WO2019123981A1 - リチウムイオン二次電池の製造方法 - Google Patents
リチウムイオン二次電池の製造方法 Download PDFInfo
- Publication number
- WO2019123981A1 WO2019123981A1 PCT/JP2018/043334 JP2018043334W WO2019123981A1 WO 2019123981 A1 WO2019123981 A1 WO 2019123981A1 JP 2018043334 W JP2018043334 W JP 2018043334W WO 2019123981 A1 WO2019123981 A1 WO 2019123981A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- positive electrode
- lithium ion
- secondary battery
- solid electrolyte
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0438—Processes of manufacture in general by electrochemical processing
- H01M4/044—Activating, forming or electrochemical attack of the supporting material
- H01M4/0445—Forming after manufacture of the electrode, e.g. first charge, cycling
- H01M4/0447—Forming after manufacture of the electrode, e.g. first charge, cycling of complete cells or cells stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0438—Processes of manufacture in general by electrochemical processing
- H01M4/0459—Electrochemical doping, intercalation, occlusion or alloying
- H01M4/0461—Electrochemical alloying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/446—Initial charging measures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1395—Processes of manufacture of electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/40—Alloys based on alkali metals
- H01M4/405—Alloys based on lithium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a method of manufacturing a lithium ion secondary battery.
- a lithium ion secondary battery is known as a secondary battery satisfying such a demand.
- the lithium ion secondary battery has a positive electrode containing a positive electrode active material, a negative electrode containing a negative electrode active material, and an electrolyte that exhibits lithium ion conductivity and is disposed between the positive electrode and the negative electrode.
- Patent Document 1 In a conventional lithium ion secondary battery, an organic electrolytic solution or the like has been used as an electrolyte.
- a solid electrolyte inorganic solid electrolyte made of an inorganic material
- a lithium excess layer containing lithium metal and / or lithium in excess As a negative electrode active material (Patent Document 1) reference).
- Patent Document 1 after laminating
- An object of the present invention is to provide a manufacturing method capable of suppressing peeling inside an all solid lithium ion secondary battery.
- the method for producing a lithium ion secondary battery of the present invention comprises a positive electrode layer containing a positive electrode active material, a solid electrolyte layer containing an inorganic solid electrolyte exhibiting lithium ion conductivity, and a platinum group element (Ru, Rh, Pd, Os, A lithium ion is transferred from the positive electrode layer to the noble metal layer through the solid electrolyte layer to a laminated body formed by laminating the noble metal layer composed of Ir, Pt) or gold (Au) or an alloy of these in this order.
- the manufacturing method of such a lithium ion secondary battery in the charging step, lithium and the noble metal constituting the noble metal layer are alloyed, and in the discharging step, the alloy of the lithium and the noble metal is dealloyed Can be characterized. Further, the noble metal layer can be made porous by the charging step and the discharging step. Further, from the other point of view, in the method of manufacturing a lithium ion secondary battery of the present invention, a positive electrode layer forming step of forming a positive electrode layer containing a positive electrode active material, lithium ion conductivity on the positive electrode layer.
- charging the battery by moving lithium ions to the In the method of manufacturing such a lithium ion secondary battery, in the charging step, lithium and a noble metal constituting the noble metal layer may be alloyed.
- the method for producing a lithium ion secondary battery of the present invention comprises: a positive electrode layer containing a positive electrode active material; a solid electrolyte layer containing an inorganic solid electrolyte exhibiting lithium ion conductivity; A first electrode is formed on the positive electrode layer side with respect to a laminated body formed by laminating (Ru, Rh, Pd, Os, Ir, Pt) or a gold (Au) or a noble metal layer composed of an alloy thereof in this order. Connecting the second electrode to the noble metal layer side, and supplying a current to the laminate through the first electrode and the second electrode to charge the laminate. And a process.
- lithium and a noble metal constituting the noble metal layer may be alloyed.
- the inorganic solid electrolyte in the solid electrolyte layer may be characterized by containing a phosphate (PO 4 3- ).
- the manufacturing method which can suppress peeling inside the all-solid-state lithium ion secondary battery can be provided.
- FIG. 1 It is a figure which shows the cross-sectional structure of the lithium ion secondary battery of embodiment. It is a flowchart for demonstrating the manufacturing method of the lithium ion secondary battery of embodiment. It is a figure which shows the cross-sectional structure of the lithium ion secondary battery after film-forming of embodiment, and before first time charge.
- (A) to (c) are diagrams for explaining the procedure for making the holding layer porous.
- (A) is a cross-sectional STEM photograph of the lithium ion secondary battery after film formation according to the embodiment and before the first charge
- (b) is a cross-sectional STEM photograph of the lithium ion secondary battery after the first discharge of the embodiment is there.
- FIG. 1 is a view showing a cross-sectional configuration of a lithium ion secondary battery 1 of the present embodiment.
- the lithium ion secondary battery 1 of the present embodiment has a structure in which a plurality of layers (films) are stacked, as described later, and after forming a basic structure by a so-called film formation process, The structure is completed by the charge and discharge operation.
- FIG. 1 shows the state after the first discharge, that is, the structure of the lithium ion secondary battery 1 is completed.
- the lithium ion secondary battery 1 shown in FIG. 1 includes a substrate 10, a positive electrode current collector layer 20 stacked on the substrate 10, a positive electrode layer 30 stacked on the positive electrode current collector layer 20, and a positive electrode layer 30.
- a solid electrolyte layer 40 laminated on the upper side, and a holding layer 50 laminated on the solid electrolyte layer 40 are provided.
- the solid electrolyte layer 40 covers the peripheries of both the positive electrode current collector layer 20 and the positive electrode layer 30 and the end portions thereof are directly laminated on the substrate 10, whereby the positive electrode current collector layer 20 and the substrate 10 are obtained.
- the positive electrode layer 30 is covered.
- the lithium ion secondary battery 1 is stacked on the holding layer 50 and directly stacked on the solid electrolyte layer 40 at the periphery of the holding layer 50, thereby covering the solid electrolyte layer 40 with the holding layer 50.
- a covering layer 60 Furthermore, the lithium ion secondary battery 1 is laminated on the covering layer 60 and directly laminated on the solid electrolyte layer 40 at the periphery of the covering layer 60, thereby covering the covering layer 60 with respect to the solid electrolyte layer 40.
- a negative electrode current collector layer 70 is provided.
- the substrate 10 is not particularly limited, and substrates made of various materials such as metal, glass, and ceramics can be used.
- the substrate 10 is formed of a metal plate having electron conductivity. More specifically, in the present embodiment, a stainless steel foil (plate) having a mechanical strength higher than that of copper, aluminum or the like is used as the substrate 10. Further, as the substrate 10, a metal foil plated with a conductive metal such as tin, copper, chromium or the like may be used as the substrate 10.
- the thickness of the substrate 10 can be, for example, 20 ⁇ m or more and 2000 ⁇ m or less. If the thickness of the substrate 10 is less than 20 ⁇ m, the strength of the lithium ion secondary battery 1 may be insufficient. On the other hand, when the thickness of the substrate 10 exceeds 2000 ⁇ m, the volume energy density and weight energy density decrease due to the increase in thickness and weight of the battery.
- the positive electrode current collector layer 20 is not particularly limited as long as it is a solid thin film and has electron conductivity, and for example, a conductive material containing various metals or an alloy of various metals is used. Can.
- the thickness of the positive electrode current collector layer 20 can be, for example, 5 nm or more and 50 ⁇ m or less. If the thickness of the positive electrode current collector layer 20 is less than 5 nm, the current collection function is lowered and it is not practical. On the other hand, when the thickness of the positive electrode current collector layer 20 exceeds 50 ⁇ m, the internal resistance of the battery becomes high, which is disadvantageous for high-speed charge and discharge.
- the positive electrode current collector layer 20 As a method of manufacturing the positive electrode current collector layer 20, known film forming methods such as various PVD (physical vapor deposition) and various CVD (chemical vapor deposition) may be used, but from the viewpoint of production efficiency It is desirable to use a method or a vacuum evaporation method.
- PVD physical vapor deposition
- CVD chemical vapor deposition
- the positive electrode current collector layer 20 may not be provided between the substrate 10 and the positive electrode layer 30.
- the positive electrode current collector layer 20 may be provided between the substrate 10 and the positive electrode layer 30.
- the positive electrode layer 30 is a solid thin film, and contains a positive electrode active material that desorbs lithium ions during charging and stores lithium ions during discharging.
- a positive electrode active material constituting the positive electrode layer 30 for example, one type selected from manganese (Mn), cobalt (Co), nickel (Ni), iron (Fe), molybdenum (Mo), vanadium (V) It is possible to use one composed of various materials such as oxides, sulfides or phosphorus oxides containing the above metals.
- the positive electrode layer 30 may be a composite positive electrode containing a solid electrolyte.
- the thickness of the positive electrode layer 30 can be, for example, 10 nm or more and 40 ⁇ m or less. If the thickness of the positive electrode layer 30 is less than 10 nm, the capacity of the obtained lithium ion secondary battery 1 becomes too small to be practical. On the other hand, when the thickness of the positive electrode layer 30 exceeds 40 ⁇ m, it takes too long to form the layer, and the productivity is lowered. However, when the battery capacity required for the lithium ion secondary battery 1 is large, the thickness of the positive electrode layer 30 may be more than 40 ⁇ m.
- the positive electrode layer 30 As a method of producing the positive electrode layer 30, known film forming methods such as various PVD and various CVD may be used, but from the viewpoint of production efficiency, it is desirable to use the sputtering method.
- the solid electrolyte layer 40 is a solid thin film, and includes a solid electrolyte (inorganic solid electrolyte) made of an inorganic material.
- the inorganic solid electrolyte constituting the solid electrolyte layer 40 is not particularly limited as long as it exhibits lithium ion conductivity, and is made of various materials such as oxides, nitrides, and sulfides. Can be used. However, from the viewpoint of enhancing the ion conductivity, it is preferable that the inorganic solid electrolyte constituting the solid electrolyte layer contains a phosphate (PO 4 3- ).
- the thickness of the solid electrolyte layer 40 can be, for example, 10 nm or more and 10 ⁇ m or less.
- the thickness of the solid electrolyte layer 40 is less than 10 nm, a short circuit (leakage) is likely to occur between the positive electrode layer 30 and the holding layer 50 in the obtained lithium ion secondary battery 1.
- the thickness of the solid electrolyte layer 40 exceeds 10 ⁇ m, the internal resistance of the battery becomes high, which is disadvantageous for high-speed charge and discharge.
- the solid electrolyte layer 40 As a method of manufacturing the solid electrolyte layer 40, known film forming methods such as various PVD and various CVD may be used, but from the viewpoint of production efficiency, it is preferable to use the sputtering method.
- the holding layer 50 is a solid thin film and has a function of holding lithium ions.
- maintenance layer 50 shown in FIG. 1 is comprised by the porous part 51 in which the many void
- the holding layer 50 can be made of a platinum group element (Ru, Rh, Pd, Os, Ir, Pt) or gold (Au) or an alloy of these. Among these, it is preferable that the holding layer 50 be made of platinum (Pt) or gold (Au) that is more resistant to oxidation.
- the holding layer 50 (porous portion 51) of the present embodiment can be formed of the above-described noble metal or a polycrystal of an alloy of these.
- the thickness of the holding layer 50 can be, for example, 10 nm or more and 40 ⁇ m or less. If the thickness of the retention layer 50 is less than 10 nm, the ability to retain lithium will be insufficient. On the other hand, when the thickness of the holding layer 50 exceeds 40 ⁇ m, the internal resistance of the battery becomes high, which is disadvantageous for high-speed charge and discharge. However, when the battery capacity required for the lithium ion secondary battery 1 is large, the thickness of the holding layer 50 may be more than 40 ⁇ m.
- the holding layer 50 As a method of manufacturing the holding layer 50, known film forming methods such as various PVD and various CVD may be used, but from the viewpoint of production efficiency, it is preferable to use the sputtering method. And as a manufacturing method of the holding layer 50 made porous, it is desirable to employ
- the covering layer 60 is made of a metal or an alloy which is a solid thin film and has an amorphous structure. And among these, from the viewpoint of corrosion resistance, it is preferable that it is chromium (Cr) alone or an alloy containing chromium, and it is more preferable that it is an alloy of chromium and titanium (Ti).
- the covering layer 60 is preferably made of a metal or alloy which does not form an intermetallic compound with lithium (Li).
- the covering layer 60 can also be configured by laminating a plurality of amorphous layers different in constituent material (for example, a laminated structure of an amorphous chromium layer and an amorphous chromium titanium alloy layer).
- the “amorphous structure” in the present embodiment includes not only one having an amorphous structure as a whole but also one having microcrystals precipitated in the amorphous structure. .
- the thickness of the covering layer 60 can be, for example, 10 nm or more and 40 ⁇ m or less. When the thickness of the covering layer 60 is less than 10 nm, it is difficult for the covering layer 60 to stop the lithium that has passed through the holding layer 50 from the solid electrolyte layer 40 side. On the other hand, when the thickness of the covering layer 60 exceeds 40 ⁇ m, the internal resistance of the battery becomes high, which is disadvantageous for high-speed charge and discharge.
- the covering layer 60 As a method of manufacturing the covering layer 60, known film forming methods such as various PVD and various CVD may be used, but from the viewpoint of production efficiency, it is desirable to use the sputtering method.
- the covering layer 60 is made of the above-described chromium titanium alloy, the chromium titanium alloy is likely to be amorphous if the sputtering method is employed.
- Examples of metals (alloys) that can be used for the covering layer 60 include ZrCuAlNiPdP, CuZr, FeZr, TiZr, CoZrNB, NiNb, NiNb, NiTiNb, NiP, CuP, NiPCu, NiTi, CrTi, AlTi, FeSiB, and AuSi. be able to.
- the negative electrode current collector layer 70 is not particularly limited as long as it is a solid thin film and has electron conductivity, and for example, a conductive material including various metals and alloys of various metals is used. Can. However, from the viewpoint of suppressing the corrosion of the covering layer 60, it is preferable to use a chemically stable material, for example, platinum group elements (Ru, Rh, Pd, Os, Ir, Pt) or gold (Au) Or preferably composed of these alloys.
- platinum group elements Ru, Rh, Pd, Os, Ir, Pt
- Au gold
- the thickness of the negative electrode current collector layer 70 can be, for example, 5 nm or more and 50 ⁇ m or less. If the thickness of the negative electrode current collector layer 70 is less than 5 nm, the corrosion resistance and the current collection function are reduced, which is not practical. On the other hand, when the thickness of the negative electrode current collector layer 70 exceeds 50 ⁇ m, the internal resistance of the battery becomes high, which is disadvantageous for high-speed charge and discharge.
- the negative electrode current collector layer 70 As a method of manufacturing the negative electrode current collector layer 70, known film forming methods such as various PVD and various CVD may be used, but from the viewpoint of production efficiency, it is desirable to use the sputtering method.
- the positive electrode layer 30 and the holding layer 50 face each other with the solid electrolyte layer 40 interposed therebetween. That is, the positive electrode layer 30 containing the positive electrode active material is positioned on the opposite side of the solid electrolyte layer 40 to the holding layer 50.
- the size of the plane of the holding layer 50 is larger than the size of the plane of the positive electrode layer 30.
- the entire peripheral edge of the plane of the positive electrode layer 30 is located inside the entire peripheral edge of the plane of the holding layer 50.
- the lower surface (planar surface) of the holding layer 50 is opposed to the upper surface (planar surface) of the positive electrode layer 30 shown in FIG. 1 with the solid electrolyte layer 40 interposed therebetween.
- FIG. 2 is a flowchart for explaining the method of manufacturing a lithium ion secondary battery of the present embodiment.
- the substrate 10 is mounted on a sputtering apparatus (not shown), and a positive electrode current collector layer forming step of forming the positive electrode current collector layer 20 on the substrate 10 is performed (step 20).
- the positive electrode layer forming step of forming the positive electrode layer 30 on the positive electrode current collector layer 20 is performed by the sputtering apparatus (step 30).
- a solid electrolyte layer forming step of forming the solid electrolyte layer 40 on the positive electrode layer 30 is executed by the sputtering apparatus (step 40).
- the holding layer forming step (an example of the noble metal layer forming step) of forming the holding layer 50 on the solid electrolyte layer 40 is executed by the sputtering apparatus (step 50).
- a covering layer forming step of forming a covering layer 60 on the solid electrolyte layer 40 and the holding layer 50 is performed (step 60).
- the negative electrode current collector layer forming step of forming the negative electrode current collector layer 70 on the solid electrolyte layer 40 and the covering layer 60 is executed by the sputtering apparatus (step 70).
- an initial charging step (an example of a charging step) of performing the first charging on the lithium ion secondary battery 1 removed from the sputtering apparatus is performed (step 80).
- the substrate 10 has a positive electrode terminal (an example of a first electrode) on the substrate 10
- the negative electrode collector layer 70 has a negative electrode terminal (an example of a second electrode).
- the connection step an example of the connection step
- the lithium ion secondary battery 1 is charged via the positive electrode terminal and the negative electrode terminal.
- an initial discharge step (an example of a discharge step) of performing a first discharge on the charged lithium ion secondary battery 1 is performed (step 90).
- the lithium ion secondary battery 1 can be discharged through the positive electrode terminal and the negative electrode terminal.
- the holding layer 50 is made porous, that is, the porous portion 51 and the plurality of pores 52 are formed, and the lithium ion secondary battery 1 shown in FIG. 1 is obtained.
- the details of making the holding layer 50 porous by the first charge and discharge operation will be described later.
- FIG. 3 is a view showing a cross-sectional configuration of the lithium ion secondary battery 1 after film formation and before initial charge according to the present embodiment.
- FIG. 3 shows a state in which steps up to step 70 shown in FIG. 2 are completed.
- FIG. 1 shows a state in which step 90 (all steps) shown in FIG. 2 is completed.
- the basic configuration of the lithium ion secondary battery 1 shown in FIG. 3 is the same as that shown in FIG. However, the lithium ion secondary battery 1 shown in FIG. 3 is different in that the holding layer 50 is not made porous and is more compact than that shown in FIG. 1. Further, the lithium ion secondary battery 1 shown in FIG. 3 is different in that the thickness of the holding layer 50 is thinner than that shown in FIG. 1.
- the positive electrode layer 30, the solid electrolyte layer 40, and the holding layer 50 shown in FIG. 3 have a function as an example of a laminate.
- FIG. 4 is a view for explaining the procedure for making the holding layer 50 porous, and is an enlarged view of the holding layer 50 and the periphery thereof.
- FIG. 4 (a) shows the state after film formation and before the first charge (after step 70)
- FIG. 4 (b) shows the state after the first charge and before the first discharge (between step 80 and step 90).
- FIG. 4C shows the state after the first discharge (after step 90), respectively. Therefore, FIG. 4 (a) corresponds to FIG. 3, and FIG. 4 (c) corresponds to FIG.
- the holding layer 50 before being made porous shown in FIG. 4A is an example of a noble metal layer.
- the holding layer 50 is densified.
- the thickness of the holding layer 50 is a holding layer thickness t50
- the thickness of the covering layer 60 is a covering layer thickness t60
- the thickness of the negative electrode current collector layer 70 is a negative electrode current collector layer thickness t70. It is.
- the substrate 10 (see FIG. 1) has a positive electrode of a DC power supply, and the negative electrode collector layer 70 has a DC power supply. Negative electrodes are connected respectively.
- the lithium ions (Li + ) constituting the positive electrode active material in the positive electrode layer 30 move to the holding layer 50 via the solid electrolyte layer 40. That is, in the charging operation, lithium ions move in the thickness direction of the lithium ion secondary battery 1 (upward in FIG. 4B).
- lithium ions moved from the positive electrode layer 30 side to the holding layer 50 side are alloyed with the noble metal constituting the holding layer 50.
- the holding layer 50 is made of platinum (Pt)
- platinum and platinum are alloyed (solid solution, formation of an intermetallic compound or eutectic).
- the covering layer 60 of the present embodiment is made of a metal or an alloy having an amorphous structure, and the number of grain boundaries is significantly reduced as compared with the holding layer 50 having a polycrystalline structure. There is. For this reason, the lithium ions that have reached the boundary between the holding layer 50 and the covering layer 60 hardly enter the covering layer 60, and therefore, the state of being held in the holding layer 50 is maintained.
- the lithium ions transferred from the positive electrode layer 30 to the holding layer 50 are held by the holding layer 50 in the state where the initial charging operation is finished. At this time, it is considered that lithium ions transferred to the holding layer 50 are held in the holding layer 50 by alloying with platinum, precipitation of metal lithium in platinum, or the like.
- the holding layer thickness t50 is after the film formation shown in FIG. 4 (a) and before the first charge. Increase from the state of That is, the volume of the holding layer 50 is increased by the first charge. This is considered to be attributable to the alloying of lithium and platinum in the holding layer 50.
- the coating layer thickness t60 is substantially unchanged before and after the first charge. That is, the volume of the covering layer 60 is not substantially changed by the first charge. This is considered to be due to the fact that lithium does not easily enter the covering layer 60.
- the negative electrode current collector layer thickness t70 does not substantially change before and after the initial charge, that is, the volume of the negative electrode current collector layer 70 does not substantially change before and after the initial charge (negative electrode collection). It is considered that the platinum that constitutes the collector layer 70 is supported by the fact that it is not made porous like the platinum that constitutes the holding layer 50 and remains compact.
- the substrate 10 (see FIG. 1) has a positive electrode of the load and the negative electrode collector layer 70 of the negative electrode. The electrodes are connected respectively. Then, as shown in FIG. 4C, lithium ions (Li + ) held in the holding layer 50 move to the positive electrode layer 30 through the solid electrolyte layer 40. That is, in the discharge operation, lithium ions move in the thickness direction of the lithium ion secondary battery 1 (downward in FIG. 4C) and are held in the positive electrode layer 30. Along with this, a direct current is supplied to the load.
- the dealloying of the alloy of lithium and platinum (the dissolution of metal lithium when metal lithium is deposited) is performed as lithium is separated. And as a result of performing dealloying by the holding
- the porous portion 51 obtained in this manner is substantially composed of a noble metal (for example, platinum).
- a noble metal for example, platinum
- the holding layer thickness t50 is greater than the state after the first charge and before the first discharge shown in FIG. 4B. Decrease. This is considered to be due to the fact that the alloy of lithium and platinum is dealloyed in the retaining layer 50. This is supported by the fact that the shape of the air holes 52 formed in the holding layer 50 by the first discharge is flattened so that the thickness direction becomes smaller than the surface direction. Further, as shown in FIG. 4C, in the lithium ion secondary battery 1 after the first discharge, the holding layer thickness t50 is larger than the state after the film formation shown in FIG. 4A and before the first charge. Do.
- the holding layer 50 is made porous by the first charge and the first discharge, that is, a large number of pores 52 are formed in the holding layer 50.
- the coating layer thickness t60 and the negative electrode current collector layer thickness t70 are substantially the same before and after the first discharge.
- FIG. 5 is a cross-sectional STEM (Scanning Transmission Electron Microscope) photograph of the lithium ion secondary battery 1 of the present embodiment, where (a) shows the state after film formation and before the first charge, and (b) shows the state after the first discharge. The state of each is shown.
- the STEM photograph was taken using a Hitachi High-Technologies Corporation HD-2300 ultrathin film evaluation apparatus.
- FIG. 5 (a) corresponds to FIG. 4 (a) (and FIG. 3) described above
- FIG. 5 (b) corresponds to FIG. 4 (c) (and FIG. 1) described above.
- the specific structure and manufacturing method of the lithium ion secondary battery 1 shown to Fig.5 (a) are as showing below.
- Stainless steel (SUS304) was used for the substrate 10 (not shown in FIG. 5).
- the thickness of the substrate 10 was 30 ⁇ m.
- Aluminum (Al) formed by sputtering was used for the positive electrode current collector layer 20 (not shown in FIG. 5).
- the thickness of the positive electrode current collector layer 20 was 100 nm.
- lithium manganate Li 1.5 Mn 2 O 4
- the thickness of the positive electrode layer 30 was 1000 nm.
- LiPON a lithium phosphate (Li 3 PO 4 ) part of which oxygen was replaced with nitrogen
- the thickness of the solid electrolyte layer 40 was 1000 nm.
- the thickness of the holding layer 50 was 410 nm (after film formation and before initial charge).
- the covering layer 60 a chromium titanium alloy (CrTi) formed by a sputtering method was used.
- the thickness of the covering layer 60 was 50 nm.
- the negative electrode current collector layer 70 platinum (Pt) formed by a sputtering method was used.
- the thickness of the negative electrode current collector layer 70 was 100 nm.
- the crystal structure was analyzed by electron beam diffraction, and it was as follows.
- the substrate 10 made of SUS304, the positive electrode current collector layer 20 made of aluminum, the holding layer 50 made of platinum, and the negative electrode current collector layer 70 were each crystallized.
- the positive electrode layer 30 made of lithium manganate, the solid electrolyte layer 40 made of LiPON, and the coating layer 60 made of a chromium titanium alloy were respectively made amorphous.
- the solid electrolyte layer 40, and the covering layer 60 a ring was slightly observed by electron beam diffraction, and it was found that microcrystals were present in the amorphous structure.
- FIG. 5A shows that the holding layer 50 is almost uniformly white
- FIG. 5B shows that a plurality of gray spots are present on the white background.
- the holding layer 50 is flattened on the side of the boundary with the covering layer 60 so that the thickness direction becomes smaller than the surface direction, and compared to other gray spots. It also shows that relatively large gray areas exist.
- FIG. 5 (b) it is considered that the white part corresponds to the porous part 51 and the gray part corresponds to the air holes 52.
- FIG.5 (b) it turns out also compared with FIG.5 (a) that the holding
- the thickness of the holding layer 50 shown in FIG. 5B was 610 nm (after the first discharge).
- both FIG. 5A and FIG. 5B it can be seen that the covering layer 60 and the negative electrode current collector layer 70 hardly change with respect to their respective shades. Furthermore, in both FIG. 5A and FIG. 5B, it can also be seen that the coating layer 60 and the negative electrode current collector layer 70 hardly change with respect to their respective thicknesses.
- Example of configuration of lithium ion secondary battery of comparative form In order to compare with the lithium ion secondary battery 1 of the present embodiment, the inventor of the present invention is a lithium ion secondary battery having a different layer configuration (hereinafter referred to as “comparison form lithium ion secondary battery”) Was produced.
- Table 1 shows constituent materials of each layer of the lithium ion secondary battery 1 of the present embodiment and the lithium ion secondary battery of the comparative form.
- the specific configuration and manufacturing method of the lithium ion secondary battery of the comparative form are as follows.
- the substrate 10 stainless steel (SUS304) was used.
- the thickness of the substrate 10 was 30 ⁇ m.
- titanium (Ti) formed by a sputtering method was used for the positive electrode current collector layer 20.
- the thickness of the positive electrode current collector layer 20 was 300 nm.
- lithium manganate Li 1.5 Mn 2 O 4
- the thickness of the positive electrode layer 30 was 550 nm.
- LiPON a lithium phosphate (Li 3 PO 4 ) part of which oxygen was replaced with nitrogen
- the thickness of the solid electrolyte layer 40 was 550 nm.
- the negative electrode current collector layer 70 has a two-layer structure of a first negative electrode current collector layer 71 and a second negative electrode current collector layer 72.
- the first negative electrode current collector layer 71 was formed of copper (Cu) formed by a sputtering method, and had a thickness of 450 nm (after film formation and before initial charge).
- Ti titanium
- the second negative electrode current collector layer 72 was used for the second negative electrode current collector layer 72, and the thickness was 1000 nm.
- the holding layer 50 and the covering layer 60 were not provided.
- FIG. 10 is a cross-sectional STEM photograph of a lithium ion secondary battery after the first discharge in the form of comparison. This STEM photograph was also taken using a Hitachi High-Technologies Corporation HD-2300 ultrathin film evaluation apparatus.
- lithium ions transferred from the positive electrode layer 30 to the first negative electrode current collector layer 71 via the solid electrolyte layer 40 are the first negative electrode current collector layer 71.
- the negative electrode layer (or the lithium excess layer) is formed at the boundary between the solid electrolyte layer 40 and the first negative electrode current collector layer 71 without moving to the inside. Therefore, in the case of the lithium ion secondary battery of the comparative form, the lithium ions transferred from the positive electrode layer 30 side to the first negative electrode collector layer 71 side are copper which constitutes the first negative electrode collector layer 71 It is thought that it hardly alloyed.
- lithium ions present in the negative electrode layer formed at the boundary between the solid electrolyte layer 40 and the first negative electrode collector layer 71 are solid electrolyte It moves to the positive electrode layer 30 through the layer 40. Then, when a large amount of lithium ions are separated from the negative electrode layer with the discharge and the negative electrode layer is almost disappeared, the solid electrolyte layer 40 and the first negative electrode collector layer 71 made of copper are in close contact again It can not be done. As a result, it is considered that in the lithium ion secondary battery after discharge in the comparative form, a gap (crack) is formed at the boundary between the solid electrolyte layer 40 and the first negative electrode collector layer 71.
- the first negative electrode collector layer 71 made of copper which is not a noble metal actually holds lithium ions, and the first negative electrode collector layer 71 And the solid electrolyte layer 40 have almost no function of maintaining adhesion. This is considered to be supported by the fact that the first negative electrode collector layer 71 made of copper is not made porous after the first discharge in the lithium ion secondary battery of the comparative form shown in FIG. .
- the holding layer 50 made of porous platinum is provided on the solid electrolyte layer 40.
- the lithium ion secondary battery 1 is associated with precipitation of lithium by charging, as compared with the case where a negative electrode layer made of, for example, lithium is provided between the solid electrolyte layer 40 and the negative electrode current collector layer 70. Peeling can be suppressed.
- the covering layer 60 made of a chromium titanium alloy having an amorphous structure is laminated on the holding layer 50 disposed to face the positive electrode layer 30 with the solid electrolyte layer 40 interposed therebetween.
- the covering layer 60 of lithium transferred from the positive electrode layer 30 to the holding layer 50 along with the charging operation Leaks to the outside can be suppressed.
- the negative electrode current collector layer 70 made of platinum is provided on the covering layer 60.
- the corrosion of the metal (here, chromium and titanium) constituting the covering layer 60 due to oxidation or the like ( Degradation) can be suppressed.
- LiPON containing phosphate (PO 4 3- ) is used as the inorganic solid electrolyte constituting the solid electrolyte layer 40, but a porous noble metal layer made of platinum or the like can be used as a holding layer By setting it as 50, it can suppress that the holding layer 50 is corroded by phosphate.
- platinum is used when the holding layer 50 is formed of platinum group elements (Ru, Rh, Pd, Os, Ir, Pt) or gold (Au) or their alloys.
- the holding layer 50 can be made porous by charging and discharging, as in the case where the holding layer 50 is constituted alone, and lithium can be held in the holding layer 50.
- the structure is completed by the first charge and discharge operation. More specifically, after the dense holding layer 50 is formed by a film forming process such as sputtering, the holding layer 50 is made porous by an initial charge operation and an initial discharge operation. Thereby, the manufacturing process of the lithium ion secondary battery can be simplified as compared with, for example, the case where the holding layer 50 is made porous by another process.
- the size of the flat surface of the positive electrode layer 30 and the holding layer 50 disposed with the solid electrolyte layer 40 therebetween is positive electrode layer 30 ⁇ holding layer 50.
- movement in the lateral direction (surface direction) when lithium ions move from the positive electrode layer 30 to the holding layer 50 side is suppressed.
- leakage of lithium ions from the side of the lithium ion secondary battery 1 to the outside can be suppressed.
- lithium ion secondary battery 1 of the present embodiment positive electrode current collector layer 20 and positive electrode layer 30 are covered using substrate 10 and solid electrolyte layer 40, and solid electrolyte layer 40 and covering layer 60 are used. And although the structure which covers the holding layer 50 using the negative electrode collector layer 70 was employ
- FIG. 6 is a view showing the cross-sectional configuration of the lithium ion secondary battery 1 of the first modification.
- FIG. 6 shows a state (corresponding to FIG. 1) after the first discharge, that is, the structure of the lithium ion secondary battery 1 is completed.
- the planar size of the positive electrode current collector layer 20 and the positive electrode layer 30 when viewed from the upper side of FIG. 6 is substantially the same as the planar size of the solid electrolyte layer 40.
- This embodiment is different from the above embodiment.
- the lithium ion secondary battery 1 including the dense holding layer 50 is manufactured in the same procedure as this embodiment (see FIG. 2), charging for the first time after film formation is performed. By performing the discharge operation, the lithium ion secondary battery 1 (see FIG. 6) in which the holding layer 50 is made porous can be obtained.
- FIG. 7 is a view showing a cross-sectional configuration of a lithium ion secondary battery 1 of a second modification.
- FIG. 7 shows a state (corresponding to FIG. 1) after the first discharge, that is, the structure of the lithium ion secondary battery 1 is completed.
- the size of the plane of the covering layer 60 when viewed from above in FIG. 7 is the same as the size of the plane of the holding layer 50, and when viewed from above in FIG.
- This embodiment differs from the above-described embodiment in that the size of the negative electrode current collector layer 70 is the same as the size of the flat surface of the covering layer 60.
- charging for the first time after film formation is performed. By performing the discharge operation, it is possible to obtain the lithium ion secondary battery 1 (see FIG. 7) in which the holding layer 50 is made porous.
- FIG. 8 is a view showing a cross-sectional configuration of a lithium ion secondary battery 1 of a third modification.
- FIG. 8 shows a state (corresponding to FIG. 1) after the first discharge, that is, the structure of the lithium ion secondary battery 1 is completed.
- the size of the plane of the covering layer 60 when viewed from above in FIG. 8 is the same as the size of the plane of the holding layer 50, and when viewed from above in FIG.
- This embodiment differs from the first modification in that the size of the negative electrode current collector layer 70 is the same as the size of the flat surface of the covering layer 60.
- charging for the first time after film formation is performed. By performing the discharge operation, the lithium ion secondary battery 1 (see FIG. 8) in which the holding layer 50 is made porous can be obtained.
- FIG. 9 is a view showing a cross-sectional configuration of a lithium ion secondary battery 1 of a fourth modification.
- FIG. 9 shows a state (corresponding to FIG. 1) after the first discharge, that is, the structure of the lithium ion secondary battery 1 is completed.
- the size of the plane of the holding layer 50 when viewed from above in FIG. 9 is the same as the size of the plane of the solid electrolyte layer 40, Is different.
- charging for the first time after film formation is performed. By performing the discharge operation, it is possible to obtain a lithium ion secondary battery 1 (see FIG. 9) in which the holding layer 50 is made porous.
- the holding layer 50 and the negative electrode current collector layer 70 are made of the same noble metal (Pt).
- Pt noble metal
- the present invention is not limited to this, and may be made of another noble metal.
- the positive electrode current collector layer 20, the positive electrode layer 30, the solid electrolyte layer 40, the holding layer 50, the covering layer 60, and the negative electrode current collector layer 70 are sequentially stacked on the substrate 10.
- the basic configuration of the lithium ion secondary battery 1 was formed. That is, the positive electrode layer 30 is disposed on the side closer to the substrate 10, and the holding layer 50 is disposed on the side farther from the substrate 10.
- the present invention is not limited to this, and a configuration may be adopted in which the holding layer 50 is disposed closer to the substrate 10 and the positive electrode layer 30 is disposed farther from the substrate 10.
- the stacking order of the layers on the substrate 10 is reverse to that described above.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
リチウムイオン二次電池1は、正極活物質を含む正極層30と、無機固体電解質を含む固体電解質層40と、多孔質化した白金(Pt)で構成されるとともにリチウムを保持する保持層50と、非晶質化したクロムチタン(CrTi)合金で構成される被覆層60と、白金(Pt)で構成される負極集電体層70とを、この順に積層して構成される。そして、保持層50は、スパッタによって緻密な白金層を形成した後、充放電動作を行うことによって多孔質化され、多孔質部51と多数の空孔52とが設けられる。これにより、全固体リチウムイオン二次電池の内部の剥離を抑制することのできる製造方法を提供する。
Description
本発明は、リチウムイオン二次電池の製造方法に関する。
携帯電話やノート型パソコンなどの携帯電子機器の普及に伴い、高いエネルギー密度を有する、小型で軽量な二次電池の開発が強く望まれている。このような要求を満たす二次電池として、リチウムイオン二次電池が知られている。リチウムイオン二次電池は、正極活物質を含む正極と、負極活物質を含む負極と、リチウムイオン伝導性を示し且つ正極および負極の間に配置される電解質とを有している。
従来のリチウムイオン二次電池では、電解質として有機電解液等が用いられてきた。これに対し、電解質として無機材料からなる固体電解質(無機固体電解質)を用いるとともに、負極活物質としてリチウム金属および/またはリチウムを過剰に含むリチウム過剰層を用いることが提案されている(特許文献1参照)。そして、特許文献1では、正極側集電体膜、正極活物質膜、固体電解質膜および負極集電体膜を、この順に積層した後、正極集電体膜および負極集電体膜を介した充電を行うことに伴って、固体電解質膜と負極集電体膜との間にリチウム過剰層を生じさせている。
ここで、固体電解質膜と負極集電体膜との間に、充電によりリチウム過剰層を生じさせる構成を採用した場合には、リチウム過剰層の形成・消失に伴って固体電解質膜と負極集電体膜との間に剥離を引き起こし、充放電のサイクル寿命が短くなるという問題があった。
本発明は、全固体リチウムイオン二次電池の内部の剥離を抑制することのできる製造方法を提供することを目的とする。
本発明は、全固体リチウムイオン二次電池の内部の剥離を抑制することのできる製造方法を提供することを目的とする。
本発明のリチウムイオン二次電池の製造方法は、正極活物質を含む正極層と、リチウムイオン伝導性を示す無機固体電解質を含む固体電解質層と、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)または金(Au)あるいはこれらの合金で構成される貴金属層とを、この順に積層してなる積層体に対し、当該正極層から当該固体電解質層を介して当該貴金属層にリチウムイオンを移動させることで充電を行う充電工程と、充電された前記積層体に対し、前記貴金属層から前記固体電解質層を介して前記正極層にリチウムイオンを移動させることで放電を行う放電工程とを有している。
このようなリチウムイオン二次電池の製造方法において、前記充電工程では、リチウムと前記貴金属層を構成する貴金属とが合金化し、前記放電工程では、前記リチウムと前記貴金属との合金が脱合金化することを特徴とすることができる。
また、前記充電工程および前記放電工程により、前記貴金属層が多孔質化することを特徴とすることができる。
また、他の観点から捉えると、本発明のリチウムイオン二次電池の製造方法は、正極活物質を含む正極層を形成する正極層形成工程と、前記正極層の上に、リチウムイオン伝導性を示す無機固体電解質を含む固体電解質層を形成する固体電解質層形成工程と、前記固体電解質層の上に、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)または金(Au)あるいはこれらの合金で構成される貴金属層を形成する貴金属層形成工程と、前記正極層と前記固体電解質層と前記貴金属層との積層体に対し、当該正極層から当該固体電解質層を介して当該貴金属層にリチウムイオンを移動させることで充電を行う充電工程とを有している。
このようなリチウムイオン二次電池の製造方法において、前記充電工程では、リチウムと前記貴金属層を構成する貴金属とが合金化することを特徴とすることができる。
さらに、他の観点から捉えると、本発明のリチウムイオン二次電池の製造方法は、正極活物質を含む正極層と、リチウムイオン伝導性を示す無機固体電解質を含む固体電解質層と、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)または金(Au)あるいはこれらの合金で構成される貴金属層とを、この順に積層してなる積層体に対し、当該正極層側に第1電極を接続するとともに、当該貴金属層側に第2電極を接続する接続工程と、前記第1電極および前記第2電極を介して前記積層体に電流を供給することで、当該積層体を充電する充電工程とを有している。
このようなリチウムイオン二次電池の製造方法において、前記充電工程では、リチウムと前記貴金属層を構成する貴金属とが合金化することを特徴とすることができる。
また、前記固体電解質層における前記無機固体電解質がリン酸塩(PO4 3-)を含むことを特徴とすることができる。
このようなリチウムイオン二次電池の製造方法において、前記充電工程では、リチウムと前記貴金属層を構成する貴金属とが合金化し、前記放電工程では、前記リチウムと前記貴金属との合金が脱合金化することを特徴とすることができる。
また、前記充電工程および前記放電工程により、前記貴金属層が多孔質化することを特徴とすることができる。
また、他の観点から捉えると、本発明のリチウムイオン二次電池の製造方法は、正極活物質を含む正極層を形成する正極層形成工程と、前記正極層の上に、リチウムイオン伝導性を示す無機固体電解質を含む固体電解質層を形成する固体電解質層形成工程と、前記固体電解質層の上に、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)または金(Au)あるいはこれらの合金で構成される貴金属層を形成する貴金属層形成工程と、前記正極層と前記固体電解質層と前記貴金属層との積層体に対し、当該正極層から当該固体電解質層を介して当該貴金属層にリチウムイオンを移動させることで充電を行う充電工程とを有している。
このようなリチウムイオン二次電池の製造方法において、前記充電工程では、リチウムと前記貴金属層を構成する貴金属とが合金化することを特徴とすることができる。
さらに、他の観点から捉えると、本発明のリチウムイオン二次電池の製造方法は、正極活物質を含む正極層と、リチウムイオン伝導性を示す無機固体電解質を含む固体電解質層と、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)または金(Au)あるいはこれらの合金で構成される貴金属層とを、この順に積層してなる積層体に対し、当該正極層側に第1電極を接続するとともに、当該貴金属層側に第2電極を接続する接続工程と、前記第1電極および前記第2電極を介して前記積層体に電流を供給することで、当該積層体を充電する充電工程とを有している。
このようなリチウムイオン二次電池の製造方法において、前記充電工程では、リチウムと前記貴金属層を構成する貴金属とが合金化することを特徴とすることができる。
また、前記固体電解質層における前記無機固体電解質がリン酸塩(PO4 3-)を含むことを特徴とすることができる。
本発明によれば、全固体リチウムイオン二次電池の内部の剥離を抑制することのできる製造方法を提供することができる。
以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。なお、以下の説明で参照する図面における各部の大きさや厚さ等は、実際の寸法とは異なっている場合がある。
[リチウムイオン二次電池の構成]
図1は、本実施の形態のリチウムイオン二次電池1の断面構成を示す図である。本実施の形態のリチウムイオン二次電池1は、後述するように、複数の層(膜)を積層した構造を有しており、所謂成膜プロセスによって基本的な構造を形成した後、初回の充放電動作によってその構造を完成させるようになっている。ここで、図1は、初回放電後すなわちリチウムイオン二次電池1の構造が完成した状態を示している。
図1は、本実施の形態のリチウムイオン二次電池1の断面構成を示す図である。本実施の形態のリチウムイオン二次電池1は、後述するように、複数の層(膜)を積層した構造を有しており、所謂成膜プロセスによって基本的な構造を形成した後、初回の充放電動作によってその構造を完成させるようになっている。ここで、図1は、初回放電後すなわちリチウムイオン二次電池1の構造が完成した状態を示している。
図1に示すリチウムイオン二次電池1は、基板10と、基板10上に積層される正極集電体層20と、正極集電体層20上に積層される正極層30と、正極層30上に積層される固体電解質層40と、固体電解質層40上に積層される保持層50とを備えている。ここで、固体電解質層40は、正極集電体層20および正極層30の両者の周縁を覆うとともにその端部が基板10に直接積層されることで、基板10とともに正極集電体層20および正極層30を覆っている。また、このリチウムイオン二次電池1は、保持層50上に積層されるとともに保持層50の周縁において固体電解質層40に直接積層されることで、固体電解質層40に対して保持層50を被覆する被覆層60を備えている。さらに、このリチウムイオン二次電池1は、被覆層60上に積層されるとともに被覆層60の周縁において固体電解質層40に直接積層されることで、固体電解質層40に対して被覆層60を覆う負極集電体層70を備えている。
次に、上記リチウムイオン二次電池1の各構成要素について、より詳細な説明を行う。
(基板)
基板10としては、特に限定されず、金属、ガラス、セラミックスなど、各種材料で構成されたものを用いることができる。
ここで、本実施の形態では、基板10を、電子伝導性を有する金属製の板材で構成している。より具体的に説明すると、本実施の形態では、基板10として、銅やアルミニウム等と比較して機械的強度が高いステンレス箔(板)を用いている。また、基板10として、錫、銅、クロム等の導電性金属でめっきした金属箔を用いてもよい。
(基板)
基板10としては、特に限定されず、金属、ガラス、セラミックスなど、各種材料で構成されたものを用いることができる。
ここで、本実施の形態では、基板10を、電子伝導性を有する金属製の板材で構成している。より具体的に説明すると、本実施の形態では、基板10として、銅やアルミニウム等と比較して機械的強度が高いステンレス箔(板)を用いている。また、基板10として、錫、銅、クロム等の導電性金属でめっきした金属箔を用いてもよい。
基板10の厚さは、例えば20μm以上2000μm以下とすることができる。基板10の厚さが20μm未満であると、リチウムイオン二次電池1の強度が不足するおそれがある。一方、基板10の厚さが2000μmを超えると、電池の厚さおよび重量の増加により体積エネルギー密度および重量エネルギー密度が低下する。
(正極集電体層)
正極集電体層20は、固体薄膜であって、電子伝導性を有するものであれば、特に限定されるものではなく、例えば、各種金属や、各種金属の合金を含む導電性材料を用いることができる。
正極集電体層20は、固体薄膜であって、電子伝導性を有するものであれば、特に限定されるものではなく、例えば、各種金属や、各種金属の合金を含む導電性材料を用いることができる。
正極集電体層20の厚さは、例えば5nm以上50μm以下とすることができる。正極集電体層20の厚さが5nm未満であると、集電機能が低下し、実用的ではなくなる。一方、正極集電体層20の厚さが50μmを超えると、電池の内部抵抗が高くなり、高速での充放電には不利である。
また、正極集電体層20の製造方法としては、各種PVD(物理蒸着)や各種CVD(化学蒸着)など、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法もしくは真空蒸着法を用いることが望ましい。
なお、金属製の板材のような導電性材料で基板10を構成する場合は、基板10と正極層30との間に正極集電体層20を設けなくてもよい。一方、基板10として絶縁性を有する材料を用いる場合には、基板10と正極層30との間に正極集電体層20を設けるとよい。
(正極層)
正極層30は、固体薄膜であって、充電時にはリチウムイオンを放出するとともに放電時にはリチウムイオンを吸蔵する正極活物質を含んでいる。ここで、正極層30を構成する正極活物質としては、例えば、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、鉄(Fe)、モリブデン(Mo)、バナジウム(V)から選ばれる一種以上の金属を含む、酸化物、硫化物あるいはリン酸化物など、各種材料で構成されたものを用いることができる。また、正極層30は、固体電解質を含んだ合材正極であってもよい。
正極層30は、固体薄膜であって、充電時にはリチウムイオンを放出するとともに放電時にはリチウムイオンを吸蔵する正極活物質を含んでいる。ここで、正極層30を構成する正極活物質としては、例えば、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、鉄(Fe)、モリブデン(Mo)、バナジウム(V)から選ばれる一種以上の金属を含む、酸化物、硫化物あるいはリン酸化物など、各種材料で構成されたものを用いることができる。また、正極層30は、固体電解質を含んだ合材正極であってもよい。
正極層30の厚さは、例えば10nm以上40μm以下とすることができる。正極層30の厚さが10nm未満であると、得られるリチウムイオン二次電池1の容量が小さくなりすぎ、実用的ではなくなる。一方、正極層30の厚さが40μmを超えると、層形成に時間がかかりすぎるようになってしまい、生産性が低下する。ただし、リチウムイオン二次電池1に要求される電池容量が大きい場合には、正極層30の厚さを40μm超としてもかまわない。
さらに、正極層30の作製方法としては、各種PVDや各種CVDなど、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法を用いることが望ましい。
(固体電解質層)
固体電解質層40は、固体薄膜であって、無機材料からなる固体電解質(無機固体電解質)を含んでいる。ここで、固体電解質層40を構成する無機固体電解質については、リチウムイオン伝導性を示すものであれば、特に限定されるものではなく、酸化物、窒化物、硫化物など、各種材料で構成されたものを用いることができる。ただし、イオン伝導性を高めるという観点からすれば、固体電解質層を構成する無機固体電解質は、リン酸塩(PO4 3-)を含んでいることが望ましい。
固体電解質層40は、固体薄膜であって、無機材料からなる固体電解質(無機固体電解質)を含んでいる。ここで、固体電解質層40を構成する無機固体電解質については、リチウムイオン伝導性を示すものであれば、特に限定されるものではなく、酸化物、窒化物、硫化物など、各種材料で構成されたものを用いることができる。ただし、イオン伝導性を高めるという観点からすれば、固体電解質層を構成する無機固体電解質は、リン酸塩(PO4 3-)を含んでいることが望ましい。
固体電解質層40の厚さは、例えば10nm以上10μm以下とすることができる。固体電解質層40の厚さが10nm未満であると、得られたリチウムイオン二次電池1において、正極層30と保持層50との間での短絡(リーク)が生じやすくなる。一方、固体電解質層40の厚さが10μmを超えると、電池の内部抵抗が高くなり、高速での充放電には不利である。
さらに、固体電解質層40の製造方法としては、各種PVDや各種CVDなど、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法を用いることが望ましい。
(保持層)
保持層50は、固体薄膜であって、リチウムイオンを保持する機能を備えている。
そして、図1に示す保持層50は、多数の空孔52が形成された多孔質部51によって構成されている。すなわち、本実施の形態の保持層50は、多孔質構造を有している。なお、保持層50の多孔質化すなわち多孔質部51の形成は、成膜後の初回の充放電動作に伴って行われるのであるが、その詳細については後述する。
保持層50は、固体薄膜であって、リチウムイオンを保持する機能を備えている。
そして、図1に示す保持層50は、多数の空孔52が形成された多孔質部51によって構成されている。すなわち、本実施の形態の保持層50は、多孔質構造を有している。なお、保持層50の多孔質化すなわち多孔質部51の形成は、成膜後の初回の充放電動作に伴って行われるのであるが、その詳細については後述する。
ここで、保持層50(多孔質部51)は、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)または金(Au)あるいはこれらの合金で構成することができる。これらの中でも、より酸化されにくい白金(Pt)または金(Au)で保持層50を構成することが望ましい。なお、本実施の形態の保持層50(多孔質部51)は、上述した貴金属あるいはこれらの合金の多結晶体で構成することができる。
保持層50の厚さは、例えば10nm以上40μm以下とすることができる。保持層50の厚さが10nm未満であると、リチウムを保持する能力が不十分となる。一方、保持層50の厚さが40μmを超えると、電池の内部抵抗が高くなり、高速での充放電には不利である。ただし、リチウムイオン二次電池1に要求される電池容量が大きい場合には、保持層50の厚さを40μm超としてもかまわない。
さらに、保持層50の製造方法としては、各種PVDや各種CVDなど、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法を用いることが望ましい。そして、多孔質化した保持層50の製造方法としては、後述するような、充電と放電とを行う手法を採用することが望ましい。
(被覆層)
被覆層60は、固体薄膜であって、非晶質構造を有する、金属または合金によって構成される。そして、これらの中でも、耐腐食性の観点から、クロム(Cr)単体またはクロムを含む合金であることが好ましく、クロムおよびチタン(Ti)の合金であることがより好ましい。また、被覆層60は、リチウム(Li)と金属間化合物を形成しない金属または合金で構成されることが好ましい。また、被覆層60は、構成材料が異なる非晶質層を、複数積層して構成する(例えば非晶質クロム層および非晶質クロムチタン合金層の積層構造とする)こともできる。
被覆層60は、固体薄膜であって、非晶質構造を有する、金属または合金によって構成される。そして、これらの中でも、耐腐食性の観点から、クロム(Cr)単体またはクロムを含む合金であることが好ましく、クロムおよびチタン(Ti)の合金であることがより好ましい。また、被覆層60は、リチウム(Li)と金属間化合物を形成しない金属または合金で構成されることが好ましい。また、被覆層60は、構成材料が異なる非晶質層を、複数積層して構成する(例えば非晶質クロム層および非晶質クロムチタン合金層の積層構造とする)こともできる。
なお、本実施の形態における「非晶質構造」には、全体が非晶質構造を有しているものはもちろんのこと、非晶質構造中に微結晶が析出しているものも含まれる。
被覆層60の厚さは、例えば10nm以上40μm以下とすることができる。被覆層60の厚さが10nm未満であると、固体電解質層40側から保持層50を通過してきたリチウムを、被覆層60でせき止めにくくなる。一方、被覆層60の厚さが40μmを超えると、電池の内部抵抗が高くなり、高速での充放電には不利である。
さらに、被覆層60の製造方法としては、各種PVDや各種CVDなど、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法を用いることが望ましい。特に、被覆層60を、上述したクロムチタン合金で構成する場合、スパッタ法を採用すると、クロムチタン合金が非晶質化しやすい。
なお、被覆層60に用いることが可能な金属(合金)としては、ZrCuAlNiPdP、CuZr、FeZr、TiZr、CoZrNB、NiNb、NiTiNb、NiP、CuP、NiPCu、NiTi、CrTi、AlTi、FeSiB、AuSi等を挙げることができる。
(負極集電体層)
負極集電体層70は、固体薄膜であって、電子伝導性を有するものであれば、特に限定されるものではなく、例えば、各種金属や、各種金属の合金を含む導電性材料を用いることができる。ただし、被覆層60の腐食を抑制するという観点からすれば、化学的に安定した材料を用いることが好ましく、例えば、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)または金(Au)あるいはこれらの合金で構成することが好ましい。
負極集電体層70は、固体薄膜であって、電子伝導性を有するものであれば、特に限定されるものではなく、例えば、各種金属や、各種金属の合金を含む導電性材料を用いることができる。ただし、被覆層60の腐食を抑制するという観点からすれば、化学的に安定した材料を用いることが好ましく、例えば、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)または金(Au)あるいはこれらの合金で構成することが好ましい。
負極集電体層70の厚さは、例えば5nm以上50μm以下とすることができる。負極集電体層70の厚さが5nm未満であると、耐腐食性および集電機能が低下し、実用的ではなくなる。一方、負極集電体層70の厚さが50μmを超えると、電池の内部抵抗が高くなり、高速での充放電には不利である。
また、負極集電体層70の製造方法としては、各種PVDや各種CVDなど、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法を用いることが望ましい。
(正極層と保持層との関係)
このリチウムイオン二次電池1では、固体電解質層40を挟んで、正極層30と保持層50とが対向している。すなわち、固体電解質層40の保持層50とは反対側に、正極活物質を含む正極層30が位置している。そして、図1の上方からみたときに、保持層50の平面の大きさは、正極層30の平面の大きさよりも大きくなっている。また、図1の上方からみたときに、保持層50の平面の全周縁の内側に、正極層30の平面の全周縁が位置している。その結果、図1に示す正極層30の上面(平面)には、固体電解質層40を挟んで、保持層50の下面(平面)が対峙している。
このリチウムイオン二次電池1では、固体電解質層40を挟んで、正極層30と保持層50とが対向している。すなわち、固体電解質層40の保持層50とは反対側に、正極活物質を含む正極層30が位置している。そして、図1の上方からみたときに、保持層50の平面の大きさは、正極層30の平面の大きさよりも大きくなっている。また、図1の上方からみたときに、保持層50の平面の全周縁の内側に、正極層30の平面の全周縁が位置している。その結果、図1に示す正極層30の上面(平面)には、固体電解質層40を挟んで、保持層50の下面(平面)が対峙している。
[リチウムイオン二次電池の製造方法]
次に、上述したリチウムイオン二次電池1の製造方法について説明を行う。
図2は、本実施の形態のリチウムイオン二次電池の製造方法を説明するためのフローチャートである。
次に、上述したリチウムイオン二次電池1の製造方法について説明を行う。
図2は、本実施の形態のリチウムイオン二次電池の製造方法を説明するためのフローチャートである。
まず、図示しないスパッタ装置に基板10を装着し、基板10上に、正極集電体層20を形成する正極集電体層形成工程を実行する(ステップ20)。次に、上記スパッタ装置にて、正極集電体層20上に、正極層30を形成する正極層形成工程を実行する(ステップ30)。次に、上記スパッタ装置にて、正極層30上に、固体電解質層40を形成する固体電解質層形成工程を実行する(ステップ40)。次いで、上記スパッタ装置にて、固体電解質層40上に、保持層50を形成する保持層形成工程(貴金属層形成工程の一例)を実行する(ステップ50)。それから、上記スパッタ装置にて、固体電解質層40上および保持層50上に、被覆層60を形成する被覆層形成工程を実行する(ステップ60)。そして、上記スパッタ装置にて、固体電解質層40上および被覆層60上に、負極集電体層70を形成する負極集電体層形成工程を実行する(ステップ70)。これらステップ20~70を実行することにより、後述する図3に示す、成膜後(且つ初回充電前)のリチウムイオン二次電池1が得られる。そして、このリチウムイオン二次電池1を、スパッタ装置から取り外す。
続いて、スパッタ装置から取り外したリチウムイオン二次電池1に対し、1回目の充電を行わせる初回充電工程(充電工程の一例)を実行する(ステップ80)。なお、ステップ80では、リチウムイオン二次電池1に対し、基板10には正の電極端子(第1電極の一例)を、負極集電体層70には負の電極端子(第2電極の一例)を、それぞれ接続し(接続工程の一例)、これら正の電極端子および負の電極端子を介して、リチウムイオン二次電池1の充電を行う。それから、充電がなされたリチウムイオン二次電池1に対し、1回目の放電を行わせる初回放電工程(放電工程の一例)を実行する(ステップ90)。なお、このとき、上記正の電極端子および負の電極端子を介して、リチウムイオン二次電池1の放電を行うことができる。これら初回充電と初回放電とにより、保持層50の多孔質化すなわち多孔質部51および多数の空孔52の形成が行われ、図1に示すリチウムイオン二次電池1が得られる。なお、初回充放電動作による保持層50の多孔質化の詳細については後述する。
[成膜後且つ初回充電前のリチウムイオン二次電池の構成]
図3は、本実施の形態の成膜後且つ初回充電前のリチウムイオン二次電池1の断面構成を示す図である。図3は、図2に示すステップ70までが完了した状態を示している。なお、図1は、上述したように、図2に示すステップ90(全工程)が完了した状態を示している。
図3は、本実施の形態の成膜後且つ初回充電前のリチウムイオン二次電池1の断面構成を示す図である。図3は、図2に示すステップ70までが完了した状態を示している。なお、図1は、上述したように、図2に示すステップ90(全工程)が完了した状態を示している。
図3に示すリチウムイオン二次電池1の基本構成は、図1に示すものと同じである。ただし、図3に示すリチウムイオン二次電池1は、保持層50が多孔質化されておらず、図1に示すものよりも緻密になっている点が異なる。また、図3に示すリチウムイオン二次電池1は、保持層50の厚さが、図1に示すものよりも薄くなっている点が異なる。ここで、本実施の形態のリチウムイオン二次電池1では、図3に示す、正極層30、固体電解質層40および保持層50が、積層体の一例としての機能を有している。
[保持層の多孔質化]
では、上述した保持層50の多孔質化について、より詳細な説明を行う。
図4は、保持層50を多孔質化する手順を説明するための図であり、保持層50およびその周辺を拡大して示した図である。ここで、図4(a)は成膜後且つ初回充電前(ステップ70の後)の状態を、図4(b)は初回充電後且つ初回放電前(ステップ80とステップ90との間)の状態を、図4(c)は初回放電後(ステップ90の後)の状態を、それぞれ示している。したがって、図4(a)は図3に、図4(c)は図1に、それぞれ対応している。ここで、図4(a)に示す多孔質化前の保持層50は、貴金属層の一例である。
では、上述した保持層50の多孔質化について、より詳細な説明を行う。
図4は、保持層50を多孔質化する手順を説明するための図であり、保持層50およびその周辺を拡大して示した図である。ここで、図4(a)は成膜後且つ初回充電前(ステップ70の後)の状態を、図4(b)は初回充電後且つ初回放電前(ステップ80とステップ90との間)の状態を、図4(c)は初回放電後(ステップ90の後)の状態を、それぞれ示している。したがって、図4(a)は図3に、図4(c)は図1に、それぞれ対応している。ここで、図4(a)に示す多孔質化前の保持層50は、貴金属層の一例である。
(成膜後且つ初回充電前)
まず、図4(a)に示す「成膜後且つ初回充電前」の状態では、保持層50が緻密化している。また、保持層50の厚さは保持層厚さt50であり、被覆層60の厚さは被覆層厚さt60であり、負極集電体層70の厚さは負極集電体層厚さt70である。
まず、図4(a)に示す「成膜後且つ初回充電前」の状態では、保持層50が緻密化している。また、保持層50の厚さは保持層厚さt50であり、被覆層60の厚さは被覆層厚さt60であり、負極集電体層70の厚さは負極集電体層厚さt70である。
(初回充電後且つ初回放電前)
図4(a)に示すリチウムイオン二次電池1を充電(初回充電)する場合、基板10(図1参照)には直流電源の正の電極が、負極集電体層70には直流電源の負の電極が、それぞれ接続される。すると、図4(b)に示すように、正極層30で正極活物質を構成するリチウムイオン(Li+)が、固体電解質層40を介して保持層50へと移動する。すなわち、充電動作において、リチウムイオンはリチウムイオン二次電池1の厚さ方向(図4(b)において上方向)に移動する。
図4(a)に示すリチウムイオン二次電池1を充電(初回充電)する場合、基板10(図1参照)には直流電源の正の電極が、負極集電体層70には直流電源の負の電極が、それぞれ接続される。すると、図4(b)に示すように、正極層30で正極活物質を構成するリチウムイオン(Li+)が、固体電解質層40を介して保持層50へと移動する。すなわち、充電動作において、リチウムイオンはリチウムイオン二次電池1の厚さ方向(図4(b)において上方向)に移動する。
このとき、正極層30側から保持層50側に移動してきたリチウムイオンは、保持層50を構成する貴金属と合金化する。例えば保持層50を白金(Pt)で構成した場合、保持層50では、リチウムと白金とが合金化(固溶体化、金属間化合物の形成あるいは共晶化)する。
また、保持層50内に入り込んできたリチウムイオンの一部は、保持層50を通過して被覆層60との境界部に到達する。ここで、本実施の形態の被覆層60は、非晶質構造を有する、金属または合金で構成されており、多結晶構造を有する保持層50と比べて、粒界の数が著しく少なくなっている。このため、保持層50と被覆層60との境界部に到達したリチウムイオンは、被覆層60に入り込みにくくなることから、保持層50内に保持された状態を維持する。
そして、初回充電動作が終了した状態において、正極層30から保持層50に移動したリチウムイオンは、保持層50に保持される。このとき、保持層50に移動してきたリチウムイオンは、白金との合金化あるいは白金内での金属リチウムの析出化等によって、保持層50に保持されるものと考えられる。
ここで、図4(b)に示すように、初回充電後且つ初回放電前のリチウムイオン二次電池1では、保持層厚さt50が、図4(a)に示す成膜後且つ初回充電前の状態よりも増加する。すなわち、保持層50の体積は、初回充電によって増加する。これは、保持層50において、リチウムと白金とが合金化することに起因しているものと考えられる。これに対し、被覆層厚さt60は、初回充電の前後でほぼ変わらない。すなわち、被覆層60の体積は、初回充電によってほぼ変わらない。これは、被覆層60に、リチウムが入り込みにくいことに起因するものと考えられる。そして、このことは、負極集電体層厚さt70が、初回充電の前後でほぼ変わらないこと、すなわち、負極集電体層70の体積が、初回充電の前後でほぼ変わらないこと(負極集電体層70を構成する白金が、保持層50を構成する白金のように多孔質化しておらず、緻密なままであること)によって裏付けられるものと考えられる。
(初回放電後)
図4(b)に示すリチウムイオン二次電池1を放電(初回放電)する場合、基板10(図1参照)には負荷の正の電極が、負極集電体層70には負荷の負の電極が、それぞれ接続される。すると、図4(c)に示すように、保持層50に保持されるリチウムイオン(Li+)が、固体電解質層40を介して正極層30へと移動する。すなわち、放電動作において、リチウムイオンはリチウムイオン二次電池1の厚さ方向(図4(c)において下方向)へと移動し、正極層30に保持される。これに伴って、負荷には直流電流が供給される。
図4(b)に示すリチウムイオン二次電池1を放電(初回放電)する場合、基板10(図1参照)には負荷の正の電極が、負極集電体層70には負荷の負の電極が、それぞれ接続される。すると、図4(c)に示すように、保持層50に保持されるリチウムイオン(Li+)が、固体電解質層40を介して正極層30へと移動する。すなわち、放電動作において、リチウムイオンはリチウムイオン二次電池1の厚さ方向(図4(c)において下方向)へと移動し、正極層30に保持される。これに伴って、負荷には直流電流が供給される。
このとき、保持層50では、リチウムが離脱することに伴い、リチウムと白金との合金の脱合金化(金属リチウムが析出した場合は金属リチウムの溶解化)が行われる。そして、保持層50で脱合金化が行われた結果、保持層50が多孔質化され、多数の空孔52が形成された多孔質部51となる。このようにして得られる多孔質部51は、ほぼ貴金属(例えば白金)で構成されることになる。ただし、初回放電が終了した状態において、保持層50の内部でリチウムは消失するわけではなく、放電動作による移動を行わない一部のリチウムが残存する。
ここで、図4(c)に示すように、初回放電後のリチウムイオン二次電池1では、保持層厚さt50が、図4(b)に示す初回充電後且つ初回放電前の状態よりも減少する。これは、保持層50において、リチウムと白金との合金の脱合金化が行われることに起因するものと考えられる。そして、このことは、初回放電によって保持層50内に形成される空孔52の形状が、面方向に比べて厚さ方向が小さくなるように扁平化していることによって裏付けられる。また、図4(c)に示すように、初回放電後のリチウムイオン二次電池1では、保持層厚さt50が、図4(a)に示す成膜後且つ初回充電前の状態よりも増加する。これは、初回充電および初回放電によって保持層50が多孔質化されること、すなわち、保持層50内に多数の空孔52が形成されることに起因するものと考えられる。なお、これに対し、被覆層厚さt60および負極集電体層厚さt70は、初回放電の前後でもほぼ変わらない。
[本実施の形態のリチウムイオン二次電池の構成例]
図5は、本実施の形態のリチウムイオン二次電池1の断面STEM(Scanning Transmission Electron Microscope)写真であり、(a)は成膜後且つ初回充電前の状態を、(b)は初回放電後の状態を、それぞれ示している。このSTEM写真は、日立ハイテクノロジーズ社製HD-2300型超薄膜評価装置を用いて撮影したものである。ここで、図5(a)は上述した図4(a)(および図3)に、図5(b)は上述した図4(c)(および図1)に、それぞれ対応している。
図5は、本実施の形態のリチウムイオン二次電池1の断面STEM(Scanning Transmission Electron Microscope)写真であり、(a)は成膜後且つ初回充電前の状態を、(b)は初回放電後の状態を、それぞれ示している。このSTEM写真は、日立ハイテクノロジーズ社製HD-2300型超薄膜評価装置を用いて撮影したものである。ここで、図5(a)は上述した図4(a)(および図3)に、図5(b)は上述した図4(c)(および図1)に、それぞれ対応している。
図5(a)に示すリチウムイオン二次電池1の具体的な構成および製造方法は、以下に示す通りである。
基板10(図5では省略)には、ステンレス(SUS304)を用いた。基板10の厚さは30μmとした。
正極集電体層20(図5では省略)には、スパッタ法で形成したアルミニウム(Al)を用いた。正極集電体層20の厚さは100nmとした。
正極層30(図5では省略)には、スパッタ法で形成したマンガン酸リチウム(Li1.5Mn2O4)を用いた。正極層30の厚さは1000nmとした。
固体電解質層40には、スパッタ法で形成したLiPON(リン酸リチウム(Li3PO4)の酸素の一部を窒素に置き換えたもの)を用いた。固体電解質層40の厚さは1000nmとした。
保持層50には、スパッタ法で形成した白金(Pt)を用いた。保持層50の厚さは410nm(成膜後且つ初回充電前)とした。
被覆層60には、スパッタ法で形成したクロムチタン合金(CrTi)を用いた。被覆層60の厚さは50nmとした。
負極集電体層70には、スパッタ法で形成した白金(Pt)を用いた。負極集電体層70の厚さは100nmとした。
このようにして得られた、成膜後且つ初回充電前のリチウムイオン二次電池1(図3参照)に対し、電子線回折による結晶構造の解析を行ったところ、次の通りであった。
SUS304からなる基板10、アルミニウムからなる正極集電体層20、白金からなる保持層50および負極集電体層70は、それぞれ結晶化していた。これに対し、マンガン酸リチウムからなる正極層30、LiPONからなる固体電解質層40、そして、クロムチタン合金からなる被覆層60は、それぞれ非晶質化していた。ただし、正極層30、固体電解質層40および被覆層60はそれぞれ、電子線回折で微かにリングが観られ、非晶質構造中に微結晶が存在していることがわかった。
このようにして得られたリチウムイオン二次電池1に対し、初回充電および初回放電を行った。
・初回充電条件
電流 1C
終了電圧 4.0Vもしくは2時間
・初回放電条件
電流 1C
終了電圧 2.0V
・初回充電条件
電流 1C
終了電圧 4.0Vもしくは2時間
・初回放電条件
電流 1C
終了電圧 2.0V
では、図5に示すSTEM写真について説明を行う。
まず、図5(a)では、保持層50がほぼ一様に白くなっているのに対し、図5(b)では、白地に複数の灰色の斑点が存在していることがわかる。また、図5(b)では、保持層50のうち、被覆層60との境界部側に、面方向に比べて厚さ方向が小さくなるように扁平化するとともに、他の灰色の斑点に比べて相対的に巨大な灰色の部位が存在していることもわかる。ここで、図5(b)では、白地になっている部位が多孔質部51に、灰色になっている部位が空孔52に、それぞれ対応しているものと考えられる。なお、図5(b)では、図5(a)に比べて、保持層50がより厚くなっていることもわかる。なお、図5(b)に示す保持層50の厚さは、610nm(初回放電後)となっていた。
まず、図5(a)では、保持層50がほぼ一様に白くなっているのに対し、図5(b)では、白地に複数の灰色の斑点が存在していることがわかる。また、図5(b)では、保持層50のうち、被覆層60との境界部側に、面方向に比べて厚さ方向が小さくなるように扁平化するとともに、他の灰色の斑点に比べて相対的に巨大な灰色の部位が存在していることもわかる。ここで、図5(b)では、白地になっている部位が多孔質部51に、灰色になっている部位が空孔52に、それぞれ対応しているものと考えられる。なお、図5(b)では、図5(a)に比べて、保持層50がより厚くなっていることもわかる。なお、図5(b)に示す保持層50の厚さは、610nm(初回放電後)となっていた。
また、図5(a)および図5(b)の両者において、被覆層60および負極集電体層70は、それぞれの濃淡に関しほとんど変化がないことがわかる。さらに、図5(a)および図5(b)の両者において、被覆層60および負極集電体層70は、それぞれの厚さに関しほとんど変化がないこともわかる。
[比較の形態のリチウムイオン二次電池の構成例]
本発明者は、本実施の形態のリチウムイオン二次電池1との対比を行うため、層構成が異なるリチウムイオン二次電池(以下では、「比較の形態のリチウムイオン二次電池」と称する)を作製した。
本発明者は、本実施の形態のリチウムイオン二次電池1との対比を行うため、層構成が異なるリチウムイオン二次電池(以下では、「比較の形態のリチウムイオン二次電池」と称する)を作製した。
ここで、表1は、本実施の形態のリチウムイオン二次電池1および比較の形態のリチウムイオン二次電池の、各層の構成材料を示している。
比較の形態のリチウムイオン二次電池の具体的な構成および製造方法は、以下に示す通りである。
基板10には、ステンレス(SUS304)を用いた。基板10の厚さは30μmとした。
正極集電体層20には、スパッタ法で形成したチタン(Ti)を用いた。正極集電体層20の厚さは300nmとした。
正極層30(図5では省略)には、スパッタ法で形成したマンガン酸リチウム(Li1.5Mn2O4)を用いた。正極層30の厚さは550nmとした。
固体電解質層40には、スパッタ法で形成したLiPON(リン酸リチウム(Li3PO4)の酸素の一部を窒素に置き換えたもの)を用いた。固体電解質層40の厚さは550nmとした。
負極集電体層70は、第1負極集電体層71および第2負極集電体層72の2層構造とした。第1負極集電体層71には、スパッタ法で形成した銅(Cu)を用い、厚さは450nm(成膜後且つ初回充電前)とした。また、第2負極集電体層72には、スパッタ法で形成したチタン(Ti)を用い、厚さは1000nmとした。なお、保持層50および被覆層60は設けなかった。
このようにして得られたリチウムイオン二次電池に対し、上述した初回充電条件および初回放電条件にて、初回充電および初回放電を行った。
図10は、比較の形態の初回放電後のリチウムイオン二次電池の断面STEM写真である。このSTEM写真も、日立ハイテクノロジーズ社製HD-2300型超薄膜評価装置を用いて撮影したものである。
図10より、比較の形態のリチウムイオン二次電池では、初回放電後に、固体電解質層40と銅からなる第1負極集電体層71との境界部に、これらの界面に沿って隙間(クラック)が形成されていることがわかる。また、比較の形態のリチウムイオン二次電池では、初回放電後の第1負極集電体層71の濃度がほぼ一様となっており、多孔質化されていない(空孔が形成されていない)こともわかる。なお、比較の形態のリチウムイオン二次電池の場合、初回充放電の前後で、第1負極集電体層71の厚さの変化はほとんど生じなかった。
比較の形態のリチウムイオン二次電池で、固体電解質層40と銅からなる第1負極集電体層71との境界部に隙間(クラック)が形成された理由としては、次のことが考えられる。
比較の形態のリチウムイオン二次電池を充電する場合、正極層30から固体電解質層40を介して第1負極集電体層71側に移動してきたリチウムイオンは、第1負極集電体層71の内部には移動せず、固体電解質層40と第1負極集電体層71との境界部に析出し、負極層(あるいはリチウム過剰層)を形成する。したがって、比較の形態のリチウムイオン二次電池の場合、正極層30側から第1負極集電体層71側に移動してきたリチウムイオンは、第1負極集電体層71を構成する銅とは、ほとんど合金化しないものと考えられる。
充電状態にある比較の形態のリチウムイオン二次電池を放電する場合、固体電解質層40と第1負極集電体層71との境界部に形成された負極層に存在するリチウムイオンが、固体電解質層40を介して正極層30へと移動する。そして、放電に伴って多くのリチウムイオンが負極層から離脱し、負極層がほぼ消失した状態となったとき、固体電解質層40と銅からなる第1負極集電体層71とは、再度密着することができなくなる。その結果、比較の形態の放電後のリチウムイオン二次電池では、固体電解質層40と第1負極集電体層71との境界部に、隙間(クラック)が形成されたものと考えられる。
このように、比較の形態のリチウムイオン二次電池では、貴金属ではない銅からなる第1負極集電体層71が、実際には、リチウムイオンを保持し、かつ第1負極集電体層71と固体電解質層40との密着性を維持する機能をほぼ有していないことになる。このことは、図10に示す、比較の形態のリチウムイオン二次電池において、銅からなる第1負極集電体層71が、初回放電後に多孔質化されていないことによって裏付けられるものと考えられる。
[まとめ]
以上説明したように、本実施の形態のリチウムイオン二次電池1では、固体電解質層40上に、多孔質化した白金で構成された保持層50を設けた。これにより、固体電解質層40と負極集電体層70との間に、例えばリチウムで構成された負極層を設ける場合と比較して、充電によるリチウムの析出に伴う、リチウムイオン二次電池1内での剥離を抑制することができる。
以上説明したように、本実施の形態のリチウムイオン二次電池1では、固体電解質層40上に、多孔質化した白金で構成された保持層50を設けた。これにより、固体電解質層40と負極集電体層70との間に、例えばリチウムで構成された負極層を設ける場合と比較して、充電によるリチウムの析出に伴う、リチウムイオン二次電池1内での剥離を抑制することができる。
また、本実施の形態では、固体電解質層40を挟んで正極層30と対向して配置される保持層50に、非晶質構造を有するクロムチタン合金で構成される被覆層60を積層した。これにより、保持層50に、例えば多結晶構造を有する被覆層60を積層した場合と比較して、充電動作に伴って正極層30から保持層50に移動してきたリチウムの、被覆層60を介した外部への漏出を抑制することができる。
さらに、本実施の形態では、被覆層60上に、白金で構成された負極集電体層70を設けた。これにより、被覆層60上に、貴金属以外で構成された負極集電体層70を設ける場合と比較して、被覆層60を構成する金属(ここでクロムおよびチタン)の、酸化等による腐食(劣化)を抑制することができる。
さらにまた、本実施の形態では、固体電解質層40を構成する無機固体電解質として、リン酸塩(PO4
3-)を含むLiPONを用いているが、白金等からなる多孔質貴金属層を保持層50とすることで、保持層50がリン酸塩によって腐食するのを抑制することができる。
なお、ここでは詳細な説明を行わないが、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)または金(Au)あるいはこれらの合金で保持層50を構成した場合は、白金(Pt)単体で保持層50を構成した場合と同じく、充放電によって保持層50の多孔質化を図ることができ、保持層50にリチウムを保持させることが可能となる。
また、本実施の形態では、リチウムイオン二次電池1の製造において、所謂成膜プロセスによって基本的な構造を形成した後、初回の充放電動作によってその構造を完成させるようにした。より具体的に説明すると、スパッタ等の成膜プロセスによって緻密な保持層50を形成した後、初回充電動作および初回放電動作によって保持層50を多孔質化するようにした。これにより、例えば別プロセスによって保持層50を多孔質化する場合と比較して、リチウムイオン二次電池の製造プロセスを簡易なものとすることができる。
さらに、本実施の形態のリチウムイオン二次電池1では、固体電解質層40を挟んで配置される正極層30および保持層50の平面の大きさを、正極層30<保持層50とした。これにより、リチウムイオンが正極層30から保持層50側へと移動する際の、横方向(面方向)への移動が抑制される。その結果、リチウムイオン二次電池1の側面側からのリチウムイオンの外部への漏出を抑制することができる。
[変形例]
なお、本実施の形態のリチウムイオン二次電池1では、基板10と固体電解質層40とを用いて、正極集電体層20および正極層30を覆い、且つ、固体電解質層40と被覆層60および負極集電体層70とを用いて、保持層50を覆う構成を採用していたが、これに限られるものではない。
なお、本実施の形態のリチウムイオン二次電池1では、基板10と固体電解質層40とを用いて、正極集電体層20および正極層30を覆い、且つ、固体電解質層40と被覆層60および負極集電体層70とを用いて、保持層50を覆う構成を採用していたが、これに限られるものではない。
(第1の変形例)
図6は、第1の変形例のリチウムイオン二次電池1の断面構成を示す図である。ここで、図6は、初回放電後すなわちリチウムイオン二次電池1の構造が完成した状態(図1に対応)を示している。
図6は、第1の変形例のリチウムイオン二次電池1の断面構成を示す図である。ここで、図6は、初回放電後すなわちリチウムイオン二次電池1の構造が完成した状態(図1に対応)を示している。
この第1の変形例では、図6の上方からみたときの正極集電体層20および正極層30の平面の大きさが、固体電解質層40の平面の大きさとほぼ同じとなっている点が、上記本実施の形態とは異なる。ただし、第1の変形例においても、本実施の形態と同じ手順(図2参照)にて、緻密な保持層50を含むリチウムイオン二次電池1を製造した後、成膜後の初回の充放電動作を行うことによって、保持層50を多孔質化したリチウムイオン二次電池1(図6参照)を得ることができる。
(第2の変形例)
図7は、第2の変形例のリチウムイオン二次電池1の断面構成を示す図である。ここで、図7は、初回放電後すなわちリチウムイオン二次電池1の構造が完成した状態(図1に対応)を示している。
図7は、第2の変形例のリチウムイオン二次電池1の断面構成を示す図である。ここで、図7は、初回放電後すなわちリチウムイオン二次電池1の構造が完成した状態(図1に対応)を示している。
この第2の変形例では、図7の上方からみたときの被覆層60の平面の大きさが、保持層50の平面の大きさと同じとなっており、且つ、図7の上方からみたときの負極集電体層70の大きさが、被覆層60の平面の大きさと同じとなっている点が、上記本実施の形態とは異なる。ただし、第2の変形例においても、本実施の形態と同じ手順(図2参照)にて、緻密な保持層50を含むリチウムイオン二次電池1を製造した後、成膜後の初回の充放電動作を行うことによって、保持層50を多孔質化したリチウムイオン二次電池1(図7参照)を得ることができる。
(第3の変形例)
図8は、第3の変形例のリチウムイオン二次電池1の断面構成を示す図である。ここで、図8は、初回放電後すなわちリチウムイオン二次電池1の構造が完成した状態(図1に対応)を示している。
図8は、第3の変形例のリチウムイオン二次電池1の断面構成を示す図である。ここで、図8は、初回放電後すなわちリチウムイオン二次電池1の構造が完成した状態(図1に対応)を示している。
この第3の変形例では、図8の上方からみたときの被覆層60の平面の大きさが、保持層50の平面の大きさと同じとなっており、且つ、図8の上方からみたときの負極集電体層70の大きさが、被覆層60の平面の大きさと同じとなっている点が、上記第1の変形例とは異なる。ただし、第3の変形例においても、本実施の形態と同じ手順(図2参照)にて、緻密な保持層50を含むリチウムイオン二次電池1を製造した後、成膜後の初回の充放電動作を行うことによって、保持層50を多孔質化したリチウムイオン二次電池1(図8参照)を得ることができる。
(第4の変形例)
図9は、第4の変形例のリチウムイオン二次電池1の断面構成を示す図である。ここで、図9は、初回放電後すなわちリチウムイオン二次電池1の構造が完成した状態(図1に対応)を示している。
図9は、第4の変形例のリチウムイオン二次電池1の断面構成を示す図である。ここで、図9は、初回放電後すなわちリチウムイオン二次電池1の構造が完成した状態(図1に対応)を示している。
この第4の変形例では、図9の上方からみたときの保持層50の平面の大きさが、固体電解質層40の平面の大きさと同じとなっている点が、上記第3の変形例とは異なる。ただし、第4の変形例においても、本実施の形態と同じ手順(図2参照)にて、緻密な保持層50を含むリチウムイオン二次電池1を製造した後、成膜後の初回の充放電動作を行うことによって、保持層50を多孔質化したリチウムイオン二次電池1(図9参照)を得ることができる。
[その他]
なお、本実施の形態では、保持層50および負極集電体層70を、同じ貴金属(Pt)で構成していたが、これに限られるものではなく、別の貴金属で構成してもよい。
なお、本実施の形態では、保持層50および負極集電体層70を、同じ貴金属(Pt)で構成していたが、これに限られるものではなく、別の貴金属で構成してもよい。
また、本実施の形態では、基板10上に、正極集電体層20、正極層30、固体電解質層40、保持層50、被覆層60および負極集電体層70の順に積層を行うことで、リチウムイオン二次電池1の基本構成を形成していた。すなわち、基板10に近い側に正極層30を配置し、基板10から遠い側に保持層50を配置する構成を採用していた。ただし、これに限られるものではなく、基板10に近い側に保持層50を配置し、基板10から遠い側に正極層30を配置する構成を採用してもかまわない。ただし、この場合は、基板10に対する各層の積層順が、上述したものとは逆になる。
1…リチウムイオン二次電池、10…基板、20…正極集電体層、30…正極層、40…固体電解質層、50…保持層、51…多孔質部、52…空孔、60…被覆層、70…負極集電体層
Claims (8)
- 正極活物質を含む正極層と、リチウムイオン伝導性を示す無機固体電解質を含む固体電解質層と、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)または金(Au)あるいはこれらの合金で構成される貴金属層とを、この順に積層してなる積層体に対し、当該正極層から当該固体電解質層を介して当該貴金属層にリチウムイオンを移動させることで充電を行う充電工程と、
充電された前記積層体に対し、前記貴金属層から前記固体電解質層を介して前記正極層にリチウムイオンを移動させることで放電を行う放電工程と
を有するリチウムイオン二次電池の製造方法。 - 前記充電工程では、リチウムと前記貴金属層を構成する貴金属とが合金化し、
前記放電工程では、前記リチウムと前記貴金属との合金が脱合金化すること
を特徴とする請求項1記載のリチウムイオン二次電池の製造方法。 - 前記充電工程および前記放電工程により、前記貴金属層が多孔質化すること
を特徴とする請求項1または2記載のリチウムイオン二次電池の製造方法。 - 正極活物質を含む正極層を形成する正極層形成工程と、
前記正極層の上に、リチウムイオン伝導性を示す無機固体電解質を含む固体電解質層を形成する固体電解質層形成工程と、
前記固体電解質層の上に、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)または金(Au)あるいはこれらの合金で構成される貴金属層を形成する貴金属層形成工程と、
前記正極層と前記固体電解質層と前記貴金属層との積層体に対し、当該正極層から当該固体電解質層を介して当該貴金属層にリチウムイオンを移動させることで充電を行う充電工程と
を有するリチウムイオン二次電池の製造方法。 - 前記充電工程では、リチウムと前記貴金属層を構成する貴金属とが合金化すること
を特徴とする請求項4記載のリチウムイオン二次電池の製造方法。 - 正極活物質を含む正極層と、リチウムイオン伝導性を示す無機固体電解質を含む固体電解質層と、白金族元素(Ru、Rh、Pd、Os、Ir、Pt)または金(Au)あるいはこれらの合金で構成される貴金属層とを、この順に積層してなる積層体に対し、当該正極層側に第1電極を接続するとともに、当該貴金属層側に第2電極を接続する接続工程と、
前記第1電極および前記第2電極を介して前記積層体に電流を供給することで、当該積層体を充電する充電工程と
を有するリチウムイオン二次電池の製造方法。 - 前記充電工程では、リチウムと前記貴金属層を構成する貴金属とが合金化すること
を特徴とする請求項6記載のリチウムイオン二次電池の製造方法。 - 前記固体電解質層における前記無機固体電解質がリン酸塩(PO4 3-)を含むことを特徴とする請求項1乃至7のいずれか1項記載のリチウムイオン二次電池の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/770,396 US20200381701A1 (en) | 2017-12-22 | 2018-11-26 | Method for manufacturing lithium-ion rechargeable battery |
CN201880075437.8A CN111373594A (zh) | 2017-12-22 | 2018-11-26 | 锂离子二次电池的制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-246642 | 2017-12-22 | ||
JP2017246642A JP7034704B2 (ja) | 2017-12-22 | 2017-12-22 | リチウムイオン二次電池の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019123981A1 true WO2019123981A1 (ja) | 2019-06-27 |
Family
ID=66994557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/043334 WO2019123981A1 (ja) | 2017-12-22 | 2018-11-26 | リチウムイオン二次電池の製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20200381701A1 (ja) |
JP (1) | JP7034704B2 (ja) |
CN (1) | CN111373594A (ja) |
WO (1) | WO2019123981A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022034308A1 (en) * | 2020-08-13 | 2022-02-17 | Dyson Technology Limited | An electrode architecture and method of making the electrode architecture |
WO2022034307A1 (en) * | 2020-08-13 | 2022-02-17 | Dyson Technology Limited | An electrode architecture and method of making the electrode architecture |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007135790A1 (ja) * | 2006-05-23 | 2007-11-29 | Incorporated National University Iwate University | 全固体二次電池 |
JP2011159596A (ja) * | 2010-02-03 | 2011-08-18 | Sumitomo Electric Ind Ltd | 二次電池、及びその製造方法 |
JP2012146479A (ja) * | 2011-01-12 | 2012-08-02 | Idemitsu Kosan Co Ltd | リチウムイオン電池 |
JP2016072077A (ja) * | 2014-09-30 | 2016-05-09 | セイコーエプソン株式会社 | 電極複合体、電極複合体の製造方法およびリチウム電池 |
WO2017115605A1 (ja) * | 2015-12-30 | 2017-07-06 | 日産自動車株式会社 | 金属ベース負極を有するリチウムイオン電池のための高電流処理 |
JP2018129159A (ja) * | 2017-02-07 | 2018-08-16 | 三星電子株式会社Samsung Electronics Co.,Ltd. | 全固体型二次電池用負極及び全固体型二次電池 |
-
2017
- 2017-12-22 JP JP2017246642A patent/JP7034704B2/ja active Active
-
2018
- 2018-11-26 US US16/770,396 patent/US20200381701A1/en not_active Abandoned
- 2018-11-26 WO PCT/JP2018/043334 patent/WO2019123981A1/ja active Application Filing
- 2018-11-26 CN CN201880075437.8A patent/CN111373594A/zh not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007135790A1 (ja) * | 2006-05-23 | 2007-11-29 | Incorporated National University Iwate University | 全固体二次電池 |
JP2011159596A (ja) * | 2010-02-03 | 2011-08-18 | Sumitomo Electric Ind Ltd | 二次電池、及びその製造方法 |
JP2012146479A (ja) * | 2011-01-12 | 2012-08-02 | Idemitsu Kosan Co Ltd | リチウムイオン電池 |
JP2016072077A (ja) * | 2014-09-30 | 2016-05-09 | セイコーエプソン株式会社 | 電極複合体、電極複合体の製造方法およびリチウム電池 |
WO2017115605A1 (ja) * | 2015-12-30 | 2017-07-06 | 日産自動車株式会社 | 金属ベース負極を有するリチウムイオン電池のための高電流処理 |
JP2018129159A (ja) * | 2017-02-07 | 2018-08-16 | 三星電子株式会社Samsung Electronics Co.,Ltd. | 全固体型二次電池用負極及び全固体型二次電池 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022034308A1 (en) * | 2020-08-13 | 2022-02-17 | Dyson Technology Limited | An electrode architecture and method of making the electrode architecture |
WO2022034307A1 (en) * | 2020-08-13 | 2022-02-17 | Dyson Technology Limited | An electrode architecture and method of making the electrode architecture |
Also Published As
Publication number | Publication date |
---|---|
US20200381701A1 (en) | 2020-12-03 |
CN111373594A (zh) | 2020-07-03 |
JP2019114407A (ja) | 2019-07-11 |
JP7034704B2 (ja) | 2022-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5151692B2 (ja) | リチウム電池 | |
KR101229903B1 (ko) | 음극 활물질, 음극 및 리튬 2차 전지 | |
WO2019123980A1 (ja) | リチウムイオン二次電池 | |
EP3327837A1 (en) | Li-ion based electrochemical energy storage cell | |
JP2017084515A (ja) | 負極層、および全固体リチウムイオン二次電池 | |
JP4054868B2 (ja) | リチウム電池用負極及び該リチウム電池用負極の製造方法 | |
WO2019123981A1 (ja) | リチウムイオン二次電池の製造方法 | |
CN114843620A (zh) | 一种固态电池及其制备方法 | |
KR100790844B1 (ko) | 박막 전지 및 그 제조 방법 | |
JP2019114529A (ja) | リチウムイオン二次電池 | |
WO2018189976A1 (ja) | リチウムイオン二次電池およびリチウムイオン二次電池の製造方法 | |
WO2020137449A1 (ja) | リチウムイオン二次電池、リチウムイオン二次電池の製造方法 | |
US20220285692A1 (en) | Multilayered anode and associated methods and systems | |
WO2019123951A1 (ja) | リチウムイオン二次電池 | |
CN113594410A (zh) | 一种负极结构、其制备方法以及固态电池 | |
US20200006764A1 (en) | Secondary battery | |
JP2012160324A (ja) | 非水電解質電池 | |
WO2020070932A1 (ja) | リチウムイオン二次電池、リチウムイオン二次電池の製造方法 | |
WO2019102668A1 (ja) | リチウムイオン二次電池、リチウムイオン二次電池の積層構造、リチウムイオン二次電池の製造方法 | |
JP2020091997A (ja) | リチウムイオン二次電池 | |
WO2020012734A1 (ja) | リチウムイオン二次電池 | |
WO2020070933A1 (ja) | リチウムイオン二次電池、リチウムイオン二次電池の製造方法 | |
JP2010140703A (ja) | 非水電解質電池 | |
JP2009218125A (ja) | リチウム電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18893049 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18893049 Country of ref document: EP Kind code of ref document: A1 |