成分の含有量が、0.1重量部未満では、複合ポリスチレン系樹脂粒子の弾性が低下することがある。3.0重量部を超えると、複合ポリスチレン系樹脂粒子に吸収されにくいことがある。より好ましい含有量は、0.1~2.0重量部の範囲、特に0.5~1.0重量部の範囲である。
 具体的なポリブタジエン末端アクリレートは、例えば、複合ポリスチレン系樹脂粒子100重量部に対して0.1、0.3、0.5、0.8、1.0、1.5、2.0及び3.0重量部等である。
(複合ポリスチレン系樹脂発泡粒子)
 本発明において、複合ポリスチレン系樹脂発泡粒子は0.015g/cm3以上0.1g/cm3以下の嵩密度を有するのが好ましい。
 発泡粒子の嵩密度が上記の範囲であれば、より優れた機械強度、成形性及び耐衝撃性を有する複合ポリスチレン系樹脂発泡成形体を提供することができる。
 発泡粒子の嵩密度が0.015g/cm3未満では、発泡成形体の耐衝撃性が低下することがある。一方、発泡粒子の嵩密度が0.1g/cm3を超えると、発泡成形体を包装材、緩衝材として使用するときに重量的に大きくなり、経済的に不利になることがある。より好ましい発泡粒子の嵩密度は、0.018g/cm3以上0.05g/cm3以下である。
 具体的な嵩密度は、例えば、0.015、0.018、0.02、0.03、0.04、0.05、0.08及び0.1等である。
 本発明において発泡粒子の気泡膜断面の樹脂微粒子が特定の扁平状となるのは、樹脂が発泡する過程、すなわち気泡の膨張に伴い気泡膜が延伸される過程において、連続相を形成するポリスチレン系樹脂の伸びに伴い分散相の樹脂微粒子が適度に延伸されることを意味している。このことは連続相を形成するポリスチレン系樹脂の粘弾性、すなわち分子量を特定の範囲にする必要があることを意味する。したがって、ポリスチレン系樹脂は、上記のような範囲の重量平均分子量(MW)及び重量平均分子量(MW)に対するZ平均分子量(MZ)の比(MZ/MW)を有するのが好ましい。
 本発明の複合ポリスチレン系樹脂発泡粒子は、揮発性発泡剤を含浸させた発泡性複合ポリスチレン系樹脂粒子を公知の方法で所定の嵩密度(例えば、0.015~0.1g/cm3)に予備発泡させることにより製造することができる。
 本発明の発泡性複合ポリスチレン系樹脂粒子は、例えば、水性媒体中で、ポリスチレン系樹脂からなる種粒子に、アクリル酸アルキルエステルを含む単量体混合物を吸収させた後、単量体混合物を重合させて、種粒子中にポリアクリル酸アルキルエステル系樹脂微粒子を分散形成する工程、続く水性媒体中で、ポリアクリル酸アルキルエステル系樹脂微粒子が分散形成された種粒子に、スチレン系単量体を含む単量体混合物を吸収させた後、単量体混合物を重合させて、ポリスチレン系樹脂粒子をさらに成長させる工程、及びその重合後又は重合途中での発泡剤を含浸させる工程により製造することができる。
 より具体的には、本発明の発泡性複合ポリスチレン系樹脂粒子は、ポリスチレン系樹脂からなる種粒子を水中に分散させてなる分散液中に、ポリスチレン系樹脂からなる種粒子100重量部に対して、アクリル酸アルキルエステル系単量体10~90重量部を供給し、このアクリル酸アルキルエステル系単量体を種粒子に吸収、重合させてポリスチレン系樹脂粒子を成長させる第1重合工程、次いでこの分散液中にスチレン系単量体を供給し、これを種粒子に吸収、重合させてポリスチレン系樹脂粒子をさらに成長させる第2重合工程、その重合後又は重合途中での発泡剤を含浸させる工程により製造することができる。
 第1重合工程に用いられるアクリル酸アルキルエステル系単量体及びその使用量並びに第2重合工程に用いられるスチレン系単量体は、(ポリアクリル酸アルキルエステル系樹脂微粒子)及び(ポリスチレン系樹脂粒子)に記載のとおりである。
(種粒子)
 ポリスチレン系樹脂からなる種粒子は、特に限定されず、公知の方法により製造できる。例えば、懸濁重合法や、押出機で原料樹脂を溶融混練後、ストランド状に押し出し、所望の粒子径でカットする方法が挙げられる。また、一部又は全部にポリスチレン系樹脂回収品を用いることができ、懸濁重合法やカットする方法で得られた粒子をそのまま、又はその粒子に、水性媒体中で、スチレン系単量体を含浸・重合させることにより得られる粒子であってもよい。
 種粒子の粒径は、作成する複合ポリスチレン系樹脂粒子の平均粒子径等に応じて適宜調整でき、例えば平均粒子径1mmの複合ポリスチレン系樹脂粒子を作成する場合には、平均粒子径0.4~0.7mm程度の種粒子を用いることが好ましい。
 また、種粒子の重量平均分子量は特に限定されないが、好ましくは15万~70万であり、より好ましくは20万~50万である。
(他の成分)
 なお、種粒子には、物性を損なわない範囲内において、可塑剤、結合防止剤、気泡調整剤、架橋剤、充填剤、難燃剤、難燃助剤、滑剤、着色剤等の添加剤が添加されていてもよい。
(重合開始剤)
 上記の製造方法で使用する重合開始剤としては、従来からスチレン系単量体の重合に用いられるものであれば、特に限定されず、例えば、ベンゾイルパーオキサイド、ラウリルパーオキサイド、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシ-2-エチルヘキサノエ、t-ブチルパーオキサイド、t-ブチルパーオキシピバレート、t-ブチルパーオキシイソプロピルカーボネート、t-ブチルパーオキシアセテート、2,2-ビス(t-ブチルパーオキシ)ブタン、t-ブチルパーオキシ-3,3,5-トリメチルヘキサノエート、ジ-t-ブチルパーオキシヘキサハイドロテレフタレート、2,2-ジ-t-ブチルパーオキシブタン、ジ-t-ヘキシルパーオキサイド、ジクミルパーオキサイド等の有機過酸化物やアゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル等のアゾ化合物等が挙げられる。これらは単独で用いられても、併用されてもよいが、10時間の半減期を得るための分解温度が60~130℃にある複数種類の重合開始剤を併用することが好ましい。
(懸濁安定剤)
 また、上記の製造において、スチレン系単量体の液滴及びポリスチレン系樹脂種粒子の分散性を安定させるために懸濁安定剤を用いてもよい。このような懸濁安定剤としては、従来からスチレン系単量体の懸濁重合に用いられているものであれば特に限定されず、例えば、ポリビニルアルコール、メチルセルロース、ポリアクリルアミド、ポリビニルピロリドン等の水溶性高分子や、第三リン酸カルシウム、ピロリン酸マグネシウム等の難溶性無機化合物等が挙げられる。
 また、難溶性無機化合物を用いる場合には、通常アニオン界面活性剤が併用される。
 このようなアニオン界面活性剤としては、例えば、脂肪酸石鹸、N-アシルアミノ酸又はその塩、アルキルエーテルカルボン酸塩等のカルボン酸塩,アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、ジアルキルスルホコハク酸エステル塩、アルキルスルホ酢酸塩、α-オレフィンスルホン酸塩等のスルホン酸塩、高級アルコール硫酸エステル塩、第二級高級アルコール硫酸エステル塩、アルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩等の硫酸エステル塩、アルキルエーテルリン酸エステル塩、アルキルリン酸エステル塩等のリン酸エステル塩等が挙げられる。
(他の成分)
 なお、複合ポリスチレン系樹脂粒子には、物性を損なわない範囲内において、可塑剤、結合防止剤、気泡調整剤、架橋剤、充填剤、難燃剤、難燃助剤、滑剤、着色剤等の添加剤が添加されていてもよい。
 また、後述する発泡性複合ポリスチレン系樹脂粒子の表面に、ジンクステアレートのような粉末状金属石鹸類が塗布されていてもよい。この塗布により、発泡性ポリスチレン系樹脂粒子の予備発泡工程において発泡粒子同士の結合を減少させることができる。
 複合ポリスチレン系樹脂粒子には、加熱発泡時に用いられる水蒸気の圧力が低くても良好な発泡成形性を維持させるために、1気圧下における沸点が200℃を超える可塑剤を含有させることができる。
 可塑剤としては、例えば、フタル酸エステル、グリセリンジアセトモノラウレート、グリセリントリステアレート、グリセリンジアセトモノステアレート等のグリセリン脂肪酸エステル、ジイソブチルアジペート等のアジピン酸エステル、ヤシ油等の可塑剤が挙げられる。
 可塑剤の複合ポリスチレン系樹脂粒子中における含有量は、2重量%未満である。
 本発明の複合ポリスチレン系樹脂発泡粒子は、帯電防止剤含有成分で表面被覆されてなるのが好ましい。
 表面被覆には、例えば、複合ポリスチレン系樹脂粒子の表面に帯電防止剤を塗布する方法が挙げられる。具体的には、攪拌機中で帯電防止剤ともに複合ポリスチレン系樹脂粒子を攪拌するのが好ましく、攪拌機としてはタンブラーミキサー、レディゲミキサー等の攪拌機が用いられる。
 帯電防止剤としては、例えば、ヒドロキシアルキルアミン、ヒドロキシアルキルモノエーテルアミン、グリセリン脂肪酸エステル、ポリオキシエチレンアルキルエーテル等のノニオン系界面活性剤、アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩等のアニオン系界面活性剤、テトラアルキルアンモニウム塩、トリアルキルベンジルアンモニウム塩等のカチオン系界面活性剤等がある。ヒドロキシアルキルアミン、ヒドロキシアルキルモノエーテルアミン、グリセリン脂肪酸エステル、ポリオキシエチレンアルキルエーテル等のノニオン系界面活性剤が挙げられる。
 このような帯電防止剤の具体例としては、例えばN,N-ビス(ヒドロキシエチル)ドデシルアミン、N,N-ビス(ヒドロキシエチル)テトラデシルアミン、N,N-ビス(ヒドロキシエチル)ヘキサデシルアミン、N,N-ビス(ヒドロキシエチル)オクタデシルアミン、N-ヒドロキシエチル-N-(2-ヒドロキシテトラデシル)アミン、N-ヒドロキシエチル-N-(2-ヒドロキシヘキサデシル)アミン、N-ヒドロキシエチル-N-(2-ヒドロキシオクタデシル)アミン、N-ヒドロキシプロピル-N-(2-ヒドロキシテトラデシル)アミン、N-ヒドロキシブチル-N-(2-ヒドロキシテトラデシル)アミン、N-ヒドロキシペンチル-N-(2-ヒドロキシテトラデシル)アミン、N-ヒドロキシペンチル-N-(2-ヒドロキシヘキサデシル)アミン、N-ヒドロキシペンチル-N-(2-ヒドロキシオクタデシル)アミン、N,N-ビス(2-ヒドロキシエチル)ドデシルアミン、N,N―ビス(2-ヒドロキシエチル)テトラデシルアミン、N,N-ビス(2-ヒドロキシエチル)ヘキサデシルアミン、N,N-ビス(2-ヒドロキシエチル)オクタデシルアミン、グリセリンモノステアレート、グリセリンジステアレート、ドデシルベンゼンスルホン酸ナトリウム、アルキルベンゼンスルホン酸ナトリウム、ポリエチレングリコール、ポリオキシエチレンオレイルエーテル、ラウリルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド、ラウリルベタイン、ステアリルベタイン等が挙げられる。これらの帯電防止剤は、単独で用いられても、併用されてもよい。
 帯電防止剤は、複合ポリスチレン系樹脂粒子100重量部に対して、0.5~5.0重量部の範囲であるのが好ましい。
 帯電防止剤の被覆量が少なく、0.5重量部未満では、十分な帯電防止性能の向上が得られないことがある。一方、帯電防止剤の被覆量が5.0重量部を超えると、発泡成形体の融着性を損なうことがある。より好ましい含有量は、0.8~2.0重量部の範囲であり、さらに好ましい含有量は、0.9~1.5重量部の範囲である。
 具体的な帯電防止剤は、例えば、複合ポリスチレン系樹脂粒子100重量部に対して、0.5、0.8、0.9、1.0、1.5、2.0及び5.0等である。
(発泡性複合ポリスチレン系樹脂粒子)
 本発明の発泡性複合ポリスチレン系樹脂粒子は、複合ポリスチレン系樹脂粒子と揮発性発泡剤とを含み、前述の第2重合工程の重合後又は重合途中で揮発性発泡剤を含浸させることにより製造することができる。
 揮発性発泡剤を含浸させる温度としては、低いと、含浸に時間を要し、発泡性ポリスチレン系樹脂粒子の製造効率が低下することがある。一方、高いと、発泡性ポリスチレン系樹脂粒子同士の合着が多量に発生することがあるので、70~130℃が好ましく、80~120℃がより好ましい。
(揮発性発泡剤)
 揮発性発泡剤としては、従来からポリスチレン系樹脂の発泡に用いられているものであれば、特に限定されず、例えば、イソブタン、n-ブタン、n-ペンタン、イソペンタン、ネオペンタン、シクロペンタン等の炭素数10以下の脂肪族炭化水素等の揮発性発泡剤が挙げられ、特にブタン系発泡剤、ペンタン系発泡剤が好ましく、ペンタンを主成分(例えば、50重量%以上)として含む揮発性発泡剤が特に好ましい。なお、ペンタンは可塑剤としての作用も期待できる。
 揮発性発泡剤の発泡性複合ポリスチレン系樹脂粒子中における含有量は、通常2~10重量%の範囲とされ、3~10重量%の範囲が好ましく、3~8重量%の範囲が特に好ましい。
 揮発性発泡剤の含有量が少なく、例えば2重量%未満では、発泡性複合ポリスチレン系樹脂粒子から低密度の複合ポリスチレン系樹脂発泡成形体を得ることができないことがあると共に、型内発泡成形時の二次発泡力を高める効果が得られないために、複合ポリスチレン系樹脂発泡成形体の外観が低下することがある。一方、揮発性発泡剤の含有量が多く、例えば10重量%を超えると、複合ポリスチレン系樹脂発泡粒子を用いた複合ポリスチレン系樹脂発泡成形体の製造工程における冷却工程に要する時間が長くなり生産性が低下することがある。
(発泡助剤)
 本発明の複合ポリスチレン系樹脂発泡粒子には、揮発性発泡剤と共に発泡助剤を含有させることができる。
 発泡助剤としては、従来からポリスチレン系樹脂の発泡に用いられているものであれば、特に限定されず、例えば、スチレン、トルエン、エチルベンゼン、キシレン等の芳香族有機化合物、シクロヘキサン、メチルシクロヘキサン等の環式脂肪族炭化水素、酢酸エチル、酢酸ブチル等の1気圧下における沸点が200℃以下の溶剤が挙げられる。
 発泡助剤の複合ポリスチレン系樹脂粒子中における含有量は、通常0.2~2.5重量%の範囲とされ、0.3~2重量%の範囲が好ましい。
 発泡助剤の含有量が少なく、例えば0.2重量%未満では、ポリスチレン系樹脂の可塑化効果が発現しないことがある。一方、また、発泡助剤の含有量が多く、2.5重量%を超えると、発泡性複合ポリスチレン系樹脂粒子を発泡成形させて得られる複合ポリスチレン系樹脂発泡成形体に収縮や融けが発生して外観が低下したり、或いは複合ポリスチレン系樹脂発泡粒子を用いた複合ポリスチレン系樹脂発泡成形体の製造工程における冷却工程に要する時間が長くなることがある。
 次いで、揮発性発泡剤を含浸させた、発泡性複合ポリスチレン系樹脂粒子を、公知の方法で所定の嵩密度(例えば、0.015~0.1g/cm3)に予備発泡させることにより、本発明の複合ポリスチレン系樹脂発泡粒子を得ることができる。
 予備発泡においては、必要に応じて発泡する際にスチームと同時に空気を導入してもよい。
 予備発泡における条件は、用いる樹脂粒子や所望の物性等により適宜選択すればよい。例えば、圧力は、0.01~0.04MPa程度であり、より好ましくは0.01~0.03MPa、さらに好ましくは0.015~0.02MPaである。具体的には、0.01MPa、0.015MPa、0.02MPa、0.03MPa及び0.04MPa等が挙げられる。
 また、時間は、30~240秒程度であり、より好ましくは60~180秒、さらに好ましくは90~150秒である。具体的には、30秒、60秒、90秒、120秒、150秒、180秒及び240秒等が挙げられる。
 本発明の複合ポリスチレン系樹脂発泡粒子は、0.015g/cm3以上0.1g/cm3以下の嵩密度を有するのが好ましい。
 発泡粒子の嵩密度が上記の範囲であれば、より優れた機械強度、成形性及び耐衝撃性を有する複合ポリスチレン系樹脂発泡成形体を提供することができる。
 発泡粒子の嵩密度が0.015g/cm3未満では、発泡成形体の耐衝撃性が低下することがある。一方、発泡粒子の嵩密度が0.1g/cm3を超えると、発泡成形体を包装材、緩衝材として使用するときに重量的に大きくなり、経済的に不利になることがある。より好ましい発泡粒子の嵩密度は、0.018g/cm3以上0.05g/cm3以下である。
 具体的な嵩密度は、例えば、0.015、0.018、0.02、0.03、0.04、0.05、0.08及び0.1等である。
 したがって、本発明の複合ポリスチレン系樹脂発泡粒子は、ペンタンを主成分とする揮発性発泡剤を発泡性複合ポリスチレン系樹脂粒子に対して2~10重量%含有させた発泡性複合ポリスチレン系樹脂粒子を予備発泡させたものであるのが好ましい。
(複合ポリスチレン系樹脂発泡成形体)
 本発明の複合ポリスチレン系樹脂発泡成形体は、本発明の複合ポリスチレン系樹脂発泡粒子を公知の方法で処理することにより得ることができ、本発明の複合ポリスチレン系樹脂発泡粒子を成形機に内蔵された成形型内で融着一体化させて得るのが好ましい。具体的には、本発明の複合ポリスチレン系樹脂発泡粒子が発泡成形機の金型内に充填され、再度加熱されることにより、発泡しながら、発泡粒子同士が熱融着することにより発泡成形体が得られる。
 発泡成形における条件は、用いる樹脂粒子や所望の物性等により適宜選択すればよい。例えば、圧力は、0.06~0.10MPa程度であり、より好ましくは0.07~0.09MPa、さらに好ましくは0.075~0.08MPaである。具体的には、0.06MPa、0.07MPa、0.075MPa、0.08MPa、0.09MPa及び0.10MPa等が挙げられる。
 また、加熱時間は、20~60秒程度であり、より好ましくは25~50秒、さらに好ましくは30~40秒である。具体的には、20秒、25秒、30秒、40秒、50秒、60秒等が挙げられる。
 本発明の複合ポリスチレン系樹脂発泡成形体は、11cm以上のJIS K7211による落球衝撃値、12mm以上のJIS K7221-1による曲げ破断点変位量及び50%未満のJIS Z0235による割れ量を有するのが好ましい。
 落球衝撃値、曲げ破断点変位量及び割れ量は、それぞれ13cm以上、14mm以上及び45%未満であるのがより好ましい。
 これらの測定方法については、実施例において詳述する。
 以下、実施例によって本発明の具体例を示すが、以下の実施例は本発明の例示にすぎず、本発明は以下の実施例のみに限定されない。なお、以下において、特記しない限り、「部」及び「%」は重量基準である。
 以下の実施例及び比較例において、複合ポリスチレン系樹脂粒子の平均粒子径、複合ポリスチレン系樹脂発泡粒子の嵩密度及び嵩倍数、発泡粒子気泡膜断面のポリアクリル酸アルキルエステル系樹脂微粒子のアスペクト比、複合ポリスチレン系樹脂発泡粒子の分子量、嵩倍数50倍の発泡成形体の気泡膜断面のポリアクリル酸アルキルエステル系樹脂微粒子のアスペクト比、分子量、落球衝撃値、曲げ破断点変位量、割れ量並びに成形性は、次の測定方法及び評価基準により測定・評価した。
 また、下記の方法により、発泡成形体の表面抵抗率を測定し、帯電防止性を評価した。
<複合ポリスチレン系樹脂粒子の平均粒子径>
 平均粒子径とはD50で表現される値である。
 具体的には、ロータップ型篩振とう機(飯田製作所製)を用いて、篩目開き4.00mm、3.35mm、2.80mm、2.36mm、2.00mm、1.70mm、1.40mm、1.18mm、1.00mm、0.85mm、0.71mm、0.60mm、0.50mm、0.425mm、0.355mm、0.300mm、0.250mm、0.212mm及び0.180mmのJIS標準篩で試料約50gを10分間分級し、篩網上の試料重量を測定する。得られた結果から累積重量分布曲線を作成し、累積重量が50%となる粒子径(メディアン径)を平均粒子径とする。
<複合ポリスチレン系樹脂発泡粒子の嵩密度及び嵩倍数>
 複合ポリスチレン系樹脂発泡粒子の嵩密度及び嵩倍数を次のように測定する。
 約5gの発泡粒子の重量(a)を小数以下2位で秤量し、最小メモリ単位が5cm3である500cm3メスシリンダーに秤量した発泡粒子を入れる。次に、メスシリンダーの口に、その口径よりやや小さい円形の樹脂板であって、その中心に巾約1.5cm、長さ約30cmの棒状の樹脂板が直立して固定された押圧具を当てて、発泡粒子の体積(b)を読み取る。
 得られた発泡粒子の重量(a)及び発泡粒子の体積(b)から、次式により
   発泡粒子の嵩密度(g/cm3)=(a)/(b)
   嵩倍数=嵩密度の逆数=(b)/(a)
を求める。
<発泡粒子気泡膜断面のポリアクリル酸アルキルエステル系樹脂微粒子のアスペクト比>
 発泡粒子をスライスし、発泡粒子の中心近傍から切片を切り出し、その切片をエポキシ樹脂中に包埋させ、発泡粒子切片を含むエポキシ樹脂をウルトラミクロトーム(ライカマイクロシステムズ製、LEICA ULTRACUT UCT)を用いて加工して超薄切片を作製する。染色剤は四酸化ルテニウムを用いる。
 次いで、超薄切片を透過型電子顕微鏡(日立ハイテクノロジーズ製、H-7600)にて5000倍(場合により10000倍、20000倍)で写真撮影する。撮影した写真をA4用紙に1画像となるように拡大印刷し、画像中の150mm×200mmの範囲において両端が確認できるポリアクリル酸アルキルエステル系樹脂微粒子の長いものから順に30個の粒子を選択し、それらの粒子の厚さa(気泡膜厚み方向の寸法)と長さb(気泡膜面方向の寸法)とを測定し、アスペクト比(b/a)を算出する。尚、各々最も長い部分の寸法とする。すなわち、粒子が湾曲している場合でも確認できる粒子の両端の距離をbとし、その粒子の両端を結ぶ線分と垂直方向における最も長い部分の距離をaとする。得られたアスペクト比から総平均アスペクト比を算出し、複合ポリスチレン系樹脂発泡粒子中のポリアクリル酸アルキルエステル系樹脂微粒子のアスペクト比とする(図2参照)。
<発泡成形体気泡膜断面のポリアクリル酸アルキルエステル系樹脂微粒子のアスペクト比>
 発泡成形体から表皮を除去し、この表皮を除去した面の中心近傍から切片を切り出し、その切片をエポキシ樹脂中に包埋させ、この切片を含むエポキシ樹脂をウルトラミクロトーム(ライカマイクロシステムズ製、LEICA ULTRACUT UCT)を用いて加工して超薄切片を作製する。染色剤は四酸化ルテニウムを用いる。
 次いで、超薄切片を透過型電子顕微鏡(日立ハイテクノロジーズ製、H-7600)にて5000倍(場合により10000倍、20000倍)で写真撮影する。撮影した写真をA4用紙に1画像となるように拡大印刷し、画像中の150mm×200mmの範囲において両端が確認できるポリアクリル酸アルキルエステル系樹脂微粒子の長いものから順に30個の粒子を選択し、それらの粒子の厚さc(気泡膜厚み方向の寸法)と長さd(気泡膜面方向の寸法)とを測定し、アスペクト比(d/c)を算出する。尚、各々最も長い部分の寸法とする。すなわち、粒子が湾曲している場合でも確認できる粒子の両端の距離をdとし、その粒子の両端を結ぶ線分と垂直方向における最も長い部分の距離をcとする。得られたアスペクト比から総平均アスペクト比を算出し、複合ポリスチレン系樹脂発泡成形体中のポリアクリル酸アルキルエステル系樹脂微粒子のアスペクト比とする。
<複合ポリスチレン系樹脂発泡粒子の分子量>
 分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法を用いて測定した、ポリスチレン(PS)換算平均分子量を意味する(内部標準法)。
 発泡粒子の中心を通るように2分割し、この2分割した発泡粒子30mg±3mgを0.1重量%BHT(ブチルヒドロキシトルエン)入りクロロホルム4mLに溶解させ、非水系0.45μmクロマトディスクで濾過し、得られた濾液を次の条件でクロマトグラフを用いて測定する。予め測定し、作成しておいた標準ポリスチレンの検量線から試料の平均分子量を求める。
  測定装置:東ソー HPLC(ポンプ DP-8020、オートサンプラー AS-8020、検出器 UV-8020、RI-8020)
  カラム:GPC K-806L(φ8.0×300mm、Shodex社製)2本
  ガードカラム:GPC K-LG(φ8.0×50mm、Shodex社製)1本
  試験数:2
  測定条件:カラム温度(40℃)、移動相(クロロホルム)、移動相流量(1.2mL/min)、ポンプ温度(室温)、検出器温度(室温)、測定時間(25分)、検出波長(UV254nm)、注入量(50μL)
  検量線用標準ポリスチレン:昭和電工社製、商品名「Shodex」、重量平均分子量(Mw):5,620,000、3,120,000、1,250,000、442,000、131,000、54,000、20,000、7,590、3,450、1,320
 得られた重量平均分子量MWとZ平均分子量MZからそれらの比MZ/MWを求める。
<複合ポリスチレン系樹脂発泡成形体の分子量>
 分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法を用いて測定した、ポリスチレン(PS)換算平均分子量を意味する(内部標準法)。
 発泡成形体から30mg±3mgの試料を採取し、この試料を0.1重量%BHT(ブチルヒドロキシトルエン)入りクロロホルム4mLに溶解させ、非水系0.45μmクロマトディスクで濾過し、得られた濾液を次の条件でクロマトグラフを用いて測定する。予め測定し、作成しておいた標準ポリスチレンの検量線から試料の平均分子量を求める。
  測定装置:東ソー HPLC(ポンプ DP-8020、オートサンプラー AS-8020、検出器 UV-8020、RI-8020)
  カラム:GPC K-806L(φ8.0×300mm、Shodex社製)2本
  ガードカラム:GPC K-LG(φ8.0×50mm、Shodex社製)1本
  試験数:2
  測定条件:カラム温度(40℃)、移動相(クロロホルム)、移動相流量(1.2mL/min)、ポンプ温度(室温)、検出器温度(室温)、測定時間(25分)、検出波長(UV254nm)、注入量:50μL
  検量線用標準ポリスチレン:昭和電工社製、商品名「Shodex」、重量平均分子量(Mw):5,620,000、3,120,000、1,250,000、442,000、131,000、54,000、20,000、7,590、3,450、1,320
 得られた重量平均分子量MWとZ平均分子量MZからそれらの比MZ/MWを求める。
<発泡成形体の落球衝撃値>
 JIS K7211:1976「硬質プラスチックの落錘衝撃試験方法通則」に記載の方法に準拠して落球衝撃強度を測定する。
 得られた嵩倍数50倍の発泡成形体を温度50℃で1日間乾燥した後、この発泡成形体から40mm×215mm×20mm(厚さ)の試験片(6面とも表皮なし)を切り出す。
 次いで、支点間の間隔が150mmになるように試験片の両端をクランプで固定し、重さ321gの剛球を所定の高さから試験片の中央部に落下させて、試験片の破壊の有無を観察する。
 試験片5個が全数破壊する最低の高さから全数破壊しない最高の高さまで5cm間隔で剛球の落下高さ(試験高さ)を変えて試験して、落球衝撃値(cm)、すなわち50%破壊高さを次の計算式により算出する。
   H50=Hi+d[Σ(i・ni)/N±0.5]
 式中の記号は次のことを意味する。
  H50 :50%破壊高さ(cm)
  Hi  :高さ水準(i)が0のときの試験高さ(cm)であり、試験片が破壊することが予測される高さ
  d   :試験高さを上下させるときの高さ間隔(cm)
  i   :Hiのときを0とし,1つずつ増減する高さ水準(i=…-3、-2、-1、0、1、2、3…)
  ni  :各水準において破壊した(又は破壊しなかった)試験片の数で、いずれか多いほうのデータを使用(同数の場合はどちらを使用してもよい)
  N   :破壊した(又は破壊しなかった)試験片の総数(N=Σni)で、いずれか多いほうのデータを使用(同数の場合はどちらを使用してもよい)
  ±0.5:破壊したデータを使用するときは負の数、破壊しなかったデータを使用するときは正の数を採用
 得られた落球衝撃値を次の基準で評価する。落球衝撃値が大きいほど発泡成形体の耐衝撃性が大きいことを示す。
  ◎(優) :落球衝撃値が13cm以上
  ○(良) :落球衝撃値が11cm以上13cm未満の範囲
  △(可) :落球衝撃値が9cm以上11cm未満の範囲
  ×(不可):落球衝撃値が9cm未満
<発泡成形体の曲げ破断点変位量>
 JIS K7221-1:2006「硬質発泡プラスチック-曲げ試験-第1部:曲げ試験」に記載の方法に準拠して曲げ強さを測定する。
 得られた嵩倍数50倍の発泡成形体を温度50℃で1日間乾燥した後、この発泡成形体から25mm×130mm×20mm(厚さ)の試験片を切り出す。
 次いで、万能試験機(オリエンテック社製、テンシロン(登録商標)UCT―10T)に先端冶具として加圧くさび5R及び支持台5Rを装着し、支点間距離100mmで試験片をセットし、圧縮速度10mm/分の条件で曲げ試験を行う。この試験において、破断検出感度を0.5%に設定し、直前荷重サンプリング点と比較して、その減少が設定値0.5%を超えた時、直前のサンプリング点を曲げ破断点変位量(mm)として測定する。
 得られた曲げ破断点変位量を次の基準で評価する。曲げ破断点変位量が大きいほど発泡成形体の柔軟性が大きいことを示す。
  ◎(優) :曲げ破断点変位量が14mm以上
  ○(良) :曲げ破断点変位量が12mm以上14mm未満の範囲
  △(可) :曲げ破断点変位量が10mm以上12mm未満の範囲
  ×(不可):曲げ破断点変位量が10mm未満
<発泡成形体の割れ量>
 JIS Z0235:1976「包装用緩衝材料-評価試験方法」に記載の方法に準拠して割れ量を測定する。
 得られた嵩倍数50倍の発泡成形体を温度50℃で1日間乾燥した後、この発泡成形体から75mm×300mm×50mm(厚さ)の試験片を切り出す。
 次いで、緩衝材用落下衝撃試験機(吉田精機社製、CST-320S)の基盤中央上に試験片が衝撃を受けたときに移動しないように試験片を軽く固定し、図3に示すように、試験片の長さ方向のほぼ中央部でかつ幅方向の全面に亘るように重さ13.5kgの錘を高さ60cmから落下させ、このときに発生する試験片の亀裂を観察し、次の計算式により割れ量(%)を算出する。
   S=H/T×100
 式中の記号は次のことを意味する。
  S:割れ量(%)
  H:亀裂寸法(mm)
  T:試験片の厚み(mm)
 得られた割れ量を次の基準で評価する。割れ量が小さいほど発泡成形体の耐衝撃性が大きいことを示す。
  ◎(優) :割れ量が45%未満
  ○(良) :割れ量が45%以上50%未満の範囲
  △(可) :割れ量が50%以上55%未満の範囲
  ×(不可):割れ量が55%以上
<発泡成形体の成形性>
 予備発泡後、常温で24時間熟成した嵩倍数50倍の発泡粒子を、内寸300mm×400mm×50mm(厚さ)の直方体形状のキャビティを有する成形金型を備えた発泡ビーズ自動成型機(積水工機製作所社製、ACE-3SP)のキャビティ内に充填し、次の条件でスチーム加熱及び冷却した後に発泡成形体を金型から取り出し、発泡成形体の外観を評価する。
  (成形条件)金型加熱   : 5秒
        一方加熱   :10秒
        逆一方加熱  : 5秒
        両面加熱   :20秒
        水冷     :10秒
        設定スチーム圧:0.06、0.07、0.08MPa
  ◎(優) :成形体表面が十分に伸びかつ表面が溶融した発泡粒子が全くない(発泡粒子間の間隙が無く、成形体表面が非常に平滑で成形体外観が非常によい)
  ○(良) :発泡粒子間の間隙が非常に少なく、成形体表面がほぼ平滑で成形体外観が良好である
  △(可) :成形体表面の伸び不足或いは表面が溶融した発泡粒子が存在し、成形体表面に間隙が無数にあり、成形体外観が劣る(耐衝撃性には影響しない)
  ×(不可):耐衝撃性に影響する、或いは耐衝撃性評価が困難なほど成形体表面が伸びていない或いは成形体が収縮している。
<帯電防止性>
 JIS K6911:1995「熱硬化性プラスチック一般試験方法」に記載の方法に準拠して表面抵抗率を測定する。
 得られた嵩倍数50倍の発泡成形体を温度50℃で1日間乾燥した後、この同一の発泡成形体から100mm×100mm×原厚み(10mm以下)の試験片10個を切り出す。
 次いで、デジタル超高抵抗/微少電流計及びレジスティビティ・チェンバ(株式会社アドバンテスト製、R8340及びR12702A)を用いて、約30Nの荷重で試料片に電極を圧着させ、電圧500Vを1分間印加して充電した後に試料片の抵抗値を測定し、表面抵抗率を次の計算式により算出する。
   ρs=π(D+d)/(D-d)×Rs
 式中の記号は次のことを意味する。
  ρs:表面抵抗率(MΩ)
  D :表面の環状電極の内径(cm)
  d :表面電極の内円の外径(cm)
  Rs:表面抵抗(MΩ)
 得られた表面抵抗率(試験片10個の平均値)を次の基準で評価する。
  ○(帯電防止性あり):表面抵抗率が1×1012Ω以下
  ×(帯電防止性なし):表面抵抗率が1×1012Ωを超える
 実施例1
(種(核PS)粒子の製造)
 内容積100リットルの撹拌機付き重合容器に、水40kg、懸濁安定剤として第三リン酸カルシウム100g及びアニオン界面活性剤としてドデシルベンゼンスルホン酸ナトリウム2.0gを供給し撹拌しながらスチレンモノマー40kg並びに重合開始剤としてベンゾイルパーオキサイド96.0g及びt-ブチルパーオキシベンゾエート28.0gを添加した上で90℃に昇温して重合した。そして、この温度で6時間保持し、更に125℃に昇温してから2時間後に冷却してポリスチレン系樹脂種粒子(A)を得た。
 前記ポリスチレン系樹脂種粒子(A)を篩分けし、種粒子として粒子径0.5~0.71mm(平均粒子径D50=0.66mm)のポリスチレン系樹脂種粒子(B-1)、粒子径0.71~1.18mm(平均粒子径D50=0.99mm)のポリスチレン系樹脂種粒子(B-2)をそれぞれ得た。
(複合ポリスチレン系樹脂粒子の製造)
 次に、内容積5リットルの撹拌機付き重合容器に、水2000g、前記ポリスチレン系樹脂種粒子(B-1)500g、懸濁安定剤としてピロリン酸マグネシウム10.0g及びアニオン界面活性剤としてドデシルベンゼンスルホン酸ナトリウム0.4gを供給して撹拌しながら75℃に昇温した。
 次に、重合開始剤としてジクミルパーオキサイド0.6gを溶解させたアクリル酸ブチル200gを前記5リットル重合容器に供給してから、種粒子内に吸収させ、75℃で60分保持後、130℃に昇温して2時間保持した。
 その後、75℃の温度に下げ、重合開始剤としてベンゾイルパーオキサイド5.2g及びt-ブチルパーオキシベンゾエート0.75gを溶解させたスチレンモノマー200gを前記5リットル重合容器に供給してから、種粒子内にスチレンモノマーを吸収させ、75℃で60分保持した。
 続いて、反応液を75℃から120℃まで180分で昇温しつつ、かつスチレンモノマー1100gを75℃から115℃まで160分間で重合容器内に一定量ずつ供給した。次いで120℃に昇温した後、更に140℃に昇温して2時間経過後に冷却し、複合ポリスチレン系樹脂粒子(C)を得た。
(発泡性複合ポリスチレン系樹脂粒子の製造)
 次いで、内容積5リットルの撹拌機付き重合容器に、水2200g、複合ポリスチレン系樹脂粒子(C)1800g、懸濁安定剤としてピロリン酸マグネシウム7.2g及びドデシルベンゼンスルホン酸ナトリウム0.36gを供給して撹拌しながら100℃に昇温した。次に、発泡剤としてn-ペンタン/イソペンタン=75/25~85/15のペンタン(ガス種a:コスモ石油社製、製品名ペンタン)144gを前記5リットル重合容器に圧入して3時間保持した後、30℃以下まで冷却し、重合容器内から取り出した。続いて、乾燥させ、13℃の恒温室内に7日間放置して発泡性複合ポリスチレン系樹脂粒子を得た。
(複合ポリスチレン系樹脂発泡粒子の製造)
 次いで、発泡性複合ポリスチレン系樹脂粒子1500gを、ジンクステアレート1.2g、ヒドロキシステアリン酸トリグリセリド1.2g及びポリエチレングリコール(MW=300)0.75gからなる表面処理剤で被覆処理した。処理後、スチームで予熱した常圧予備発泡機に発泡性複合ポリスチレン系樹脂粒子を投入し、撹拌しながら約0.03MPaの設定でスチームを導入して、約2~3分間で50倍の嵩倍数まで予備発泡させた。
(発泡成形体の製造)
 予備発泡後、常温で24時間熟成した嵩倍数50倍の複合ポリスチレン系樹脂発泡粒子を、内寸300mm×400mm×50mm(厚さ)の直方体形状のキャビティを有する成形金型を備えた発泡ビーズ自動成型機(積水工機製作所社製、ACE-3SP)のキャビティ内に充填し、次の条件でスチーム加熱及び冷却した後に発泡成形体を金型から取り出し、発泡成形体を得た。
  (成形条件)金型加熱   : 5秒
        一方加熱   :10秒
        逆一方加熱  : 5秒
        両面加熱   :20秒
        水冷     :10秒
        設定スチーム圧:0.06、0.07、0.08MPa
 得られた複合ポリスチレン系樹脂粒子、複合ポリスチレン系樹脂発泡粒子及び発泡成形体を上記の方法により測定・評価した。それらの結果を表1及び2に示す。
 また、図1に複合ポリスチレン系樹脂発泡粒子断面の走査型電子顕微鏡(SEM)写真(a)及び内部気泡膜の透過型電子顕微鏡(TEM)写真(b)を示す。
 実施例2
 複合ポリスチレン系樹脂粒子の製造において、アクリル酸ブチルの代わりにアクリル酸2-エチルヘキシルを用いたこと以外は実施例1と同様にして、複合ポリスチレン系樹脂粒子、発泡性複合ポリスチレン系樹脂粒子、複合ポリスチレン系樹脂発泡粒子及び発泡成形体を得、測定・評価した。それらの結果を表1及び2に示す。
 実施例3
 複合ポリスチレン系樹脂粒子の製造において、アクリル酸ブチルの代わりにアクリル酸エチルを用いたこと以外は実施例1と同様にして、複合ポリスチレン系樹脂粒子、発泡性複合ポリスチレン系樹脂粒子、複合ポリスチレン系樹脂発泡粒子及び発泡成形体を得、測定・評価した。それらの結果を表1及び2に示す。
 実施例4
(複合ポリスチレン系樹脂粒子の製造)
 内容積5リットルの撹拌機付き重合容器に、水2000g、前記ポリスチレン系樹脂種粒子(B-1)600g、懸濁安定剤としてピロリン酸マグネシウム10.0g及びアニオン界面活性剤としてドデシルベンゼンスルホン酸ナトリウム0.4gを供給して撹拌しながら75℃に昇温した。
 次に、重合開始剤としてジクミルパーオキサイド1.2gを溶解させたアクリル酸ブチル400gを前記5リットル重合容器に供給してから、種粒子内に吸収させ、75℃で60分保持後、130℃に昇温して2時間保持した。
 その後、75℃の温度に下げ、重合開始剤としてベンゾイルパーオキサイド4.0g及びt-ブチルパーオキシベンゾエート0.7gを溶解させたスチレンモノマー200gを前記5リットル重合容器に供給してから、種粒子内に吸収させ、75℃で60分保持した。
 続いて、反応液を75℃から120℃まで180分で昇温しつつ、かつスチレンモノマー800gを75℃から115℃まで160分間で重合容器内に一定量ずつ供給した。120℃に昇温した後、更に140℃に昇温して2時間経過後に冷却し、複合ポリスチレン系樹脂粒子(C)を得た。
 発泡性複合ポリスチレン系樹脂粒子、複合ポリスチレン系樹脂発泡粒子及び発泡成形体の製造は実施例1と同様にして、発泡成形体を得、測定、評価した。それらの結果を表1及び2に示す。
 実施例5
 複合ポリスチレン系樹脂粒子の製造において、前記ポリスチレン系樹脂種粒子(B-1)の代わりに前記ポリスチレン系樹脂種粒子(B-2)を用い、ベンゾイルパーオキサイド4.0gを3.0gに変更したこと以外は実施例4と同様にして、複合ポリスチレン系樹脂粒子、発泡性複合ポリスチレン系樹脂粒子、複合ポリスチレン系樹脂発泡粒子及び発泡成形体を得、測定・評価した。それらの結果を表1及び2に示す。
 実施例6
 複合ポリスチレン系樹脂粒子の製造において、ベンゾイルパーオキサイド5.2gを6.5gに変更したこと以外は実施例1と同様にして、複合ポリスチレン系樹脂粒子、発泡性複合ポリスチレン系樹脂粒子、複合ポリスチレン系樹脂発泡粒子及び発泡成形体を得、測定・評価した。それらの結果を表1及び2に示す。
 実施例7
 複合ポリスチレン系樹脂粒子の製造において、重合開始剤としてのジクミルパーオキサイド0.6g以外にジビニルベンゼン0.2gを溶解させたアクリル酸ブチル200gを5リットル重合容器に供給し、ベンゾイルパーオキサイド5.2gを7.15gに変更したこと以外は実施例1と同様にして、複合ポリスチレン系樹脂粒子、発泡性複合ポリスチレン系樹脂粒子、複合ポリスチレン系樹脂発泡粒子及び発泡成形体を得、測定・評価した。それらの結果を表1及び2に示す。
 実施例8
 複合ポリスチレン系樹脂粒子の製造において、ベンゾイルパーオキサイド5.2gを2.6gに変更したこと以外は実施例1と同様にして、複合ポリスチレン系樹脂粒子、発泡性複合ポリスチレン系樹脂粒子、複合ポリスチレン系樹脂発泡粒子及び発泡成形体を得、測定・評価した。それらの結果を表1及び2に示す。
 実施例9
 発泡性複合ポリスチレン系樹脂粒子の製造において、発泡剤としてn-ペンタン/イソペンタン=75/25~85/15のペンタン(ガス種a:コスモ石油社製、製品名ペンタン)の代わりにn-ブタン/i-ブタン=60/40~70/30のブタン(ガス種b:コスモ石油社製、製品名コスモブタンシルバー)を用いたこと以外は実施例1と同様にして、複合ポリスチレン系樹脂粒子、発泡性複合ポリスチレン系樹脂粒子、複合ポリスチレン系樹脂発泡粒子及び発泡成形体を得、測定・評価した。それらの結果を表1及び2に示す。
 実施例10
 複合ポリスチレン系樹脂粒子の製造において、重合開始剤としてのジクミルパーオキサイド1.2g以外にジビニルベンゼン1.0gを溶解させたアクリル酸ブチル400gを5リットル重合容器に供給したこと以外は実施例4と同様にして、複合ポリスチレン系樹脂粒子、発泡性複合ポリスチレン系樹脂粒子、複合ポリスチレン系樹脂発泡粒子及び発泡成形体を得、測定・評価した。それらの結果を表1及び2に示す。
 実施例11
 複合ポリスチレン系樹脂粒子の製造において、ベンゾイルパーオキサイド5.2gの代わりにt-ブチルパーオキシ-2-エチルヘキサノエート6.5gを用いたこと以外は実施例1と同様にして、複合ポリスチレン系樹脂粒子、発泡性複合ポリスチレン系樹脂粒子、複合ポリスチレン系樹脂発泡粒子及び発泡成形体を得、測定・評価した。それらの結果を表1及び2に示す。
 実施例12
 複合ポリスチレン系樹脂粒子の製造において、ベンゾイルパーオキサイド5.2gを9.1gにしたこと以外は実施例1と同様にして、複合ポリスチレン系樹脂粒子、発泡性複合ポリスチレン系樹脂粒子、複合ポリスチレン系樹脂発泡粒子及び発泡成形体を得、測定・評価した。それらの結果を表1及び2に示す。
 比較例1
(ポリスチレン系樹脂粒子の製造)
 内容積5リットルの撹拌機付き重合容器に、水2000g、前記ポリスチレン系樹脂種粒子(B-1)500g、懸濁安定剤としてピロリン酸マグネシウム8.0g及びアニオン界面活性剤としてドデシルベンゼンスルホン酸ナトリウム0.4gを供給して撹拌しながら75℃に昇温した。
 次に、重合開始剤としてベンゾイルパーオキサイド6.0g及びt-ブチルパーオキシベンゾエート0.75gを溶解させたスチレンモノマー100gを前記5リットル重合容器に供給してから、種粒子内にスチレンモノマーを吸収させ、75℃で30分保持した。
 続いて、反応液を75℃から120℃まで180分で昇温しつつ、かつスチレンモノマー1400gを75℃から115℃まで160分で重合容器内に一定量ずつ供給した。次いで120℃に昇温した後、更に130℃に昇温して2時間経過後に冷却し、ポリスチレン系樹脂粒子(C)を得た。
(発泡性ポリスチレン系樹脂粒子の製造)
 次いで、内容積5リットルの撹拌機付き重合容器に、水2200g、ポリスチレン系樹脂粒子(C)1800g、懸濁安定剤としてピロリン酸マグネシウム7.2g及びドデシルベンゼンスルホン酸ナトリウム0.36gを供給して撹拌しながら100℃に昇温した。次に、発泡剤としてn-ブタン/i-ブタン=60/40~70/30のブタン(ガス種b:コスモ石油社製、製品名コスモブタンシルバー)126gを前記5リットル重合容器に圧入して3時間保持した後、30℃以下まで冷却し、重合容器内から取り出した。続いて、乾燥させ、13℃の恒温室内に7日間放置して発泡性ポリスチレン系樹脂粒子を得た。
 ポリスチレン系樹脂発泡粒子及び発泡成形体の製造を、実施例1の複合ポリスチレン系樹脂発泡粒子及び発泡成形体の製造に準じて行い、発泡成形体を得、測定、評価した。それらの結果を表1及び2に示す。
 比較例2
(ゴム変性ポリスチレン系樹脂粒子の製造)
 ブタジエン成分が60重量%であるスチレン-ブタジエンブロック共重合体をスチレンモノマーに溶解させて14.5重量%溶液とした。この溶液100重量部にエチルベンゼン5重量部、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン0.05重量部及びt-ドデシルメルカプタン0.05重量部を添加して重合原料液を得た。
 次いで、得られた重合原料液を、内容積5リットルの撹拌機付き重合容器に供給して次の条件で重合を行った。重合温度105℃で3時間、温度を上げ130℃で2時間、更に温度を上げ145℃で1時間重合させた後、得られた重合液を加熱真空下の脱揮装置に送り未反応スチレンモノマー及びエチルベンゼンを除去して、重合体を得た。
 得られた重合体を押出機に供給、混練し、ダイの細孔からストランドを引き、直ちに水冷した後、直径約1mm、長さ約1.5mmのペレット状に切断した。得られたペレット状のゴム変性ポリスチレン系樹脂粒子におけるブタジエン成分の含有量は、スチレン-ブタジエンブロック共重合体、スチレンのマスバランスから算出したところ10.5重量%であった。
(発泡性ゴム変性ポリスチレン系樹脂粒子の製造)
 次いで、別の内容積5リットルの撹拌機付き重合容器に、水2200g、ゴム変性ポリスチレン系樹脂粒子1800g、懸濁安定剤としてピロリン酸マグネシウム7.2g及びドデシルベンゼンスルホン酸ナトリウム0.36gを供給して撹拌しながら125℃に昇温した。次に、発泡剤としてn-ペンタン/イソペンタン=75/25~85/15のペンタン(ガス種a:コスモ石油社製、製品名ペンタン)144gを前記5リットル重合容器に圧入して5時間保持することで発泡性ゴム変性ポリスチレン系樹脂粒子を得た。保持後、30℃以下まで冷却した上で、発泡性ゴム変性ポリスチレン系樹脂粒子を重合容器内から取り出し、乾燥させた上で13℃の恒温室内に5日間放置した。
(ゴム変性ポリスチレン系樹脂発泡粒子及び発泡成形体の製造)
 ゴム変性ポリスチレン系樹脂発泡粒子及び発泡成形体の製造を、実施例1の複合ポリスチレン系樹脂発泡粒子及び発泡成形体の製造に準じて行い、発泡成形体を得、測定、評価した。それらの結果を表1及び2に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
実施例13
(複合ポリスチレン系樹脂粒子の製造)
 内容積5リットルの撹拌機付き重合容器に、水2000g、種粒子として実施例1で得られたポリスチレン系樹脂粒子(B-1)500g、懸濁安定剤としてピロリン酸マグネシウム10.0g及びアニオン界面活性剤としてドデシルベンゼンスルホン酸ナトリウム1.6gを供給して撹拌しながら75℃に昇温した。
 次に、重合開始剤としてジクミルパーオキサイド0.6gとポリブタジエン末端アクリレート(大阪有機化学工業社製、製品名:BAC-45)10gを溶解させたアクリル酸ブチル200gを前記5リットル重合容器に供給してから、種粒子内にアクリル酸ブチルを吸収させ、75℃で60分保持後、130℃に昇温して2時間保持した。
 その後、75℃に冷却し、重合開始剤としてベンゾイルパーオキサイド7.0g及びt-ブチルパーオキシベンゾエート0.75gを溶解させたスチレン単量体200gを前記5リットル重合容器に供給してから、種粒子内にスチレン単量体を吸収させ、75℃で60分保持して重合させて反応液を得た。
 続いて、反応液を75℃から120℃まで180分で昇温しつつ、かつスチレン単量体1100gを160分で重合容器内に一定量ずつ供給した。次いで、120℃に昇温した後、140℃に昇温して2時間経過後に冷却し、複合ポリスチレン系樹脂粒子(C)を得た。
(発泡性複合ポリスチレン系樹脂粒子の製造)
 次いで、別の内容積5リットルの撹拌機付き重合容器に、水2200g、複合ポリスチレン系樹脂粒子(C)1800g、懸濁安定剤としてピロリン酸マグネシウム7.2g及びドデシルベンゼンスルホン酸ナトリウム1.44gを供給して撹拌しながら125℃に昇温した。次に、発泡剤としてn-ペンタン/i-ペンタン=75/25~85/15のペンタン(ガス種a:コスモ石油社製、製品名ペンタン)144gを前記5リットル重合容器に圧入して3時間保持した後、30℃以下まで冷却し、重合容器内から取り出した。続いて、乾燥させ、13℃の恒温室内に5日間放置して発泡性複合ポリスチレン系樹脂粒子を得た。
(複合ポリスチレン系樹脂発泡粒子及び発泡成形体の製造)
 実施例1と同様にして、得られた発泡性粒子から予備発泡粒子及び発泡成形体を得、測定・評価した。それらの結果を表3及び4に示す。
 実施例14
 複合ポリスチレン系樹脂粒子の製造において、ポリブタジエン末端アクリレート10gを16gとすること以外は、実施例13と同様にして、複合ポリスチレン系樹脂粒子、発泡性複合ポリスチレン系樹脂粒子、複合ポリスチレン系樹脂発泡粒子及び発泡成形体を得、測定・評価した。それらの結果を表3及び4に示す。
 実施例15
 複合ポリスチレン系樹脂粒子の製造において、ポリブタジエン末端アクリレート10gを20gとすること以外は、実施例13と同様にして、複合ポリスチレン系樹脂粒子、発泡性複合ポリスチレン系樹脂粒子、複合ポリスチレン系樹脂発泡粒子及び発泡成形体を得、測定・評価した。それらの結果を表3及び4に示す。
 実施例16
 複合ポリスチレン系樹脂粒子の製造において、ポリブタジエン末端アクリレート10gを40gとすること以外は、実施例13と同様にして、複合ポリスチレン系樹脂粒子、発泡性複合ポリスチレン系樹脂粒子、複合ポリスチレン系樹脂発泡粒子及び発泡成形体を得、測定・評価した。それらの結果を表3及び4に示す。
 実施例17
(発泡性粒子の被覆)
内容積20Lのタンブラーミキサーに、上記発泡性複合ポリスチレン系樹脂粒子1500gを投入した。次いで、ジンクステアレート1.2g、ヒドロキシステアリン酸トリグリセリド1.2g、グリセリンモノステアレート0.75g、並びに帯電防止剤としてポリオキシエチレンヒドロキシアルキルアミン(タナカ化学研究所製、商品名アンチスター80FS)15.0gを順次投入し、15分間撹拌した。次いで、ポリエチレングリコール(MW=300)0.75g、ジイソブチルアジペート0.45gを投入し15分間に亘って攪拌して発泡性ポリスチレン系樹脂粒子の表面に前記表面処理剤を被覆した。
 上記以外は、実施例13と同様にして、複合ポリスチレン系樹脂粒子、発泡性複合ポリスチレン系樹脂粒子、複合ポリスチレン系樹脂発泡粒子及び発泡成形体を得、測定・評価した。それらの結果を表3及び4に示す。
 また、図4~6に、それぞれ実施例13~15の発泡粒子断面の走査型電子顕微鏡(SEM)写真を、図7に実施例14の発泡成形体断面の透過型電子顕微鏡(TEM)写真を示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 a ポリアクリル酸アルキルエステル系樹脂微粒子の厚さ
 b ポリアクリル酸アルキルエステル系樹脂微粒子の気泡膜面方向の長さ
 g ポリアクリル酸アルキルエステル系樹脂微粒子
 t 気泡膜厚み
 1 試験片
 2 錘
 3 亀裂
 H 亀裂寸法
 T 試験片の厚み

Claims (20)

  1.  複数の気泡とそれらを区画する気泡膜を有し、前記気泡膜が連続相を形成するポリスチレン系樹脂と、前記連続相中に分散されて分散相を形成するポリアクリル酸アルキルエステル系樹脂微粒子とを含み、前記ポリスチレン系樹脂が前記ポリアクリル酸アルキルエステル系樹脂微粒子で複合化された複合ポリスチレン系樹脂発泡粒子であり、
     前記分散相が、前記複合ポリスチレン系樹脂発泡粒子の気泡膜断面の気泡膜厚み方向に複数でかつ層状に存在する複合ポリスチレン系樹脂発泡粒子。
  2.  前記分散相が、前記複合ポリスチレン系樹脂発泡粒子の気泡膜断面の気泡膜厚み方向の寸法(ポリアクリル酸アルキルエステル系樹脂微粒子の厚さ)及び気泡膜面方向の寸法(ポリアクリル酸アルキルエステル系樹脂微粒子の長さ)をそれぞれa及びbとしたときに、7以上60以下のアスペクト比(b/a)を有する請求項1に記載の複合ポリスチレン系樹脂発泡粒子。
  3.  前記ポリスチレン系樹脂が、重量平均分子量(MW)200,000~350,000及び重量平均分子量(MW)に対するZ平均分子量(MZ)の比(MZ/MW)2~4を有する請求項1に記載の複合ポリスチレン系樹脂発泡粒子。
  4.  前記アスペクト比(b/a)が、20以上50以下である請求項2に記載の複合ポリスチレン系樹脂発泡粒子。
  5.  前記ポリアクリル酸アルキルエステル系樹脂微粒子が、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル又はこれらの混合物の重合体から形成されてなる請求項1に記載の複合ポリスチレン系樹脂発泡粒子。
  6.  前記ポリアクリル酸アルキルエステル系樹脂微粒子が、前記ポリスチレン系樹脂100重量部に対して5~100重量部である請求項1に記載の複合ポリスチレン系樹脂発泡粒子。
  7.  前記複合ポリスチレン系樹脂発泡粒子が、ポリブタジエン末端アクリレート由来の成分をさらに含む請求項1に記載の複合ポリスチレン系樹脂発泡粒子。
  8.  前記複合ポリスチレン系樹脂発泡粒子が、0.015g/cm3以上0.1g/cm3以下の嵩密度を有する請求項1に記載の複合ポリスチレン系樹脂発泡粒子。
  9.  前記複合ポリスチレン系樹脂発泡粒子が、ペンタンを主成分とする揮発性発泡剤を発泡性ポリスチレン系樹脂粒子に対して2~10重量%含有させた発泡性ポリスチレン系樹脂粒子を予備発泡させたものである請求項1に記載の複合ポリスチレン系樹脂発泡粒子。
  10.  前記複合ポリスチレン系樹脂発泡粒子が、帯電防止剤含有成分で表面被覆されてなる請求項1に記載の複合ポリスチレン系樹脂発泡粒子。
  11.  複数の気泡とそれらを区画する気泡膜を有し、前記気泡膜が連続相を形成するポリスチレン系樹脂と、前記連続相中に分散されて分散相を形成するポリアクリル酸アルキルエステル系樹脂微粒子とを含み、前記ポリスチレン系樹脂が前記ポリアクリル酸アルキルエステル系樹脂微粒子で複合化された複合ポリスチレン系樹脂発泡成形体であり、
     前記分散相が、前記複合ポリスチレン系樹脂発泡成形体の気泡膜断面の気泡膜厚み方向に複数でかつ層状に存在する複合ポリスチレン系樹脂発泡成形体。
  12.  前記分散相が、前記複合ポリスチレン系樹脂発泡成形体の気泡膜断面の気泡膜厚み方向の寸法(ポリアクリル酸アルキルエステル系樹脂微粒子の厚さ)及び気泡膜面方向の寸法(ポリアクリル酸アルキルエステル系樹脂微粒子の長さ)をそれぞれc及びdとしたときに、7以上60以下のアスペクト比(d/c)を有する請求項11に記載の複合ポリスチレン系樹脂発泡成形体。
  13.  前記ポリスチレン系樹脂が、重量平均分子量(MW)200,000~350,000及び重量平均分子量(MW)に対するZ平均分子量(MZ)の比(MZ/MW)2~4を有する請求項11に記載の複合ポリスチレン系樹脂発泡成形体。
  14.  前記アスペクト比(d/c)が、20以上50以下である請求項12に記載の複合ポリスチレン系樹脂発泡成形体。
  15.  前記ポリアクリル酸アルキルエステル系樹脂微粒子が、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル又はこれらの混合物の重合体から形成されてなる請求項11に記載の複合ポリスチレン系樹脂発泡成形体。
  16.  前記ポリアクリル酸アルキルエステル系樹脂微粒子が、前記ポリスチレン系樹脂100重量部に対して5~100重量部である請求項11に記載の複合ポリスチレン系樹脂発泡成形体。
  17.  前記複合ポリスチレン系樹脂発泡成形体が、ポリブタジエン末端アクリレート由来の成分をさらに含む請求項11に記載の複合ポリスチレン系樹脂発泡成形体。
  18.  前記複合ポリスチレン系樹脂発泡成形体が、0.015g/cm3以上0.1g/cm3以下の嵩密度を有する請求項11に記載の複合ポリスチレン系樹脂発泡成形体。
  19.  前記複合ポリスチレン系樹脂発泡成形体が、11cm以上のJIS K7211による落球衝撃値、12mm以上のJIS K7221-1による曲げ破断点変位量及び50%未満のJIS Z0235による割れ量を有する請求項11に記載の複合ポリスチレン系樹脂発泡成形体。
  20.  前記複合ポリスチレン系樹脂発泡成形体が、帯電防止剤含有成分で表面被覆した複合ポリスチレン系樹脂発泡粒子を発泡成形されてなる請求項11に記載の複合ポリスチレン系樹脂発泡成形体。
PCT/JP2012/055122 2011-03-04 2012-02-29 複合ポリスチレン系樹脂発泡粒子及びその発泡成形体 WO2012121084A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12754988.9A EP2682420A4 (en) 2011-03-04 2012-02-29 COMPOSED EXPANDED POLYSTYRENE RESIN PARTICLES AND SHAPED FOAM
CN201280011338.6A CN103415559B (zh) 2011-03-04 2012-02-29 复合聚苯乙烯系树脂发泡颗粒及其发泡成形体
JP2013503471A JP5592558B2 (ja) 2011-03-04 2012-02-29 複合ポリスチレン系樹脂発泡粒子及びその発泡成形体
US13/984,040 US9127135B2 (en) 2011-03-04 2012-02-29 Expanded composite polystyrene-based resin particles and expanded molded article thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-047791 2011-03-04
JP2011047791 2011-03-04

Publications (1)

Publication Number Publication Date
WO2012121084A1 true WO2012121084A1 (ja) 2012-09-13

Family

ID=46798052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055122 WO2012121084A1 (ja) 2011-03-04 2012-02-29 複合ポリスチレン系樹脂発泡粒子及びその発泡成形体

Country Status (6)

Country Link
US (1) US9127135B2 (ja)
EP (1) EP2682420A4 (ja)
JP (1) JP5592558B2 (ja)
CN (1) CN103415559B (ja)
TW (1) TWI530517B (ja)
WO (1) WO2012121084A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141169A1 (ja) * 2012-03-21 2013-09-26 積水化成品工業株式会社 自動車部材
WO2014157188A1 (ja) 2013-03-27 2014-10-02 積水化成品工業株式会社 改質ポリスチレン系架橋樹脂粒子とその製造方法、発泡性粒子とその製造方法、予備発泡粒子及び発泡成形体
JP2014193937A (ja) * 2013-03-28 2014-10-09 Sekisui Plastics Co Ltd 発泡性スチレン系樹脂粒子、発泡粒子及び発泡成形体
JP2014193950A (ja) * 2013-03-28 2014-10-09 Sekisui Plastics Co Ltd 発泡成形体
JP2014193948A (ja) * 2013-03-28 2014-10-09 Sekisui Plastics Co Ltd スチレン系発泡樹脂粒子及びスチレン系発泡成形体
JP2015113418A (ja) * 2013-12-12 2015-06-22 積水化成品工業株式会社 異音防止用発泡性ポリスチレン系樹脂粒子とその製造方法、予備発泡粒子、及び発泡成形体
JP2017149840A (ja) * 2016-02-24 2017-08-31 株式会社ジェイエスピー 複合樹脂発泡粒子、その製造方法、複合樹脂発泡粒子成形体
JP2021147597A (ja) * 2020-03-24 2021-09-27 積水化成品工業株式会社 発泡性スチレン系樹脂粒子、予備発泡スチレン系樹脂粒子、およびスチレン系樹脂発泡成形体
KR20210157480A (ko) * 2014-03-05 2021-12-28 가부시키가이샤 제이에스피 다층 발포 시트 및 유리판용 간지

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI496829B (zh) 2010-09-30 2015-08-21 Sekisui Plastics Modified polystyrene resin particles and methods for producing the same, foamable particles and methods for producing the same, pre-expanded particles and foamed molded articles
CN109291300A (zh) * 2017-07-24 2019-02-01 中国石油化工股份有限公司 复合型聚苯乙烯发泡珠粒及其成型体和制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5611929A (en) * 1979-07-12 1981-02-05 Hitachi Chem Co Ltd Foaming styrene resin particle
JPS5667344A (en) 1979-11-08 1981-06-06 Asahi Chem Ind Co Ltd Expandable polymer composition
JPH03182529A (ja) 1989-12-12 1991-08-08 Asahi Chem Ind Co Ltd 発泡用樹脂組成物とその発泡成形体
JP3462775B2 (ja) 1998-01-28 2003-11-05 積水化成品工業株式会社 発泡成形体
JP4101379B2 (ja) 1998-12-16 2008-06-18 株式会社ジェイエスピー ゴム変性スチレン系樹脂発泡成形体
WO2009096327A1 (ja) * 2008-01-30 2009-08-06 Sekisui Plastics Co., Ltd. 発泡性ポリスチレン系樹脂粒子とその製造方法、予備発泡粒子及び発泡成形体
JP2011026511A (ja) * 2009-07-28 2011-02-10 Sekisui Plastics Co Ltd 難燃性発泡性ポリスチレン系樹脂粒子とその製造方法、難燃性ポリスチレン系樹脂予備発泡粒子及び難燃性ポリスチレン系樹脂発泡成形体
JP2011068817A (ja) * 2009-09-28 2011-04-07 Sekisui Plastics Co Ltd ポリスチレン系樹脂組成物、ポリスチレン系樹脂粒子、発泡性ポリスチレン系樹脂粒子とその製造方法、ポリスチレン系樹脂予備発泡粒子、ポリスチレン系樹脂発泡成形体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0679500B2 (ja) 1990-08-20 1994-10-05 東日電気株式会社 電熱器用ヒータの製造方法
DE69732714T2 (de) * 1996-12-26 2006-04-13 Kaneka Corp. EXPANDIERBARE POLYSTYROLHARZKüGELCHEN, VERFAHREN ZU IHRER HERSTELLUNG, UND DURCH IHRE VERWENDUNG HERGESTELLTER SCHAUM
GB9721603D0 (en) * 1997-10-10 1997-12-10 Dyno Ind Asa Method
US7960443B2 (en) 2007-09-10 2011-06-14 Jsp Corporation Extruded styrenic resin foam and method for producing the same
JP2011026506A (ja) * 2009-07-28 2011-02-10 Sekisui Plastics Co Ltd 低揮発分発泡性ポリスチレン系樹脂粒子とその製造方法、低揮発分ポリスチレン系樹脂予備発泡粒子及び低揮発分ポリスチレン系樹脂発泡成形体
JP5478140B2 (ja) * 2009-07-28 2014-04-23 積水化成品工業株式会社 低密度発泡成形用発泡性ポリスチレン系樹脂粒子とその製造方法、低密度ポリスチレン系樹脂予備発泡粒子及び低密度ポリスチレン系樹脂発泡成形体
JP5386262B2 (ja) * 2009-07-28 2014-01-15 積水化成品工業株式会社 発泡性ポリスチレン系樹脂粒子とその製造方法、予備発泡粒子、発泡成形体
TWI496829B (zh) * 2010-09-30 2015-08-21 Sekisui Plastics Modified polystyrene resin particles and methods for producing the same, foamable particles and methods for producing the same, pre-expanded particles and foamed molded articles
JP5739057B2 (ja) * 2012-03-21 2015-06-24 積水化成品工業株式会社 自動車部材

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5611929A (en) * 1979-07-12 1981-02-05 Hitachi Chem Co Ltd Foaming styrene resin particle
JPS5667344A (en) 1979-11-08 1981-06-06 Asahi Chem Ind Co Ltd Expandable polymer composition
JPH03182529A (ja) 1989-12-12 1991-08-08 Asahi Chem Ind Co Ltd 発泡用樹脂組成物とその発泡成形体
JP2841303B2 (ja) 1989-12-12 1998-12-24 旭化成工業株式会社 発泡用樹脂組成物とその発泡成形体
JP3462775B2 (ja) 1998-01-28 2003-11-05 積水化成品工業株式会社 発泡成形体
JP4101379B2 (ja) 1998-12-16 2008-06-18 株式会社ジェイエスピー ゴム変性スチレン系樹脂発泡成形体
WO2009096327A1 (ja) * 2008-01-30 2009-08-06 Sekisui Plastics Co., Ltd. 発泡性ポリスチレン系樹脂粒子とその製造方法、予備発泡粒子及び発泡成形体
JP2011026511A (ja) * 2009-07-28 2011-02-10 Sekisui Plastics Co Ltd 難燃性発泡性ポリスチレン系樹脂粒子とその製造方法、難燃性ポリスチレン系樹脂予備発泡粒子及び難燃性ポリスチレン系樹脂発泡成形体
JP2011068817A (ja) * 2009-09-28 2011-04-07 Sekisui Plastics Co Ltd ポリスチレン系樹脂組成物、ポリスチレン系樹脂粒子、発泡性ポリスチレン系樹脂粒子とその製造方法、ポリスチレン系樹脂予備発泡粒子、ポリスチレン系樹脂発泡成形体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2682420A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5739057B2 (ja) * 2012-03-21 2015-06-24 積水化成品工業株式会社 自動車部材
WO2013141169A1 (ja) * 2012-03-21 2013-09-26 積水化成品工業株式会社 自動車部材
JP6076463B2 (ja) * 2013-03-27 2017-02-08 積水化成品工業株式会社 改質ポリスチレン系架橋樹脂粒子とその製造方法、発泡性粒子とその製造方法、予備発泡粒子及び発泡成形体
CN105073803A (zh) * 2013-03-27 2015-11-18 积水化成品工业株式会社 改性聚苯乙烯系交联树脂颗粒及其制造方法、发泡性颗粒及其制造方法、预发泡颗粒以及发泡成型体
EP2980109A4 (en) * 2013-03-27 2016-11-30 Sekisui Plastics MODIFIED POLYSTYRENE-BASED RESIN PARTICLES AND METHOD FOR MANUFACTURING THEM, EXPANDABLE POLYMER PARTICLES AND METHOD FOR THE PRODUCTION THEREOF, BEFORE EXPEXED BEADS AND DAMPED SHAPED BODIES
WO2014157188A1 (ja) 2013-03-27 2014-10-02 積水化成品工業株式会社 改質ポリスチレン系架橋樹脂粒子とその製造方法、発泡性粒子とその製造方法、予備発泡粒子及び発泡成形体
JP2014193950A (ja) * 2013-03-28 2014-10-09 Sekisui Plastics Co Ltd 発泡成形体
JP2014193948A (ja) * 2013-03-28 2014-10-09 Sekisui Plastics Co Ltd スチレン系発泡樹脂粒子及びスチレン系発泡成形体
JP2014193937A (ja) * 2013-03-28 2014-10-09 Sekisui Plastics Co Ltd 発泡性スチレン系樹脂粒子、発泡粒子及び発泡成形体
JP2015113418A (ja) * 2013-12-12 2015-06-22 積水化成品工業株式会社 異音防止用発泡性ポリスチレン系樹脂粒子とその製造方法、予備発泡粒子、及び発泡成形体
KR20210157480A (ko) * 2014-03-05 2021-12-28 가부시키가이샤 제이에스피 다층 발포 시트 및 유리판용 간지
KR102388639B1 (ko) 2014-03-05 2022-04-19 가부시키가이샤 제이에스피 다층 발포 시트 및 유리판용 간지
JP2017149840A (ja) * 2016-02-24 2017-08-31 株式会社ジェイエスピー 複合樹脂発泡粒子、その製造方法、複合樹脂発泡粒子成形体
JP2021147597A (ja) * 2020-03-24 2021-09-27 積水化成品工業株式会社 発泡性スチレン系樹脂粒子、予備発泡スチレン系樹脂粒子、およびスチレン系樹脂発泡成形体
JP7425639B2 (ja) 2020-03-24 2024-01-31 積水化成品工業株式会社 発泡性スチレン系樹脂粒子、予備発泡スチレン系樹脂粒子、およびスチレン系樹脂発泡成形体

Also Published As

Publication number Publication date
JPWO2012121084A1 (ja) 2014-07-17
JP5592558B2 (ja) 2014-09-17
US9127135B2 (en) 2015-09-08
EP2682420A1 (en) 2014-01-08
CN103415559A (zh) 2013-11-27
CN103415559B (zh) 2016-03-23
TWI530517B (zh) 2016-04-21
TW201245302A (en) 2012-11-16
EP2682420A4 (en) 2014-05-28
US20130310475A1 (en) 2013-11-21

Similar Documents

Publication Publication Date Title
JP5592558B2 (ja) 複合ポリスチレン系樹脂発泡粒子及びその発泡成形体
EP1990351B1 (en) Styrene-modified polypropylene resin particle, expandable styrene-modified polypropylene resin particle, styrene-modified polypropylene resin foam particle, styrene-modified polypropylene resin foam molded body, and their production methods
EP2860217B1 (en) Expandable composite resin bead
JP5460880B2 (ja) 改質ポリスチレン系樹脂粒子とその製造方法、発泡性粒子とその製造方法、予備発泡粒子及び発泡成形体
JP6453995B2 (ja) 複合樹脂粒子とその発泡性粒子、発泡粒子及び発泡成形体
JP5883703B2 (ja) 緩衝材
JP2016044199A (ja) 発泡性複合樹脂粒子
JP2014189769A (ja) 改質ポリスチレン系発泡性樹脂粒子とその製造方法及び発泡粒子、発泡成形体
JP2018100380A (ja) ポリスチレン系樹脂発泡性粒子及びその製法、ポリスチレン系樹脂発泡粒子及びその製法、並びに、ポリスチレン系樹脂発泡成形体及びその製法
JP6404164B2 (ja) シード重合用種粒子、複合樹脂粒子、発泡性粒子、発泡粒子及び複合樹脂発泡成形体
WO2016047526A1 (ja) 発泡性スチレン複合ポリオレフィン系樹脂粒子とその製造方法、予備発泡粒子および発泡成形体
JP5739057B2 (ja) 自動車部材
JP6076463B2 (ja) 改質ポリスチレン系架橋樹脂粒子とその製造方法、発泡性粒子とその製造方法、予備発泡粒子及び発泡成形体
JP2013203470A (ja) ガラス搬送用容器
EP2980144A1 (en) Method for producing foamed particles, apparatus for producing foamed particles, and foamed particles
JP6389659B2 (ja) 圧縮複合樹脂発泡成形体
JP2011168695A (ja) 無機系物理発泡成形用ポリプロピレン樹脂組成物およびその発泡体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280011338.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12754988

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013503471

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13984040

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012754988

Country of ref document: EP