WO2007119393A1 - ラジアル異方性磁石の製造方法とラジアル異方性磁石を用いた永久磁石モータ及び有鉄心永久磁石モータ - Google Patents

ラジアル異方性磁石の製造方法とラジアル異方性磁石を用いた永久磁石モータ及び有鉄心永久磁石モータ Download PDF

Info

Publication number
WO2007119393A1
WO2007119393A1 PCT/JP2007/055364 JP2007055364W WO2007119393A1 WO 2007119393 A1 WO2007119393 A1 WO 2007119393A1 JP 2007055364 W JP2007055364 W JP 2007055364W WO 2007119393 A1 WO2007119393 A1 WO 2007119393A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
anisotropic
magnetic
radial anisotropic
angle
Prior art date
Application number
PCT/JP2007/055364
Other languages
English (en)
French (fr)
Inventor
Fumitoshi Yamashita
Hiroshi Murakami
Kiyomi Kawamura
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP07738809.8A priority Critical patent/EP1995854B1/en
Priority to CN200780008755.4A priority patent/CN101401282B/zh
Priority to US12/281,679 priority patent/US8072109B2/en
Priority to JP2008510796A priority patent/JP5169823B2/ja
Publication of WO2007119393A1 publication Critical patent/WO2007119393A1/ja
Priority to US13/277,355 priority patent/US8183732B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • H01F41/028Radial anisotropy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/083Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together in a bonding agent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49075Electromagnet, transformer or inductor including permanent magnet or core
    • Y10T29/49076From comminuted material

Definitions

  • the present invention relates to a method for manufacturing a radial anisotropic magnet including a deformation process. More details
  • the present invention relates to a method for manufacturing a magnet that is effective in reducing the cogging torque associated with the rotation of a cored permanent magnet motor, in addition to downsizing and increasing the output of a permanent magnet motor.
  • the form of the material is limited to ribbons and other ribbons and flaky powders obtained by pulverizing them. For this reason, in order to obtain a commonly used Balta-like permanent magnet, it is necessary to change the material form, that is, a technique for fixing a ribbon or powder to a specific Balta by any force method.
  • the basic powder fixing means in powder metallurgy is atmospheric pressure sintering, it is difficult to apply atmospheric pressure sintering because the ribbon needs to maintain the magnetic properties based on the metastable state. For this reason, it was fixed to a specific shape of the balta with a binder such as Tsubara epoxy resin.
  • a binder such as Tsubara epoxy resin.
  • Non-Patent Document 1 G. Brewer, N. A. Schaffel, “Hot—pressed Neodymium—Iron—Boron magnets” lEE Trans. Magn., Vol. 21, (1985)] (see Non-Patent Document 1).
  • Isotropic magnet powders with different powder shapes by rapid solidification methods other than melt spinning in recent years including materials with various alloy compositions including nanocomposite materials using exchange coupling based on micro-structure control
  • materials with various alloy compositions including nanocomposite materials using exchange coupling based on micro-structure control
  • Yasuhiko Iriyama “Development Trends of High-Performance Rare-Earth Bond Magnets”, Innovation Creation Project of the Ministry of Education, Culture, Sports, Science and Technology Z Effective Use of Rare Earth Resources and Advanced Materials Symposium, Tokyo, PP. 19—26 (2002), BH Ra bin, BM Ma, Recent developments in Nd—Fe— B powder, 120th Topical Symposium of the Magnetic Society of Japan, pp. 23—28 (2001), B M.
  • the Sm—Co-based magnet powder used for the anisotropic magnet can obtain a large coercive force HCJ even if the ingot is pulverized.
  • Sm and Co are unfamiliar with general-purpose industrial materials that have a large resource balance issue.
  • Nd and Fe are advantageous in terms of resource balance.
  • HCJ is small even if Nd Fe B alloy ingot or sintered magnet is crushed
  • melt spinning materials are available for the production of anisotropic Nd Fe B magnet powders.
  • AZm anisotropic Nd Fe B powder was prepared [H. Sakamoto, M. Fujikura and T
  • Non-Patent Document 15 otropic oonded JeB magnets made irom not—upset powders, Polymer Bonded Magnet 2002, Chicago (2002)] (see Non-Patent Document 15).
  • Non-Patent Document 21 Surface magnetism using an Sm Fe N bond magnet with an anisotropy of (BH) 80kjZm 3 due to such injection molded radial anisotropy max 2 17 3
  • the present inventors compression-molded a compound of a binder and a magnet powder, mechanically stretched macromolecules between crosslinks of the binder formed after self-organization, and stretched vertically anisotropic Disclosed is a technique for producing a magnet that changes the direction of anisotropy to a radial direction by plastic deformation of a conductive thin plate magnet, and its magnetic properties [F. Yamashita, S. Tsutsumi, H. Fukunaga, adially Anisotropic Ring— or Arc— shaped Rare—Earth Bonded Magnets Using Self—Organization Techniqu ”, IEEE Trans. Magn., Vol. 40, No. 4 pp. 2059—2064 (2004)] (see Non-Patent Document 24). (Alternatively, even if the length is increased, the magnetic properties are hardly deteriorated. A radial anisotropic magnet having a thickness of about 1 mm can be manufactured.)
  • the iron core of the cored permanent magnet motor has a slot for mounting an exciting winding and a tooth that constitutes a part of a magnetic circuit with the magnet. Due to such a structure of the iron core, when the motor rotates, torque pulsation due to permeance change between the iron core and the magnet, that is, a cogging torque occurs. The cogging torque hinders smooth rotation of the motor and becomes a factor that impairs the quietness or controllability of the motor. Such cogging torque is significant in high (BH) radial anisotropic magnets where a strong rectangular magnetostatic field is generated. Therefore, Kogi
  • Cogging torque reduction methods include skew of iron core and magnet magnetic poles, method of making gaps between iron core and magnet unequal distances, polar anisotropy method in which magnetization direction in magnet is matched to magnetic flux flow, Halbach method, etc. Is known.
  • the Robach method incorporating segment magnets is effective in reducing cogging torque. [Yoshida, Karasuma, Sano, "Cogging torque reduction and rotor core reduction due to segmented magnetization method of surface PM synchronous motor", IEEJ. Trans. IA, V ol. 124, pp. 114—115 (2004)] (see Non-Patent Document 25).
  • a perpendicular anisotropic thin plate magnet is stretched anisotropically into an arc shape with an inner radius of 3.55 mm, an outer radius of 3.65 mm, a maximum wall thickness of 0.88 mm, and a length of 10 mm.
  • the magnetic flux is (BH) 72 kjZm 3 isotropic Nd Fe B bonded magnet max 2 14
  • the magnet thickness is 1.5 mm, for example, it is difficult to anisotropically stretch the vertically anisotropic thin plate magnet, and the thickness of the magnet is not suitable for deformation while maintaining the magnetic properties. There is an upper limit.
  • the structure in which electromagnetic wires are arranged on the surface of the iron core that faces the magnet teeth and slots exist in the iron core that faces the magnet. For this reason, the cogging torque due to the change in permeance accompanying the rotation of the motor increases.
  • a radial anisotropic magnet with a strong static magnetic field and a rectangular wave-shaped air gap magnetic flux density distribution is more difficult than an isotropic Nd Fe B bond magnet.
  • Torque reaches 15 times or more.
  • Non-Patent Document 1 RW Lee, EG Brewer, NA Schaffel, "Hot-pressed Neodymium ⁇ Iron ⁇ Boron magnets' IEEE Trans. Magn., Vol. 21, (, 1985)
  • Non-Patent Document 2 T. Shimoda," Compression molding magnet made from r apid- quenched powder ",” PERMANENT MAGNETS 1988 UPDAT E “, Wheeler Associate INC (1988)
  • Non-Patent Document 3 W. Baran, "Case histories of NdFeB in the European community, The European Business and Technical Outlook for Nd FeB Magnets, Nov. (1989)
  • Non-Patent Document 4 GX Huang, WM Gao, SF Yu, "Application of melt— spun Nd— Fe— B bonded magnet to the micro— motor”, Proc. Of t he 11th International Rare— Earth Magnets and Their Applications, Pittsburgh , USA, pp. 583—595 (1990)
  • Non-Patent Document 5 Kasai, "MQ1, 2 & 3 magnets applied to motors and actu ators, Polymer Bonded Magnets '92, Ver Suite O' Hare— Rose mont, Illinois, USA, (1992)
  • Non-Patent Document 6 Yasuhiko Iriyama, “Development Trends of High Performance Rare Earth Bond Magnets”, Ministry of Education, Culture, Sports, Science and Technology Innovation Creation Project Z Effective Use of Rare Earth Resources and Advanced Materials Symposium, Tokyo, PP. 19-26 (2002)
  • Non-Patent Document 7 B. H. Rabin, B. M. Ma, "Recent developments in Nd— Fe — B powder, 120th Topical Symposium of the Magnetic Society of Japan, pp. 23— 28 (2001)
  • Non-Patent Document 8 B M. Ma, "Recent powder development at magnequench, ..., Polymer Bonded Magnets 2002, Chicago (2002)
  • Non-Patent Document 9 S. Hirasawa, H. Kanekiyo, T. Miyoshi, K. Murakami, Y. Shi gemoto, T. Nishiuchi, "Structure and magnetic properties of Nd2Fe 14B / FexB— type nano comp o site permanent magnets prepared by s trip casting ”, 9th Joint MMM / INTERMAG, CA (2004) FG— 05
  • Non-Patent Literature 10 HA Davies, JI Betancourt, CL Harland,“ Nanophase Pr and Nd / Pr based rare ⁇ earth ⁇ iron ⁇ boron alloys ", Proc. Of 1 6th Int. Workshop on Rare— Earth Magnets and Their Applications, Sendai, pp. 485—495 (2000)
  • Non-Patent Document 11 Fumitoshi Yamashita, "Application and Prospect of Rare Earth Magnets for Electronic Equipment", Ministry of Education, Culture, Sports, Science and Technology, Innovation Creation Project Z Effective Use of Rare Earth Resources and Advanced Materials Symposium, Tokyo, (2002)
  • Non-Patent Document 12 Masanori Tokunaga, "Magnetic Properties of Rare Earth Bond Magnets", Powder and Powder Metallurgy, Vol. 35, pp. 3- 7, (1988)
  • Non-Patent Document 13 H. Sakamoto, M. Fujikura and T. Mukai, "Fully -dense Nd— Fe— B magnets prepared from hot— rolled anisotropic powders, Proc. 11th Int. Workshop on Rare— earth Magnets and Their Ap plications , Pittsburg, pp. 72—84 (1990)
  • Non-Patent Document 14 M. Doser, V. Panchanacthan, and RK Mishra, "Pulveriz ing anisotropic rapidly solidified Nd—Fe— B materials for bonded magnets", J. Appl. Phys., Vol. 70, pp. 6603— 6805 (1991)
  • Non-Patent Document 15 T. Iriyama, Anisotropic bonded NdFeB magnets made from hot— upset powders ", Polymer Bonded Magnet 2002, Chicago (
  • Non-Patent Document lb T. Takeshita, and R. Nakayama, "Magnetic properties an d micro ⁇ structure of the Nd— Fe— B magnet powders produced by hydrogen treatment, Proc. 10th Int. Workshop on Rare ⁇ earth Magnets and Their Applications, Kyoto, pp. 551— 562 (1989)
  • Non-Patent Document 17 K. Morimoto, R. Nakayama, K. Mori, K. Igarashi, Y. Ishii, M. Itakura, N. Kuwano, K. Oki, Nd2Fel4B— based magnetic powd er with high remanence produced by modified HDDR process ", IE EE. Trans. Magn., Vol. 35, pp. 3253-3255 (1999)
  • Non-Patent Document 18 C. Mishima, N. Hamada, H. Mitarai, and Y. Honkura, "
  • Non-Patent Document 19 N. Hamada, C. Mishima, H. Mitarai and Y. Honkura, "De velopment of anisotropic bonded magnet with 27 MGOe", IEEE. Trans. Magn., Vol. 39, pp. 2953-2956 (2003)
  • Non-Patent Document 20 Satoshi Kawamoto, Kayo Shiraishi, Kazutoshi Ishizaka, Junichi Yasuda, "15MGOe-class SmFeN injection molding compound", IEEJ Magnetics Study Group, (2001) MAG— 01— 173
  • Non-Patent Literature 21 K. Ohmori , New era oi anisotropic bonded 3 ⁇ 4mFeN m agnets ", Polymer Bonded Magnet 2002, Chicago (2002)
  • Non-Patent Document 22 Atsushi Matsuoka, Togo Yamazaki, Hitoshi Kawaguchi, "Examination of high-performance brushless DC motor for blower", IEEJ rotating machine workshop, (2001) RM-01-161
  • Non-Patent Document 23 Motoharu Shimizu, Nobuyuki Hirai, "Nd-Fe-B-based sintered anisotropic ring magnet", Tatetsu Metal Technical Report, Vol. 6, pp. 33-36 (1990)
  • Non-Patent Document 24 F. Yamashita, S. Tsutsumi, H. Fukunaga, "Radially Aniso tropic Ring— or Arc— Shaped Rare— Earth Bonded Magnets Using Self— Organization Technique”, IEEE Trans. Magn., Vol. 40, No 4 pp. 2059-2064 (2004)
  • Non-Patent Document 25 Yoshida, Karasuma, Sano, “Cogging torque reduction and rotor core reduction by segmented magnetization method of surface PM synchronous motor”, IEEJ. Trans. IA, Vol. 124, p p. 114- 115 (2004)
  • the magnet powder is fixed in a mesh shape so that each part of the magnet maintains the angle of magnetic anisotropy (C axis, which is an easy axis of magnetization) with respect to the tangent line, and is deformed with flow to form a predetermined circle.
  • C axis which is an easy axis of magnetization
  • This is a method of manufacturing a radial anisotropic magnet having an arc shape or an annular shape.
  • Cogging torque is reduced by controlling the c-axis angle with respect to the tangential direction of the magnet without dividing the magnetic pole into segments at any position and angle of the magnet.
  • One of the preferred embodiments of the present invention includes anisotropic SmFeN and anisotropic NdFeB.
  • One of the preferred embodiments of the present invention is that a perpendicular anisotropy portion a having a magnetic anisotropy (C-axis) angle with respect to the tangent of 90 degrees and a C-axis angle with respect to the tangent of 0 to 90 degrees ( ⁇ )
  • C-axis magnetic anisotropy
  • C-axis angle
  • Curved surface j8 corresponding to 0
  • the magnet is a radially anisotropic magnet having a density of 5.8 MgZm 3 or more and a maximum energy volume (BH) of 140 kj / m 3 or more.
  • the present invention provides a method for producing a radially anisotropic magnet that retains the C-axis angle with respect to the tangent by fixing the magnet powder in a mesh shape, and that has a predetermined arc shape or annular shape by deformation accompanying flow. It is.
  • the ability to cope with the shape of the magnet is improved by improving the deformability associated with the viscous flow or elongational flow of the linear polymer.
  • the density of the magnet according to the present invention is 5.8 Mg / m 3 or more and the maximum energy product (BH) is 140 kjZm 3 or more, the existing density 6 MgZm max
  • the C-axis angle with respect to the tangential direction without dividing the magnetic pole into segments can be controlled at an arbitrary position and an arbitrary angle. it can.
  • FIG. 1 is a conceptual diagram showing the microstructure of a magnet powder and a resin composition.
  • FIG. 2A is a conceptual diagram showing shear flow and elongation flow of a linear polymer melt.
  • FIG. 2B is a conceptual diagram showing shear flow and elongational flow of a linear polymer melt.
  • FIG. 2C is a conceptual diagram showing shear flow and elongational flow of a linear polymer melt.
  • FIG. 3A is a sectional view of the magnet before deformation.
  • FIG. 3B is a sectional view of the magnet before deformation.
  • FIG. 3C is a sectional view of the magnet after deformation.
  • FIG. 3D is a sectional view of the magnet after deformation.
  • FIG. 4 is a characteristic diagram showing the relationship between the reaction temperature and the gel time.
  • FIG. 5 is a characteristic diagram showing a radial surface magnetic flux density distribution.
  • FIG. 6 is a cross-sectional view of a deformed magnet in which the C-axis direction is controlled.
  • FIG. 7A is a characteristic diagram showing a measurement conceptual diagram of the C-axis angle with respect to the tangential direction.
  • FIG. 7B is a characteristic diagram showing a conceptual diagram of measurement of the C-axis angle with respect to the tangential direction.
  • FIG. 8 is a graph showing the distribution of magnetic field vectors with respect to the mechanical angle of the rotor.
  • a method for manufacturing a radial anisotropic magnet that is useful in the present invention is to fix the magnet powder in a mesh shape so that the magnetic anisotropy (C-axis) angle with respect to the tangent is maintained in each part of the magnet. It is characterized by being annular or arcuate due to the accompanying deformation.
  • anisotropic Sm Fe N and anisotropic Nd Fe B a resin composition, and as required
  • the magnet before deformation which is compression-molded in a magnetic field at 20 to 50 MPa, is manufactured using a molten state accompanied by slip.
  • the pre-deformation magnet has a microstructure of magnet powder and a resin composition.
  • the quasi-glass magnetite stationary phase A the fluid phase B, which is a linear polymer containing macromolecules between crosslinks, and the chemical contact phase C that is used as necessary are used.
  • phase A in the quasi-glass state is formed as a magnet powder fixing component by, for example, a crosslinking reaction of an oligomer coated on the surface of the magnet powder.
  • a reaction product of a novolak type epoxy having an epoxy equivalent of 205 to 220 g / eq and a melting point of 70-76 ° C. and a chemical contact of phase C, for example, an imidazole derivative can be exemplified as phase A.
  • phase B is a linear polymer that reacts with, for example, the phase A to form an inter-crosslinking macromolecule.
  • the melting point is 80 ° C.
  • examples thereof include polyamide having a molecular weight of 400 to 12000.
  • the thickness Arc of the phase A shown in Fig. 1 is 0.1 to 0.3 m, for example, and the diameter 2a of the chemical contact of the phase C is a fine powder of 2 to 3 m or less. It is desirable to improve the volume fraction of the magnet powder by optimizing as much as possible. However, ⁇ represents the amount of change.
  • phase A oligomer in which phase C is dispersed in the microstructure shown in Fig. 1 in which phase C is dispersed, or a crosslinking agent, radical initiator, etc., which reacts with the prepolymer to form a quasi-glass state can be completely dissolved in the prepolymer and have a structure without phase C.
  • an arc-shaped or annular radial anisotropic magnet is formed by deformation accompanied by the flow of phase B shown in FIG.
  • the C-axis of the magnet powder fixed by phase A is fixed in a specific direction in a state of being connected to each other by a network structure with phase B. Complete the transformation.
  • phase B flows when an external force is applied.
  • Phase B flows due to shear stress a and a 'when it receives an external force with long molecules intertwined as shown in Fig. 2A.
  • the viscous stress is based on two different factors, the friction between the molecules of phase B and the resistance due to the entanglement of the molecular chains, but it can be optimized by temperature and external force.
  • phase B a flow field called elongational flow is also generated in the phase B. This is because the molecular shape of the linear polymer in phase B changes during the deformation process due to flow, as shown in Fig. 2C, and it is deformed in the space constrained by phase A or stretched locally. This is a flow form that occurs during deformation involving the.
  • the flow form in the deformation according to the present invention may be a deformation by a flow form in which shear flow and extension flow are superimposed as shown in Fig. 2B.
  • the arc-shaped magnet produced by the deformation accompanied by the flow of the phase B as described above, or an annular magnet in which a plurality of them are connected causes the crosslinking reaction to proceed by heat treatment, and the fluidity of the phase B is lost.
  • This treatment can improve the environmental resistance such as the mechanical strength and heat resistance of the magnet.
  • Angle ⁇ represents the angle of the C axis in the non-vertically anisotropic part in the range of 0 to 90 degrees, and angle 0, in the range of 90 to 180 degrees.
  • the C-axis angle with respect to the tangent of the magnet is 0 with the subscript 0 before the deformation of the magnet and 0 with the subscript 1 after the deformation. It is represented by ⁇ .
  • 3A, 3B, 3C, and 3D are cross-sectional views of the magnet before and after deformation.
  • a is tangent
  • Non-vertically anisotropic part with arbitrary angle 0 'in the range of 180 degrees, ⁇ is the orientation field direction
  • a magnet having a configuration as shown in Fig. 3 ⁇ or ⁇ is manufactured, and the magnet is deformed into an annular shape or an arc shape as shown in Figs. 3C and 3D, and a radial difference corresponding to the vertical anisotropic portion a is obtained.
  • the C axis of the magnetic powder fixed by phase A is fixed in a specific direction by the network structure with phase B. Deformation proceeds by the flow of force phase B without maintaining this state.
  • the C-axis angle with respect to the tangent to the radial anisotropic magnet can be maintained at 90 degrees, and the C-axis angles 0 and ⁇ 'can be controlled arbitrarily or continuously.
  • the radial anisotropic part a after deformation corresponds to the non-vertical anisotropic part
  • the radial anisotropic magnet according to the present invention is used. It depends on the design philosophy of the permanent magnet type motor to be applied. For example, radial anisotropy according to the present invention In a motor that uses a magnet as a field magnet and is combined with a coreless armature, there is no permeance change with rotation, so no cogging torque is generated. Therefore, in this case, j8, ⁇ , and region are not necessary.
  • an arc-shaped pre-shaped body having a substantially radial orientation is manufactured in JP-A-2003-347142. Further, a method of manufacturing a radially anisotropic magnet that is sintered and fired by combining or compressing these in a cylindrical shape and then sintering or firing the cylindrical shaped body is disclosed. Further, JP 2004-96961 A, JP 2004-140270 A, etc. also disclose a method of manufacturing an annular radial anisotropic magnet by joining a radially oriented circular arc preform. However, the deformation accompanied by the flow as in the present invention is not performed. The C-axis angle ⁇ , ⁇ 'with respect to the tangential direction without dividing the magnetic pole as in the present invention is not controlled at any position! /.
  • anisotropic SmFeN and anisotropic NdFeB which are magnet powders useful for the present invention, are described.
  • the anisotropic SmFeN referred to in the present invention is described in, for example, JP-A-2-57663.
  • An R—Fe-based alloy or an R— (Fe, Co) -based alloy is produced by a reduction diffusion method disclosed in, for example, a melting and forging method disclosed in Japanese Patent Laid-Open No. 9-157803. And then finely pulverized.
  • the fine pulverization refers to a finely pulverized product such as a jet mill, a vibrating ball mill, a rotating ball mill, etc., which is finely pulverized to a Fischer average particle size of 1. or less, preferably 1.2 m or less.
  • fine powders are disclosed in, for example, JP-A-52-54998, JP-A-59-170201, JP-A-60-128202, JP-A-3-211203.
  • JP-A-52-54998 JP-A-59-170201
  • JP-A-60-128202 JP-A-3-211203
  • the anisotropic Nd Fe B referred to in the present invention is HDDR treatment (hydrogen decomposition).
  • B is preferably in the range of 2 to 28 atomic%.
  • the essential element Fe is less than 65 atomic%, the saturation magnetism [Us decreases, and if it exceeds 80 atomic%, a high coercive force HCJ cannot be obtained. Therefore, 65-80 atomic% of Fe is desirable.
  • replacing part of Fe with Co can improve the temperature coefficient of residual magnetism [Hr in the actual operating temperature range by increasing the Curie temperature Tc without impairing the magnetic properties of the magnet powder.
  • the amount of Fe substitution in Co exceeds 20 atomic%, the saturation magnetism [Us decreases. That is, when the Co substitution amount is in the range of 5 to 15 atomic%, the remanence [Hr generally increases, which is preferable for obtaining high (BH).
  • the presence of a part of B that is less than 4% by weight of C, or at least one of P, S, and Cu, with a total amount of less than 2% by weight is generally acceptable.
  • At least one of Al, Ti, V, Cr, Mn, Bi ⁇ Nb, Ta, Mo, W, Sb, Ge, Ga, Sn, Zr, Ni ⁇ Si ⁇ Zn, and Hf It can be added as appropriate to improve the coercivity HCJ of the powder, the squareness of the demagnetization curve, HkZH CJ, and the like.
  • the rare earth element R occupying 10 atomic% to 30 atomic% of the composition is at least one of Nd, Pr, Dy, Ho, and Tb, or La, Ce, Sm, Gd, Er, Eu, Tm, Contains at least one of Yb, Lu, and Y.
  • a mixture of two or more types can be used. This R can contain impurities that are inevitable in production within the industrially available range.
  • anisotropic Sm Fe N and anisotropic Nd Fe B, and a resin composition are essential.
  • Nd Fe B is sequestered by Sm Fe N, and the Nd Fe B is shattered and exposed during the forming process.
  • HkZHcJ Hk is the demagnetizing field equivalent to 90% of the remanent magnetic Hir
  • Magnet powder is anisotropic Sm Fe N with particle size 3-5 ⁇ m, anisotropic with particle size 38-150 ⁇ m
  • Nd Fe B Nd Fe B was used.
  • the binder as the main component of the magnetic powder stationary phase A the binder as the main component of the magnetic powder stationary phase A
  • Rigomer is a novolak type epoxy having an epoxy equivalent of 205 to 220 gZeq and a melting point of 70 to 76 ° C.
  • the B phase is a linear polymer that crosslinks with the A phase to form an intercrosslinked macromolecule, for example, a melting point of 80.
  • C Polyamide with a molecular weight of 4000-12000
  • Phase C chemical contact is 2-phenol-4, 5-dihydroxymethylimidazole (or 2-methylimidazole), and pentaerythritol C17 triester with a melting point of about 52 ° C as a lubricant It was used. This is because one hydroxyl group (—OH) and 16 hexadecyl group (one (CH) CH) in one molecule
  • the compound of the binder and the magnet powder was a different surface treated with 1% by weight of oligomer.
  • Nd Fe B57 44% by weight of linear polymer 2.80% by weight and lubricant 0.28% by weight
  • Fig. 4 is a characteristic diagram showing the relationship between the reaction temperature of the compound and the gel time.
  • C1 is a 2-Ferru 4
  • 5-dihydroxymethylimidazole system and the gelation time at 170 ° C is 160 sec
  • C2 is a 2-methylimidazole system and the 170 ° C gelation time is 30 sec.
  • the above compound was heated to 170 ° C, and compressed at 20 MPa in a melt flow state with slip in an orthogonal magnetic field of 4 MAZm, with a thickness of 1.5 mm, 14.5 mm X 15.2 mm, Density 5.8-6.
  • the C-axis angle with respect to the tangent of OMgZm 3 was 90 degrees, that is, a perpendicular magnetic anisotropic magnet was fabricated.
  • the molding time was about 30 seconds. For this reason, C1 does not reach Gelui and C2 does not. Therefore, the former is a magnet that works according to the present invention, and its microstructure is composed of phase A, phase B, and phase C forces as shown in Fig. 1, while the latter is an imperfectly crosslinked magnet, Even if external force is applied, phase B does not reach the flow state.
  • an isotropic Nd Fe B bond magnet having an outer radius of 20.45 mm, an inner radius of 18.95 mm (thickness of 1.5 mm), a density of 6 MgZm 3 and (BH) of approximately 80 kJ, m 3 Glued, outer circumference max 2 14
  • This annular isotropic Nd Fe B bonded magnet is used as a comparative example.
  • FIG. 5 shows the above two types of radial surface magnetic flux density distributions.
  • the example of the present invention in the figure is a characteristic rectangular wave surface magnetic flux density distribution of a radial anisotropic magnet, and its peak value is 18. It reaches 1.53 times compared with the comparative example at 5mT.
  • a is a perpendicular anisotropy portion having a magnetic anisotropy (C-axis) angle of 90 degrees with respect to the tangent line.
  • is the non-continuous change of the arbitrary angle ⁇ in the range of 0 to 85 degrees C-axis angle to the tangent
  • is an arbitrary angle in the range of C-axis angle 90 to 175 degrees with respect to tangent line 0
  • is the orientation magnetic field direction.
  • the figure shows the cross-sectional shape of the magnet in xy coordinates (unit: mm), and determines the orientation magnetic field H and the tangent of the magnet (angles ⁇ , ⁇ 'between the tangents of the coordinates.
  • the C-axis direction is expressed as an angle with respect to the radial direction (normal direction) that extends with respect to the tangential direction, and the angle is displayed as ⁇ instead of ⁇ to avoid misunderstanding.
  • the C-axis angle ⁇ relative to the tangential direction at each part was approximately 65 to 75, 40 to 50, and 85 to 95 degrees. In this way, since the C-axis angle ⁇ force with respect to the tangential direction before and after deformation at all the measured positions substantially coincides, an arbitrary angle and its angle change can be given by the shape of the magnet cross section before deformation. [0073] As described above, the C-axis position of the magnetic pole center (C-axis movement 3 in Fig. 6) does not change before and after the deformation, but the C-axis position before and after the deformation changes as the center force increases.
  • FIG. 8 is a diagram showing the distribution of the magnetic field vector with respect to the mechanical angle of the rotor.
  • the magnetic resonance curve shows the distribution of the direction of anisotropy (C-axis angle) with respect to the tangent line.
  • Table 1 shows the induced voltage when the inventive examples 1 and 2 are combined with the stator, and the distortion rate of the induced voltage waveform.
  • the cogging torque is shown in comparison with the comparative example.
  • the radial anisotropic magnet Along with the portion corresponding to Example 1 of the present invention in which the C-axis angle with respect to the tangential line is maintained at 90 degrees, the C-axis angles ⁇ and ⁇ ′ can be controlled continuously in an arbitrary range as shown in FIG. Industrial applicability
  • the radial anisotropic magnet according to the present invention is useful for reducing the size and increasing the output of a permanent magnet type motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

ラジアル異方性磁石の形状対応力を高め、最大ネルギー積(BH)maxの向上に伴う有鉄心永久磁石型モータの静音性、制御性を向上させるために、磁石粉末を網目状に固定することで磁石の接線に対する磁気異方性(C軸)角度を保持し、且つ流動を伴う変形で所定の円弧状、または環状とするラジアル異方性磁石の製造方法を提供する。とくに、粘性流動、或いは伸長流動を伴う変形を行うことで磁石の変形能を向上し、厚さに対する形状対応力を向上する。加えて、磁極をセグメントに分割することなく、接線方向に対するC軸角度θを任意の位置、任意の角度で制御することでコギングトルクを低減する。

Description

ラジアル異方性磁石の製造方法とラジアル異方性磁石を用いた永久磁 石モータ及び有鉄心永久磁石モータ 技術分野
[0001] 本発明は変形工程を含むラジアル異方性磁石の製造方法に関する。更に詳しくは
、永久磁石型モータの小型化や高出力化と同時に、とくに、有鉄心永久磁石型モー タの回転に伴うコギングトルク低減に有効な磁石の製造方法に関する。
背景技術
[0002] メノレトスパンで得られる Nd Fe B、 a Fe/Nd Fe B、 Fe B/Nd Fe B磁石材
2 14 2 14 3 2 14 料の形態はリボンなどの薄帯や、それを粉砕したフレーク状の粉末に制限される。こ のため、一般に使用されるバルタ状永久磁石とするには材料形態の変換、つまり何ら 力の方法で薄帯や粉末を特定のバルタに固定ィ匕する技術が必要となる。粉末冶金 学における基本的な粉末固定手段は常圧焼結であるが、当該リボンは準安定状態 に基づく磁気特性を維持する必要があるため常圧焼結の適用は困難である。そのた め、もつばらエポキシ榭脂のような結合剤で特定形状のバルタに固定ィ匕することが行 われた。例えば、 R. W. Leeらは(BH) l l lkjZm3のリボンを榭脂で固定すると( max
BH) 72kjZm3の等方性 Nd Fe B系ボンド磁石ができるとした [R. W. Lee, E. max 2 14
G. Brewer, N. A. Schaffel, "Hot— pressed Neodymium― Iron― Boron m agnets"lEEE Trans. Magn. , Vol. 21, (1985) ] (非特許文献 1参照)。
[0003] 1986年、本発明者らは特願昭 61— 38830号公報によって上記メルトスパンリボン を粉砕した Nd Fe B磁石粉末をエポキシ榭脂で固定した (BH) 〜72kjZm3
2 14 max
小口径環状等方性 Nd Fe Bボンド磁石が小型モータに有用であることを明らかにし
2 14
た。その後、 T. Shimodaも前記小口径環状等方性 Nd Fe B系ボンド磁石の小型
2 14
モータ特性を Sm— Co系ラジアル異方性ボンド磁石の小型モータ特性と比較し、前 者力 2 "有用で teるとした [T. Shimoda, Compression molding magnet made from rapid -quenched powder", "PERMANENT MAGNETS 1988 U PDATE", Wheeler Associate INC (1988) ] (非特許文献 2参照)。さらに、小 型モータに有用であるという報告が W. Baran["Case histories of NdFeB in the European community , The European Business and Technical Outlook for NdFeB Magnets, Nov. (1989) ]、 G. X. Huang, W. M. Gao , S. F. YUL Application of melt— spun Nd— Fe— B bonded magnet to the micro— motor", Proc. of the 11th International Rare— Earth Magnets and Their Applications, Pittsburgh, USA, pp. 583— 595 (199 0) ]、 Kasai["MQl, 2 & 3 magnets applied to motors and actuators , Polymer Bonded Magnets ' 92, Embassy Suite O' Hare— Rosemont, II linois, USA, (1992) ]などによってなされ、 1990年代力も、主に OA、 AV、 PCお よびその周辺機器、情報通信機器の永久磁石型モータ用途の環状磁石として、広く 普及した経緯がある (非特許文献 3、 4、 5参照)。
[0004] 他方では、 1980年代力 メルトスピユングによる磁石材料の研究が活発に行われ 、 Nd Fe B系、 Sm Fe N系、或いはそれらと a Fe、 Fe B系などとの微細糸且織に
2 14 2 17 3 3
基づく交換結合を利用したナノコンポジット材料を含め、多彩な合金組成をミクロ組 織制御した材料にカ卩え、近年ではメルトスピユング以外の急冷凝固法により、粉末形 状の異なる等方性磁石粉末も工業的に利用可能になっている [例えば、入山恭彦, " 高性能希土類ボンド磁石の開発動向 ",文部科学省イノべーション創出事業 Z希土 類資源の有効利用と先端材料シンポジウム,東京, PP. 19— 26 (2002)、 B. H. Ra bin, B. M. Ma, Recent developments in Nd— Fe— B powder , 120th Topical Symposium of the Magnetic Society of Japan, pp. 23— 28 ( 2001)、B M. Ma, "Recent powder development at magnequench , Po lymer Bonded Magnets 2002, Chicago (2002)、 S. Hirasawa, H. Kaneki yo, T. Miyoshi, K. Murakami, Y. Shigemoto, T. Nishiuchi, "Structure a nd magnetic properties of Nd Fe B/Fe B— type nanocomposite per
2 14 x
manent magnets prepared by strip casting", 9th Joint MMM/INTE RMAG, CA (2004) FG— 05] (非特許文献 6、 7、 8、 9参照)。
[0005] また、等方性でありながら(BH) 力 ¾20kjZm3に達するという Daviesらの報告も max
ある . A. Davie s, J. I. Betancourt, C. L. Harland, Nanophase Pr and Nd/Pr based rare― earth― iron― boron alloys", Proc. of 16th Int. Workshop on Rare— Earth Magnets and Their Applications, Sendai, pp. 485— 495 (2000) ] (非特許文献 10参照)。しかし、工業的に利用可能な急冷 凝固粉末の(BH) は 134kjZm3まで、等方性 Nd Fe Bボンド磁石の(BH) は max 2 14 max
、ほぼ 80kjZm3と見積もられる。
[0006] 上記に拘らず、本発明の対象となる永久磁石型モータは電気電子機器の高性能 化のもと、更なる小型化、高出力化、静音化などの要求が絶えない。したがって、等 方性ボンド磁石の磁石粉末の(BH) に代表される磁気特性の改良では、もはや当 max
該モータの高性能化に有用と言い切れなくなりつつある。よって、このような、等方性 ボンド磁石モータの分野では異方性ボンド磁石モータの必要性が高まって 、る [山 下文敏, "希土類磁石の電子機器への応用と展望",文部科学省イノベーション創出 事業 Z希土類資源の有効利用と先端材料シンポジウム,東京, (2002) ] (非特許文 献 11参照)。
[0007] ところで、異方性磁石に用いる Sm— Co系磁石粉末はインゴットを粉砕しても大きな 保磁力 HCJが得られる。しかし、 Smや Coは資源バランスの課題が大きぐ工業材料 としての汎用化には馴染まない。これに対し、 Ndや Feは資源バランスの観点で有利 である。しかし、 Nd Fe B系合金のインゴットや焼結磁石を粉砕しても HCJは小さい
[0008] このため、異方性 Nd Fe B磁石粉末の作製に関しては、メルトスピユング材料を出
2 14
発原料とする研究が先行した。
[0009] 1989年、徳永は Nd Fe B Ga (X=0. 4〜0. 5)を熱間据込加工(Die— ups
14 80— X 6 X
et)したバルタを粉砕し H = 1. 52MA/mの異方性 Nd Fe B粉末とし、榭脂で固
CJ 2 14
めて (BH) 127kjZm3の異方性ボンド磁石を得た [徳永雅亮, "希土類ボンド磁 max
石の磁気特性",粉体および粉末冶金, Vol. 35, pp. 3 - 7, (1988) ] (非特許文 献 12参照)。
[0010] また、 1991年、 H. Sakamotoらは Nd Fe B Cuを熱間圧延し、 H 1. 30M
14 79. 8 5. 2 1 CJ
AZmの異方性 Nd Fe B粉末を作製した [H. Sakamoto, M. Fujikura and T
2 14
. Mukai, "Fully— dense Nd— Fe— B magnets prepared from hot— ro lie d anisotropic powders", Proc. 11th Int. Workshop on Rare― earth Magnets and Their Applications, Pittsburg, pp. 72— 84 (1990) ] (非特許 文献 13参照)。
[0011] このように、 Gaや Cuの添加で熱間加工性を向上させ、 Nd Fe B結晶粒径を制御
2 14
して高 HCJ化した粉末が知られた。 1991年、 V. Panchanathanらは熱間加工バル クの粉砕法とし、粒界カゝら水素を侵入させ Nd Fe BHとして崩壊させ、真空加熱で
2 14 X
脱水素した HD (Hvdrogen Decrepitation) - Nd Fe B粒子とし、(BH) 150
2 14 max kjZm3の異方性ボンド磁石とした [M. Doser, V. Panchanacthan, and R. K. Mishra, "Pulverizing anisotropic rapidly solidified Nd— Fe— B materia Is for bonded magnets", J. Appl. Phys. , Vol. 70, pp. 6603— 6805 (199 1) ] (非特許文献 14参照)。
[0012] 2001年、 Iriyamaは Nd Fe Co B Ga を同法で 310kj/m3
0. 137 0. 735 0. 067 0. 055 0. 006
粒子とし、 (BH) 177kjZm3の異方性ボンド磁石に改良した [T. Iriyama, "Anis max
otropic oonded J d eB magnets made irom not— upset powders, P olymer Bonded Magnet 2002, Chicago (2002) ] (非特許文献 15参照)。
[0013] 一方、 Takeshitaらは Nd— Fe (Co)—Bインゴットを水素中熱処理し、 Nd (Fe, C
2 o) B相の水素ィ匕(Hydrogenation, Nd [Fe
14 2 , Co] BHx)
14 、 650〜1000oCで相 分解(Decomposition, NdH +Fe + Fe B)、脱水素(Desorpsion)、再結合(Rec
2 2
ombination)する HDDR法を提案し [Τ· Takeshita, and R. Nakayama, "Mag netic properties and micro― structure of the Nd— Fe— B magnet po wders produced by hydrogen treatment", Proc. 10th Int. Workshop on Rare― earth Magnets and Their Applications, Kyoto, pp. 551— 56 2 (1989) ]、 1999年には HDDR— Nd Fe B粒子から(BH) 193kjZm3の異方
2 14 max
性ボンド磁石を作製した [K. Morimoto, R. Nakayama, K. Mori, K. Igarashi, Y. Ishn, M. Itakura, N. Kuwano, K. Oki, "Nd Fe B— based magnetic p
2 14
owder with high remanence produced by modified HDDR process" , IEEE. Trans. Magn., Vol. 35, pp. 3253— 3255 (1999) ] (非特許文献 16、 17参照)。 [0014] 2001年には、 Mishimaらによって Co— freeの d— HDDR Nd Fe B粒子が報
2 14
告され [C. Mishima, N. Hamada, H. Mitarai, and Y. Honkura, "Develop ment of a Co— free NdFeB anisotropic magnet produced d— HDDR processes powder", IEEE. Trans. Magn. , Vol. 37, pp. 2467- 2470 (20 01) ]、 N. Hamadaらは(BH) 358kj/m3の同 d— HDDR異方性 Nd Fe B粒 max 2 14 子を 150。C、 2. 5Tの配向磁界中、 0. 9GPaで圧縮し、密度 6. 51Mg/m3, (BH) 213kjZm3の立方体 (7mm X 7mm X 7mm)異方性ボンド磁石を作製して 、る [ max
N. Hamada, C. Mishima, H. Mitarai and Y. Honkura, Development o f anisotropic bonded magnet with 27 MGOe", IEEE. Trans. Magn., Vol. 39, pp. 2953— 2956 (2003) ] (非特許文献 18、 19参照)。し力し、立方体磁 石は、一般の永久磁石型モータには適合しない。
[0015] 一方、 2001年、 RD (Reduction & Diffusion)— Sm Fe N微粉末を用いた(B
2 17 3
H) 〜119kjZm3の射出成形ボンド磁石が報告された [川本淳, 白石佳代,石坂 max
和俊,保田晋一, "15MGOe級 SmFeN射出成形コンパウンド",電気学会マグネテ イツタス研究会, (200D MAG-01 - 173] (非特許文献 20参照)。 2002年、 Ohm oriにより(BH) 323kjZm3の耐候性付与 RD—Sm Fe N微粉末を使用した(B max 2 17 3
H) 136kjZm3の射出成形による異方性磁石も報告された [K. Ohmori, "New max
era 01 anisotropic bonded ^mFeN magnets , Polymer Bonded Mag net 2002, Chicago (2002) ] (非特許文献 21参照)。このような射出成形ラジアル 異方性による(BH) 80kjZm3の異方性 Sm Fe Nボンド磁石を応用した表面磁 max 2 17 3
石(SPM)ロータを用いることで、フェライト焼結磁石モータに対して高効率ィ匕を実現 した報告もある [松岡篤, 山崎東吾,川口仁, "送風機用ブラシレス DCモータの高性 能化検討",電気学会回転機研究会, (2001)RM— 01— 161] (非特許文献 22参 照)。
[0016] しかし、ラジアル配向磁界は成形型リングキヤビティが小口径化 (或いは、長尺化) すると、起磁力の多くが漏洩磁束として消費されるため配向磁界が減少する。したが つて、配向度の低下に伴って、ボンド磁石や焼結磁石に拘らず小口径 (長尺)化に伴 つてラジアル方向の(BH) が減少する [例えば、清水元治,平井伸之, "Nd— Fe —B系焼結型異方性リング磁石", 日立金属技報, Vol. 6, pp. 33- 36 (1990) ] ( 非特許文献 23参照)。また、均質なラジアル磁界の発生は困難で等方性ボンド磁石 に比べて生産性が低 、課題もある。
[0017] しかし、仮にラジアル方向の磁気特性が形状に依存せず、均質配向が可能で、且 つ高い生産性が実現できれば永久磁石型モータの高性能化に有用な高 (BH) ラ
max ジアル異方性磁石の普及が期待される。
[0018] そこで、本発明者らは、結合剤と磁石粉末とのコンパゥンドを圧縮成形し、自己組 織化後に形成した結合剤の架橋間巨大分子を機械的に延伸し、延伸した垂直異方 性薄板磁石の塑性変形で異方性の方向をラジアル方向に転換する磁石の作製技術 、並びにその磁気特性を開示した [F. Yamashita, S. Tsutsumi, H. Fukunaga , adially Anisotropic Ring— or Arc— shaped Rare— Earth Bonded Magnets Using Self—Organization Techniqu", IEEE Trans. Magn. , Vol. 40, No. 4 pp. 2059— 2064 (2004) ] (非特許文献 24参照)。これにより、 小口径ィヒ (或いは、長尺化)しても磁気特性が殆ど低下しな ヽ厚さ約 1mmのラジア ル異方性磁石が製造できるようになった。
[0019] 一方、有鉄心永久磁石型モータの鉄心は励磁卷線を装着するスロット、磁石との磁 気回路の一部を構成するティースが存在する。このような鉄心の構造上、モータが回 転すると鉄心と磁石の間のパーミアンス変化によるトルク脈動、すなわち、コギングト ルクが発生する。コギングトルクはモータの滑らかな回転を妨げてモータの静音性、 或いは制御性を損なう要因となる。このようなコギングトルクは矩形波状の強い静磁 界が発生する高(BH) ラジアル異方性磁石において顕著となる。したがって、コギ
max
ングトルクの増大が高(BH) ラジアル異方性磁石の永久磁石型モータへの適用を
max
妨げる要因と言える。
[0020] コギングトルク低減法には鉄心や磁石の磁極のスキュー、鉄心と磁石の空隙を不等 距離とする方法、磁石内の磁化方向を磁束流に合わせる極異方性方式、ハルバッ ハ方式などが知られる。とくに、セグメント磁石を組み込んだノ、ルバッハ方式はコギン グトルク低減に有効とされる [吉田、袈裟丸、佐野、 "表面 PM同期モータのセグメント 形磁化方式によるコギングトルクの低減と回転子鉄心の削減", IEEJ. Trans. IA, V ol. 124, pp. 114— 115 (2004) ] (非特許文献 25参照)。
[0021] しかし、磁極をセグメントで分割すると組立精度がコギングトルクに大きく影響するば 力りか、実形状や構成上の制約、複雑さなどが重複するため、その製造を難しくする
[0022] 例えば、自己組織ィ匕した結合剤を含む(BH) = 162kjZm3、厚さ 0. 97mmの max
垂直異方性薄板磁石を非等方的に延伸し、内半径 3. 55mm,外半径 3. 65mm, 最大肉厚 0. 88mm,長さ 10mmの円弧状とする。この磁石を 4MAZmのパルス磁 界で磁化したときの磁束は(BH) 72kjZm3の等方性 Nd Fe Bボンド磁石の磁 max 2 14
束量に対して 1. 53倍となり、有鉄心永久磁石型モータの起動トルクを 1. 4倍以上高 める [F. Yamasnita, H. Fukunaga, 'Radially― Anisotropic Rare— Earth Hybrid Magnet with ¾el— urganizmg Binder Consolidated Under a Heat and a Low— Pressure Configuration" , Proc. 18th Int. Works hop on High Performance Magnets and Their Applications, Annecy , France, pp. 76— 83 (2004) ]。
[0023] し力しながら、磁石厚さが例えば 1. 5mmとなると垂直異方性薄板磁石を非等方的 に延伸するのが困難となり、磁気特性を保持しての変形には磁石の厚さに上限があ つた。また、磁石と対向する鉄心表面に電磁卷線を配置する構造上、磁石と対向す る鉄心にはティースとスロットが存在する。このため、モータの回転に伴うパーミアンス の変化によるコギングトルクが増大する。とくに、強い静磁界と矩形波状の空隙磁束 密度分布をもつラジアル異方性磁石は等方性 Nd Fe Bボンド磁石と比較するとコギ
2 14
ングトルクが 15倍以上にも達する。
[0024] 上記、コギングトルク低減の手段としては多くの工夫や考案がなされてきた。とくに、 セグメント磁石を組込んだノヽルバッハ方式はコギングトルク低減に有効とされる [吉田 、袈裟丸、佐野、 "表面 PM同期モータのセグメント形磁ィ匕方式によるコギングトルク の低減と回転子鉄 、の肖 'J減", IEEJ. Trans. IA, Vol. 124, pp. 114—115 (200 4) ]。しかし、磁極をセグメントで分割すると組立精度がコギングトルクに重大な影響 を及ぼす。さらには実形状や構成上の制約、複雑さなどが重複するため、工業的規 模での実施を難しくする。このため、ラジアル異方性磁石は磁極を分割することなぐ 加えて偏肉化ゃスキューなど従来技術の組み合わせでなぐ出力特性を維持しなが らコギングトルクを大幅に低減するラジアル異方性磁石の製造方法が求められてい た。
非特許文献 1 :R. W. Lee, E. G. Brewer, N. A. Schaffel, "Hot -pressed Ne odymium― Iron― Boron magnets 'IEEE Trans. Magn. , Vol. 21, (,1985) 非特許文献 2 : T. Shimoda, "Compression molding magnet made from r apid- quenched powder", "PERMANENT MAGNETS 1988 UPDAT E", Wheeler Associate INC (1988)
非特許文献 3 : W. Baran, "Case histories of NdFeB in the European c ommunity , The European Business and Technical Outlook for Nd FeB Magnets, Nov. (1989)
非特許文献 4: G. X. Huang, W. M. Gao, S. F. Yu, "Application of melt— spun Nd— Fe— B bonded magnet to the micro— motor", Proc. of t he 11th International Rare— Earth Magnets and Their Applications , Pittsburgh, USA, pp. 583— 595 (1990)
非特許文献 5 :Kasai, "MQ1, 2 & 3 magnets applied to motors and actu ators , Polymer Bonded Magnets ' 92, Embassy Suite O ' Hare— Rose mont, Illinois, USA, (1992)
非特許文献 6 :入山恭彦, "高性能希土類ボンド磁石の開発動向",文部科学省イノ ベーシヨン創出事業 Z希土類資源の有効利用と先端材料シンポジウム,東京, PP. 19 - 26 (2002)
非特許文献 7 : B. H. Rabin, B. M. Ma, "Recent developments in Nd— Fe — B powder , 120th Topical Symposium of the Magnetic Society o f Japan, pp. 23— 28 (2001)
非特許文献 8 : B M. Ma, "Recent powder development at magnequench ,,, Polymer Bonded Magnets 2002, Chicago (2002)
非特許文献 9 : S. Hirasawa, H. Kanekiyo, T. Miyoshi, K. Murakami, Y. Shi gemoto, T. Nishiuchi, "Structure and magnetic properties of Nd2Fe 14B/FexB— type nano c omp o site permanent magnets prepared by s trip casting", 9th Joint MMM/INTERMAG, CA(2004) FG— 05 非特許文献 10 : H. A. Davies, J. I. Betancourt, C. L. Harland, "Nanophase Pr and Nd/Pr based rare― earth― iron― boron alloys", Proc. of 1 6th Int. Workshop on Rare— Earth Magnets and Their Applications , Sendai, pp. 485—495 (2000)
非特許文献 11 :山下文敏, "希土類磁石の電子機器への応用と展望",文部科学省 イノべ—シヨン創出事業 Z希土類資源の有効利用と先端材料シンポジウム,東京, ( 2002)
非特許文献 12 :徳永雅亮, "希土類ボンド磁石の磁気特性",粉体および粉末冶金, Vol. 35, pp. 3- 7, (1988)
非特許文献 13 :H. Sakamoto, M. Fujikura and T. Mukai, "Fully -dense Nd— Fe— B magnets prepared from hot— rolled anisotropic powders , Proc. 11th Int. Workshop on Rare― earth Magnets and Their Ap plications, Pittsburg, pp. 72— 84 (1990)
非特許文献 14: M. Doser, V. Panchanacthan, and R. K. Mishra, "Pulveriz ing anisotropic rapidly solidified Nd— Fe— B materials for bonded magnets", J. Appl. Phys. , Vol. 70, pp. 6603— 6805 (1991)
非特許文献 15 :T. Iriyama, Anisotropic bonded NdFeB magnets made from hot— upset powders", Polymer Bonded Magnet 2002, Chicago (
2002)
非特許文献 lb :T. Takeshita, and R. Nakayama, "Magnetic properties an d micro― structure of the Nd— Fe— B magnet powders produced by hydrogen treatment , Proc. 10th Int. Workshop on Rare― earth Ma gnets and Their Applications, Kyoto, pp. 551— 562 (1989)
非特許文献 17 :K. Morimoto, R. Nakayama, K. Mori, K. Igarashi, Y. Ishii , M. Itakura, N. Kuwano, K. Oki, Nd2Fel4B— based magnetic powd er with high remanence produced by modified HDDR process", IE EE. Trans. Magn. , Vol. 35, pp. 3253- 3255 (1999)
非特許文献 18 : C. Mishima, N. Hamada, H. Mitarai, and Y. Honkura, "
Development of a Co— free NdFeB anisotropic magnet produced d
— HDDR processes powder , IEEE. Trans. Magn. , Vol. 37, pp. 2467—
2470 (2001)
非特許文献 19 : N. Hamada, C. Mishima, H. Mitarai and Y. Honkura, "De velopment of anisotropic bonded magnet with 27 MGOe", IEEE. Tr ans. Magn. , Vol. 39, pp. 2953- 2956 (2003)
非特許文献 20 :川本淳, 白石佳代,石坂和俊,保田晋一, "15MGOe級 SmFeN射 出成形コンパウンド",電気学会マグネティックス研究会, (2001) MAG— 01— 173 非特干文献 21 :K. Ohmori, New era oi anisotropic bonded ¾mFeN m agnets", Polymer Bonded Magnet 2002, Chicago (2002)
非特許文献 22 :松岡篤,山崎東吾,川口仁, "送風機用ブラシレス DCモータの高性 能化検討",電気学会回転機研究会, (2001)RM— 01— 161
非特許文献 23 :清水元治,平井伸之, "Nd— Fe— B系焼結型異方性リング磁石", 曰立金属技報, Vol. 6, pp. 33- 36 (1990)
非特許文献 24: F. Yamashita, S. Tsutsumi, H. Fukunaga, "Radially Aniso tropic Ring— or Arc― Shaped Rare— Earth Bonded Magnets Using Self― Organization Technique", IEEE Trans. Magn. , Vol. 40, No. 4 pp. 2059- 2064 (2004)
非特許文献 25 :吉田、袈裟丸、佐野、 "表面 PM同期モータのセグメント形磁化方式 によるコギングトルクの低減と回転子鉄心の削減", IEEJ. Trans. IA, Vol. 124, p p. 114- 115 (2004)
発明の開示
本発明は磁石粉末を網目状に固定することで磁石の各部分において接線に対す る磁気異方性 (磁化容易軸である C軸)の角度を保持し、且つ流動を伴う変形で所定 の円弧状、または環状とするラジアル異方性磁石の製造方法である。とくに、粘性流 動、或いは伸長流動を伴う変形を行うことで磁石の変形能を向上し、厚さに対する形 状対応力を向上する。カロえて、磁極をセグメントに分割することなぐ磁石の接線方向 に対する c軸角度を磁石の任意の位置、任意の角度で制御することでコギングトルク を低減する。
[0026] 本発明で好ましい実施形態の一つは、異方性 Sm Fe Nと異方性 Nd Fe Bを含
2 17 3 2 14 む磁石粉末と、それらを固定する網目状高分子、線状高分子、並びに必要に応じて 適宜用いる添加剤とで構成する。そして、変形前磁石の榭脂組成物のミクロ構造が 磁石粉末固定相 A、流動相 Bとしたとき、相 Bの一部が相 Aと化学結合して固定相 A 群を網目状に固定し、且つ相 Bのせん断流動、伸長流動作用で変形するラジアル異 方性磁石の製造方法である。
[0027] 本発明で好ましい実施形態の一つは、接線に対する磁気異方性 (C軸)角度が 90 度の垂直異方性部分 a 、接線に対する C軸角度が 0〜90度( Θ )の非垂直異方性
0
部分 j8 、並びに接線に対する C軸角度が 90〜180度( Θ ' )の非垂直異方性部分
0
β ' 0で構成した異形磁石を作製する工程と、前記磁石を環状、または円弧状に変形 し、垂直異方性部分 α
0に対応するラジアル異方性部分 α
1、非垂直異方性部分 |8
0 に対応する曲面 j8 '
1、及び非垂直異方性部分 j8 '
0に対応する曲面 j8
1を与える磁石 変形工程とを含むものである。ここで、変形前の非垂直異方性部分 |8
0に対応する変 形後の曲面 ι8
1、及び変形前の非垂直異方性部分 |8 '
0に対応する変形後の曲面 )8
' の接線に対する C軸角度 Θに連続変化を与える。さらに、好ましくは、変形前の垂 直異方性部分 α 0と対応する変形後のラジアル異方性部分 α 1、変形前の非垂直異 方性部分 ι8
0に対応する変形後の曲面 )8
1、及び変形前の非垂直異方性部分 )8 '
0に 対応する変形後の曲面 ι8 ' において、接線に対する C軸角度 0、 0 'を変形の前後 にお 、て略等しくすることである。
[0028] 本発明で好ましい実施形態の一つは、磁石が密度 5. 8MgZm3以上、最大エネル ギ一積 (BH) 140kj/m3以上のラジアル異方性磁石とすることである。
max
[0029] 以上により、榭脂組成物成分の粘性流動、或いは伸長流動を伴った変形により、密 度 5. 8MgZm3以上、最大エネルギー積(BH) 140kjZm3以上のラジアル異方 max
性磁石を製造する。これにより、ラジアル異方性磁石を偶数個備えた永久磁石型モ ータ、とくに有鉄心永久磁石型モータにおいて、(BH) 略 80kjZm3等方性 Nd F e Bボンド磁石を搭載した永久磁石型モータの小型化、高出力化が静音性、制御
14
性を同等とした状態で実現できる。
[0030] 本発明は磁石粉末を網目状に固定することで接線に対する C軸角度を保持し、且 つ流動を伴う変形で所定の円弧状、または環状とするラジアル異方性磁石の製造方 法である。加えて、線状高分子の粘性流動、或いは伸長流動を伴う変形能の向上で 磁石の形状対応力を向上する。さらに、本発明にかかる磁石の密度を 5. 8Mg/m3 以上、最大エネルギー積 (BH) を 140kjZm3以上とすると、既存の密度 6MgZm max
3、(BH) 略 80kjZm3の等方性 Nd Fe Bボンド磁石を適用されているモータの更 max 2 14
なる小型化、高出力化を実現できる。
[0031] 一方、ラジアル異方性磁石モータの静音性、制御性への悪影響に関しては、磁極 をセグメントに分割することなぐ接線方向に対する C軸角度を任意の位置、任意の 角度で制御することができる。
図面の簡単な説明
[0032] [図 1]図 1は磁石粉末と榭脂組成物のミクロ構造を示す概念図である。
[図 2A]図 2Aは線状高分子融液のせん断流動、伸長流動を示す概念図である。
[図 2B]図 2Bは線状高分子融液のせん断流動、伸長流動を示す概念図である。
[図 2C]図 2Cは線状高分子融液のせん断流動、伸長流動を示す概念図である。
[図 3A]図 3Aは変形前の磁石断面図である。
[図 3B]図 3Bは変形前の磁石断面図である。
[図 3C]図 3Cは変形後の磁石断面図である。
[図 3D]図 3Dは変形後の磁石断面図である。
[図 4]図 4は反応温度とゲルィ匕時間の関係を示す特性図である。
[図 5]図 5はラジアル方向表面磁束密度分布を示す特性図である。
[図 6]図 6は C軸方向を制御した異形磁石の断面図である。
[図 7A]図 7Aは接線方向に対する C軸角度の測定概念図を示す特性図である。
[図 7B]図 7Bは接線方向に対する C軸角度の測定概念図を示す特性図である。
[図 8]図 8はロータの機械角に対する磁ィ匕ベクトルの分布を示す図である。
発明を実施するための最良の形態 [0033] 本発明に力かるラジアル異方性磁石の製造方法は磁石粉末を網目状に固定する ことで磁石の各部分において接線に対する磁気異方性 (C軸)角度を保持しながら流 動を伴う変形で環状、または円弧状とすることを特徴とする。
[0034] 先ず、本発明にかかるラジアル異方性磁石製造における変形メカニズムを図面に より説明する。
[0035] 本発明では異方性 Sm Fe Nと異方性 Nd Fe B、榭脂組成物、並びに必要に
2 17 3 2 14
応じて適宜加える添加剤を構成成分とする。そして、滑りを伴う溶融状態を利用し、 磁界中 20〜50MPaで圧縮成形した変形前の磁石を製造する。
[0036] 本発明で言う変形前の磁石を図 1の概念図の例示により説明する。図 1のように変 形前磁石は磁石粉末と榭脂組成物のミクロ構造を採る。すなわち、準ガラス状態の磁 石粉末固定相 A、架橋間巨大分子を含む線状高分子である流動相 B、及び必要に 応じて適宜使用するケミカルコンタクト相 Cとする構成とする。
[0037] 図 1において、準ガラス状態の相 Aは磁石粉末固定成分として、例えば磁石粉末表 面に被覆したオリゴマーの架橋反応で形成する。例えば、エポキシ当量 205〜220g /eq、融点 70— 76°Cのノボラック型エポキシと相 Cのケミカルコンタクト、例えばイミ ダゾール誘導体との反応生成物が相 Aとして例示できる。
[0038] 一方、相 Bの一部は、例えば相 Aと反応して架橋間巨大分子を形成する線状高分 子で、例えば、相 A力 ポラック型エポキシオリゴマーの場合、融点 80°C、分子量 40 00〜 12000のポリアミドなどが例示できる。これにより、オリゴマーのエポキシ基とポリ アミド分子鎖内ァミノ活性水素(一 NHCOO—)の反応で磁石粉末を網目状に固定 する相 Aを群として 3次元網目状に連結することができる。カロえて、相 Bの残部、すな わち、相 Aと未反応な線状高分子は融点以上の加熱によって高分子融液特有の流 動を呈する相 Bとなる。
[0039] なお、図 1で示す相 Aの厚さ Arcは、例えば 0. 1〜0. 3 m、相 Cのケミカルコンタ タトの直径 2aは 2〜3 m以下の微粉末とし、何れも最小限で最適化を図ることにより 、磁石粉末の体積分率を向上させることが望ましい。但し、△は変化量を表す。
[0040] また、相 Cが分散した図 1に示すミクロ構造でなぐ相 Aのオリゴマー、或いはプレボ リマーと反応して準ガラス状態とする架橋剤、ラジカル開始剤などを相 Aのオリゴマー 、或いはプレボリマーに完溶せしめ、相 Cのない構造とすることもできる。
[0041] 本発明は、上記のようなミクロ構造を有する磁石を作製したのち、図 1に示す相 Bの 流動を伴った変形によって円弧状、もしくは環状のラジアル異方性磁石とする。その 際、相 Aによって固定された磁石粉末の C軸は相 Bとの網目構造によって互いに連 結した状態で特定の方向に固定されており、この状態を保持しながら相 Bの流動によ つて変形を完結する。
[0042] 次に、本発明の変形メカニズムに力かる相 Bの線状高分子融液のせん断流動、伸 長流動にっ 、て図面を用いて説明する。
[0043] 図 1に示した本発明に力かる変形前後の磁石のミクロ構造において、外力を加えた ときに相 Bが流動する温度まで加熱する。 B相は図 2Aに示すような長い分子が絡み 合った状態で外力を受けるとせん断応力 a、 a'により流動する。このとき、粘性応力は 相 Bの分子間の摩擦と分子鎖の絡みによる抵抗という異なる 2つの要因に基づくが、 温度や外力で最適化できる。
[0044] また、相 Bには伸長流動と呼ばれる流動場も生じる。これは流動による変形過程に お 、て図 2Cに示すように相 Bの線状高分子の分子形状が変化するもので、相 Aによ り拘束された空間での変形、或いは局部的な延伸を伴う変形の際に生じる流動形態 である。
[0045] なお、本発明に力かる変形における流動形態としては、図 2Bのようにせん断流動と 伸長流動とが重畳した流動形態による変形であっても差支えない。
[0046] 以上のような相 Bの流動を伴う変形によって製造した円弧状、またはそれらを複数 個連結した環状の磁石は熱処理により、架橋反応を進行させ、相 Bの流動性を消失 させる。この処理によって磁石の機械的強度、耐熱性など耐環境性を向上させること ができる。
[0047] 次に、本発明にかかるラジアル異方性磁石の接線に対する磁気異方性 (C軸)角度 θ、 Θ 'を制御する概念を図面により説明する。
[0048] 角度 Θは 0〜90度の範囲、角度 0,は 90〜 180度の範囲の非垂直異方性部分に おける C軸の角度を表すものとする。また、磁石の接線に対する C軸角度を、磁石の 変形前においては添字 0を付けて Θ 、 Θ, 、変形後においては添字 1をつけて 0 、 θ で表す。
[0049] 図 3A、B、C、Dは変形前後の磁石断面図である。これらの図において、 a は接線
0 に対する磁気異方性 (C軸)角度が 90度の垂直異方性部分、 β は接線に対する C
0
軸角度が 0〜90度の範囲での任意角度 0 をもつ非垂直異方性部分、 β ' は 90〜
0 0
180度の範囲での任意角度 0 ' をもつ非垂直異方性部分、 Ηは配向磁界方向であ
0
る。
[0050] 本発明では図 3Αまたは Βのような構成の磁石を製造し、前記磁石を図 3C、 Dのよ うに環状、または円弧状に変形し、垂直異方性部分 a に対応するラジアル異方性部
0
分 a 、非垂直異方性部分 |8 に対応する曲面 |8 、及び非垂直異方性部分 |8 ' に
1 0 1 0 対応する曲面 j8, を与える。本発明では相 Aによって固定された磁石粉末の C軸は 相 Bとの網目構造によって特定の方向に固定している。そして、その状態を保持しな 力 相 Bの流動によって変形が進行する。その結果、ラジアル異方性磁石の接線に 対する C軸角度を 90度に保持することも、 C軸角度 0 、 Θ ' を任意に、或いは連続 帘 U御することができる。
[0051] とくに、回転に伴うコギングトルクを低減し、モータ運転時の静音性や制御性の向上 を図るために変形前の非垂直異方性部分 ι8
0に対応する変形後の曲面 )8
1、及び変 形前の非垂直異方性部分 ι8 '
0に対応する変形後の曲面 )8 '
1の接線に対する C軸角 度 0 、 0 ' に連続変化を与える。また、特性安定ィ匕のために変形前の垂直異方性 部分 a
0と対応する変形後のラジアル異方性部分 a
1、変形前の非垂直異方性部分 β
0に対応する変形後の曲面 ι8
1、及び変形前の非垂直異方性部分 )8 '
0に対応する 変形後の曲面 ι8 ' において、接線に対する C軸角度 0、 0 'を変形の前後で略等し く保つことが望ましい。これらは相 Βの流動性、相 Βの一部による磁石粉末固定相 A の網目構造の最適化、外力の度合などによって最適化を図ることができる。
[0052] なお、変形後のラジアル異方性部分 a 、変形前の非垂直異方性部分 |8 に対応
1 0 する変形後の曲面 ι8
1、及び変形前の非垂直異方性部分 )8 '
0に対応する変形後の 曲面 j8 ' の各領域の構成比率、或いは接線に対する C軸角度 0、 Θ 'の水準や連続 変化の具体的な度合に関しては、本発明にかかるラジアル異方性磁石を適用する永 久磁石型モータの設計思想に委ねられる。例えば、本発明にかかるラジアル異方性 磁石を界磁とし、無鉄心電機子と組合せたモータでは回転に伴うパーミアンス変化は ないのでコギングトルクは発生しない。したがって、この場合は j8や β,領域は不要 となる。
[0053] なお、図 3C、 Dのような円弧状、またはそれらを複数個連結した環状磁石とすること に関しては、例えば、特開 2003— 347142に略ラジアル配向した円弧状の予備成 形体を作製し、これを円筒状に組み合わせ圧縮成形し、さらに円筒成形体を焼結或 V、は焼成する焼結 ·焼成するラジアル異方性磁石の製造方法が開示されて!、る。ま た、特開 2004— 96961公報、特開 2004— 140270公報などにもラジアル配向円 弧状予備成形体を接ぎ合わせて環状のラジアル異方性磁石を製造する方法が開示 されている。しかし、本発明のような流動を伴う変形を行うものではない。カロえて、本 発明のような磁極を分割することなぐ接線方向に対する C軸角度 Θ、 Θ 'を任意の 位置で制御するものではな!/、。
[0054] 次に、本発明に力かる磁石粉末である異方性 Sm Fe N、異方性 Nd Fe Bにつ
2 17 3 2 14 いて説明する。
[0055] 本発明で言う異方性 Sm Fe Nとは、例えば、特開平 2— 57663号公報に記載さ
2 17 3
れる溶解铸造法、特許第 17025441号ゃ特開平 9— 157803号公報などに開示さ れる還元拡散法より、 R— Fe系合金、又は R—(Fe、 Co)系合金を製造し、これを窒 化した後、微粉砕して得られる。微粉砕はジェットミル、振動ボールミル、回転ボール ミルなど、公知の技術を適用でき、フィッシャー平均粒径で 1. 以下、好ましくは 1. 2 m以下となるように微粉砕したものを言う。なお、微粉末は発火防止などハンド リング性を向上させるため、例えば特開昭 52— 54998号公報、特開昭 59— 17020 1号公報、特開昭 60— 128202号公報、特開平 3— 211203号公報、特開昭 46— 7 153号公報、特開昭 56— 55503号公報、特開昭 61— 154112号公報、特開平 3— 126801号公報等に開示されているような、湿式ないし乾式処理による徐酸ィ匕皮膜 を表面に形成したものが望ましい。また、特開平 5— 230501号公報、特開平 5— 23 4729号公報、特開平 8— 143913号公報、特開平 7— 268632号公報や、日本金 属学会講演概要(1996年春期大会、 No. 446、 pl84)等に開示されている金属皮 膜を形成する方法や、特公平 6— 17015号公報、特開平 1— 234502号公報、特開 平 4 217024号公報、特開平 5— 213601号公報、特開平 7— 326508号公報、 特開平 8— 153613号公報、特開平 8— 183601号公報等による無機皮膜を形成す る方法など、 1種以上の表面処理 Sm Fe N微粉末であっても差支えない。
2 17 3
[0056] 一方、本発明で言う異方性 Nd Fe Bとは HDDR処理 (水素分解
2 14 Z再結合)、すな わち、希土類—鉄系合金(R [Fe, Co] B)相の水素ィ匕(Hydrogenation, R [Fe
2 14 2
, Co] BHx)、 650〜: L000。Cでの相分解(Decomposition, RH +Fe+Fe B)ゝ
14 2 2 脱水素(Desorpsion)、再結合 (Recombination)する、所謂 HDDR処理などで作 製した磁石粉末を言う。ここで必須希土類元素 Rは、 10原子%未満では結晶構造が a—Feと同一構造の立方晶組織となるため、高磁気特性、特に高保磁力 HCJが得 られず、 30原子%を超えると Rリッチな非磁性相が多くなり、飽和磁ィ [Usが低下する。 よって、 Rは 10〜30原子%の範囲が望ましい。加えて必須元素 Bは、 2原子%未満 では菱面体構造が主相となり、高い保磁力 HCJは得られず、 28原子%を超えると Bリ ツチな非磁性相が多くなり、飽和磁ィ Hisが低下する。よって、 Bは 2〜28原子%の範 囲が望ましい。ここで、必須元素 Feは、 65原子%未満では飽和磁ィ [Usが低下し、 80 原子%を超えると高い保磁力 HCJが得られない。よって、 Feは 65〜80原子%が望 ましい。また、 Feの一部を Coで置換することは、磁石粉末の磁気特性を損なうことな ぐキュリー温度 Tcの上昇によって実使用温度範囲の残留磁ィ [Hrの温度係数を改善 できる。し力しながら、 Coの Fe置換量が 20原子%を超えると飽和磁ィ [Usが減少する 。すなわち、 Co置換量が 5〜15原子%の範囲では、残留磁ィ [Hrが一般に増加する ため、高(BH) を得るには好ましい。
max
[0057] 他方では、 R、 B、 Feのほか、工業的生産上不可避な不純物の存在は許容できる。
例えば、 Bの一部を 4重量%以下の C、或いは P、 S、 Cuの中、少なくとも 1種、合計 量で 2重量%以下の存在は一般的な許容範囲である。
[0058] 更に、 Al、 Ti、 V、 Cr、 Mn、 Biゝ Nb、 Ta、 Mo、 W、 Sb、 Ge、 Ga、 Sn、 Zr、 Niゝ Siゝ Zn、 Hfのうち少なくとも 1種は、当該粉末の保磁力 HCJ、減磁曲線の角型性 HkZH CJなどの改善のために適宜添加することができる。また、組成の 10原子%〜30原子 %を占める希土類元素 Rは、 Nd、 Pr、 Dy、 Ho、 Tbの中、少なくとも 1種、或いは、 La 、 Ce、 Sm、 Gd、 Er、 Eu、 Tm、 Yb、 Lu、 Yの中、少なくとも 1種を含む。通常 Rのうち 1種をもって足りるが、実用上は 2種以上の混合物(ミッシュメタル、シジム等)を使用 することもできる。なお、この Rは工業上入手可能な範囲で製造上不可避な不純物を 含有できる。
[0059] 以上のような、異方性 Sm Fe Nと異方性 Nd Fe B、並びに榭脂組成物を必須
2 17 3 2 14
の構成成分としたコンパウンドを磁界中、 20〜50MPaで低圧圧縮成形する。この過 程で Nd Fe Bは Sm Fe Nよって隔離され、 Nd Fe Bの成形加工での破砕や表
2 14 2 17 3 2 14
面の損傷が抑制される。したがって、高温下での減磁曲線の HkZHcJ (Hkは残留 磁ィ Hirの 90%磁ィ匕に相当する減磁界)が良化し、初期不可逆減磁率が減少する。
[0060] また、 Sm Fe Nと Nd Fe Bとの異方性磁石では容易に高密度化できるため、 1
2 17 3 2 14
40kjZm3以上の(BH) が得られる。 (例えば、 F. Yamashita, H. Fukunaga, " max
Raaialiy― Anisotropic Rare— Earth Hybrid Magnet with Sel— Organiz ing Binder Consolidated Under a Heat and an ow— Pressure Confi guration", Proc. 18th Int. Workshop on High Performance Magnets and Their Applications, Annecy, France, pp. 76— 83 (2004)。
[0061] (実施例 1)
以下、本発明にかかる製造方法を実施例により更に詳しく説明する。ただし、本発 明は本実施例に限定されな!/、。
[0062] [接線に対する C軸角度が 90度のラジアル異方性磁石]
磁石粉末は粒子径 3〜5 μ mの異方性 Sm Fe N、粒子径 38〜150 μ mの異方
2 17 3
性 Nd Fe Bを使用した。また、結合剤のうち磁石粉末固定相 Aの主成分としてのォ
2 14
リゴマーはエポキシ当量 205〜220gZeq、融点 70— 76°Cのノボラック型エポキシ、 B相は例えば A相と架橋反応して架橋間巨大分子を形成する線状高分子で、例えば 、融点 80。C、分子量 4000〜12000のポリアミド、相 Cのケミカルコンタクトは 2—フエ 二ルー 4、 5—ジヒドロキシメチルイミダゾール(または 2—メチルイミダゾール)、また、 滑剤として融点約 52°Cのペンタエリスリトール C17トリエステルを使用した。これは、 1 分子中 1つの水酸基(— OH)、炭素数 16のへキサデシル基(一(CH ) CH )を 3
2 16 3 つ有する。
[0063] これら結合剤と磁石粉末とのコンパゥンドはオリゴマー 1重量%で表面処理した異 方性 Sm Fe N 38. 20重量%、並びにオリゴマー 0. 5重量%で表面処理した異方
2 17 3
性 Nd Fe B57. 44重量%を線状高分子 2. 80重量%並びに滑剤 0. 28重量%の
2 14
融点以上(120°C)で溶融混練し、室温に冷却後、 150 m以下に粗粉砕したのち、 室温でケミカルコンタクト 0. 28重量%を乾式混合した。なお、図 4はコンパウンドの反 応温度とゲルィ匕時間の関係を示す特性図である。図中 C1は、 2—フエ-ルー 4、 5— ジヒドロキシメチルイミダゾール系で 170°Cのゲル化時間は 160sec、 C2は 2—メチル イミダゾールの系で 170°Cゲル化時間は 30secであつた。
[0064] 次に、上記コンパウンドを 170°Cに加熱し、 1. 4MAZmの直交磁界中、滑りを伴う 溶融流動状態で 20MPaで圧縮し、厚さ 1. 5mmで 14. 5mm X 15. 2mm、密度 5. 8〜6. OMgZm3の接線に対する C軸角度が 90度、すなわち垂直磁気異方性磁石 を作製した。なお、成形時間は約 30secであった。このため、 C1はゲルイ匕に至らず、 C2はゲルイ匕している。したがって、前者は本発明に力かる磁石で、そのミクロ構造は 図 1に示したような相 A、相 B、並びに相 C力 構成され、後者は不完全な架橋状態 の磁石ではあるものの、熱と外力をカ卩えても相 Bは流動状態に至らない。
[0065] 上記、本発明にかかる不完全な架橋状態の磁石を 4MAZmで垂直方向へパルス 着磁したときの残留磁ィ [Hrは 0. 93T、保磁力 HcJは 796kAZm、最大エネルギー 積(BH) は 145kjZm3であった。
max
[0066] 上記、厚さ 1. 5mmで 14. 5mmX 15. 2mm、密度 5. 8〜6. OMg/m3の接線に 対する C軸角度が 90度の磁石に、 150— 160°Cの熱と lOMPa以下の外力を与える ことで外半径 20. 45mm,内半径 18. 95mm (厚さ 1. 5mm)、 45度の円弧状ラジア ル異方性磁石とした。更に、この磁石を外径 37. 9mmの積層電磁鋼板の外周面に 接着して環状とし、外周 8極着磁した。この環状ラジアル異方性磁石を本発明例 1と する。
[0067] 一方、外半径 20. 45mm,内半径 18. 95mm (厚さ 1. 5mm)、密度 6MgZm3、 ( BH) 略 80kJ,m3の等方性 Nd Fe Bボンド磁石を積層電磁鋼板と接着し、外周 max 2 14
8極着磁した。この環状の等方性 Nd Fe Bボンド磁石を比較例とする。
2 14
[0068] 図 5は上記 2種類のラジアル方向表面磁束密度分布を示す。図の本発明例はラジ アル異方性磁石の特有の矩形波状表面磁束密度分布であるが、そのピーク値は 18 5mTで、比較例に比べて 1. 53倍に達する。
[0069] [C軸角度 0、 0 'を付与したラジアル異方性磁石]
前項の実施例と同じコンパウンドを用い、 170°Cにて、 1. 4MAZmの直交磁界中 、滑りを伴う溶融流動状態で 20MPaで圧縮し、厚さ 1. 5mm、密度 5. 8〜6. OMg Zm3の図 6に示す断面の異形磁石を成形時間約 30secで作製した。
[0070] 図 6において、 a は接線に対する磁気異方性 (C軸)角度が 90度の垂直異方性部
0
分、 β は接線に対する C軸角度が 0〜85度の範囲で任意角度 Θが連続変化した非
0
垂直異方性部分、 β , は接線に対する C軸角度が 90〜175度の範囲で任意角度 0
0
'が連続変化した非垂直異方性部分、 Ηは配向磁界方向である。なお、図は磁石断 面形状を xy座標(単位 mm)で示し、配向磁界 Hと磁石の接線 (座標の接線との角度 θ、 Θ 'を決定している。なお、図 6においてのみ、表現の便宜上、 C軸方向を、接線 方向に対してでなぐ径方向(法線方向)に対する角度で表している。誤解を避ける ため角度を Θでなく φとして表示している。
[0071] 次に、図 6に示した変形前の異形磁石に 150〜160°Cの熱と lOMPa以下の外力 を与えて外半径 20. 45mm,内半径 18. 95mm (厚さ 1. 5mm)、 45度の円弧状ラ ジアル異方性磁石とした。
[0072] 続いて、図 6に示した変形前の異形磁石、並びにこれを変形したラジアル異方性磁 石において、図 6に示す C軸移動 1、 2、および 3、すなわち |8 、 |8 、 α 、 α の各部
0 1 0 1 位から直径約 lmmの円を切出した。更に、深さ 0. 1cmの方形(0. 8 X 1. Ocm)ホル ダ一に直径約 lmmの前記試料を固定した。この試料の自発磁ィ匕は図 7Aのように通 常 C軸に向こうとする。しかし、図 7Bのように外部磁界 Hを与えると試料自体にトルク が発生し、磁界 Hの方向に試料の C軸が回転する。試料の回転角と各試料表面に対 応する起点の回転角との差力 起点における接線方向に対する C軸角度 Θを求め た。その結果、図 6における C軸移動 1、 2、および 3、すなわち、 β ヽ β ヽ a ヽ a の
0 1 0 1 各部位における接線方向に対する C軸角度 Θは、概ね 65〜75、 40〜50、 85-95 度であった。このように、測定した全ての部位における変形前後の接線方向に対する C軸角度 Θ力 ほぼ一致することから、任意の角度、並びにその角度変化を変形前 の磁石断面の形状で与えることができる。 [0073] 上記のように、変形前後で磁極中心(図 6の C軸移動 3)の C軸位置は変化ないが、 中心力 離れるに従って変形前後の C軸位置が変化している。この C軸分布の解析 は回転磁化における全エネルギー E=Ku' sin2 (i) -Is-H-cos ( φ o)において 、試料の全エネルギー Eを最小とする解、すなわち、( δ EZ δ φ ) =Ku- sin2 φ—I s -H- sin ( φ ο) =0力ら、先ず φを決定し、 I=Is-cos ( o- 0 )カら]^ー11 lo opを描く。更に、 Ku' sin2 φ— Is 'H' sin ( φ ο— φ ) =0から φを求め、 φの確率分 布を座標値毎に適用して全体の配向状態を解析した。ただし、 φ οは外部磁界の角 度、 φは Isが回転した角度、 Iは自発磁気モーメント、 Kuは異方性定数、 Eは全エネ ルギーを表す。
[0074] その結果、図 6における C軸移動 1、 2、および 3、すなわち、 β 、 β 、 a 、 a の各
0 1 0 1 部位における異方性分散 σは全て 14. 5± 2であった。このことから、異方性が崩れ ることなく、異方性の方向のみが変化するとみなせる。
[0075] なお、図 8はロータの機械角に対する磁ィ匕ベクトルの分布を示す図である。磁ィ匕べ タトルは接線に対する異方性の方向 (C軸角度)の分布を示すものである。
[0076] 次に、上記の外半径 20. 45mm,内半径 18. 95mm (厚さ 1. 5mm)、 45度の円弧 状ラジアル異方性磁石を外径 37. 9mmの積層電磁鋼板の外周面に接着して環状と し、外周 8極着磁した。この環状ラジアル異方性磁石を本発明例 2とする。
[0077] 表 1には、本発明例 1、 2を固定子と組合せた際の誘起電圧、誘起電圧波形の歪率
、並びにコギングトルクを比較例と比較して示す。
[0078] [表 1]
Figure imgf000023_0001
[0079] 表 1から明らかなように、本発明例 1のラジアル異方性磁石をモータに適用したとき 、比較例で示す密度 6MgZm3、 (BH) 略 800kjZm3の等方性 Nd Fe Bボンド 磁石を適用したモータに比較して得られた誘起電圧値の比から 1. 35倍程の高出力 化が可能なことが伺える。
[0080] また、本発明に力かるラジアル異方性磁石を有鉄心永久磁石型モータへ適用する 際の課題であるコギングトルク低減に関しては、本発明例 2のように、ラジアル異方性 磁石の接線に対する C軸角度を 90度に保持する本発明例 1に相当する部位とともに 、 C軸角度 θ、 Θ 'を図 6のように任意の範囲で連続制御することで対応できる。 産業上の利用可能性
[0081] 本発明によるラジアル異方性磁石は、永久磁石型モータの小型化、高出力化に有 用である。

Claims

請求の範囲
[1] 磁石粉末を網目状に固定することで磁石の接線に対する磁気異方性角度を保持し
、且つ流動を伴う変形で所定の円弧状、または環状とするラジアル異方性磁石の製 造方法。
[2] 前記磁石粉末は異方性 Sm Fe Nと異方性 Nd Fe Bを含み、それらを固定するた
2 17 3 2 14
めに、網目状高分子、線状高分子、並びに必要に応じて添加剤を用いる請求項 1記 載のラジアル異方性磁石の製造方法。
[3] 変形前の前記磁石はミクロ構造が磁石粉末固定相 A、流動相 Bを含む榭脂組成物 であり、相 Bの一部が相 Aと化学結合して固定相 A群を網目状に固定し、且つ相 Bの せん断流動、伸長流動作用により前記磁石を変形する請求項 1または 2記載のラジ アル異方性磁石の製造方法。
[4] 接線に対する磁気異方性角度が 90度の垂直異方性部分 α 、接線に対する磁気異
0
方性角度 Θが 0〜90度の非垂直異方性部分 |8 、並びに Θが 90〜180度の非垂直
0
異方性部分 ι8 ' 0で構成した異形磁石を作製する工程と、前記磁石を環状、または円 弧状に変形し、垂直異方性部分 α に対応するラジアル異方性部分 α 、非垂直異
0 1
方性部分 j8
0に対応する曲面 j8
1、及び非垂直異方性部分 j8 '
0に対応する曲面 j8 '
1 を形成する変形工程とを含む請求項 1記載のラジアル異方性磁石の製造方法。
[5] 変形前の非垂直異方性部分 |8 に対応する変形後の曲面 )8 、及び変形前の非垂
0 1
直異方性部分 ι8 '
0に対応する変形後の曲面 )8 '
1の接線に対する磁気異方性角度
Θに連続変化を与える請求項 4記載のラジアル異方性磁石の製造方法。
[6] 変形前の垂直異方性部分 α と対応する変形後のラジアル異方性部分 α 、変形前
0 1 の非垂直異方性部分 に対応する変形後の曲面 、及び変形前の非垂直異方
0 1
性部分 j8 '
0に対応する変形後の曲面 j8 '
1において、接線に対する磁気異方性角度 が変形の前後で等しい請求項 4または 5記載のラジアル異方性磁石の製造方法。
[7] 磁石が密度 5. 8MgZm3以上、最大エネルギー積 (BH) 140kjZm3以上である max
請求項 1記載のラジアル異方性磁石の製造方法。
[8] 変形後磁石を熱処理し、流動成分を消失する請求項 1記載のラジアル異方性磁石 の製造方法。
[9] 請求項 1記載のラジアル異方性磁石を偶数個備えた永久磁石型モータ。
[10] 請求項 1、 4、 5のいずれか 1項に記載のラジアル異方性磁石を偶数個備えた有鉄心 永久磁石型モータ。
[11] 請求項 6に記載のラジアル異方性磁石を偶数個備えた有鉄心永久磁石型モータ。
[12] 前記ラジアル異方性磁石の 1極当たりにおける回転中心に対する機械角を d° とした σ、
磁極中央から絶対値 dZ6° の範囲において接線方向に対する磁気異方性角度は 90。 であり、
磁極中央から絶対値 dZ6° 以上において磁極間部方向に向かって磁気異方性角 度が一定の割合で減少する、
請求項 9に記載の永久磁石型モータ。
[13] 前記ラジアル異方性磁石の 1極当たりにおける回転中心に対する機械角を d° とした σ、
磁極中央から絶対値 dZ6° の範囲において接線方向に対する磁気異方性角度は 90。 であり、
磁極中央から絶対値 dZ6° 以上において磁極間部方向に向かって磁気異方性角 度が一定の割合で減少する、
請求項 10に記載の有鉄心永久磁石型モータ。
[14] 前記ラジアル異方性磁石の 1極当たりにおける回転中心に対する機械角を d° とした σ、
磁極中央から絶対値 dZ6° の範囲において接線方向に対する磁気異方性角度は 90。 であり、
磁極中央から絶対値 dZ6° 以上において磁極間部方向に向かって磁気異方性角 度角度が一定の割合で減少する、
請求項 11に記載の有鉄心永久磁石型モータ。
[15] 前記ラジアル異方性磁石の磁極間部の磁気異方性角度は 0° 〜10° である請求項
12に記載の永久磁石型モータ。
[16] 前記ラジアル異方性磁石の磁極間部の磁気異方性角度は 0° 〜10° である請求項 13に記載の有鉄心永久磁石型モータ。
[17] 前記ラジアル異方性磁石の磁極間部の磁気異方性角度は 0° 〜10° である請求項
14に記載の有鉄心永久磁石型モータ。
[18] 円弧状ラジアル異方性磁石を偶数個備え、各磁石は、 1極当たりにおける回転中心 に対する機械角を d° とした場合、
磁極中央から絶対値 dZ6° の範囲において接線方向に対する磁気異方性角度が 90。 であり、
磁極中央から絶対値 dZ6° 以上において磁極間部方向に向かって磁気異方性角 度が一定の割合で減少するように構成された、
永久磁石型モータ。
PCT/JP2007/055364 2006-03-16 2007-03-16 ラジアル異方性磁石の製造方法とラジアル異方性磁石を用いた永久磁石モータ及び有鉄心永久磁石モータ WO2007119393A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP07738809.8A EP1995854B1 (en) 2006-03-16 2007-03-16 Radial anisotropic magnet manufacturing method, permanent magnet motor using radial anisotropic magnet, iron core-equipped permanent magnet motor
CN200780008755.4A CN101401282B (zh) 2006-03-16 2007-03-16 径向各向异性磁铁的制造方法和使用径向各向异性磁铁的永磁电动机及有铁芯永磁电动机
US12/281,679 US8072109B2 (en) 2006-03-16 2007-03-16 Radial anisotropic magnet manufacturing method, permanent magnet motor using radial anisotropic magnet, and iron core-equipped permanent magnet motor
JP2008510796A JP5169823B2 (ja) 2006-03-16 2007-03-16 ラジアル異方性磁石の製造方法とラジアル異方性磁石を用いた永久磁石モータ及び有鉄心永久磁石モータ
US13/277,355 US8183732B2 (en) 2006-03-16 2011-10-20 Radial anisotropic magnet manufacturing method, permanent magnet motor using radial anisotropic magnet, and iron core-equipped permanent magnet motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006072744 2006-03-16
JP2006-072744 2006-03-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/281,679 A-371-Of-International US8072109B2 (en) 2006-03-16 2007-03-16 Radial anisotropic magnet manufacturing method, permanent magnet motor using radial anisotropic magnet, and iron core-equipped permanent magnet motor
US13/277,355 Division US8183732B2 (en) 2006-03-16 2011-10-20 Radial anisotropic magnet manufacturing method, permanent magnet motor using radial anisotropic magnet, and iron core-equipped permanent magnet motor

Publications (1)

Publication Number Publication Date
WO2007119393A1 true WO2007119393A1 (ja) 2007-10-25

Family

ID=38609184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055364 WO2007119393A1 (ja) 2006-03-16 2007-03-16 ラジアル異方性磁石の製造方法とラジアル異方性磁石を用いた永久磁石モータ及び有鉄心永久磁石モータ

Country Status (5)

Country Link
US (2) US8072109B2 (ja)
EP (1) EP1995854B1 (ja)
JP (1) JP5169823B2 (ja)
CN (1) CN101401282B (ja)
WO (1) WO2007119393A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009142144A (ja) * 2007-11-12 2009-06-25 Panasonic Corp 異方性永久磁石型モータ
WO2009142005A1 (ja) * 2008-05-23 2009-11-26 パナソニック株式会社 異方性を連続方向制御した希土類-鉄系リング磁石の製造方法
WO2010007673A1 (ja) * 2008-07-16 2010-01-21 ミネベア株式会社 希土類-鉄系環状磁石の製造方法、及びモータ
JP2010199448A (ja) * 2009-02-27 2010-09-09 Minebea Co Ltd 自己修復性希土類−鉄系磁石
CN103157794A (zh) * 2011-12-13 2013-06-19 西门子公司 用于永磁体的制造方法、造型系统和永磁体
KR20170132215A (ko) 2015-03-24 2017-12-01 닛토덴코 가부시키가이샤 희토류 자석 형성용 소결체 및 희토류 소결 자석
KR20170132217A (ko) 2015-03-24 2017-12-01 닛토덴코 가부시키가이샤 희토류 영구자석 및 희토류 영구자석을 갖는 회전기
JP2019016707A (ja) * 2017-07-07 2019-01-31 昭和電工株式会社 R−t−b系希土類焼結磁石及びr−t−b系希土類焼結磁石用合金
US10867729B2 (en) 2015-03-24 2020-12-15 Nitto Denko Corporation Method for producing sintered body that forms rare-earth permanent magnet and has non-parallel easy magnetization axis orientation
US20220029511A1 (en) * 2019-04-18 2022-01-27 Samsung Electronics Co., Ltd. Drive motor and vacuum cleaner having the same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101485065B (zh) * 2006-11-27 2011-07-20 松下电器产业株式会社 永久磁铁转子及使用其的马达
WO2008065898A1 (fr) * 2006-11-27 2008-06-05 Panasonic Corporation Moteur à aimant de type à espace dans la direction radiale
DE112008003493T5 (de) * 2007-12-25 2010-10-21 ULVAC, Inc., Chigasaki-shi Verfahren zur Herstellung eines Permanentmagneten
JP2009201259A (ja) * 2008-02-21 2009-09-03 Toshiba Corp 永久磁石式回転電機、永久磁石式回転電機の組立方法、永久磁石式回転電機の分解方法及び永久磁石電動機ドライブシステム
US8415854B2 (en) * 2008-07-28 2013-04-09 Direct Drive Systems, Inc. Stator for an electric machine
US8294316B2 (en) * 2009-07-28 2012-10-23 Rolls-Royce North American Technologies, Inc. Electrical power generation apparatus for contra-rotating open-rotor aircraft propulsion system
US20110025157A1 (en) * 2009-07-28 2011-02-03 Rolls-Royce Corporation System of electrical generation for counter-rotating open-rotor blade device
JP5600917B2 (ja) * 2009-10-01 2014-10-08 信越化学工業株式会社 永久磁石式回転機用回転子
US20120049663A1 (en) * 2010-09-01 2012-03-01 Gm Global Technology Operations, Inc. Rotor and method of forming same
CN102842974B (zh) 2012-08-03 2015-06-03 埃塞克科技有限公司 横向磁通发电机
CA2827650A1 (en) 2012-09-24 2014-03-24 Eocycle Technologies Inc. Transverse flux electrical machine stator and assembly thereof
CA2829812A1 (en) 2012-10-17 2014-04-17 Eocycle Technologies Inc. Transverse flux electrical machine rotor
US20170170695A1 (en) * 2014-02-12 2017-06-15 Nitto Denko Corporation Ring magnet for spm motor, production method for ring magnet for spm motor, spm motor, and production method for spm motor
US9818516B2 (en) * 2014-09-25 2017-11-14 Ford Global Technologies, Llc High temperature hybrid permanent magnet
US11821053B2 (en) * 2015-06-30 2023-11-21 Magna International Inc. System for conditioning material using a laser and method thereof
DE102017105138A1 (de) * 2017-03-10 2018-09-13 MS-Schramberg Holding GmbH Elektromechanisches Bauteil

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254998A (en) 1975-10-31 1977-05-04 Sony Corp Oxidation treatment process of metallic magnetic powder for magnetic r ecording medium
JPS5655503A (en) 1979-10-05 1981-05-16 Hitachi Ltd Production of metal magnetic powder of superior corrosion resistance
JPS59170201A (ja) 1983-03-15 1984-09-26 Kanto Denka Kogyo Kk 金属磁性粉末の安定化法
JPS60128202A (ja) 1983-12-13 1985-07-09 Toyo Soda Mfg Co Ltd 金属磁性粉末の製造方法
JPS6138830A (ja) 1984-07-31 1986-02-24 Nippei Toyama Corp ボルト・ワツシヤの自動組付け装置
JPS61154112A (ja) 1984-12-27 1986-07-12 Mitsui Toatsu Chem Inc 強磁性金属微粒子の安定化方法
JPH01234502A (ja) 1988-03-11 1989-09-19 Hirata Michitoshi 金属微粉末の表面処理方法
JPH0257663A (ja) 1987-09-18 1990-02-27 Asahi Chem Ind Co Ltd 磁気異方性材料およびその製造方法
JPH03211203A (ja) 1990-01-17 1991-09-17 Kanto Denka Kogyo Co Ltd 表面が活性な金属の安定化方法
JPH0362764B2 (ja) 1985-06-24 1991-09-27 Sumitomo Metal Mining Co
JPH04214024A (ja) 1990-01-12 1992-08-05 Hoechst Ag 結晶性ケイ酸ナトリウムの製造方法
JPH05213601A (ja) 1991-07-01 1993-08-24 Res Dev Corp Of Japan 金属材の活性化又は安定化処理法
JPH05230501A (ja) 1992-02-18 1993-09-07 Sumitomo Metal Mining Co Ltd 希土類−鉄系磁石用合金粉末及びそれを用いたボンド磁石
JPH05234729A (ja) 1992-02-21 1993-09-10 Nippon Steel Corp 希土類−鉄−窒素系磁石粉末及びその製造方法
JPH0617015A (ja) 1992-04-28 1994-01-25 Beiersdorf Ag 感圧ホツトメルト接着被覆テープ
JPH07268632A (ja) 1994-03-28 1995-10-17 Kinya Adachi 金属塩、金属錯体および有機金属化合物を用いた磁性材料の処理方法
JPH07326508A (ja) 1994-05-31 1995-12-12 Tsuoisu Kk ボンド型成形磁性体用複合磁性材料およびボンド型 成形磁性体
JPH08143913A (ja) 1994-11-25 1996-06-04 Kinya Adachi 合金および金属間化合物磁性粉末の粉砕と安定化
JPH08153613A (ja) 1994-11-29 1996-06-11 Mitsui Toatsu Chem Inc 金属磁性粉末の安定化方法
JPH08183601A (ja) 1994-12-27 1996-07-16 Benkan Corp 水素吸蔵金属材の高活性化及び安定化処理法
JPH09157803A (ja) 1995-12-01 1997-06-17 Sumitomo Metal Mining Co Ltd 希土類−鉄系合金
JP2003347142A (ja) 2002-05-27 2003-12-05 Mitsubishi Electric Corp 円筒状異方性磁石の製造方法および円筒状異方性磁石
JP2004096961A (ja) 2002-09-04 2004-03-25 Mitsubishi Electric Corp リング型磁石および回転子
JP2004140270A (ja) 2002-10-21 2004-05-13 Mitsubishi Electric Corp リング磁石
WO2005008862A1 (ja) * 2003-07-22 2005-01-27 Aichi Steel Corporation Ltd. 薄型ハイブリッド着磁型リング磁石、ヨーク付き薄型ハイブリッド着磁型リング磁石、および、ブラシレスモータ
JP2005158863A (ja) * 2003-11-21 2005-06-16 Matsushita Electric Ind Co Ltd 自己組織化したハイブリッド型希土類ボンド磁石とその製造方法、並びにモータ
JP2006049554A (ja) * 2004-08-04 2006-02-16 Matsushita Electric Ind Co Ltd 極異方性希土類ボンド磁石の製造方法、および永久磁石型モータ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0687634B2 (ja) 1986-02-24 1994-11-02 松下電器産業株式会社 永久磁石型モ−タ
US4901341A (en) 1988-06-22 1990-02-13 Messager Partners Method and apparatus for caller-controlled receipt and delivery of voice messages
JP2731603B2 (ja) 1989-10-11 1998-03-25 関東電化工業株式会社 金属磁性粉末の安定化方法
JPH04217024A (ja) 1990-12-19 1992-08-07 Nec Software Kansai Ltd データファイル項目変更対応方式
JP3126801B2 (ja) 1991-05-10 2001-01-22 新日鐵化学株式会社 2,6−ジエチルナフタレンの製造方法
JP3211203B2 (ja) 1999-03-29 2001-09-25 川崎重工業株式会社 高強度繊維強化複合材料及びその製造方法
JP2002354721A (ja) * 2001-05-29 2002-12-06 Hitachi Ltd 永久磁石式回転子を備えた回転電機
US6650102B2 (en) * 2001-08-24 2003-11-18 Symyx Technologies, Inc. High throughput mechanical property testing of materials libraries using a piezoelectric
JP4217024B2 (ja) 2002-03-22 2009-01-28 テルモ株式会社 腹膜透析装置
JP3956760B2 (ja) * 2002-04-25 2007-08-08 松下電器産業株式会社 フレキシブル磁石の製造方法とその永久磁石型モ−タ
US6885267B2 (en) * 2003-03-17 2005-04-26 Hitachi Metals Ltd. Magnetic-field-generating apparatus and magnetic field orientation apparatus using it
JP4311063B2 (ja) * 2003-03-27 2009-08-12 パナソニック株式会社 異方性希土類ボンド磁石およびモ−タ
WO2005124795A1 (ja) * 2004-06-17 2005-12-29 Matsushita Electric Industrial Co., Ltd. 自己組織化希土類-鉄系ボンド磁石の製造方法とそれを用いたモータ
CN101006529B (zh) * 2004-08-24 2010-05-26 松下电器产业株式会社 具有自组织化的网状边界相的各向异性稀土类粘结磁铁和使用该磁铁的永久磁铁型电动机

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254998A (en) 1975-10-31 1977-05-04 Sony Corp Oxidation treatment process of metallic magnetic powder for magnetic r ecording medium
JPS5655503A (en) 1979-10-05 1981-05-16 Hitachi Ltd Production of metal magnetic powder of superior corrosion resistance
JPS59170201A (ja) 1983-03-15 1984-09-26 Kanto Denka Kogyo Kk 金属磁性粉末の安定化法
JPS60128202A (ja) 1983-12-13 1985-07-09 Toyo Soda Mfg Co Ltd 金属磁性粉末の製造方法
JPS6138830A (ja) 1984-07-31 1986-02-24 Nippei Toyama Corp ボルト・ワツシヤの自動組付け装置
JPS61154112A (ja) 1984-12-27 1986-07-12 Mitsui Toatsu Chem Inc 強磁性金属微粒子の安定化方法
JPH0362764B2 (ja) 1985-06-24 1991-09-27 Sumitomo Metal Mining Co
JPH0257663A (ja) 1987-09-18 1990-02-27 Asahi Chem Ind Co Ltd 磁気異方性材料およびその製造方法
JPH01234502A (ja) 1988-03-11 1989-09-19 Hirata Michitoshi 金属微粉末の表面処理方法
JPH04214024A (ja) 1990-01-12 1992-08-05 Hoechst Ag 結晶性ケイ酸ナトリウムの製造方法
JPH03211203A (ja) 1990-01-17 1991-09-17 Kanto Denka Kogyo Co Ltd 表面が活性な金属の安定化方法
JPH05213601A (ja) 1991-07-01 1993-08-24 Res Dev Corp Of Japan 金属材の活性化又は安定化処理法
JPH05230501A (ja) 1992-02-18 1993-09-07 Sumitomo Metal Mining Co Ltd 希土類−鉄系磁石用合金粉末及びそれを用いたボンド磁石
JPH05234729A (ja) 1992-02-21 1993-09-10 Nippon Steel Corp 希土類−鉄−窒素系磁石粉末及びその製造方法
JPH0617015A (ja) 1992-04-28 1994-01-25 Beiersdorf Ag 感圧ホツトメルト接着被覆テープ
JPH07268632A (ja) 1994-03-28 1995-10-17 Kinya Adachi 金属塩、金属錯体および有機金属化合物を用いた磁性材料の処理方法
JPH07326508A (ja) 1994-05-31 1995-12-12 Tsuoisu Kk ボンド型成形磁性体用複合磁性材料およびボンド型 成形磁性体
JPH08143913A (ja) 1994-11-25 1996-06-04 Kinya Adachi 合金および金属間化合物磁性粉末の粉砕と安定化
JPH08153613A (ja) 1994-11-29 1996-06-11 Mitsui Toatsu Chem Inc 金属磁性粉末の安定化方法
JPH08183601A (ja) 1994-12-27 1996-07-16 Benkan Corp 水素吸蔵金属材の高活性化及び安定化処理法
JPH09157803A (ja) 1995-12-01 1997-06-17 Sumitomo Metal Mining Co Ltd 希土類−鉄系合金
JP2003347142A (ja) 2002-05-27 2003-12-05 Mitsubishi Electric Corp 円筒状異方性磁石の製造方法および円筒状異方性磁石
JP2004096961A (ja) 2002-09-04 2004-03-25 Mitsubishi Electric Corp リング型磁石および回転子
JP2004140270A (ja) 2002-10-21 2004-05-13 Mitsubishi Electric Corp リング磁石
WO2005008862A1 (ja) * 2003-07-22 2005-01-27 Aichi Steel Corporation Ltd. 薄型ハイブリッド着磁型リング磁石、ヨーク付き薄型ハイブリッド着磁型リング磁石、および、ブラシレスモータ
JP2005158863A (ja) * 2003-11-21 2005-06-16 Matsushita Electric Ind Co Ltd 自己組織化したハイブリッド型希土類ボンド磁石とその製造方法、並びにモータ
JP2006049554A (ja) * 2004-08-04 2006-02-16 Matsushita Electric Ind Co Ltd 極異方性希土類ボンド磁石の製造方法、および永久磁石型モータ

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
F. YAMASHITA, S; TSUTSUMI, H; FUKUNAGA: "Radially Anisotropic Ring-or Arc-Shaped Rare-Earth Bonded Magnets Using Self-Organization Technique", IEEE TRANS. MAGN, vol. 40, no. 4, 2004, pages 2059 - 2064
HITACHI METALS TECHNICAL REVIEW, vol. 6, 1990, pages 33 - 36
See also references of EP1995854A4

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009142144A (ja) * 2007-11-12 2009-06-25 Panasonic Corp 異方性永久磁石型モータ
US8371021B2 (en) 2008-05-23 2013-02-12 Panasonic Corporation Manufacturing method of rare earth-iron ring magnet with continuous orientation controlled anisotropy
WO2009142005A1 (ja) * 2008-05-23 2009-11-26 パナソニック株式会社 異方性を連続方向制御した希土類-鉄系リング磁石の製造方法
CN102742131B (zh) * 2008-05-23 2014-12-10 松下电器产业株式会社 连续控制各向异性方向的稀土-铁类环形磁铁的制造方法
CN102742131A (zh) * 2008-05-23 2012-10-17 松下电器产业株式会社 连续控制各向异性方向的稀土-铁类环形磁铁的制造方法
KR101206576B1 (ko) * 2008-05-23 2012-11-29 파나소닉 주식회사 이방성을 연속 방향 제어한 희토류-철계 링 자석의 제조 방법
US8421293B2 (en) 2008-07-16 2013-04-16 Minebea Co., Ltd. Method of rare earth-iron based annular magnet and motor fabricated thereby
JP5088519B2 (ja) * 2008-07-16 2012-12-05 ミネベア株式会社 希土類−鉄系環状磁石の製造方法、及びモータ
WO2010007673A1 (ja) * 2008-07-16 2010-01-21 ミネベア株式会社 希土類-鉄系環状磁石の製造方法、及びモータ
JP2010199448A (ja) * 2009-02-27 2010-09-09 Minebea Co Ltd 自己修復性希土類−鉄系磁石
CN103157794A (zh) * 2011-12-13 2013-06-19 西门子公司 用于永磁体的制造方法、造型系统和永磁体
CN103157794B (zh) * 2011-12-13 2016-12-21 西门子公司 用于永磁体的制造方法、造型系统和永磁体
KR20170132215A (ko) 2015-03-24 2017-12-01 닛토덴코 가부시키가이샤 희토류 자석 형성용 소결체 및 희토류 소결 자석
KR20170132217A (ko) 2015-03-24 2017-12-01 닛토덴코 가부시키가이샤 희토류 영구자석 및 희토류 영구자석을 갖는 회전기
US10867729B2 (en) 2015-03-24 2020-12-15 Nitto Denko Corporation Method for producing sintered body that forms rare-earth permanent magnet and has non-parallel easy magnetization axis orientation
US11101707B2 (en) 2015-03-24 2021-08-24 Nitto Denko Corporation Rare-earth permanent magnet and rotary machine including rare-earth permanent magnet
JP2019016707A (ja) * 2017-07-07 2019-01-31 昭和電工株式会社 R−t−b系希土類焼結磁石及びr−t−b系希土類焼結磁石用合金
US20220029511A1 (en) * 2019-04-18 2022-01-27 Samsung Electronics Co., Ltd. Drive motor and vacuum cleaner having the same
US11955853B2 (en) * 2019-04-18 2024-04-09 Samsung Electronics Co., Ltd. Drive motor and vacuum cleaner having the same

Also Published As

Publication number Publication date
US20120032537A1 (en) 2012-02-09
CN101401282A (zh) 2009-04-01
JP5169823B2 (ja) 2013-03-27
EP1995854B1 (en) 2016-09-07
EP1995854A1 (en) 2008-11-26
JPWO2007119393A1 (ja) 2009-08-27
CN101401282B (zh) 2011-11-30
US8183732B2 (en) 2012-05-22
EP1995854A4 (en) 2010-04-14
US8072109B2 (en) 2011-12-06
US20090007417A1 (en) 2009-01-08

Similar Documents

Publication Publication Date Title
JP5169823B2 (ja) ラジアル異方性磁石の製造方法とラジアル異方性磁石を用いた永久磁石モータ及び有鉄心永久磁石モータ
US8329056B2 (en) Anisotropic rare earth-iron based resin bonded magnet
EP2226814B1 (en) Rare-earth iron-based magnet with self-recoverability
EP1956698B1 (en) Permanent magnet rotor and motor using the same
US8044547B2 (en) Radial-direction gap type magnet motor
JP4311063B2 (ja) 異方性希土類ボンド磁石およびモ−タ
JP4203646B2 (ja) 可撓性ハイブリッド型希土類ボンド磁石の製造方法、磁石およびモ−タ
JP2016066675A (ja) 希土類等方性ボンド磁石
JP3933040B2 (ja) 希土類ボンド磁石の製造方法とそれを有する永久磁石型モータ
JP2004047872A (ja) シ−トからフィルムに至る希土類ボンド磁石の製造方法とその永久磁石型モ−タ
JP2006049554A (ja) 極異方性希土類ボンド磁石の製造方法、および永久磁石型モータ
JP4529598B2 (ja) 繊維強化層一体型可撓性希土類ボンド磁石
JP4710424B2 (ja) ラジアル磁気異方性磁石モータの製造方法
JP4577026B2 (ja) 自己組織化環状異方性希土類ボンド磁石モータの製造方法
JP4706412B2 (ja) 異方性複合磁石
JP4622767B2 (ja) ラジアル磁気異方性多極磁石の製造方法
JP4635583B2 (ja) ラジアル異方性磁石モータの製造方法
JP2004363474A (ja) 永久磁石用粒子の製造方法
JP4622536B2 (ja) ラジアル磁気異方性磁石モータ
JP2006080115A (ja) 異方性希土類−鉄系ボンド磁石
JP2007059421A (ja) 多結晶集合型異方性粒子を含む複合磁石の再生方法
JP2006128436A (ja) 永久磁石型モータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738809

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008510796

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12281679

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780008755.4

Country of ref document: CN

REEP Request for entry into the european phase

Ref document number: 2007738809

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007738809

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE