WO2020054549A1 - 固体電池および固体電池群 - Google Patents

固体電池および固体電池群 Download PDF

Info

Publication number
WO2020054549A1
WO2020054549A1 PCT/JP2019/034799 JP2019034799W WO2020054549A1 WO 2020054549 A1 WO2020054549 A1 WO 2020054549A1 JP 2019034799 W JP2019034799 W JP 2019034799W WO 2020054549 A1 WO2020054549 A1 WO 2020054549A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
battery
layer
protective layer
solid state
Prior art date
Application number
PCT/JP2019/034799
Other languages
English (en)
French (fr)
Inventor
充 吉岡
賢一 坂東
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201980060033.6A priority Critical patent/CN112689922B/zh
Priority to JP2020545953A priority patent/JP6996636B2/ja
Priority to EP19858929.3A priority patent/EP3852180A4/en
Publication of WO2020054549A1 publication Critical patent/WO2020054549A1/ja
Priority to US17/198,394 priority patent/US20210203008A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • H01M50/141Primary casings; Jackets or wrappings for protecting against damage caused by external factors for protecting against humidity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/512Connection only in parallel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid state battery and a solid state battery group.
  • Patent Literatures 1 to 3 disclose that a protective layer containing a polymer compound is formed on the outermost surface of a battery element provided with a positive electrode, a negative electrode, and a solid electrolyte between them, so that the solid battery is electrically and physically. There is disclosed a technology for protection.
  • the inventors of the present invention have reported that when a solid battery has a protective layer containing a polymer compound on the surface of a battery element, the polymer layer adsorbs moisture or gas, and the protective layer expands and cracks. And / or fall off, the function as a protective layer is lost, and the battery performance is found to be reduced.
  • the inventors of the present invention have also proposed that the protection layer easily falls off due to strong vibration or impact on the battery if the surface of the battery element in the solid battery is simply covered with a protective film containing a polymer compound. It has been found that the function as a layer is lost and battery performance is reduced.
  • the inventors of the present invention further propose that when a plurality of conventional solid batteries are disposed adjacent to each other in an in-plane direction M perpendicular to the laminating direction L of the positive electrode layer, the negative electrode layer, and the solid electrolyte layer, the adjacent two batteries may be arranged in two adjacent It has been found that a short circuit can occur between two solid state batteries. More specifically, as shown in FIG. 23, for example, when a plurality of conventional solid batteries (800, 900) are arranged adjacent to each other in an in-plane direction M perpendicular to the stacking direction L, two adjacent solid batteries are disposed. In the meantime, the solid batteries 800 and 900 undergo volume expansion 801 and 901 in the direction M. For this reason, two solid batteries 800 and 900 adjacent in the direction M were pressed against each other, and a short circuit could occur. It is considered that the short circuit is caused by the volume expansion of the positive electrode layer and the negative electrode layer with charge and discharge in each solid battery.
  • the object of the present invention is to provide a solid battery having a protective layer that is less likely to adsorb moisture and gas and has a higher bonding strength with a battery element than a protective layer containing a polymer compound.
  • the present invention also has a protective layer that is less likely to adsorb moisture and gas and has a higher bonding strength with a battery element than a protective layer containing a polymer compound, and has a positive electrode layer, a negative electrode layer, and a solid electrolyte layer. It is an object of the present invention to provide a solid-state battery that can suppress a short circuit due to volume expansion even if it is disposed adjacent to an in-plane direction M perpendicular to the stacking direction L.
  • the present invention A battery element comprising at least one battery constituent unit including a positive electrode layer and a negative electrode layer facing each other and a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer, A protective layer covering the upper and lower surfaces of the battery element,
  • the present invention relates to a solid-state battery, wherein the protective layer is made of an insulating material other than a resin.
  • the solid state battery of the present invention has a protective layer that is less likely to adsorb moisture and gas and has higher bonding strength to the battery element than the protective layer containing a polymer compound.
  • the protective layer is less likely to be cracked and dropped due to moisture and gas adsorption, and is less likely to be dropped due to vibration and impact, as compared with the protective layer containing a polymer compound. .
  • the solid state battery of the present invention can further suppress the deterioration of the battery performance.
  • FIG. 2 is a schematic cross-sectional view illustrating an example of a solid state battery of the present invention having a unit cell structure in a battery element.
  • FIG. 1B is a schematic plan view of the solid state battery of the present invention shown in FIG. 1A. It is a typical sectional view showing an example of the solid battery of the present invention which has a series double battery structure in a battery element.
  • FIG. 2 is a schematic cross-sectional view showing one example of a solid state battery of the present invention having a parallel type double battery structure in a battery element.
  • FIG. 6 is a schematic cross-sectional view showing another example of the solid state battery of the present invention having a unit cell structure in the battery element.
  • FIG. 6 is a schematic cross-sectional view showing another example of the solid state battery of the present invention having a unit cell structure in the battery element. It is a typical sectional view showing another example of the solid state battery of the present invention which has a series type double battery structure in a battery element. It is a typical sectional view showing another example of the solid state battery of the present invention which has a parallel type double battery structure in a battery element.
  • FIG. 1 shows a schematic sectional view of a solid state battery group according to a first embodiment of the present invention.
  • FIG. 4 shows a schematic sectional view of a solid state battery group according to a second embodiment of the present invention.
  • FIG. 4 shows a schematic sectional view of a solid state battery group according to a third embodiment of the present invention.
  • FIG. 9 shows a schematic sectional view of a solid state battery group according to a fourth embodiment of the present invention.
  • FIG. 9 shows a schematic sectional view of a solid state battery group according to a fifth embodiment of the present invention.
  • FIG. 9 shows a schematic sectional view of a solid state battery group according to a sixth embodiment of the present invention.
  • FIG. 13 shows a schematic sectional view of a solid state battery group according to a seventh embodiment of the present invention.
  • FIG. 14 shows a schematic sectional view of a solid state battery group according to an eighth embodiment of the present invention.
  • FIG. 14 shows a schematic sectional view of a solid state battery group according to a ninth embodiment of the present invention.
  • FIG. 13 shows a schematic sectional view of a solid state battery group according to a tenth embodiment of the present invention.
  • FIG. 4 is a flowchart for explaining an example of a step of forming an unfired laminate in the method for producing a solid state battery of the present invention.
  • FIG. 9 is a schematic cross-sectional view of a solid-state battery for explaining a mechanism of short-circuit caused by volume expansion which is a problem in a conventional solid-state battery.
  • Solid battery refers to a battery whose constituent elements (especially, the electrolyte layer) are composed of solid in a broad sense, and in a narrow sense, whose constituent elements (particularly, all constituent elements) are composed of solid. Refers to the configured "all-solid-state battery”.
  • the “solid state battery” referred to in this specification includes a so-called “secondary battery” capable of repeating charging and discharging, and a “primary battery” capable of discharging only.
  • the “solid state battery” is preferably a “secondary battery”.
  • the term “secondary battery” is not excessively limited by its name, and may include, for example, a "power storage device”.
  • the "plan view” in this specification refers to a state (top view or bottom view) when an object is viewed from above or below along a thickness direction based on a laminating direction L of layers described below that constitute the solid-state battery. That is.
  • the “cross-sectional view” in the present specification refers to a cross-sectional state (cross-sectional view) when viewed from a direction substantially perpendicular to a thickness direction based on a laminating direction L of a layer which will be described later, which forms the solid-state battery. is there.
  • the “vertical direction” and the “horizontal direction” used directly or indirectly in this specification correspond to the vertical direction and the horizontal direction in the drawings, respectively.
  • the same reference numeral or symbol indicates the same member / part or the same meaning.
  • the downward direction in the vertical direction corresponds to “downward”, and the opposite direction corresponds to “upward”.
  • the solid state battery of the present invention has a reference numeral “200A”, “200B”, “200C”, “200D”, “200E”, and “200F” (hereinafter simply referred to as “200A” in FIGS. 1A and 2 to 6).
  • ⁇ 200F a reference numeral “200A”, “200B”, “200C”, “200D”, “200E”, and “200F” in some cases, having a layered structure (particularly a laminated structure).
  • the solid state batteries 200A to 200F of the present invention include the battery element 100 and the protective layer 5 covering the upper and lower surfaces of the battery element 100.
  • FIG. 1A is a schematic cross-sectional view illustrating an example of the solid state battery of the present invention having a unit cell structure in the battery element 100.
  • FIG. 1A is a schematic cross-sectional view illustrating an example of the solid state battery of the present invention having a unit cell structure in the battery element 100.
  • FIG. 2 is a schematic cross-sectional view showing an example of the solid state battery of the present invention having a series-type double battery structure in the battery element 100.
  • FIG. 3 is a schematic cross-sectional view showing an example of the solid-state battery of the present invention having a parallel-type dual battery structure in the battery element 100.
  • FIG. 4 is a schematic cross-sectional view showing another example of the solid state battery of the present invention having a unit cell structure in the battery element 100.
  • the positive electrode layer 1 does not have the positive electrode current collecting layer 11 and has the electrical connection portion 1a
  • the negative electrode layer 2 does not have the negative electrode current collecting layer 21 and has the electrical connection. Except for having the portion 2a, it has the same structure as the solid state battery of FIG. 1A.
  • FIG. 5 is a schematic cross-sectional view showing another example of the solid-state battery of the present invention having a series-type double battery structure in the battery element 100.
  • the positive electrode layer 1 does not have the positive electrode current collecting layer 11 and has the electrical connection portion 1a
  • the negative electrode layer 2 does not have the negative electrode current collecting layer 21 and has the electrical connection. Except for having the portion 2a, it has the same structure as the solid state battery of FIG.
  • FIG. 6 is a schematic cross-sectional view showing another example of the solid-state battery of the present invention having a parallel-type double battery structure in the battery element 100.
  • the positive electrode layer 1 does not have the positive electrode current collecting layer 11 and has the electrical connection portion 1a
  • the negative electrode layer 2 does not have the negative electrode current collecting layer 21 and has the electrical connection. Except for having the portion 2a, it has the same structure as the solid state battery of FIG.
  • the battery element 100 is a main body of the solid battery covered by the protective layer 5 and the side reinforcing portion 6 described below, and includes one or more battery constituent units 10.
  • the battery constituent unit 10 is a minimum constituent unit capable of performing a battery function, and is disposed between one positive electrode layer 1 and one negative electrode layer 2 facing each other and between the positive electrode layer 1 and the negative electrode layer 2. It includes one solid electrolyte layer 3.
  • the battery element 100 may have a unit cell structure having only one battery constituent unit 10 as shown in, for example, FIGS. 1A and 4. Further, for example, as shown in FIGS. 2 and 3 and FIGS. 5 and 6, the battery element 100 includes two or more battery constituent units 10 along the stacking direction L of the layers constituting each battery constituent unit 10. It may have a stacked battery structure.
  • the battery element 100 has a double battery structure, for example, as shown in FIGS. 2 and 5, two or more battery constituent units 10 (or each layer constituting the battery constituent unit) are electrically arranged in series. 3 or 6, for example, as shown in FIGS. 3 and 6, two or more battery constituent units 10 (or each layer constituting the battery constituent units) are electrically connected in parallel. It may have an arranged parallel type structure.
  • all layers constituting the battery element 100 are preferably formed by integrally sintering the sintered bodies between two adjacent layers.
  • the fact that all layers are integrally sintered between two adjacent layers between two adjacent layers means that the two adjacent layers are joined by sintering.
  • two adjacent layers are both sintered bodies, but are integrally sintered. Note that it is not necessary that the entirety be strictly integrated between two adjacent layers, and that part of the layers need not be integrated.
  • the two adjacent layers may be integrated as a whole. For example, as shown in FIG. 1A and FIGS.
  • the battery element 100 has one or more battery constituent units 10, and the positive electrode layer 1 and the negative electrode layer 2 are respectively a positive current collecting layer 11 and a negative current collecting layer.
  • the layer 21 it is preferable to adopt a configuration in which the positive electrode current collecting layer 11, the positive electrode layer 1, the solid electrolyte layer 3, the negative electrode layer 2, and the negative electrode current collecting layer 21 are integrally sintered in a predetermined lamination order.
  • the battery element 100 has one or more battery constituent units 10, and the positive electrode layer 1 and the negative electrode layer 2 are the positive current collecting layer 11 and the negative current collecting layer 21 respectively.
  • the positive electrode layer 1, the solid electrolyte layer 3 and the negative electrode layer 2 do not have a structure, it is preferable to adopt a configuration in which the positive electrode layer 1, the solid electrolyte layer 3 and the negative electrode layer 2 are integrally sintered in a predetermined lamination order.
  • the battery element 100 has a series-type double battery structure and has a connection layer 7 between the battery constituent units 10 as shown in FIGS. 2 and 5, the connection layer 7 also has another layer. Similarly to the above, it is preferable that the adjacent layers are joined by sintering.
  • the positive electrode layer 1 and the negative electrode layer 2 may have a positive electrode current collecting layer 11 and a negative electrode current collecting layer 21, respectively, as shown in FIGS. 1A and 2 to 3, or FIGS. As shown, the positive electrode current collecting layer 11 and the negative electrode current collecting layer 21 need not be provided.
  • the positive electrode layer 1 and the negative electrode layer 2 have the positive electrode current collecting layer 11 and the negative electrode current collecting layer 21, respectively, as shown in FIG. 1A and FIGS.
  • electrical connection portions 11a and 21a for electrical connection with the outside.
  • the electrical connection portions 11a and 21a are also referred to as electron input / output portions for inputting / outputting electrons.
  • the electrical connection portions 1a and 2a are also referred to as electron input / output portions for inputting / outputting electrons.
  • the solid state battery shown in FIGS. 2 and 3 and FIGS. 5 and 6 includes two battery constituent units 10 in the battery element 100, but the number of battery constituent units 10 included in one solid state battery is not particularly limited. However, for example, the number may be 1 or more and 100 or less, particularly 1 or more and 50 or less.
  • the solid state battery of the present invention may have any shape in plan view, and usually has a rectangular shape.
  • the rectangular shape includes a square and a rectangle.
  • the positive electrode layer 1 is a so-called positive electrode active material layer, and may additionally have a positive electrode current collecting layer 11. When the positive electrode layer 1 has the positive electrode current collecting layer 11, the positive electrode layer 1 may be provided on one side of the positive electrode current collecting layer 11, or may be provided on both sides.
  • the positive electrode layer 1 is composed of a sintered body containing positive electrode active material particles, and usually composed of a sintered body containing positive electrode active material particles, electron conductive material particles and solid electrolyte particles contained in the solid electrolyte layer 3. May be done.
  • the negative electrode layer 2 is a so-called negative electrode active material layer, and may additionally have the negative electrode current collecting layer 12. When the negative electrode layer 2 has the negative electrode current collecting layer 21, the negative electrode layer 2 may be provided on one side of the negative electrode current collecting layer 21, or may be provided on both sides.
  • the negative electrode layer 2 is made of a sintered body containing negative electrode active material particles, and may be made of a sintered body containing negative electrode active material particles, electron conductive material particles, and solid electrolyte particles contained in the solid electrolyte layer 3. Good.
  • the positive electrode active material contained in the positive electrode layer and the negative electrode active material contained in the negative electrode layer are substances that participate in the transfer of electrons in the solid-state battery, and the ions contained in the solid electrolyte material forming the solid electrolyte layer include the positive electrode and the negative electrode. Charge (charge) and discharge are performed by transferring (conducting) and transferring electrons.
  • the positive electrode layer and the negative electrode layer are particularly preferably layers capable of inserting and extracting lithium ions. That is, the solid battery of the present invention is preferably a solid secondary battery in which lithium ions move between the positive electrode and the negative electrode via the solid electrolyte layer to charge and discharge the battery.
  • the positive electrode active material contained in the positive electrode layer is not particularly limited, for example, a lithium-containing phosphate compound having a NASICON-type structure, a lithium-containing phosphate compound having an olivine-type structure, a lithium-containing layered oxide, and a spinel-type structure At least one selected from the group consisting of lithium-containing oxides and the like.
  • An example of a lithium-containing phosphate compound having a NASICON-type structure includes Li 3 V 2 (PO 4 ) 3 .
  • Examples of the lithium-containing phosphate compound having an olivine type structure include Li 3 Fe 2 (PO 4 ) 3 and LiMnPO 4 .
  • Examples of the lithium-containing layered oxide include LiCoO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2, and the like.
  • Examples of the lithium-containing oxide having a spinel structure include LiMn 2 O 4 and LiNi 0.5 Mn 1.5 O 4 .
  • the negative electrode active material contained in the negative electrode layer is not particularly limited.
  • an oxide containing at least one element selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb, and Mo, graphite, At least one selected from the group consisting of a lithium compound, a lithium alloy, a lithium-containing phosphate compound having a NASICON-type structure, a lithium-containing phosphate compound having an olivine-type structure, and a lithium-containing oxide having a spinel-type structure is given.
  • the lithium alloy includes Li-Al.
  • An example of a lithium-containing phosphate compound having a NASICON-type structure includes Li 3 V 2 (PO 4 ) 3 .
  • lithium-containing phosphate compound having an olivine type structure Li 3 Fe 2 (PO 4 ) 3 and the like can be given.
  • Li 4 Ti 5 O 12 or the like can be given.
  • the electron conductive material contained in the positive electrode layer and the negative electrode layer is not particularly limited, and examples thereof include metal materials such as silver, palladium, gold, platinum, aluminum, copper, and nickel; and carbon materials.
  • metal materials such as silver, palladium, gold, platinum, aluminum, copper, and nickel
  • carbon materials are preferable because it hardly reacts with the positive electrode active material, the negative electrode active material, and the solid electrolyte material, and is effective in reducing the internal resistance of the solid battery.
  • the solid electrolyte material contained in the positive electrode layer and the negative electrode layer may be selected, for example, from the same materials as the solid electrolyte material contained in the solid electrolyte layer described below.
  • the positive electrode layer and the negative electrode layer may each independently contain a sintering aid.
  • the sintering aid is not particularly limited. For example, at least one selected from the group consisting of lithium oxide, sodium oxide, potassium oxide, boron oxide, silicon oxide, bismuth oxide, and phosphorus oxide Can be
  • the positive electrode layer 1 and the negative electrode layer 2 do not have a positive electrode current collecting layer 11 and a negative electrode current collecting layer 21 described later, respectively, as shown in FIGS. It has electrical connection portions 1a and 2a for electrical connection, and is configured to be electrically connectable to terminals.
  • the electrical connection portions 1a and 2a have exposed portions 1b and 2b which are not covered with a protective layer 5 or a side reinforcing portion 6, which will be described later, and are usually provided at ends of the positive electrode layer 1 and the negative electrode layer 2, respectively.
  • the thicknesses of the positive electrode layer and the negative electrode layer are not particularly limited, and may be, for example, independently 2 ⁇ m or more and 50 ⁇ m or less, particularly 5 ⁇ m or more and 30 ⁇ m or less.
  • the positive electrode layer 1 and the negative electrode layer 2 may have a positive electrode current collecting layer 11 and a negative electrode current collecting layer 21 on the side opposite to the solid electrolyte layer 3, respectively.
  • the positive electrode layer 1 and the negative electrode layer 2 have the positive electrode current collecting layer 11 and the negative electrode current collecting layer 21, respectively, as shown in FIG. 1A and FIGS. , Have electrical connection portions 11a and 21a for electrical connection to the outside, and are configured to be electrically connectable to terminals.
  • the electrical connection portions 11a and 21a have exposed portions 11b and 21b which are not covered by the protective layer 5 or the side reinforcing portion 6 described later, and are usually provided at the ends of the positive current collecting layer 11 and the negative current collecting layer 21, respectively. Provided.
  • the positive electrode current collecting layer 11 and the negative electrode current collecting layer 21 may each have the form of a foil. However, from the viewpoint of reducing the manufacturing cost of the solid battery by integrally firing and reducing the internal resistance of the solid battery, It is preferable to have the form of
  • the positive electrode current collecting layer 11 and the negative electrode current collecting layer 21 have the form of a sintered body, for example, they may be formed of a sintered body containing electron conductive material particles and a sintering aid.
  • the electron conductive material included in the positive electrode current collecting layer 11 and the negative electrode current collecting layer 21 may be selected, for example, from the same materials as the electron conductive materials that can be included in the positive electrode layer and the negative electrode layer.
  • the sintering aid included in the positive electrode current collecting layer 11 and the negative electrode current collecting layer 21 may be selected, for example, from the same material as the sintering aid that can be included in the positive electrode layer and the negative electrode layer.
  • the thicknesses of the positive electrode current collecting layer and the negative electrode current collecting layer are not particularly limited, and may be, for example, each independently 1 ⁇ m or more and 5 ⁇ m or less, particularly 1 ⁇ m or more and 3 ⁇ m or less.
  • the solid electrolyte layer 3 is made of a sintered body containing solid electrolyte particles.
  • the material of the solid electrolyte particles (that is, the solid electrolyte material) is not particularly limited as long as it can provide ions that can move between the positive electrode layer and the negative electrode layer.
  • the solid electrolyte material include a lithium-containing phosphate compound having a NASICON structure, an oxide having a perovskite structure, and an oxide having a garnet-type or garnet-like structure.
  • the lithium-containing phosphate compound having a NASICON structure include, for example, Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 and the like.
  • an oxide having a perovskite structure La 0.55 Li 0.35 TiO 3 and the like are given.
  • an oxide having a garnet-type or garnet-like structure Li 7 La 3 Zr 2 O 12 and the like can be given.
  • the solid electrolyte layer may include a sintering aid.
  • the sintering aid contained in the solid electrolyte layer may be selected, for example, from the same materials as the sintering aid that can be contained in the positive electrode layer and the negative electrode layer.
  • the thickness of the solid electrolyte layer is not particularly limited, and may be, for example, 1 ⁇ m or more and 15 ⁇ m or less, particularly 1 ⁇ m or more and 5 ⁇ m or less.
  • the protective layer 5 is formed on the upper and lower surfaces of the battery element 100 in the solid state battery, and is for protecting the battery element 100 electrically, physically and chemically.
  • the protective layer 5 is made of an insulating material other than the resin.
  • the insulating material means a material having neither ion conductivity nor electron conductivity. Therefore, the insulating material other than the resin is an insulating inorganic material having neither ion conductivity nor electron conductivity.
  • the inorganic substance having no ion conductivity means an inorganic substance having an ion conductivity of 1 ⁇ 10 ⁇ 7 S / cm or less.
  • the ion conductivity is preferably 1 ⁇ 10 ⁇ 12 S / cm or less.
  • the ionic conductivity of the inorganic substance having no ionic conductivity is usually 1 ⁇ 10 ⁇ 18 S / cm or more.
  • the inorganic substance having no electron conductivity means an inorganic substance having an electron conductivity of 1 ⁇ 10 ⁇ 7 S / cm or less.
  • the electron conductivity is preferably 1 ⁇ 10 ⁇ 12 S / cm or less.
  • the electron conductivity of the inorganic substance having no electron conductivity is usually 1 ⁇ 10 ⁇ 18 S / cm or more.
  • the protective layer 5 Since the protective layer 5 is made of such an insulating material other than the resin, the protective layer 5 has more excellent moisture resistance, environmental resistance and durability. Specifically, the protective layer 5 is a protective layer that is less likely to adsorb, absorb, and transmit moisture and gas (carbon dioxide) and has a higher bonding strength with a battery element than a protective layer containing a resin (for example, a polymer compound). It can be a layer. As a result, in the solid state battery of the present invention, the protective layer 5 is less likely to crack and fall off due to expansion due to adsorption and absorption of moisture and gas (carbon dioxide) as compared to the protective layer containing a polymer compound. In addition, falling off due to vibration and impact is unlikely to occur.
  • a resin for example, a polymer compound
  • the protective layer 5 is less permeable to moisture and gas (carbon dioxide) than the protective layer containing a polymer compound.
  • the solid battery of the present invention can further suppress the deterioration of battery performance.
  • the positive electrode layer, the negative electrode layer, and the solid electrolyte layer have ion conductivity and conduct lithium or sodium, but battery performance is likely to be reduced due to adsorption and absorption of moisture and gas (carbon dioxide).
  • the protective layer containing a resin for example, a polymer compound
  • the protective layer easily absorbs and absorbs moisture and gas (carbon dioxide), cracking and falling off due to expansion of the protective layer are likely to occur, and falling off due to vibration and impact is also likely to occur.
  • the positive electrode layer, the negative electrode layer, and the solid electrolyte layer adsorb and absorb moisture and gas (carbon dioxide).
  • the protective layer easily permeates moisture and gas (carbon dioxide), moisture and gas (carbon dioxide) enter the inside of the battery element, and the positive electrode layer, the negative electrode layer, and the solid electrolyte layer form moisture and gas (carbon dioxide). Is adsorbed and absorbed. As a result, the battery performance decreases.
  • Examples of the insulating material other than the resin constituting the protective layer 5 include glass and ceramics.
  • As the glass quartz glass (SiO 2 ) or a combination of SiO 2 and at least one selected from PbO, B 2 O 3 , MgO, ZnO, Bi 2 O 3 , Na 2 O, and Al 2 O 3 is used. A combined oxide-based glass and the like are included.
  • Examples of the ceramic include alumina, cordierite, mullite, steatite, forsterite and the like.
  • the protective layer 5 may be made of one or more materials selected from the group consisting of these substances.
  • the protective layer 5 may include a material (for example, metal) having electron conductivity as long as the battery element 100 is not short-circuited.
  • the content ratio of the electron conductive material may be, for example, 1% by volume or less.
  • the protective layer 5 contains an electron conductive material (for example, metal), heat generated by the battery reaction can be smoothly released to the outside.
  • the protective layer 5 is formed of a sintered body containing particles of an insulating substance other than the resin.
  • the sintered body constituting the protective layer 5 has pores between the insulating substance particles, but adsorbs, absorbs, and transmits moisture and gas (carbon dioxide) in the thickness direction (for example, the laminating direction L).
  • moisture and gas carbon dioxide
  • the protective layer 5 is not strictly allowed to contain a resin such as a polymer compound, and a polymer compound and / or a thermally decomposed product thereof used during manufacturing may remain.
  • the content of the polymer compound and the residue such as a thermal decomposition product thereof in the protective layer is usually 0.1% by weight or less, particularly 0.01% by weight or less based on the total amount of the protective layer.
  • a residue may remain as in the protective layer.
  • the content of the residue in each layer or each portion of the positive electrode layer, the positive electrode current collecting layer, the negative electrode layer, the negative electrode current collecting layer, the solid electrolyte layer and the side reinforcing portion is a value relative to the total amount of each layer, It may be in the same range as the content range.
  • the porosity of the protective layer 5 may be, for example, 0.1% by volume or more and 20% by volume or less, particularly 1% by volume or more and 10% by volume or less.
  • the porosity a value measured by a weight porosity method, a computed tomography method using a CT scan, an immersion method, or the like is used.
  • the oxygen permeability in the thickness direction of the protective layer 5 may be, for example, 10 ⁇ 1 cc / m 2 / day / atm or less, particularly 10 ⁇ 3 cc / m 2 / day / atm or less.
  • the H 2 O permeability in the thickness direction of the protective layer 5 may be, for example, 10 ⁇ 2 g / m 2 / day or less, particularly 10 ⁇ 4 g / m 2 / day or less.
  • As the H 2 O permeability a value measured at 25 ° C. by a carrier gas method, a compression method, or a Ca corrosion method is used.
  • the protective layer 5 preferably has a thickness of 500 ⁇ m or less, more preferably 100 ⁇ m or less, further preferably 50 ⁇ m or less, and most preferably 20 ⁇ m or less, from the viewpoint of further suppressing the deterioration of the battery performance. is there.
  • the protective layer 5 preferably has an average thickness of 1 ⁇ m or more, and more preferably 5 ⁇ m or more, from the viewpoint of further suppressing a decrease in battery performance due to adsorption, absorption, and permeation of moisture and gas (carbon dioxide). is there.
  • the thickness and the average thickness of the thickest portion of the protective layer 5 the maximum thickness and the average thickness of the thickness at arbitrary 100 positions are used.
  • the protective layer 5 covers the upper and lower surfaces of the battery element 100.
  • the protective layer 5 may be in direct contact with the upper and lower surfaces of the battery element 100 covered by the protective layer 5 as shown in FIGS. 1A and 2 to 6, or may be other layers (for example, (Inorganic layer or metal layer). That the protective layer 5 is in direct contact with the upper and lower surfaces of the battery element means that the protective layer 5 does not have any of the other layers, the resin layer, and the liquid electrolyte interposed between the protective layer 5 and the battery element. It means that it is in direct contact with the upper and lower surfaces of the element.
  • the protective layer 5 is preferably in direct contact with the surface of the battery element 100 covered by the protective layer 5 for the following reasons (1) and (2): Reason (1): When strong vibration and / or shock is applied to the solid state battery, the protective layer 5 is more difficult to fall off, and the performance of the battery due to the fall off of the protective layer is even less likely to occur; 2): Since there is no other layer that does not have a battery function, the volume of the solid battery is reduced, and the energy density of the battery is improved.
  • the protective layer 5 is formed by integrally sintering the upper and lower surfaces of the battery element 100 covered by the protective layer 5 and the sintered bodies.
  • the protective layer 5 is integrally sintered with the upper and lower surfaces of the battery element 100 covered by the protective layer 5 and the sintered body
  • the battery element in which the protective layer 5 is covered by the protective layer 5 It means that it is joined to the upper and lower surfaces 100 by sintering.
  • the protective layer 5 and the upper and lower surfaces of the battery element 100 covered by the protective layer 5 are both sintered, but are integrally sintered.
  • the protective layer 5 and the battery element 100 adopt a configuration in which they are integrally sintered.
  • the whole of the protective layer 5 and the upper and lower surfaces of the battery element 100 covered by the protective layer 5 be strictly integrated. Good.
  • the protective layer 5 and the upper and lower surfaces of the battery element 100 covered by the protective layer 5 may be integrated as a whole.
  • the upper and lower surfaces of the battery element 100 covered by the protective layer 5 are usually the outermost layers of the battery element 100.
  • the outermost layer of the battery element 100 is an uppermost layer arranged at the top and a lowermost layer arranged at the bottom of the layers 100 constituting the battery element.
  • the surface of the outermost layer is the upper surface of the uppermost layer and the lower surface of the lowermost layer.
  • the outermost layer covered by the protective layer 5 is usually the positive electrode current collecting layer. It is selected from the power supply layer 11 and the negative electrode current collection layer 21. 1A and 2, the outermost layers covered by the protective layer 5 are a positive electrode current collecting layer 11 as an uppermost layer and a negative electrode current collecting layer 21 as a lowermost layer. In FIG. 3, the outermost layers covered by the protective layer 5 are a positive electrode current collecting layer 11 as an uppermost layer and a positive electrode current collecting layer 11 as a lowermost layer.
  • the outermost layer covered by the protective layer 5 is usually the positive electrode layer 1 and the negative electrode layer. Selected from layer 2. 4 and 5, the outermost layers covered by the protective layer 5 are a positive electrode layer 1 as an uppermost layer and a negative electrode layer 2 as a lowermost layer. In FIG. 6, the outermost layers covered by the protective layer 5 are the positive electrode layer 1 as the uppermost layer and the positive electrode layer 1 as the lowermost layer.
  • the protective layer 5 protrudes from the battery element 100 in a sectional view. That the protective layer 5 protrudes from the battery element 100 in a cross-sectional view means that the protective layer 5 (particularly, the end portion) has a laminating direction L in a cross-sectional view as shown in FIGS. 1A and 2 to 6. In the in-plane direction M perpendicular to the outer side m2 from the battery element 100 (particularly, the end thereof). Such an overhang of the protective layer 5 is usually formed at the entire peripheral end of the protective layer 5 in plan view, as shown in FIG. 1B. In the protective layer 5, a portion that protrudes particularly from the battery element 100 is referred to as a “protruding portion 51”.
  • the protective layer 5 has protrusions 51 on both upper and lower surfaces, that is, the protective layer 5 covering the upper surface of the battery element 100 has a protrusion on the upper surface and covers the lower surface of the battery element 100.
  • the protective layer 5 has a lower surface protruding portion.
  • FIG. 1B is a schematic plan view showing the solid state battery of the present invention shown in FIG. 1A. 1B, the battery element 100 shows an overlapping portion of each layer constituting the battery element 100 in a plan view. Therefore, for example, the electrical connection portions 11a of the positive current collecting layer 11 and the negative current collecting layer 21, respectively. And 21a have been omitted.
  • the in-plane direction M perpendicular to the laminating direction L means any direction in a plane perpendicular to the laminating direction L with respect to the solid-state battery.
  • the outer side m2 in the in-plane direction M is the outer side m2 as viewed from the solid-state battery in the in-plane direction M, and the direction opposite to the outer side direction m2 is the inner direction m1. Since the protective layer 5 protrudes from the battery element 100 in a cross-sectional view, the battery element 100 has a volume outward in an in-plane direction M perpendicular to the stacking direction L of the layers constituting the battery constituent unit 100. Even if the expansion occurs, the volume expansion can be contained between the protruding portions 51 of the protective layer 5 on the upper and lower surfaces of the battery element 100. For this reason, contact and short circuit with the solid state battery adjacent in the direction M can be sufficiently prevented.
  • the protruding length of the protective layer 5 (that is, the protruding length of the protruding portion 51) n (including n1 and n2) (mm) is not particularly limited as long as the volume expansion can be accommodated, and for example, the total length in the protruding direction.
  • N including N1 and N2) (mm)
  • it may be 0.00001 ⁇ N or more and 0.1 ⁇ N or less, particularly 0.0001 ⁇ N or more and 0.01 ⁇ N or less.
  • the solid state battery according to the present invention has a structure as shown in FIGS. 1A and 2 to 6 from the viewpoint of further suppressing a decrease in battery performance due to adsorption, absorption and permeation of moisture and gas (carbon dioxide).
  • the side surface 100 that is, the side surface of the stacked body composed of the layers constituting the battery element 100 has the side surface reinforcing portion 6.
  • the solid state batteries 200A to 200F of the present invention have the same shape as the battery element 100 as shown in FIGS. 1A and 2 to 6.
  • the side reinforcing portion 6 covers the side surface of the battery element 100 from the upper surface (that is, the height of the upper surface) to the lower surface (that is, the height of the lower surface) of the battery element.
  • the side surface of the battery element 100 is not only the right side surface and the left side surface of the battery element but also the front side of the paper surface in a schematic cross-sectional view of a solid state battery (eg, FIG. 1A and FIGS. 2 to 6). Side and backsides are also included.
  • the side surface reinforcing portion 6 may be made of a sintered body containing solid electrolyte particles, may be made of a sintered body containing insulating material particles other than resin, or may be a mixed particle thereof. It may be constituted by a sintered body containing the same. Since the side reinforcing portion 6 is made of such a sintered body, the side reinforcing portion 6 has more excellent moisture resistance, environmental resistance and durability. More specifically, the side reinforcing portion 6 can be a side reinforcing portion 6 that is relatively hard to adsorb, absorb, and transmit moisture and gas (carbon dioxide), and has high bonding strength with the battery element.
  • the side reinforcing portions 6 are relatively unlikely to crack and drop due to expansion due to adsorption and absorption of moisture and gas (carbon dioxide), and drop due to vibration and impact. Unlikely to happen.
  • the side reinforcing portion 6 is relatively hard to transmit moisture and gas (carbon dioxide).
  • the side surface reinforcing portion 6 is preferably made of a sintered body containing insulating material particles other than the resin.
  • the insulating material other than the resin that can form the side surface reinforcing portion 6 may be independently selected from the same materials as the insulating material other than the resin that can be included in the protective layer.
  • the thickness of the side reinforcing portion 6 is not particularly limited. When the protective layer 5 has the protrusion 51, the thickness is equal to or less than the protrusion length of the protrusion 51.
  • the thickness of the side reinforcing portion 6 is, for example, preferably 5 ⁇ m or more and 300 ⁇ m or less, particularly preferably 5 ⁇ m or more and 100 ⁇ m or less, from the viewpoint of further suppressing a decrease in battery performance due to adsorption, absorption, and permeation of moisture and gas (carbon dioxide). .
  • the thickness of the side reinforcing portion 6 is a thickness in the in-plane direction M perpendicular to the laminating direction L.
  • the side surface reinforcing portion 6 is formed by integrally sintering the side surface of the battery element 100 and the sintered body.
  • the fact that the side reinforcing portion 6 is integrally sintered with the side surface of the battery element 100 and the sintered body means that the side reinforcing portion 6 is joined to the side surface of the battery element 100 by sintering. More specifically, the side surface reinforcing portion 6 and the side surface of the battery element 100 are both sintered, but are integrally sintered. For example, it is preferable that the side surface reinforcing portion 6 and the battery element 100 adopt a configuration in which they are integrally sintered.
  • the outer peripheral surface 61 of the side surface reinforcing portion 6 bend inward m1 in an in-plane direction M perpendicular to the laminating direction L in a sectional view.
  • a curvature is a continuous bend or a gradual depression.
  • the outer peripheral surface 61 of the side reinforcing portion 6 is curved inward in an in-plane direction M perpendicular to the laminating direction L in the sectional view L1 as shown in FIGS.
  • the outer peripheral surface 61 of the side surface reinforcing portion 6 gradually approaches the side surface of the battery element 100 as it moves upward in the stacking direction L, and then gradually moves away from the side surface.
  • FIG. 7 is a schematic cross-sectional view showing another example of the solid state battery of the present invention having a unit cell structure in the battery element.
  • the solid-state battery of FIG. 7 is the same as the solid-state battery of FIG. 1A except that the side reinforcing portion 6 has a curved outer peripheral surface 61.
  • FIG. 8 is a schematic cross-sectional view showing another example of the solid state battery of the present invention having a series-type double battery structure in the battery element.
  • the solid-state battery of FIG. 8 is the same as the solid-state battery of FIG. 2 except that the side reinforcing portion 6 has a curved outer peripheral surface 61.
  • FIG. 9 and 10 are schematic cross-sectional views showing another example of the solid state battery of the present invention having a parallel type double battery structure in the battery element.
  • 9 and 10 are the same as the solid state battery of FIG. 3 except that the side reinforcing portion 6 has a curved outer peripheral surface 61.
  • FIG. 11 is a schematic cross-sectional view showing another example of the solid-state battery of the present invention having a parallel-type double battery structure in the battery element. Note that the solid-state battery in FIG. 11 has a parallel-type dual battery structure including four battery constituent units 10.
  • the curvature of the outer peripheral surface 61 of the side reinforcing portion 6 may be formed over the entire periphery of the side reinforcing portion 6 in a plan view.
  • the depth of the curve is not particularly limited as long as the shape of the solid state battery can be maintained.
  • the maximum depth d of the curve is usually 0.01 ⁇ n or more and 0.8 ⁇ n or less, particularly 0.1 ⁇ n or more and 0.5 ⁇ n or less with respect to the protrusion length n (mm) of the protrusion 51. is there.
  • the maximum depth d of the curvature may be, for example, 50 ⁇ m or less, especially 1 ⁇ m or more and 50 ⁇ m or more.
  • the number of curvatures per side in the in-plane direction M perpendicular to the lamination direction L in a cross-sectional view is one or more depending on the volume change (for example, volume change due to sintering) of each layer constituting the battery element 100. (For example, one or more and three or less).
  • One side means one side in the left-right direction in a sectional view.
  • the number of curvatures on one side in the left-right direction in a cross-sectional view may be one.
  • the number of left-side bends in a cross-sectional view may be one, and the number of right-side bends may be two.
  • the number of right-side curves in the solid-state battery shown in FIG. 9 is two, for example, because the degree of volume shrinkage of the negative electrode current collecting layer 21 during sintering is smaller than that of the other layers.
  • the side reinforcing portion 6 preferably has a porosity in the same range as the porosity of the protective layer 5.
  • the side reinforcing portion 6 preferably has a thickness direction air permeability within the same range as the thickness direction of the protective layer 5.
  • At least a part of the electrical connection portions 11a, 21a, 1a, and 2a is not covered with the protective layer 5 or the side reinforcing portion 6, and an exposed portion is provided in the electrical connection portion.
  • FIG. 1A, FIGS. 2 to 3 and FIGS. 7 to 11 when the positive electrode layer 1 and the negative electrode layer 2 have a positive current collecting layer 11 and a negative current collecting layer 21, respectively, At least a part of the electrical connection portions 11a and 21a of the negative electrode current collecting layer 21 is not covered with the protective layer 5 or the side reinforcing portion 6, and exposed portions 11b and 21b are provided in the electrical connection portion.
  • the exposed portions 11b and 21b mean portions where the positive electrode current collecting layer 11 and the negative electrode current collecting layer 21 are exposed, respectively.
  • the positive electrode layer 1, the positive electrode current collecting layer 11, the negative electrode layer 2, the negative electrode current collecting layer 21, and the solid electrolyte layer 3 constituting the battery element 100 are exposed. It is preferable that the portions other than the portions 11b and 21b are not exposed to the outside of the protective layer 5 or the side reinforcing portion 6. In other words, it is preferable that the entire outer surface of the battery element 100 other than the exposed portions 11b and 21b is covered with the protective layer 5 or the side reinforcing portion 6. In FIGS.
  • all exposed portions 11b and 21b are formed on the side surface of the battery element 100 (or the solid state battery), but the present invention is not limited to this.
  • the exposed portions 11b and 21b of the electrical connection portions 11a and 21a in the positive electrode current collecting layer 11 and the negative electrode current collecting layer 21 as the outermost layers may be provided on the upper surface or the lower surface of the battery element 100 (or the solid state battery).
  • the electrical connection portion 1a of the positive electrode layer 1 and the negative electrode layer 2 And 2a are not covered by the protective layer 5 or the side reinforcing portion 6, and the exposed portions 1b and 2b are provided in the electrical connection portion.
  • the exposed portions 1b and 2b mean portions where the positive electrode layer 1 and the negative electrode layer 2 are exposed, respectively.
  • the positive electrode layer 1, the negative electrode layer 2, and the solid electrolyte layer 3 constituting the battery element 100 are provided with the protective layer 5 or the side reinforcement except for the exposed portions 1b and 2b. It is preferable that it is not exposed outside the portion 6. In other words, it is preferable that the entire outer surface of the battery element 100 other than the exposed portions 1 b and 2 b is covered with the protective layer 5 or the side reinforcing portion 6. 4 to 6, all the exposed portions 1b and 2b are formed on the side surface of the battery element 100 (or the solid state battery), but the present invention is not limited to this.
  • exposed portions 1b and 2b of electrical connection portions 1a and 2a in positive electrode layer 1 and negative electrode layer 2 as outermost layers may be provided on the upper surface or the lower surface of battery element 100 (or solid battery).
  • connection layer 7 achieves the connection between the positive electrode layer 1 and the negative electrode layer 2 and prevents an electrical short circuit therebetween.
  • connection layer 7 may be made of a sintered body containing insulating material particles other than resin.
  • the insulating material other than the resin that can form the connection layer 7 may be independently selected from the same materials as the insulating material other than the resin that can be included in the protective layer.
  • connection layer 7 is not particularly limited, and is, for example, preferably 1 ⁇ m or more and 10 ⁇ m or less, particularly preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • connection layer 7 is preferably formed by integrally sintering an adjacent layer (for example, the positive electrode layer 1 and / or the negative electrode layer 2) with the sintered body.
  • the fact that the connection layer 7 is integrally sintered with the adjacent layer and the sintered body means that the connection layer 7 is joined to the adjacent layer by sintering.
  • the connection layer 7 and the adjacent layer are both sintered bodies, but are integrally sintered.
  • the connection layer 7 adopts a configuration that is integrally sintered together with all the other layers constituting the battery element 100. Note that the connection layer 7 and the adjacent layer do not have to be strictly all integrated, and a part thereof may not be integrated.
  • the connection layer 7 and the adjacent layer need only be integrated as a whole.
  • the solid state battery group of the present invention includes two or more solid state batteries.
  • the solid state battery group of the present invention includes one or more of the above-described solid state batteries of the present invention, and further includes only two or more of the solid state batteries of the present invention from the viewpoint of further suppressing deterioration in battery performance over a long period of time. Is preferred. That is, the solid state battery group of the present invention is preferably composed of only two or more solid state batteries of the present invention.
  • the two or more solid state batteries of the present invention are each independently a group of the solid state batteries of the present invention described above. It should just be selected from. Specifically, in the two or more solid-state batteries of the present invention, for example, at least one factor selected from the following group may be different from each other, or all of these factors may be the same.
  • all the solid-state batteries constituting the solid-state battery group of the present invention have the same (or common) battery structural unit from the viewpoint of further suppressing the deterioration of the battery performance over a long period of time based on the uniformization of the battery reaction. It is preferred to have 10. That all solid batteries have the same (or common) battery constituent unit 10 means that in all the solid batteries, the positive electrode layer 1 (and the positive electrode current collecting layer 11), the negative electrode layer 2 (and the negative electrode current collecting layer 21) and This means that the types and dimensions of the constituent materials of the solid electrolyte layer are the same.
  • the solid-state battery group of the present invention can easily meet the specifications (for example, battery capacity) of the solid-state battery group required by the user, and / or further suppress the deterioration of the battery performance, and from the viewpoint of suppressing the deterioration over a long period of time,
  • the factor is composed only of two or more solid state batteries of the present invention, or at least one factor selected from the following group is composed only of two or more solid state batteries of the present invention different from each other Is preferred.
  • the solid state battery group 500A of FIG. 12 includes only two solid state batteries of the present invention, the upper solid state battery corresponds to the solid state battery 200G of FIG. 7, and the lower solid state battery is a protective layer of the upper solid state battery 200G. 5 corresponds to a solid state battery 200G ′ having two protective layers 5 ′ having different constituent materials.
  • FIG. 12 is a schematic cross-sectional view of the solid state battery group according to the first embodiment of the present invention.
  • the protective layer 5 ' indicates that the constituent material actually used is different from the protective layer 5, and is included in the protective layer 5 described above.
  • the protective layer 5 ' indicates that the constituent material actually used is different from the protective layer 5, and is included in the protective layer 5 described above.
  • two solid batteries have a unit cell structure and are connected so as to be connected in parallel. Thereby, the solid battery group 500A can increase the capacity without changing the battery voltage, as compared with the single solid battery having the unit cell structure.
  • the number of solid batteries included in the solid battery group of the present invention is not particularly limited, and may be, for example, 2 or more, particularly 2 to 100, and preferably 2 to 50.
  • the connection of two or more solid-state batteries constituting the solid-state battery group is based on parallel connection in FIG. 12, but may be based on series connection.
  • the solid state battery group of the present invention among two or more (preferably all) solid state batteries constituting the solid state battery group, two adjacent solid state batteries are integrally sintered with each other via a protective layer. It is more preferable that all adjacent two solid batteries are integrally sintered with each other via the protective layer.
  • the solid state batteries are hardly separated from each other, and the battery performance due to the separation is hardly reduced.
  • a decrease in battery performance can be further suppressed. The details of this mechanism are unknown, but are considered to be based on the following mechanism.
  • the stress caused by the volume expansion of the positive electrode layer and the negative electrode layer due to the battery reaction can be caused by two adjacent solid-state batteries even if localized. Easy to transfer between batteries. Such stress is dispersed by the interposition of the protective layer, and it is difficult for the stress to be transmitted between two adjacent solid-state batteries. Therefore, a decrease in battery performance can be further suppressed.
  • the expression that two adjacent solid batteries are integrally sintered with each other via the protective layer means that the two adjacent solid batteries are joined through the protective layer by sintering. .
  • two adjacent solid batteries are both sintered bodies, but are integrally sintered.
  • the protective layer and the battery element are integrally sintered (joined) with each other in each solid battery
  • the protective layer of one solid battery and the protective layer of the other solid battery are The sintered bodies are integrally sintered (joined).
  • the protective layer and the battery element in each solid state battery may be integrated as a whole. It is sufficient that the protective layer of one solid battery and the protective layer of the other solid battery are integrated as a whole.
  • all the solid state batteries constituting the solid state battery group may be laminated along the laminating direction L of each layer constituting each battery constituent unit as shown in FIG. At least some of the solid state batteries constituting the solid state battery group of the present invention may be arranged in a direction M perpendicular to the stacking direction L. Bonding of the sintered bodies via the protective layer can be achieved between two solid batteries adjacent in the stacking direction L and between two solid batteries adjacent in the vertical direction M to the stacking direction L.
  • two protective layers that is, one solid state battery protective layer and the other solid state battery protective layer
  • the two protective layers may be unified, and the two solid batteries may share one protective layer.
  • only one protective layer may be interposed between two adjacent solid batteries.
  • two protective layers are interposed between two specific adjacent solid state batteries, and only one protective layer is interposed between another adjacent two solid state batteries. You may.
  • the energy density of the solid state battery group is further increased by unifying the two protective layers between two adjacent solid state batteries. , Can be improved.
  • the form of the intervening protective layer is referred to as “two-layer form”.
  • the form of the interposed protective layer is referred to as “single form”.
  • the solid state battery group 500B of FIG. 13 includes only two solid state batteries of the present invention, and the upper and lower solid state batteries both correspond to the solid state battery 200G of FIG. 7, but are protected between two adjacent solid state batteries.
  • the layers are unified.
  • FIG. 13 is a schematic sectional view of a solid state battery group according to the second embodiment of the present invention.
  • two solid batteries have a unit cell structure and are connected so as to be connected in parallel.
  • the solid battery group 500B can increase the capacity without changing the battery voltage, as compared with the single solid battery having the single battery structure.
  • the solid state battery group 500C in FIG. 14 includes only two solid state batteries of the present invention, and both the upper and lower solid state batteries correspond to the solid state battery 200G in FIG.
  • the protective layer is unified, and the protective layer between the two solid batteries is a protective layer 5 'having a different material from the protective layer 5 of the upper and lower solid batteries 200G.
  • FIG. 14 is a schematic sectional view of a solid state battery group according to the third embodiment of the present invention. In FIG. 14, two solid batteries have a unit cell structure and are connected so as to be connected in parallel.
  • the solid battery group 500C can increase the capacity without changing the battery voltage, as compared with the single solid battery having the single cell structure.
  • the solid state battery group 500D in FIG. 15 includes only two solid state batteries of the present invention, the upper solid state battery corresponds to the solid state battery 200G in FIG. 7, and the lower solid state battery corresponds to the solid state battery 200I in FIG.
  • the protective layer is unified between two adjacent solid-state batteries.
  • FIG. 15 is a schematic sectional view of a solid state battery group according to the fourth embodiment of the present invention.
  • the two solid-state batteries are a solid-state battery having a single-cell structure and a solid-state battery having a parallel-type double-cell structure, and are connected so as to be connected in parallel. Accordingly, the capacity of the solid state battery group 500D can be increased without changing the battery voltage, as compared with one of the solid state batteries.
  • the solid state battery group 500E in FIG. 16 includes only two solid state batteries of the present invention, and both the upper and lower solid state batteries correspond to the solid state battery 200I in FIG.
  • the protective layer is unified.
  • FIG. 16 is a schematic sectional view of a solid state battery group according to the fifth embodiment of the present invention.
  • the two solid-state batteries are solid-state batteries having a parallel-type dual battery structure, and are connected so as to be connected in parallel.
  • the solid battery group 500E can increase the capacity without changing the battery voltage, as compared with the single solid battery having the parallel-type double battery structure.
  • the solid state battery group 500F in FIG. 17 includes only three solid state batteries of the present invention, and the three solid state batteries all correspond to the solid state battery 200I in FIG. Has a single protective layer.
  • FIG. 17 is a schematic sectional view of a solid state battery group according to the sixth embodiment of the present invention.
  • the three solid state batteries are solid state batteries having a parallel-type dual battery structure, and are connected so as to be connected in parallel.
  • the capacity of the solid battery group 500F can be increased without changing the battery voltage, as compared with one solid battery having the parallel-type double battery structure or one solid battery group 500E of FIG.
  • the solid state battery group 500G of FIG. 18 includes only four solid state batteries of the present invention, and the four solid state batteries correspond to a solid state battery 200I ′ to be described later, but all the solid state batteries 200G ′ are adjacent to each other.
  • the solid state battery 200I ′ is the same as the solid state battery 200I of FIG. 9 except that the negative electrode layer 2 does not have the negative electrode current collecting layer 21 and that the negative electrode layer 2 has the electrical connection portion 2a and the exposed portion 2b.
  • FIG. 18 is a schematic sectional view of a solid state battery group according to the seventh embodiment of the present invention. In each solid battery 200I ′ of FIG. 18, the negative electrode layer 2 is shown as one layer for convenience. In FIG. 18, four solid state batteries are solid state batteries of a parallel type double battery structure and are connected so as to be connected in parallel.
  • the solid battery group 500G can increase the capacity without changing the battery voltage, as compared with the single solid battery having the parallel type double battery structure.
  • the solid state battery group 500H in FIG. 19 includes only two solid state batteries of the present invention, and the two solid state batteries both correspond to the solid state battery 200K in FIG. 11, but are protected between two adjacent solid state batteries. The layers are unified.
  • FIG. 19 is a schematic sectional view of a solid state battery group according to the eighth embodiment of the present invention.
  • the two solid state batteries are solid state batteries having a parallel type dual battery structure, and are connected so as to be connected in parallel. Accordingly, the solid battery group 500H can increase the capacity without changing the battery voltage, as compared with the single solid battery having the parallel type double battery structure.
  • FIG. 20 is a schematic sectional view of a solid state battery group according to the ninth embodiment of the present invention.
  • two adjacent solid-state batteries have a series-type structure and are connected so as to be connected in parallel.
  • such two adjacent solid batteries can be arranged such that the stacking order of the positive electrode layer, the negative electrode layer, the solid electrolyte layer, and the like is mutually aligned.
  • the fact that the stacking order is the same means that the stacking order is the same in two adjacent solid state batteries.
  • the electrodes on the upper and lower sides of the protective layer 5 between the solid batteries are set to different electrodes (in FIG. 20, the upper side of the protective layer 5 is the negative electrode (2, 21) and the lower side is the positive electrode (1, 11)). can do. Therefore, the solid state battery group 500I can mutually absorb the volume expansion and contraction during charging and discharging on both sides of the protective layer 5, and can further suppress the deterioration of the battery.
  • the solid state battery group 500J in FIG. 21 includes only two solid state batteries of the present invention, and both of the two solid state batteries correspond to the solid state battery 200H.
  • the protective layer is installed opposite to the upper solid state battery 200H, and the protective layer is unified between two adjacent solid state batteries.
  • two adjacent solid-state batteries have a series structure and are connected so as to be connected in parallel.
  • such two adjacent solid batteries can be arranged such that the order of lamination of the positive electrode layer, the negative electrode layer, the solid electrolyte layer, and the like is opposite to each other.
  • the fact that the stacking order is opposite to each other means that the stacking order of two adjacent solid-state batteries is opposite.
  • the electrodes on the upper and lower sides of the protective layer 5 between the solid batteries can be set to the same electrode (the negative electrode (2, 21) in FIG. 21).
  • the positions of the electrical connection portions (21a) are concentrated, and the intrusion of moisture or the like into the battery element 100 from the electrical connection portions can be suppressed, and the deterioration of the battery can be further reduced. , Can be suppressed.
  • the risk of poor connection can be reduced.
  • the solid state battery of the present invention can be manufactured by a printing method such as a screen printing method, a green sheet method using a green sheet, or a composite method thereof.
  • a printing method such as a screen printing method, a green sheet method using a green sheet, or a composite method thereof.
  • the printing method is adopted will be described in detail, but it is apparent that the method is not limited to the method.
  • the method for producing a solid state battery of the present invention comprises: Forming a green laminate by a printing method; and firing the green laminate.
  • An unfired laminate having a predetermined structure is formed on a base material by a printing method using several types of pastes such as a connection layer paste as ink.
  • the curved portion paste is a paste for forming a layer that is burned out by sintering, and forms a depression in the curved portion.
  • the paste is prepared by dissolving a predetermined constituent material of each layer selected from the group consisting of a positive electrode active material, a negative electrode active material, an electron conductive material, a solid electrolyte material, an insulating material, and a sintering aid, and an organic material in a solvent. It can be produced by wet mixing the obtained organic vehicle.
  • the positive electrode layer paste contains a positive electrode active material, an electron conductive material, a solid electrolyte material, an organic material, and a solvent.
  • the negative electrode layer paste includes a negative electrode active material, an electron conductive material, a solid electrolyte material, an organic material, and a solvent.
  • the paste for the positive electrode current collecting layer and the paste for the negative electrode current collecting layer include an electron conductive material, a sintering aid, an organic material, and a solvent.
  • the solid electrolyte layer paste contains a solid electrolyte material, a sintering aid, an organic material, and a solvent.
  • the protective layer paste contains an insulating substance, an organic material, and a solvent.
  • the side-surface reinforcing portion paste includes a solid electrolyte material (and / or an insulating material), a sintering aid, an organic material, and a solvent.
  • the paste for a curved portion contains an organic material and a solvent.
  • the connection layer paste contains a solid electrolyte material (and / or an insulating substance), a sintering aid, an organic material, and a solvent.
  • the organic material contained in the paste is not particularly limited, a high molecular compound such as a polyvinyl acetal resin, a cellulose resin, a polyacryl resin, a polyurethane resin, a polyvinyl acetate resin, and a polyvinyl alcohol resin can be used.
  • the solvent is not particularly limited as long as it can dissolve the organic material, and for example, toluene, ethanol and the like can be used.
  • a medium can be used, and specifically, a ball mill method, a biscomil method, or the like can be used.
  • a wet mixing method without using a medium may be used, and a sand mill method, a high-pressure homogenizer method, a kneader dispersion method, or the like can be used.
  • the substrate is not particularly limited as long as it can support the unfired laminate, and for example, a polymer material such as polyethylene terephthalate can be used.
  • a substrate having heat resistance to the sintering temperature is used.
  • a printing layer is sequentially laminated with a predetermined thickness and a pattern shape, and an unfired laminate corresponding to a predetermined solid battery structure is formed on a substrate.
  • a plurality of printing layers are sequentially laminated in a thickness and a pattern shape as shown in FIG. 22, for example.
  • a drying process that is, a solvent evaporation process
  • FIG. 22 is a flowchart of a process of forming a green laminate to explain an example of the method for manufacturing a solid battery of the present invention.
  • the base material is omitted.
  • a printed layer of a curved portion paste may be formed in a portion corresponding to a depression in the curved portion. In this case, by gradually reducing the thickness of each printing layer, a gradual increase or decrease in the bending depth can be formed.
  • the unsintered laminate After forming the unsintered laminate, the unsintered laminate may be peeled from the substrate and subjected to the sintering step, or the unsintered laminate may be subjected to the sintering step while being held on the substrate. Good.
  • the unfired laminate is fired.
  • the firing is performed by removing the organic material at, for example, 500 ° C. in a nitrogen gas atmosphere containing an oxygen gas, and then heating the material at, for example, 550 to 1000 ° C. in a nitrogen gas atmosphere.
  • the firing may be performed while pressing the unfired laminate in the stacking direction L (in some cases, the stacking direction L and the direction M perpendicular to the stacking direction L).
  • the pressure is not particularly limited, and may be, for example, 1 kg / cm 2 or more and 1000 kg / cm 2 or less, particularly 5 kg / cm 2 or more and 500 kg / cm 2 or less.
  • the solid battery group of the present invention is the same as the solid battery manufacturing method of the present invention described above, except that in the step of forming the unfired laminate, a green laminate corresponding to the structure of the predetermined solid battery group is formed. It can be manufactured by a method.
  • the solid state battery group of the present invention can be manufactured by dividing the unsintered laminate corresponding to the structure of the predetermined solid state battery group into two or more parts and using them in combination.
  • the solid battery group 500A of FIG. 12 in the above-described step of forming the unfired laminate, the unfired laminate corresponding to the structure of the solid battery 200G and the unfired laminate corresponding to the structure of the solid battery 200G ' Two green laminates with the laminate are separately formed.
  • the two unfired laminates are used in combination before the firing step.
  • two unfired laminates are stacked or arranged so as to correspond to the structure of a predetermined solid state battery group, and assembled.
  • the obtained laminated body aggregate is subjected to the above-described firing step.
  • the unsintered stacked body corresponding to the structure of the predetermined solid state battery group is divided into two or more and formed, and by using them in combination, the specifications of the solid state battery group required by the user (for example, the battery capacity) ), It is possible to easily manufacture (or process) the solid state battery group.
  • the solid state battery according to one embodiment of the present invention can be used in various fields where power storage is assumed.
  • the solid state battery according to one embodiment of the present invention may be used in the field of electricity, information and communication in which mobile devices and the like are used (for example, mobile phones, smartphones, smart watches, notebook computers and digital cameras, Mobile devices such as mass meters, arm computers, and electronic paper), household and small industrial applications (for example, electric tools, golf carts, home, nursing and industrial robots), and large industrial applications (forklifts, Elevators, bay harbor cranes, transportation systems (eg, hybrid vehicles, electric vehicles, buses, trains, electric assist bicycles, electric motorcycles, etc.), power system applications (eg, various types of power generation, road conditioners, smart grids) , General home installation type power storage system, etc.), medical Applications (medical equipment such as earphone hearing aids), medical applications (dose management systems, etc.), IoT applications, space and deep sea applications (e.g., space probes, submersibles, etc.)
  • Positive electrode layer 1a Electrical connection portion of positive electrode layer 1b: Exposed portion of positive electrode layer 2: Negative electrode layer 2a: Electrical connection portion of negative electrode layer 2b: Exposed portion of negative electrode layer 3: Solid electrolyte layer 5: Protective layer 6 : Side reinforcing portion 7: Connection layer 10: Battery constituent unit 11: Positive current collecting layer 11 a: Electrical connection portion of positive current collecting layer 11 b: Exposed portion of positive current collecting layer 21: Negative current collecting layer 21 a: Negative current collecting Layer electrical connection part 21b: Exposed part of negative electrode current collecting layer 100: Battery element 200 (200A, 200B, 200C, 200D, 200E, 200F, 200G, 200H, 200I, 200J, 200K, 200G ', 200H', 200I) '): Solid-state battery 500 (500A, 500B, 500C, 500D, 500E, 500F, 500G, 500H, 500I, 500J): Solid-state battery group

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本発明は、高分子化合物を含む保護層と比較して、水分およびガスを吸着し難く、かつ電池要素との接合強度が高い保護層を有する固体電池を提供することを目的とする。本発明は、相互に対向する正極層1および負極層2ならびに前記正極層と前記負極層の間に配置される固体電解質層3を含む電池構成単位10を1つ以上備えた電池要素100と、該電池要素の上下面を覆っている保護層5とを備え、前記保護層5は樹脂以外の絶縁性物質からなることを特徴とする、固体電池200Aに関する。

Description

固体電池および固体電池群
 本発明は固体電池および固体電池群に関する。
 近年、携帯電話、携帯用パーソナルコンピュータ等の携帯用電子機器の電源として電池の需要が大幅に拡大している。このような用途に用いられる電池においては、イオンを移動させるための媒体として、有機溶媒等の電解質(電解液)が従来から使用されている。しかし、上記の構成の電池では、電解液が漏出するという危険性がある。また、電解液に用いられる有機溶媒等は可燃性物質である。このため、電池の安全性を高めることが求められている。
 そこで、電池の安全性を高めるために、電解質として、電解液に代えて、固体電解質を用いた固体電池の研究が進められている。
 例えば、特許文献1~3には、正極および負極ならびにそれらの間の固体電解質を備えた電池要素の最外表面に、高分子化合物を含む保護層を形成して、固体電池を電気的および物理的に保護する技術が開示されている。
特開2008-186595号公報 特開2006-351326号公報 特開2016-001601号公報
 しかしながら、本発明の発明者等は、固体電池が電池要素の表面に高分子化合物を含む保護層を有する場合、高分子化合物が水分やガスを吸着することにより、保護層が膨張して割れたり、かつ/または脱落したりするため、保護層としての機能が無くなり、電池性能が低下することを見い出した。
 本発明の発明者等はまた、固体電池において電池要素の表面を、高分子化合物を含む保護膜で覆うだけでは、当該電池への強い振動や衝撃などにより、保護層が脱落しやすいため、保護層としての機能が無くなり、電池性能が低下することを見い出した。
 本発明の発明者等はさらに、従来の複数の固体電池を、正極層、負極層および固体電解質層の積層方向Lに対して垂直な面内方向Mに隣接して配置した場合、隣接する2つの固体電池間において、短絡が生じ得ることを見い出した。詳しくは、例えば図23に示すように、従来の複数の固体電池(800,900)を、積層方向Lに対して垂直な面内方向Mに隣接して配置した場合、隣接する2つの固体電池間において、各固体電池800、900が方向Mについて体積膨張801,901を起こした。このため、方向Mで隣接する2つの固体電池800、900は相互に押圧し、短絡が生じ得た。短絡は、各固体電池において、充放電に伴い正極層および負極層が体積膨張することに起因するものと考えられる。
 本発明は、高分子化合物を含む保護層と比較して、水分およびガスを吸着し難く、かつ電池要素との接合強度が高い保護層を有する固体電池を提供することを目的とする。
 本発明はまた、高分子化合物を含む保護層と比較して、水分およびガスを吸着し難く、かつ電池要素との接合強度が高い保護層を有するとともに、正極層、負極層および固体電解質層の積層方向Lに対して垂直な面内方向Mに隣接して配置されても体積膨張に起因する短絡を抑制することができる固体電池を提供することを目的とする。
 本発明は、
 相互に対向する正極層および負極層ならびに前記正極層と前記負極層の間に配置される固体電解質層を含む電池構成単位を1つ以上備えた電池要素と、
 該電池要素の上下面を覆っている保護層とを備え、
 前記保護層は樹脂以外の絶縁性物質からなることを特徴とする、固体電池に関する。
 本発明の固体電池は、高分子化合物を含む保護層と比較して、水分およびガスを吸着し難く、かつ電池要素との接合強度が高い保護層を有する。その結果として、本発明の固体電池において、保護層は、高分子化合物を含む保護層と比較して、水分およびガスの吸着による割れおよび脱落が起こり難く、かつ振動および衝撃などによる脱落が起こり難い。このため、本発明の固体電池は電池性能の低下をより一層、抑制できる。
電池要素において単電池構造を有する本発明の固体電池の一例を示す模式的断面図である。 図1Aに示す本発明の固体電池の模式的平面図である。 電池要素において直列型複電池構造を有する本発明の固体電池の一例を示す模式的断面図である。 電池要素において並列型複電池構造を有する本発明の固体電池の一例を示す模式的断面図である。 電池要素において単電池構造を有する本発明の固体電池の別の一例を示す模式的断面図である。 電池要素において直列型複電池構造を有する本発明の固体電池の別の一例を示す模式的断面図である。 電池要素において並列型複電池構造を有する本発明の固体電池の別の一例を示す模式的断面図である。 電池要素において単電池構造を有する本発明の固体電池の別の一例を示す模式的断面図である。 電池要素において直列型複電池構造を有する本発明の固体電池の別の一例を示す模式的断面図である。 電池要素において並列型複電池構造を有する本発明の固体電池の別の一例を示す模式的断面図である。 電池要素において並列型複電池構造を有する本発明の固体電池の別の一例を示す模式的断面図である。 電池要素において並列型複電池構造を有する本発明の固体電池の別の一例を示す模式的断面図である。 本発明の第1実施態様に係る固体電池群の模式的断面図を示す。 本発明の第2実施態様に係る固体電池群の模式的断面図を示す。 本発明の第3実施態様に係る固体電池群の模式的断面図を示す。 本発明の第4実施態様に係る固体電池群の模式的断面図を示す。 本発明の第5実施態様に係る固体電池群の模式的断面図を示す。 本発明の第6実施態様に係る固体電池群の模式的断面図を示す。 本発明の第7実施態様に係る固体電池群の模式的断面図を示す。 本発明の第8実施態様に係る固体電池群の模式的断面図を示す。 本発明の第9実施態様に係る固体電池群の模式的断面図を示す。 本発明の第10実施態様に係る固体電池群の模式的断面図を示す。 本発明の固体電池の製造方法における未焼成積層体の形成工程の一例を説明するためのフロー図である。 従来の固体電池において問題となる体積膨張に起因する短絡のメカニズムを説明するための固体電池の模式的断面図である。
[固体電池]
 本発明は固体電池を提供する。本明細書でいう「固体電池」とは、広義にはその構成要素(特に電解質層)が固体から構成されている電池を指し、狭義にはその構成要素(特に全ての構成要素)が固体から構成されている「全固体電池」を指す。本明細書でいう「固体電池」は、充電および放電の繰り返しが可能な、いわゆる「二次電池」、および放電のみが可能な「一次電池」を包含する。「固体電池」は好ましくは「二次電池」である。「二次電池」は、その名称に過度に拘泥されるものではなく、例えば、「蓄電デバイス」なども包含し得る。
 本明細書でいう「平面視」とは、固体電池を構成する後述する層の積層方向Lに基づく厚み方向に沿って対象物を上側または下側からみたときの状態(上面図または下面図)のことである。又、本明細書でいう「断面視」とは、固体電池を構成する後述する層の積層方向Lに基づく厚み方向に対して略垂直な方向からみたときの断面状態(断面図)のことである。本明細書で直接的または間接的に用いる“上下方向”および“左右方向”は、それぞれ図中における上下方向および左右方向に相当する。特記しない限り、同じ符号または記号は、同じ部材・部位または同じ意味内容を示すものとする。ある好適な態様では、鉛直方向下向き(すなわち、重力が働く方向)が「下方向」に相当し、その逆向きが「上方向」に相当すると捉えることができる。
 本発明の固体電池は、例えば、図1Aおよび図2~図6それぞれにおいて、符号「200A」、「200B」、「200C」、「200D」、「200E」および「200F」(以下、単に「200A~200F」ということがある)で示されるような、層状構造(特に積層構造)を有するものである。本発明の固体電池200A~200Fは、電池要素100と、当該電池要素100の上下面を覆っている保護層5とを備えている。図1Aは、電池要素100において単電池構造を有する本発明の固体電池の一例を示す模式的断面図である。図2は、電池要素100において直列型複電池構造を有する本発明の固体電池の一例を示す模式的断面図である。図3は、電池要素100において並列型複電池構造を有する本発明の固体電池の一例を示す模式的断面図である。図4は、電池要素100において単電池構造を有する本発明の固体電池の別の一例を示す模式的断面図である。図4の固体電池は、正極層1が正極集電層11を有さず、かつ電気的接続部1aを有すること、および負極層2が負極集電層21を有さず、かつ電気的接続部2aを有すること以外、図1Aの固体電池と同様の構造を有している。図5は、電池要素100において直列型複電池構造を有する本発明の固体電池の別の一例を示す模式的断面図である。図5の固体電池は、正極層1が正極集電層11を有さず、かつ電気的接続部1aを有すること、および負極層2が負極集電層21を有さず、かつ電気的接続部2aを有すること以外、図2の固体電池と同様の構造を有している。図6は、電池要素100において並列型複電池構造を有する本発明の固体電池の別の一例を示す模式的断面図である。図6の固体電池は、正極層1が正極集電層11を有さず、かつ電気的接続部1aを有すること、および負極層2が負極集電層21を有さず、かつ電気的接続部2aを有すること以外、図3の固体電池と同様の構造を有している。
 電池要素100は、後述する保護層5および側面補強部6により覆われる固体電池の本体部分であり、電池構成単位10を1つ以上備えている。電池構成単位10は、電池機能を奏し得る最小の構成単位という意味であり、相互に対向する1つの正極層1および1つの負極層2ならびに正極層1と負極層2との間に配置される1つの固体電解質層3を含む。
 電池要素100は、例えば図1Aおよび図4に示すように、電池構成単位10を1つのみ有する単電池構造を有していてもよい。また例えば、電池要素100は、図2~図3および図5~図6に示すように、2つ以上の電池構成単位10を、各電池構成単位10を構成する各層の積層方向Lに沿って積層された複電池構造を有していてもよい。電池要素100は、複電池構造を有する場合、例えば図2および図5に示すように、2つ以上の電池構成単位10(または当該電池構成単位を構成する各層)が電気的に直列に配置された直列型構造を有していてもよいし、または例えば図3および図6に示すように、2つ以上の電池構成単位10(または当該電池構成単位を構成する各層)が電気的に並列に配置された並列型構造を有していてもよい。
 電池要素100を構成する全ての層は、より長期的に電池の劣化を抑制する観点から、隣接する2つの層間で、焼結体同士の一体焼結をなしていることが好ましい。全ての層が、隣接する2つの層間で、焼結体同士の一体焼結をなしているとは、隣接する2つの層は焼結により接合されているという意味である。詳しくは、隣接する2つの層はいずれも焼結体でありながら、一体的に焼結されている。なお、隣接する2つの層間において厳密に全部が一体化されていなければならないというわけではなく、一部分が一体化されていなくてもよい。隣接する2つの層は全体として一体化されていればよい。
 例えば、図1Aおよび図2~図3に示すように、電池要素100が1つ以上の電池構成単位10を有し、かつ正極層1および負極層2がそれぞれ正極集電層11および負極集電層21を有する場合、正極集電層11、正極層1、固体電解質層3、負極層2および負極集電層21は所定の積層順序で一体焼結された構成を採っていることが好ましい。
 また例えば、図4~図6に示すように、電池要素100が1つ以上の電池構成単位10を有し、かつ正極層1および負極層2がそれぞれ正極集電層11および負極集電層21を有さない場合、正極層1、固体電解質層3および負極層2は所定の積層順序で一体焼結された構成を採っていることが好ましい。
 なお、電池要素100が、図2および図5に示すように、直列型複電池構造を有し、かつ電池構成単位10間に接続層7を有する場合、当該接続層7もまた、他の層と同様に、隣接する層と焼結により接合されていることが好ましい。
 正極層1および負極層2は、図1Aおよび図2~図3に示すように、それぞれ正極集電層11および負極集電層21を有していてもよいし、または図4~図6に示すように、それぞれ正極集電層11および負極集電層21を有さなくてもよい。
 正極層1および負極層2がそれぞれ正極集電層11および負極集電層21を有する場合、図1Aおよび図2~図3に示すように、正極集電層11および負極集電層21それぞれに、外部と電気的に接続するための電気的接続部11aおよび21aが設けられる。電気的接続部11aおよび21aは電子を出し入れするための電子出し入れ部ともいう。
 正極層1および負極層2がそれぞれ正極集電層11および負極集電層21を有さない場合、図4~図6に示すように、正極層1および負極層2それぞれに、外部と電気的に接続するための電気的接続部1aおよび2aが設けられる。電気的接続部1aおよび2aは電子を出し入れするための電子出し入れ部ともいう。
 図2~図3および図5~図6に示す固体電池は電池要素100において、2つの電池構成単位10を含んでいるが、1つの固体電池に含まれる電池構成単位10の数は特に限定されず、例えば、1個以上100個以下、特に1個以上50個以下であってもよい。
 本発明の固体電池は平面視においてあらゆる形状を有していてもよく、通常は矩形状を有する。矩形状は正方形および長方形を包含する。
(正極層および負極層)
 正極層1はいわゆる正極活物質層のことであり、正極集電層11を付加的に有してもよい。正極層1が正極集電層11を有する場合、正極層1は正極集電層11の一方の側に設けられてもよいし、または両方の側に設けられてもよい。正極層1は、正極活物質粒子を含む焼結体により構成されており、通常は正極活物質粒子、電子伝導性材料粒子および固体電解質層3に含まれる固体電解質粒子を含む焼結体により構成されてもよい。
 負極層2はいわゆる負極活物質層のことであり、負極集電層12を付加的に有してもよい。負極層2が負極集電層21を有する場合、負極層2は負極集電層21の一方の側に設けられてもよいし、または両方の側に設けられてもよい。負極層2は、負極活物質粒子を含む焼結体により構成されており、負極活物質粒子、電子伝導性材料粒子および固体電解質層3に含まれる固体電解質粒子含む焼結体により構成されてもよい。
 正極層に含まれる正極活物質および負極層に含まれる負極活物質は、固体電池において電子の受け渡しに関与する物質であり、固体電解質層を構成する固体電解質材料に含まれるイオンが正極と負極との間で移動(伝導)して電子の受け渡しが行われることで充放電がなされる。正極層および負極層は特にリチウムイオンを吸蔵放出可能な層であることが好ましい。つまり、本発明の固体電池は、固体電解質層を介してリチウムイオンが正極と負極との間で移動して電池の充放電が行われる固体二次電池であることが好ましい。
 正極層に含まれる正極活物質としては、特に限定されず、例えば、ナシコン型構造を有するリチウム含有リン酸化合物、オリビン型構造を有するリチウム含有リン酸化合物、リチウム含有層状酸化物、およびスピネル型構造を有するリチウム含有酸化物等から成る群から選択される少なくとも一種が挙げられる。ナシコン型構造を有するリチウム含有リン酸化合物の一例としては、Li(PO等が挙げられる。オリビン型構造を有するリチウム含有リン酸化合物の一例としては、LiFe(PO、LiMnPO等が挙げられる。リチウム含有層状酸化物の一例としては、LiCoO、LiCo1/3Ni1/3Mn1/3等が挙げられる。スピネル型構造を有するリチウム含有酸化物の一例としては、LiMn、LiNi0.5Mn1.5等が挙げられる。
 負極層に含まれる負極活物質としては、特に限定されず、例えば、Ti、Si、Sn、Cr、Fe、Nb、および、Moからなる群より選ばれる少なくとも一種の元素を含む酸化物、黒鉛-リチウム化合物、リチウム合金、ナシコン型構造を有するリチウム含有リン酸化合物、オリビン型構造を有するリチウム含有リン酸化合物、およびスピネル型構造を有するリチウム含有酸化物等から成る群から選択される少なくとも一種が挙げられる。リチウム合金の一例としては、Li-Al等が挙げられる。ナシコン型構造を有するリチウム含有リン酸化合物の一例としては、Li(PO等が挙げられる。オリビン型構造を有するリチウム含有リン酸化合物の一例としては、LiFe(PO等が挙げられる。スピネル型構造を有するリチウム含有酸化物の一例としては、LiTi12等が挙げられる。
 正極層および負極層に含まれる電子伝導性材料としては、特に限定されず、銀、パラジウム、金、プラチナ、アルミニウム、銅、ニッケル等の金属材料;および炭素材料が挙げられる。特に、炭素は正極活物質、負極活物質および固体電解質材と反応し難く、固体電池の内部抵抗の低減に効果があるため好ましい。
 正極層および負極層に含まれる固体電解質材料は、例えば、後述の固体電解質層に含まれ得る固体電解質材料と同様の材料から選択されてよい。
 正極層および負極層はそれぞれ独立して焼結助剤を含んでよい。焼結助剤は、特に限定されるものではなく、例えば、リチウム酸化物、ナトリウム酸化物、カリウム酸化物、酸化ホウ素、酸化ケイ素、酸化ビスマス、および酸化リンからなる群から選択される少なくとも1種であり得る。
 正極層1および負極層2がそれぞれ後述の正極集電層11および負極集電層21を有さない場合、図4~図6に示すように、正極層1および負極層2はそれぞれ、外部と電気的に接続するための電気的接続部1aおよび2aを有し、端子と電気的に接続可能に構成されている。電気的接続部1aおよび2aは、後述する保護層5または側面補強部6による被覆がない露出部分1bおよび2bを有し、通常、それぞれ正極層1および負極層2の端部に設けられる。
 正極層および負極層の厚みは特に限定されず、例えば、それぞれ独立して、2μm以上50μm以下、特に5μm以上30μm以下であってもよい。
(正極集電層および負極集電層)
 正極層1および負極層2はそれぞれ固体電解質層3とは反対側に正極集電層11および負極集電層21を有してもよい。正極層1および負極層2がそれぞれ正極集電層11および負極集電層21を有する場合、図1Aおよび図2~図3に示すように、正極集電層11および負極集電層21はそれぞれ、外部と電気的に接続するための電気的接続部11aおよび21aを有し、端子と電気的に接続可能に構成されている。電気的接続部11aおよび21aは、後述する保護層5または側面補強部6による被覆がない露出部分11bおよび21bを有し、通常、それぞれ正極集電層11および負極集電層21の端部に設けられる。
 正極集電層11および負極集電層21はそれぞれ箔の形態を有していてもよいが、一体焼成による固体電池の製造コストの低減および固体電池の内部抵抗の低減の観点から、焼結体の形態を有することが好ましい。
 正極集電層11および負極集電層21が焼結体の形態を有する場合、例えば、電子伝導性材料粒子および焼結助剤を含む焼結体により構成されてもよい。正極集電層11および負極集電層21に含まれる電子伝導性材料は、例えば、正極層および負極層に含まれ得る電子伝導性材料と同様の材料から選択されてよい。正極集電層11および負極集電層21に含まれる焼結助剤は、例えば、正極層および負極層に含まれ得る焼結助剤と同様の材料から選択されてよい。
 正極集電層および負極集電層の厚みは特に限定されず、例えば、それぞれ独立して、1μm以上5μm以下、特に1μm以上3μm以下であってもよい。
(固体電解質層)
 固体電解質層3は固体電解質粒子を含む焼結体により構成されている。固体電解質粒子の材料(すなわち固体電解質材料)は、正極層と負極層との間で移動し得るイオンを提供できる限り特に限定されない。固体電解質材料としては、例えば、ナシコン構造を有するリチウム含有リン酸化合物、ペロブスカイト構造を有する酸化物、ガーネット型またはガーネット型類似構造を有する酸化物等が挙げられる。ナシコン構造を有するリチウム含有リン酸化合物としては、Li(PO(1≦x≦2、1≦y≦2、Mは、Ti、Ge、Al、GaおよびZrからなる群より選ばれた少なくとも一種)が挙げられる。ナシコン構造を有するリチウム含有リン酸化合物の一例としては、例えば、Li1.2Al0.2Ti1.8(PO等が挙げられる。ペロブスカイト構造を有する酸化物の一例としては、La0.55Li0.35TiO等が挙げられる。ガーネット型またはガーネット型類似構造を有する酸化物の一例としては、LiLaZr12等が挙げられる。
 固体電解質層は焼結助剤を含んでよい。固体電解質層に含まれる焼結助剤は、例えば、正極層および負極層に含まれ得る焼結助剤と同様の材料から選択されてよい。
 固体電解質層の厚みは特に限定されず、例えば、1μm以上15μm以下、特に1μm以上5μm以下であってもよい。
(保護層)
 保護層5は、固体電池における電池要素100の上下面に形成されるものであり、電気的、物理的および化学的に電池要素100を保護するためのものである。本発明において保護層5は樹脂以外の絶縁性物質からなっている。絶縁性物質とは、イオン伝導性および電子伝導性を有さない物質という意味である。従って、樹脂以外の絶縁性物質とは、イオン伝導性および電子伝導性を有さない絶縁性無機物質のことである。イオン伝導性を有さない無機物質とは、イオン伝導性が1×10-7S/cm以下である無機物質という意味である。より長期的に電池の劣化を抑制する観点から、イオン伝導性は1×10-12S/cm以下であることが好ましい。イオン伝導性を有さない無機物質のイオン導電性は通常、1×10-18S/cm以上である。電子伝導性を有さない無機物質とは、電子伝導性が1×10-7S/cm以下である無機物質という意味である。より長期的に電池の劣化を抑制する観点から、電子伝導性は1×10-12S/cm以下であることが好ましい。電子伝導性を有さない無機物質の電子導電性は通常、1×10-18S/cm以上である。
 保護層5がこのような樹脂以外の絶縁性物質から構成されるため、保護層5は、より一層、優れた耐湿性、耐環境性および耐久性を有する。詳しくは、保護層5は、樹脂(例えば高分子化合物)を含む保護層と比較して、水分およびガス(二酸化炭素)を吸着、吸収および透過し難く、かつ電池要素との接合強度が高い保護層とすることができる。その結果として、本発明の固体電池において、保護層5は、高分子化合物を含む保護層と比較して、水分およびガス(二酸化炭素)の吸着および吸収による膨張に基づく割れおよび脱落が起こり難く、かつ振動および衝撃などによる脱落が起こり難い。また保護層5は、高分子化合物を含む保護層と比較して、水分およびガス(二酸化炭素)を透過させ難い。これらの結果、本発明の固体電池は電池性能の低下をより一層、抑制できる。電池要素において、正極層、負極層および固体電解質層はイオン伝導性を有し、リチウムまたはナトリウムを伝導するが、水分およびガス(二酸化炭素)の吸着および吸収により、電池性能が低下しやすい。樹脂(例えば高分子化合物)を含む保護層は、樹脂の存在により、水分およびガス(二酸化炭素)を吸着、吸収および透過しやすい。保護層が、水分およびガス(二酸化炭素)を吸着および吸収しやすいと、保護層の膨張に基づく割れおよび脱落が起こりやすく、また振動および衝撃などによる脱落も起こりやすい。保護層に割れおよび/または脱落が起こると、正極層、負極層および固体電解質層が水分およびガス(二酸化炭素)を吸着および吸収する。また保護層が水分およびガス(二酸化炭素)を透過させやすいと、電池要素の内部に水分およびガス(二酸化炭素)が侵入し、正極層、負極層および固体電解質層が水分およびガス(二酸化炭素)を吸着および吸収する。これらの結果、電池性能が低下する。
 保護層5を構成する樹脂以外の絶縁性物質として、例えば、ガラスやセラミックスが挙げられる。ガラスとしては、石英ガラス(SiO)や、SiOとPbO,B,MgO,ZnO,Bi,NaO,Alの少なくとも1つから選ばれるものとを組合わせた複合酸化物系ガラス等が挙げられる。セラミックスとしては、アルミナ、コージライト、ムライト、ステアタイト、フォルステライト等が挙げられる。保護層5はこれらの物質からなる群から選択される1種以上の材料から構成されてもよい。保護層5は、電池要素100をショートさせない限り、電子伝導性を有する材料(例えば、金属)を含んでもよい。保護層5が電子伝導性を有する材料を含む場合、電子伝導性材料の含有割合は、例えば1体積%以下であってもよい。保護層5が電子伝導性材料(例えば、金属)を含むことにより、電池反応により発生する熱を外部に円滑に逃がすことができる。
 保護層5は上記した樹脂以外の絶縁性物質粒子を含む焼結体により構成されている。本発明において保護層5を構成する焼結体は、絶縁性物質粒子間に気孔を有するものの、その厚み方向(例えば、積層方向L)において、水分およびガス(二酸化炭素)の吸着、吸収および透過を抑制し得る程度の緻密性を有する。
 保護層5は、高分子化合物等の樹脂を含むことを厳密に許容されないわけではなく、製造時に使用される高分子化合物および/またはその熱分解物が残留していてもよい。保護層における高分子化合物およびその熱分解物等の残留物の含有量は通常、保護層全量に対して、0.1重量%以下、特に0.01重量%以下である。なお、正極層、正極集電層、負極層、負極集電層、固体電解質層および後述の側面補強部においても、保護層においてと同様に、残留物が残留していてもよい。例えば、正極層、正極集電層、負極層、負極集電層、固体電解質層および側面補強部の各層または各部における残留物の含有量は、当該各層全量に対する値として、保護層における残留物の含有量範囲と同様の範囲内であってもよい。
 保護層5の気孔率は例えば、0.1体積%以上20体積%以下、特に1体積%以上10体積%以下であってよい。気孔率は重量気孔率法、CTスキャンを用いた計算トモグラフィー法、液浸法などによって測定された値を用いている。
 保護層5の厚み方向の酸素透過性は例えば、10-1cc/m/day/気圧 以下、特に10-3cc/m/day/気圧 以下であってよい。
保護層5の厚み方向のHO透過性は例えば、10-2g/m/day 以下、特に10-4g/m2/day 以下であってよい。HO透過性はキャリアガス法、着圧法、Ca腐食法によって25℃で測定された値を用いている。
 保護層5は、電池性能の低下をより一層、抑制する観点から、最も厚い部分の厚みが500μm以下であることが好ましく、より好ましくは100μm以下、さらに好ましくは50μm以下、最も好ましくは20μm以下である。保護層5は、水分およびガス(二酸化炭素)の吸着、吸収および透過等による電池性能の低下をより一層、抑制する観点から、平均厚みが1μm以上であることが好ましく、より好ましくは5μm以上である。
 保護層5の最も厚い部分の厚みおよび平均厚みはそれぞれ、任意の100箇所における厚みについての最大厚みおよび平均厚みを用いている。
 保護層5は電池要素100の上下面を覆っている。保護層5は、当該保護層5により覆われている電池要素100の上下面と図1Aおよび図2~図6に示すように直接的に接していてもよいし、または他の層(例えば、無機物層または金属層)を介して間接的に接していてもよい。保護層5が電池要素の上下面と直接的に接しているとは、保護層5が、上記他の層も、樹脂層も、液体電解質も、電池要素との間に介在することなく、電池要素の上下面と直接的に接しているという意味である。本発明においては、保護層5は、以下の理由(1)および(2)から、当該保護層5により覆われている電池要素100の表面と直接的に接していることが好ましい:
 理由(1):固体電池に強い振動および/または衝撃が加わった際も保護層5はより一層、脱落し難く、保護層の脱落に伴う電池性能の低下がより一層、生じ難い;および
 理由(2):電池機能を奏さない他の層が存在しないことで、固体電池の体積が低減されるため、電池のエネルギー密度が向上する。
 保護層5は当該保護層5により覆われている電池要素100の上下面と焼結体同士の一体焼結をなしていることが好ましい。保護層5が当該保護層5により覆われている電池要素100の上下面と焼結体同士の一体焼結をなしているとは、保護層5が当該保護層5により覆われている電池要素100の上下面と焼結により接合されているという意味である。詳しくは、保護層5と、当該保護層5により覆われている電池要素100の上下面とは、いずれも焼結体でありながら、一体的に焼結されている。例えば、保護層5および電池要素100は一体焼結された構成を採っていることが好ましい。なお、保護層5と当該保護層5により覆われている電池要素100の上下面との間において厳密に全部が一体化されていなければならないというわけではなく、一部分が一体化されていなくてもよい。保護層5と当該保護層5により覆われている電池要素100の上下面とは全体として一体化されていればよい。
 保護層5により覆われている電池要素100の上下面は通常、電池要素100の最外層の表面である。電池要素100の最外層とは、電池要素を構成する層100のうち、最上に配置される最上層と最下に配置される最下層のことである。最外層の表面は最上層の上面および最下層の下面のことである。
 図1Aおよび図2~図3に示すように、正極層1および負極層2がそれぞれ正極集電層11および負極集電層21を有する場合、保護層5によって覆われる最外層は通常、正極集電層11および負極集電層21から選択される。図1Aおよび図2において、保護層5によって覆われる最外層は最上層としての正極集電層11および最下層としての負極集電層21である。図3において、保護層5によって覆われる最外層は最上層としての正極集電層11および最下層としての正極集電層11である。
 図4~図6に示すように、正極層1および負極層2がそれぞれ正極集電層および負極集電層を有さない場合、保護層5によって覆われる最外層は通常、正極層1および負極層2から選択される。図4および図5において、保護層5によって覆われる最外層は最上層としての正極層1および最下層としての負極層2である。図6において、保護層5によって覆われる最外層は最上層としての正極層1および最下層としての正極層1である。
 保護層5は、断面視において、電池要素100よりもせり出していることが好ましい。保護層5が、断面視において、電池要素100よりもせり出しているとは、保護層5(特にその端部)が、図1Aおよび図2~図6に示すように、断面視において積層方向Lに対して垂直な面内方向Mで外側m2に、電池要素100(特にその端部)よりも突出しているという意味である。このような保護層5のせり出しは通常、図1Bに示すように、平面視において、保護層5の全周端部において形成される。保護層5において、特に電池要素100からせり出している部分を「せり出し部51」と称している。詳しくは、保護層5は、上下面ともに、せり出し部51を有しており、すなわち電池要素100の上面を覆っている保護層5は上面せり出し部を有し、電池要素100の下面を覆っている保護層5は下面せり出し部を有している。図1Bは、図1Aに示す本発明の固体電池を示す模式的平面図である。図1Bにおいて、電池要素100は平面視において当該電池要素100を構成する各層の重なり部が示されており、従って、例えば、正極集電層11および負極集電層21それぞれの電気的接続部11aおよび21aは省略されている。積層方向Lに対して垂直な面内方向Mとは、積層方向Lに対する垂直な面内において当該固体電池を基準としたあらゆる方向を意味する。そのような面内方向Mの外側m2とは、当該面内方向Mにおいて、当該固体電池からみたときの外側m2であり、当該外側方向m2の反対方向が内側方向m1である。保護層5が、断面視において、電池要素100よりもせり出していることにより、電池要素100が、電池構成単位100を構成する各層の積層方向Lに対して垂直な面内方向Mについて外側に体積膨張を起こしても、当該体積膨張を、電池要素100の上下面にある保護層5のせり出し部51間に収めることができる。このため、当該方向Mで隣接する固体電池との接触および短絡を十分に防止することができる。
 保護層5のせり出し長(すなわち、せり出し部51のせり出し長)n(n1およびn2を包含する)(mm)は、体積膨張を収めることができる限り特に限定されず、例えば、当該せり出し方向の全長N(N1およびN2を包含する)(mm)に対して、0.00001×N以上、0.1×N以下、特に0.0001×N以上、0.01×N以下であってもよい。
(側面補強部)
 本発明の固体電池は、水分およびガス(二酸化炭素)の吸着、吸収および透過等による電池性能の低下をより一層、抑制する観点から、図1Aおよび図2~図6に示すように、電池要素100の側面、すなわち電池要素100を構成する層からなる積層体の側面に、側面補強部6を有することが好ましい。例えば、上記したように保護層5が断面視において電池要素100よりもせり出している場合、本発明の固体電池200A~200Fは、図1Aおよび図2~図6に示すように、電池要素100の上面を覆っている保護層5のせり出し部51(上面せり出し部)と、電池要素100の下面を覆っている保護層5のせり出し部51(下面せり出し部)との間において、電池要素100の側面を覆って補強する側面補強部6を有することが好ましい。側面補強部6は電池要素100の側面を、電池要素の上面(すなわち当該上面の高さ)から下面(すなわち当該下面の高さ)まで覆っている。なお、電池要素100の側面は、固体電池の模式的断面図(例えば、図1Aおよび図2~図6)の紙面において、電池要素の右側側面および左側側面だけでなく、当該紙面に対して手前側面および奥手側面も包含する。
 側面補強部6は、固体電解質粒子を含む焼結体により構成されていてもよいし、樹脂以外の絶縁性物質粒子を含む焼結体により構成されていてもよいし、またはそれらの混合粒子を含む焼結体により構成されていてもよい。側面補強部6がこのような焼結体により構成されるため、側面補強部6は、より一層、優れた耐湿性、耐環境性および耐久性を有する。詳しくは、側面補強部6は、水分およびガス(二酸化炭素)を相対的に吸着、吸収および透過し難く、かつ電池要素との接合強度が高い側面補強部6とすることができる。その結果として、本発明の固体電池において、側面補強部6は相対的に、水分およびガス(二酸化炭素)の吸着および吸収による膨張に基づく割れおよび脱落が起こり難く、かつ振動および衝撃などによる脱落が起こり難い。また側面補強部6は相対的に、水分およびガス(二酸化炭素)を透過させ難い。これらの結果、本発明の固体電池は電池性能の低下をより一層、抑制できる。このような固体電池の電池性能に関する低下のより一層の抑制の観点からは、側面補強部6は、樹脂以外の絶縁性物質粒子を含む焼結体により構成されていることが好ましい。
 側面補強部6を構成し得る樹脂以外の絶縁性物質は独立して、保護層に含まれ得る樹脂以外の絶縁性物質と同様の材料から選択されてよい。
 側面補強部6の厚みは特に限定されず、保護層5がせり出し部51を有する場合、当該せり出し部51のせり出し長以下である。側面補強部6の厚みは、水分およびガス(二酸化炭素)の吸着、吸収および透過等による電池性能の低下をより一層、抑制する観点から、例えば、5μm以上300μm以下、特に5μm以上100μm以下が好ましい。なお、側面補強部6の厚みは、積層方向Lに対する垂直な面内方向Mでの厚みのことである。
 側面補強部6は電池要素100の側面と焼結体同士の一体焼結をなしていることが好ましい。側面補強部6が電池要素100の側面と焼結体同士の一体焼結をなしているとは、側面補強部6が電池要素100の側面と焼結により接合されているという意味である。詳しくは、側面補強部6と、電池要素100の側面とは、いずれも焼結体でありながら、一体的に焼結されている。例えば、側面補強部6および電池要素100は一体焼結された構成を採っていることが好ましい。なお、側面補強部6と当該側面補強部6により覆われている電池要素100の側面との間において厳密に全部が一体化されていなければならないというわけではなく、一部分が一体化されていなくてもよい。側面補強部6と当該側面補強部6により覆われている電池要素100の側面とは全体として一体化されていればよい。
 側面補強部6の外周面61は、断面視において、積層方向Lに垂直な面内方向Mで内側m1に、湾曲していることが好ましい。湾曲とは、連続的に曲がっていること、または漸次的に窪んでいることである。側面補強部6の外周面61が、断面視において、積層方向Lに垂直な面内方向Mで内側m1に、湾曲しているとは、図7~図11に示すように、当該断面視において側面補強部6の外周面61は、積層方向Lについて上方に進むに従って、漸次的に電池要素100の側面に接近した後、漸次的に当該側面から遠ざかることである。換言すると、湾曲の深さは、積層方向Lについて上方に進むに従って、漸次的に減少した後、漸次的に増加する。図7は、電池要素において単電池構造を有する本発明の固体電池の別の一例を示す模式的断面図である。図7の固体電池は、側面補強部6が外周面61に湾曲を有すること以外、図1Aの固体電池と同様である。図8は、電池要素において直列型複電池構造を有する本発明の固体電池の別の一例を示す模式的断面図である。図8の固体電池は、側面補強部6が外周面61に湾曲を有すること以外、図2の固体電池と同様である。図9および図10は、電池要素において並列型複電池構造を有する本発明の固体電池の別の一例を示す模式的断面図である。図9および図10の固体電池は、側面補強部6が外周面61に湾曲を有すること以外、図3の固体電池と同様である。図11は、電池要素において並列型複電池構造を有する本発明の固体電池の別の一例を示す模式的断面図である。なお、図11の固体電池は、4つの電池構成単位10を含む並列型複電池構造を有する。
 側面補強部6の外周面61における湾曲は、平面視において、側面補強部6の全周にわたって形成されていてもよい。
 湾曲の深さは、固体電池の形状が保持できる限り特に限定されない。湾曲の最大深さdは通常、せり出し部51のせり出し長n(mm)について、0.01×n以上、0.8×n以下、特に0.1×n以上、0.5×n以下である。湾曲の最大深さdは、例えば、50μm以下、特に1μm以上50μm以上であってもよい。
 断面視における積層方向Lに対する垂直な面内方向Mにおける片側あたりの湾曲の数は、電池要素100を構成する各層の体積変化(例えば、焼結による体積変化)に応じて、1つまたはそれ以上(例えば、1つ以上3つ以下)であってもよい。片側とは、断面視における左右方向の片側という意味である。例えば、図7、図8、図10および図11に示す固体電池のように、断面視における左右方向の片側あたりの湾曲の数は1つであってもよい。また例えば、図9に示す固体電池のように、断面視における左側の湾曲の数は1つであって、右側の湾曲の数は2つであってもよい。図9に示す固体電池における右側の湾曲の数が2つになるのは、例えば、焼結時において負極集電層21の体積収縮の程度が他の層よりも小さいことに起因する。
 側面補強部6は、保護層5の気孔率と同様の範囲内の気孔率を有することが好ましい。
 側面補強部6は、保護層5の厚み方向の透気度と同様の範囲内の厚み方向の透気度を有することが好ましい。
 本発明においては、電気的接続部11a、21a、1aおよび2aの少なくとも一部は保護層5によっても側面補強部6によっても覆わず、電気的接続部に露出部を設ける。
 例えば、図1A、図2~図3および図7~図11に示すように、正極層1および負極層2がそれぞれ正極集電層11および負極集電層21を有する場合、正極集電層11および負極集電層21の電気的接続部11aおよび21aの少なくとも一部は保護層5によっても側面補強部6によっても覆わず、当該電気的接続部に露出部11bおよび21bを設ける。露出部11bおよび21bとは、それぞれ正極集電層11および負極集電層21が露出している部分という意味である。このとき、電池性能の低下をより長期的に抑制する観点から、電池要素100を構成する正極層1、正極集電層11、負極層2、負極集電層21および固体電解質層3は、露出部11bおよび21b以外、保護層5または側面補強部6の外側に露出していないことが好ましい。換言すると、電池要素100の外側表面のうち、露出部11bおよび21b以外の全面は、保護層5または側面補強部6により覆われていることが好ましい。図1A、図2~図3および図7~図11において、全ての露出部11bおよび21bは、電池要素100(または固体電池)の側面に形成されているが、これに限定されない。例えば、最外層としての正極集電層11および負極集電層21における電気的接続部11aおよび21aの露出部11bおよび21bは電池要素100(または固体電池)の上面または下面に設けてもよい。
 また例えば、図4~図6に示すように、正極層1および負極層2がそれぞれ正極集電層および負極集電層を有さない場合、正極層1および負極層2の電気的接続部1aおよび2aの少なくとも一部は保護層5によっても側面補強部6によっても覆わず、当該電気的接続部に露出部1bおよび2bを設ける。露出部1bおよび2bとは、それぞれ正極層1および負極層2が露出している部分という意味である。このとき、電池性能の低下をより長期的に抑制する観点から、電池要素100を構成する正極層1、負極層2および固体電解質層3は、露出部1bおよび2b以外、保護層5または側面補強部6の外側に露出していないことが好ましい。換言すると、電池要素100の外側表面のうち、露出部1bおよび2b以外の全面は保護層5または側面補強部6により覆われていることが好ましい。図4~図6において、全ての露出部1bおよび2bは、電池要素100(または固体電池)の側面に形成されているが、これに限定されない。例えば、最外層としての正極層1および負極層2における電気的接続部1aおよび2aの露出部1bおよび2bは電池要素100(または固体電池)の上面または下面に設けてもよい。
(接続層)
 本発明の固体電池が、図2および図5に示すように、電池要素100において直列型複電池構造を有する場合、当該固体電池200B、200Eは電池構成単位10間において接続層7を有していてもよい。接続層7は、正極層1と負極層2との接続を達成するとともに、これらの電気的短絡を防止する。
 接続層7は、樹脂以外の絶縁性物質粒子を含む焼結体により構成されていてもよい。
 接続層7を構成し得る樹脂以外の絶縁性物質は独立して、保護層に含まれ得る樹脂以外の絶縁性物質と同様の材料から選択されてよい。
 接続層7の厚みは特に限定されず、例えば、1μm以上10μm以下、特に1μm以上3μm以下が好ましい。
 接続層7は隣接する層(例えば、正極層1および/または負極層2)と焼結体同士の一体焼結をなしていることが好ましい。接続層7が隣接する層と焼結体同士の一体焼結をなしているとは、接続層7が隣接する層と焼結により接合されているという意味である。詳しくは、接続層7と、隣接する層とは、いずれも焼結体でありながら、一体的に焼結されている。例えば、接続層7は電池要素100を構成する他の全ての層とともに一体焼結された構成を採っていることが好ましい。なお、接続層7と隣接する層との間において厳密に全部が一体化されていなければならないというわけではなく、一部分が一体化されていなくてもよい。接続層7と隣接する層とは全体として一体化されていればよい。
[固体電池群]
 本発明の固体電池群は2つ以上の固体電池を含む。本発明の固体電池群は、1つ以上の上記した本発明の固体電池を含み、電池性能の低下をより一層、長期的に抑制する観点から、2つ以上の本発明の固体電池のみを含むことが好ましい。すなわち、本発明の固体電池群は2つ以上の本発明の固体電池のみから構成されることが好ましい。
 本発明の固体電池群が2つ以上の本発明の固体電池のみから構成される場合、当該2つ以上の本発明の固体電池は、それぞれ独立して、上記した本発明の固体電池からなる群から選択されればよい。詳しくは、当該2つ以上の本発明の固体電池は、例えば、以下の群から選択される少なくとも1つの因子が相互に異なっていてもよいし、またはこれらの因子が全て同じであってもよい:
・固体電池の電池要素100に含まれる電池構成単位10の数、ならびに正極層1(および正極集電層11)、負極層2(および負極集電層21)、固体電解質層3、保護層5および側面補強部6(ならびに接続層7)における構成材料の種類および寸法からなる群。
 なお、本発明の固体電池群を構成する全ての固体電池は、電池反応の均一化に基づいて電池性能の低下をより一層、長期的に抑制する観点から、同じ(または共通の)電池構成単位10を有することが好ましい。全ての固体電池が同じ(または共通の)電池構成単位10を有するとは、全ての固体電池において、正極層1(および正極集電層11)、負極層2(および負極集電層21)および固体電解質層の構成材料の種類および寸法が同じであることを意味する。
 本発明の固体電池群は、ユーザーが要求する固体電池群のスペック(例えば電池容量)に容易に応え、かつ/または電池性能の低下をより一層、長期的に抑制する観点から、上記した全ての因子が同じ2つ以上の本発明の固体電池のみから構成されるか、または以下の群から選択される少なくとも1つの因子が相互に異なる2つ以上の本発明の固体電池のみから構成されることが好ましい。
・固体電池の電池要素100に含まれる電池構成単位10の数、および保護層における構成材料の種類からなる群。
 電池要素100に含まれる電池構成単位10の数が異なる2つ以上の固体電池を選択することにより、ユーザーが要求する固体電池群の電池容量により一層、容易に応えることができる。
 保護層の構成材料として比重が異なる構成材料を用いた2つ以上の固体電池を選択することにより電池の重心を制御し、基板などからの脱落を抑制することができ、電池性能の低下がより一層、長期的に抑制される。
 このような好ましい本発明の固体電池群の実施態様を以下に例示する。
 例えば、図12の固体電池群500Aは2つの本発明の固体電池のみを含み、上部の固体電池は図7の固体電池200Gに相当し、下部の固体電池は、上部の固体電池200Gの保護層5と構成材料が異なる2つの保護層5'を有する固体電池200G'に相当する。図12は、本発明の第1実施態様に係る固体電池群の模式的断面図を示す。なお、保護層5'は、実際に使用された構成材料が保護層5と異なることを示しており、上記した保護層5に包含されるものである。なお、保護層5'は、実際に使用された構成材料が保護層5と異なることを示しており、上記した保護層5に包含されるものである。図12において、2つの固体電池は、単電池構造を有し、かつ並列接続になるように接続されている。これにより、固体電池群500Aは、当該単電池構造の固体電池1つと比較して、電池電圧を変えずに、容量を大きくすることができる。
 本発明の固体電池群に含まれる固体電池の数は特に限定されず、例えば、2個以上、特に2個以上100個以下であってもよく、好ましくは2個以上50個以下である。固体電池群を構成する2個以上の固体電池の接続は、図12において並列接続に基づいているが、直列接続に基づいていてもよい。
 本発明の固体電池群においては、当該固体電池群を構成する2つ以上(好ましくは全て)の固体電池のうち、隣接する2つの固体電池は保護層を介して焼結体同士の一体焼結をなしていることが好ましく、全ての隣接する2つの固体電池は保護層を介して焼結体同士の一体焼結をなしていることがより好ましい。これにより、固体電池群に強い振動や衝撃が加わった際も、固体電池同士の分離がし難く、分離に伴う電池性能の低下が生じ難い。また、隣接する2つの固体電池間に保護層が介在しないものに比べて、電池性能の低下がより一層、抑制できる。このメカニズムの詳細は不明であるが、以下のメカニズムに基づくものと考えられる。隣接する2つの固体電池間に保護層が介在しない場合、電池反応(充放電反応)に伴う正極層および負極層の体積膨張により生じる応力は、たとえ局所的であっても、隣接する2つの固体電池間で伝達され易い。このような応力は、保護層の介在により、分散され、隣接する2つの固体電池間で伝達され難くなるため、電池性能の低下がより一層、抑制できる。
 隣接する2つの固体電池が保護層を介して焼結体同士の一体焼結をなしているとは、隣接する2つの固体電池は保護層を介して焼結によって接合されているという意味である。詳しくは、隣接する2つの固体電池はいずれも焼結体でありながら、一体的に焼結されている。より詳しくは、各固体電池内において保護層と電池要素とが焼結体同士の一体焼結(接合)をなしながらも、一方の固体電池の保護層と、他方の固体電池の保護層とが焼結体同士の一体焼結(接合)をなしている。なお、各固体電池内における保護層と電池要素との間、および一方の固体電池の保護層と他方の固体電池の保護層との間において厳密に全部が一体化されていなければならないというわけではなく、一部分が一体化されていなくてもよい。各固体電池内における保護層と電池要素とは全体として一体化されていればよい。一方の固体電池の保護層と他方の固体電池の保護層とは全体として一体化されていればよい。
 本発明の固体電池群においては、当該固体電池群を構成する全ての固体電池は、図12に示すように各電池構成単位を構成する各層の積層方向Lに沿って積層されていてもよい。本発明の固体電池群を構成する少なくとも一部の固体電池は、積層方向Lに対する垂直方向Mに配置されてもよい。積層方向Lで隣接する2つの固体電池間でも、積層方向Lに対する垂直方向Mで隣接する2つの固体電池間でも、保護層を介した焼結体同士の接合を達成することができる。
 図12に示す本発明の固体電池群では、隣接する2つの固体電池間に2層の保護層(すなわち一方の固体電池の保護層と他方の固体電池の保護層)が介在しているが、当該2層の保護層を単一化し、当該2つの固体電池にとって1つの保護層を共有することもできる。例えば図13~図21に示すように、隣接する2つの固体電池間において、1層のみの保護層が介在していてもよい。本発明の固体電池群ではまた、特定の隣接する2つの固体電池間に2層の保護層が介在しつつ、また別の隣接する2つの固体電池間では1層のみの保護層が介在していてもよい。本発明の固体電池群においては、図13~図21に示すように、隣接する2つの固体電池間における2層の保護層の単一化を図ることにより、固体電池群のエネルギー密度をより一層、向上させることができる。しかも、上記したように、隣接する2つの固体電池間において、固体電池同士の分離が抑制されるだけでなく、正極層および負極層の体積膨張により生じる応力の分散による伝達が抑制されるため、電池性能の低下がより一層、抑制できる。本発明の固体電池群において隣接する2つの固体電池間に2層の保護層が介在している場合、介在する保護層の形態を「2層形態」と称する。他方、本発明の固体電池群において隣接する2つの固体電池間に1層のみの保護層が介在している場合、介在する保護層の形態を「単一形態」と称する。
 以下、本発明の固体電池群の好ましい実施態様について説明する。
 例えば、図13の固体電池群500Bは2つの本発明の固体電池のみを含み、上部および下部の固体電池はともに図7の固体電池200Gに相当しながらも、隣接する2つの固体電池間において保護層が単一化されている。図13は本発明の第2実施態様に係る固体電池群の模式的断面図を示す。図13において、2つの固体電池は、単電池構造を有し、かつ並列接続になるように接続されている。これにより、固体電池群500Bは、当該単電池構造の固体電池1つと比較して、電池電圧を変えずに、容量を大きくすることができる。
 また例えば、図14の固体電池群500Cは2つの本発明の固体電池のみを含み、上部および下部の固体電池はともに図7の固体電池200Gに相当しながらも、隣接する2つの固体電池間において保護層が単一化されており、かつ当該2つの固体電池間の保護層が上部および下部の固体電池200Gの保護層5と構成材料が異なる保護層5'である。図14は本発明の第3実施態様に係る固体電池群の模式的断面図を示す。図14において、2つの固体電池は、単電池構造を有し、かつ並列接続になるように接続されている。これにより、固体電池群500Cは、当該単電池構造の固体電池1つと比較して、電池電圧を変えずに、容量を大きくすることができる。
 また例えば、図15の固体電池群500Dは2つの本発明の固体電池のみを含み、上部の固体電池は図7の固体電池200Gに相当し、下部の固体電池は図9の固体電池200Iに相当しながらも、隣接する2つの固体電池間において保護層が単一化されている。図15は、本発明の第4実施態様に係る固体電池群の模式的断面図を示す。図15において、2つの固体電池は、単電池構造の固体電池と並列型複電池構造の固体電池であって、かつ並列接続になるように接続されている。これにより、固体電池群500Dは、上記の固体電池のうちの一方の固体電池1つと比較して、電池電圧を変えずに、容量を大きくすることができる。
 また例えば、図16の固体電池群500Eは2つの本発明の固体電池のみを含み、上部および下部の固体電池はともに図9の固体電池200Iに相当しながらも、隣接する2つの固体電池間において保護層が単一化されている。図16は、本発明の第5実施態様に係る固体電池群の模式的断面図を示す。図16において、2つの固体電池は、並列型複電池構造の固体電池であって、かつ並列接続になるように接続されている。これにより、固体電池群500Eは、当該並列型複電池構造の固体電池1つと比較して、電池電圧を変えずに、容量を大きくすることができる。
 また例えば、図17の固体電池群500Fは3つの本発明の固体電池のみを含み、当該3つの固体電池はともに図9の固体電池200Iに相当しながらも、全ての隣接する2つの固体電池間において保護層が単一化されている。図17は、本発明の第6実施態様に係る固体電池群の模式的断面図を示す。図17において、3つの固体電池は、並列型複電池構造の固体電池であって、かつ並列接続になるように接続されている。これにより、固体電池群500Fは、当該並列型複電池構造の固体電池1つ、または図16の固体電池群500E1つと比較して、電池電圧を変えずに、容量を大きくすることができる。
 また例えば、図18の固体電池群500Gは4つの本発明の固体電池のみを含み、当該4つの固体電池はともに後述の固体電池200I'に相当しながらも、全ての隣接する2つの固体電池間において保護層が単一化されている。固体電池200I'は、負極層2が負極集電層21を有さないこと、および負極層2が電気的接続部2aおよび露出部2bを有すること以外、図9の固体電池200Iと同様である。図18は、本発明の第7実施態様に係る固体電池群の模式的断面図を示す。なお、図18の各固体電池200I'において、負極層2は便宜上、1層として示されている。図18において、4つの固体電池は、並列型複電池構造の固体電池であって、かつ並列接続になるように接続されている。これにより、固体電池群500Gは、当該並列型複電池構造の固体電池1つと比較して、電池電圧を変えずに、容量を大きくすることができる。
 また例えば、図19の固体電池群500Hは2つの本発明の固体電池のみを含み、当該2つの固体電池はともに図11の固体電池200Kに相当しながらも、隣接する2つの固体電池間において保護層が単一化されている。図19は、本発明の第8実施態様に係る固体電池群の模式的断面図を示す。図19において、2つの固体電池は、並列型複電池構造の固体電池であって、かつ並列接続になるように接続されている。これにより、固体電池群500Hは、当該並列型複電池構造の固体電池1つと比較して、電池電圧を変えずに、容量を大きくすることができる。
 また例えば、図20の固体電池群500Iは2つの本発明の固体電池のみを含み、上部および下部の固体電池はともに図8の固体電池200Hに相当しながらも、隣接する2つの固体電池間において保護層が単一化されている。図20は、本発明の第9実施態様に係る固体電池群の模式的断面図を示す。図20において、隣接する2つの固体電池は、直列型構造を有し、かつ並列接続になるように接続されている。このような隣接する2つの固体電池は、図20に示すように、正極層、負極層および固体電解質層等の積層順序が相互に揃うように配置され得る。積層順序が相互に揃うとは、隣接する2つの固体電池において、積層順序が同じという意味である。これにより、当該固体電池間にある保護層5の上下の両側の電極を異なる電極(図20中では保護層5の上側が負極(2,21)、下側が正極(1,11))に設定することができる。このため、固体電池群500Iは、保護層5の両側において充放電時の体積膨張および収縮を相互に吸収することができ、電池の劣化をより一層、抑制することができる。
 また例えば、図21の固体電池群500Jは2つの本発明の固体電池のみを含み、当該2つの固体電池はともに固体電池200Hに相当しながらも、下部の固体電池200H'は積層方向Lで上下が、上部の固体電池200Hとは逆に設置されており、隣接する2つの固体電池間において保護層が単一化されている。図21において、隣接する2つの固体電池は、直列型構造を有し、かつ並列接続になるように接続されている。このような隣接する2つの固体電池は、図21に示すように、正極層、負極層および固体電解質層等の積層順序が相互に逆になるように配置され得る。積層順序が相互に逆になるとは、隣接する2つの固体電池において、積層順序が逆の順序という意味である。これにより、当該固体電池間にある保護層5の上下の両側の電極を同一の電極(図21中では負極(2,21))に設定することができる。このため、固体電池群500Jにおいて、電気的接続部(21a)の位置が集中し、電気的接続部から電池要素100内への水分等の侵入を抑制することができ、電池の劣化をより一層、抑制することができる。実用上において外部端子と接続するとき、接続不良のリスクを減らすことができる。
[固体電池の製造方法]
 本発明の固体電池は、スクリーン印刷法等の印刷法、グリーンシートを用いるグリーンシート法、またはそれらの複合法により製造することができる。以下、印刷法を採用する場合について詳しく説明するが、当該方法に限定されないことは明らかである。
 本発明の固体電池の製造方法は、
 未焼成積層体を印刷法により形成する工程;および
 未焼成積層体を焼成する工程
を含む。
(未焼成積層体の形成工程)
 本工程では、正極層用ペースト、負極層用ペースト、正極集電層用ペースト、負極集電層用ペースト、固体電解質層用ペースト、保護層用ペースト、側面補強部用ペースト、湾曲部用ペーストおよび接続層用ペースト等の数種類のペーストをインクとして用いて、基材上に、所定構造の未焼成積層体を印刷法により形成する。なお、湾曲部用ペーストは、焼結により焼失する層を形成するためのペーストであり、湾曲部における窪みを形成する。
 ペーストは、正極活物質、負極活物質、電子伝導性材料、固体電解質材料、絶縁性物質、および焼結助剤からなる群から選択される各層の所定の構成材料と、有機材料を溶剤に溶解した有機ビヒクルとを湿式混合することによって作製することができる。
 例えば、正極層用ペーストは正極活物質、電子伝導性材料、固体電解質材料、有機材料および溶剤を含む。
 また例えば、負極層用ペーストは、負極活物質、電子伝導性材料、固体電解質材料、有機材料および溶剤を含む。
 また例えば、正極集電層用ペーストおよび負極集電層用ペーストは電子伝導性材料、焼結助剤、有機材料および溶剤を含む。
 また例えば、固体電解質層用ペーストは固体電解質材料、焼結助剤、有機材料および溶剤を含む。
 また例えば、保護層用ペーストは絶縁性物質、有機材料および溶剤を含む。
 また例えば、側面補強部用ペーストは固体電解質材料(および/または絶縁性物質)、焼結助剤、有機材料および溶剤を含む。
 また例えば、湾曲部用ペーストは有機材料および溶剤を含む。
 また例えば、接続層用ペーストは固体電解質材料(および/または絶縁性物質)、焼結助剤、有機材料および溶剤を含む。
 ペーストに含まれる有機材料は特に限定されないが、ポリビニルアセタール樹脂、セルロース樹脂、ポリアクリル樹脂、ポリウレタン樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂などの高分子化合物を用いることができる。
 溶剤は上記有機材料を溶解可能な限り特に限定されず、例えば、トルエン、エタノールなどを用いることができる。
 湿式混合ではメディアを用いることができ、具体的には、ボールミル法、ビスコミル法等を用いることができる。一方、メディアを用いない湿式混合方法を用いてもよく、サンドミル法、高圧ホモジナイザー法、ニーダー分散法等を用いることができる。
 基材は、未焼成積層体を支持可能な限り特に限定されず、例えば、ポリエチレンテレフタレート等の高分子材を用いることができる。なお、未焼成積層体を基材上に保持したまま焼成工程に供する場合には、基材は焼成温度に対する耐熱性を有するものを使用する。
 印刷に際しては、所定の厚みおよびパターン形状で印刷層を順次、積層し、所定の固体電池の構造に対応する未焼成積層体を基材上に形成する。詳しくは、図1Aの固体電池200Aを製造する場合、例えば図22に示すような厚みおよびパターン形状で複数の印刷層を順次、積層する。各印刷層の形成に際しては、乾燥処理(すなわち、溶剤の蒸発処理)が行われる。図22は、本発明の固体電池の製造方法の一例を説明するための未焼成積層体の形成工程のフロー図である。図22において基材は省略されている。なお、側面補強部が湾曲部を有する場合、湾曲部における窪みに対応する部分に湾曲部用ペーストによる印刷層を形成すればよい。この場合、各印刷層の厚みを低減して積層を行うことにより、湾曲深さの漸次的な増減を形成することができる。
 未焼成積層体を形成した後は、未焼成積層体を基材から剥離して、焼成工程に供してもよいし、または未焼成積層体を基材上に保持したまま焼成工程に供してもよい。
(焼成工程)
 未焼成積層体を焼成に付す。焼成は、酸素ガスを含む窒素ガス雰囲気中で、例えば500℃にて有機材料を除去した後、窒素ガス雰囲気中で例えば550℃~1000℃で加熱することで実施する。焼成は通常、積層方向L(場合によっては積層方向Lおよび当該積層方向Lに対する垂直方向M)で未焼成積層体を加圧しながら行ってもよい。加圧力は特に限定されず、例えば、1kg/cm以上1000kg/cm以下、特に5kg/cm以上500kg/cm以下であってよい。
[固体電池群の製造方法]
 本発明の固体電池群は、未焼成積層体の形成工程において、所定の固体電池群の構造に対応する未焼成積層体を形成すること以外、上記した本発明の固体電池の製造方法と同様の方法により製造することができる。
 本発明の固体電池群は、別法として、所定の固体電池群の構造に対応する未焼成積層体を2つ以上に分割して形成し、それらを組み合わせて用いることにより、製造することもできる。例えば、図12の固体電池群500Aを製造する場合、上記した未焼成積層体の形成工程において、固体電池200Gの構造に対応する未焼成積層体と、固体電池200G'の構造に対応する未焼成積層体との2つの未焼成積層体を個別に形成する。次いで、焼成工程に付す前に、2つの未焼成積層体を組み合わせて用いる。詳しくは、2つの未焼成積層体を、所定の固体電池群の構造に対応するように、積層または配置して、組み立てる。得られた積層体集合物を、上記した焼成工程に付す。
 このように、所定の固体電池群の構造に対応する未焼成積層体を2つ以上に分割して形成し、それらを組み合わせて用いることにより、ユーザーが要求する固体電池群のスペック(例えば電池容量)に容易に応えることができるだけでなく、固体電池群を容易に製造(または加工)することができる。
 本発明の一実施形態に係る固体電池は、蓄電が想定される様々な分野に利用することができる。あくまでも例示にすぎないが、本発明の一実施形態に係る固体電池は、モバイル機器などが使用される電気・情報・通信分野(例えば、携帯電話、スマートフォン、スマートウォッチ、ノートパソコンおよびデジタルカメラ、活動量計、アームコンピューター、電子ペーパーなどのモバイル機器分野)、家庭・小型産業用途(例えば、電動工具、ゴルフカート、家庭用・介護用・産業用ロボットの分野)、大型産業用途(例えば、フォークリフト、エレベーター、湾港クレーンの分野)、交通システム分野(例えば、ハイブリッド車、電気自動車、バス、電車、電動アシスト自転車、電動二輪車などの分野)、電力系統用途(例えば、各種発電、ロードコンディショナー、スマートグリッド、一般家庭設置型蓄電システムなどの分野)、医療用途(イヤホン補聴器などの医療用機器分野)、医薬用途(服用管理システムなどの分野)、ならびに、IoT分野、宇宙・深海用途(例えば、宇宙探査機、潜水調査船などの分野)などに利用することができる。
  1:正極層
  1a:正極層の電気的接続部
  1b:正極層の露出部
  2:負極層
  2a:負極層の電気的接続部
  2b:負極層の露出部
  3:固体電解質層
  5:保護層
  6:側面補強部
  7:接続層
  10:電池構成単位
  11:正極集電層
  11a:正極集電層の電気的接続部
  11b:正極集電層の露出部
  21:負極集電層
  21a:負極集電層の電気的接続部
  21b:負極集電層の露出部
  100:電池要素
  200(200A、200B、200C、200D、200E、200F、200G、200H、200I、200J、200K、200G'、200H'、200I'):固体電池
  500(500A、500B、500C、500D、500E、500F、500G、500H、500I、500J):固体電池群

Claims (17)

  1.  相互に対向する正極層および負極層ならびに前記正極層と前記負極層の間に配置される固体電解質層を含む電池構成単位を1つ以上備えた電池要素と、
     該電池要素の上下面を覆っている保護層とを備え、
     前記保護層は樹脂以外の絶縁性物質からなることを特徴とする、固体電池。
  2.  前記保護層は、断面視において、前記電池要素よりもせり出しているせり出し部を有する、請求項1に記載の固体電池。
  3.  前記保護層は、前記上下面ともに、前記せり出し部を有し、
     前記固体電池は、前記上面せり出し部と前記下面せり出し部との間において、前記電池要素の側面を補強する側面補強部を有し、
     前記側面補強部は外周面が、断面視において、前記電池構成単位を構成する各層の積層方向Lに垂直な面内方向Mで内側m1に、湾曲している、請求項2に記載の固体電池。
  4.  前記側面補強部は、該側面補強部により覆われている前記電池要素の側面と焼結体同士の一体焼結をなしている、請求項3に記載の固体電池。
  5.  前記保護層は、該保護層により覆われている前記電池要素の上下面と焼結体同士の一体焼結をなしている、請求項1~4のいずれかに記載の固体電池。
  6.  前記保護層は、該保護層により覆われている前記電池要素の上下面と接している、請求項1~5のいずれかに記載の固体電池。
  7.  前記電池要素を構成する全ての層は、隣接する2つの層間で、焼結体同士の接合をなしている、請求項1~6のいずれかに記載の固体電池。
  8.  前記樹脂以外の絶縁性物質は絶縁性無機物質である、請求項1~7のいずれかに記載の固体電池。
  9.  前記絶縁性無機物質は、石英ガラス、SiOとPbO,B,MgO,ZnO,Bi,NaO,Alの少なくとも1つから選ばれるものとを組合わせた複合酸化物系ガラス、アルミナ、コージライト、ムライト、ステアタイト、およびフォルステライトからなる群から選択される1種以上の材料から構成されている、請求項8に記載の固体電池。
  10.  前記保護層はイオン伝導性が1×10-7S/cm以下である絶縁性物質から構成されている、請求項1~9のいずれかに記載の固体電池。
  11.  前記保護層は電子伝導性が1×10-7S/cm以下である絶縁性物質から構成されている、請求項1~10のいずれかに記載の固体電池。
  12.  前記保護層の最も厚い部分の厚みが500μm以下である、請求項1~11のいずれかに記載の固体電池。
  13.  請求項1~12のいずれかに記載の固体電池を2つ以上含む固体電池群であって、
     前記2つ以上の固体電池のうち、前記電池構成単位を構成する各層の積層方向Lにおいて隣接する2つの固体電池は前記保護層を介して焼結体同士の接合をなしている、固体電池群。
  14.  前記隣接する2つの固体電池は、それぞれ並列型構造を有し、かつ並列接続になるように接続されている、請求項13に記載の固体電池群。
  15.  前記隣接する2つの固体電池は、それぞれ直列型構造を有し、かつ並列接続になるように接続されており、
     前記隣接する2つの固体電池は、正極層、負極層および固体電解質層の積層順序が相互に揃うように配置されている、請求項13に記載の固体電池群。
  16.  前記隣接する2つの固体電池は、それぞれ直列型構造を有し、かつ並列接続になるように接続されており、
     前記隣接する2つの固体電池は、正極層、負極層および固体電解質層の積層順序が相互に逆になるように配置されている、請求項13に記載の固体電池群。
  17.  前記隣接する2つの固体電池間に介在する前記保護層は単一層形態または2層形態を有する、請求項13~16のいずれかに記載の固体電池群。
PCT/JP2019/034799 2018-09-14 2019-09-04 固体電池および固体電池群 WO2020054549A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980060033.6A CN112689922B (zh) 2018-09-14 2019-09-04 固体电池及固体电池组
JP2020545953A JP6996636B2 (ja) 2018-09-14 2019-09-04 固体電池および固体電池群
EP19858929.3A EP3852180A4 (en) 2018-09-14 2019-09-04 SOLID STATE BATTERY AND SOLID STATE BATTERY GROUP
US17/198,394 US20210203008A1 (en) 2018-09-14 2021-03-11 Solid-state battery and solid-state battery group

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018172806 2018-09-14
JP2018-172806 2018-09-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/198,394 Continuation US20210203008A1 (en) 2018-09-14 2021-03-11 Solid-state battery and solid-state battery group

Publications (1)

Publication Number Publication Date
WO2020054549A1 true WO2020054549A1 (ja) 2020-03-19

Family

ID=69777030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034799 WO2020054549A1 (ja) 2018-09-14 2019-09-04 固体電池および固体電池群

Country Status (5)

Country Link
US (1) US20210203008A1 (ja)
EP (1) EP3852180A4 (ja)
JP (1) JP6996636B2 (ja)
CN (1) CN112689922B (ja)
WO (1) WO2020054549A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209114A1 (ja) * 2021-03-29 2022-10-06 Fdk株式会社 固体電池及び固体電池の製造方法
WO2023223578A1 (ja) * 2022-05-18 2023-11-23 パナソニックIpマネジメント株式会社 デバイスおよびデバイスの製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114614189B (zh) * 2022-03-29 2024-05-24 东莞新能安科技有限公司 电池模组及电子装置
CN114906835B (zh) * 2022-05-24 2023-03-21 四川新能源汽车创新中心有限公司 碳材料及其制备方法和锂金属电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351326A (ja) 2005-06-15 2006-12-28 Matsushita Electric Ind Co Ltd 固体電池
JP2008186595A (ja) 2007-01-26 2008-08-14 Toyota Motor Corp 2次電池
JP2008226728A (ja) * 2007-03-14 2008-09-25 Geomatec Co Ltd 薄膜固体二次電池及びこれを備えた複合型機器
JP2010140725A (ja) * 2008-12-10 2010-06-24 Namics Corp リチウムイオン二次電池、及び、その製造方法
JP2013016286A (ja) * 2011-06-30 2013-01-24 Ulvac Japan Ltd 薄膜リチウム二次電池形成装置
WO2014050500A1 (ja) * 2012-09-28 2014-04-03 株式会社村田製作所 全固体電池の製造方法
JP2016001601A (ja) 2014-05-19 2016-01-07 Tdk株式会社 固体電池及びそれを用いた組電池

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200588A (ja) * 1999-01-04 2000-07-18 Mitsubishi Chemicals Corp 二次電池
GB2387230B (en) * 2002-02-28 2005-12-21 Ngk Spark Plug Co Prismatic ceramic heater for heating gas sensor element, prismatic gas sensor element in multi-layered structure including the prismatic ceramic heater,
JP4043296B2 (ja) * 2002-06-13 2008-02-06 松下電器産業株式会社 全固体電池
MX268289B (es) * 2002-10-15 2009-07-14 Polyplus Battery Co Inc Compuestos conductores ionicamente para la proteccion de anodos metalicos activos.
JP5165843B2 (ja) * 2004-12-13 2013-03-21 パナソニック株式会社 活物質層と固体電解質層とを含む積層体およびこれを用いた全固体リチウム二次電池
JP4734912B2 (ja) * 2004-12-17 2011-07-27 日産自動車株式会社 リチウムイオン電池およびその製造方法
CN101461087B (zh) * 2006-05-23 2011-05-04 Iom技术公司 全固体二次电池
JP5122154B2 (ja) * 2007-02-13 2013-01-16 ナミックス株式会社 全固体二次電池
JP5696353B2 (ja) * 2009-07-22 2015-04-08 トヨタ自動車株式会社 全固体電池システム
JP5644857B2 (ja) * 2010-08-09 2014-12-24 株式会社村田製作所 積層型固体電池
EP2752899B1 (en) * 2011-08-30 2016-06-29 Kyocera Corporation Laminated piezoelectric element and piezoelectric actuator, injection device, and fuel injection system provided with same
JP6305862B2 (ja) * 2014-07-25 2018-04-04 太陽誘電株式会社 全固体二次電池及びその製造方法
US20160156062A1 (en) * 2014-12-02 2016-06-02 Intermolecular, Inc. Solid-State Batteries with Electrodes Infused with Ionically Conductive Material and Methods for Forming the Same
US10008739B2 (en) * 2015-02-23 2018-06-26 Front Edge Technology, Inc. Solid-state lithium battery with electrolyte
EP3309891A4 (en) * 2015-06-15 2019-01-09 NGK Insulators, Ltd. NICKEL-ZINC BATTERY ELEMENT BLOCK AND BATTERY PACK USING THE SAME
JP6863389B2 (ja) * 2016-11-16 2021-04-21 株式会社村田製作所 固体電池、電池パック、車両、蓄電システム、電動工具及び電子機器
KR102496180B1 (ko) * 2016-12-28 2023-02-06 현대자동차주식회사 에너지 밀도가 향상된 전고체 전지 및 이의 제조방법
JP6547768B2 (ja) * 2017-01-17 2019-07-24 トヨタ自動車株式会社 全固体リチウムイオン電池の製造方法
WO2018163514A1 (ja) * 2017-03-10 2018-09-13 株式会社村田製作所 全固体電池およびその製造方法、電子機器ならびに電子カード

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351326A (ja) 2005-06-15 2006-12-28 Matsushita Electric Ind Co Ltd 固体電池
JP2008186595A (ja) 2007-01-26 2008-08-14 Toyota Motor Corp 2次電池
JP2008226728A (ja) * 2007-03-14 2008-09-25 Geomatec Co Ltd 薄膜固体二次電池及びこれを備えた複合型機器
JP2010140725A (ja) * 2008-12-10 2010-06-24 Namics Corp リチウムイオン二次電池、及び、その製造方法
JP2013016286A (ja) * 2011-06-30 2013-01-24 Ulvac Japan Ltd 薄膜リチウム二次電池形成装置
WO2014050500A1 (ja) * 2012-09-28 2014-04-03 株式会社村田製作所 全固体電池の製造方法
JP2016001601A (ja) 2014-05-19 2016-01-07 Tdk株式会社 固体電池及びそれを用いた組電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209114A1 (ja) * 2021-03-29 2022-10-06 Fdk株式会社 固体電池及び固体電池の製造方法
WO2023223578A1 (ja) * 2022-05-18 2023-11-23 パナソニックIpマネジメント株式会社 デバイスおよびデバイスの製造方法

Also Published As

Publication number Publication date
CN112689922A (zh) 2021-04-20
CN112689922B (zh) 2024-05-28
EP3852180A1 (en) 2021-07-21
US20210203008A1 (en) 2021-07-01
JPWO2020054549A1 (ja) 2021-06-03
EP3852180A4 (en) 2022-07-20
JP6996636B2 (ja) 2022-01-17

Similar Documents

Publication Publication Date Title
WO2020054549A1 (ja) 固体電池および固体電池群
CN113169373B (zh) 固体电池
US20210249697A1 (en) Solid state battery
US20220209338A1 (en) Solid state battery
US20210203007A1 (en) Solid-state battery and solid-state battery group
JPWO2020110666A1 (ja) 固体電池
JP7168070B2 (ja) 固体電池
JP7120318B2 (ja) 固体電池
JP2023110000A (ja) 固体電池
US20220285682A1 (en) Solid-state battery
US20220238913A1 (en) Solid state battery
US20210265667A1 (en) Solid state battery
WO2021039043A1 (ja) 固体電池
WO2020031810A1 (ja) 固体電池
WO2023127247A1 (ja) 固体電池
WO2022114140A1 (ja) 固体電池および固体電池の製造方法
CN115362589A (zh) 固体电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19858929

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020545953

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019858929

Country of ref document: EP

Effective date: 20210414