WO2009142005A1 - 異方性を連続方向制御した希土類-鉄系リング磁石の製造方法 - Google Patents

異方性を連続方向制御した希土類-鉄系リング磁石の製造方法 Download PDF

Info

Publication number
WO2009142005A1
WO2009142005A1 PCT/JP2009/002214 JP2009002214W WO2009142005A1 WO 2009142005 A1 WO2009142005 A1 WO 2009142005A1 JP 2009002214 W JP2009002214 W JP 2009002214W WO 2009142005 A1 WO2009142005 A1 WO 2009142005A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
angle
segment
ring magnet
rare earth
Prior art date
Application number
PCT/JP2009/002214
Other languages
English (en)
French (fr)
Inventor
山下文敏
河村清美
岡田幸弘
村上浩
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2009539955A priority Critical patent/JP4888568B2/ja
Priority to CN200980100584.7A priority patent/CN102742131B/zh
Priority to KR1020107005767A priority patent/KR101206576B1/ko
Priority to US12/680,869 priority patent/US8371021B2/en
Publication of WO2009142005A1 publication Critical patent/WO2009142005A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • H01F41/028Radial anisotropy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49069Data storage inductor or core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49075Electromagnet, transformer or inductor including permanent magnet or core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49075Electromagnet, transformer or inductor including permanent magnet or core
    • Y10T29/49078Laminated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49803Magnetically shaping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49805Shaping by direct application of fluent pressure

Definitions

  • the present invention provides a rare earth-iron ring magnet having a radial anisotropy region at the center of a magnetic pole and a non-radial magnetic anisotropy region between the magnetic poles, and anisotropy that does not deteriorate magnetic characteristics even when the diameter is reduced, and is continuously controlled. It relates to the manufacturing method. More specifically, it has a strong influence on power saving, resource saving, miniaturization, and noise reduction of a magnet motor of about 50 W or less, which is widely used as various drive sources for home appliances, air conditioning equipment, and information equipment.
  • the present invention relates to a method for manufacturing a rare earth-iron ring magnet having a continuously controlled anisotropy for a high performance permanent magnet motor.
  • a motor can be regarded as a composite functional part that converts electrical energy into mechanical energy by processing various materials such as steel, non-ferrous metals, and polymers with high precision, such as rotors, shafts, bearings, and stators. .
  • a permanent magnet type motor using a magnet that has the ability to attract or repel other magnetic materials and the ability to generate a static magnetic field permanently without external energy has become the mainstream. Physically, the difference between magnets and other magnetic materials is that effective magnetization remains after extinguishing the external magnetic field, and magnetization reversal (demagnetization) is only possible when heat or a relatively large reverse magnetic field is applied. It occurs, and the magnetization is reduced accordingly.
  • An important characteristic value of such a magnet is energy density (BH) max. This represents the potential energy of the magnet in unit volume.
  • Non-Patent Document 1 the relationship between the residual magnetic flux density Br, which is one of the basic characteristics of the magnet, and the motor constant KJ (KJ is the ratio of the output torque KT and the square root of resistance loss ⁇ R) as an index of motor performance. From the above, when the motor diameter, rotor diameter, gap, soft magnetic material, magnet size, etc. are fixed, the increase in magnet energy density (BH) max is more significant in small motors using ring magnets targeted by the present invention. It is said that high torque density can be obtained.
  • Non-Patent Document 2 describes a small motor having an uneven magnetic pole 1, a stator core 2, a stator core slot 3, and a stator core teeth 4 as shown in FIG. 11A. That is, Non-Patent Document 2 describes a 12-pole 18-slot surface magnet synchronous motor (SPMSM) with a remanent magnetization Br1.2T, a maximum thickness of 3 mm at the center of the magnetic pole, and a magnetic pole with a minimum thickness of 1.5 mm at both ends of the magnetic pole. Then, it is described that the cogging torque can be minimized. In this case, the thickness of the magnetic pole is deviated from the outer diameter side, but it is well known that the cogging torque can be reduced even with a magnetic pole that is deviated from the opposite inner diameter side of the magnetic pole.
  • SPMSM surface magnet synchronous motor
  • Non-Patent Document 2 in order to minimize the cogging torque by increasing the thickness of the magnetic pole, the minimum thickness at both ends of the magnetic pole is about 1 ⁇ 2 of the maximum thickness at the magnetic pole center. Such uneven thickness is necessary. Therefore, when the thickness of the magnetic pole, that is, the direction of magnetization (thickness) is reduced, a sufficient effect cannot be obtained even if the magnetic pole is made uneven and the cogging torque is minimized. In addition, in general, machining is difficult because the magnetic pole is mechanically fragile.
  • the magnetic pole end of the thick magnetic pole is thinned to about 1/2 to widen the gap with the stator core, or the area between the magnetic poles of the thin magnetic pole is reduced. Therefore, the amount of the static magnetic field Ms generated from the magnetic poles flowing into the stator core as the magnetic flux ⁇ decreases as the magnetic resistance increases. As a result, in these methods, a reduction in cogging torque generally results in a 10-15% reduction in torque density. Therefore, the conventional cogging torque reduction method shown in FIGS. 11A, 11B, and 11C has a problem that the increase in the torque density of the motor due to the increase in the energy density (BH) max of the magnet is sacrificed.
  • BH energy density
  • Non-Patent Document 5 shows a rare earth-iron sintered magnet having a thin energy direction thickness of 1.2 mm and a high remanent magnetization Mr of 1T, as shown in FIGS. 11A, 11B, and 11C.
  • the cogging torque is reduced by a method that does not reduce the thickness of the magnetization direction or the area of the magnetic pole. That is, as shown in FIGS. 12A to 12D, each magnetic pole is divided into 2 to 5 magnetic pole pieces to form one magnetic pole, and the direction of anisotropy (direction of the easy axis) is adjusted stepwise for each magnetic pole piece.
  • the subscripts (2) to (5) of the magnetic pole 1 indicate the number of pieces obtained by dividing the magnetic pole 1 into 2 to 5 parts. Further, the direction of the arrow of each fragment represents the anisotropic direction (direction of the easy axis of magnetization).
  • a large number of magnetic pole pieces with different anisotropy directions are prepared.
  • a magnetically isotropic magnet can be freely magnetized in any direction according to the direction of the applied magnetic field and the magnetic field strength distribution. Therefore, by optimizing the shape of the magnetized yoke and the magnetomotive force, it is possible to provide a magnetization pattern as indicated by the arc-shaped arrow of the magnetic pole 1 in FIG. Thereby, the gap magnetic flux density distribution between the magnetic pole and the stator core can be easily adjusted to a sine wave shape. Therefore, the cogging torque reduction of a small motor such as SPMSM is extremely easy as compared with the case where a thin magnetic pole is formed of a magnetically anisotropic magnet material.
  • Non-Patent Document 11 the energy density (BH) max to secure the rapidly solidified ribbon 111kJ / m 3 with a resin, an isotropic Nd 2 Fe 14 B-based bonded magnets of energy density (BH) max is 72kJ / m 3 I can do it. Thereafter, from the late 1980s to the present, research on isotropic rare earth magnet materials mainly involving rapid solidification of rare earth-iron-based molten alloys has been actively conducted.
  • Nd 2 Fe 14 B system, Sm 2 Fe 17 N 3 system, or nanocomposite magnet materials using exchange coupling based on the microstructure of them and ⁇ Fe, FeB, Fe 3 B system are industrially included. It is available. Furthermore, in addition to isotropic magnet materials in which various alloy structures are micro-controlled, isotropic magnet materials having different powder shapes are industrially available. For example, see Non-Patent Documents 6 to 10. In particular, in Non-Patent Document 10, H.C. A. Davies et al. Report that the energy density (BH) max reaches 220 kJ / m 3 while being isotropic.
  • BH energy density
  • the energy density (BH) max of an isotropic magnet material that can be used industrially is at most 134 kJ / m 3 .
  • the energy density (BH) max of an isotropic Nd 2 Fe 14 B bond magnet which is generally applied to a small motor of approximately 50 W or less, is approximately 80 kJ / m 3 or less. That is, 1985 R.D. W. More than 20 years have passed since the production of isotropic Nd 2 Fe 14 B bond magnets with energy density (BH) max of 111 kJ / m 3 and energy density (BH) max of 72 kJ / m 3 from Lee et al. Even so, as the energy density (BH) max progresses, it is less than 10 kJ / m 3 .
  • the energy density is increased after the advancement of the isotropic magnet material, and it is not expected that the motor targeted by the present invention has a higher torque density.
  • an anisotropic rare earth-iron-based magnet material related to the present invention for example, RD-Sm 2 Fe 17 N 3 in Non-Patent Document 12 and HDDR-Nd 2 Fe 14 B in Non-Patent Document 13 are used. Is mentioned.
  • the method of manufacturing a rare earth-iron ring magnet with continuous anisotropy control corresponds to a uniform direction of the external magnetic field Hex and an arbitrary mechanical angle ⁇ of the rotor in the essential first manufacturing process.
  • a segment having an inner and outer peripheral section that gives a change in the angle H ⁇ corresponding to the mechanical angle ⁇ is formed in a magnetic field by an external magnetic field Hex, with the angle with the tangent line in the inner and outer peripheral directions.
  • the second manufacturing process which is essential, a plurality of segments are arranged on the circumference according to the number of poles and extruded from one end surface in the thrust direction into a ring shape using rheology based on the viscous deformation. Subsequently, compression molding is performed from both end surfaces in the thrust direction of the segment.
  • the present invention increases the energy density (BH) max, which is a defect of the isotropic magnet, approximately twice or more by providing such a method for manufacturing an anisotropic ring magnet.
  • BH energy density
  • the change Md / ⁇ with respect to the mechanical angle ⁇ of the magnetization vector angle Md of the magnetic pole tip according to the present invention can be suppressed below that of an isotropic magnet by anisotropic continuous direction control.
  • an isotropic magnet by anisotropic continuous direction control.
  • BH energy density
  • the torque density can be increased without increasing the cogging torque of the motor.
  • the energy density (BH) max is not reduced due to the reduction of the radial orientation magnetic field as in the radial anisotropic ring magnet, and a plurality of segments can be produced.
  • the present invention is effective for energy saving, resource saving, downsizing, and noise reduction of motors of approximately 50 W or less, which are widely used as various drive sources for home appliances, air conditioning devices, and information devices. .
  • FIG. 1A is a first conceptual diagram showing anisotropic direction control.
  • FIG. 1B is a second conceptual diagram showing anisotropic direction control.
  • FIG. 1C is a third conceptual diagram showing anisotropic direction control.
  • FIG. 2A is a perspective external view showing an extrusion compression process.
  • FIG. 2B is a cross-sectional configuration diagram of an extrusion compression molding die.
  • FIG. 3A is a first conceptual diagram illustrating a flow form of an external force of a molten polymer.
  • FIG. 3B is a second conceptual diagram showing a flow form by the external force of the molten polymer.
  • FIG. 4 is a conceptual diagram showing the molecular structure of a thermosetting resin composition that imparts rheology.
  • FIG. 1A is a first conceptual diagram showing anisotropic direction control.
  • FIG. 1B is a second conceptual diagram showing anisotropic direction control.
  • FIG. 1C is a third conceptual diagram showing anisotropic direction control.
  • FIG. 5 is an electron micrograph of the macro structure of the magnetic anisotropic magnetic pole.
  • FIG. 6A is a characteristic diagram showing the MH loop of the magnet.
  • FIG. 6B is a characteristic diagram showing residual magnetization and energy density.
  • FIG. 7A is a shape diagram illustrating an example of a segment.
  • FIG. 7B is a cross-sectional view showing the positional relationship between the segment and the ring magnet.
  • FIG. 8A is a configuration diagram showing a radial region and a non-radial region.
  • FIG. 8B is a characteristic diagram showing the relationship between the mechanical angle and the magnetization vector.
  • FIG. 9 is a characteristic diagram showing the relationship between the correlation coefficient of the regression line of the magnetization vector with respect to the angular error in the radial region and the mechanical angle in the non-radial region.
  • FIG. 10A is a characteristic diagram showing an example of energy density and motor efficiency (maximum value).
  • FIG. 10B is a characteristic diagram illustrating an example of the rotation speed and the noise value.
  • FIG. 11A is a conceptual diagram illustrating a conventional cogging torque reduction method using uneven thickness.
  • FIG. 11B is a conceptual diagram showing a conventional cogging torque reduction method using skew.
  • FIG. 11C is a conceptual diagram showing a conventional cogging torque reduction method using a magnetic pole area.
  • FIG. 11A is a conceptual diagram illustrating a conventional cogging torque reduction method using uneven thickness.
  • FIG. 11B is a conceptual diagram showing a conventional cogging torque reduction method using skew.
  • FIG. 11C is a conceptual diagram showing a conventional cogging torque reduction method using
  • FIG. 12A is a first conceptual diagram showing a conventional cogging torque reduction method by discontinuous control of the magnetization direction.
  • FIG. 12B is the second conceptual diagram.
  • FIG. 12C is the second conceptual diagram.
  • FIG. 12D is the second conceptual diagram.
  • FIG. 13 is a conceptual diagram showing a magnetization pattern of an isotropic magnet.
  • the present invention requires the following two steps.
  • One of them is a process for producing a segment whose anisotropy direction is continuously changed from perpendicular to in-plane by a uniform magnetic field kept in a certain direction along with the mechanical design of the magnet. That is, in the produced segment, the direction of anisotropy continuously changes from the direction perpendicular to the surface subjected to the uniform magnetic field from the direction in which the surface expands.
  • the other is that a plurality of these segments are arranged on the circumference, extruded from one thrust direction end face of the segment in a ring shape by rheology based on the viscous deformation of the segment, and subsequently from both end faces in the thrust direction of the segment. It is the process of compressing.
  • a segment having a plurality of inner and outer peripheral segments is formed in a magnetic field by a uniform external magnetic field Hex.
  • the inner and outer peripheral segments are segments that give a change in the angle H ⁇ corresponding to the mechanical angle ⁇ .
  • the angle H ⁇ is an angle between the direction of the uniform external magnetic field Hex and the arbitrary position of the segment, that is, the inner and outer peripheral direction tangent corresponding to the final rotor mechanical angle ⁇ .
  • a method for forming the segment a well-known injection method or extrusion method may be used, but a compression method in an orthogonal magnetic field is preferable for an energy density (BH) max of 160 to 180 kJ / m 3 .
  • a plurality of segments manufactured in the first manufacturing process that are essential are arranged on the circumference according to the number of poles. And it extrudes from the one thrust direction end surface of the said segment in the shape of a ring using the rheology based on the viscous deformation. Subsequently, compression molding is performed from both end surfaces of the segment in the thrust direction to obtain a rare earth-iron ring magnet whose anisotropy is continuously controlled.
  • the plurality of segments is an even number of two or more, and the number itself is left to the design concept of the small motor according to the present invention.
  • the magnetization vector angle M with respect to the inner and outer circumferential direction tangent in the segment cross section, that is, the direction of anisotropy is M ⁇ H ⁇ .
  • the segment shape it is desirable to obtain the cross-sectional shape as follows.
  • a rigid body having an angle H ⁇ rotates and moves at an arbitrary mechanical angle ⁇ , and only the direction of anisotropy changes without destroying the degree of anisotropy.
  • the sectional shape of the segment is obtained.
  • the mechanical angle of the stator core teeth with the rotation axis center as the origin is ⁇ s
  • the mechanical angle of the magnetic pole center of the ring magnet with the rotation axis center as the origin is ⁇ r.
  • the desirable form of anisotropic continuous direction control according to the present invention is that in the region corresponding to ⁇ s ⁇ r, the magnetization vector angle Mc with respect to the rotation direction tangent of the magnetic pole is 90 degrees, that is, a radial anisotropic region (hereinafter referred to as a radial anisotropic region). It is desirable to provide a radial region as appropriate.
  • the radial region is a region in the segment in which the magnetization vector (anisotropic direction) is substantially directed toward the center of the rotation axis. Further, the error average in the anisotropic direction in the radial region is set to 2 degrees or less. Further, a non-radial anisotropic region (hereinafter, appropriately referred to as a non-radial region) while the magnetization vector angle of the adjacent magnetic pole (different pole) from the radial region where the magnetization vector angle is Mc reaches the radial region of Mc. To do. That is, in the non-radial region, the magnetization vector (anisotropy direction) is directed in a direction shifted from the rotation axis center direction.
  • the magnetization vector angle of the non-radial region is Md
  • it is desirable to use a linear regression equation ⁇ a ⁇ Md + b (a and b are coefficients) that give a distribution of mechanical angles ⁇ and Md corresponding to the non-radial region.
  • the correlation coefficient r of the linear regression equation of ⁇ and Md is set to an accuracy of 0.995 or more.
  • the anisotropic direction with respect to the mechanical angle ⁇ and the distribution thereof are given as described above, a decrease in the amount of the static magnetic field Ms generated by the magnetic poles of the ring magnet reaching the stator core teeth can be minimized.
  • the cogging torque of the motor can be reduced by setting the correlation coefficient r of the linear regression equation that gives the distribution of the mechanical angles ⁇ and Md to an accuracy of 0.995 or more. Can be reduced.
  • the flow of the static magnetic field generated by the magnetic poles of the ring magnet is stabilized and the decrease is suppressed. Moreover, it can be said that stabilizing the polarity reversal of the static magnetic field between the magnetic poles with respect to the mechanical angle ⁇ is the optimal anisotropy direction and distribution.
  • the size of the static magnetic field generated from the magnetic poles is also important in order to reduce the size and energy of the motor with the rare earth-iron ring magnet having the anisotropy continuously controlled in accordance with the present invention. Therefore, in the present invention, the manufacturing process of a ring magnet having a uniform anisotropic direction and its distribution is limited, in particular, deterioration of magnetic characteristics when a segment is used as a ring magnet. In the present invention, the difference in residual magnetization Mr and the difference in anisotropic dispersion ⁇ can be less than 7% in the segment and the ring magnet processed from the segment.
  • the residual magnetization Mr in the anisotropic direction is 0.95 to 1.05 T
  • the coercive force HcJ is 0.85 to 0.95 MA / m
  • the energy density (BH) max is 160 to 180 kJ. / M 3 .
  • the ring magnet according to the present invention is composed of segments molded in a uniform magnetic field, there is an advantage that the energy density (BH) max does not deteriorate even if the ring magnet is reduced in diameter.
  • the energy density (BH) max decreases due to a decrease in the radial magnetic field for orientation.
  • an isotropic Nd 2 Fe 14 B magnet with (BH) max ⁇ 80 kJ / m 3 is often used.
  • a big effect is acquired.
  • an Nd 2 Fe 14 B rare earth-iron magnet material having a particle size of 150 ⁇ m or less is a matrix (continuous phase) of Sm 2 Fe 17 N 3 rare earth-iron magnet material having an average particle diameter of 3 to 5 ⁇ m and a binder.
  • An isolated macro structure Preferably, the volume fraction of a rare earth-iron-based magnet material having an energy density (BH) max of 270 kJ / m 3 or more is 80 vol. % Or more.
  • FIG. 1A is a first conceptual diagram showing anisotropic direction control
  • FIG. 1B is a second conceptual diagram showing anisotropic direction control
  • FIG. 1C is a third conceptual diagram showing anisotropic direction control. It is a conceptual diagram.
  • a segment 10 as shown in FIG. 1A is prepared.
  • the distribution of the angle H ⁇ formed between the outer magnetic field Hex having a uniform direction and the inner and outer peripheral intercepts 11 at an arbitrary position is 90 degrees, that is, a radial anisotropic region in the magnetic pole center portion.
  • the segment 10 has a non-radial anisotropy region in which the angle H ⁇ continuously changes from 90 degrees in a linear expression with respect to the mechanical angle ⁇ so as to be in-plane anisotropy at the circumferential magnet end.
  • FIG. 1C show the cross-sectional shape of the right half from the center of a segment magnet. Further, FIG. 1B shows a magnet fragment that is the inner and outer peripheral segment 11 at an arbitrary position, an angle H ⁇ , and a magnetization vector angle M (Mc in a radial anisotropic region, Md in a non-radial anisotropic region).
  • the plurality of segments 10 according to the present invention are arranged on the circumference and pressurized from one end face in the thrust direction of the segment 10. And it extrudes in a ring shape using the rheology based on the viscous deformation of the segment 10, and the several segment 10 extruded in the ring shape is compression-molded from a thrust direction both end surface.
  • the magnetization vector angle M indicating the direction of the anisotropy rotates as shown in FIG. 1B, and the angle H ⁇ and the magnetization vector angle M (Mc, Mc, And Md).
  • FIG. 2A is a perspective external view showing an example of an extrusion compression process according to the present invention.
  • FIG. 2B is a cross-sectional block diagram of the extrusion compression molding die concerning this invention.
  • 2A shows an example of an extrusion compression process in a state where the extrusion compression molding die shown in FIG. 2B is removed for easy understanding.
  • the core 30 for extrusion used in the extrusion compression process has a part 31, a part 32, and a part 33.
  • a preformed segment magnet 20 corresponding to the segment 10 is disposed at a portion 31 of the extrusion core 30.
  • the preformed segment magnet 20 arranged on the circumference is stored in a specified position together with the extrusion compression molding die 35 as shown in FIG. 2B.
  • the rheology of the segment magnet 20 accommodated in the part 31 is used to perform extrusion into the shape of FIGS. 1A to 1C.
  • the segment magnet 20 extruded in the part 32 is compression-molded into a ring shape. Specifically, using a ring-shaped punch, at least a part of the thrust direction segment end face 21 shown in FIG. 2A is pushed, and a plurality of preformed segment magnets 20 are simultaneously passed from the part 31 to the part 32 to the part 33. Extrude.
  • the plurality of segment magnets 20 deformed by rheology at the portion 32 and pushed into the portion 33 are compression-molded by operating a ring-shaped punch from the direction opposite to the extrusion direction.
  • the segments are integrated by thermocompression bonding with a pressure of 20 to 60 MPa.
  • thermoset ring magnet 41 is formed.
  • the ring magnet 41 is finally combined with the rotor core 42 to form, for example, an octupole ring magnet rotor 43.
  • thermosetting resin composition adjusted to impart rheology to the preformed segment magnet 20 as shown in FIG. 1A to FIG. 1C or FIG. 2A together with the anisotropic rare earth-iron magnet material. Use things.
  • FIG. 3A is a first conceptual diagram showing a flow pattern of a molten polymer due to an external force
  • FIG. 3B is a second conceptual diagram showing a flow pattern of the molten polymer due to an external force.
  • the magnet rheology referred to in the present invention is a part of the thermosetting resin composition as a thread-like molecular chain intertwined into a preformed segment magnet. Uniformly intervene.
  • the principle is viscous deformation such as shear flow or elongational flow according to heat and external force F-F '.
  • the extrusion compression molding ring magnet 40 of FIG. 2A is, for example, a magnet in which the components of the thermosetting resin composition shown in FIG. 4 are made into a three-dimensional network structure by a crosslinking reaction and integrated by thermocompression bonding as shown in FIG. 2A. Make it rigid.
  • FIG. 2A the mechanical strength, heat resistance, and durability of the rotor combining the magnet and the iron core according to the present invention can be adjusted.
  • FIG. 4 is a conceptual diagram showing the molecular structure of a thermosetting resin composition comprising a novolac-type epoxy oligomer, linear polyamide, and 2-phenyl-4,5-dihydroxymethylimidazole.
  • FIG. 4 is an example of the thermosetting resin composition adjusted so that rheology might be provided to the magnet concerning this invention.
  • the dot circle shown in FIG. 4 indicates the molecular structure of the cross-linked portion.
  • the linear polyamide when the linear polyamide is in a molten state, it is uniformly interposed in the matrix in the magnetic pole as an intertwined thread-like molecular chain.
  • thermosetting resin composition which gives the flow shown in FIGS. 3A and 3B is not necessarily limited to that shown in FIG.
  • the torque density of the small motor is proportional to the static magnetic field Ms generated by the magnetic pole, that is, the gap magnetic flux density between the stator core and the magnetic pole.
  • gap magnetic flux density of the small motor formed with the magnet of the same dimension same structure and a stator core is substantially proportional to the square root of ratio of the energy density (BH) max of a magnet.
  • the energy density (BH) max of the magnetic pole according to the present invention is set to an isotropic Nd 2 Fe 14 B bond magnet whose energy density (BH) max is approximately 80 kJ / m 3 as an upper limit. If it is set to 160 kJ / m 3 or more, an increase in torque density of about 1.4 times is expected.
  • the rare earth-iron ring magnet having the anisotropy continuously controlled in accordance with the present invention has a residual magnetization Mr of 0.95 T or more, a coercive force HcJ of 0.9 MA / m or more, from the viewpoint of increasing torque density. What has an energy density (BH) max of 160 kJ / m 3 or more is desirable.
  • the energy density (BH) max ⁇ 160kJ / m 3 the rare-earth magnet of the energy density (BH) max ⁇ 270kJ / m 3 - the volume occupied by the magnet of an iron-based material
  • the fraction is 80 vol. % Or more is desirable.
  • anisotropic rare earth-iron-based magnet material examples include A. Kawamoto et al. RD (Reduction and Diffusion) -Sm 2 Fe 17 N 3 and T. Takeshita et al. (R2 [Fe, Co] 14B ) phase hydrogenation of (Hydrogenation, R2 [Fe, Co ] 14BHx), phase decomposition in 650 ⁇ 1000 ° C (Decomposition, RH 2 + Fe + Fe 2 B), the dehydrogenation ( Desorption, so-called HDDR-Nd 2 Fe 14 B prepared by recombination (Recombination), and the like can be given.
  • FIG. 5 is a view showing a scanning electron microscope (SEM) photograph of a macro structure of a magnet having a density of 6.01 Mg / m 3 according to the present invention.
  • SEM scanning electron microscope
  • the anisotropic Sm 2 Fe 17 N 3 system rare earth-iron system magnet material and the anisotropic Nd 2 Fe 14 B system rare earth-iron system magnet material are heated together with the thermosetting resin composition at 160 ° C.
  • a segment is formed by applying an orientation magnetic field with a uniform external magnetic field of 1.4 MA / m and compression molding at a pressure of 20 to 50 MPa.
  • the anisotropic Sm 2 Fe 17 N 3 system rare earth-iron system magnet material has a particle diameter of 3 to 5 ⁇ m and an energy density (BH) max of 290 kJ / m 3 .
  • the anisotropic Nd 2 Fe 14 B rare earth-iron magnet material has a particle size of 38 to 150 ⁇ m and an energy density (BH) max of 270 to 300 kJ / m 3 .
  • the feature of the macro structure of this magnet is that Nd 2 Fe 14 B system rare earth-iron system magnet material is composed of Sm 2 Fe 17 N 3 system rare earth magnet fine powder and a thermosetting resin composition. The structure is separated by a matrix (continuous phase). The volume fraction occupied by the Sm 2 Fe 17 N 3 and Nd 2 Fe 14 B rare earth-iron magnet materials was 81 vol. %.
  • FIG. 6A shows a magnet according to the present invention having the macro structure shown in FIG. 5 and all the magnet materials made of Sm 2 Fe 17 N 3 system or Nd 2 Fe 14 B system rare earth-iron system magnet material under the same conditions.
  • FIG. 6 is a characteristic diagram comparing the MH loop of the magnets manufactured in (1). However, the measurement magnetic field is ⁇ 2.4 MA / m. As is apparent from FIG. 6A, the coercive force HcJ is approximately the same at approximately 1 MA / m, but the residual magnetization Mr is different. Therefore, when the relationship between the residual magnetization Mr and the energy density (BH) max of these magnets is plotted, FIG. 6B is obtained. As shown in FIG. 6B, the energy density (BH) max reaches 160 to 180 kJ / m 3 in the configuration according to the present invention.
  • thermosetting resin composition includes an epoxy equivalent of 205 to 220 g / eq, a novolac type epoxy oligomer having a melting point of 70 to 76 ° C., a linear polyamide having a melting point of 80 ° C. and a molecular weight of 4000 to 12,000, 2-phenyl as shown in FIG. Consists of -4,5-dihydroxymethylimidazole. They do not gel, and the linear polyamide is remelted by heat and uniformly interspersed in the magnet as intertwined thread-like molecular chains. And according to the direction of a heat
  • FIG. 7A and 7B are segment magnets 20 having the above macro structure according to the present invention, and ring magnets 40 obtained by extrusion compression molding, that is, shape diagrams before and after processing.
  • an angle H ⁇ with respect to the uniform external magnetic field Hex shown in FIG. 7A and a tangent at an arbitrary position of the segment is an angle Mc of the magnetization vector M with respect to a tangent at an arbitrary mechanical angle ⁇ on the inner and outer circumferences of the ring magnet, and Corresponds to Md. That is, H ⁇ Mc and H ⁇ Md.
  • the angle H ⁇ formed with the external magnetic field Hex with respect to the inner and outer circumferential tangents is set to a pitch of 0.3655 mm on the outer periphery of the segment and a pitch of 0.2845 mm on the inner periphery.
  • the segment shape of FIG. 7A is set by nonlinear structural analysis in which each rigid body is rotated and moved as a total of 96 rigid bodies divided into two at the radial magnetic pole center.
  • the preformed segment 20 is compression-molded to form the ring magnet 40.
  • the extrusion compression molded ring magnet 40 according to the present invention is subjected to heat treatment in the atmosphere at 170 ° C. for 20 minutes after being released from the mold.
  • the thermosetting resin composition containing linear polyamide was crosslinked as shown in FIG.
  • free epoxy groups are shown in FIG. 4, these all react with imidazoles, amino active hydrogen in a linear polyamide molecular chain, terminal carboxyl groups, or the like to be rigid.
  • the obtained ring magnet according to the present invention has an outer diameter of 50.3 mm, an inner diameter of 47.3 mm, a thickness of 1.5 mm, a length of 13.5 mm, a concentricity of 0.060 mm or less, a maximum inner diameter and a minimum.
  • the roundness, which is the difference in inner diameter, was an accuracy of 0.225 mm or less.
  • This ring magnet was finally combined with an iron core to form an 8-pole ring magnet rotor having an outer diameter of 50.3 mm and a length of 13.5 mm, like the ring magnet rotor 43 of FIG. 2A.
  • the rotor in the magnetized yoke was rotated according to the anisotropic direction and the distribution thereof, and the positions of the magnetic poles of the rotor and the magnetized yoke were aligned.
  • the mechanical angle ⁇ of the stator core teeth shown in FIG. 8A was set to 14 °, and the mechanical angle ⁇ of one ring magnet was set to 45 °.
  • the measurement of the magnetization vector angle M was performed at 25 points per degree with a three-dimensional Hall probe teslameter, assuming that the combined magnetization vector angle M in the radial, tangential, and axial directions indicates the direction of the easy magnetization axis.
  • the angle error average with respect to 90 degrees is used in the radial region, and the correlation coefficient of the regression equation of Md with respect to the mechanical angle ⁇ is used in the non-radial region.
  • FIG. 9 is a characteristic diagram in which the average angular error in the radial region and the correlation coefficient of the regression line in the non-radial region are plotted for an energy density (BH) max of 160 to 180 kJ / m 3 ring magnet rotor according to the present invention.
  • BH energy density
  • Comparative Examples 1 to 5 the direction of the magnetization vector and the distribution accuracy of the 8-pole magnet rotor having the same outer diameter are shown.
  • Comparative Example 1 is a rotor in which 160 to 180 kJ / m 3 anisotropic continuous direction control arc segment magnets are assembled.
  • Comparative Example 2 is a radial anisotropic Nd 2 Fe 14 B ring magnet rotor produced with a 130 to 140 kJ / m 3 parallel orientation magnetic field.
  • Comparative Example 3 is a radial anisotropic Nd 2 Fe 14 B ring magnet rotor produced with a radial orientation magnetic field.
  • Comparative Example 4 is an 80 kJ / m 3 sinusoidal magnetized isotropic Nd 2 Fe 14 B ring magnet rotor.
  • Comparative Example 5 is 16 kJ / m 3 pole anisotropic ferrite ring magnet rotor.
  • the example of the present invention has an ideal form in the magnetization vector, that is, the direction of anisotropy and its distribution, as compared with any comparative example.
  • an arc segment magnet whose direction of anisotropy is controlled is assembled around the iron core, and the variation increases due to the assembly error.
  • the correlation coefficient of the regression line in the non-radial region is significantly decreased, and an increase in cogging torque can be inferred.
  • the correlation coefficient of the regression line in the non-radial region is high as in Comparative Examples 4 and 5, if the average angular error in the radial region increases, the static magnetic field generated by the magnetic poles is difficult to be transmitted to the stator core.
  • cylindrical magnets having a diameter of 1 mm were collected from portions corresponding to angles H ⁇ , Mc, and Md with respect to an arbitrary mechanical angle ⁇ in the magnetic poles of the segments and ring magnets. And the result of having analyzed the angle of anisotropy from this cylindrical magnet, and the grade is shown.
  • the center position of the cylindrical magnet is the angles H ⁇ , Mc, and Md at the mechanical angle ⁇
  • the angles at which the maximum magnetization Ms is maximum in all directions of the cylindrical magnet, that is, the angles H ⁇ , Mc, Md with respect to the mechanical angle ⁇ are Asked.
  • the difference in residual magnetization Mr at the same position of the segment and the ring magnet was 0.03 T or less.
  • the degree of anisotropy was evaluated using anisotropic dispersion ⁇ .
  • M Ms ⁇ cos ( ⁇ o ⁇ )
  • VSM sample vibration magnetometer
  • ⁇ o is the angle of the external magnetic field
  • is the angle at which Ms is rotated
  • Ms is the spontaneous magnetic moment
  • Ku is the magnetic anisotropy constant
  • E is the total energy.
  • FIG. 10A shows the motor efficiency (maximum value) of the 40 W surface magnet type synchronous motor (SPMSM) in which the 12-slot stator core of the same specification and the various 8-pole magnet rotors shown in FIG. 9 are combined in relation to the energy density.
  • FIG. 10B shows the relationship between the rotation speed of the SPMSM and the noise value.
  • the example of the present invention in which the energy density (BH) max is 160 to 180 kJ / m 3 has a maximum efficiency exceeding 90%.
  • the anisotropic continuous direction control reduces the noise value in the low-speed rotation range of 200 to 700 r / min unique to the radial anisotropic magnet by a maximum of 10 dB, and isotropic Nd 2 Fe 14 B magnet magnetized with sinusoidal waves. Silence equivalent to that of the rotor can be obtained.
  • the present invention aims to increase the torque density of a small motor by increasing the energy density (BH) max, which is a disadvantage of an isotropic magnet, by approximately twice or more by providing a method for manufacturing an anisotropic ring magnet, Obstacles caused by cogging torque unique to the radial anisotropic magnet in the same shape, for example, noise can be reduced.
  • BH energy density
  • the motor according to the present invention can be used for quietness, high efficiency, energy saving, etc., and has very high industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

一定方向に保たれた一様な磁界によって面垂直から面内に異方性の方向が連続変化したセグメントを作製する工程、複数のこれらセグメントを円周上に配置し、当該セグメントの一方のスラスト方向端面から、当該セグメントの粘性変形に基づくレオロジーによりリング状に押出し、続いてセグメントのスラスト方向両端面から圧縮する工程を必須とする。異方性を連続方向制御したリング磁石で、且つ静磁界の発生源をエネルギー密度(BH)max≧160~180kJ/mとする。

Description

異方性を連続方向制御した希土類-鉄系リング磁石の製造方法
 本発明は磁極中心にラジアル異方性領域、磁極間に非ラジアル磁気異方性領域を有し、小口径化しても磁気特性が劣化しない異方性を連続方向制御した希土類-鉄系リング磁石の製造方法に関する。さらに詳しくは、家電機器、空調機器、並びに情報機器などの各種駆動源として幅広く使用されている、概ね50W以下の磁石モータの省電力化、省資源化、小型化、並びに静音化に強い影響を与える高性能永久磁石型モータのための異方性を連続方向制御した希土類-鉄系リング磁石の製造方法に関する。
 モータは、回転子、軸、軸受、固定子などを鉄鋼、非鉄金属、高分子などの各種材料を高精度で加工し、それらを組み合わせることで電気エネルギーを機械エネルギーに変換する複合機能部品とみなせる。近年のモータは、他の磁性材料を吸引したり反発したりする能力、並びに外部エネルギーなしに永久的に静磁界を発生する能力をもつ磁石を利用した永久磁石型モータが主流となっている。物理的に見て磁石が他の磁性材料と異なる点は、外部磁界を消した後も有効な磁化が残り、熱や比較的大きな逆磁界などを加えたとき、初めて磁化反転(減磁)が起こり、それに伴って磁化の低下が起こるという点である。このような磁石の重要な特性値にエネルギー密度(BH)maxがある。これは磁石の潜在的エネルギーを単位体積で表している。
 ところで、磁石の強く吸引したり反発したりする能力は、モータの種類によっては必ずしも高性能化にはならない。しかし、非特許文献1では、磁石の基本特性の一つである残留磁束密度Brとモータ性能の指標としてのモータ定数KJ(KJは出力トルクKTと抵抗損の平方根√Rの比)との関係から、モータ径、ロータ径、空隙、軟磁性材、磁石寸法などを固定したとき、磁石のエネルギー密度(BH)maxの増加は、本発明が対象とするリング磁石を使用する小型モータにおいて、より高いトルク密度が得られるとしている。
 しかしながら、当該モータの固定子鉄心には巻線を収納するスロットと磁気回路の一部を形成するティースが存在するため、回転に伴ってパーミアンスが変化する。このため、エネルギー密度(BH)maxの増加は、トルク脈動、すなわち、コギングトルクを増大させる。コギングトルクの増加は、モータの滑らかな回転を妨げ、モータの振動や騒音を大きくし、回転制御性が悪化するなどの弊害を伴う。
 上記のような弊害を避けるため、モータのコギングトルク低減に関して、従来、多くの研究がなされてきた。
 先ず、磁化方向に或る一定の厚さをもつ磁極に関しては、磁石の偏肉化を挙げることができる。例えば、非特許文献2には、図11Aのような、偏肉化した磁極1、固定子鉄心2、固定子鉄心スロット3、固定子鉄心ティース4を有する小型モータについて述べられている。すなわち、非特許文献2は、残留磁化Br1.2T、磁極中心の最大厚さ3mm、磁極両端の最小厚さ1.5mmの偏肉化した磁極で12極18スロット表面磁石型同期モータ(SPMSM)とすると、コギングトルクを極小化できると記している。なお、この場合は磁極の外径側からの偏肉であるが、その逆の磁極内径側から偏肉した磁極であってもコギングトルクを低減できることは周知である。
 なお、非特許文献2では、図11Aのように磁極の偏肉化でコギングトルクを極小化するには、磁極中心の最大厚さに対し、磁極両端の最小厚さが1/2程度となるような偏肉化が必要であるとしている。したがって、磁極の厚さ、すなわち磁化の方向(厚み)が薄くなると、磁極を偏肉化してコギングトルクを極小化しようとしても十分な効果が得られなくなる。加えて一般に、機械的には脆弱な磁極であるから加工も難しくなる。
 一方、磁化方向の厚さが薄い磁極に関しては、非特許文献3の、図11Bのような磁極をスキューする方法、あるいは、非特許文献4の、図11Cのような磁極間の磁極面積を連続的に削除する方法が知られている。
 以上の従来技術をまとめると、何れも厚い磁極の磁極端を1/2程度まで薄くして固定子鉄心との空隙を広げるか、あるいは、薄い磁極の磁極間の面積を削減する。したがって、磁極から発生する静磁界Msが磁束Φとして固定子鉄心へ流れ込む量が、磁気抵抗の増加で減少する。その結果、それらの方法では、コギングトルクの低減によって一般に10~15%のトルク密度の低下を招く。したがって、図11A、図11Bおよび図11Cに示した従来技術によるコギングトルク低減法は、磁石のエネルギー密度(BH)maxの増加によるモータのトルク密度の増加が犠牲になるという課題があった。
 他方では、非特許文献5のようなモータのコギングトルク低減法も知られている。非特許文献5は、磁化方向の厚さが1.2mmと薄く、しかも残留磁化Mrが1Tと高いエネルギー密度の希土類-鉄系焼結磁石を用いて、図11A、図11Bおよび図11Cに示したような磁化方向の厚さ、あるいは磁極の面積を削減しない方法でコギングトルクを低減している。すなわち、図12A~12Dのように各磁極を2~5分割した磁極断片で一つの磁極を構成し、磁極断片毎に異方性の方向(磁化容易軸の方向)を段階的に調整した、所謂Halbach Cylinderである。ただし、図面中、磁極1の添え字(2)~(5)は、磁極1を2~5分割した断片の数を示している。また、各断片の矢印の方向は異方性の方向(磁化容易軸の方向)を表している。
 上記構成の磁極を用いて12極18スロットのモータとしたとき、分割した磁極断片の数NとコギングトルクTcogとは、Tcog=61.753×exp(-0.1451×N)なる累乗近似が成り立つ。すなわち、任意の機械角φにおける磁化ベクトルMと、磁極の周方向接線に対する磁化ベクトル角をMθとしたとき、磁極間では規則的に精度よく連続的な変化を採ることが理想であることを示唆している。しかし、厚さ1.2mm、残留磁化Mrが1Tと高いエネルギー密度の希土類-鉄系焼結磁石で、異方性の方向を異にする磁極断片を多数用意し、当該磁極断片をきめ細かく規則的に配置し、しかも、高い寸法精度で複数の磁極を構成し、ロータとすること自体が困難である。このため、当該磁極を整数倍準備した多極ロータ、あるいは、それを用いた小型モータを製造することは極めて困難である。加えて、経済との整合性に乏しいことも容易に推測できる。
 ところで、磁気的に等方性の磁石は着磁界の方向と、その磁界強度分布にしたがって如何なる方向にも自在に磁化できる。このため、着磁ヨークの形状と起磁力の最適化によって、図13の磁極1の円弧状矢印で示すような磁化パターンを与えることができる。これにより、磁極と固定子鉄心との空隙磁束密度分布を容易に正弦波状に調整できる。したがって、SPMSMのような小型モータのコギングトルク低減は薄い磁極を磁気的に異方性の磁石材料で形成する場合と比べると極めて容易である。
 上記のような、等方性希土類磁石材料の研究は、先ずR.W.Leeらが始まりと思われる(非特許文献11を参照)。非特許文献11では、エネルギー密度(BH)maxが111kJ/mの急冷凝固リボンを樹脂で固定すると、エネルギー密度(BH)maxが72kJ/mの等方性NdFe14B系ボンド磁石ができるとしている。その後、1980年代後半以降から現在に至るまで、希土類-鉄系溶湯合金の急冷凝固を主とした等方性希土類磁石材料の研究が活発に行われている。例えば、NdFe14B系、SmFe17系、あるいはそれらとαFe、FeB、FeB系との微細組織に基づく、交換結合を利用したナノコンポジット磁石材料を含めて工業的に利用可能になっている。さらに、多彩な合金組織をミクロ制御した等方性磁石材料に加え、粉末形状の異なる等方性磁石材料も工業的に利用可能になっている。例えば、非特許文献6~10を参照のこと。とくに、非特許文献10では、H.A.Daviesらが、等方性でありながらエネルギー密度(BH)maxが220kJ/mに達するという報告をしている。
 しかし、工業的に利用可能な等方性磁石材料のエネルギー密度(BH)maxは、高々134kJ/mである。また、概ね50W以下の小型モータへの応用で一般的な、等方性NdFe14Bボンド磁石のエネルギー密度(BH)maxは、概ね80kJ/m以下である。すなわち、1985年のR.W.Leeらのエネルギー密度(BH)maxが111kJ/mのリボンでエネルギー密度(BH)maxが72kJ/mの等方性NdFe14B系ボンド磁石を作製して以来、20年以上経過しても、エネルギー密度(BH)maxの進歩でみると、10kJ/mにも満たない。
 したがって、等方性磁石材料の進歩を待ってエネルギー密度を増加し、本発明が対象とするモータの高トルク密度化は期待できない。
 一方、等方性から異方性磁石への転換は一般にエネルギー密度(BH)maxの増加を伴うから、小型モータでは、より高いトルク密度が得られる。しかし、反面コギングトルクが増大する。加えて、既存のラジアル異方性リング磁石は、その内外径が減少すると、リングキャビティのセンターコアで外部磁界Hexを反発させてラジアル配向磁界を発生させても、漏洩磁束が増すためにエネルギー密度(BH)maxの低下が劣化する。とくに、直径25mm以下では、その傾向が強まる。
 また、本発明に関連する異方性の希土類-鉄系磁石材料として、例えば、非特許文献12でのRD-SmFe17や、非特許文献13でのHDDR-NdFe14Bが挙げられる。
J.Schulze著「Application of high performance magnets for small motors」、Proc. of the18th international workshop on high performance magnets and their applications、2004年、pp.908~915 Y.Pang、Z.Q.Zhu、S.Ruangsinchaiwanich、D.Howe著、「"Comparison of brushless motors having halbach magnetized magnets and shaped parallel magnetized magnets」、Proc. of the18th international workshop on high performance magnets and their applications、2004年、pp.400~407 W.Rodewald、W.Rodewald、M.Katter著、「Properties and applications of high performance magnets」、Proc. of the18th international workshop on high performance magnets and their applications、2004年、pp.52~63 松岡篤,山崎東吾,川口仁著、「送風機用ブラシレスDCモータの高性能化検討」、電気学会回転機研究会、RM-01-161、2001年 D.Howe、Z.Q.Zhu著、「Application of halbach cylinders to electrical machine」、Proc. of the 17th int. workshop on rare earth magnets and their applications、2000年、pp.903~922 入山恭彦著、「高性能希土類ボンド磁石の開発動向」、文部科学省イノベーション創出事業/希土類資源の有効利用と先端材料シンポジウム、2002年、pp.19~26 B.H.Rabin、B.M.Ma著、「Recent developments in Nd-Fe-B powder」、120th Topical Symposium of the Magnetic Society of Japan、2001年、pp.23~28 B.M.Ma著、「Recent powder development at magnequench」、Polymer Bonded Magnets 2002、2002年 S.Hirasawa、H.Kanekiyo、T.Miyoshi、K.Murakami、Y.Shigemoto、T.Nishiuchi著、「Structure and magnetic properties of Nd2Fe14B/FexB-type nanocomposite permanent magnets prepared by strip casting」、9th Joint MMM/INTERMAG、FG-05、2004年 H.A.Davies、J.I.Betancourt、C.L.Harland、「Nanophase Pr and Nd/Pr based rare-earth-iron-boron alloys」、Proc. of 16th Int. Workshop on Rare-Earth Magnets and Their Applications、2000年、pp.485~495 R.W.Lee,E.G.Brewer,N.A.Schaffel,"Hot-pressed Neodymium-Iron-Boron magnets",IEEE Trans.Magn.,Vol.21,1958(1985) A.Kawamoto、T.Ishikawa、S.Yasuda、K.Takeya、K.Ishizaka、T.Iseki、K.Ohmori著、「SmFeN magnet powder prepared by reduction and diffusion method」、IEEE Trans.Magn.、35、1999年、p.3322 T.Takeshita and R.Nakayama著、「Magnetic properties and micro-structure of the Nd-Fe-B magnet powders produced by hydrogen treatment」、Proc. 10th Int. Workshop on Rare-earth Magnets and Their Applications、1989年、pp.551~562
 本発明の異方性を連続方向制御した希土類-鉄系リング磁石の製造方法は、必須とする第1の製造工程では、一様な外部磁界Hexの方向とロータの任意の機械角φに対応する内外周方向接線との角度をHθとし、機械角φに対応した角度Hθの変化を与える内外周切片をもつセグメントを外部磁界Hexによる磁界中で成形加工する。必須とする第2の製造工程では、複数のセグメントを極数に応じて円周上に配置し、当該セグメントの一方のスラスト方向端面から、その粘性変形に基づくレオロジーを利用してリング状に押出し、続いて、当該セグメントのスラスト方向両端面から圧縮成形する。
 本発明はこのような異方性リング磁石の製造方法の提供によって、等方性磁石の欠点であるエネルギー密度(BH)maxを概ね2倍以上に高める。これによって、小型モータのトルク密度の増加を図るとともに、同一形状においてラジアル異方性磁石特有のコギングトルクに起因する障害、例えば騒音を低減しようとするものである。
 従来の面内異方性など、明確な非ラジアル異方性領域をもたないラジアル異方性リング磁石を適用したモータでは、磁石のエネルギー密度(BH)maxが増加すると、機械角φに対する磁極中心の磁化ベクトル角Mcと磁極端の磁化ベクトル角MdとはMc≒Mdである。このため、磁極端の磁化ベクトル角Mdの機械角φに対する変化Md/φが指数関数的に増加する傾向にあった。しかし、本発明にかかる磁極端の磁化ベクトル角Mdの機械角φに対する変化Md/φは、異方性の連続方向制御によって等方性磁石以下に抑制することができる。その結果、フェライト極異方性磁石や等方性NdFe14B磁石に比べ、エネルギー密度(BH)maxが略2~10倍の高性能希土類-鉄系リング磁石であるにも拘わらず、モータのコギングトルクを増加させることなく、トルク密度を高めることができる。とくに、小口径化してもラジアル異方性リング磁石のようなラジアル配向磁界の低下によるエネルギー密度(BH)maxの低下がなく、複数のセグメントを生産することができる。
 したがって、本発明は、家電機器、空調機器、並びに情報機器などの各種駆動源として幅広く使用されている、概ね50W以下のモータの省エネルギー化、省資源化、小型化、並びに静音化に有効である。
図1Aは、異方性方向制御を示す第1の概念図である。 図1Bは、異方性方向制御を示す第2の概念図である。 図1Cは、異方性方向制御を示す第3の概念図である。 図2Aは、押出圧縮過程を示す斜視外観図である。 図2Bは、押出圧縮成形ダイスの断面構成図である。 図3Aは、溶融高分子の外力による流動形態を示す第1の概念図である。 図3Bは、溶融高分子の外力による流動形態を示す第2の概念図である。 図4は、レオロジーを与える熱硬化性樹脂組成物の分子構造を示す概念図である。 図5は、磁気異方性磁極のマクロ構造の電子顕微鏡写真を示す図である。 図6Aは、磁石のM-H loopを示す特性図である。 図6Bは、残留磁化とエネルギー密度を示す特性図である。 図7Aは、セグメントの一例を示す形状図である。 図7Bは、セグメントとリング磁石の位置関係を示す断面図である。 図8Aは、ラジアル領域と非ラジアル領域を示す構成図である。 図8Bは、機械角と磁化ベクトルの関係を示す特性図である。 図9は、ラジアル領域の角度誤差と非ラジアル領域の機械角に対する磁化ベクトルの回帰直線の相関係数の関係を示す特性図である。 図10Aは、エネルギー密度とモータ効率(最高値)の一例を示す特性図である。 図10Bは、回転数と騒音値の一例を示す特性図である。 図11Aは、従来の偏肉化によるコギングトルク低減法を示す概念図である。 図11Bは、従来のスキューによるコギングトルク低減法を示す概念図である。 図11Cは、従来の磁極面積によるコギングトルク低減法を示す概念図である。 図12Aは、従来の磁化方向の不連続制御によるコギングトルク低減法を示す第1の概念図である。 図12Bは、同第2の概念図である。 図12Cは、同第2の概念図である。 図12Dは、同第2の概念図である。 図13は、等方性磁石の磁化パターンを示す概念図である。
 以下、本発明の実施の形態について、図面を用いて説明する。
 (実施の形態)
 本発明は、次の2つの工程を必須とする。その1つは、磁石の機械的設計とともに、一定方向に保たれた一様な磁界によって、面垂直から面内に異方性の方向が連続変化したセグメントを作製する工程である。すなわち、作製されたセグメントにおいては、異方性の方向が、一様な磁界を受けた面に対して垂直となる方向からその面の広がり方向へと連続的に変化している。もう1つは、複数のこれらセグメントを円周上に配置し、当該セグメントの一方のスラスト方向端面から、当該セグメントの粘性変形に基づくレオロジーによりリング状に押出し、続いてセグメントのスラスト方向両端面から圧縮する工程である。
 上記、本発明にかかる必須の製造工程をさらに詳しく説明する。先ず、本発明で必須とする第1の製造工程では、内外周切片を複数もつセグメントを、一様な外部磁界Hexによる磁界中で成形加工する。ここで、内外周切片は、機械角φに対応した角度Hθの変化を与える切片である。また、角度Hθは、一様な外部磁界Hexの方向と、セグメントの任意位置、すなわち、最終のロータ機械角φに対応する内外周方向接線との角度である。セグメントの成形加工法としては、よく知られた射出法や押出法で差し支えないが、エネルギー密度(BH)maxを160~180kJ/mとするには直交磁界中での圧縮法が好ましい。
 また、本発明で必須とする第2の製造工程では、先ず、必須とする第1の製造工程で製造した複数のセグメントを極数に応じて円周上に配置する。そして、当該セグメントの一方のスラスト方向端面から、その粘性変形に基づくレオロジーを利用してリング状に押出する。続いて、当該セグメントのスラスト方向両端面から圧縮成形して、異方性を連続方向制御した希土類-鉄系リング磁石とする。
 なお、上記、複数のセグメントとは2個以上の偶数であり、その数自体は本発明にかかる小型モータの設計思想に委ねられる。
 ところで、希土類-鉄系磁石材料が自由に回転する状態で、外部磁界Hexを与えたとき、当該磁石材料は外部磁界Hexの方向に磁化されて整列する。したがって、セグメント断面において内外周方向接線に対する磁化ベクトル角M、すなわち異方性の方向は、M≒Hθとなる。
 例えば、リング磁石の異方性磁極においてラジアル異方性領域の磁化ベクトル角をMc、非ラジアル異方性領域の磁化ベクトル角をMdとし、さらに角度Hθとの誤差を小さくする必要がある。そこで、セグメント形状の設定では、次のようにして断面形状を求めることが望ましい。すなわち、任意の機械角φの位置で角度Hθをもつ剛体が回転移動し、異方性の程度を崩さずに異方性の方向のみが変化するとし、それらの剛体の集合体を非線形構造解析することでセグメントの断面形状を求める。また、任意の機械角φの位置に対する角度Hθをもつ剛体の集合体が異方性の程度を崩さずに異方性の方向のみが変化する回転移動は、熱と外力によって生じる溶融線状高分子のせん断流動、伸長流動、およびそれらが重複した粘性変形に基づくレオロジーを利用する。
 次に、本発明で言う異方性の方向制御において、最適な異方性の方向と分布について説明する。ここで、回転軸中心を原点とした固定子鉄心ティースの機械角をφs、回転軸中心を原点としたリング磁石の磁極中心の機械角をφrとする。このとき、本発明にかかる望ましい異方性の連続方向制御の形態とは、φs≒φrに相当する領域では磁極の回転方向接線に対する磁化ベクトル角Mcを90度、すなわちラジアル異方性領域(以下、適宜、ラジアル領域と呼ぶ)を設けることが望ましい。ラジアル領域は、磁化ベクトル(異方性方向)が略回転軸中心方向を向くセグメント中の領域である。また、ラジアル領域での異方性方向の誤差平均を2度以下とする。さらに、上記磁化ベクトル角がMcのラジアル領域から隣接する磁極(異極)の磁化ベクトル角がMcのラジアル領域に至る間は非ラジアル異方性領域(以下、適宜、非ラジアル領域と呼ぶ)とする。すなわち、非ラジアル領域では、磁化ベクトル(異方性方向)が回転軸中心方向からずれた方向を向く。この非ラジアル領域の磁化ベクトル角をMdとしたとき、非ラジアル領域に相当する機械角φとMdの分布を与える一次回帰式φ=a×Md+b(a、bは係数)とすることが望ましい。これは磁極の境界近傍での異方性の方向が面内異方性となることを意味している。本発明ではφとMdの一次回帰式の相関係数rを0.995以上の精度とするものである。
 上記のような機械角φに対する異方性方向と、その分布とを与えると、リング磁石の磁極が発生する静磁界Msが固定子鉄心ティースに到達する量の減少を最小限とすることができる。加えて、非ラジアル領域の磁化ベクトル角Mdとしたとき、機械角φとMdとの分布を与える一次回帰式の相関係数rを0.995以上の精度とすることで、モータのコギングトルクを低減できる。
 以上のようにリング磁石の磁極で発生する静磁界の固定子鉄心への流入の安定化を図り、その減少を抑制している。しかも、磁極間の静磁界の極性反転を機械角φに対して安定化することが、最適な異方性の方向と、その分布と言える。
 一方、本発明にかかる異方性を連続方向制御した希土類-鉄系リング磁石でモータの小型化、省エネルギー化を進めるには、当該磁極から発生する静磁界の大きさも重要である。そこで、本発明では、均質な異方性方向と、その分布をもつリング磁石の製造過程、とくに、セグメントからリング磁石とする際の磁気特性の劣化を限定する。本発明では、セグメントと、それを加工したリング磁石において残留磁化Mrの差を0.03T以下、異方性分散σの差を7%未満とすることができる。加えて、静磁界の水準として、異方性方向の残留磁化Mrを0.95~1.05T、保磁力HcJを0.85~0.95MA/m、エネルギー密度(BH)maxを160~180kJ/mとすることができる。
 さらに、本発明にかかるリング磁石は、一様な磁界中で成形加工したセグメントで構成するため、リング磁石を小口径化しても、そのエネルギー密度(BH)maxが劣化しない利点がある。一般に、ラジアル異方性磁石は、その直径が概ね25mm以下になると、配向のためのラジアル磁界の減少により、エネルギー密度(BH)maxが減少する。このため、このような小型モータでは(BH)max≒80kJ/mの等方性NdFe14B磁石が用いられることが多いが、このような既存モータの小型化、省エネルギー化に、より大きな効果が得られる。
 以上のような、レオロジーとエネルギー密度(BH)maxが160~180kJ/mとを確保する好適なセグメントの構成としては、例えば次のような構造とする。すなわち、150μm以下のNdFe14B系希土類-鉄系磁石材料を、平均粒子径3~5μmのSmFe17系希土類-鉄系磁石材料と結合剤とのマトリクス(連続相)で隔離したマクロ構造とする。そして、好ましくは、エネルギー密度(BH)maxが270kJ/m以上の希土類-鉄系磁石材料の体積分率を80vol.%以上とする。
 図1Aは、異方性方向制御を示す第1の概念図、図1Bは、異方性方向制御を示す第2の概念図、そして、図1Cは、異方性方向制御を示す第3の概念図である。
 上記のような本発明にかかる異方性を連続方向制御した希土類-鉄系リング磁石を実現するには、先ず、図1Aのようなセグメント10を準備する。セグメント10は、一様方向をもつ外部磁界Hexと任意の位置で、内外周切片11となす角度Hθの分布が、磁極中心部分では90度、すなわちラジアル異方性領域となる。そして、セグメント10は、周方向磁石端では面内異方性になるように、角度Hθが90度から機械角φに対する一次式で連続変化する非ラジアル異方性領域をもつ。ただし、図1A、図1Cは、セグメント磁石の中心から右半分の断面形状を表している。また、図1Bは、任意位置での内外周切片11である磁石断片と角度Hθ、磁化ベクトル角M(ラジアル異方性領域ではMc、非ラジアル異方性領域ではMd)を示している。
 次に、本発明にかかる複数のセグメント10を円周上に配置し、セグメント10の一方のスラスト方向端面から加圧する。そして、セグメント10の粘性変形に基づくレオロジーを利用してリング状に押出し、続いてリング状に押出した複数のセグメント10をスラスト方向両端面から圧縮成形する。すると、図1Cのセグメント10aようにセグメント10が変形する。変形したセグメント10aの各内外周切片11において、その異方性の方向を示す磁化ベクトル角Mは、図1Bのように回転し、角度Hθと、その分布に応じた磁化ベクトル角M(Mc、およびMd)を有するリング磁石となる。
 次に、上記本発明にかかる複数のセグメントを押出圧縮成形してリング磁石を製造する過程を、図2A、図2Bを用いて説明する。
 図2Aは、本発明にかかる押出圧縮過程の一例を示す斜視外観図である。また、図2Bは、本発明にかかる押出圧縮成形ダイスの断面構成図である。なお、図2Aでは、分かりやすくするため、図2Bに示す押出圧縮成形ダイスを除いた状態での押出圧縮過程の一例を示している。
 図2Aに示すように、押出圧縮過程で利用する押出成形用コア30は、部位31、部位32および部位33を有している。この押出成形用コア30の部位31に、セグメント10に相当する予備成形のセグメント磁石20が配置される。
 部位31では、図2Aのように、円周上に配置した予備成形のセグメント磁石20を、図2Bに示すような押出圧縮成形ダイス35とともに規定位置に収納する。部位32では、部位31に収納した当該セグメント磁石20のレオロジーを利用し、図1Aから図1Cの形状に押出加工する。部位33では、部位32で押出されたセグメント磁石20を、リング形状に圧縮成形する。具体的には、リング形状のパンチを用いて、図2Aに示すスラスト方向セグメント端面21の少なくとも一部を押し、複数の予備成形のセグメント磁石20を同時に部位31から部位32を経て、部位33まで押出す。そして、部位32でレオロジーにより変形して部位33に押出した複数のセグメント磁石20は、押出方向と逆方向からもリング形状のパンチを作動させて圧縮成形する。ここで、レオロジーを利用したセグメントの押出抵抗は殆どないが、圧縮成形の最終段階では20~60MPaの圧力でセグメント相互を熱圧着して一体化する。
 押出圧縮成形したリング磁石40は、当該成形型から離型したのち、熱処理が施され、図2Aに示すように、離型し、熱硬化したリング磁石41が形成される。そして、このリング磁石41は、最終的にロータ鉄心42と組み合わされて、例えば8極リング磁石ロータ43が形成される。
 なお、本発明は異方性希土類-鉄系磁石材料とともに、少なくとも図1Aから図1C、あるいは図2Aのように、予備成形のセグメント磁石20にレオロジーを付与するように調整した熱硬化性樹脂組成物を用いる。
 図3Aは、溶融高分子の外力による流動形態を示す第1の概念図、また、図3Bは、溶融高分子の外力による流動形態を示す第2の概念図である。
 上記、本発明で言う磁石のレオロジーとは、図3A、図3Bの概念図で示すように、熱硬化性樹脂組成物の成分の一部が、絡み合う糸状の分子鎖として、予備成形セグメント磁石内部に一様に介在する。そして、熱と外力F-F’とに応じて、せん断流動、または伸長流動などの粘性変形を原理としている。また、図2Aの押出圧縮成形リング磁石40は、例えば、図4に示す熱硬化性樹脂組成物の成分を架橋反応により3次元網目構造化し、図2Aのように熱圧着で一体化した磁石を剛体化する。これにより、図2Aのように本発明にかかる磁石と鉄心とを組み合わせたロータの機械的強度、耐熱性、耐久性を調整することができる。
 図4は、ノボラック型エポキシオリゴマー、線状ポリアミド、2-フェニル-4,5-ジヒドロキシメチルイミダゾールからなる熱硬化性樹脂組成物の分子構造を示す概念図である。そして、図4は、本発明にかかる磁石にレオロジーを付与するように調整した熱硬化性樹脂組成物の一例である。ただし、図4に示すドットサークルは架橋部分の分子構造を示している。この図4の例では、線状ポリアミドが溶融状態のとき、絡み合う糸状の分子鎖として、磁極中のマトリクスに一様に介在する。そして、外力F-F’に応じて、せん断流動、または伸長流動を引き起こすことで磁石の変形を担う。なお、図3A、図3Bに示す流動を与える熱硬化性樹脂組成物は、必ずしも図4に示すものだけに限定されない。
 ところで、小型モータのトルク密度は、磁極が発生する静磁界Ms、すなわち、固定子鉄心と磁極との空隙磁束密度に比例する。仮に、同一寸法同一構造の磁石と固定子鉄心とで形成した小型モータの空隙磁束密度は、磁石のエネルギー密度(BH)maxの比の平方根に概ね比例する。このことから、エネルギー密度(BH)maxの水準が、概ね80kJ/mを上限とする等方性NdFe14Bボンド磁石に対し、本発明にかかる磁極のエネルギー密度(BH)max値を160kJ/m以上とすれば、略1.4倍のトルク密度の増加が見込まれる。したがって、本発明にかかる異方性を連続方向制御した希土類-鉄系リング磁石は、トルク密度を高めるという観点から、残留磁化Mrが0.95T以上、保磁力HcJが0.9MA/m以上、エネルギー密度(BH)maxが160kJ/m以上の性能を有するものが望ましい。
 上記のような、エネルギー密度(BH)max≧160kJ/mの本発明にかかる磁石を得るには、エネルギー密度(BH)max≧270kJ/mの希土類磁石-鉄系材料の磁石に占める体積分率を80vol.%以上とすることが望ましい。
 本発明にかかる異方性の希土類-鉄系磁石材料としては、例えば、非特許文献12でのA.KawamotoらのRD(Reduction and Diffusion)-SmFe17や、非特許文献13でのT.Takeshitaらの(R2[Fe,Co]14B)相の水素化(Hydrogenation,R2[Fe,Co]14BHx)、650~1000°Cでの相分解(Decomposition,RH+Fe+FeB)、脱水素(Desorpsion)、再結合(Recombination)で作製した所謂HDDR-NdFe14Bなどを挙げることができる。
 (実施例)
 以下、本発明にかかる異方性を連続方向制御した希土類-鉄系リング磁石について、8極12スロット表面磁石型同期モータ(SPMSM)を対象とした実施例により、さらに詳しく説明する。ただし、本発明が本実施例に限定されるものではない。
 先ず、図5は、本発明にかかる密度6.01Mg/mの磁石のマクロ構造の走査電子顕微鏡(SEM)写真を示す図である。ただし、異方性SmFe17系希土類-鉄系磁石材料、並びに異方性NdFe14B系希土類-鉄系磁石材料は、熱硬化性樹脂組成物とともに160℃の加熱下で、一様な外部磁界を1.4MA/mとした配向磁界を印加し、20~50MPaの圧力で圧縮成形され、セグメントが形成される。ここで、異方性SmFe17系希土類-鉄系磁石材料は、粒子径が3~5μm、エネルギー密度(BH)maxが290kJ/mである。また、異方性NdFe14B系希土類-鉄系磁石材料は、粒子径が38~150μm、エネルギー密度(BH)maxが270~300kJ/mである。図5のように、この磁石のマクロ構造の特徴は、NdFe14B系希土類-鉄系磁石材料を、SmFe17系希土類磁石微粉末と熱硬化性樹脂組成物とから成るマトリクス(連続相)で隔離した構造としている点にある。また、SmFe17およびNdFe14B系希土類-鉄系磁石材料が占める体積分率は81vol.%である。
 図6Aは、図5に示したマクロ構造をもつ本発明にかかる磁石、および当該磁石材料を全てSmFe17系、またはNdFe14B系希土類-鉄系磁石材料とし、同一条件で製造した磁石のM-H loopを比較した特性図である。ただし、測定磁界は±2.4MA/mである。図6Aから明らかなように、保磁力HcJは、およそ1MA/mでほぼ同じであるが、残留磁化Mrが異なる。そこで、これらの磁石の残留磁化Mrとエネルギー密度(BH)maxとの関係をプロットすると、図6Bが得られる。図6Bのように、本発明にかかる構成とすると、そのエネルギー密度(BH)maxは160~180kJ/mに達する。
 一方、熱硬化性樹脂組成物は、図4に示したエポキシ当量205~220g/eq、融点70~76℃のノボラック型エポキシオリゴマー、融点80℃、分子量4000~12000の線状ポリアミド、2-フェニル-4,5-ジヒドロキシメチルイミダゾールから成る。それらはゲル化に至らず、線状ポリアミドは熱で再溶融し、絡み合う糸状の分子鎖として磁石中に一様に介在する。そして、図3Bのような熱と外力の方向に応じて、せん断流動、伸長流動を引き起こす。これにより、図1A、図1B、および図2Aに対応するレオロジー特性を有する。
 図7A、図7Bは、本発明にかかる上記マクロ構造を有するセグメント磁石20、並びにそれらを押出圧縮成形したリング磁石40、すなわち加工前後の形状図である。ここで、図7Aに示す一様な外部磁界Hexとセグメントの任意の位置の接線とに対する角度Hθは、リング磁石内外周の任意の機械角φの位置の接線に対する磁化ベクトルMの角度Mc、およびMdに相当する。すなわち、Hθ≒Mc、Hθ≒Mdである。ここで、図1Aのように内外周方向接線に対する外部磁界Hexとなす角度Hθの設定は、セグメント外周では0.3655mmピッチ、内周では0.2845mmピッチとしている。そして、ラジアル方向磁極中心で2分割した計96の剛体の集合体として、各剛体が、それぞれ回転移動するとした非線形構造解析で図7Aのセグメント形状を設定している。
 次に、図2Aおよび図2Bで説明したように、予備成形セグメント20を圧縮成形し、リング磁石40を形成する。
 次に、本発明にかかる押出圧縮成形したリング磁石40は、当該成形型から離型したのち、大気中170℃、20分の熱処理を施す。これにより、線状ポリアミドを含む熱硬化性樹脂組成物を図4のように架橋した。ただし、図4では遊離エポキシ基を示しているが、これらは、全てイミダゾール類、あるいは線状ポリアミド分子鎖内アミノ活性水素、あるいは末端カルボキシル基などと反応させ、剛直化する。
 得られた、本発明にかかるリング磁石は、外径50.3mm、内径47.3mm、厚さ1.5mm、長さ13.5mmであり、同芯度は0.060mm以下、最大内径と最小内径の差である真円度は0.225mm以下の精度であった。このリング磁石は最終的に鉄心と組み合わせて、図2Aのリング磁石ロータ43のような外径50.3mm、長さ13.5mm、8極リング磁石ロータとした。
 次に、2turn/coilの着磁ヨークとパルス磁化電源を用いて、先ず、パルス電流波高値Ip=10kAで上記8極リング磁石ロータに瞬間強磁界を印加した。これにより、異方性の方向と、その分布にしたがって着磁ヨーク内のロータが回転し、ロータと着磁ヨークの磁極の位置を合わせた。続いて、Ip=25kAのパルス着磁でロータ磁石を着磁した。
 次に、本実施例では、図8Aに示す固定子鉄心ティースの機械角φ=14度、リング磁石1極の機械角φ=45度とした。また、図8Bに示すリング磁石の磁極中心でのラジアル領域の周方向接線に対する磁化ベクトル角をMc、それ以外の非ラジアル領域の周方向接線に対する磁化ベクトル角をMdとしたとき、Mc=90度である。なお、磁化ベクトル角Mの測定は径方向、接線方向、軸方向の合成磁化ベクトル角Mが磁化容易軸の方向を示すとし、3次元ホールプローブテスラメータで1度あたり25点の測定を実施した。さらに、磁化ベクトル角Mとその分布の評価は、図8Bのようにラジアル領域では90度に対する角度誤差平均とし、非ラジアル領域では機械角φに対するMdの回帰式の相関係数を用いた。
 図9は本発明にかかるエネルギー密度(BH)maxが160~180kJ/mリング磁石ロータのラジアル領域の角度誤差平均と非ラジアル領域の回帰直線の相関係数とをプロットした特性図である。また、比較例1~5として、同一外径寸法の8極磁石ロータの磁化ベクトルの方向と、その分布精度を示す。ただし、比較例1は、160~180kJ/m異方性連続方向制御アークセグメント磁石を組み立てたロータである。比較例2は、130~140kJ/mパラレル配向磁界で作製したラジアル異方性NdFe14Bリング磁石ロータである。比較例3は、ラジアル配向磁界で作製したラジアル異方性NdFe14Bリング磁石ロータである。比較例4は、80kJ/m正弦波着磁等方性NdFe14Bリング磁石ロータである。比較例5は、16kJ/m極異方性フェライトリング磁石ロータである。ここで、非ラジアル領域の回帰直線の相関係数が高い程、コギングトルクは低減し、ラジアル領域の角度誤差平均が小さい程、磁極が発生する静磁界が固定子鉄心に到達し易くなることを意味している。この意味から、本発明例は、磁化ベクトル、すなわち、異方性の方向とその分布が、どの比較例よりも理想的な形態であることは明白である。例えば、比較例1のように異方性を方向制御したアークセグメント磁石を鉄心の周囲で組み立てる構成で、その組立誤差が原因となってバラツキを増大させる。また、比較例2、3のような異方性を方向制御しない従来型ロータは非ラジアル領域の回帰直線の相関係数の低下が顕著であり、コギングトルクの増加が推察できる。他方では、比較例4、5のように非ラジアル領域の回帰直線の相関係数が高くても、ラジアル領域の角度誤差平均が増加すると磁極が発生する静磁界が固定子鉄心に伝わりにくくなる。
 次に、セグメント、リング磁石の磁極において、任意の機械角φに対する角度Hθ、Mc、およびMdに対応する部位から直径1mmの円柱磁石を採取した。そして、この円柱磁石から異方性の角度と、その程度を解析した結果を示す。先ず、円柱磁石の中心位置を機械角φにおける角度Hθ、Mc、およびMdとしたとき、円柱磁石の全方向で最大磁化Msが最大となる角度、すなわち機械角φに対する角度Hθ、Mc、Mdを求めた。その結果、セグメントとリング磁石の同一位置における残留磁化Mrの差は0.03T以下であった。
 一方、異方性の程度は異方性分散σを用いて評価した。ここで異方性分散σ、すなわち、異方性方向(C軸)の分布の解析は回転磁化における全エネルギーE=Ku×sinψ-Ms×H×cos(ψ-ψo)において、円柱磁石の全エネルギーEを最小とする解、すなわち、(δE/δψ)=Ku×sinψ-Ms×H×sin(ψ-ψo)=0から、先ずψを決定した。そして、M=Ms×cos(ψo-ψ)から、Mが最大になるM-H loopを試料振動型磁力計(VSM)で測定する。さらに、Ku×sinψ-Ms×H×sin(ψo-ψ)=0からψを求め、ψの確率分布を適用して全体の配向状態、すなわち異方性分散σを求めた。ただし、ψoは外部磁界の角度、ψはMsが回転した角度、Msは自発磁気モーメント、Kuは磁気異方性定数、Eは全エネルギーである。
 その結果、円柱磁石の中心位置をMθ設定角としたとき、円柱試料の全方向で残留磁化Msが最大となる角度、すなわちφに対する角度Hθ、およびMc、Mdは、ほぼ等しかった。そして、セグメントとリング磁石の異方性分散σの値は最大でも7%以下であり、この水準は測定誤差を考慮すれば同等である。このことは、異形磁石から円弧状磁石とする過程で、それぞれの部位が回転移動する際に、異方性の程度、すなわちエネルギー密度(BH)maxの劣化なしに、異方性の方向のみが変化していることを証明するものである。
 図10Aは、同一仕様の12スロット固定子鉄心と図9で示した各種8極磁石ロータとを組み合わせた40W表面磁石型同期モータ(SPMSM)のモータ効率(最高値)をエネルギー密度との関係で示す。また、図10Bは、上記SPMSMの回転数と騒音値との関係を示す。例えば、エネルギー密度(BH)maxが160~180kJ/mとした本発明例は最高効率が90%を越える。しかも、異方性の連続方向制御により、ラジアル異方性磁石特有の200~700r/minの低速回転領域の騒音値が最大10dB低減し、正弦波着磁した等方性NdFe14B磁石ロータと同等の静音性が得られる。
 本発明は異方性リング磁石の製造方法の提供によって、等方性磁石の欠点であるエネルギー密度(BH)maxを概ね2倍以上に高めることで、小型モータのトルク密度の増加を図るとともに、同一形状においてラジアル異方性磁石特有のコギングトルクに起因する障害、例えば騒音を低減することができる。
 この発明に係るモータは、静音性、高効率、省エネルギーなどに利用でき、産業上の利用可能性は極めて高い。
10  セグメント
11  内外周切片
20  セグメント磁石
21  スラスト方向セグメント端面
30  押出成形用コア
35  押出圧縮成形ダイス
40  押出圧縮成形したリング磁石
41  離型し、熱硬化したリング磁石
42  ロータ鉄心
43  リング磁石ロータ
φ  機械角
Mc  (磁極中心(ラジアル領域)の)磁化ベクトル角
Md  (磁極端(非ラジアル領域)の)磁化ベクトル角
Hex  外部磁界
Hθ  (外部磁界の)角度

Claims (5)

  1. 一様な外部磁界Hexの方向とロータの任意の機械角φに対応する内外周方向接線との角度を角度Hθとしたとき、機械角φに対応した角度Hθの変化を与える内外周切片をもつセグメントを外部磁界Hexによる磁界中で成形加工する第1の工程と、
    複数のセグメントを極数に応じて円周上に配置し、当該セグメントの一方のスラスト方向端面から、その粘性変形に基づくレオロジーを利用してリング状に押出し、続いて、当該セグメントのスラスト方向両端面から圧縮成形することで異方性を連続方向制御する第2の工程とを含む、
    ことを特徴とした異方性を連続方向制御した希土類-鉄系リング磁石の製造方法。
  2. 回転軸中心を原点とした固定子鉄心ティースの機械角をφs、回転軸中心を原点としたロータ磁極中心の機械角をφrとしたとき、φs≒φrに相当する領域で磁極の回転方向接線に対する磁化ベクトル角Mcの90度に対する誤差平均が2度以下、前記磁化ベクトル角Mcから隣接する磁極の90度領域Mcに至る非ラジアル領域の磁化ベクトル角をMdとしたとき、機械角φと磁化ベクトル角Mdとの回帰式の相関係数rが0.995以上である請求項1記載の異方性を連続方向制御した希土類-鉄系リング磁石の製造方法。
  3. 予備成形セグメントとリング磁石との残留磁化Mrの差が0.03T以下、異方性分散σの差が7%未満である請求項1記載の異方性を連続方向制御した希土類-鉄系リング磁石の製造方法。
  4. リング磁石の異方性方向の残留磁化Mrが0.95~1.05T、保磁力HcJが0.85~0.95MA/m、エネルギー密度(BH)maxが160~180kJ/mである請求項1記載の異方性を連続方向制御した希土類-鉄系リング磁石の製造方法。
  5. リング磁石の直径が25mm以下である請求項1記載の異方性を連続方向制御した希土類-鉄系リング磁石の製造方法。
PCT/JP2009/002214 2008-05-23 2009-05-20 異方性を連続方向制御した希土類-鉄系リング磁石の製造方法 WO2009142005A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009539955A JP4888568B2 (ja) 2008-05-23 2009-05-20 異方性を連続方向制御した希土類−鉄系リング磁石の製造方法
CN200980100584.7A CN102742131B (zh) 2008-05-23 2009-05-20 连续控制各向异性方向的稀土-铁类环形磁铁的制造方法
KR1020107005767A KR101206576B1 (ko) 2008-05-23 2009-05-20 이방성을 연속 방향 제어한 희토류-철계 링 자석의 제조 방법
US12/680,869 US8371021B2 (en) 2008-05-23 2009-05-20 Manufacturing method of rare earth-iron ring magnet with continuous orientation controlled anisotropy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008135146 2008-05-23
JP2008-135146 2008-05-23

Publications (1)

Publication Number Publication Date
WO2009142005A1 true WO2009142005A1 (ja) 2009-11-26

Family

ID=41339945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002214 WO2009142005A1 (ja) 2008-05-23 2009-05-20 異方性を連続方向制御した希土類-鉄系リング磁石の製造方法

Country Status (5)

Country Link
US (1) US8371021B2 (ja)
JP (1) JP4888568B2 (ja)
KR (1) KR101206576B1 (ja)
CN (1) CN102742131B (ja)
WO (1) WO2009142005A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014032725A1 (en) * 2012-08-31 2014-03-06 The Switch Drive Systems Oy A rotor of a permanent magnet electrical machine

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010063323A1 (de) * 2010-12-17 2012-06-21 Robert Bosch Gmbh Verfahren zur Herstellung einer Maschinenkomponente für eine elektrische Maschine sowie eine Maschinenkomponente
US10511212B2 (en) * 2011-10-07 2019-12-17 Minebea Mitsumi Inc. Inner rotor-type permanent magnet motor with annular magnetic poles
JP5860654B2 (ja) * 2011-10-07 2016-02-16 ミネベア株式会社 インナーロータ型永久磁石モータ
CN104252964B (zh) * 2013-06-28 2016-09-21 浙江科升电力设备有限公司 一种变压器辐射型铁心柱制作方法
CN103817790B (zh) * 2013-08-22 2016-01-27 苏州混凝土水泥制品研究院有限公司 一种磁圈与Halbach阵列的制作方法
DE102013217857B4 (de) * 2013-09-06 2015-07-30 Robert Bosch Gmbh Stator für eine elektrische Maschine und Verfahren zum Herstellen eines solchen Stators
CN105405570B (zh) * 2014-09-12 2017-07-25 上海日立电器有限公司 压缩机用粘结钕铁硼环形磁铁的充磁方法
JP7255349B2 (ja) * 2019-05-17 2023-04-11 Tdk株式会社 モータ装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158863A (ja) * 2003-11-21 2005-06-16 Matsushita Electric Ind Co Ltd 自己組織化したハイブリッド型希土類ボンド磁石とその製造方法、並びにモータ
WO2007119393A1 (ja) * 2006-03-16 2007-10-25 Matsushita Electric Industrial Co., Ltd. ラジアル異方性磁石の製造方法とラジアル異方性磁石を用いた永久磁石モータ及び有鉄心永久磁石モータ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2114151A5 (ja) * 1970-11-18 1972-06-30 Sermag
JPS6252913A (ja) * 1985-09-02 1987-03-07 Hitachi Metals Ltd 多極異方性円筒状磁石の製造方法及び装置
WO1993022778A1 (en) * 1992-04-28 1993-11-11 Sumitomo Special Metals Company Limited Cylinder type anisotropic magnets and their manufacturing methods and motors
JP2003347142A (ja) 2002-05-27 2003-12-05 Mitsubishi Electric Corp 円筒状異方性磁石の製造方法および円筒状異方性磁石
KR100579914B1 (ko) * 2003-08-13 2006-05-15 자화전자 주식회사 적층극이방복합자석의 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158863A (ja) * 2003-11-21 2005-06-16 Matsushita Electric Ind Co Ltd 自己組織化したハイブリッド型希土類ボンド磁石とその製造方法、並びにモータ
WO2007119393A1 (ja) * 2006-03-16 2007-10-25 Matsushita Electric Industrial Co., Ltd. ラジアル異方性磁石の製造方法とラジアル異方性磁石を用いた永久磁石モータ及び有鉄心永久磁石モータ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014032725A1 (en) * 2012-08-31 2014-03-06 The Switch Drive Systems Oy A rotor of a permanent magnet electrical machine

Also Published As

Publication number Publication date
KR101206576B1 (ko) 2012-11-29
US20100218365A1 (en) 2010-09-02
JPWO2009142005A1 (ja) 2011-09-29
CN102742131B (zh) 2014-12-10
KR20100043100A (ko) 2010-04-27
CN102742131A (zh) 2012-10-17
JP4888568B2 (ja) 2012-02-29
US8371021B2 (en) 2013-02-12

Similar Documents

Publication Publication Date Title
JP4888568B2 (ja) 異方性を連続方向制御した希土類−鉄系リング磁石の製造方法
TWI300943B (ja)
JP5169823B2 (ja) ラジアル異方性磁石の製造方法とラジアル異方性磁石を用いた永久磁石モータ及び有鉄心永久磁石モータ
JP5088519B2 (ja) 希土類−鉄系環状磁石の製造方法、及びモータ
WO2005101614A1 (ja) 回転子及びその製造方法
JP2006086319A (ja) リング型焼結磁石
JP4735716B2 (ja) 永久磁石回転子およびこれを使用したモータ
EP2226814B1 (en) Rare-earth iron-based magnet with self-recoverability
JP5904124B2 (ja) 極異方性配向を有する円弧状磁石、その製造方法、及びそれを製造するための金型
JP2005020991A (ja) 回転子およびその製造方法
JP5470851B2 (ja) 径方向空隙型磁石モータ
JP4364487B2 (ja) シ−トからフィルムに至る希土類ボンド磁石とそれを用いた永久磁石型モ−タ
JP2004179378A (ja) 希土類ボンド磁石の製造方法とそれを有する永久磁石型モータ
JP4508019B2 (ja) 異方性ボンドシート磁石およびその製造装置
JP4577026B2 (ja) 自己組織化環状異方性希土類ボンド磁石モータの製造方法
JP4622536B2 (ja) ラジアル磁気異方性磁石モータ
Yamashita et al. Composite Bonded Magnets With Self-Recoverability for Miniaturized Anisotropic Magnet Rotor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980100584.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009539955

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09750367

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107005767

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12680869

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09750367

Country of ref document: EP

Kind code of ref document: A1