WO2007135790A1 - 全固体二次電池 - Google Patents

全固体二次電池 Download PDF

Info

Publication number
WO2007135790A1
WO2007135790A1 PCT/JP2007/052530 JP2007052530W WO2007135790A1 WO 2007135790 A1 WO2007135790 A1 WO 2007135790A1 JP 2007052530 W JP2007052530 W JP 2007052530W WO 2007135790 A1 WO2007135790 A1 WO 2007135790A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive electrode
layer
current collector
active material
Prior art date
Application number
PCT/JP2007/052530
Other languages
English (en)
French (fr)
Inventor
Mamoru Baba
Shoichi Iwaya
Hitoshi Masumura
Hiroshi Sato
Hiroshi Sasagawa
Noriyuki Sakai
Takayuki Fujita
Original Assignee
Incorporated National University Iwate University
Iomtechnology Corporation
Namics Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Incorporated National University Iwate University, Iomtechnology Corporation, Namics Corporation filed Critical Incorporated National University Iwate University
Priority to KR1020087031125A priority Critical patent/KR101367653B1/ko
Priority to CN2007800186992A priority patent/CN101461087B/zh
Priority to US12/302,250 priority patent/US8883347B2/en
Priority to EP07714112.5A priority patent/EP2058892B1/en
Priority to JP2008516566A priority patent/JP5430930B2/ja
Publication of WO2007135790A1 publication Critical patent/WO2007135790A1/ja
Priority to US14/447,497 priority patent/US9263727B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/666Composites in the form of mixed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • H01M10/044Small-sized flat cells or batteries for portable equipment with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0414Methods of deposition of the material by screen printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the present invention relates to an all-solid-state secondary battery including a parallel laminate that is a batch fired body.
  • secondary batteries are mainly non-aqueous electrolyte secondary batteries (lithium ion secondary batteries) that use organic solvents, and are best suited for positive electrode active materials, negative electrode active materials, organic solvent electrolytes, etc.
  • non-aqueous electrolyte secondary batteries lithium ion secondary batteries
  • the production volume of non-aqueous electrolyte secondary batteries has increased significantly with the development of digital home appliances that use them.
  • non-aqueous electrolyte secondary batteries use flammable organic solvent electrolytes, and the organic solvent electrolyte used decomposes due to an electrode reaction, and expands the outer can of the battery. In some cases, there is a risk of electrolyte leakage, and there is a risk of ignition.
  • the all-solid-state secondary battery does not require a separator and does not require an outer can because there is no risk of leakage of the electrolyte.
  • the all-solid-state secondary battery does not use an organic solvent electrolyte in terms of performance, so that it can be configured without any risk of ignition, and the solid electrolyte has ion selectivity. As a result, a battery having excellent charge / discharge cycle characteristics can be expected.
  • Patent Document 1 discloses an all-solid-type substrate-mounted secondary battery having a thin electrode and a solid electrolyte without using a lithium metal piece.
  • the electrode and the electrolyte are formed by sputtering, electron beam evaporation, heat evaporation, etc., and the components are made as thin as possible, thereby reducing the size and weight of the lithium secondary battery. We are trying.
  • Patent Document 2 discloses a stacked thin film solid lithium ion in which two or more thin film solid secondary battery cells each having a positive electrode active material, a solid electrolyte, and a negative electrode active material formed by sputtering are stacked. A secondary battery is disclosed. Since this stacked thin-film solid lithium ion secondary battery is formed by stacking elements so as to be connected in series or in parallel, it can be applied as a high-voltage or large-current power supply to high-power equipment such as an electric vehicle. It is said that there are some effects.
  • Patent Document 3 As an all-solid-state secondary battery by a method other than sputtering, a battery using a fired body as listed in Patent Document 3 and Patent Document 4 has been proposed.
  • the technique of Patent Document 3 is characterized in that the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer are laminated so as to be symmetrical with respect to both sides of the current collector on the flat plate. It is clear that such a layering method is inappropriate for multilayering, which is not very realistic industrially.
  • Patent Document 4 forms a positive electrode current collector and a negative electrode current collector outside the fired body after the positive electrode material containing the binder, the solid electrolyte, and the negative electrode material are fired by microwave heating. This is a single-layer battery structure that cannot be multi-layered.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-284130
  • Patent Document 2 JP 2002-42863 A
  • Patent Document 3 JP 2001-126756 A
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-210360
  • the present invention is an excellent secondary battery that can be manufactured by a mass-produceable method that can be industrially employed.
  • This is an all-solid secondary battery having performance, particularly an all-solid lithium ion secondary battery.
  • the present invention is an all-solid-state secondary battery including a laminate in which a positive electrode unit and a negative electrode unit are alternately stacked via an ion conductive inorganic material layer, wherein the positive electrode unit is a positive electrode collector.
  • a positive electrode active material layer is provided on both sides of the current collector layer
  • the negative electrode unit is provided with a negative electrode active material layer on both sides of the negative electrode current collector layer
  • at least one of the positive electrode current collector layer and the negative electrode current collector layer is Ag, Pd, Au and Pt metal, or an alloy containing any of Ag, Pd, Au and Pt, or their metal and alloy force.
  • the batch firing means firing after forming the laminated block by stacking the materials of the respective layers constituting the stacked body.
  • the present invention relates to an all-solid-state secondary battery that is subjected to batch firing at 900 to: L 100 ° C. for 1 to 3 hours.
  • the present invention is also an all-solid-state secondary battery including a laminate in which a positive electrode unit and a negative electrode unit are alternately laminated via an ion conductive inorganic material layer, wherein the positive electrode unit is a positive electrode current collector layer.
  • the present invention relates to an all-solid-state secondary battery comprising a positive electrode active material layer on both sides, a negative electrode unit having a negative electrode active material layer on both sides of the negative electrode current collector layer, and each layer being in a sintered state. In these all solid state secondary batteries, it is preferable that the interface between adjacent layers has a sintered state.
  • the present invention provides an all-solid-state secondary battery including a laminate in which a positive electrode unit and a negative electrode unit are alternately stacked via an ion conductive inorganic material layer, wherein the positive electrode unit is a positive electrode
  • the positive electrode active material layer is provided on both sides of the current collector layer
  • the negative electrode unit is provided with the negative electrode active material layer on both sides of the negative electrode current collector layer
  • at least the starting material of the ion conductive inorganic substance of the ion conductive inorganic substance layer is The present invention relates to an all-solid-state secondary battery, which is a calcined powder.
  • the laminate is fired at one time, and at least one of the positive electrode current collector layer and the negative electrode current collector layer is composed of Ag, Pd, Au, and Pt. It is preferably made of any metal, or an alloy containing any of Ag, Pd, Au, and Pt, or a mixture of two or more of which metal and alloy strength are also selected.
  • the positive electrode active material, the negative electrode active material, and the ion conductive inorganic material constituting the positive electrode active material layer, the negative electrode active material layer, and the ion conductive inorganic material layer, respectively, are started.
  • the material must be calcined powder; calcined as the starting material of the positive electrode active material.
  • the laminate includes two or more positive electrode units and two negative electrode units; an all-solid lithium ion secondary battery; a positive electrode active material layer, a negative electrode active material layer, and an ion conductive inorganic material
  • the layer has a lithium compound power
  • the all-solid-state secondary battery has a positive electrode extraction electrode in contact with the positive electrode current collector layer and a negative electrode extraction electrode in contact with the negative electrode current collector layer, respectively, on different end faces of the laminate
  • the top layer is the negative electrode unit and the bottom layer is positive
  • the positive electrode unit in the lowermost layer portion includes a positive electrode active material layer only on one surface of the positive electrode current collector layer, and the positive electrode active material layer is in contact with the ion conductive inorganic material layer.
  • the negative electrode unit of the uppermost layer portion includes a negative electrode active material layer only on one surface of the negative electrode current collector layer, and the negative electrode active material layer is in contact with the ion conductive inorganic material
  • the present invention is also an all-solid-state secondary battery including a laminate in which a positive electrode unit and a negative electrode unit are alternately stacked via an ion conductive inorganic material layer, wherein the positive electrode unit is a positive electrode current collector.
  • the positive electrode active material layer is provided on both sides of the body layer, where the positive electrode active material layer is LiCoO, LiNiO, LiMnO,
  • the negative electrode unit comprises a negative electrode active material layer on both sides of the negative electrode current collector layer, where the negative electrode active material layer is composed of Li Ti O, LiTiO and LiMl M2 O (M
  • M2 is a transition metal, and s, t, and u are arbitrary positive numbers) and consists of a selected lithium compound;
  • the ion conductive inorganic material layer is composed of Li Al SiO, Li PO and LiP Si O
  • the present invention relates to an all-solid-state secondary battery, wherein the laminate includes at least two positive electrode units and two negative electrode units, and the laminate is a batch fired body.
  • the positive electrode current collector layer and the negative electrode current collector layer each extend at least on different end faces of the laminate;
  • the positive electrode active material layer strength LiMn O consists of:
  • the negative electrode active material layer is made of Li Ti O, and the ion conductive inorganic material layer is Li P Si
  • the starting material of the positive electrode active material is calcined powder and the starting material of the negative electrode active material
  • the starting material is a calcined powder, and the initial material of the ion conductive inorganic material is a calcined powder;
  • the starting material of the positive electrode active material is a powder calcined at 700 to 800 ° C Yes
  • the negative electrode active material starting material is powder calcined at 700-800 ° C
  • the ion conductive inorganic material starting material is 900-: powder calcined at L000 ° C
  • the calcined powder that is the starting material of the positive electrode active material the calcined powder that is the starting material of the negative electrode active material, and the calcined powder that is the starting material of the ion conductive inorganic substance 1
  • the linear shrinkage rate after heating to the temperature for batch firing is a%, b%, and c%, respectively, the difference between the maximum and minimum values must be within 6%
  • At least one of the negative electrode current collector layer is a metal of any one of Ag, Pd, Au, and Pt, or an alloy
  • the lowermost positive electrode unit includes a positive electrode active material layer only on one side of the positive electrode current collector layer layer,
  • the positive electrode active material layer is in contact with the ion conductive inorganic material layer
  • the negative electrode unit in the uppermost layer has a negative electrode active material layer only on one side of the negative electrode current collector layer, and the negative electrode active material layer is ion conductive. In contact with the inorganic material layer!
  • the lowermost positive electrode unit is an ion conductive active material.
  • the protective layer on the positive electrode current collector layer Anode unit of the uppermost layer portion, it has a protective layer on the negative electrode collector layer not in contact with the ion-conductive active material layer, is preferable.
  • the present invention includes the following steps (1) to (4): (1) a positive electrode base including a calcined powder of a positive electrode active material, a negative electrode paste including a calcined powder of a negative electrode active material, and an ion conductive inorganic material A step of preparing an ion-conductive inorganic material paste containing a calcined powder, a positive electrode current collector paste containing a positive electrode current collector powder, and a negative electrode current collector paste containing a negative electrode current collector powder; (2) substrate After applying the paste in the order of ion-conductive inorganic substance paste, positive electrode paste, positive electrode current collector paste, and positive electrode paste on top of each other, and drying in some cases, the substrate is peeled off to remove the positive electrode.
  • the calcining temperature of the ion conductive inorganic material is the calcining temperature of the positive electrode active material and the negative electrode active material. than And preparing a calcined powder of a positive electrode active material, a calcined powder of a negative electrode active material, and a calcined powder of an ion conductive inorganic material; (2 ′) a positive electrode paste containing a calcined powder of a positive electrode active material; Negative electrode paste containing calcined powder of negative electrode active material, ion conductive inorganic material paste containing powder of ion conductive inorganic material, positive electrode current collector paste containing powder of positive electrode current collector, and negative electrode current collector powder (3 ') a positive electrode paste, a positive electrode current collector paste, a positive electrode paste, an ion conductive inorganic substance paste, a negative electrode paste, and a negative electrode current collector.
  • Paste in order of paste, negative electrode paste, ion conductive inorganic material paste, and so that the positive electrode current collector paste layer and the negative electrode current collector paste layer extend at least to different portions of the end face of the laminated block. Apply, depending on the case And a step of obtaining a laminated block; and (4 ′) a step of peeling the base material from the laminated block in some cases and collectively baking to obtain a laminated body; .
  • the all-solid-state secondary battery of the present invention can be manufactured by a method that is simple and does not require a long time, and is excellent in terms of efficiency, so that it can be adopted industrially and has an excellent manufacturing cost. Has an effect.
  • the laminate in which the positive electrode unit and the negative electrode unit are alternately laminated via the ion conductive inorganic substance has an effect of being excellent in the charge / discharge characteristics of the battery.
  • batch firing provides a laminate that is a sintered body having good solid-solid interface bonding between the respective layers, and a battery having low internal resistance and good energy efficiency.
  • FIG. 1 is a view showing a laminate having a basic structure of an all-solid-state secondary battery of the present invention.
  • FIG. 2 is a diagram showing the structure of an all-solid-state secondary battery provided with the extraction electrode of the present invention.
  • FIG. 3 is a diagram showing the structure of another embodiment of the all-solid-state secondary battery of the present invention.
  • FIG. 4 is a view showing the structure of still another embodiment of the all solid state secondary battery of the present invention.
  • FIG. 5 is a graph showing repetitive charge / discharge characteristics of the all solid state secondary battery of the present invention.
  • FIG. 6 is a diagram showing charge / discharge capacities associated with repeated charge / discharge cycles of the all solid state secondary battery of the present invention.
  • FIG. 1 shows the structure of the most basic laminate constituting the all solid state secondary battery of the present invention.
  • the positive electrode units 4 and the negative electrode units 5 are alternately laminated via the ion conductive inorganic material layers 3.
  • the positive electrode unit 4 includes a positive electrode active material layer 6 on both surfaces of the positive electrode current collector layer 7, and the negative electrode unit 5 includes a negative electrode active material layer 8 on both surfaces of the negative electrode current collector layer 9.
  • the positive electrode current collector layer 7 preferably extends to the end face 10 of the laminate 2
  • the negative electrode current collector layer 9 preferably extends to the other end face 11 of the laminate 2. That is, it is preferable that the positive electrode current collector layer extends to one end face 10 of the laminate but is not extended to the other end face 11 and is exposed.
  • the negative electrode current collector layer preferably extends to the other end surface 11 but does not extend to one end surface 10 and is not exposed.
  • the positive electrode current collector layer and the negative electrode current collector layer may extend at least to different portions of the end face of the laminate, and the positive electrode current collector layer, the negative electrode current collector layer, However, they may extend to different parts on the same end face.
  • the positive electrode current collector layer and the negative electrode current collector layer extend at least on different end faces of the laminate.
  • the positive electrode current collector layer and the negative electrode current collector layer can extend to a plurality of end faces.
  • the laminated body has at least one end face from which only the positive electrode current collector layer extends and one end face from which only the negative electrode current collector layer extends, and the other end faces have a positive electrode
  • One or both of the current collector layer and the negative electrode current collector layer can be extended and / or the force can be extended, or both can be extended.
  • the laminate 2 is a one-time fired product. If the number of negative electrode units and positive electrode units in the laminate is one or more, an all-solid secondary battery can be formed.
  • the number of negative electrode units and positive electrode units can vary widely based on the required capacity and current value of the all-solid-state secondary battery. In particular, when the number is three or more, the merit of the present invention can be enjoyed more. For example, the merit is remarkable when a multi-layer structure of 10 to 500 is used.
  • the all-solid-state secondary battery 1 has a positive electrode lead electrode 12 in contact with the positive electrode current collector layer 7 provided on one end face 10 of the laminate 2, and the negative electrode current collector layer It is preferable that a negative electrode extraction electrode 13 in contact with 9 is provided on the other end face 11 of the laminate 2.
  • the lowermost positive electrode unit 24 force positive current collector
  • the positive electrode active material layer 26 is provided only on one side of the layer 27, the positive electrode active material layer 26 is in contact with the ion conductive inorganic material layer 23, and the negative electrode unit 25 in the uppermost layer portion is provided only on one side of the negative electrode current collector layer 29. It is preferable that the negative electrode active material layer 28 is provided, and the negative electrode active material layer 28 is in contact with the ion conductive inorganic material layer 23.
  • the terms “uppermost layer portion” and “lowermost layer portion” merely indicate a relative positional relationship.
  • a protective layer is provided on either the upper end or the lower end of the laminate, preferably both.
  • the lowermost positive electrode unit 34 is the ion conductive inorganic substance layer.
  • the protective layer 40 is provided on the positive electrode active material layer 36 that is not in contact with the negative electrode active material layer 36, and the negative electrode unit 35 in the uppermost layer portion is provided with the protective layer 40 on the negative electrode active material layer 38 that is not in contact with the ion conductive inorganic material layer. All-solid-state secondary batteries can be obtained.
  • the terms “upper” and “lower” t merely indicate a relative positional relationship.
  • the ion-conductive inorganic material layer, the positive electrode active material layer, the negative electrode active material layer, the positive electrode current collector layer, the negative electrode current collector layer, and the protective layer according to circumstances constituting the all solid state secondary battery of the present invention are as follows. It is the same as that.
  • the ion conductive inorganic material layer is composed of LiAlSiO, LiPO, LiPSiO (wherein x, y, z
  • the positive electrode active material layer is made of LiCoO, LiNiO, LiMnO, LiMn O, LiCuO, LiCoVO,
  • Lithium compound selected from the group consisting of LiMnCoO, LiCoPO, LiFePO
  • LiCoO, LiMnO, LiMn O are more preferred
  • the negative electrode active material layer is made of Li Ti O, LiTiO, LiMl M2 O (Ml and M2 are transition metals)
  • s, t, and u are arbitrary positive numbers), but are preferably made of a lithium compound selected from, but not limited to. Li Ti O, LiTiO power is preferred.
  • the positive electrode current collector layer and the negative electrode current collector layer can be made of any metallic force such as Ag, Pd, Au, and Pt. Alternatively, it can be made of an alloy containing any of Ag, Pd, Au, and Pt. In the case of an alloy, two or more kinds of alloys selected from Ag, Pd, Au and Pt are preferred, for example, Ag / Pd alloy. In addition, these metals and alloys may be used singly or as a mixture of two or more.
  • the positive electrode current collector layer and the negative electrode current collector layer may be the same material or may be different from each other, but are preferably the same material from the viewpoint of manufacturing efficiency.
  • alloys or mixed powders composed of Ag and Pd can be continuously and arbitrarily changed from the silver melting point (962 ° C) to the palladium melting point (1550 ° C) depending on the mixing ratio.
  • the melting point can be adjusted according to the firing temperature, and since the electronic conductivity is high, the battery internal resistance can be minimized.
  • the optional protective layer can be made of the lithium compounds mentioned above for the ion conductive inorganic material layer, but is not limited thereto, and can also have various insulating material forces. From the viewpoint of production efficiency, it is preferable to use the same material as the ion conductive inorganic substance layer.
  • the laminate includes a positive electrode active material layer, a negative electrode active material layer, an ion conductive inorganic material layer, a positive electrode current collector layer, a negative electrode current collector layer, and optional protection.
  • Each material of the layer It can be prepared using a paste prepared from a paste.
  • the positive electrode active material layer As a starting material of the positive electrode active material layer, the negative electrode active material layer, and the ion conductive inorganic material layer used for pasting, powders obtained by calcining inorganic salts or the like as raw materials are used. be able to.
  • the calcination temperature for the positive electrode active material, negative electrode active material, and ion-conducting inorganic material is set to It is preferable to be over 700 ° C! /.
  • each layer is formed using a calcined positive electrode active material, negative electrode active material, and ion conductive inorganic material
  • the respective materials tend to shrink after batch firing.
  • the ion conductive inorganic material is calcined at a higher temperature than the positive electrode active material and the negative electrode active material.
  • a positive electrode active material calcined at 700 to 800 ° C. and 700 to 800.
  • a negative electrode active material calcined with C, 900-1000. C, preferably 950-100. It can be used in combination with ion-conducting inorganic material calcined with C.
  • the positive electrode active material, the negative electrode active material, and the ion conductive inorganic material when the linear shrinkage ratios when heated to the temperature of batch firing are a%, b%, and c%, respectively, It is preferable to use a positive electrode active material, a negative electrode active material, and an ion conductive inorganic material that have been calcined by adjusting the calcining temperature so that the difference between the minimum values is within 6%. This suppresses the occurrence of bending or peeling due to cracks or distortion, and provides good battery characteristics.
  • the linear shrinkage rate is a value measured as follows.
  • thermomechanical analysis change the thickness after heating to a specified temperature while holding a load of 0.44 gZmm 2 on the test piece. taking measurement.
  • Cathode active materials such as O, LiCoVO, LiMnCoO, LiCoPO, LiFePO, 700-800.
  • Li Ti O, LiTiO, LiMl M2 O (Ml, M2 are transition metals, s, t
  • Li PO LiP Si O (where x, y, z are arbitrary positive numbers)
  • the paste can be obtained by mixing the powder of each material in an organic solvent and a binder vehicle.
  • the current collector paste can be prepared by mixing a vehicle with a mixture of Ag and Pd metal powder, a composite powder by the AgZPd coprecipitation method, or a powder of AgZPd alloy.
  • a method for producing a laminated body in the all-solid-state secondary battery of the present invention using a paste of each material is, for example, as follows.
  • the paste is applied on the base material in the desired order and, if necessary, dried, and then the base material is peeled off to obtain a laminated block.
  • the laminated block can be fired at once to obtain a laminated body.
  • each paste is applied on the base material in the order corresponding to the part, and optionally dried, and then the base material is peeled off to prepare them. It can also be produced by stacking and pressure forming, then firing at once. Specifically, a paste is sequentially applied so as to form an ion conductive inorganic substance and a positive electrode unit on the base material, and optionally dried, and then the base material is peeled to produce a positive electrode unit. In order to form an ion conductive inorganic substance and a negative electrode on the material, a paste is sequentially applied and, if necessary, dried, and then the substrate is peeled off to produce a negative electrode unit.
  • positive electrode units and negative electrode units are alternately stacked, preferably pressure-molded to obtain a laminated block, and this can be fired at once to obtain a laminated body.
  • the positive electrode current collector paste layer and the negative electrode current collector paste layer are extended so as to extend at least to different portions of the end face of the laminated block. It is preferable to apply a strike or stack units. Further, if desired, in order to form a protective layer on either or both of the upper end and the lower end of the stack block, for example, an ion conductive inorganic material paste layer can be provided and then fired at once.
  • the method of applying the paste is not particularly limited, and a known method such as screen printing, transfer, doctor blade, etc. can be employed. It is preferable to apply the paste or stack the units so that the positive electrode current collector paste layer and the negative electrode current collector paste layer extend at least to different end faces of the laminated block.
  • Positive electrode paste containing calcined powder of positive electrode active material, negative electrode paste containing calcined powder of negative electrode active material, ion conductive inorganic material paste containing calcined powder of ion conductive inorganic material, positive electrode current collector Preparing a positive electrode current collector paste containing a body powder and a negative electrode current paste containing a negative electrode current collector powder;
  • the positive electrode unit and the negative electrode unit are arranged such that the positive electrode paste layer of the positive electrode unit and the negative electrode paste layer of the negative electrode unit are not in contact with each other, and the positive electrode current collector paste layer and the negative electrode current collector paste layer are end faces of the laminated block. Stacking alternately and preferably pressing to obtain a laminated block so as to extend at least to different parts of
  • the manufacturing method of the all-solid-state secondary battery containing is mentioned. It is preferable that the positive electrode current collector paste layer and the negative electrode current collector paste layer are alternately stacked so as to extend to different end faces of the laminated block.
  • the calcining temperature of the ion conductive inorganic material is set higher than the calcining temperature of the positive electrode active material and the negative electrode active material, and the calcined powder of the positive electrode active material, the calcined powder of the negative electrode active material, and the ion conductivity Preparing an inorganic calcined powder;
  • a method for producing an all-solid-state secondary battery which includes a step of optionally peeling the substrate from the laminated block and collectively baking to obtain a laminated body.
  • the positive electrode current collector paste layer and the negative electrode current collector paste layer are preferably applied so as to extend at least to different end faces of the laminated block.
  • an ion conductive inorganic material paste layer is provided on the upper end and the lower end of the laminate block, or both, in order to form a protective layer. Then, it can be fired at once.
  • Batch firing can be performed in air, for example, firing temperature 900 to: L100 ° C, 1 to 3 hours.
  • firing temperature 900 to: L100 ° C, 1 to 3 hours By firing at such a temperature, each layer is in a sintered state, and the interface between adjacent layers can also have a sintered state. This means that the particles in each layer formed from the calcined powder particles are in a sintered state, and the particles in adjacent layers are also in a sintered state.
  • the extraction electrode includes, for example, a positive electrode current collector layer and a negative electrode collector obtained by extending an extraction electrode paste containing conductive powder (eg, Ag powder), glass frit, vehicle, and the like to the end face of the laminate. After coating on the electric layer, it can be provided by baking at a temperature of 600 to 900 ° C.
  • conductive powder eg, Ag powder
  • LiMn O produced by the following method was used as the positive electrode active material.
  • Li CO and MnCO as starting materials, weigh them at a molar ratio of 1: 4 and add water.
  • the mixture was wet mixed with a ball mill for 16 hours as a dispersion medium, and then dehydrated and dried.
  • the obtained powder was calcined in air at 800 ° C for 2 hours.
  • the calcined product was coarsely pulverized, wet mixed with a ball mill for 16 hours using water as a dispersion medium, and then dehydrated and dried to obtain a calcined powder of a positive electrode active material.
  • the average particle size of the calcined powder was 0.30 ⁇ m.
  • the composition is LiMn O
  • the positive electrode paste 100 parts of the calcined powder of the positive electrode active material was mixed with 15 parts of ethyl cellulose as a binder and 65 parts of dihydrotabinol as a solvent, and kneaded and dispersed in a three-roll mill. A paste was prepared.
  • Li Ti O produced by the following method was used as the negative electrode active material.
  • Li CO and TiO as starting materials, weigh them at a molar ratio of 2: 5 and disperse water.
  • the composition is Li Ti O
  • Li Si PO prepared by the following method was used as the ion conductive inorganic substance.
  • an AgZPdlOO part having a weight ratio of 70Z30 10 parts of ethyl cellulose as a binder and 50 parts of dihydrotavineol as a solvent were kneaded and dispersed in a three-roll mill to prepare a current collector paste.
  • a positive electrode paste was printed on the above-mentioned ion conductive inorganic substance sheet with a thickness of 8 ⁇ m by screen printing.
  • the printed positive electrode paste was dried at 80 to 100 ° C. for 5 to 10 minutes, and the current collector paste was printed thereon with a thickness of 5 m by screen printing.
  • the printed current collector paste was dried at 80 to 100 ° C. for 5 to 10 minutes, and then the positive electrode paste was printed again at a thickness of 8 ⁇ m by screen printing.
  • the printed positive electrode paste was dried at 80 to 100 ° C. for 5 to L0 minutes, and then the PET film was peeled off. In this manner, a positive electrode unit sheet was obtained in which the positive electrode paste, the current collector paste, and the positive electrode paste were printed and dried in this order on the ion conductive inorganic substance sheet. [0058] (Preparation of negative electrode unit)
  • a negative electrode base was printed on the above-mentioned ion conductive inorganic material sheet with a thickness of 8 m by screen printing.
  • the printed negative electrode paste was dried at 80 to 100 ° C. for 5 to 10 minutes, and the current collector paste was printed thereon with a thickness of 5 m by screen printing.
  • the printed current collector paste was dried at 80 to 100 ° C. for 5 to 10 minutes, and then the negative electrode paste was printed again at a thickness of 8 m by screen printing.
  • the printed negative electrode paste was dried at 80 ⁇ : LOO ° C for 5 ⁇ : LO minutes, and then the PET film was peeled off. In this way, a negative electrode unit sheet in which the negative electrode paste, the current collector paste, and the negative electrode paste were printed and dried in this order on the ion conductive inorganic material sheet was obtained.
  • the positive electrode unit and the negative electrode unit were alternately stacked with 5 units in each direction, with an ion conductive inorganic substance interposed therebetween. At this time, the positive electrode unit and the negative electrode unit were shifted and stacked so that the current collector paste layer of the positive electrode unit extended only to one end surface and the current collector paste layer of the negative electrode unit extended only to the other surface. . Thereafter, this was molded at a temperature of 80 ° C. and a pressure of lOOOOkgfZcm 2 [98 MPa], and then cut to produce a laminated block. Then, the laminated block was batch-fired to obtain a laminated body.
  • each ion-conducting inorganic material layer in the sintered laminate thus obtained is 7 ⁇ m
  • the thickness of the positive electrode active material layer is 5 ⁇ m
  • the thickness of the negative electrode active material layer is 5 ⁇ m
  • the thickness of the current collector layer was 3 ⁇ m.
  • the length, width and height of the laminate were 8 mm X 8 mm X 0.2 mm, respectively.
  • An extraction electrode paste was applied to the end face of the laminate and fired at 750 ° C. to form a pair of extraction electrodes, whereby an all-solid-state secondary battery was obtained.
  • Lead wires were attached to the respective extraction electrodes connected to the positive electrode current collector and the negative electrode current collector, and repeated charge / discharge tests were conducted.
  • the measurement conditions are A for the current during charging and discharging, and 3.5V and 0.3V for the cutoff voltage during charging and discharging, respectively.
  • the time was within 300 minutes.
  • the results are shown in Fig. 5.
  • the all-solid-state secondary battery of the present invention exhibits excellent repeated charge / discharge characteristics, and it can be seen that it has an excellent function as a secondary battery.
  • the charge / discharge capacity is a force that fluctuates up to the 17th cycle, and after that, it showed a stable and almost constant curve.
  • the discharge start voltage at the 18th cycle when charge and discharge were stable was 3.2 V, and the charge capacity and discharge capacity were 200 ⁇ Ah and 160 ⁇ Ah, respectively.
  • Example 1 Using the same positive electrode paste, negative electrode paste, ion conductive inorganic material paste, and current collector paste as in Example 1, one paste was applied onto the alumina substrate so as to have the same parallel structure as in Example 1. After firing, the following paste was applied and fired repeatedly to try to produce an all-solid battery. The firing temperature was the same as in Example 1.
  • the positive electrode paste was applied on the ion conductive inorganic substance layer obtained by applying and baking the ion conductive inorganic substance paste on the alumina substrate and baked.
  • the ion conductive inorganic material layer and the positive electrode active material layer are largely separated, and the process cannot proceed to the next step, and an all solid state secondary battery having the same parallel structure as in Example 1 cannot be manufactured. won. This is because, in the second firing, the ion-conductive inorganic material layer that has already been fired does not shrink any more, whereas the positive electrode active material layer that is fired for the first time shrinks, so the behavior differs between the layers. It is thought that cracks and peeling occurred.
  • the method as in Comparative Example 1 requires firing one by one, and the production efficiency is very poor.
  • a battery was produced in the same manner as in Example 1 by combining the positive electrode active material, the negative electrode active material, and the calcined powder of the ion conductive inorganic material at various calcining temperatures, and observed for occurrence of cracks and peeling. I guessed. Table 2 shows the results.
  • the all-solid-state secondary battery used a combination of a positive electrode active material and a negative electrode active material having a calcining temperature of 700 to 800 ° C and an ion conductive inorganic material having a calcining temperature of 900 to: LOOO ° C. It is confirmed that the battery operates particularly well as a battery that does not crack or peel off when the difference between the maximum and minimum values of the linear shrinkage rate a, b, c is within 6%. .
  • the present invention thus provides an all-solid-state secondary battery having a structure that can be easily connected in parallel. Since the charge capacity and the discharge capacity can be increased by increasing the number of stacked layers, the present invention can be used industrially.

Abstract

 工業的に採用し得る量産可能な方法で製造でき、かつ優れた二次電池性能を有する全固体二次電池を提供する。   正極単位と負極単位とが、イオン伝導性無機物質層を介して交互に積層された積層体を含む全固体二次電池であって、正極単位が、正極集電体層の両面に正極活物質層を備 え、前記負極単位が、負極集電体層の両面に負極活物質層を備え、(a)正極集電体層と負極集電体層との少なくとも一方が、Ag、Pd、Au及びPtのいずれかの金属、又はAg、Pd、Au及びPtのいずれかを含む合金、あるいはそれらの金属及び合金から選ばれる2種以上の混合物からなり、積層体は一括焼成されたものであるか、(b)各層は焼結状態となっているか、(c)少なくともイオン伝導性無機物質層のイオン伝導性無機物質の始発材料は仮焼された粉末である、ことを特徴とする全固体二次電池である。

Description

明 細 書
全固体二次電池
技術分野
[0001] 本発明は、一括焼成体である並列型の積層体を含む全固体二次電池に関する。
背景技術
[0002] 従来、二次電池は、有機溶媒を使用する非水電解液二次電池(リチウムイオン二次 電池)を中心に、使用する正極活物質、負極活物質及び有機溶媒電解液等の最適 化が図られてきた。非水電解液二次電池は、それを使用するデジタル家電製品の大 発展とともに、生産量が著しく増大している。
[0003] しカゝしながら、非水電解液二次電池は、可燃性の有機溶媒電解液を使用すること、 及び使用する有機溶媒電解液が電極反応により分解し、電池の外装缶を膨張させ、 場合により電解液の漏出を起こすおそれもあることから、発火の危険性も指摘されて いる。
[0004] このため、有機溶媒電解液に代えて固体電解質を使用する全固体二次電池が着 目されている。全固体二次電池は、構造的には、セパレータを必要とせず、電解液の 漏出のおそれがないため外装缶が不要である。
[0005] また、全固体二次電池は、性能的にも、有機溶媒電解液を使用しないため、発火 の危険性のない電池を構成できる他、固体電解質がイオン選択性を有するため、副 反応が少なく効率を高めることができ、その結果、充放電サイクル特性に優れた電池 が期待できる。
[0006] 例えば、特許文献 1には、リチウム金属片を使用せずに、薄膜化した電極と固体電 解質とを有する全固体型の基板搭載型二次電池が開示されている。この二次電池で は、電極及び電解質をスパッタ法ゃ電子ビーム蒸着法、加熱蒸着法等で成膜して、 構成物を可能な限り薄くすることにより、リチウム二次電池の小型 ·軽量ィ匕を図ってい る。
[0007] また特許文献 2には、スパッタ法で成膜した正極活物質、固体電解質、負極活物質 力 なる薄膜固体二次電池セルを 2層以上積層した積層型薄膜固体リチウムイオン 二次電池が開示されている。この積層型薄膜固体リチウムイオン二次電池は、直列 又は並列で接続するように素子を積層化して ヽるので、大電圧又は大電流電源とし て電気自動車等の大電力機器への応用が可能であること、等の効果を奏するとされ ている。し力しながら、これらの先行技術に開示された薄膜の全固体リチウムイオン二 次電池は、いずれもスパッタ法等で製造されたものであり、電極や固体電解質の薄 膜の成膜速度が極めて遅い。例えば、正極活物質、固体電解質及び負極活物質か ら構成される厚さ 1. 0 mの電池を基板上に製造する場合、成膜時間が 10時間以 上にもなる。成膜速度が遅いこのような方法を工業的に採用することは生産性の点で 、ひいては製造コストの点で難しい。
[0008] 一方、スパッタ法以外の方法による全固体二次電池としては、特許文献 3、特許文 献 4に挙げられるような焼成体を使用したものが提唱されている。しかし、特許文献 3 の技術は、平板上の集電体の両面を挟んで対称になるようにして、正極活物質層、 固体電解質層及び負極活物質層を積層していくことを特徴としており、このような積 層の仕方は工業的には極めて現実的ではなぐ多層化には不適当であることは明ら かである。また、特許文献 4の技術は、結着材を含有する正極材料と固体電解質と負 極材料をマイクロ波加熱焼成した後に、この焼成体の外側に正極集電体、負極集電 体を形成するというものであり、単層の電池構造であって、多層化することができない ものである。
特許文献 1:特開平 10— 284130号公報
特許文献 2 :特開 2002— 42863号公報
特許文献 3:特開 2001— 126756号公報
特許文献 4:特開 2001— 210360号公報
発明の開示
発明が解決しょうとする課題
[0009] したがって、工業的に採用し得る量産可能な方法で製造でき、かつ優れた二次電 池性能を有する全固体二次電池の実現が依然として要望されている。
課題を解決するための手段
[0010] 本発明は、工業的に採用し得る量産可能な方法で製造でき、かつ優れた二次電池 性能を有する全固体二次電池、特に全固体リチウムイオン二次電池である。具体的 には、本発明は、正極単位と負極単位とが、イオン伝導性無機物質層を介して交互 に積層された積層体を含む全固体二次電池であって、正極単位が、正極集電体層 の両面に正極活物質層を備え、前記負極単位が、負極集電体層の両面に負極活物 質層を備え、正極集電体層と負極集電体層との少なくとも一方が、 Ag、 Pd、 Au及び Ptのいずれかの金属、又は Ag、 Pd、 Au及び Ptのいずれかを含む合金、あるいはそ れらの金属及び合金力 選ばれる 2種以上の混合物からなり、積層体は一括焼成さ れたものであることを特徴とする全固体二次電池に関する。なお、一括焼成とは、積 層体を構成する各層の材料を積み重ねて積層ブロックを形成した後に焼成すること をいう。好ましくは、一括焼成を、 900〜: L 100°Cにおいて、 1〜3時間行ったものであ る全固体二次電池に関する。また、本発明は、正極単位と負極単位とが、イオン伝導 性無機物質層を介して交互に積層された積層体を含む全固体二次電池であって、 正極単位が、正極集電体層の両面に正極活物質層を備え、負極単位が、負極集電 体層の両面に負極活物質層を備え、各層は焼結状態となっていることを特徴とする 全固体二次電池に関する。これらの全固体二次電池においては、隣接する層の界 面が焼結状態を有して 、ることが好ま 、。
[0011] さらに、本発明は、正極単位と負極単位とが、イオン伝導性無機物質層を介して交 互に積層された積層体を含む全固体二次電池であって、正極単位が、正極集電体 層の両面に正極活物質層を備え、負極単位が、負極集電体層の両面に負極活物質 層を備え、少なくともイオン伝導性無機物質層のイオン伝導性無機物質の始発材料 は仮焼された粉末であることを特徴とする全固体二次電池に関する。この全固体二 次電池においては、積層体は一括焼成されたものであることが好ましぐまた、正極 集電体層と負極集電体層との少なくとも一方力 Ag、 Pd、 Au及び Ptのいずれかの 金属、又は Ag、 Pd、 Au及び Ptのいずれかを含む合金、あるいはそれらの金属及び 合金力も選ばれる 2種以上の混合物からなることが好ましい。
[0012] 上記の全固体二次電池においては、正極活物質層、負極活物質層及びイオン伝 導性無機物質層をそれぞれ構成する正極活物質、負極活物質及びイオン伝導性無 機物質の始発材料は仮焼された粉末であること;正極活物質の始発材料である仮焼 された粉末、負極活物質の始発材料である仮焼された粉末及びイオン伝導性無機 物質の始発材料である仮焼された粉末にっ 、て、一括焼成の温度に加熱した後の 線収縮率をそれぞれ a%、 b%及び c%とした場合、最大値と最小値の差が 6%以内 であること;正極集電体層及び負極集電体層が、それぞれ、積層体の異なる端面に 少なくとも延出していること;積層体が、正極単位及び負極単位をそれぞれ 2個以上 含むこと;全固体リチウムイオン二次電池であること;正極活物質層、負極活物質層 及びイオン伝導性無機物質層が、リチウム化合物力 なること;全固体二次電池が、 正極集電体層と接する正極引出電極及び負極集電体層と接する負極引出電極を、 それぞれ、積層体の異なる端面に有すること;最上層部が負極単位であり、最下層部 が正極単位である全固体二次電池において、最下層部の正極単位が、正極集電体 層の片面にのみ正極活物質層を備え、かつ正極活物質層がイオン伝導性無機物質 層に接しており、最上層部の負極単位が、負極集電体層の片面にのみ負極活物質 層を備え、かつ負極活物質層がイオン伝導性無機物質層に接していること、が好まし い。
[0013] また、本発明は、正極単位と負極単位とが、イオン伝導性無機物質層を介して交互 に積層された積層体を含む全固体二次電池であって、正極単位は正極集電体層の 両面に正極活物質層を備え、ここで正極活物質層は LiCoO、 LiNiO、 LiMnO、
2 2 2
LiMn O、 LiCuO、 LiCoVO、 LiMnCoO、 LiCoPO及び LiFePOよりなる群
2 4 2 4 4 4 4
力 選択されるリチウム化合物からなり;負極単位は負極集電体層の両面に負極活 物質層を備え、ここで負極活物質層は Li Ti O、 LiTiO及び LiMl M2 O (M
4/3 5/3 4 2 s t u
1、 M2は遷移金属であり、 s、 t、 uは任意の正数)よりなる群力 選択されるリチウム化 合物からなり;イオン伝導性無機物質層は Li Al SiO、 Li PO及び LiP Si O
3. 25 0. 25 4 3 4 x y z
(式中 x、 y、 zは任意の正数)よりなる群力 選択されるリチウム化合物力 なり;正極 集電体層及び負極集電体層は、それぞれ、積層体の端面の異なる部分に少なくとも 延出し;積層体は正極単位及び負極単位をそれぞれ 2個以上含み、かつ積層体は 一括焼成体である、ことを特徴とする全固体二次電池に関する。
[0014] 上記の全固体二次電池は、正極集電体層及び負極集電体層が、それぞれ、積層 体の異なる端面に少なくとも延出していること;正極活物質層力 LiMn Oからなり、 負極活物質層が、 Li Ti Oからなり、イオン伝導性無機物質層が、 Li P Si
4/3 5/3 4 3. 5 0. 5 0 oからなること;正極活物質の始発材料が仮焼された粉末であり、負極活物質の始
. 5 4
発材料が仮焼された粉末であり、イオン伝導性無機物質の始発材料が仮焼された粉 末であること;正極活物質の始発材料が、 700〜800°Cで仮焼された粉末であり、負 極活物質の始発材料が、 700〜800°Cで仮焼された粉末であり、イオン伝導性無機 物質の始発材料が、 900〜: L000°Cで仮焼された粉末であり、かつ、正極活物質の 始発材料である仮焼された粉末、負極活物質の始発材料である仮焼された粉末及 びイオン伝導性無機物質の始発材料である仮焼された粉末につ 1、て、一括焼成の 温度に加熱した後の線収縮率をそれぞれ a%、 b%及び c%とした場合、最大値と最 小値の差が 6%以内であること;正極集電体層と負極集電体層との少なくとも一方が 、 Ag、 Pd、 Au及び Ptのいずれかの金属、又は Ag、 Pd、 Au及び Ptのいずれかを含 む合金、あるいはそれらの金属及び合金力 選ばれる 2種以上の混合物力 なること ;正極集電体層と接する正極引出電極及び負極集電体層と接する負極引出電極を 、それぞれ、積層体の異なる端面に有すること;最上層部が負極単位であり、最下層 部が正極単位である全固体二次電池において、最下層部の正極単位が、正極集電 体層層の片面にのみ正極活物質層を備え、かつ正極活物質層がイオン伝導性無機 物質層に接しており、最上層部の負極単位が、負極集電体層の片面にのみ負極活 物質層を備え、かつ負極活物質層がイオン伝導性無機物質層に接して!/ヽること;)最 上層部が負極単位であり、最下層部が正極単位である全固体二次電池において、 最下層部の正極単位が、イオン伝導性活物質層に接して ヽな 、正極集電体層上に 保護層を備え、かつ最上層部の負極単位が、イオン伝導性活物質層に接していない 負極集電体層上に保護層を備えていること、が好ましい。
さらに、本発明は、下記工程(1)〜(4): (1)正極活物質の仮焼粉末を含む正極べ 一スト、負極活物質の仮焼粉末を含む負極ペースト、イオン伝導性無機物質の仮焼 粉末を含むイオン伝導性無機物質ペースト、正極集電体の粉末を含む正極集電体 ペースト及び負極集電体の粉末を含む負極集電体ペーストを準備する工程;(2)基 材上にイオン伝導性無機物質ペースト、正極ペースト、正極集電体ペースト、正極ぺ 一ストの順序で、ペーストを塗布し、場合により乾燥させた後、基材を剥離して正極ュ ニットを作製し、イオン伝導性無機物質ペースト、負極ペースト、負極集電体ペースト 、負極ペーストの順序で、ペーストを塗布し、場合により乾燥させた後、基材を剥離し て負極ユニットを作製する工程;(3)正極ユニット及び負極ユニットを、正極ユニットの 正極ペースト層と負極ユニットの負極ペースト層とが接することなく、かつ正極集電体 ペースト層及び負極集電体ペースト層が積層ブロックの端面の異なる部分に少なくと も延出するように、交互に積み重ねて、好ましくは加圧成形して積層ブロックを得るェ 程;並びに (4)積層ブロックを一括焼成し、積層体を得る工程;を含む全固体二次電 池の製造方法に関し、また下記工程(1 ' )〜(4' ): (1 ' )イオン伝導性無機物質の仮 焼温度を正極活物質及び負極活物質の仮焼温度よりも高くして、正極活物質の仮焼 粉末、負極活物質の仮焼粉末及びイオン伝導性無機物質の仮焼粉末を準備するェ 程;(2' )正極活物質の仮焼粉末を含む正極ペースト、負極活物質の仮焼粉末を含 む負極ペースト、イオン伝導性無機物質の粉末を含むイオン伝導性無機物質ペース ト、正極集電体の粉末を含む正極集電体ペースト及び負極集電体の粉末を含む負 極集電体ペーストを準備する工程;(3' )基材上に、正極ペースト、正極集電体ぺ一 スト、正極ペースト、イオン伝導性無機物質ペースト、負極ペースト、負極集電体ぺ一 スト、負極ペースト、イオン伝導性無機物質ペーストの順序で、かつ正極集電体ぺ一 スト層及び負極集電体ペースト層が積層ブロックの端面の異なる部分に少なくとも延 出するように、ペーストを塗布し、場合により乾燥させて、積層ブロックを得る工程;並 びに (4' )積層ブロックから、場合により基材を剥離させ、一括焼成し、積層体を得る 工程;を含む全固体二次電池の製造方法に関する。
発明の効果
本発明の全固体二次電池は、簡便で、かつ長時間を要することもない方法で製造 でき、効率の点で優れるため、工業的に採用することができ、製造コストが安価である という優れた効果を奏する。カロえて、本発明の全固体二次電池において、正極単位 と負極単位とが、イオン伝導性無機物質を介して交互に積層された積層体は、電池 の充放電特性に優れるという効果を奏する。特に、一括焼成により、各層間で良好な 固体 固体界面の接合を有する焼結体である積層体が得られ、内部抵抗が小さぐ エネルギー効率が良好な電池が得られる。 図面の簡単な説明
[0017] [図 1]本発明の全固体二次電池の基本構造の積層体を示す図である。
[図 2]本発明の引出電極を備える全固体二次電池の構造を示す図である。
[図 3]本発明の全固体二次電池の別の実施態様の構造を示す図である。
[図 4]本発明の全固体二次電池のさらに別の実施態様の構造を示す図である。
[図 5]本発明の全固体二次電池の繰り返し充放電特性を示す図である。
[図 6]本発明の全固体二次電池の繰り返し充放電サイクルに伴う充放電容量を示す 図である。
符号の説明
[0018] 1 全固体二次電池
2 積層体
3 イオン伝導性無機物質層
4 正極単位
5 負極単位
6 正極活物質層
7 正極集電体層
8 負極活物質層
9 負極集電体層
10 積層体の一の端面
11 積層体の他の端面
12 正極引出電極
13 負極引出電極
23 イオン伝導性無機物質層
24 最下層部の正極単位
25 最上層部の負極単位
26 正極活物質層
27 正極集電体層
28 負極活物質層 29 負極集電体層
34 最下層部の正極単位
35 最上層部の負極単位
36 正極活物質層
38 負極活物質層
40 保護層
発明を実施するための最良の形態
[0019] 図 1に、本発明の全固体二次電池を構成する最も基本的な積層体の構造を示す。
積層体 2は、正極単位 4と負極単位 5とが、イオン伝導性無機物質層 3を介して交互 に積層されている。正極単位 4は、正極集電体層 7の両面に正極活物質層 6を備え、 負極単位 5は、負極集電体層 9の両面に負極活物質層 8を備える。
[0020] また、正極集電体層 7は、積層体 2の端面 10に延出し、負極集電体層 9は、積層体 2の他の端面 11に延出していることが好ましい。すなわち、正極集電体層は、積層体 の一の端面 10に延出するが他の端面 11には延出せず露出して 、な 、ことが好まし い。同様に、負極集電体層は、他の端面 11に延出するが一の端面 10には延出せず 露出していないことが好ましい。ただし、これらの好ましい態様において、正極集電体 層と負極集電体層とは、積層体の端面の異なる部分に少なくとも延出していればよく 、正極集電体層と負極集電体層とが、同一端面上の異なる部分に延出していてもよ い。製造効率の点からは、正極集電体層と負極集電体層とが、積層体の異なる端面 に少なくとも延出していることが好ましい。この場合、正極集電体層と負極集電体層と が複数の端面に延出することもできる。例えば、積層体が、正極集電体層のみが延 出している端面及び負極集電体層のみが延出している端面を少なくとも 1個づっ有 するよう〖こし、かつ、その他の端面は、正極集電体層及び負極集電体層の一方若し くは両方が延出して!/、る力、あるいは両方が延出して 、な 、ようにすることができる。
[0021] 全固体二次電池において、積層体 2は一括焼成されたものである。積層体におけ る、負極単位及び正極単位の数は、それぞれ 1個以上であれば、全固体二次電池を 形成することができる。負極単位及び正極単位の数は、要求される全固体二次電池 の容量や電流値に基づ 、て幅広く変化させることができ、それぞれ 2個以上の場合、 特に 3個以上の場合に、本発明のメリットをより享受することができ、例えばそれぞれ 1 0〜500個といった多層構造をとする場合にメリットが顕著である。
[0022] また図 2に示すように、全固体二次電池 1は、正極集電体層 7と接する正極引出電 極 12が積層体 2の一の端面 10に設けられ、負極集電体層 9と接する負極引出電極 13が積層体 2の他の端面 11に設けられて 、ることが好まし 、。
[0023] さらに、図 3に示すように、最上層部が負極単位 25であり、最下層部が正極単位 24 である全固体二次電池において、最下層部の正極単位 24力 正極集電体層 27の 片面にのみ正極活物質層 26を備え、かつ正極活物質層 26がイオン伝導性無機物 質層 23に接し、最上層部の負極単位 25が、負極集電体層 29の片面にのみ負極活 物質層 28を備え、かつ負極活物質層 28がイオン伝導性無機物質層 23に接すること が好ましい。なお、本明細書において、最上層部及び最下層部という用語は、相対 的な位置関係を示すものにすぎな 、。
[0024] また、全固体二次電池と外部との不用意な電気短絡を抑えると共に、外部環境湿 分等力 の影響を抑制し、信頼性の高い全固体二次電池を構築するために、積層 体の上端又は下端のいずれか、好ましくは両方に保護層が設けられていることが好 ましい。例えば、図 4に示すように、最上層部が負極単位 35であり、最下層部が正極 単位 34である全固体二次電池において、最下層部の正極単位 34が、イオン伝導性 無機物質層と接していない正極活物質層 36の上に保護層 40を備え、最上層部の負 極単位 35が、イオン伝導性無機物質層と接していない負極活物質層 38上に保護層 40を備えた全固体二次電池とすることができる。本明細書において、上端及び下端 t 、う用語は、相対的な位置関係を示すものにすぎな 、。
[0025] なお、全固体二次電池の構造として、特許文献 2の図 2に示されるような、上下 2層 のセルカゝら構成され各セル毎の長さを変えた並列型 2層セル構造も可能である。この 構造は、一般の多層セルにおける絶縁層を必要としないので製作工程が簡略ィ匕され ることが期待できるものの、一方では、セル単位長さを変える必要があること、共通電 極を挟んでセルを非対称に積層する必要があること、各セルを配線接続する必要が あること等から、生産性の点で限界があると考えられる。一方、本発明の全固体二次 電池の構造では、上記の必要性が存在せず、生産性に優れている。 [0026] 本発明の全固体二次電池を構成するイオン伝導性無機物質層、正極活物質層、 負極活物質層、正極集電体層、負極集電体層及び場合による保護層は、以下のと おりである。
[0027] イオン伝導性無機物質層は、 Li Al SiO、 Li PO、 LiP Si O (式中 x、 y、 z
3. 25 0. 25 4 3 4 x y z
は任意の正数)よりなる群力も選択されるリチウム化合物からなることが好ましいが、こ れらに限定されない。 Li P Si Oがより好ましい。
3. 5 0. 5 0. 5 4
[0028] 正極活物質層は、 LiCoO、 LiNiO、 LiMnO、 LiMn O、 LiCuO、 LiCoVO、
2 2 2 2 4 2 4
LiMnCoO、 LiCoPO、 LiFePOよりなる群から選択されるリチウム化合物からなる
4 4 4
ことが好ましいが、これらに限定されない。 LiCoO、 LiMnO、 LiMn Oがより好ま
2 2 2 4 しい。
[0029] 負極活物質層は、 Li Ti O、 LiTiO、 LiMl M2 O (Ml、 M2は遷移金属で
4/3 5/3 4 2 s t u
あり、 s、 t、 uは任意の正数)よりなる群力 選択されるリチウム化合物からなることが好 ましいが、これらに限定されない。 Li Ti O、 LiTiO力 り好ましい。
4/3 5/3 4 2
[0030] 正極集電体層及び負極集電体層は、 、ずれも、 Ag、 Pd、 Au及び Ptの!、ずれかの 金属力 なることができる。あるいは、 Ag、 Pd、 Au及び Ptのいずれかを含む合金か らなることもできる。合金の場合、 Ag、 Pd、 Au及び Ptから選ばれる 2種以上の合金が 好ましぐ例えば Ag/Pd合金である。また、これらの金属及び合金は、単独でもよい し、 2種以上の混合物であってもよい。正極集電体層と負極集電体層とは同一の材 料であってもよぐ異なっていてもよいが、製造効率の点からは同一の材料であること が好ましい。特に、 Ag、 Pdからなる合金又は混合粉末は、混合割合によつて、銀融 点(962°C)からパラジウム融点(1550°C)まで連続的かつ任意に融点を変化させる ことができるため一括焼成温度にあわせた融点調整が可能であり、電子導電性も高 いことから電池内部抵抗を最小限に抑えることができるという利点がある。
[0031] 任意の保護層は、イオン伝導性無機物質層につ 、て挙げたリチウム化合物からな ることができるが、これらに限定されず、種々の絶縁性物質力もなることができる。製 造効率の点から、イオン伝導性無機物質層と同一の材料カゝらなることが好ましい。
[0032] 本発明の全固体二次電池において、積層体は、正極活物質層、負極活物質層、ィ オン伝導性無機物質層、正極集電体層、負極集電体層及び任意の保護層の各材 料をペーストイ匕したものを使用して作製することができる。
[0033] ここで、ペースト化に使用する正極活物質層、負極活物質層及びイオン伝導性無 機物質層の始発材料は、それぞれの原料である無機塩等を仮焼した粉末を使用す ることができる。仮焼により、原料の化学反応を進め、一括焼成後にそれぞれの機能 を十分に発揮させる点からは、正極活物質、負極活物質及びイオン伝導性無機物質 につ 、ての仮焼温度は、それぞれ 700°C以上であることが好まし!/、。
[0034] なお、仮焼した正極活物質、負極活物質及びイオン伝導性無機物質を用いて各層 を形成する場合、一括焼成後に、それぞれの物質は収縮する傾向にある。一括焼成 後の正極活物質、負極活物質及びイオン伝導性無機物質の収縮の度合!/、を揃えて 、クラックや歪みによる曲がりや剥離の発生を抑制し、良好な電池特性を得るために 、イオン伝導性無機物質が、正極活物質及び負極活物質よりも高い温度で仮焼した ものであることが好ましい。具体的には、 700〜800°Cで仮焼した正極活物質及び 7 00〜800。Cで仮焼した負極活物質と、 900〜1000。C、好ましくは 950〜1000。Cで 仮焼したイオン伝導性無機物質とを組み合わせて用いることができる。
[0035] さらに、正極活物質、負極活物質及びイオン伝導性無機物質について、一括焼成 の温度まで加熱した際の線収縮率を、それぞれ a%、 b%及び c%とした場合、最大 値と最小値の差が 6%以内となるように仮焼温度を調整して仮焼した正極活物質、負 極活物質及びイオン伝導性無機物質を用いることが好ましい。これにより、クラックや 歪みによる曲がりや剥離の発生を抑制し、良好な電池特性が得られる。
[0036] ここで、線収縮率とは、以下のようにして測定した値である。
(1)測定対象の粉末を 0. 5tZcm2〔49MPa〕でプレスして厚さ 0. 8〜1. 2mmの試 験片を作製し、これをカットして縦 1. 5mm、横 1. 5mm、厚さ 0. 8〜1. 2mmの試験 片を作製する。
(2)熱分析計 (マックサイエンス株式会社製)を用いて、熱機械分析法により、試験片 に対し 0. 44gZmm2の荷重をカ卩えながら所定の温度まで加熱した後の厚みの変化 を測定する。
(3)測定値を以下の式に代入した値を線収縮率とする。 [0037]
初期の厚み 所定の温度に加熱後の厚み
線収縮率 〔%〕 =
初期の厚み
[0038] 例えば、 700〜800°Cで仮焼した LiCoO、 LiNiO、 LiMnO、 LiMn O、 LiCu
2 2 2 2 4
O、 LiCoVO、 LiMnCoO、 LiCoPO、 LiFePO等の正極活物質、 700〜800。C
2 4 4 4 4
で仮焼した Li Ti O、 LiTiO、 LiMl M2 O (Ml、 M2は遷移金属であり、 s、 t
4/3 5/3 4 2 s t u
、 uは任意の正数)等の負極活物質を、 900〜1000°Cで仮焼した Li Al SiO
3. 25 0. 25 4
、 Li PO、 LiP Si O (式中 x、 y、 zは任意の正数)等のイオン伝導性無機物質と、線
3 4
収縮率 a%、 b%、 c%の最大値と最小値の差が 6%以内となるように組み合わせて用 いることがでさる。
[0039] 各材料のペーストイ匕の方法は、特に限定されず、例えば、有機溶媒とバインダーの ビヒクルに、上記の各材料の粉末を混合してペーストを得ることができる。例えば、集 電体ペーストは、ビヒクルに、 Agと Pdの金属粉末の混合物、 AgZPd共沈法による合 成粉末又は AgZPd合金の粉末を混合して調製することができる。
[0040] 各材料のペーストを使用した、本発明の全固体二次電池における積層体の作製方 法は、例えば以下のとおりである。ペーストを基材上に所望の順序で塗布し、場合に より乾燥させた後、基材を剥離し、積層ブロックを得る。次いで、積層ブロックを一括 焼成して、積層体を得ることができる。
[0041] また、積層体の部分ごとに、基材上に、その部分に対応する順序で各ペーストを塗 布し、場合により乾燥させた後、基材を剥離したものを準備し、それらを積み重ねて 加圧成形した後、一括焼成して作製することもできる。具体的には、基材上にイオン 伝導性無機物質及び正極単位を形成するように順次、ペーストを塗布し、場合により 乾燥させた後、基材を剥離して正極ユニットを作製し、一方基材上にイオン伝導性無 機物質及び負極を形成するように順次、ペーストを塗布し、場合により乾燥させた後 、基材を剥離して負極ユニットを作製する。これらの正極ユニット及び負極ユニットを 交互に積み重ねて、好ましくは加圧成形し積層ブロックを得て、これを一括焼成して 積層体を得ることもできる。いずれにおいても、正極集電体ペースト層及び負極集電 体ペースト層が、積層ブロックの端面の異なる部分に少なくとも延出するように、ぺー ストの塗布、あるいはユニットの積み重ねをすることが好ましい。また、所望ならば、積 層体ブロックの上端及び下端のいずれか又は両方に、保護層を形成させるために、 例えばイオン伝導性無機物質ペースト層を設けてから、一括焼成することができる。 なお、ペーストの塗布の方法は、特に限定されず、スクリーン印刷、転写、ドクターブ レード等の公知の方法を採用することができる。正極集電体ペースト層及び負極集 電体ペースト層が、積層ブロックの異なる端面に少なくとも延出するように、ペースト の塗布、あるいはユニットの積み重ねをすることが好まし 、。
[0042] 具体的には、下記工程(1)〜(4):
(1)正極活物質の仮焼粉末を含む正極ペースト、負極活物質の仮焼粉末を含む負 極ペースト、イオン伝導性無機物質の仮焼粉末を含むイオン伝導性無機物質ペース ト、正極集電体の粉末を含む正極集電体ペースト及び負極集電体の粉末を含む負 極集電体ペーストを準備する工程;
(2)基材上にイオン伝導性無機物質ペースト、正極ペースト、正極集電体ペースト、 正極ペーストの順序で、ペーストを塗布し、場合により乾燥させた後、基材を剥離して 正極ユニットを作製し、イオン伝導性無機物質ペースト、負極ペースト、負極集電体 ペースト、負極ペーストの順序で、ペーストを塗布し、場合により乾燥させた後、基材 を剥離して負極ユニットを作製する工程;
(3)正極ユニット及び負極ユニットを、正極ユニットの正極ペースト層と負極ユニットの 負極ペースト層とが接することなく、かつ正極集電体ペースト層及び負極集電体ぺ一 スト層が積層ブロックの端面の異なる部分に少なくとも延出するように、交互に積み重 ねて、好ましくは加圧成形して積層ブロックを得る工程;並びに
(4)積層ブロックを一括焼成し、積層体を得る工程;
を含む全固体二次電池の製造方法が挙げられる。正極集電体ペースト層と負極集 電体ペースト層とが積層ブロックの異なる端面に延出するように、交互に積み重ねる ことが好ましい。
[0043] また、下記工程( 1 ' )〜 (4 ' ):
( 1 ' )イオン伝導性無機物質の仮焼温度を正極活物質及び負極活物質の仮焼温度 よりも高くして、正極活物質の仮焼粉末、負極活物質の仮焼粉末及びイオン伝導性 無機物質の仮焼粉末を準備する工程;
(2' )正極活物質の仮焼粉末を含む正極ペースト、負極活物質の仮焼粉末を含む負 極ペースト、イオン伝導性無機物質の粉末を含むイオン伝導性無機物質ペースト、 正極集電体の粉末を含む正極集電体ペースト及び負極集電体の粉末を含む負極 集電体ペーストを準備する工程;
(3,)基材上に、正極ペースト、正極集電体ペースト、正極ペースト、イオン伝導性無 機物質ペースト、負極ペースト、負極集電体ペースト、負極ペースト、イオン伝導性無 機物質ペーストの順序で、かつ正極集電体ペースト層と負極集電体ペースト層とが 積層ブロックの端面の異なる部分に少なくとも延出するように、ペーストを塗布し、場 合により乾燥させて、積層ブロックを得る工程;並びに
(4' )積層ブロックから、場合により基材を剥離させ、一括焼成し、積層体を得る工程; を含む全固体二次電池の製造方法も挙げられる。正極集電体ペースト層と負極集電 体ペースト層とが積層ブロックの異なる端面に少なくとも延出するように、塗布すること が好ましい。
[0044] 上記のいずれの製造方法においても、所望ならば、保護層を形成させるために、例 えばイオン伝導性無機物質ペースト層を、積層体ブロックの上端及び下端の 、ずれ か又は両方に設けてから、一括焼成することができる。
[0045] 一括焼成は、空気中で行うことができ、例えば焼成温度 900〜: L100°C、 1〜3時間 とすることができる。このような温度で焼成することにより、各層が焼結状態であり、隣 接する層の界面を焼結状態も有するようにすることができる。このことは、仮焼された 粉末粒子から形成される各層の粒子間が焼結状態であり、隣接する層の粒子間も焼 結状態にあることを意味する。
[0046] また、引出電極は、例えば、導電性粉末 (例えば、 Ag粉末)、ガラスフリット、ビヒク ル等を含む引出電極ペーストを、積層体の端面に延出した正極集電体層及び負極 集電体層上に塗布後、 600〜900°Cの温度で焼成して設けることができる。
実施例
[0047] 以下に、実施例を用いて本発明を詳細に説明するが、本発明はこれらの実施例に 限定されない。なお、部表示は、断りのない限り、重量部である。 [0048] 実施例 1
(正極ペーストの作製)
正極活物質として、以下の方法で作製した LiMn Oを用いた。
2 4
Li COと MnCOとを出発材料とし、これらをモル比 1 :4となるように秤量し、水を
2 3 3
分散媒としてボールミルで 16時間湿式混合を行った後、脱水乾燥した。得られた粉 体を 800°Cで 2時間、空気中で仮焼した。仮焼品を粗粉砕し、水を分散媒としてボー ルミルで 16時間湿式混合を行った後、脱水乾燥して正極活物質の仮焼粉末を得た 。この仮焼粉末の平均粒径は 0. 30 μ mであった。また、組成が LiMn Oであること
2 4 は、 X線回折装置を使用して確認した。
[0049] 正極ペーストは、この正極活物質の仮焼粉末 100部に、バインダーとしてェチルセ ルロース 15部と、溶媒としてジヒドロタ一ビネオール 65部とをカ卩えて、三本ロールミル で混練'分散して正極ペーストを作製した。
[0050] (負極ペーストの作製)
負極活物質として、以下の方法で作製した Li Ti Oを用いた。
4/3 5/3 4
Li COと TiOを出発材料として、これらをモル比 2 : 5となるように秤量し、水を分散
2 3 2
媒としてボールミルで 16時間湿式混合を行った後、脱水乾燥した。得られた粉体を 8 00°Cで 2時間、空気中で仮焼した。仮焼品を粗粉砕し、水を分散媒としてボールミル で 16時間湿式混合を行った後、脱水乾燥して負極活物質の仮焼粉末を得た。この 仮焼粉末の平均粒径は 0. 32 μ mであった。また、組成が Li Ti Oであることは
4/3 5/3 4
、 X線回折装置を使用して確認した。
[0051] この負極活物質の仮焼粉末 100部に、バインダーとしてェチルセルロース 15部と、 溶媒としてジヒドロタ一ビネオール 65部とをカ卩えて、三本ロールミルで混練 '分散して 負極ペーストを作製した。
[0052] (イオン伝導性無機物質シートの作製)
イオン伝導性無機物質として、以下の方法で作製した Li Si P Oを用いた。
3. 5 0. 5 0. 5 4
Li COと SiOと市販の Li POを出発材料として、これらをモル比 2 : 1 : 1となるよう
2 3 2 3 4
に秤量し、水を分散媒としてボールミルで 16時間湿式混合を行った後、脱水乾燥し た。得られた粉体を 950°Cで 2時間、空気中で仮焼した。仮焼品を粗粉砕し、水を分 散媒としてボールミルで 16時間湿式混合を行った後、脱水乾燥してイオン伝導性無 機物質の仮焼粉末を得た。この粉末の平均粒径は 0. 54 /z mであった。また、組成 力 SLi Si P Oであることは、 X線回折装置を使用して確認した。
3. 5 0. 5 0. 5 4
[0053] 次 、で、このイオン伝導性無機物質の仮焼粉末 100部に、エタノール 100部、トル ェン 200部をボールミルでカ卩えて湿式混合し、その後ポリビュルブチラール系バイン ダー 16部とフタル酸ベンジルブチル 4. 8部をさらに投入し、混合してイオン伝導性 無機物質ペーストを調製した。このイオン伝導性無機物質ペーストをドクターブレード 法で PETフィルムを基材としてシート成形し、厚さ 13 mのイオン伝導性無機物質シ ートを得た。
[0054] (集電体ペーストの作製)
重量比 70Z30の AgZPdlOO部を用い、バインダーとしてェチルセルロース 10部 と、溶媒としてジヒドロタ一ビネオール 50部をカ卩えて三本ロールミルで混練'分散して 集電体ペーストを作製した。ここで重量比 70Z30の AgZPdは、 Ag粉末 (平均粒径 0. 3 m)及び Pd粉末 (平均粒径 1. 0 m)を混合したものを使用した。
[0055] (引出電極ペーストの作製)
Ag粉末 100部とガラスフリット 5部を混合し、バインダーとしてェチルセルロース 10 部、溶媒としてジヒドロタ一ビネオール 60部とを加えて、三本ロールミルで混練 '分散 して引出電極ペーストを作製した。
[0056] これらのペーストを用いて、以下のようにして全固体二次電池を作製した。
[0057] (正極ユニットの作製)
上記のイオン伝導性無機物質シート上に、スクリーン印刷により厚さ 8 μ mで正極ぺ 一ストを印刷した。次に、印刷した正極ペーストを 80〜100°Cで 5〜10分間乾燥し、 その上に、スクリーン印刷により厚さ 5 mで集電体ペーストを印刷した。次に、印刷 した集電体ペーストを 80〜100°Cで 5〜10分間乾燥し、その上に、スクリーン印刷に より厚さ 8 μ mで正極ペーストを再度印刷した。印刷した正極ペーストを 80〜100°C で 5〜: L0分間乾燥し、次いで PETフィルムを剥離した。このようにして、イオン伝導性 無機物質シート上に、正極ペースト、集電体ペースト、正極ペーストがこの順に印刷' 乾燥された正極ユニットのシートを得た。 [0058] (負極ユニットの作製)
上記のイオン伝導性無機物質シート上に、スクリーン印刷により厚さ 8 mで負極べ 一ストを印刷した。次に、印刷した負極ペーストを 80〜100°Cで 5〜10分間乾燥し、 その上に、スクリーン印刷により厚さ 5 mで集電体ペーストを印刷した。次に、印刷 した集電体ペーストを 80〜100°Cで 5〜10分間乾燥し、その上に、スクリーン印刷に より厚さ 8 mで負極ペーストを再度印刷した。印刷した負極ペーストを 80〜: LOO°C で 5〜: LO分間乾燥し、次いで PETフィルムを剥離した。このようにして、イオン伝導性 無機物質シート上に、負極ペースト、集電体ペースト、負極ペーストがこの順に印刷' 乾燥された負極ユニットのシートを得た。
[0059] (積層体の作製)
正極ユニットと負極ユニットを、イオン伝導性無機物質を介するようにして、それぞ れ 5個のユニットを交互に積み重ねた。このとき、正極ユニットの集電体ペースト層が 一の端面にのみ延出し、負極ユニットの集電体ペースト層が他の面にのみ延出する ように、正極ユニットと負極ユニットをずらして積み重ねた。その後、これを温度 80°C で圧力 lOOOkgfZcm2〔98MPa〕で成形し、次 、で切断して積層ブロックを作製した 。その後、積層ブロックを一括焼成して積層体を得た。一括焼成は、空気中で昇温速 度 200°CZ時間で 1000°Cまで昇温して、その温度に 2時間保持し、焼成後は自然 冷却した。こうして得られた焼結後の積層体における各イオン伝導性無機物質層の 厚さは 7 μ m、正極活物質層の厚さは 5 μ m、負極活物質層の厚さは 5 μ m、集電体 層の厚さは 3 μ mであった。また、積層体の縦、横、高さはそれぞれ 8mm X 8mm X 0. 2mmであった。
[0060] (引出電極の形成)
積層体の端面に引出電極ペーストを塗布し、 750°Cで焼成し、一対の引出電極を 形成して、全固体二次電池を得た。
[0061] (評価)
正極集電体及び負極集電体と接続されたそれぞれの引出電極にリード線を取り付 け、繰り返し充放電試験を行った。測定条件は、充電及び放電時の電流はいずれも A、充電時及び放電時の打ち切り電圧をそれぞれ 3. 5V、 0. 3Vとし、充放電 時間 300分以内とした。その結果を図 5に示す。
[0062] 図 5に示すように、本発明の全固体二次電池は優れた繰り返し充放電特性を示し ており、二次電池として優れた機能を備えていることがわかる。また、図 6に示すように 、充放電容量は 17サイクル目までは変動が見られる力 それ以降は安定してほぼ一 定の曲線を示した。充放電が安定した 18サイクル目の放電開始電圧は 3. 2V、充電 容量及び放電容量はそれぞれ 200 μ Ah、 160 μ Ahであった。
[0063] 比較例 1
実施例 1と同じ正極ペースト、負極ペースト、イオン伝導性無機物質ペースト、集電 体ペーストを用いて、実施例 1と同じ並列構造となるように、アルミナ基板上に一のぺ 一ストを塗布し、焼成した後に、次のペーストを塗布し、焼成することを逐一繰り返し て、全固体電池を作製することを試みた。焼成温度は、実施例 1と同じ温度とした。
[0064] しカゝしながら、アルミナ基板上にイオン伝導性無機物質ペーストを塗布し、焼成して 得られたイオン伝導性無機物質層の上に、正極ペーストを塗布して、焼成したところ 、イオン伝導性無機物質層と正極活物質層とが大きく剥離してしまい、次の工程に移 ることができず、実施例 1と同じ並列構造の全固体二次電池を作製することができな かった。これは、二度目の焼成において、既に焼成を経ているイオン伝導性無機物 質層がそれ以上収縮しないのに対して、初めての焼成となる正極活物質層は収縮す るため、層間で挙動が異なり、それにより割れや剥がれが生じたものと考えられる。ま た、比較例 1のような方法では逐一焼成する必要があり、生産効率が非常に悪い。
[0065] 実施例 2
仮焼温度を表 1に示す温度に変更した以外は、実施例 1と同様にして正極活物質
、負極活物質及びイオン伝導性無機物質の仮焼粉末を得た。各仮焼粉末について
、線収縮率を、以下のようにして測定した。結果を表 1に示す。
[0066] (1)測定対象の仮焼粉末を 0. 5tZcm2〔49MPa〕でプレスして 0. 8〜1. 2mmの試 験片を作製し、これをカットして縦 1. 5mm、横 1. 5mm、厚さ 0. 8〜1. 2mmの試験 片を作製した。
(2)熱分析計 (マックサイエンス株式会社製)を用いて、熱機械分析法により、試験片 に対し 0. 44gZmm2の荷重をカ卩えながら昇温して 1000°Cに加熱した後の厚みの変 化を測定した。
(3)測定値を以下の式に代入し、線収縮率を求めた。
[0067]
初期の厚み一 1000°C加熱後の厚み
線収縮率 〔%〕 =
初期の厚み
[0068]
Figure imgf000021_0001
[0069] 様々な仮焼温度の正極活物質、負極活物質及びイオン伝導性無機物質の仮焼粉 末を組み合わせて、実施例 1と同様にして電池を作製し、クラックや剥離の発生を観 察した。表 2に結果を示す。
[0070] 表 2
Figure imgf000022_0001
[0071] 全固体二次電池が、仮焼温度が 700〜800°Cの正極活物質及び負極活物質と、 仮焼温度が 900〜: LOOO°Cのイオン伝導性無機物質の組み合わせを使用したもので あり、かつ線収縮率 a、 b、 cの最大値と最小値の差が 6%以内の場合に、クラックや剥 離の発生がなぐ電池として、特に良好に動作することが確認された。
産業上の利用可能性
[0072] 本発明はこのように、簡単に並列接続ができる構造の全固体二次電池であり、さら に積層数を重ねることで充電容量及び放電容量を大きくできるので、産業上おぉ ヽ に利用できる発明である。

Claims

請求の範囲
[1] 正極単位と負極単位とが、イオン伝導性無機物質層を介して交互に積層された積 層体を含む全固体二次電池であって、
正極単位が、正極集電体層の両面に正極活物質層を備え、前記負極単位が、負 極集電体層の両面に負極活物質層を備え、
正極集電体層と負極集電体層との少なくとも一方が、 Ag、 Pd、 Au及び Ptのいず れかの金属、又は Ag、 Pd、 Au及び Ptのいずれかを含む合金、あるいはそれらの金 属及び合金から選ばれる 2種以上の混合物からなり、
積層体は一括焼成されたものであることを特徴とする全固体二次電池。
[2] 一括焼成は、 900〜: L100°Cにおいて、 1〜3時間行ったものである、請求項 1記載 の全固体二次電池。
[3] 正極単位と負極単位とが、イオン伝導性無機物質層を介して交互に積層された積 層体を含む全固体二次電池であって、
正極単位が、正極集電体層の両面に正極活物質層を備え、負極単位が、負極集 電体層の両面に負極活物質層を備え、
各層は焼結状態となっていることを特徴とする全固体二次電池。
[4] 隣接する層の界面が焼結状態を有している、請求項 1〜3のいずれか 1項記載の全 固体二次電池。
[5] 正極単位と負極単位とが、イオン伝導性無機物質層を介して交互に積層された積 層体を含む全固体二次電池であって、
正極単位が、正極集電体層の両面に正極活物質層を備え、負極単位が、負極集 電体層の両面に負極活物質層を備え、
少なくともイオン伝導性無機物質層のイオン伝導性無機物質の始発材料は仮焼さ れた粉末であることを特徴とする全固体二次電池。
[6] 積層体が一括焼成されたものである、請求項 5記載の全固体二次電池。
[7] 正極集電体層と負極集電体層との少なくとも一方が、 Ag、 Pd、 Au及び Ptのいず れかの金属、又は Ag、 Pd、 Au及び Ptのいずれかを含む合金、あるいはそれらの金 属及び合金力も選ばれる 2種以上の混合物からなる、請求項 5又は 6記載の全固体 二次電池。
[8] 正極活物質層、負極活物質層及びイオン伝導性無機物質層をそれぞれ構成する 正極活物質、負極活物質及びイオン伝導性無機物質の始発材料は仮焼された粉末 である、請求項 1〜7のいずれか 1項記載の全固体二次電池。
[9] 正極活物質の始発材料である仮焼された粉末、負極活物質の始発材料である仮 焼された粉末及びイオン伝導性無機物質の始発材料である仮焼された粉末につい て、一括焼成の温度に加熱した後の線収縮率をそれぞれ a%、 b%及び c%とした場 合、最大値と最小値の差が 6%以内であることを特徴とする請求項 8記載の全固体二 次電池。
[10] 正極集電体層及び負極集電体層が、それぞれ、積層体の異なる端面に少なくとも 延出している請求項 1〜9のいずれか 1項記載の全固体二次電池。
[11] 積層体が、正極単位及び負極単位をそれぞれ 2個以上含む、請求項 1〜10のい ずれか 1項記載の全固体二次電池。
[12] 全固体リチウムイオン二次電池である、請求項 1〜: L 1のいずれか 1項記載の全固 体二次電池。
[13] 正極活物質層、負極活物質層及びイオン伝導性無機物質層が、リチウム化合物か らなる、請求項 1〜12のいずれか 1項記載の全固体二次電池。
[14] 全固体二次電池が、正極集電体層と接する正極引出電極及び負極集電体層と接 する負極引出電極を、それぞれ、積層体の異なる端面に有する、請求項 1〜13のい ずれか 1項記載の全固体二次電池。
[15] 最上層部が負極単位であり、最下層部が正極単位である全固体二次電池におい て、最下層部の正極単位が、正極集電体層の片面にのみ正極活物質層を備え、か つ正極活物質層がイオン伝導性無機物質層に接しており、最上層部の負極単位が 、負極集電体層の片面にのみ負極活物質層を備え、かつ負極活物質層がイオン伝 導性無機物質層に接して 、る、請求項 1〜15の 、ずれか 1項記載の全固体二次電 池。
[16] 正極単位と負極単位とが、イオン伝導性無機物質層を介して交互に積層された積 層体を含む全固体二次電池であって、 正極単位は正極集電体層の両面に正極活物質層を備え、ここで正極活物質層は
LiCoO、 LiNiO、 LiMnO、 LiMn O、 LiCuO、 LiCoVO、 LiMnCoO、 LiCo
2 2 2 2 4 2 4 4
PO及び LiFePOよりなる群力 選択されるリチウム化合物力 なり;
4 4
負極単位は負極集電体層の両面に負極活物質層を備え、ここで負極活物質層は Li Ti O、 LiTiO及び LiMl M2 O (Ml、 M2は遷移金属であり、 s、 t、 uは任
4/3 5/3 4 2 s t u
意の正数)よりなる群力 選択されるリチウム化合物力 なり;
イオン伝導性無機物質層は Li Al SiO、 Li PO及び LiP Si O (式中 x、 y、
3. 25 0. 25 4 3 4 x y z zは任意の正数)よりなる群力 選択されるリチウム化合物からなり;
正極集電体層及び負極集電体層が、それぞれ、積層体の端面の異なる部分に少 なくとも延出し;
積層体は正極単位及び負極単位をそれぞれ 2個以上含み、かつ積層体は一括焼 成体である、
ことを特徴とする全固体二次電池。
[17] 正極集電体層及び負極集電体層が、それぞれ、積層体の異なる端面に少なくとも 延出している、請求項 16記載の全固体二次電池。
[18] 正極活物質層が、 LiMn Oからなり、
2 4
負極活物質層が、 Li Ti O力 なり、
4/3 5/3 4
イオン伝導性無機物質層が、 Li P Si O力もなる、
3. 5 0. 5 0. 5 4
請求項 16又は 17記載の全固体二次電池。
[19] 正極活物質の始発材料が仮焼された粉末であり、負極活物質の始発材料が仮焼 された粉末であり、イオン伝導性無機物質の始発材料が仮焼された粉末である、請 求項 16〜19のいずれ力 1項記載の全固体二次電池。
[20] 正極活物質の始発材料が、 700〜800°Cで仮焼された粉末であり、
負極活物質の始発材料が、 700〜800°Cで仮焼された粉末であり、
イオン伝導性無機物質の始発材料が、 900〜1000°Cで仮焼された粉末であり、 かつ、正極活物質の始発材料である仮焼された粉末、負極活物質の始発材料であ る仮焼された粉末及びイオン伝導性無機物質の始発材料である仮焼された粉末に ついて、一括焼成の温度に加熱した後の線収縮率をそれぞれ a%、 b%及び c%とし た場合、最大値と最小値の差が 6%以内である、
請求項 19記載の全固体二次電池。
[21] 正極集電体層と負極集電体層との少なくとも一方が、 Ag、 Pd、 Au及び Ptのいず れかの金属、又は Ag、 Pd、 Au及び Ptのいずれかを含む合金、あるいはそれらの金 属及び合金力も選ばれる 2種以上の混合物からなる、請求項 16〜20のいずれか 1 項記載の全固体二次電池。
[22] 全固体二次電池が、正極集電体層と接する正極引出電極及び負極集電体層と接 する負極引出電極を、それぞれ、積層体の異なる端面に有する、請求項 16〜21の いずれか 1項記載の全固体二次電池。
[23] 最上層部が負極単位であり、最下層部が正極単位である全固体二次電池におい て、最下層部の正極単位が、正極集電体層の片面にのみ正極活物質層を備え、か つ正極活物質層がイオン伝導性無機物質層に接しており、最上層部の負極単位が 、負極集電体層の片面にのみ負極活物質層を備え、かつ負極活物質層がイオン伝 導性無機物質層に接して 、る、請求項 16〜22の 、ずれか 1項記載の全固体二次電 池。
[24] 最上層部が負極単位であり、最下層部が正極単位である全固体二次電池におい て、最下層部の正極単位が、イオン伝導性活物質層に接していない正極集電体層 上に保護層を備え、かつ最上層部の負極単位が、イオン伝導性活物質層に接して いない負極集電体層上に保護層を備えている、請求項 16〜23のいずれか 1項記載 の全固体二次電池。
[25] 下記工程(1)〜(4):
(1)正極活物質の仮焼粉末を含む正極ペースト、負極活物質の仮焼粉末を含む負 極ペースト、イオン伝導性無機物質の仮焼粉末を含むイオン伝導性無機物質ペース ト、正極集電体の粉末を含む正極集電体ペースト及び負極集電体の粉末を含む負 極集電体ペーストを準備する工程;
(2)基材上にイオン伝導性無機物質ペースト、正極ペースト、正極集電体ペースト、 正極ペーストの順序で、ペーストを塗布し、場合により乾燥させた後、基材を剥離して 正極ユニットを作製し、イオン伝導性無機物質ペースト、負極ペースト、負極集電体 ペースト、負極ペーストの順序で、ペーストを塗布し、場合により乾燥させた後、基材 を剥離して負極ユニットを作製する工程;
(3)正極ユニット及び負極ユニットを、正極ユニットの正極ペースト層と負極ユニットの 負極ペースト層とが接することなく、かつ正極集電体ペースト層が積層ブロックの端 面の一の部分に延出し、負極集電体ペースト層が積層ブロックの端面の他の部分に 延出するように、交互に積み重ねて、好ましくは加圧成形して積層ブロックを得るェ 程;並びに
(4)積層ブロックを一括焼成し、積層体を得る工程;
を含む全固体二次電池の製造方法。
下記工程 (1 ' )〜(4' ) :
( 1 ' )イオン伝導性無機物質の仮焼温度を正極活物質及び負極活物質の仮焼温度 よりも高くして、正極活物質の仮焼粉末、負極活物質の仮焼粉末及びイオン伝導性 無機物質の仮焼粉末を準備する工程;
(2' )正極活物質の仮焼粉末を含む正極ペースト、負極活物質の仮焼粉末を含む負 極ペースト、イオン伝導性無機物質の粉末を含むイオン伝導性無機物質ペースト、 正極集電体の粉末を含む正極集電体ペースト及び負極集電体の粉末を含む負極 集電体ペーストを準備する工程;
(3,)基材上に、正極ペースト、正極集電体ペースト、正極ペースト、イオン伝導性無 機物質ペースト、負極ペースト、負極集電体ペースト、負極ペースト、イオン伝導性無 機物質ペーストの順序で、かつ正極集電体ペースト層が積層ブロックの端面の一の 部分に延出し、負極集電体ペースト層が積層ブロックの端面の他の部分に延出する ように、ペーストを塗布し、場合により乾燥させて、積層ブロックを得る工程;並びに (4' )積層ブロックから、場合により基材を剥離させ、一括焼成し、積層体を得る工程; を含む全固体二次電池の製造方法。
PCT/JP2007/052530 2006-05-23 2007-02-13 全固体二次電池 WO2007135790A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020087031125A KR101367653B1 (ko) 2006-05-23 2007-02-13 전 고체 이차 전지
CN2007800186992A CN101461087B (zh) 2006-05-23 2007-02-13 全固体二次电池
US12/302,250 US8883347B2 (en) 2006-05-23 2007-02-13 All solid state secondary battery
EP07714112.5A EP2058892B1 (en) 2006-05-23 2007-02-13 Total solid rechargeable battery
JP2008516566A JP5430930B2 (ja) 2006-05-23 2007-02-13 全固体二次電池
US14/447,497 US9263727B2 (en) 2006-05-23 2014-07-30 All solid state secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2006/310230 2006-05-23
JP2006310230 2006-05-23

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/302,250 A-371-Of-International US8883347B2 (en) 2006-05-23 2007-02-13 All solid state secondary battery
US14/447,497 Division US9263727B2 (en) 2006-05-23 2014-07-30 All solid state secondary battery

Publications (1)

Publication Number Publication Date
WO2007135790A1 true WO2007135790A1 (ja) 2007-11-29

Family

ID=38723105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052530 WO2007135790A1 (ja) 2006-05-23 2007-02-13 全固体二次電池

Country Status (5)

Country Link
US (2) US8883347B2 (ja)
EP (1) EP2058892B1 (ja)
KR (1) KR101367653B1 (ja)
CN (5) CN102163748B (ja)
WO (1) WO2007135790A1 (ja)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009064644A (ja) * 2007-09-05 2009-03-26 Seiko Epson Corp 全固体リチウム二次電池
JPWO2008099468A1 (ja) * 2007-02-13 2010-05-27 国立大学法人岩手大学 全固体二次電池
WO2010067818A1 (ja) * 2008-12-10 2010-06-17 ナミックス株式会社 リチウムイオン二次電池、及び、その製造方法
JP2011520214A (ja) * 2008-03-25 2011-07-14 エイ 123 システムズ,インク. 高エネルギー高出力電極および電池
JP2011198692A (ja) * 2010-03-23 2011-10-06 Namics Corp リチウムイオン二次電池及びその製造方法
US20120070717A1 (en) * 2009-03-25 2012-03-22 Yasuhiro Harada Negative electrode material for non-aqueous electrolyte secondary battery, method for manufacturing negative electrode material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and battery pack
JP2014168017A (ja) * 2013-02-28 2014-09-11 Kyocera Corp 全固体型電気二重層コンデンサ
US8883347B2 (en) 2006-05-23 2014-11-11 Namics Corporation All solid state secondary battery
JP2015130352A (ja) * 2009-05-26 2015-07-16 オプトドット コーポレイション ナノ多孔性セパレータ層を利用するリチウム電池の製造方法
JP2015220105A (ja) * 2014-05-19 2015-12-07 Tdk株式会社 全固体二次電池
JP2016001601A (ja) * 2014-05-19 2016-01-07 Tdk株式会社 固体電池及びそれを用いた組電池
US10033037B2 (en) 2014-05-19 2018-07-24 Tdk Corporation Lithium ion secondary battery including a composition containing lithium and boron
WO2018181667A1 (ja) * 2017-03-31 2018-10-04 Tdk株式会社 全固体リチウムイオン二次電池
WO2019093215A1 (ja) * 2017-11-13 2019-05-16 株式会社村田製作所 積層型全固体電池
WO2019123980A1 (ja) * 2017-12-22 2019-06-27 昭和電工株式会社 リチウムイオン二次電池
WO2019123951A1 (ja) * 2017-12-22 2019-06-27 昭和電工株式会社 リチウムイオン二次電池
WO2019123981A1 (ja) * 2017-12-22 2019-06-27 昭和電工株式会社 リチウムイオン二次電池の製造方法
WO2020059550A1 (ja) * 2018-09-18 2020-03-26 富士フイルム株式会社 全固体二次電池用積層部材の製造方法及び全固体二次電池の製造方法
WO2020105662A1 (ja) * 2018-11-20 2020-05-28 Tdk株式会社 全固体電池
WO2020189599A1 (ja) * 2019-03-15 2020-09-24 Tdk株式会社 全固体二次電池
JP2020166980A (ja) * 2019-03-28 2020-10-08 太陽誘電株式会社 全固体電池
US10879513B2 (en) 2013-04-29 2020-12-29 Optodot Corporation Nanoporous composite separators with increased thermal conductivity
WO2021009959A1 (ja) * 2019-07-12 2021-01-21 パナソニックIpマネジメント株式会社 電池
JPWO2021070927A1 (ja) * 2019-10-11 2021-04-15
DE112020001115T5 (de) 2019-03-07 2021-12-09 Tdk Corporation Festkörperbatterie
WO2022239525A1 (ja) * 2021-05-10 2022-11-17 パナソニックIpマネジメント株式会社 電池
WO2023162317A1 (ja) * 2022-02-28 2023-08-31 Tdk株式会社 全固体電池
WO2023188466A1 (ja) * 2022-03-31 2023-10-05 Tdk株式会社 全固体二次電池
WO2024070286A1 (ja) * 2022-09-28 2024-04-04 株式会社村田製作所 固体電池

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8883354B2 (en) 2006-02-15 2014-11-11 Optodot Corporation Separators for electrochemical cells
JP5508833B2 (ja) * 2009-12-21 2014-06-04 ナミックス株式会社 リチウムイオン二次電池
WO2012011944A2 (en) 2010-07-19 2012-01-26 Optodot Corporation Separators for electrochemical cells
JP5006462B1 (ja) * 2011-09-09 2012-08-22 ファイラックインターナショナル株式会社 固体型二次電池の製造方法及び当該製造方法に基づく固体型二次電池
KR101619925B1 (ko) 2013-09-27 2016-05-12 주식회사 엘지화학 보호회로모듈 고정테이프를 포함하는 전지팩
KR101650027B1 (ko) 2013-09-27 2016-08-22 주식회사 엘지화학 보호회로 모듈을 포함하는 이차전지 팩
KR101699855B1 (ko) 2013-09-30 2017-01-25 주식회사 엘지화학 전기 절연성 부재를 포함하는 전지팩
KR101684358B1 (ko) 2013-09-30 2016-12-20 주식회사 엘지화학 전기 절연성 팩 케이스를 포함하는 전지팩
JP6048396B2 (ja) 2013-12-26 2016-12-21 トヨタ自動車株式会社 全固体電池の製造方法
US10205140B2 (en) 2014-02-19 2019-02-12 Delta Electronics, Inc. Cell and manufacture method thereof
CN104393274B (zh) * 2014-11-27 2017-01-11 陕西科技大学 一种中空球型LiTiO2材料及其制备方法
US10381623B2 (en) 2015-07-09 2019-08-13 Optodot Corporation Nanoporous separators for batteries and related manufacturing methods
CN104993095A (zh) * 2015-06-03 2015-10-21 哈尔滨工业大学 一种层叠式全固态锂离子电池
JP6288057B2 (ja) * 2015-12-02 2018-03-07 トヨタ自動車株式会社 積層型全固体電池
JP6536515B2 (ja) * 2016-08-15 2019-07-03 トヨタ自動車株式会社 リチウムイオン電池およびリチウムイオン電池の製造方法
US11069898B2 (en) 2017-03-28 2021-07-20 Tdk Corporation All-solid-state secondary battery
DE112018001662T5 (de) * 2017-03-31 2020-01-02 Tdk Corporation Festkörper-lithiumionen-sekundärbatterie
JPWO2019167857A1 (ja) * 2018-03-02 2020-12-03 株式会社村田製作所 全固体電池及びその製造方法
JP7276316B2 (ja) * 2018-03-19 2023-05-18 Tdk株式会社 全固体電池
CN109119702B (zh) 2018-08-21 2020-07-31 京东方科技集团股份有限公司 一种全固态锂电池及其制备方法
WO2020054549A1 (ja) * 2018-09-14 2020-03-19 株式会社村田製作所 固体電池および固体電池群
JP7220370B2 (ja) * 2018-11-28 2023-02-10 パナソニックIpマネジメント株式会社 固体電解質およびそれを備えた蓄電デバイス
CN113169297A (zh) * 2018-11-29 2021-07-23 株式会社村田制作所 固体电池
US20210384549A1 (en) * 2018-11-30 2021-12-09 Tdk Corporation All-solid-state battery
JP7298626B2 (ja) * 2018-12-06 2023-06-27 株式会社村田製作所 固体電池
JP7041048B2 (ja) * 2018-12-13 2022-03-23 本田技研工業株式会社 積層型電池および積層型電池の製造方法
CN113228375B (zh) * 2018-12-25 2023-11-28 Tdk株式会社 全固体电池
DE112020001129T5 (de) * 2019-03-08 2021-12-09 Tdk Corporation Festkörperakkumulator
CN113474926A (zh) * 2019-03-26 2021-10-01 株式会社村田制作所 固体电池
JP2020173955A (ja) * 2019-04-10 2020-10-22 本田技研工業株式会社 電池用電極群、該電極群を備える巻回型電池および電池用電極群の製造方法
CN110137577B (zh) * 2019-06-04 2020-12-08 广东省飞驰新能源科技有限公司 一种可大电流充放电的磷酸铁锂聚合物锂电池
JP7435615B2 (ja) * 2019-10-11 2024-02-21 株式会社村田製作所 固体電池
GB2611334A (en) * 2021-09-30 2023-04-05 Dyson Technology Ltd Solid-state electrochemical cell

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284130A (ja) 1997-04-04 1998-10-23 Nec Corp 半導体基板搭載型二次電池
JP2000200621A (ja) 1998-12-28 2000-07-18 Central Res Inst Of Electric Power Ind 全固体型二次電池及びその作製方法
JP2001093535A (ja) 1999-09-28 2001-04-06 Kyocera Corp 固体電解質電池
JP2001102056A (ja) 1999-07-29 2001-04-13 Kyocera Corp リチウム電池
JP2001126756A (ja) 1999-10-25 2001-05-11 Kyocera Corp リチウム固体電解質電池およびその製造方法
JP2001210360A (ja) 2000-01-26 2001-08-03 Kyocera Corp 全固体二次電池の製造方法
JP2002042863A (ja) 2000-07-28 2002-02-08 Japan Science & Technology Corp 薄膜固体リチウムイオン二次電池
JP2003523060A (ja) * 2000-02-08 2003-07-29 エルジー・ケミカル・カンパニー・リミテッド 重畳電気化学セル
JP2004273436A (ja) * 2003-02-18 2004-09-30 Matsushita Electric Ind Co Ltd 全固体薄膜積層電池
US20060073388A1 (en) 2004-10-01 2006-04-06 Kabushiki Kaisha Toshiba Rechargeable battery and method for fabricating the same

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6376123B1 (en) * 1994-11-23 2002-04-23 Polyplus Battery Company Rechargeable positive electrodes
JPH1055824A (ja) * 1996-08-08 1998-02-24 Kao Corp 角形リチウム二次電池
WO1999056899A1 (en) 1998-05-04 1999-11-11 Colorado School Of Mines Porous metal-containing materials, method of manufacture and products incorporating or made from the materials
JP2001015152A (ja) 1999-06-29 2001-01-19 Kyocera Corp 全固体積層電池
JP2001068150A (ja) 1999-08-30 2001-03-16 Kyocera Corp 全固体二次電池の製造方法
JP2001155764A (ja) * 1999-11-29 2001-06-08 Kyocera Corp 全固体二次電池
KR100515572B1 (ko) * 2000-02-08 2005-09-20 주식회사 엘지화학 중첩 전기화학 셀 및 그의 제조 방법
JP2001243974A (ja) 2000-02-28 2001-09-07 Kyocera Corp リチウム二次電池
KR100390099B1 (ko) * 2000-09-28 2003-07-04 가부시끼가이샤 도시바 비수전해질 및 비수전해질 이차전지
JP2002373643A (ja) 2001-06-14 2002-12-26 Matsushita Electric Ind Co Ltd リチウム二次電池
JP4043296B2 (ja) 2002-06-13 2008-02-06 松下電器産業株式会社 全固体電池
JP4145647B2 (ja) 2002-12-27 2008-09-03 東芝電池株式会社 リチウム二次電池およびその製造方法
US20040185336A1 (en) * 2003-02-18 2004-09-23 Matsushita Electric Industrial Co., Ltd. All solid-state thin-film cell and application thereof
JP4426861B2 (ja) 2004-02-04 2010-03-03 エナックス株式会社 薄型二次電池セル及びその製造方法、並びに二次電池モジュール
JP4552475B2 (ja) 2004-03-24 2010-09-29 Tdk株式会社 電極用複合粒子、電極及び電気化学素子、並びに、電極用複合粒子の製造方法、電極の製造方法及び電気化学素子の製造方法
JP2005293950A (ja) * 2004-03-31 2005-10-20 Tdk Corp リチウムイオン二次電池、及び、リチウムイオン二次電池の充電方法
US20070259271A1 (en) 2004-12-13 2007-11-08 Tetsuo Nanno Laminate Including Active Material Layer and Solid Electrolyte Layer, and All Solid Lithium Secondary Battery Using the Same
JP5165843B2 (ja) 2004-12-13 2013-03-21 パナソニック株式会社 活物質層と固体電解質層とを含む積層体およびこれを用いた全固体リチウム二次電池
JP4352016B2 (ja) 2005-03-18 2009-10-28 株式会社東芝 無機固体電解質電池及び無機固体電解質電池の製造方法
EP2058892B1 (en) 2006-05-23 2014-01-22 IOMTechnology Corporation Total solid rechargeable battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284130A (ja) 1997-04-04 1998-10-23 Nec Corp 半導体基板搭載型二次電池
JP2000200621A (ja) 1998-12-28 2000-07-18 Central Res Inst Of Electric Power Ind 全固体型二次電池及びその作製方法
JP2001102056A (ja) 1999-07-29 2001-04-13 Kyocera Corp リチウム電池
JP2001093535A (ja) 1999-09-28 2001-04-06 Kyocera Corp 固体電解質電池
JP2001126756A (ja) 1999-10-25 2001-05-11 Kyocera Corp リチウム固体電解質電池およびその製造方法
JP2001210360A (ja) 2000-01-26 2001-08-03 Kyocera Corp 全固体二次電池の製造方法
JP2003523060A (ja) * 2000-02-08 2003-07-29 エルジー・ケミカル・カンパニー・リミテッド 重畳電気化学セル
JP2002042863A (ja) 2000-07-28 2002-02-08 Japan Science & Technology Corp 薄膜固体リチウムイオン二次電池
JP2004273436A (ja) * 2003-02-18 2004-09-30 Matsushita Electric Ind Co Ltd 全固体薄膜積層電池
US20060073388A1 (en) 2004-10-01 2006-04-06 Kabushiki Kaisha Toshiba Rechargeable battery and method for fabricating the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2058892A4

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9263727B2 (en) 2006-05-23 2016-02-16 Namics Corporation All solid state secondary battery
US8883347B2 (en) 2006-05-23 2014-11-11 Namics Corporation All solid state secondary battery
JPWO2008099468A1 (ja) * 2007-02-13 2010-05-27 国立大学法人岩手大学 全固体二次電池
JP5717318B2 (ja) * 2007-02-13 2015-05-13 ナミックス株式会社 全固体二次電池
JP2009064644A (ja) * 2007-09-05 2009-03-26 Seiko Epson Corp 全固体リチウム二次電池
JP2011520214A (ja) * 2008-03-25 2011-07-14 エイ 123 システムズ,インク. 高エネルギー高出力電極および電池
US9299966B2 (en) 2008-03-25 2016-03-29 A123 Systems Llc High energy high power electrodes and batteries
US8778542B2 (en) 2008-12-10 2014-07-15 Namics Corporation Lithium ion secondary battery comprising an active material and solid electrolyte forming a matrix structure and method for manufacturing same
WO2010067818A1 (ja) * 2008-12-10 2010-06-17 ナミックス株式会社 リチウムイオン二次電池、及び、その製造方法
US8709658B2 (en) * 2009-03-25 2014-04-29 Kabushiki Kaisha Toshiba Negative electrode material for non-aqueous electrolyte secondary battery, method for manufacturing negative electrode material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and battery pack
US20120070717A1 (en) * 2009-03-25 2012-03-22 Yasuhiro Harada Negative electrode material for non-aqueous electrolyte secondary battery, method for manufacturing negative electrode material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and battery pack
JP2015130352A (ja) * 2009-05-26 2015-07-16 オプトドット コーポレイション ナノ多孔性セパレータ層を利用するリチウム電池の製造方法
JP2017152386A (ja) * 2009-05-26 2017-08-31 オプトドット コーポレイション ナノ多孔性セパレータ層を利用するリチウム電池
JP2011198692A (ja) * 2010-03-23 2011-10-06 Namics Corp リチウムイオン二次電池及びその製造方法
JP2014168017A (ja) * 2013-02-28 2014-09-11 Kyocera Corp 全固体型電気二重層コンデンサ
US11217859B2 (en) 2013-04-29 2022-01-04 Optodot Corporation Nanoporous composite separators with increased thermal conductivity
US10879513B2 (en) 2013-04-29 2020-12-29 Optodot Corporation Nanoporous composite separators with increased thermal conductivity
US11387521B2 (en) 2013-04-29 2022-07-12 Optodot Corporation Nanoporous composite separators with increased thermal conductivity
JP2015220105A (ja) * 2014-05-19 2015-12-07 Tdk株式会社 全固体二次電池
US10033037B2 (en) 2014-05-19 2018-07-24 Tdk Corporation Lithium ion secondary battery including a composition containing lithium and boron
JP2016001601A (ja) * 2014-05-19 2016-01-07 Tdk株式会社 固体電池及びそれを用いた組電池
WO2018181667A1 (ja) * 2017-03-31 2018-10-04 Tdk株式会社 全固体リチウムイオン二次電池
JP6992803B2 (ja) 2017-03-31 2022-01-13 Tdk株式会社 全固体リチウムイオン二次電池
JPWO2018181667A1 (ja) * 2017-03-31 2020-02-13 Tdk株式会社 全固体リチウムイオン二次電池
WO2019093215A1 (ja) * 2017-11-13 2019-05-16 株式会社村田製作所 積層型全固体電池
US11600852B2 (en) 2017-11-13 2023-03-07 Murata Manufacturing Co., Ltd. Multilayer all-solid-state battery
JP7034704B2 (ja) 2017-12-22 2022-03-14 昭和電工株式会社 リチウムイオン二次電池の製造方法
JP2019114407A (ja) * 2017-12-22 2019-07-11 昭和電工株式会社 リチウムイオン二次電池の製造方法
WO2019123980A1 (ja) * 2017-12-22 2019-06-27 昭和電工株式会社 リチウムイオン二次電池
WO2019123951A1 (ja) * 2017-12-22 2019-06-27 昭和電工株式会社 リチウムイオン二次電池
JP7034703B2 (ja) 2017-12-22 2022-03-14 昭和電工株式会社 リチウムイオン二次電池
WO2019123981A1 (ja) * 2017-12-22 2019-06-27 昭和電工株式会社 リチウムイオン二次電池の製造方法
JP2019114406A (ja) * 2017-12-22 2019-07-11 昭和電工株式会社 リチウムイオン二次電池
WO2020059550A1 (ja) * 2018-09-18 2020-03-26 富士フイルム株式会社 全固体二次電池用積層部材の製造方法及び全固体二次電池の製造方法
JP7064613B2 (ja) 2018-09-18 2022-05-10 富士フイルム株式会社 全固体二次電池用積層部材の製造方法及び全固体二次電池の製造方法
JPWO2020059550A1 (ja) * 2018-09-18 2021-03-11 富士フイルム株式会社 全固体二次電池用積層部材の製造方法及び全固体二次電池の製造方法
DE112019005809T9 (de) 2018-11-20 2022-01-27 Tdk Corporation Festkörperbatterie
DE112019005809T5 (de) 2018-11-20 2021-08-26 Tdk Corporation Festkörperbatterie
WO2020105662A1 (ja) * 2018-11-20 2020-05-28 Tdk株式会社 全固体電池
DE112020001115T5 (de) 2019-03-07 2021-12-09 Tdk Corporation Festkörperbatterie
WO2020189599A1 (ja) * 2019-03-15 2020-09-24 Tdk株式会社 全固体二次電池
US11769907B2 (en) 2019-03-28 2023-09-26 Taiyo Yuden Co., Ltd. All solid battery
JP2020166980A (ja) * 2019-03-28 2020-10-08 太陽誘電株式会社 全固体電池
JP7383389B2 (ja) 2019-03-28 2023-11-20 太陽誘電株式会社 全固体電池
JP7437786B2 (ja) 2019-07-12 2024-02-26 パナソニックIpマネジメント株式会社 電池
WO2021009959A1 (ja) * 2019-07-12 2021-01-21 パナソニックIpマネジメント株式会社 電池
JPWO2021070927A1 (ja) * 2019-10-11 2021-04-15
JP7259980B2 (ja) 2019-10-11 2023-04-18 株式会社村田製作所 固体電池
WO2021070927A1 (ja) * 2019-10-11 2021-04-15 株式会社村田製作所 固体電池
WO2022239525A1 (ja) * 2021-05-10 2022-11-17 パナソニックIpマネジメント株式会社 電池
WO2023162317A1 (ja) * 2022-02-28 2023-08-31 Tdk株式会社 全固体電池
WO2023188466A1 (ja) * 2022-03-31 2023-10-05 Tdk株式会社 全固体二次電池
WO2024070286A1 (ja) * 2022-09-28 2024-04-04 株式会社村田製作所 固体電池

Also Published As

Publication number Publication date
US20140338817A1 (en) 2014-11-20
US8883347B2 (en) 2014-11-11
CN102163748A (zh) 2011-08-24
CN102163748B (zh) 2015-06-17
EP2058892A4 (en) 2011-11-30
CN102163749A (zh) 2011-08-24
EP2058892B1 (en) 2014-01-22
CN102163750A (zh) 2011-08-24
KR20090030271A (ko) 2009-03-24
CN102163747A (zh) 2011-08-24
KR101367653B1 (ko) 2014-03-06
CN101461087B (zh) 2011-05-04
US20090202912A1 (en) 2009-08-13
CN102163749B (zh) 2014-03-12
US9263727B2 (en) 2016-02-16
EP2058892A1 (en) 2009-05-13
CN101461087A (zh) 2009-06-17

Similar Documents

Publication Publication Date Title
WO2007135790A1 (ja) 全固体二次電池
JP5717318B2 (ja) 全固体二次電池
JP5122154B2 (ja) 全固体二次電池
KR101367613B1 (ko) 리튬이온 2 차 전지, 및 그 제조 방법
JP4728385B2 (ja) リチウムイオン二次電池、及び、その製造方法
JP6651708B2 (ja) リチウムイオン二次電池
KR101757017B1 (ko) 리튬 이온 이차 전지 및 그 제조 방법
JP6492958B2 (ja) 固体電池及びそれを用いた組電池。
JP6693226B2 (ja) 全固体型二次電池
JP6455807B2 (ja) リチウムイオン二次電池
JP6623542B2 (ja) リチウムイオン二次電池
JP2015220099A (ja) 全固体リチウムイオン二次電池
JP7009761B2 (ja) 全固体型二次電池
JP6316091B2 (ja) リチウムイオン二次電池
JP6364945B2 (ja) リチウムイオン二次電池
CN114616697A (zh) 全固体电池
JP5430930B2 (ja) 全固体二次電池
WO2018181575A1 (ja) 全固体リチウムイオン二次電池
CN113273015A (zh) 全固体电池
WO2021079700A1 (ja) 全固体電池
JP2018116938A (ja) リチウムイオン二次電池
JP2020155288A (ja) 直列型全固体組電池の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780018699.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07714112

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008516566

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007714112

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087031125

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12302250

Country of ref document: US