WO2007108496A1 - 高耐食性溶融Zn系めっき鋼材 - Google Patents

高耐食性溶融Zn系めっき鋼材 Download PDF

Info

Publication number
WO2007108496A1
WO2007108496A1 PCT/JP2007/055778 JP2007055778W WO2007108496A1 WO 2007108496 A1 WO2007108496 A1 WO 2007108496A1 JP 2007055778 W JP2007055778 W JP 2007055778W WO 2007108496 A1 WO2007108496 A1 WO 2007108496A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
mass
plating layer
corrosion
steel material
Prior art date
Application number
PCT/JP2007/055778
Other languages
English (en)
French (fr)
Inventor
Koichi Nose
Kohei Tokuda
Yuichi Sato
Makoto Nakazawa
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to EP07739221.5A priority Critical patent/EP1997927B1/en
Priority to AU2007228054A priority patent/AU2007228054B2/en
Priority to JP2008506327A priority patent/JP4874328B2/ja
Priority to CA2646554A priority patent/CA2646554C/en
Priority to CN2007800097433A priority patent/CN101405421B/zh
Priority to BRPI0709041-2A priority patent/BRPI0709041B1/pt
Priority to US12/224,967 priority patent/US8663818B2/en
Priority to NZ571099A priority patent/NZ571099A/en
Priority to ES07739221.5T priority patent/ES2601392T3/es
Publication of WO2007108496A1 publication Critical patent/WO2007108496A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/06Alloys containing less than 50% by weight of each constituent containing zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/005Amorphous alloys with Mg as the major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component

Definitions

  • the present invention relates to a highly corrosion-resistant surface-treated steel material, and more particularly, to a highly corrosion-resistant molten Zn-based steel material.
  • Zinc-based steel materials are used in a wide range of fields such as automobiles, home appliances, and building materials.
  • plating with a high adhesion amount is generally effective.
  • zinc with a low corrosion potential has sacrificial anticorrosive ability for steel materials even in places where the steel is exposed. This is because the corrosion resistance effect is obtained by the consumption of zinc, and the effect can be maintained for a longer time as the amount of zinc per unit area increases.
  • the corrosion product of zinc itself has been known to have an effect of suppressing the corrosion of the plating layer and the steel. This effect is also related to the absolute amount of zinc. After all, the more one is desired.
  • the zinc adhesion amount increases, the necessary properties such as workability and weldability of steel materials tend to deteriorate, and if possible, it is required to exhibit high corrosion resistance with a lower adhesion amount.
  • the corrosion resistance of the zinc-based plated steel has a low corrosion rate of the plating layer itself, and also has a sacrificial anti-corrosion function that protects the base iron by sacrificial dissolution of the plating layer when the base iron is exposed. is important.
  • the corrosion rate of the plating layer itself becomes very small, but the sacrificial anticorrosion function is lost, and on the contrary, if the iron is exposed, the iron corrosion is accelerated. Will occur.
  • the concentration distribution of the alloy component in the plating layer is inclined in the thickness direction so that the surface layer has high corrosion resistance, and sacrificial corrosion prevention in the vicinity of the railway
  • the idea of ensuring gender is disclosed. This idea is excellent if it can be realized by an inexpensive method, but in order to give a gradient to the components in the thickness direction of the plating layer, a relatively expensive and inferior productivity method such as deposition plating is used. It must be adopted. It is very difficult to incline the thickness component of the alloy plating by melting adhesion with excellent productivity.
  • Alloying fusion As with Zn plating, it is possible to dip the gradient component by alloying with the base iron, but it is basically possible to control the Fe element and other plating components by alloying with the base iron. Therefore, the obtained corrosion resistance is limited to the range of the slag component containing a large amount of Fe, and sufficient corrosion resistance cannot be expected.
  • Japanese Patent Laid-Open No. 6-346254 discloses that Cr vapor is applied to the undercoat of Zn deposition.
  • a method of reducing the corrosion rate of Zn and maintaining its sacrificial anticorrosive ability for an S period by using a multilayered plated structure with adhesion is disclosed. This is also the method of vapor deposition.
  • Japanese Patent Laid-Open No. 200 1-23436 1 discloses that, in order to suppress corrosion of the underlying Ni layer due to highly corrosion-resistant Au, but not in the Zn-based plating, the underlying Ni layer Disclosed is a method for improving the overall W-eating property by providing a sacrificial anti-corrosion function for the upper layer of the base Ni layer by further providing a layer with the noble Ni layer in the lower layer and the base Ni layer in the upper layer. .
  • a sacrificial anti-corrosion function for the upper layer of the base Ni layer by further providing a layer with the noble Ni layer in the lower layer and the base Ni layer in the upper layer.
  • JP-A-6-346254 and JP-A-200-234361 both share the idea of functionally sharing corrosion resistance and sacrificial anti-corrosion ability by multilayer plating with a layered structure.
  • the technology disclosed in Japanese Patent Laid-Open No. 6-248424 can be said to be a similar idea in that the functions are shared between the upper layer portion and the lower layer portion. In other words, until now, only the idea of sharing two contradictory functions in multiple layers has been available.
  • one of the problems in improving the corrosion resistance of the plating layer by adding alloy components is that the alloy plating generally has poor workability.
  • the more elements, the third element, the fourth element, and the type of element the easier it is to form intermetallic compounds or supersaturated solid solutions with poor ductility, and the workability tends to be further reduced.
  • the component elements added to improve the corrosion resistance also generate intermetallic compounds with different compositions, or when intermetallic compounds with a composition different from the parent phase precipitate in the solid phase of the solid solution.
  • an electrochemical coupling cell of corrosion is formed between different intermetallic compounds or between the matrix and the intermetallic compound, and the corrosion is accelerated.
  • the metal structure of the alloy can be made amorphous, there is no formation of intermetallic compounds, so these harmful effects can be solved and processed with high corrosion resistance. There is a possibility that an alloy-plated steel sheet with excellent properties can be realized.
  • a metal powder containing Mg and Zn has a cooling rate of 100,000.
  • a method for forming an amorphous film is disclosed in which thermal spraying is performed on a base material so as to be at least C / second.
  • a normal amorphous 7 alloy requires a large cooling rate when solidifying from the molten state, and the cooling rate in the temperature region where the solidification from the molten state of the plating is 100 ° C / second or less. It is said that the conventional hot dipping process cannot form an amorphous layer in the plating state. With a manufacturing method called thermal spraying, it is difficult to mass-produce uniform materials at low cost.
  • JP-A-2005-60805 discloses an Fe, Co, Ni-based alloy, but an alloy system that can contain Zn up to 20 at% as a selective additive element, with an amorphous phase of 50% or more in volume fraction
  • a film-like alloy member containing an amorphous phase formed by colliding existing amorphous alloy fine particles on a substrate at high speed is disclosed.
  • This method is also an inefficiency similar to thermal spraying in the production of amorphous alloy fine particles and the formation of a film on a substrate, and cannot be said to be an inexpensive and suitable method for mass production.
  • Zn as a selective additive element to bulk amorphous based on other elements.
  • an Mg-based bulk containing Zn as a selective element up to 30 at% Amorphous alloys and Zr / Hf-based bulk amorphous alloys containing 5 to 15 at.% Of Zn as a selective element as disclosed in JP-A No. 2004-149914 are disclosed.
  • the present invention relates to a zinc-based hot-dip steel material, which has high corrosion resistance of the metal plating layer itself, sacrificial anticorrosion performance of the base iron by the plating layer, or workability without deterioration due to the formation of intermetallic compounds by additive elements.
  • the objective is to provide a highly corrosion-resistant molten zinc-based steel material that achieves both of these requirements.
  • the present inventors have made sacrificial anti-corrosion protection to protect the steel by increasing the corrosion resistance of the plating layer itself by adding elements to the plating layer.
  • Various methods for achieving both performances have been studied, and the cooling rate during plating solidification is slightly higher for a specific component system. We found that plating with a tendency to achieve both of these can be realized.
  • the plating layer itself has high corrosion resistance in the nails that retain the non-equilibrium phase during plating. It was found that both sacrificial anti-corrosion performance to protect the railway can be realized.
  • the present invention has been made on the basis of the above-mentioned findings, and the gist thereof is as follows.
  • the alloy adhesion layer is mas s% and contains Mg: 1 to 60% and M: 0.07 to 59%))-(3) Alloy metal (5)
  • element name% is the content in mass% of the element.
  • the composition further contains, in mass%, one or more selected from Cr, Mn, Fe, Co, Ni, Cu and 0.1 to 10% in total (1
  • the alloy plating layer As a component in the alloy plating layer, it further contains, in mass%, one or more selected from Bi, Mo, W, and Y in a total amount of 0.1 to 10%.
  • the high corrosion-resistant molten Zn-based alloy steel material according to any one of (1).
  • the alloy plating layer contains Al and Mg, and the content of Zn and AK Mg satisfies the following relationships (Formula 6) to (Formula 8): High corrosion resistance molten Zn according to (10) Steel with alloy base.
  • element name% is the content in mass% of the element.
  • the alloy adhesion layer contains mass% and contains at least 0.1 to 10% of Ca, Y, and La in total (10) or (High corrosion-resistant molten Zn-based alloy described in ( ⁇ 1>) Plated steel.
  • the content of A1 in the alloy plating layer is 14 mass% or less.
  • the high corrosion resistance molten Zn-based alloy plating steel material according to any one of (10) to (12).
  • the alloy plating layer contains massrc, Zn: 35 to 60%, Mg: 25 to 60%, C a: 1 to 10%, Al: 0, 07 to 25%, the balance being inevitable impurities (14)
  • a highly corrosion-resistant molten Zn-based alloy characterized by having an alloy plating layer containing 40 mass% or more of Zn and having a volume fraction of 50% or more in the alloy coating layer in the amorphous phase. Steel with steel.
  • the alloy plating layer is mass%, Mg: 1 to 5.5%, Ca: 1 to 45%, Al: 0.07 to 45%, and the total content of Mg and Ca is 5% or more
  • the balance is an inevitable impurity, and the high corrosion resistance molten Zn-based alloy steel according to (16).
  • the alloy plating layer is mass%, Mg: 1 to 25, Ca: 1 to 10%, Al: 0.07 to 25%, and the total content of Mg and Ca is 5% or more.
  • the balance is an inevitable impurity, and the high corrosion resistance molten Zn-based alloy steel according to (16).
  • the alloy plating layer contains, in mass%, Zn: 40-60%, Mg: 34-55%, C a: 1-10%, A1: 0.07-25%, the balance being inevitable impurities (16)
  • the alloy plating layer further contains, in mass%, at least one selected from La: 0.1 to 10%, Sn: 0 to 1 to 10%, P: 0.005 to 2% (14 )
  • La 0.1 to 10%
  • Sn 0 to 1 to 10%
  • P 0.005 to 2%
  • Fig. 1 shows the area for calculating the SC exothermic peak and calorific value due to the nonequilibrium phase.
  • FIG. 2 is a diagram illustrating the composition range of claim 5 in the case of a Zn—Mg—A1 ternary system.
  • the present inventors have made the sacrificial anticorrosion that protects the iron and the corrosion resistance of the plating layer itself in order to maintain a non-equilibrium phase during plating. We found that both performances can be achieved. In particular, the higher the degree of non-equilibrium or the greater the proportion of non-equilibrium phases, the higher the sacrificial anti-corrosion performance that protects the railway while maintaining the high corrosion resistance of the adhesion layer itself due to the alloy composition. Turned out to be.
  • the contribution of the nonequilibrium phase to the sacrificial corrosion protection performance can be summarized by the total calorific value of the heat generated by the nonequilibrium phase in the differential scanning calorimetry (DSC) of the metal alloy when the temperature rises. It has been found.
  • the presence of a nonequilibrium phase is detected by measuring the exothermic reaction by DSC measurement at a temperature below the melting point. Since the nonequilibrium phase is a metastable phase, it is in a state of lower energy than the more stable equilibrium phase, and when changing to the equilibrium phase, the energy difference between the equilibrium phase and the nonequilibrium phase is released as heat generation. On the other hand, the endothermic reaction is detected in DSC for the phase transformation between the equilibrium phase from the low-temperature equilibrium phase to the high-temperature equilibrium phase, and phenomena such as melting.
  • thermogravimetric analysis is measured simultaneously with or in parallel with DSC. If there is no change in mass at the temperature at which DSC exothermic reaction occurs, if there is an exothermic or mass increase due to a nonequilibrium phase, oxidation reaction It can be distinguished from the heat generated by the reaction. If there is a decrease in mass, there is a possibility of oxidative decomposition, but no oxidative decomposition reaction occurs in alloys within the scope of the present invention.
  • the amount of the non-equilibrium phase is the same, the greater the degree of non-equilibrium, the greater the calorific value. If the phase is the same, the volume fraction of the non-equilibrium phase in the whole increases. Since the calorific value increases, the two can be collectively expressed as the DSC calorific value when the temperature is raised.
  • the exothermic reaction is measured as an exothermic peak in DSC measurement, and the calorific value can be quantitatively calculated by integrating the area of the peak.
  • the peak of DSC as a method of detecting the nonequilibrium phase according to the present invention is that the single peak is a DSC measurement with a half-value width of 30 ° C or less and 0.5 ° C / sec in temperature units. In the measurement time unit, the half width is a peak within 60 seconds.
  • the DSC value may change slowly with undulations at the background level, and when this is peaked and integrated over a long time or wide temperature range, a large calorific value is calculated. This is because it may become.
  • the apparent calorific value calculated over a wide integration range is different from the calorific value due to the non-equilibrium phase, which is the gist of the present invention, and is excluded.
  • the total integrated value of each is the calorific value. This is because when an amorphous layer is formed, peaks corresponding to structural relaxation of the amorphous phase, generation of crystal nuclei, and crystal grain growth may be separated during crystallization. If these peaks cannot be separated completely and appear to be complex peaks, integrate over the complex peaks. In the case of a composite peak, the full width at half maximum may exceed 30 ° C in temperature units. Since the centers of the peaks are separated from each other to some extent, a plurality of inflection points are generated in the composite peak, and a plurality of maximum peaks appear in the shape of a knob.
  • DSC C DSC value curve
  • Figure 1 shows the DSC data graph and the part that calculates the calorific value.
  • '1 indicates the exothermic peak due to the nonequilibrium phase
  • 2 indicates the area for determining the calorific value from the exothermic peak due to the nonequilibrium phase
  • ' 3 indicates the endothermic peak of the melting point. is there.
  • This calculation is based on a commercially available DSC measurement device equipped with a computer in recent years, such as the EXSTAR6000 series manufactured by XS Nano Technology Co., Ltd., before and after the data area including the peak to be calculated. It is possible to calculate automatically only by specifying the boundary. '
  • the high corrosion resistance of the plating layer itself is maintained in the plating containing a non-equilibrium phase in which the calorific value is 1 J / g or more by DSC with a heating rate of 0.5 ° C / sec.
  • the calorific value is 1 J / g or more by DSC with a heating rate of 0.5 ° C / sec.
  • DSC calorific value the calorific value due to the non-equilibrium phase
  • the sacrificial corrosion resistance is increased by the DSC calorific value, so that the DSC calorific value is 2 J / g or more. More preferred.
  • the DSC calorific value is at most about 0.1 l J / g and melted to be close to ⁇ ⁇ / g. There was no meditation.
  • the reason for increasing the cooling rate is to increase the production rate, to refine the crystal grains of the plating layer, or to improve the properties of the steel plate used as the substrate
  • the cooling rate required for them is at most about 10 2 ° C / s, and it is considered that a sufficiently high non-equilibrium plate could not be produced in the conventional melt-bonded component range. It is done.
  • the galvanized layer may be mechanically scraped and a sample taken. At that time, steel rod shavings that are inevitably mixed can be removed with a magnet. Also, processing that causes excessive heat generation in the sample Note that the heat may cause a change from the nonequilibrium phase to the equilibrium phase, so care must be taken. Specifically, when grinding continuously with an end mill or the like, it is desirable not to chemically react with the plating metal ⁇ it is desirable to collect samples while cooling with a non-aqueous solvent such as kerosene. If the heat is generated to the extent that it is scraped off manually using a tool such as a knife or scissors, the state of the alloy will be affected and cooling will not be necessary.
  • the Zn concentration must be 35 mass% or more. Further, if the Zn concentration is less than 40 mass%, it is difficult to ensure sufficient sacrificial anticorrosion performance with Zn alone. Therefore, it is more preferable that the Zn concentration is 40 mass% or more.
  • Mg and A1 are preferable as alloy elements to be added to obtain a highly corrosion-resistant plating layer. Both Mg and A1 improve the corrosion resistance of the Zn-based alloy plating layer itself, stabilize the basic zinc chloride, a Zn-based corrosion product that has a high ability to protect the underlying steel plate even after corrosion of the plating layer, and Contributes to improved corrosion resistance. The addition of Mg is also effective for the generation of non-equilibrium phases.
  • Mg is less than lmas s%, the effect of forming a non-equilibrium phase is not sufficient, and if it exceeds 60 ma s s%, it becomes too active and the corrosion resistance of the plating layer itself deteriorates. Even if it is less than 60mass%, if the amount of Mg exceeds 45mass%, as the added amount increases, there is no effect of improving corrosion resistance, and dross due to Mg tends to increase. From the viewpoint, it is more desirable to be 45 mass% or less.
  • a 1 is also added from the viewpoint of securing the adhesion of the plating layer, and its effect is less if it is less than 0.07 mass s%.
  • the composition has a mating composition that generates a non-equilibrium phase with slow cooling, and even if it is considered to be equipped with submerged water cooling or gas cooling equipment using supercooling gas, It is desirable to be able to generate a nonequilibrium phase at a cooling rate of less than 10 4 / sec. Considering the stability and economic efficiency of the equipment, it is more desirable if it can be produced at 10 3 ° C / sec or less, and most desirably, it can be produced at 10 2 ° C / s.ec or less. It can be manufactured with little change to the process.
  • the cooling rate at which the adhesive layer actually progresses during the solidification process varies depending not only on the cooling method but also on the thickness of the steel to be cooled and the thickness of the adhesive.
  • the cooling of the eye takes heat from the outer surface, so the closer to the surface, the higher the cooling rate. Therefore, the cooling rate of the plating layer is different from the average cooling rate of steel. Therefore, even if an alloy plating layer with the same ease of forming a non-equilibrium phase is cooled by the same cooling method, the alloy The proportion of nonequilibrium phase in the plating layer varies with the thickness of the plating. In other words, the surface layer has a higher cooling rate, so a non-equilibrium phase is likely to be generated, and the thinner the plating, the higher the proportion of the surface layer, so the proportion of the non-equilibrium phase also increases. Since it is low, the proportion of nonequilibrium phase is also small.
  • the plating thickness is Must be very thin.
  • an alloy composition where it is difficult to form a slightly non-equilibrium phase for example, if cooling is performed with an ultra-low temperature gas of -150 ° C using a gas immediately after evaporation of liquid nitrogen, plating is performed. In some cases, even if the thickness is greater, a non-equilibrium phase with a calorific value of 1 J / g or more can be obtained with DSC.
  • the plated steel material of the present invention is manufactured by the soaking method that increases the plating thickness, at least water cooling is essential, and depending on the components, special cooling such as immersion in liquid nitrogen is required.
  • FIG. 2 shows the composition range of a simple ternary component system of Zn-A ⁇ Mg.
  • the inside of the hatched polygon in Fig. 2 is the component range.
  • 8 shows the composition range of claim 5 (in the case of Zn-Mg-A1 ternary system).
  • a total of one or more selected from Cr, Mn, Fe, Co, Ni and Cu is 0.1. It is possible to contain 10 mass%. The addition of these elements improves the adhesion to mainly steel materials. If it is less than 0. lmass%, the effect is small, and if it exceeds 10 mass%, the melting point of the plating bath is excessively increased, which may make the production difficult.
  • an additive element it is possible to contain 0.1 to 10 mass% in total of one or more selected from Bi, Mo, W, and Y.
  • the addition of these elements has the effect of making it easier to form a non-equilibrium phase, in addition to the ability to improve the adhesion to mainly steel materials. If the content is less than 0. lmass%, the effect is small, and if it exceeds 10 mass%, the melting point of the plating bath is excessively increased or dross is increased, which may make the production difficult.
  • Y also has the effect of improving corrosion resistance.
  • La 0.1 to 10%
  • Ce 0.1 to One or more of 10%
  • Ca 0.1 to 10%
  • Sn 0.1 to 10%
  • P 0.005 to 2%
  • Si 0.02 to 7%
  • the addition of these elements not only improves the ductility of the plating containing the non-equilibrium phase and increases the workability, but also has the effect of facilitating the formation of the non-equilibrium phase. If the added amount is less than the lower limit, the effect is small, and if the upper limit is exceeded, the corrosion resistance may be deteriorated.
  • the present inventors are further developing and developing a plating type including a non-equilibrium phase.
  • the content of the amorphous phase which is a typical non-equilibrium phase, indicates that It has been found that there are seed species that significantly improve the effect.
  • the non-equilibrium species having an amorphous volume fraction of 5% or more is markedly more than the amorphous volume fraction of less than 5%. They found that the sacrificial anticorrosion performance was improved.
  • the corrosion rate of the sacrificial melt increases more than when sacrificial protection is not applied.
  • the steel material of the present invention which has a non-equilibrium phase, has the excellent property of maintaining the sacrificial anticorrosive ability while improving the corrosion resistance of the plating. There is a slight increase in the corrosion rate compared to the state where the bare iron is not corroded alone. This increase in the corrosion rate due to sacrificial corrosion protection is further suppressed when the amorphous phase is present in an amount of 5% or more compared to the case where the amorphous phase is less than 5%.
  • the concentration of A1 is preferably 14 mass s% or less because the sacrificial anticorrosive ability itself is better.
  • the plating layer must contain at least one of Ca, Y and La in a total mass of 0.1 to 10%. This has the effect of improving the sacrificial anticorrosive ability itself. 0. Addition of lm as s% or less does not reveal this effect. If it exceeds 10 mass s%, productivity deteriorates due to dross generation or melting point increase.
  • Amorphous plating is a type of non-equilibrium phase because amorphous is a typical type of non-equilibrium phase.
  • the calorific value in DSC is proportional to the volume fraction of amorphous material, but there are some fluctuations even with the volume fraction of the same amorphous phase depending on the combination of elements.
  • it contains an amorphous phase with a volume fraction of 5 or more.
  • the plating always showed a calorific value of lJ / g or more by DSC.
  • Zn is less than 35 mass%, the effect of suppressing corrosion of steel due to the corrosion product of Zn cannot be obtained. If Zn is less than 40nias s%, the sacrificial anticorrosive ability necessary for the plated steel material may be insufficient, or the corrosion resistance of the plating itself may be insufficient. Therefore, it is desirable that Zn is contained in an amount of 40 mass or more. . It is more desirable if the Zn concentration is 50111 & 33% or more. If the volume fraction of Amorphous is less than 50%, there is a possibility that the workability deterioration caused by the crystal phase and the adverse effect on the corrosion resistance caused by the electrochemical coupling between the crystal phases may not be covered. The higher the volume fraction of amorphous, the better, and 90% or more eliminates the adverse effects of the crystal phase, which is particularly desirable.
  • Amorphous alloy containing 0.07 to 45 niass% of A1 as an alloy component Plating is the minimum for melting adhesion by forming an A ⁇ Fe alloy or an A ⁇ Fe-X alloy at the interface with the base metal. It is desirable to ensure the adhesion of plating and to form a relatively stable oxide film on the surface of the plating bath, so that the generation of dross can be secured. If it is less than 0.07 mass%, the effect is difficult to appear.
  • A1 has a tendency to slightly inhibit the amorphous forming ability in a Zn-based alloy, so if it exceeds 45 mass%, sufficient amorphous forming ability that can be produced by the fusion bonding method cannot be obtained. The upper limit is 45 mass%. More desirable is 25] ⁇ 33% or less.
  • Mg improves the amorphous forming ability of the Zn-based alloy and contributes to corrosion resistance
  • 25 niass% or less is desirable. If it is 25 mass% or less, dross generation is further suppressed and operability is improved.
  • the Mg content is preferably 25-60 mass%.
  • the amorphous forming ability is high, and it can be manufactured even at a low cooling rate. Rate is obtained. Even within this range of ingredients, more desirably, when the Mg content is 34 to 55 mass%, Zn is 40 to 60 mass%, and Ca is 1 to 10 mass%, the amorphous forming ability is low and the productivity is improved. Therefore, it is preferable.
  • Ca also improves the amorphous forming ability of the Zn-based alloy and contributes to corrosion resistance
  • the total content of Mg and Ca be 5 mass% or more in order to ensure the minimum amorphous forming ability for manufacturing as hot-dip plating.
  • the total addition amount of Mg and Ca is preferably higher to some extent from the viewpoint of amorphous forming ability. However, since both are active elements, if corrosion resistance is important, it is desirable that the total addition amount is 60 mass% or less. That's right. More preferably, the total is 35 mass% or less.
  • the additive element it is possible to further contain 0.1 to 10 mass% in total of one or more selected from Cr, Mn, Fe, Co, Ni and Cu.
  • the addition of these elements mainly improves the adhesion to the steel material. If it is less than 0. lmass%, it is difficult to produce the effect, and if it exceeds 10 mass%, the melting point of the bath is too high and the production may be difficult.
  • additive component it is possible to further contain 0.1 to 10 mass% in total of one or more selected from Bi, Mo, W, Si, Ti, V, and Ag. While these elements improve the ability to form amorphous materials, This has the combined effect of improving the adhesion to steel. If it is less than 0. lmas s%, it is difficult to produce the effect, and if it exceeds 10 mass%, the melting point of the tan bath may be excessively increased, or dross generation may be large, which may make the production difficult.
  • La 0.1 to 10 mass%
  • Sn 0.1 to 10 mass%
  • P 0.005 to 2 mass%
  • the addition of these elements can improve the ductility of the amorphous phase, further increase the workability, and improve the amorphous forming ability. If the added amount is less than the lower limit, the effect is hardly exhibited. If the added amount exceeds the upper limit, the corrosion resistance may be deteriorated.
  • the high corrosion resistance molten Zn-based plated steel material of the present invention only needs to have the above-mentioned alloy plated layer on the surface of the steel material where the high corrosion resistance is required, and the plated layer on the entire surface of the steel material. It is not always necessary to exist.
  • the highly corrosion-resistant molten Zn-based steel material of the present invention can also be used as a base steel material for a surface-treated steel material used by painting. In that case, it is possible to satisfactorily suppress the development of corrosion bulge when scratches that reach the base iron occur after painting, or because of the feature that the plating layer has few cracks even after machining, The corrosion resistance of the part is particularly improved.
  • the material of the steel material as the base material of the steel material of the present invention is not particularly limited, and A1 killed steel, extremely low carbon steel, high carbon steel, various high strength steels, Ni, Cr containing steel, and the like can be used. There are no particular restrictions on pre-processing of steel materials such as steel making methods, steel strength, hot rolling methods, pickling methods, and cold rolling methods.
  • this technology can be applied to all hot-dip plating methods regardless of the manufacturing method such as Sendzimir type, flux eve or pre-plating type.
  • the cooling required for solidification of the plated alloy is required.
  • the steel composition of the present invention it is necessary to reduce the plating thickness in order to obtain an amorphous material having a volume fraction of 50% or more with respect to the alloy composition having a slightly low amorphous forming ability.
  • the normal cooling method has a higher cooling rate as it is closer to the surface, and the thinner the plating thickness, the larger the surface volume fraction.
  • even in the case of plating with such an alloy composition with a slightly low amorphous forming ability for example, 'use gas immediately after evaporation of liquid nitrogen-cool with 150 ° C ultra-low temperature gas or apply mist cooling In this way, an amorphous material with a volume fraction of 50% or more can be obtained even if the plating sag is thicker.
  • the volume fraction of amorphous material can be measured by slicing, polishing and etching the cross section of the plated steel material and observing the surface plating layer with an optical microscope (hereinafter abbreviated as “light microscope”).
  • light microscope an optical microscope
  • the amorphous part no structure is observed even by etching, but in the remaining part of the crystal phase, the structure caused by crystal grain boundaries, sub-grain boundaries, precipitates, etc. is observed. It is.
  • the regions of the amorphous part and the crystal part are clearly distinguished from each other, and can be converted into a volume ratio by a line segment method or image analysis.
  • the same measurement can be performed by preparing a thin piece from the cross section of the eye layer and observing it with a transmission electron microscope.
  • a transmission electron microscope it is also possible to confirm the amorphous structure by the halo pattern of the electron diffraction pattern in the region where the tissue is not observed. If the structure is not observed on the entire surface or if there is a part of the structure that is not observed in the light microscope, if there is a suspicion that the crystal grains are coarse and have no distortion, an additional thin section for electron microscopy should be collected.
  • phase is an amorphous phase by observing a halo pattern without a diffraction spot in the electron diffraction pattern.
  • area ratio by computer-based image processing for 10 or more different fields of view and average them to obtain the volume ratio.
  • the cold-rolled steel sheet was cut into l Ocm ⁇ 10 cm, and then plated with a batch type hot dipping test equipment manufactured by Lesiki.
  • the temperature of the plating bath was unified to the melting point of the plating composition + 50 ° C according to the plating composition. Adjusting the basis weight by air wiping, cooling at 25 ° C nitrogen gas, 25 ° C mist cooling, and -150 ° C low temperature nitrogen gas cooling as necessary to adjust the cooling rate
  • the angle steel is 10cm in the longitudinal direction, and the hot-rolled steel sheet is lOcm x 10cm square. After cutting, using a crucible furnace, they were dip-dipped by the flux method. Water cooling and liquid nitrogen cooling were performed as necessary.
  • the above-mentioned plating test piece was used for each evaluation test described below.
  • a non-equilibrium phase with a DSC heating value of 'l J / g or more can be obtained. Judged as 'necessary cold speed'.
  • nitrogen gas cooling is 25 g / m 2 or less
  • mist cooling is 35 g / ra 2 or less
  • ultra-low temperature nitrogen gas cooling using evaporated gas from liquid nitrogen is 60 g / m 2 or less.
  • a combination of the cooling method and plating thickness that has obtained a non-equilibrium phase of DSC calorific value of 1 to 2 J / g is “required cooling rate: ⁇ ”.
  • the DSC calorific value is 2 J / g.
  • a non-equilibrium phase with a DSC calorific value of 1 J / g or more with a thickness greater than or equal to this condition was defined as “required cooling rate: ⁇ ”.
  • DSC calorific value; less than i / g was designated as “Necessary cooling speed: X”.
  • the thickness of each plating is measured by the mass loss due to acid dissolution of the plating layer, and the alloy composition during plating is measured by ICP (inductively coupled plasma emission) spectroscopy of the solution obtained by acid dissolution of the plating layer. Quantified by analysis.
  • the plating layer was mechanically polished including the ground metal, and the ground powder was removed with a magnet.
  • the DSC curve from room temperature to the melting point was measured with, and the calorific value was calculated from the area of the exothermic peak.
  • the evaluation surface of the sample was a rectangle of 50 mm x 70 mm, and the other parts were protected with a tape seal.
  • a lnun X 50mm rectangular part at the center of the evaluation surface was ground 0.5 mm from the surface with an end mill to expose the ground iron. End milling was performed while cooling the machined part so that the non-equilibrium phase in the adhesive layer around the machined part did not change into an equilibrium phase.
  • CCT conditions used were: [Salt spray; 35 ° C, 5g / L-NaCl aqueous solution, 2 hours] — [Dry; 60 ° C, 20-30% M, 4 hours] — [Wet; 50 ° C, 95% M, 2 hours] (The transition time between each condition is 30 minutes and is included in each condition.) The above 8 hours is one cycle, and the test period is 21 cycles.
  • CR1 is the weight loss of corrosion in the sample with the exposed surface size of 1 X 50 mm
  • CR2 is the weight loss of corrosion in the “Sacrificial corrosion protection test piece”
  • CR2 is divided by CR1 (CR2 / CR 1) was evaluated as the ability to suppress corrosion acceleration by sacrificial protection.
  • CR2 / CR1 If the value of CR2 / CR1 is 1.05 or less, it is indicated by “ ⁇ ”, 1.05 is exceeded, 1.15 or less is indicated by “ ⁇ ”, and those exceeding 1.15 are indicated by “mouth”. In the first place, those with inferior sacrificial protection were excluded.
  • the cold-rolled steel sheet was subjected to a 180 ° bending with the plating layer of the plating test piece facing outward, a so-called 0T adhesion bending test, and then the peeling portion of the plating layer was peeled with an adhesive tape.
  • “X” means that the number of peeled pieces exceeds 0.1 dragon or more than 6 pieces of 0.1 mm or less.
  • means no peeling, and even if there is peeling, there are no peeling pieces exceeding the maximum length of 0.1 mm in the square area of 10 mm x 10 mm, and five peeling pieces with a maximum length of 0.1 dragon or less.
  • the following items were marked as “ ⁇ ”, and similarly, “X” when the number of peeling pieces exceeding 0.1 lmm or more, or more than 0.1 peeling pieces.
  • the workability of the plated layer is determined by the fact that the plated layer is not cracked in the 180 ° bending test.
  • the maximum inscribed circle diameter that was not possible was evaluated.
  • the unit of the inscribed circle diameter is the plate thickness T
  • the maximum inscribed circle diameter without cracks is ⁇ , that is, the one that does not show cracks even with close contact bending, ⁇ ⁇ ''
  • the maximum inscribed circle diameter is 1 mm ⁇ .
  • the thing of 3 ⁇ was designated as “ ⁇ ”, and the case of 4 and above was designated as “X”.
  • equilateral mountain-shaped steel and hot-rolled steel it is not a material that needs to be evaluated.
  • Table 3 shows the sacrificial anticorrosion performance under accelerated conditions (accelerated sacrificial anticorrosive ability) and corrosion during sacrificial anticorrosion using the above-mentioned amorphous volume fraction in the plating layer and the “Sacrificial anticorrosion accelerated test piece”.
  • the suppression ability (CR2 / CR1) of promotion was shown.
  • Refuse gas (-150 ° C nitrogen)
  • D Water cooling
  • E Liquid nitrogen cooling
  • F Cooling
  • the steel material of the present invention has corrosion resistance.
  • the steel material of the present invention containing 1 to 55 mass% Mg and 0.07 to 45 mass% Al is further superior in terms of corrosion resistance.
  • the balance steel of the present invention can be manufactured by cooling using mist cooling because the cooling rate required for manufacturing is small.
  • those containing one or more selected from Cr, Mn, Fe, Co, Ni, and Cu have particularly improved adhesion, and one or two selected from La, Ce, Ca, Sn, and P.
  • those containing more than seeds improved the processability.
  • the sacrificial anticorrosive ability may be slightly inferior, but the sacrificial anticorrosive ability with Mg or A 1 is sufficient.
  • B i, Mo, W, and Y contain both adhesion and required cold speed. It is excellent at the same time.
  • the DSC calorific value is less than l J / g due to the non-equilibrium phase, it is not a component of the plated steel material of the present invention, or it is sacrificed even if the corrosion resistance of the plating layer itself is good. Insufficient anti-corrosion ability, and red coral had an area ratio of 5% or more in the exposed area of the railway.
  • the steel material of the present invention having an amorphous volume fraction of 5% or more suppresses corrosion promotion at the time of sacrificial protection more than the other steel types, and the effects are as follows. ) was more prominent in the component range specified in (1). Further, the steel material of the present invention with A1 of 14 mass% or less was superior in sacrificial anticorrosive ability compared to the steel of the present invention that was not.
  • Table 4 and Table 5 are made of cold-rolled steel sheets with a thickness of 0.8 mm, equilateral angle steel with a thickness of 10 mm and a side length of 10 cm, and a thickness of 10 mm hot-rolled steel sheet was used as a base material.
  • the cold-rolled steel sheet was cut into lOcmX I Ocm, and then plated with a batch-type melt-mesh test device manufactured by Lesiki.
  • the temperature of the plating bath was unified to the melting point of the plating composition, which is about 50 ° C, depending on the plating composition.
  • the basis weight was adjusted by air wiping, and the cooling rate was adjusted as necessary by applying nitrogen gas cooling at 25 ° C, mist cooling at 25 ° C, and low-temperature nitrogen gas cooling at -150 ° C.
  • the equilateral angle steel was cut to 10 cni in the longitudinal direction and the hot-rolled steel sheet was cut into a square of l Ocm x 10 cm and subjected to the soaking by the flux method using a crucible furnace. Water cooling and liquid nitrogen cooling were performed as necessary.
  • the plating test piece was subjected to each evaluation test described below.
  • the required critical cooling rate which shows the ability to form an amorphous material
  • it is not necessarily the same as the cooling rate of the bulk material of steel because it is the plating layer on the steel surface that forms amorphous. Therefore, cooling method and plating adhesion amount And the amorphous volume fraction at that time.
  • the amorphous forming ability is slightly low.
  • nitrogen gas cooling is 25 g / m 2 or less
  • mist cooling is 35 g / m 2 or less.
  • X indicates that the dross is large and difficult to fix
  • R indicates that the amount of dross is relatively large
  • indicates that dross is possible.
  • 0 indicates that the plating is easy to manufacture
  • indicates that the plating surface is very easy to manufacture and has a relatively good surface property.
  • the adhesion amount of each plating was measured by the mass loss due to acid dissolution of the plating layer, and the alloy components during plating were quantified by ICP (inductively coupled plasma emission) spectroscopic analysis of the solution in which the plating layer was acid-dissolved.
  • the amorphous volume fraction of the plating layer is the thickness of the plating layer of the test piece.
  • Two pieces of transmission electron microscope slices were sampled at five equal positions, and the area ratio of the amorphous region in each field of view was measured by image analysis using a computer. The average value of the rate was defined as the Amorpha volume fraction.
  • the corrosion test was based on the salt spray test (S ST) described in JI SZ-2371, except that the corrosion weight loss after a 3000 hour test with a salt water concentration of 10 g / L was evaluated. Less than 2 g / m 2 '" ⁇ ", the 2 ⁇ 5 g / m 2 " ⁇ ", the 5 ⁇ 10g / m 2 "mouth”, was what was beyond the 10 g / m 2 and the "X" .
  • Plating adhesion is determined by cold-rolled steel sheet, after performing a so-called 0 ° adhesion bending test with the adhesive layer of the plating specimen facing outward, so-called 0 mm adhesion bending test. A peel test was performed. No flaking " ⁇ ", even if there is flaking, the length of the bent portion l The maximum length around Onun exceeds 0.1 mm. There are no flaking pieces, and the maximum length is 0.5.
  • the workability of the plating layer was evaluated by the maximum inscribed circle diameter in which no crack was observed in the plating layer in the 180 ° bending test.
  • the unit of the inscribed circle diameter is the plate thickness T
  • the maximum inscribed circle diameter without cracks is 0T, that is, the one that does not show cracks even with close contact bending is ⁇ ⁇ ''
  • the maximum inscribed circle diameter is 1T.
  • the thing is “ ⁇ ”, the thing between 2 and 3 ⁇ is“ ⁇ ”, and the thing more than 4 ⁇ is “X”. Mt.
  • the shape steel and hot-rolled steel sheet it was not carried out because it was not a material required for the evaluation, and “1” was indicated.
  • Rejected gas (-150 ° C nitrogen)
  • D Water cooling
  • E Liquid nitrogen cooling
  • the steel of the present invention is resistant to corrosion. Excellent performance in terms of plating adhesion, workability, and dross generation.
  • the steel of the present invention containing 1 to 55 mass% Mg, 1 to 45 mass% Ca, and 0.07 to 45 uiass A1 while the total content of Mg and Ca is 5 mass% or more.
  • those having Mg of 1 to 25 mass%, Ca of 1 to 10 mass%, and A1 of 0.07 to 25 mass% were further excellent in corrosion resistance.
  • Mg is specified in the range of 25-60mass%, among them 34-55mass%, Ca is 1-10mass%, A1 is 0.07-25mass%, in the present invention 'steel material, the corrosion resistance is the same
  • an inexpensive cooling device that has a particularly high amorphous forming ability.
  • those containing one or more selected from Cr, Mn, Fe, Co, Ni and Cu have particularly improved adhesion, and one or more selected from La, Sn and P
  • processability was improved for those containing.
  • those containing one or more selected from Bi, Mo, W, Si, Ti, V, Ag, and Y have improved both adhesion and amorphous forming ability.
  • the comparative steel with a small amorphous volume fraction which is not within the component range of the plated steel material of the present invention, has insufficient corrosion resistance or good corrosion resistance, but has insufficient workability.
  • the highly corrosion-resistant molten Zn-based steel material of the present invention can be produced by a conventional fusion-bonding process, and is excellent in sacrificial anticorrosion ability while having high corrosion resistance.
  • the steel material of the present invention containing an amorphous phase is superior in corrosion resistance and workability to crystalline melting adhesion. This can be widely applied to automobiles, buildings, houses, etc., while maintaining the same manufacturability as before, improving the life of components and effectively using resources. It contributes greatly to reducing environmental impact, maintenance labor and cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Coating With Molten Metal (AREA)

Abstract

本発明は、Zn系溶融めっき鋼材において、添加元素によるめっき層自体の高耐食化と、めっき層による地鉄の犠牲防食性能あるいは添加元素による金属間化合物の形成を原因とする劣化の無い加工性を両立する、高耐食性溶融Zn系めっき鋼材を提供するもので、Zn:35mass%以上、望ましくは40mass%以上含有する合金めっき層が、示差走査熱量測定による発熱量が1J/g以上となる非平衡相を含有することを特徴とする高耐食性溶融Zn系合金めっき鋼材である。さらに、体積分率で5%以上、望ましくは50%以上がアモルファス相であることが望ましい。合金層に、mass%で、Mg:1~60%、Al:0.07~59%含有し、さらに、Cr、Mn、Fe、Co、Ni、Cuから選ばれる1種ないし2種以上を合計で0.1~10%、また、0.1~10%のLa、0.1~10%のCe、0.1~10%のCa、0.1~10%のSn、0.005~2%のP、0.02~7%のSiの1種以上を含有しても良い。

Description

高耐食性溶融 Zn系めつき鋼材
技術分野
本発明は、 高耐食性表面処理鋼材に関し、 特に、 高耐食性の溶融 Zn系めつき鋼材に関する。 明
背景技術
亜鉛系めつき鋼材は、 自動車、 家電、 建材等、 幅広い分野で使用 書
されているが、 長期間の防鯖効果を確保する目的からは、 一般に、 高付着量のめっきが有効である。 それは、 亜鉛めつきが、 それ自体 腐食速度が鋼材に対して遅いことに加えて、 地鉄が露出した場所で も、 腐食電位の低い亜鉛が鋼材に対して犠牲防食能を有し、 これら による耐食効果は亜鉛の消費によって得られるために、 単位面積当 たりの亜鉛量が多い程、 長い間効果を保持できるからである。 近年 、 亜鉛の腐食生成物自体にも、 めっき層や地鉄の腐食を抑制する効 果があることが知られてぎている力 s、 この効果も、 亜鉛の絶対量に 関係するため、 亜鉛量はやはり多い方が望まれる。 一方、 亜鉛付着 量が多くなると、 鋼材の加工性、 溶接性等の必要特性においては劣 化する傾向にあり、 可能で有れば、 より低付着量で高耐食性を発揮 することが求められる。
低付着量のめっきで十分な耐食性を与えるために、 合金元素を添 加することで亜鉛めつきの耐食性を高めることが多く試みられ、 実 際に Zn_N i系合金めつき、 Zn-F e系合金めつき等は自動車用鋼板を中 心に広く使用されているし、 Zn- A 1系合金めつきも建材を中心に広 く使われている。 特に、 Zn-A l系合金めつきにおいては、 さらなる 耐食性の向上のために Mgや S ίを添加した鋼材も開発されている。 ところが、 合金成分の添加により、 めっき層の耐食性を向上させ ていく と、 合金成分の種類と腐食環境の組み合わせによっては、 め つき層が不動態化してしまう場合がある。 前述の通り、 Zn系めつき 鋼材における耐食性においては、 めっき層自体の腐食速度が小さい ことと共に、 地鉄が露出した際に、 めっき層の犠牲溶解により地鉄 を保護すると言う犠牲防食の機能も重要である。 めっき層が不動態 化すると、 めっき層自体の腐食速度は非常に小さくなるが、 犠牲防 食の機能がなくなってしまい、 それどころか逆に、 地鉄が露出する と、 地鉄の腐食が促進してしまう現象が生じる。
このよう.な、 めっき層自体の高耐食性化と、 地鉄が露出した際の 犠牲防食能の確保と言う、 背反する機能の両立を解決する方法は、 これまでの特許文献でもあまり開示がない。
例えば、 特開平 6- 248424号公報には、 Zn- Mg合金めつきに関して 、 めっき層中での合金成分の濃度分布を厚み方向で傾斜させて、 表 層では高耐食性、 地鉄近傍では犠牲防食性を確保する、 と言うアイ デァが、 開示されている。 このアイデアは、 廉価な方法で実現でき れば秀逸であるが、 めっき層の厚み方向の成分に傾斜を持たせるた めに、 蒸着めつき等の、 比較的高価で、 生産性に劣る方法を採用せ ざるを得ない。 生産性に優れた、 溶融めつきによって、 合金めつき の厚み方向の成分を傾斜させることは非常に困難である。 合金化溶 融 Znめっきのように、 地鉄との合金化による傾斜成分めつきは可能 であるが、 地鉄との合金化によって制御可能なのは、 基本的に Fe元 素とその他めつき成分との比率になるので、 得られる耐食性は、 Fe を多く含有するめつき成分の範囲に留まり、 十分な高耐食性は望め ない。
また、 特開平 6- 346254号公報に、 Znの蒸着めつきの下地に C rの蒸 着めつきを施した複層めっき構造により、 Znの腐食速度を減少させ 、 その犠牲防食能を S期間保持する方法が開示されている。 これも 、 蒸着めつきでの方法である。
特開 200 1- 23436 1号公報には、 Zn系めつきではないが、 N i - Au複層 めっきにおいて、 高耐食の Auによる下地 N i層の腐食を抑制するため に、 下地の N i層をさらに、 貴な N i層を下層に、 卑な N i層を上層に設 けて上層の卑な N i層の犠牲防食機能により全体の W食性を向上させ る方法が開示されている。 このアイデアを溶融 Zn系合金めつきに流 用するには、 やはり、 複層構造化する必要があり、 製造コス トの大 幅な上昇が避けられない。
上述した特開平 6-346254号公報および特開 200卜 23436 1号公報に 開.示された技術は共に、 層状構造を持つ複層めっきにより耐食性と 犠牲防食能を機能分担する、 と言うアイデアであり、 上層部分と下 層部分で機能分担する、 と言う点では、 特開平 6- 248424号公報に開 示された技術も同様なアイデアと言える。 つまり、 これまでは、 背 反する二つの機能を、 複層に分担させる、 というアイデアしかなか つたのである。
さらに、 合金成分の添加により、 めっき層の耐食性を向上させる 場合の問題の一つに、 合金めつきは一般に加工性に乏しいと言う欠 点もある。 特に、 第 3元素、 第 4元素と、 元素の.種類を多く添加する ほど、 延性に乏しい金属間化合物や過飽和固溶体等を形成し'易くな り、 加工性はさらに乏しくなる傾向がある。
また、 耐食性向上のために添加した成分元素も、 組成の異なる金 属間化合物を生成したり、 固溶体の母相中に母相と異なる組成の金 属間化合物が析出したりした状態では、 組成の異なる金属間化合物 同士や、 母相と金属間化合物との間で腐食の電気化学的なカツプリ ングセルを形成して、 逆に腐食が促進されてしまう場合もある。 ^ これら金属間化合物の生成等に起因する弊害に対し、 合金めつき の金属組織をアモルファスにすることができれば、 金属間化合物の 生成がないために、 これらの弊害が解決でき、 高耐食で加工性に優 れた合金めつき鋼板を実現できる可能性がある。
しかし、 通常、 アモルファス金属の製造には、 アモルファスの生 成に必要な冷却速度が非常に大きいという問題がある。
例えば、 特開 2005- 126795号公報には、 Mgと Znを成分とする金属 粉末を冷却速度が 10万。 C /秒以上となるよう母材上に溶射する、 ァ モルファス被膜の形成方法が開示されている。
このように、 通常のァモルフ 7ス合金では、 溶融状態から凝固す る際に、 大きな冷却速度が必要であり、 めっきの溶融状態から凝固 する温度領域での冷却速度が 100°C /秒以下と言われる、 従来の溶融 めっきプロセスでは、 めっきの状態でアモルファスを形成させるこ とはできない。 溶射と言う製造方法では、 均一な材料を廉価に大量 生産することは困難である。
特開' 2005- 60805号公報には、 Fe、 Co、 N i基合金ではあるが、 選択 添加元素として Znを 20a t%まで含有可能な合金系で、 アモルファス 相が体積分率で 50%以上存在するァモルファス合金微粒子を基板上 に高速で衝突させて形成させた、 アモルファス相を含有する膜状の 合金部材が開示されている。 この方法も、 ァモ.ルファス合金微粒子 の製造、 基板上への皮膜形成方法において、 溶射と同様の非効率性 があり、 廉価で大量生産に向いた方法とは言えない。
この冷却速度の問題に対しては、 近年、 小さな冷却速度でもァモ ルファスにすることができる合金組成が発見され、 精力的に研究が 行われている。 そう した、 小さな冷却速度で凝固させてもァモルフ ァスにすることができる合金は、 その冷却速度の小ささ故に、 比較 的大きなサイズの合金でもアモルファスにすることができるため、 バルクアモルファスと呼ばれる。 アモルファス形成に必要な冷却速 度が十分に小さくなり'、 従来の溶融めつきプロセスで実現可能な冷 却速度以下で、 アモルファス合金を形成させることができれば.、 溶 融めっきによるアモルファスめっきの可能性がある。
しかし、 これまで、 バルクアモルファスとなる合金系は、 Z r基、 Mg基、 Fe基、 Pd基、 Co基、 Ca基等の限られた元素を基とする報告例 のみで、 Zn基の合金は例がなかった。
他の元素を基とするバルクアモルファスへの選択添加元素として の Znは多少例があり、 例えば、 特開 2006-2252号公報のように、 Zn を選択元素として 30 a t %まで含有する Mg基バルクァモルファス合金 、 また、 特開 2004- 1499 14号公報のように Znを選択元素として 5〜15 a t.%含有する、 Z r/H f基バルクアモルファス合金等が、 開示されてい る。
しかし、 溶融めつき鋼板の耐食性に必要な、 Znを主成分としたバ ルクアモルファス合金の例は無く、 また、 溶融めつき鋼板の性能や 製造性を考慮した元素の組み合わせの例もない。 したがって、 ァモ ルファスの Zn系溶融めつき鋼板の報告例、 特許例もない。 発明の開示
本発明は、 Zn系溶融めつき鋼材において、 め.つき層自体の高耐食 化と、 めっき層による地鉄の犠牲防食性能あるいは添加元素による 金属間化合物の形成を原因とする劣化の無い加工性を両立する、 高 耐食性溶融 Zn系めつき鋼材を提供することを目的とする。
本発明者らは、 溶融 Zn系合金めつき鋼材の高耐食化を研究する過 程で、 めっき層への添加元素によるめつき層自体の高耐食化とめつ きにより地鉄を保護する犠牲防食性能の両立を図る方法を種々検討 し、 ある特定の成分系において、 めっき凝固時の冷却速度が若干高 い場合に、 これらを両立させる傾向のめっきが実現できることを見 出した。 さらに、 成分と凝固冷速を変化させて実験を実施し、 課題 解決と相関するめつきの物性を調査した結果、 めっき中に非平衡相 の部分を保持するめつきにおいて、 めっき層自体の高耐食化と地鉄 を保護する犠牲防食性能の両立が実現することを見出した。
さらに、 溶融 Zn系めつき鋼材のめっき層への添加元素による金属 間化合物に起因した加工性、 耐食性の劣化を抑制する方法について 種々の検討を行い、 めっき層をアモルファス化することによる.解決 方法を見出した。 そして、 Znを主として含有し、 耐食性や加工性に 悪影響を及ぼす元素を含有せず、' 耐食性に有効な元素、 あるいは悪 影響を与えない元素の添加だけにより、 アモルファス形成能を向上 させる成分系を検討し、 ついに従来の溶融めつきプロセス、 あるい は、 従来の溶融めつきプロセスを若干改良するだけで製造可能な高 耐食性溶融 Zn系めつき鋼材を実現できることを見出した。
本発明は、 上述の知見に基づいてなされたもので、 その要旨とす るところは、 以下のとおりである。
( 1) Znを 35mas s%以上含有する合金めつき層を有し、 該合金めつき 層が示差走査熱量測定による発熱量が U/g以上となる非平衡相を含 有することを特徵とする高耐食性溶融 Zn系合金めつき鋼材。
(2) Znを 35mas s%以上含有する合金めつき層を有し、 該合金めつき 層が 0. 5 °C /秒の昇温速度の示差走査熱量測定による発熱量が I J/g以 上となる非平衡相を含有することを特徴とする高耐食性溶融 Zn系合 金めつき鋼材。
(3) 前記 Znが 40mas s%以上である (1)または(2)記載の高耐食性溶融 Zn系合金めつき鋼材。
(4) 前記合金めつき層が、 mas s%で、 Mg : l〜60%、 M : 0. 07 ~ 59%を 含有する け)〜(3)のいずれかに記載の高耐食性溶融 Zn系合金めつき (5) 前記合金めつき膚が、 mass%で、 Zn:40%以上、 Mg:l〜45 、 A1: 0.07〜59%含有する (4)記載の高耐食性溶融 Zn系合金めつき鋼材.。
(6) 前記合金めつき層における Mgと A1の含有量が、 下記(式 1)〜( 式 5)の関係を満足する (4)または(5)記載の高耐食性溶融 Zn系合金め つき鋼材。
40≤Zn%≤94.3 … (式 1)
0.08≤A1%≤20 … (式 2)
3≤Mg%≤ 18 … (式 3)
Al%≤2XMg% … (式 4)
Al%≥ 1.24XMg%-12.32 … (式 5)
(ただし、 元素名%はその元素の mass%での含有量である。 )
(7) 前記合金めつき層中の成分として、 さらに、 mass%で、 Cr、 Mn 、 Fe、 Co、 Ni、 Cuから選ばれる 1種ないし 2種以上を合計で 0.1〜10% 含有する (1)〜(6)のいずれかに記載の高耐食性溶融 Zn系合金めつき 材。
(8) 前記合金めつき層中の成分として、 さらに、 mass%で、 Bi、 Mo 、 W、 Yから選ばれる 1種ないし 2種以上を合計で 0.1〜10%含有する (1 )〜(7)のいずれかに記載の高耐食性溶融 Zn系合金めつき鋼材。
(9) 前記合金めつき層に、 さらに、 mass%で、 La:0.1〜10%、 Ce:0. 1〜10%、 Ca:0.1%〜10%、 Sn:0.1%〜10%、 P: 0.005 〜 2%、 S i: 0: 02%〜 7%の 1種以上を含有する )〜(8)のいずれかに記載の高耐食性溶融 Z n系合金めつき鋼材。
(10) 前記合金めつき層が、 アモルファス相を体積分率で 5%以上含 有する (1)または(2)記載の高耐食性溶融 Zn系合金めつき鋼材。
(11) 前記合金めつき層が、 Al、 Mgを含有し、 Zn、 AK Mgの含有量 が、 下記(式 6)〜(式 8)の関係を満足する (10)記載の高耐食性溶融 Zn 系合金めつき鋼材。
35≤Zn¾≤75 … (式 6)
0.08≤A1¾≤25 … (式 7)
22≤Mg%≤60 … '(式 8)
(ただし、 元素名%はその元素の mass%での含有量である。 )
(12) 前記合金めつき層が、 mass%で、 Ca、 Y、 Laの内 i種以上を合 計で 0.1〜 10%含有する (10)又は(ί1>に記載の高耐食性溶融 Zn系合金 めっき鋼材。
(13) 前記合金めつき層における A1の含有量が 14mass%以下である. ( 10)〜(12)のいずれかに記載の高耐食性溶融 Zn系合金めつき鋼材。
(14) 前記,合金めつき層中の体積分率で 50%以上がァモルファス相 であることを特徴とする (1)または(2)記載の高耐食性溶融 Zn系合金 めっき鋼材。
(15) 前記合金めつき層が、 massrc、 Zn:35〜60%、 Mg:25〜60%、 C a:l〜10%、 Al :0, 07〜25%含有し、 残部が不可避的不純物である (14) 記載の高耐食性溶融 Zn系合金めつき鋼材。
(16) Znを 40mass%以上含有する合金めつき層を有し、 該合金めつ き層中の体積分率で 50%以上がァモルファス相であることを特徴ど する高耐食性溶融 Zn系合金めつき鋼材。
(17) 前記合金めつき層が、 mass%で、 Mg:l〜5.5%、 Ca:l〜45%、 Al: 0.07〜45%含有し、 かつ Mgと Caの含有量の合計が 5%以上であって、 残部が不可避的不純物である (16)記載の高耐食性溶融 Zn系合金めつ き鋼材。
(18) 前記合金めつき層が、 mass%で、 Mg:l〜25 、 Ca:l〜10%、 Al: 0.07〜25%含有し、 かつ Mgと Caの含有量の合計が 5%以上であって、 残部が不可避的不純物である (16)記載の高耐食性溶融 Zn系合金めつ き鋼材。 (19) 前記合金めつき層が、 mass%で、 Zn:40〜60%、 Mg:34〜55%、 C a:l〜10%、 A1:0.07〜25%含有し、 残部が不可避的不純物である (16) 記載の高耐食性溶融 Zn系合金めつき鋼材。
(20) 前記合金めつき層中の成分としてさらに、 Cr、 Mn、 Fe、 Co、 Ni、 から選ばれる 1種ないし 2種以上を合計で 0.1〜 10mass%含有す る(14)〜(19)のいずれかに記載の高耐食性溶融 Zn系合金めつき鋼材
(21) 前記合金めつき層中の成分としてさらに、 Bi、' Mo、 W、 Si、 T i、 V、 Ag、 Yから選ばれる 1種ないし 2種以上を合計で 0. l〜10mass% 含有する (14)〜(20)のいずれかに記載の高耐食性溶融 Zn系合金めつ き鋼材。
(22) 前記合金めつき層に、 さらに、 mass%で、 La:0. 1〜10%、 Sn:0 1〜 10%、 P:0.005〜 2%から選ばれる 1種以上を含有する (14)〜(21) のいずれかに記載の高耐食性溶融 Zn系合金めつき鋼材。 .
(23) 前記合金めつき層を鋼材の少なく とも一部の表面に有する (1 )〜は 2)のいずれかに記載の高耐食性溶融 Zn系合金めつき鋼材。 図面の簡単な説明
図 1は、 非平衡相起因の]) SC発熱ピークと発熱量を計算する面積 を示した図。
図 2は、 請求項 5の組成範囲を、 Zn- Mg- A1三元系の場合に例示し た図。 発明を実施するための最良の形態
以下、 本発明を詳細に説明する。
本発明者らは、 前述のように、 めっき中に非平衡相を保持するめ つきにおいて、 めっき層自体の高耐食化と地鉄を保護する犠牲防食 性能の両立が実現することを見出した。 特に、 非平衡の程度が高い もの、 あるいは、 非平衡の相の割合が多いものほど、 その合金成分 によるめつき層自体の高耐食性を保持しながら、 地鉄を保護する犠 牲防食性能が向上することが判明した。 さらに、 非平衡相の犠牲防 食性能への寄与は、 めつき合金の昇温時の示差走査熱量測定(DSC) に生じる非平衡相起因の発熱 一クの総発熱量で整理可能である,こ とが判明した。
そもそも非平衡相の存在は、 融点以下の昇温 DSC測定で、 発熱反 応を測定することで検出する。 非平衡相は準安定相であるから、 よ り安定な平衡相よりも髙エネルギーな状態であり、 平衡相へ変化す る時に平衡相と非平衡相のエネルギー差を発熱として放出するので ある。 一方、 低温平衡相から高温平衡相への平衡相間の相変態や、 融解等の現象は、 D SCにおいて、 吸熱反応が検出される。 しかし、 酸化反応は、 非平衡相から平衡相への変化と同様に、 放熱反応とな るので、 測定時には酸化反応の起こらぬように、 不活性ガス雰囲気 中で 温する必要がある。 さらに、 DSCと同時あるいは並行して熱 重量分析(TG)を測定し、 DSCの発熱反応が生じる温度で質量の変化 がなければ、 非平衡相起因の発熱、 質量増加が見られれば、 酸化反 応起因の発熱と判別できる。 質量減少があれば、 酸化分解の可能性 があるが、 本発明の範囲の合金では酸化分解反応は生じない。
同じ非平衡相の量であれば、 非平衡度が大きいほど発熱量'も大き くなるし、 同じ非平衡度の相であれば、 全体の中でのその非平衡相 の体積分率が高まるほどやはり発熱量が高まるので、 両者をまとめ て昇温時の DS C発熱量で表せるのである。
発熱反応は DSC測定では発熱ピークとして測定され、 そのピーク の面積を積分すれば発熱量が定量的に計算できる。
より詳しく計算方法を説明すれば、 DS Cで測定される単位質量単 位時間当たりの熱量を W0 (t) [単位; W/g]とする。 tは時間 [単位;秒] であるが、 温度 T [単位;で]と W0 (T)のグラフであっても、 測定時の 昇温速度 V [単位; °C /秒]により、 t=T/Vで変換できる。 発熱ピーク前 後の直線部から、 バックグランドとなる熱量 WBG (t) [単位; W/g]を見 積もり、 発熱ピークを含む領域で W0 (t)- WBG(t)を積分すれば、 発熱 ピークより発熱量 ΔΗ [単位; J/g]が計算できる。 以上の計算を数式 で表したものが、 (式 9)である。
ΔΗ= J(WO(t)-fBG(t))dt … (式 9)
t ただし、 本発明に関わる非平衡相の検出方法としての DSCのピ一 クは、 単独ピークとしては、 温度単位でその半価幅が 30°C以下、 0. 5°C/秒の DSC測定では、 測定時間単位で、 その半価幅が 60秒以内の ピークとする。 測定装置やサンプルの状態によっては、 DSCの値が バックグランドレベルで緩やかに起伏をもって変化する場合があり 、 これをピークとして、 長時間、 あるいは広い温度範囲について積 分すると、 計算上大きな発熱量となってしまう場合があるためであ る。 そのように、 広い積分範囲において計算される見かけ上の発熱 量は、 本発明の趣旨とする非平衡相起因の発熱とは異なるため、 除 外する。
また、 半価幅が 30°C以下の放熱ピークが複数.個生じた場合は、 そ れぞれの積分値の合計を発熱量とする。 アモルファス層が形成され た場合などには、 結晶化の過程で、 アモルファス相の構造緩和、 結 晶核発生、 結晶粒成長などに対応したピークが分離する場合がある ためである。 これらの複数のピークが完全に分離できず、 複合ピー クと見える場合は、 複合ピーク全体について積分する。 複合ピーク ではその全体の半価幅が、 温度単位で 30°Cを越える場合もあるが、 元々半価幅の小さなピークが複合して幅が広くなつた複合ピークで は、 ピーク同士の中心がお互いにある程度離れているので、 その複 合ピーク内に変極点が複数生じ、 極大となるピークが瘤状に複数現 れる。 定量的に言えば、 DSCの値の 60秒あたりの変化量を時間ある いは温度に対してプロッ 卜した曲線、 つまり時間で微分した DS C値 の曲線(DDS C)において、 複合ピークにおいては DDSCのノィズレベル の倍以上の DDSCの変化が認められ、 これに対して緩やかな起伏をも つバックグランドレベルの変化では、 ノイズレベルに埋没するよう なカーブのうねり しか観測されない。
また、 溶融や、 通常の平衡相同士の相変態などにより、 いったん 、 吸熱ピークが検出された場合、 それ以上の温度域において検出さ れる発熱ピークは、 明らかに本発明に関わる非平衡相とは関係のな い現象に関わる信号であるので、 本発明に関わる計算には使用しな い。
図 1に、 DSCデ一夕のグラフと、 発熱量を計算する部分を模式的に 示す。 図 1において、 ' 1は非平衡相起因の発熱ピークを示し、 2は非 平衡相起因の発熱ピークより発熱量を求めるための面積を示し、' 3 は融点の吸熱ピ一クを示すものである。
この計算は、 近年めコンピュ一夕一を備えた市販 DSC測定装置、' 例えば、 Xスアイアイ · ナノテクノロジ一株式会社製 EXSTAR6000シ リ一ズ等では、 計算したいピ一クを含むデータ領域の前後の境界を 指定するだけで、 自動計算可能である。 '
具体的には、 0. 5°C /秒の昇温速度の DSCによって発熱量が l J/g以 上となるような非平衡相を含有するめつきにおいて、 めっき層自体 の高耐食化を保持しながら、 十分な犠牲防食性能が得られ、 両者を 両立可能なことを見出したのである。 めっき層自体の耐食性は、 非 平衡相による発熱量(DS C発熱量)に殆ど影響されないが、 犠牲防食 能は、 DSC発熱量により高まるので、 DSC発熱量が 2 J/g以上あるめつ きが、 より好ましい。
市販のめっき鋼板でも、 2種以上の成分を含む合金めつきでは、 少量の非平衡相を含むめっきが存在する。 例えば、 55raas s%A卜 Zn- 1 . 5mas s%S iめつき鋼板では、 製造ままで過飽和固溶体を含有するた め、 一種の非平衡相めつきと言えるが、 その非平衡の度合いは、 DS C発熱量で、 0. l J/g以下のレベルである。 その他、 発明者らの入手 できる範囲の市販溶融めつき鋼板においては、 多少非平衡相を含む めっきでも、 せいぜい DSC発熱量で 0. l J /g程度で、 Ι ϊ /gに近いよう な溶融めつきも存在しなかった。
元々非平衡性を高める、 という思想がなければ、 冷却速度を大き くする理由は、 生産速度を上げるか、 めっき層の結晶粒を微細化さ せる、 あるいは、 基板となる鋼板の特性向上のための熱処理のため 等であり、 それらに必要な冷却速度はせいぜい大きくて 102 °C /s程 度で、 従来の溶融めつきの成分範囲では非平衡度の十分高いめつき は製造できなかったと考えられるのである。
非平衡相を含有するめつきにおいて、 犠牲防食性能が得られる理 由はまだ解明していないが、 非平衡相においては平衡相に比較して 熱的に不安定であり、 同様に電気化学的な溶解挙動においても平衡 相よりも溶解し易い状態にある。 そのために、 不動態的な高耐食性 を示す合金成分でも、 部分的に非平衡相において微少な溶解が起こ り、 全体の腐食速度を殆ど増加させずに、 犠牲防食に十分な低い腐 食電位を保持できる可能性が考えられる。 ただし、 正確な発現機構 解明には今後の詳細な研究が必要である。
なお、 めっき鋼材に付着しているめつき合金の DSC測定には、 め つき層を機械的に削り取ってサンプルを採取すればよい。 その際、 不可避的に混入する地鉄の鋼材の削り滓は、 磁石により除去するこ とが可能である。 また、 サンプルに過度の発熱を生じるような加工 を与えると、 その熱により、 非平衡相から平衡相への変化が生じる 可能性もあるので、 注意が必要である。 具体的には、 連続的にェン ドミル等で研削する場合は、 めっき金属と化学的に反応しない ·、 灯 油等の非水溶媒で冷却しながらサンプルを採取するのが望ましい。 ナイフや鑿等の工具を用いて手作業で削り取る場合程度の発熱であ れば、 .合金の状態には影響が蕪く、 冷却の必要もない。
非平衡相をより多く含むめっき層であっても、 Znの濃度が 35ma s s %未満となると、 亜鉛の腐食生成物によるめつき層や地鉄の腐食抑 制効果が著しく小さくなるため、 一般的な耐食性の観点から、 Znの 濃度は 35mas s%以上必要である。 また、 Znの濃度が 40mas s%未満とな ると Zn単独では十分な犠牲防食性能を確保することが難しくなるた め.、 Znの濃度が 40mas s%以上である方が、 さらに好ましい。
また、 高耐食性のめっき層を得るために添加する合金元素として は、 Mg、 A1が好ましい。 Mgも A1も、 Zn系合金めつき層自体の耐食性 を向上させると共に、 めっき層の腐食後も下地鋼板を保護する能力 の高い Zn系腐食生成物である塩基性塩化亜鉛を安定化して、 さらな る耐食性向上に寄与する。 Mgの添加は、 非平衡相の生成に対しても 効果がある。
Mgは、 lmas s%未満では、 非平衡相の生成効果が十分でなく、 60ma s s%を超えると、 活性になり過ぎて、 めっき層自体の耐食性が逆に 悪化する。 60mas s%以下であっても、 Mg量が 45mas s%を超える'と、 添 加量が増えたほどは耐食性向上効果がなく、 Mgによる ドロスは増え る傾向にあり、 めっき浴のメンテナンス等の観点からは、 45mas s% 以下である方が、 より望ましい。
A 1は、 めっき層の密着性確保の観点からも添加され、 0. 07mas s% 未満ではその効果が少ないので、 0. 07nia s s%以上添加することが望 ましい。 めっき層自体の耐食性は A 1が高い方が向上するが、 59mas s %を超えると、 Zn、 Mgとのバランスが崩れるので好ましくない。 さ らに好ましくは、 45mas s%以下とする方が、 少ない非平衡相でも犠 牲防食能が確保できるようになり、 望ましい。
非平衡相を十分に含むめっきを製造するためには、 それぞれの合 金成分によって、 必要な冷却速度が異なる。 逆に、 非常に大きい冷 却速度を与えることが可能であれば、 合金成分を殆ど選ばずに、 本 発明鋼材の合金めつき層を製造可能である。
溶融めつき製造プロセスの観点からは、 なるべく緩冷却で非平衡 相を生成するめつき組成のものが望ましく、 水没水冷や、 超冷却ガ スによるガス冷却の設備を装備させることを考慮しても、 104で/ s e c未満の冷却速度で非平衡相を生成可能なことが望ましい。 設備の 安定性や、 経済性を考慮すれば、 103 °C /sec以下で生成可能であれ ばさらに望ましく、 最も望ましくは 102 °C /s.ec以下で生成可能であ れば従来製造プロセスをほとんど変更せずに製造することが可能で ある。
一方、 めっき成分の自由度を広げる観点からは、 プロセスの冷却 速度を向上させることが有効であり、 好ましくは 102 °C /sec以上の 冷却速度を得られるプロセスが望ましく、 103 °C /s ec以上が得られ れぱさらに望ましい。 104 °C /s ec以上の冷却速度が得られれば、 最 も望ましい。
ただし、 実際にめつき層が凝固過程で経過する冷却速度は、 冷却 方法だけではなく、 冷却される鋼材の厚みやめつき厚みによっても 変化する。
つまり、 一般にめつきの冷却は外表面から熱を奪うために、 表面 に近いほど大きい冷却速度となる。 したがって、 めっき層の冷却速 度は、 鋼材の平均的な冷却速度とは異なる。 そのため、 非平衡相の 形成し易さが同じ合金めつき層を同じ冷却方法で冷却しても、 合金 めっき層中の非平衡相の割合は、 めっきの厚みによって変化する。 つまり、 表面層ほど冷却速度が大きいため非平衡相が生成し易く、 薄いめっきほど表面層の割合が高いため非平衡相の割合も大きくな り、 厚いめつきでは表面層の割合が相対的に低いために非平衡相の 割合も小さくなる。
本発明のめっき鋼材でも、 菪干非平衡相の形成し難い合金組成の めっきに関しては、 DSCで U /g以上の発熱量となる非平衡相を得る ために、 通常の冷却方法では、 めっき厚みを非常に薄くする必要が ある。 一方、 そのような若干非平衡相の形成し難い合金組成のめつ きの場合でも、 例えば、 液体窒素の蒸発直後のガスを使用した- 150 °Cの超低温ガスで冷却したりすれば、 めっき厚みがより厚くても DS Cで l J/g以上の発熱量となる非平衡相を得ることができる場合もあ る。 ·
めっき厚みが厚くなるどぶ漬けめつきにより本発明のめっき鋼材 を製造する場合には、 '最低でも水冷が必須であり、 成分によっては 液体窒素浸漬等の特殊な冷却が必要となる。
以上の、 冷却速度とめっき厚みの議論より、 本発明のめっき鋼材 を、 より廉価な方法で十分なめつき厚みで製造可能とするためには 、 非平衡相の形成し易い特定の成分範囲の合金を選択する必要があ る。 特に、 高耐食性めつきとして本発明者らが注目した Zn - A卜 Mg系 について検討した結果、 以下の成分範囲であれば、 比較的廉価な方 法で、 非平衡相を十分含有しためっき鋼材を製造可能なことを見出 した。
その合金成分は、
40≤Zn%≤94. 3 … (式 1)
0. 08≤A 1 %≤20 … (式 2)
3≤Mg%≤ 18 … (式 3) Al%≤2XMg¾ … (式 4)
Al%≥ 1.24XMg%-12.32 … (式 5)
の 5つの式(ただし、 元素名%はその元素の mass%での含有量である。 )を全て満足する組成範囲で表される。 Zn-A卜 Mgの単純な三元成分 系の場合について、 その組成範囲を図 2に例示した。 図 2のハツチン グした多角形の内側がその成分範囲である。 図 2において、 4は(Zn の mass%) =94.3の線、 5は(A1の mass%) =0.08の線、 6は(A1の mass%) =2 X (Mgの mass%)の線、 7は(A1の mass%) =1.24 x (Mgの ma %) - 12.32の 線、 8は請求項 5の組成範囲(Zn- Mg- A1三元系の場合)を示す。 Zn- A卜 Mgの三元系で、 このような領域において非平衡相が生成し易い理由 は必ずしも明らかでないが、 金属間化合物の安定組成と共晶線に対 して中間的な組成領域で、 両者の生成が競合する結果、 非平衡相が 生成し易い可能性が考えられる。
本発明のめっき鋼材の合金めつき層には、 添加元素と.して、 さら に Cr、 Mn、 Fe、 Co、 Ni、 Cuから選ばれる 1種ないし 2種以上を合計で 0. l〜'10mass%含有することが可能である。 これら元素の添加は、' 主 にめつきの鋼材への密着性を向上させる。 0. lmass%未満ではその効 果が少なく、 10mass%超では、 めっき浴の融点が上昇し過ぎて、 製 造が困難になる虞がある。
さらに、 添加元素として、 Bi、 Mo、 W、 Yから選ばれる 1種ないし 2 種以上を合計で 0. l〜10mass%含有することが可能である。 これらの 元素の添加は、 主にめつきの鋼材への密着性を向上させる力 加え て、 非平衡相を形成し易くする効果もある。 0. lmass%未満ではその 効果が少なく、 10mass%超では、 めっき浴の融点が上昇し過ぎるか 、 ドロスの発生が多くなるために、 製造が困難になる虞がある。 特 に、 Yは、 耐食性を向上させる効果もさらに有する。
また、 添加元素としてさらに、 mass%で、 La:0.1〜10%、 Ce:0.1〜 10%、 Ca : 0. 1〜 10%、 Sn : 0. 1〜 10%、 P : 0. 005〜2%、 S i : 0. 02〜 7%の 1種 以上を含有させることも可能である。 これらの元素の添加は、 非平 衡相を含むめっきの延性を向上させ、 加工性を増すことがでぎる上 に、 非平衡相を形成し易くする効果がある。 それぞれの添加量の下 限未満では効果が少なく、 上限を超えると、 耐食性が劣化する虞が ある。
本発明者らは、 さらに非平衡相を含むめっき種の開発研究を進め る中で、 非平衡相の中でも、 典型的な非平衡相であるアモルファス 相の含有率により、 前述の非平衡相の効果の著しく向上するめつき 種が存在することを見出しだ。 即ち、 本発明の、 非平衡相を含有す るめつきの範疇の中でも、 5%以上のアモルファス体積分率があるめ つき種においては、 5%未満のアモルファス体積分率のものよりも、 格段の犠牲防食性能向上の効果があることを見出したのである。 通 常、 犠牲防食能が向上すると、 犠牲的に溶解するめつきの腐食速度 は、 犠牲防食していない場合よりも上昇する。 非平衡相が存在する 本発明鋼材では、 めっきの耐食性を向上させながら、 犠牲防食能を 維持すると言う優れた性質があるが、 それでも、 地鉄が露出して犠 牲防食している状態では、 地鉄の露出していないめつき単独で腐食 している状態と比較して、 若干の腐食速度の上昇が見られる。 この 、 犠牲防食によ.る腐食速度の上昇が、 アモルファス相が 5%以上存在 していると、 アモルファス相が 5 %未満しかないものと比較して、 さらに抑制されるのである。
アモルファス相が 5%以上存在しているめつきの中でも、 特に、 Zn 、 Al、 Mgの含有量が、 下記 (式 6)〜(式 8)の関係を満足する範囲で あると、 犠牲防食時のめっき腐食速度上昇を抑制する効果が大きい
35≤Zn%≤75 ··· (式 6) 0. 08≤A1 %≤25 … (式 7)
22≤Mg%≤60 … (式 8)
(ただし、 元素名%はその元素の mas s での含有量である。. ) 望ましくは、 A1の濃度を 14mas s%以下とした方が、 犠牲防食能自 体が良好となり、 好ましい。
さらに、 5%以上のアモルファス体積分率があるめつ'き種において は、 めっき層中に C a、 Y、 Laの内 1種以上を mas s の合計で 0. 1〜 10% 含有することにより、 犠牲防食能自体が向上する効果がある。. 0. lm as s%以下の添加ではこの効果が明らかでなく、 10mas s%を超えると 、 ドロス発生や融点上昇等で製造性が悪化する。
本発明者らは、 さらに、 亜鉛めつき鋼材の耐食性向上について検 討する別の研究の過程で、 耐食性向上のために合金成分をめつき層 に添加すると、 Znや添加合金成分同士で金属間化合物を形成し、 こ れがめっき層の加工性や、 耐食性を劣化させることも見出していた 。 金属間化合物がなくても、 結晶相の合金めつきであれば、 過飽和 固溶体の形成により、 加工性を悪化する場合もある。 これに対し、 めっき層をアモルファスにすることにより、 金属間化合物や過飽和 固溶体による悪影響を一掃することに思い至り、 検討した結果、 Zn を 35mas s 以上含有し、 ァモルファスを体積分率で 50%以上としため つきを形成させれば、 従来の金属間化合物や過飽和固溶体の存在す るめつきより、 有意に耐食性や加工性が向上することを見出した。 アモルファスは典型的な非平衡相の一種であるので、 アモルファス めっきは非平衡相めつきの一種である。
なお、 一般的に、 DSCにおける発熱量は、 アモルファスの体積分 率に比例するが、 元素の組み合わせによって同じアモルファス相の 体積分率でも、 多少の増減は生ずる。 しかし、 本発明者らの実施し た実験の範囲では、 5 以上の体積分率のァモルファス相を含有する めっきは、 必ず、 DSCで lJ/g以上の発熱量を示した。
Znが 35mass%未満では、 特に Znの腐食生成物による鋼材腐食の抑 制効果が得られなくなる。 Znが 40nias s%未満では、 めっき鋼材に必 要な犠牲防食能が不足となるか、 めっき自体の耐食性が不足となる 場合があるので、 望ましくは、 Znは 40mass 以上含有することが好 ましい。 Znの濃度が 50111&33%以 '上であれば、 さらに望ましい。 ァモ ルファスの体積分率は、 50%未満では、 結晶相起因の加工性劣化や 、 結晶相同士の電気化学的カツプリ ングに起因した耐食性への悪影 響をカバーしきれない虞がある。 アモルファスの体積分率は多いほ ど望ましく、 90%以上で結晶相の悪影響が殆ど無くなり、 特に望ま しい。
合金成分として、 A1を 0.07〜45niass%含有するァモルファス合金 めっきは、 地鉄との界面で A卜 Fe合金や A卜 F.e-X系の合金を形成する ことにより、 溶融めつきとしての最低限のめっき密着性を確保し、 また、 めっき浴表層で比較的安定な酸化被膜を形成することで、 ド ロスの発生を確保できるので、 望ましい。 0.07mass%未満では、 そ の効果が現れ難い。 A1は、 Zn基合金においてはアモルファス形成能 を若干ながら阻害する傾向があるので、 45mass%を超えて含有させ ると、 溶融めつき法で製造可能な十分なァモルファス形成能が得ら れなくなるので、 上限を 45mass%とする。 より望ましくは 25]^33%以 下である。
Mgは、 Zn基合金のアモルファス形成能を向上させ、 かつ、 耐食性 にも寄与するので、 l〜55mass%含有したものが望ましい。 lmass%未 満ではその効果が現れ難い。 55mass%超では、 めっきが活性になり 過ぎて、 耐食性が劣化する虞がある。 耐食性を重視した場合は、 25 niass%以下とした方が望ましい。 25mass%以下であれば、 ドロスの発 生もよりよく抑制され、 操業性も向上する。 . 一方、 アモルファス形成能の向上を重視した場合は、 Mgの含有量 を 25〜60mass%とすることが望ましい。 特に、 この Mg含有量で、 Zn を 35〜60mass%、 Caを 1〜 10mass%とした時に、 アモルファス形成能 が高く、 低い冷却速度でも製造可能となり、 高付着量のめっきでも 十分なアモルファス体積分率が得られる。 この成分範囲中でも、 さ らに望ましくは、 Mgの含有量を 34〜55mass%、 Znを 40〜 60mass%、 Ca を l〜10mass%とした時に、 アモルファス形成能が^く、 製造性が向 上するため、 好ましい。
Caも、 Zn基合金のアモルファス形成能を向上させ、 かつ、 耐食性 にも寄与するので、 l〜45ma'ss%含有したものが望ましい。 lmass%未 満ではその効果が現れ難い。 45mass%超では、 めっきが活性になり 過ぎて、 耐食性が劣化する虞がある。 耐食性を重視した場合は、 10 mass%以下とした方が望ましい。
さらに、 Mgと Caの合計を 5mass%以上として含有することが、 溶融 めっきとして製造するための最低限のァモルファス形成能確保のた めにば望ましい。 Mgと Caの合計添加量は、 アモルファス形成能の点 からはある程度多い方が好ましいが、 両方とも活性な元素であるの で、 耐食性を重視した場合は、 合計で 60mass%以下とした方が望ま しい。 より好ましくは、 合計で 35mass%以下である。
添加元素として、 さらに Cr、 Mn、 Fe、 Co、 Ni、 Cuから選ばれる 1 種ないし 2種以上を合計で 0. l〜10mass%含有することが可能である 。 これら元素の添加は、 主にめつきの鋼材への密着性を向上させる 。 0. lmass%未満ではその効果が現れ難く、 10mass%超では、 めつ き浴の融点が上昇し過ぎて、 製造が困難になる虞がある。
添加成分として、 さらに、 Bi、 Mo、 W、 Si、 Ti、 V、 Agから選ばれ る 1種ないし 2種以上を合計で 0. l〜10mass%含有することが可能であ る。 これらの元素は、 アモルファス形成能を向上させながら、 めつ きの鋼材への密着性を向上させる、 と言う複合効果がある。 0. lmas s%未満ではその効果が現れ難く、 10mas s%超ではめつき浴の融点が 上昇し過ぎるか、 ドロス発生が多量になり、 製造が困難になる虞が ある。
また、 添加元素としてさらに、 La : 0. 1〜 10mas s%、 Sn : 0. l〜 10mas s 、 P : 0. 005〜2mas s%のいずれか 1種以上を含有させることも可能で ある。 これらの元素の添加は、 アモルファス相の延性を向上させ、 加工性をさらに増すことができる上に、 アモルファス形成能の向上 にも効果がある。 それぞれの添加量の下限未満では効果が現れ難く 、 上限を超えると、 耐食性が劣化する虞がある。
なお、 本発明の高耐食性溶融 Zn系めつき鋼材は、 少なく とも鋼材 の高耐食性を必要とする部位の表面に、 上述した合金めつき層を有 していれば良く、 鋼材表面全面にめっき層を存在させる必要は必ず しも無い。
本発明の高耐食性溶融 Zn系めつき鋼材は、 塗装して用いる表面処 理鋼材の下地鋼材としても使用可能である。 その際には、 塗装後に 地鉄に達する傷が発生した場合の腐食膨れの進展を良好に抑制する ことができたり、 加工してもめっき層に割れの少ない特長のために 、 塗装後の加工部の耐食性が特に向上する。
本発明鋼材の基材としての鋼材の材質には、 特に限定はなく、 A1 キルド鋼、 極低炭素鋼、 高炭素鋼、 各種高張力鋼、 N i、 Cr含有鋼等 が使用可能である。 製鋼方法や、 鋼の強度、 熱間圧延方法、 酸洗方 法、 冷延方法等の鋼材の前処理加工についても特に制限がない。
めっきの製造方法に関しては、 ゼンジミアタイプ、 フラックス夕 イブ、 又はプレめっきタイプ等の製造方法によらず、 あらゆる溶融 めっき方法に対して本技術は適用可能である。 ただし、 本発明鋼材 の範疇であっても成分によっては、 めっき合金の凝固時に必要な冷 却速度によって、 冷却方法やめつきの厚みを選択する必要がある場 合もある。
本発明鋼材でも、 若干アモルファス形成能の低い合金組成のめつ きに関しては、 体積分率で 50%以上の'ァモルファスを得るために、 めっき厚みを小さくする必要がある。 通常の冷却方法では表面に近 いほど冷却速度が高いため、 めっき厚みの薄い方がァ ΐルファス体 積分率は多くなるためである。 一方、 そのような若干アモルファス 形成能の低い合金組成のめっきの場合でも、 例えば、 '液体窒素の蒸 発直後のガスを使用した- 150°Cの超低温ガスで冷却したり、 ミス ト 冷却を適用すれば、 めっき廪みがより厚くても体積分率で 50%以上 のアモルファスが得られる。
めっき厚みが多くなるどぶ漬けめつきにより本発明鋼材を製造す る場合には、 液体窒素浸漬等の特殊な冷却が必要な場合がある。 あ るいは、 加工性を特に必要としないような場合には、 めっき合金と して、 H fや Z rを多く含有させてアモルファス形成能を向上させた合 金を使用することで、 通常の水冷程度の冷却速度、 あるいは、 成分 系によっては空冷でも本発明の範疇に入るアモルファス体積分率の 溶融めつきが可能である。 Hiや Z rは、 それらの合計で 2mas s%以上 35 mas s%以下の範囲で含有させるのが好ましい。 2mas s%未満では、 ァ モルファス形成能向上の効果が不十分であり、 .35mas s%を超えて含 有させると、 C aと同様に、 めっき層を活性にし過ぎる効果が生じ、 めっき層の耐食性を劣化させる虞がある。
アモルファスの体積分率は、 めっき鋼材の断面を切断し、 研磨、 エッチングして、 表面のめっき層を光学顕微鏡(以下、 光顕と略す) で観察することで、 測定可能である。 アモルファスになった部分は 、 エッチングによっても何の組織も観察されないが、 結晶相の残つ た部分は、 結晶粒界や、 亜粒界、 析出物等に起因する組織が観察さ れる。 これにより、 アモルファス部分と結晶部分の領域は、 明確に 区別されるので、 線分法や画像解析により体積率に換算することが 可能である。 組織が微細過ぎて光顕での測定が困難な場合は、 .めつ き層断面より薄片を作製し、 透過電子顕微鏡により観察することで 、 同様に測定が行える。 透過電子顕微鏡の場合は、 組織の観察され ない領域において、 電子線回折像のハローパターンにより、 ァモル ファス構造を確認することも可能である。 光顕観察において、 全面 に組織の観察されない場合や、 一部に組織の観察されない部分があ つても、 粗大で歪みの無い結晶粒である疑いのある場合は、 さらに 電子顕微鏡用薄片を採取して、 電子線回折像に回折スボッ 卜が無く 、 ハローパターンが観察されることにより、 アモルファス相である ことを確認することが望ましい。 光顕も電子顕微鏡も、 10か所以上 の異なる視野についてコンピュータ一による画像処理で面積率を求 め、 それらを平均して体積率とするのが望ましい。 実施例
(実施例 1)
表 1、 表 2 (表 1のつづき) に示すような表面処理鋼材を、 板厚 0. 8 龍の冷延鋼板、 肉厚 10匪で辺の長さが 10cmの等辺山形鋼及び板厚 10 龍の熱延鋼板を基材として作製した。
冷延鋼板は、 l Ocm X 10cmに切断した後に、 レス力社のバッチ式溶 融めっき試験装置でめっきした。 めっき浴の温度は、 めっき組成に 応じて、 めっき組成の融点 + 50°Cに統一した。 エアワイビングによ り 目付量を調整し、 必要に応じて、 25°Cの窒素ガス冷却、 25°Cのミ ス ト冷却、 - 150°Cの低温窒素ガス冷却を施し、 冷却速度を調整した 等辺山形鋼は長手方向に 10cm、 熱延鋼板は l Ocm X 10cmの正方形に 切断し、 るつぼ炉を用いて、 フラックス法によるどぶ漬けめつきを 施した。 必要に応じて、 水冷及び液体窒素冷却を実施した。 上記の めっき試験片を、 以下に述べる各評価試験に供した。
非平衡相の形成し易さについては、' l J /g以上の DS C発熱量の非平 衡相が得られためつき鋼材について、 冷却方法とめっき付着量及び そのときの DSC発熱量により 「'必要冷速」 として判定した。
冷延鋼板に関しては、 窒素ガス冷却で 25 g/m2以下、 ミス ト冷却で 35 g/ra2以下、 液体窒素からの蒸発ガスを利用した超低温窒素ガス冷 却によって 60g/m2以下、 という冷却法とめっき厚みの組み合わせで 、 l〜2 J/gの DSC発熱量の非平衡相を得ているものを 「必要冷速:〇 」 、 これらの条件では DS C発熱量が 2 J/gを超えるか、 この条件以上 のめつき厚みで l J/g以上の DSC発熱量の非平衡相を得ているものを 「必要冷速:◎」 とした。 一方、 DSC発熱量で; i/g未満のものは 「必 要冷速: X」 とした。
どぶ漬けめつきで製造した熱延鋼板と等辺山形鋼については、 め つき厚を制御することが難しいため、 l J/g以上の DSC発熱量の非平 衡相が得られためっき鋼材は全て 「必要冷速:◎」 とした。 一方、 D SC発熱量で l J/g未満のめっき鋼材は 「必要冷速: X」 とした。
各めつきの厚みは、 付着量として、 めっき層の酸溶解による質量 減により測定し、 めっき中の合金成分は、 めつ.き層を酸溶解した溶 液を I CP (誘導結合プラズマ発光)分光分析により定量した。
めっき層の非平衡相の定量には、 めっき層を地鉄を含めて機械研 削し、 地鉄分を磁石で取り除いた後の研削粉を用いて、 0. 5°C /秒の 昇温速度で常温より融点までの DS Cカーブを測定し、 発熱ピークの 面積から発熱量を計算した。
腐食試験は、 犠牲防食能と、 犠牲防食作用中のめっき層自体の耐 食性を同時に評価するために、 地鉄露出部のあるサンプルを作製し 、 乾湿繰り返しの複合サイクル試験(CCT)により地鉄露出部での赤 鯖発生とめっき減量の両方を評価した。
サンプルの評価面は 50匪 X 70mmの長方形とし、 それ以外の部分は テープシールにより保護した。 評価面中央の l nun X 50mmの長方形部 分をエンドミルにより表面から 0. 5龍研削し、 地鉄を露出させた。 エンドミル加工は、 加工部を冷却しながら実施し、 加工部周辺のめ つき層中の非平衡相が平衡相に変化しないよう配慮した。
使用した CCT条件は、 [塩水噴霧; 35°C、 5g/L- NaC l水溶液、 2時間] — [乾燥; 60°C、 20〜30%M、 4時間]— [湿潤; 50°C、 95%M、 2時間] ( 各条件間の遷移時間は 30分で各条件内に含める)とし、 以上の 8時間 分を 1サイクルとして、 試験期間は 2 1サイクルどした。
CCT試験後、 まず、 評価面中央の元々露出させてあった地鉄部分 の赤鲭発生有無を確認した。 地鉄露出部に赤鯖発生の観察されなか つたものを犠牲防食能 「〇」 、 赤鯖発生の見られたものは、 露出部 の面積に対して赤鲭面積率が 5%以下のものを 「口」 とし、 5%を超え る面積の赤鯖が発生したものを 「X」 とした。 次に、 赤鯖評価後の サンプルから腐食生成物を酸洗除去して、 試験前後の質量変化より めっき層の腐食減量を測定した。 腐食減量が 2g/m2未満を 「◎」 、 Λ 〜5 g/m2を 「〇」 、 5 g/m2以上を 「X」 とした。
犠牲防食能が 「〇」 であった一部のめっき鋼材に関しては、 もう 一種別の腐食試験片として、 評価面中央の 3fflm X 50匪の長方形部分 をエンドミルにより表面から 0. 5匪研削し、 地鉄を露出させたサン プルを 「犠牲防食促進試験片」 として作製した。 この 「犠牲防食促 進試験片」 についても、 上記と同じ C CTに供し、 CCT試験後、 まず、 評価面中央の元々露出させてあつた地鉄部分の赤鲭発生有無を確認 した。 地鉄露出部に赤鲭発生の観察されなかったものを犠牲防食能 厂◎◎」 、 赤鲭発生の見られたものは、 露出部の面積に対して赤鲭 面積率が 5%以下のものを 「◎」 とした。 5%を超える面積の赤鯖が発 生しても、 元の評価で' 「〇」 であったので、 評価は 「〇」 とした。 次に、 「犠牲防食促進試験片」 についても、 赤鲭評価後のサ.ンプ ルから腐食生成物を酸洗除去して、 試験前後の質量変化よりめっき 層の腐食減量を測定した。 地鉄露出面のサイズが 1 X 50匪のサン プルにおける腐食減量を CR1と'し、 「犠牲防食促進試験片」 におけ る腐食減量を CR2として、 CR2を CR 1で除した値(CR2/CR 1)を犠牲防食 による腐食加速の抑制能として評価した。 CR2/CR1の値が、 1. 05以 下であれば 「◎」 、 1. 05を超え、 1. 15以下であれば 「〇」 、 1. 15を 超えるものは 「口」 で表しだ。 そもそも犠牲防食能の劣るものは評 価対象外とした。
めっき密着性は、 冷延鋼板に関しては、 めっき試験片のめっき層 を外側にして 180 ° の曲げ、 所謂、 0T密着折り曲げ試験を実施後、 曲げ部を粘着テープでめっき層の剥離試験した。 剥離無しを 「◎」 、 剥離があつても曲げ部の長さ 10M辺りに最大長さ 0. 1龍を超える 剥離片が無く、 最大長さ 0. 1腿以下の剥離片が 5個以下のものは 「〇 」 、 同様に 0. 1龍を超える大きさの剥離片カ 個以上あるいは 0. lmm 以下の剥離片が 6個を超えるものは 「X」 とした。 · 等辺山形鋼と熱延鋼板のめっき密着性に関しては、 折り曲げをせ ずに粘着テープによるめつき層の剥離試験を行.い、 同様の評点に従 つた。 即ち、 剥離無しを 「©」 、 剥離があっても 10匪 X 10mmの正方 形領域において最大長さ 0. 1mmを超える剥離片が無く、 最大長さ 0. 1 龍以下の剥離片が 5個以下のものは 「〇」 、 同様に 0. lmmを超える大 きさの剥離片カ Π個以上あるいは 0. 1龍以下の剥離片カ ^個を超える ものは 「X」 とした。 冷延鋼板と等辺山型鋼や熱延鋼板では直接比 較はできないが、 それぞれの鋼種の中では相対的に比較できる。
めっき層の加工性は、 180 ° 折り曲げ試験でめっき層に割れの見 られない最大の内接円直径により評価した。 ただし、 内接円直径の 単位は板厚 Tとし、 割れのない最大内接円直径が οτ、 つまり密着曲 げでも割れの見られないものを 「◎」 、 最大内接円直径が 1Τ〜.3Τの ものを 「〇」 、 4Τ以上を 「X」 とした。 等辺山形鋼と熱延鋼板につ いては、 当該評価の必要とされる材料でないので、 実施せず 「一」 と示した。
さらに、 表 1、 表 2 (表 1のつづき) 中で、 十分な犠牲防食能を示 した鋼種の一部について、 具体的には No. 1〜10、 29、 '47~ 5 1、 及び 54のサンプルについて、 めっき層のアモルファス体積分率を測定し た。 めっき層のアモルファス体積分率は、 試験片のめっき層の厚み を 5等分した位置において、 各 2枚ずつの透過電子顕微鏡用薄片を採 取し、 コンピュータ一を用いた画像解析によりそれぞれの視野のァ モルファス領域の面積率を測定し、 全視野のアモルファス領域の面 積率の平均値をアモルファス体積分率とした。
表 3に、 上記のめっき層中のアモルファス体積分率と、 「犠牲防 食促進試験片」 を用いた、 厳しい条件での犠牲防食能(促進犠牲防 食能)、 及び、 犠牲防食時の腐食促進の抑制能(CR2/CR1)について示 した。
6Z
Figure imgf000031_0001
T 挲
8LL^O/LOOZd£/13d 96t80l請 OAV 表 2 (表 1のつづき)
Figure imgf000032_0001
却ガス (- 150°C窒素) 、 D ; 水冷、 E ; 液体窒素冷却、 F ; 放冷
* 2:' DSC発熱量が 1 J/g以上を達成可能な、 冷却法 1)とめつき付 着量の組み合わせ
◎ ; Aで 25g/m2超、 Bで 35g/m2超、 Cで 60g/m2超(〇の条件 なら 2 J/g以上)
〇 ; Aで 25g/m2以下、 Bで 35g/m2以下、 Cで 60g/m2以下 X ; DSC発熱量が 1 J/g未満
表 3
Figure imgf000033_0001
Α ; ガス冷却(25 °C窒素)、 B ; ミス ト冷却(25 °C C 却ガス (- 1 50で窒素)、 D ; 水冷、 E ; 液体窒素冷却、 冷 表 表 2 (表 1のつづき) に示すように、 本発明鋼材は、 耐食性
F ; に'優れ、 めっき密着性、 加工性、 ドロス発生等の点で、 十分な超性; 能 放冷 を保持レている。 特に、 Mgを l〜55mas s%、 Alを 0. 07〜 45mas s%含有' した本発明鋼材は、 耐食性の点でさらに優れ、 その中でも、 図 2に 示す領域の組成の Zn- A卜 Mgバランスの本発明鋼材は、 製造に必要な 冷却速度が小さくて済むので、 ミス ト冷却を用いた冷却でも製造で きた。 さらに、 Cr、 Mn、 Fe、 Co, N i、 Cuから選ばれる 1種ないし 2種 以上含有するものは特に密着性が向上し、 La、 Ce、 Ca、 Sn、 Pから 選ばれる 1種ないし 2種以上含有するものは特に加工性が向上した。 また、 Znが 40mas s%以下では、 犠牲防食能が若干劣る場合があるが 、 Mgや、 A 1を含有するめつきでは十分な犠牲防食能を確保している 。 B i、 Mo、 W、 Yを含有させたものは、 密着性と必要冷速の両方の性 能に同時に優れている。
本発明のめっき鋼材の成分範囲でない、 あるいは、 非平衡相起因 の DSC発熱量が l J/g未満のものは、 耐食性が不足しているか、 めつ き層自体の耐食性が良くても、 犠牲防食能が不足しており、 地鉄露 出部に 5%以上の面積率の赤鯖が発生した。
表 3に示すように、 ァモルファス体積分率が 5%以上の本発明鋼材 は、 そうでない鋼種よりも、 犠牲防食時の腐食促進が抑制され、 そ の効果は、 (式 6)〜(式 8)に規定する成分範囲で、 より顕著であった 。 また、 A1が 14mas s%以下の本発明鋼材では、 そうでない本発明鋼. 材に比較して犠牲防食能が優れていた。
(実施例 2)
.表 4、 表 5 (表 4のつづき) に示すような表面処理鋼材を、 板厚 0. 8 mmの冷延鋼板、 肉厚 10mmで辺の長さが 10cmの等辺山形鋼及び板厚 10 mmの熱延鋼板を基材として作製した。
冷延鋼板は、 lOcmX I Ocmに切断した後に、 レス力社のバッチ式の 溶融メツキ試験装置でめっきした。 めっき浴の温度は、 めっき組成 に応じて、 めっき組成の融点十 50°Cに統一した。 エアワイビングに より 目付量を調整し、 必要に応じて、 25°Cの窒素ガス冷却、 25°Cの ミス ト冷却、 - 150°Cの低温窒素ガス冷却を施し、 冷却速度を調整し た。
等辺山形鋼は長手方向に 10cni、 熱延鋼板は l Ocm X 10cmの正方形に 切断し、 るつぼ炉を用いて、 フラックス法によるどぶ漬けめつきを 施した。 必要に応じて、 水冷及び液体窒素冷却を実施した。 上記の めっき試験片を以下に述べる各評価試験に供した。
アモルファス形成能を示す、 必要臨界冷速については、 ァモルフ ァスを形成するのが、 鋼材表面のめっき層なので、 鋼材のバルクの 冷速とは必ずしも対応しない。 そのため、 冷却方法とめっき付着量 及びそのときのァモルファ.ス体積分率により判定した。 めっき浴の 合金組成により若干アモルファス形成能が低く、 冷却方法によって は 50%以上のアモルファス体積分率を得るために、 窒素ガス冷却で 2 5g/m2以下、 ミス ト冷却で 35g/m2以下'、 液体窒素からの蒸発ガスを 利用した超低温窒素ガス冷却によっても 60g/m2以下と、 めっき付着 量を少.なくする必要があるものは 「〇」 、 これらの条件でもァモル ファス体積分率が 50%に達せないものを 「X」 とした。 さらに、 「 〇」 以上のアモルファス形成能が高いもので、 50%以上のァモルフ ァス体積分率を得るために、 窒素ガス冷却で 30g/m2未満、 ミス ト冷 却で 45 g/m2未満、 液体窒素からの蒸発ガスを利用した超低温窒素ガ ス冷却によって 80g/m2未満、 とめつき付着量を増やすことができる ものは 「◎」 とし、 窒素ガス冷却で 30g/m2以上、 ミス ト冷却で 45 g/ m2以上、 液体窒素からの蒸発ガスを利用した超低温窒素ガス冷却に よつては 80g/m2以上の条件でも 50%以上のァモルファス体積分率を 得られるものを 「◎◎」 とした。
めっき製造時のドロスの状態を目視で観察し、 ドロスが多くめつ きが困難なものを 「X」 、 ドロスの量は比較的多いがめつきが可能 なものを 「厶」 、 ドロス量が少なくめっき製造が容易なものを 「0 」 、 ドロスが非常に少なくめっき製造も容易で付着しためっき表面 '性状も比較的良好なものを 「◎」 とした。
各めつきの付着量は、 めっき層の酸溶解による質量減により測定 し、 めっき中の合金成分は、 めっき層を酸溶解した溶液を I CP (誘導 結合プラズマ発光)分光分析により定量した。
めっき層のアモルファス体積分率は、 試験片のめっき層の厚みを
5等分した位置において、 各 2枚ずつの透過電子顕微鏡用薄片を採取 し、 コンピューターを用いた画像解析によりそれぞれの視野のァモ ルファス領域の面積率を測定し、 全視野のアモルファス領域の面積 率の平均値をアモルファ 体積分率とした。
腐食試験は、 J I S-Z- 237 1に記載されている塩水噴霧試験(S ST)に 準拠し、 ただし、 塩水濃度を 10g/Lとした試験を 3000時間行った後 の腐食減量で評価した。 2 g/m2未満を' 「◎」 、 2〜5 g/m2を 「〇」 、 5 〜10g/m2を 「口」 、 10 g/m2を超えたものを 「X」 とした。
めっき密着性は、 冷延鋼板 ίこ関しては、 めっき試験片のめつき層 を外側にして 1 80 ° の曲げ、 所謂、 0Τ密着折り曲げ試験を実施後、 曲げ部を粘着テープでめっき層の剥離試験した。 剥離無しを 「◎」 、 剥離があつても曲げ部の長さ l Onun辺りに最大長さ 0. 1 mmを超える. 剥離片が無く、 最大長さ 0. ΓΜΙ以下の剥離片が 5個以下のものは 「〇 」 、 同様に 0. lmm以下の剥離片が 6個〜 10個のものは 「厶」 、 0. 1mm を超える大きさの剥離片が 1個以上あるいは 0. 1顏以下の剥離片が 10 個を超えるものは 「X」 とした。
等辺山形鋼と熱延鋼板のめっき密着性に関しては、 折り曲げをせ ずに粘着テープによる剥離試験を行い、 同様の評点に従った。 即ち 、 剥 Ιί無しを 「◎」 、 剥離があっても l Omm X 10mmの正方形領域にお いて最大長さ 0. 1腿を超える剥離片が無く、 最大長さ 0. 1 mm以下の剥 離片が 5個以下のものは 「〇」 、 同様に 0. 1匪以下の剥離片が 6個〜 1 0個のものは 「△」 、 0. l mmを超える大きさの剥離片カ Π個以上ある いは 0. l 以下の剥離片が 10個を超えるものは 「X」 とした。 冷延 鋼板と等辺山型鋼や熱延鋼板では直接比較はできないが、 ぞれぞれ の鋼種の中では相対的に比較できる。
めっき層の加工性は、 180 ° 折り曲げ試験でめっき層に割れの見 られない最大の内接円直径により評価した。 ただし、 内接円直径の 単位は板厚 Tとし、 割れのない最大内接円直径が 0T、 つまり密着曲 げでも割れの見られないものを 「◎」 、 最大内接円直径が 1 Tのもの を 「〇」 、 2Τ〜3 Τのものを 「△」 、 4Τ以上を 「X」 とした。 等辺山 形鋼と熱延鋼板については,、 当該評価の必要とされる材料でないの で実施せず、 「 一 」 と示した。
表 4
Figure imgf000037_0001
表 5 (表 4のつづき)
Figure imgf000038_0001
: A ; ガス冷却(25°C窒素)、 B ; ミス ト冷却(25°C)、 C
却ガス (- 150°C窒素) 、 D ; 水冷、 E ; 液体窒素冷却
* 2 : アモルファス体積分率 50%以上を達成可能な、 冷却法 1)と めっき付着量の組み合わせ
◎◎ ; Aで 30g/m2以上、 Bで 45g/m2以上、 Cで 80g/m2以上
◎ ; Aで 25〜30g/m2、 Bで 35〜45g/m2、 Cで 60〜80g/m2 〇 ; Aで 25g/m2以下、 Bで 35g/m2以下、 Cで 60g/m2以下 X ; 〇の条件でもアモルファス体積分率 50%以下 表 4、 表 5 (表 4のつづき) に示すように、 本発明鋼材は、 耐食性 に優れ、 めっき密着性、 加工性、 ドロス発生等の点で、 十分な性能 を保持している。 特に'、 Mgと Caの含有量の合計を 5mass%以上としな がら、 Mgを l〜55mass%、 Caを l〜45mass%、 A1を 0.07〜45uiass 含有 した本発明鋼材は、 めっき密着性及び加工性の点でさらに優れ、 そ の中でも、 Mgを l〜25mass%、 Caを 1〜 10mass%、 A1を 0.07〜 25mass% としたものは、 耐食性においてさらに優れていた。 あるいは、 Mgを 25〜60mass%、 その中でも 34〜55mass%という範囲に特定し、 Caを 1 〜10mass%、 A1を 0.07〜 25mass%としたものは、 本発明'鋼材の中では 、 耐食性は同様であつたが、 特にアモルファス形成能が高く、 廉価 な冷却装置により効率良く付着量の大きいめっき鋼材の製造が可能 であった。 さらに、 Cr、 Mn、 Fe、 Co、 Ni、 Cuから選ばれる 1種ない し 2種以上を含有するものは、 特に密着性が向上し、 La、 Sn、 Pから 選ばれる 1種ないし 2種以上を含有するものは、 特に加工性が向上し た。 また、 Bi、 Mo、 W、 Si、 Ti、 V、 Ag、 Yから選ばれる 1種ないし 2 種以上を含有するものは、 密着性とアモルファス形成能の両方の性 能が向上した。
本発明のめっき鋼材の成分範囲でない、 あるいは、 アモルファス 体積分率の小さな比較葡材は、 耐食性が不足しているか、 耐食性が 良くても、 加工性が不足であった。 産業上の利用可能性
本発明の高耐食性溶融 Zn系めつき鋼材は、 従来の溶融めつきプロ セスによって製造可能であり、 かつ、 高耐食性でありながら、 犠牲 防食能にも優れる。 また、 アモルファス相を含有する本発明鋼材で は、 結晶性の溶融めつきよりも耐食性、 加工性に優れる。 これは、 自動車、 建築, 住宅、 等に広く適用することが可能で、 従来と同様 の製造性を保持しながら、 部材の寿命を向上させ、 資源の有効利用 、 環境負荷の低減、 メンテナンスの労力 · コス トの低減等に大きく 寄与する。

Claims

1. Znを 35mass%以上含有する合金めつき層を有し、 該合金めつ き層が示差走査熱量測定による発熱量が lJ/g以上となる非平衡相を 含有することを特徴とする高耐食性溶融 Zn系合金めつき鋼材。
2. Znを 35mass%以上含有する合金めつき層を有し、 該合金めつ き層が 0.5°C/秒あるいはそれ以下の昇温速度の示差走査熱量測定に よる発熱量が lJ/g以上となる非平衡相を含有すること'を特徴とする 高耐食性溶融 Zn系合金めつき鋼材。
3. 前記 Znが 40mass%以上である請求項 1または 2記載の高耐食性 溶融 Zn系合金めつき鋼材。
4. 前記合金めつき層が、 mass%で、 Mgを 1〜60%、 A1を 0.07〜59% を含有する請求項 1〜 3のいずれかの項に記載の高耐食性溶融 Zn系合 金めつき鋼材。
5. 前記合金めつき層が、 mass%で、 Znを 40%以上、 Mgを 1〜45%、 A1を 0.07〜59%含有する請求項 4記載の高耐食性溶融 Zn系合金めつき 鋼材。
6. 前記合金めつき層における Mgと A1の含有量が、 下記(式 1)〜 ( 式 5)の関係を満足する請求項 4または 5記載の高耐食性溶融 Zn系合金 めっき鋼材。
40≤Zn¾≤94.3 … (式 1)
0.08≤A1¾≤20 … (式 2)
3≤Mg¾≤ 18 … (式 3)
Al%≤2XMg¾ … (式 4)
Al¾≥l.24XMg%-12.32 … (式 5)
(ただし、 元素名%はその元素の mass%での含有量である。 ) 7. 前記合金めつき層中の成分として、 さらに、 mass%で、 Cr、 M n、 Fe、 Co、 Ni、 Cuから選ばれる 1種ないし 2種以上を合計で 0.1〜 10 %含有する請求項 1〜 6めいずれかに記載の高耐食性溶融 Zn系合金め つき鋼材。
8. 前記合金めつき層中の成分として、 さらに、 mass%で、 Bi、 M o、 W、 Yから選ばれる 1種ないし 2種以上を合計で 0.1〜10%含有する 請求項 1〜 7のいずれかに記載の高耐食性溶融 Zn系合金めつき鋼材。
9. 前記合金めつき層に、 さらに、 mass%で、 0. 1〜10%の La、 0.1 〜10%の Ce、 0.1%〜10%の Ca、 0.1%〜 10%の Sn、 0.005%〜2%の?、 0.02 %〜 7%の Siの 1種以上を含有する請求項 1〜 8のいずれかに記載の高耐 食性溶融 Zn系合金めつき鋼材。 '
1 0. 前記合金めつき層が、 アモルファス相を体積分率で 5%以上 含.有する請求項 1または 2記載の高耐食性溶融 Zn系合金めつき鋼材。
1 1. 前記合金めつき層が、 Al、 Mgを含有し、 Zn、 Al、 Mgの含有 量が、 下記(式 6)〜(式 8)の関係を満足する請求項 10記載の高耐食性 溶融 Zn系合金めつき餉材。
'35≤Ζη¾≤75 … (式 6)
0.08≤Α1¾≤25 … (式 7)
22≤Mg%≤60 … (式 8)
(ただし、 元素名%はその元素の mass での含有量である。 )
1 2. 前記合金めつき層が、 mass%で、 Ca、 Y.、 Laの内 1種以上を 合計で 0.1〜 10%含有する請求項 10又は 11に記載の高耐食性溶融 Zn系 合金めつき鋼材。
1 3. 前記合金めつき層における A1の含有量が 14mass 以下であ る請求項 10〜 12のいずれかに記載の高耐食性溶融 Zn系合金めつき鋼 材。
1 4. 前記合金めつき層中の体積分率で 50%以上がアモルファス 相であることを特徴とする請求項 1または 2記載の高耐食性溶融 Zn系 合金めつき鋼材。
1 5. 前記合金めつき層が、 mass%で、 Znを 35〜60%、 Mgを 25〜60 %、 Caを 1〜10%、 A1を 0.07〜25%含有し、 残部が不可避的不純物.であ る請求項 14記載の高耐食性溶融 Zn系合金めつき鋼材。
1 6. Znを 40niass%以上含有する合金めつき層を有し、 該合金め つき層中の体積分率で 50%以上'がアモルファス相であることを特徴 とする高耐食性溶融 Zn系合金めつき鋼材。
1 7. 前記合金めつき層が、 mass%で、 Mgを 1〜55%、 Caを 1〜45% 、 A1を 0.07〜45%含有し、 かつ Mgと Caの含有量の合計が 5%以上であ つて、 残部が不可避的不純物である請求項 16記載の高耐食性溶融 Zn 系合金め き鋼材。
1 8. 前記合金めつき層が、 mass%で、 Mgを 1〜25%、 Caを 1〜10% 、 A1を 0.07〜25%含有し、 かつ Mgと Caの含有量の合計が 5%以上であ つて、 残部が不可避的不純物である請求項 16記載の高耐食性溶融 Zn 系合金めつき鋼材。 '
1 9'. 前記合金めつき層が、 mass%で、 Znを 40〜60¾、 Mgを 34〜55 %、 Caを 1〜10%、 A1を 0.07〜25%含有し、 残部が不可避的不純物であ る請求項 16記載の高耐食性溶融 Zn系合金めつき鋼材。
2 0. 前記合金めつき層中の成分としてさらに、 Cr、 Mn、 Fe、 Co 、 Ni、 Cuから選ばれる 1種ないし 2種以上を合計で 0. l〜10mass%含有 する請求項 14〜 19のいずれかに記載の高耐食性溶融 Zn系合金めつき 鋼材。
2 1. 前記合金めつき層中の成分としてさらに、 Bi、 Mo、 W、 Si 、 Ti、 V、 Ag、 Yから選ばれる 1種ないし 2種以上を合計で 0. l〜10mas s%含有する請求項 14〜20のいずれかに記載の高耐食性溶融 Zn系合金 めっき鋼材。
2 2. 前記合金めつき層に、 さらに、 mass%で、 0.1〜10%の La、 0 : 1〜 10%の Sn、 0. 005〜 2%の Pから選ばれる 1種以上を含有する請求項 14〜2 1のいずれかに記載の高耐食性溶融 Zn系合金めつき鋼材。
2 3 . 前記合金めつき層を鋼材の少なく とも一部の表面に有する 請求項 1〜 22のいずれかに記載の高耐食性溶融 Zn系合金めつき鋼材
PCT/JP2007/055778 2006-03-20 2007-03-14 高耐食性溶融Zn系めっき鋼材 WO2007108496A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP07739221.5A EP1997927B1 (en) 2006-03-20 2007-03-14 Highly corrosion-resistant hot dip galvanized steel stock
AU2007228054A AU2007228054B2 (en) 2006-03-20 2007-03-14 Highly corrosion-resistant hot dip galvanized steel stock
JP2008506327A JP4874328B2 (ja) 2006-03-20 2007-03-14 高耐食性溶融Zn系めっき鋼材
CA2646554A CA2646554C (en) 2006-03-20 2007-03-14 High corrosion resistance hot dip galvanized steel material
CN2007800097433A CN101405421B (zh) 2006-03-20 2007-03-14 高耐蚀性热浸镀锌系钢材
BRPI0709041-2A BRPI0709041B1 (pt) 2006-03-20 2007-03-14 Chapa de aço galvanizado por imersão a quente com alta resistência à corrosão
US12/224,967 US8663818B2 (en) 2006-03-20 2007-03-14 High corrosion resistance hot dip galvanized steel material
NZ571099A NZ571099A (en) 2006-03-20 2007-03-14 Hot dip galvannealed steel material having an zinc alloy plated layer containing at least 12% magnesium
ES07739221.5T ES2601392T3 (es) 2006-03-20 2007-03-14 Material de acero galvanizado por inmersión en caliente de alta resistencia a la corrosión

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006-076547 2006-03-20
JP2006076547 2006-03-20
JP2006102108 2006-04-03
JP2006-102108 2006-04-03
JP2007-024427 2007-02-02
JP2007024427 2007-02-02

Publications (1)

Publication Number Publication Date
WO2007108496A1 true WO2007108496A1 (ja) 2007-09-27

Family

ID=38522523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055778 WO2007108496A1 (ja) 2006-03-20 2007-03-14 高耐食性溶融Zn系めっき鋼材

Country Status (13)

Country Link
US (1) US8663818B2 (ja)
EP (1) EP1997927B1 (ja)
JP (1) JP4874328B2 (ja)
KR (1) KR101070061B1 (ja)
CN (1) CN101405421B (ja)
AU (1) AU2007228054B2 (ja)
BR (1) BRPI0709041B1 (ja)
CA (1) CA2646554C (ja)
ES (1) ES2601392T3 (ja)
MY (1) MY147395A (ja)
NZ (1) NZ571099A (ja)
TW (1) TWI392764B (ja)
WO (1) WO2007108496A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009091652A (ja) * 2007-09-19 2009-04-30 Nippon Steel Corp 溶融Mg−Al系合金めっき鋼材
EP2295613A1 (en) * 2008-06-03 2011-03-16 National Institute for Materials Science Mg-BASE ALLOY
JP2013518183A (ja) * 2010-01-25 2013-05-20 ブルースコープ・スティール・リミテッド 金属被覆された鋼ストリップ
JP2015214749A (ja) * 2014-04-23 2015-12-03 Jfeスチール株式会社 溶融Al−Zn系めっき鋼板及びその製造方法
CN105420653A (zh) * 2015-12-01 2016-03-23 宝钢集团南通线材制品有限公司 一种用于桥梁钢丝表面热浸镀Zn-Al-Mg合金层及其制备方法
JP2016160476A (ja) * 2015-02-27 2016-09-05 新日鐵住金株式会社 亜鉛系合金めっき溶接h形鋼及びその製造方法
JP5994856B2 (ja) * 2013-03-28 2016-09-21 Jfeスチール株式会社 溶融Al−Zn系めっき鋼板及びその製造方法
WO2016162982A1 (ja) * 2015-04-08 2016-10-13 新日鐵住金株式会社 Zn-Al-Mg系めっき鋼板、及びZn-Al-Mg系めっき鋼板の製造方法
US9564255B2 (en) 2013-01-30 2017-02-07 Hitachi Metals, Ltd. High-speed transmission cable conductor, and producing method thereof, and high-speed transmission cable
JP2017066459A (ja) * 2015-09-29 2017-04-06 新日鐵住金株式会社 めっき鋼材
JP2017066457A (ja) * 2015-09-29 2017-04-06 新日鐵住金株式会社 加工性と耐食性に優れるMg含有合金めっき鋼材
JP2017524806A (ja) * 2014-05-28 2017-08-31 アルセロールミタル ランタンを含む犠牲カソード防食を提供する皮膜を備える鋼板
US9769933B2 (en) 2013-11-29 2017-09-19 Hitachi Metals, Ltd. Printed circuit board and method of manufacturing the same
US9884467B2 (en) 2012-06-01 2018-02-06 Hitachi Cable, Ltd. Copper-based material and method for producing the same
WO2018043286A1 (ja) 2016-09-05 2018-03-08 Jfeスチール株式会社 溶融Al-Zn系めっき鋼板
US10006138B2 (en) 2013-11-29 2018-06-26 Hitachi Metals, Ltd. Copper foil and method of manufacturing the same
JP6365807B1 (ja) * 2017-01-27 2018-08-01 新日鐵住金株式会社 めっき鋼材

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6031219B2 (ja) * 2007-03-15 2016-11-24 新日鐵住金株式会社 溶融Mg−Zn系合金めっき鋼材及びその製造方法
MY155139A (en) * 2009-01-16 2015-09-15 Nippon Steel & Sumitomo Metal Corp Hot-dip zn-al-mg-si-cr alloy-coated steel material with excellent corrosion resistance
JP5593836B2 (ja) * 2009-05-29 2014-09-24 Jfeスチール株式会社 溶融Al−Zn系めっき鋼板
KR20230048464A (ko) * 2010-01-06 2023-04-11 블루스코프 스틸 리미티드 금속 코팅된 강철 스트립
CN101812653A (zh) * 2010-05-18 2010-08-25 梁士臣 在生产中气刀气源为空气的热浸镀锌铝镁硅稀土镀层钢带
US9234267B2 (en) 2010-11-26 2016-01-12 Jfe Steel Corporation Hot-dip Al—Zn coated steel sheet
WO2012070695A1 (ja) * 2010-11-26 2012-05-31 Jfeスチール株式会社 溶融Al-Zn系めっき鋼板
DE102010064222A1 (de) * 2010-12-27 2012-06-28 Stefan Hundt Beschichtetes Metallsubstrat
KR101080164B1 (ko) * 2011-01-11 2011-11-07 한국기계연구원 발화저항성과 기계적 특성이 우수한 마그네슘 합금 및 그 제조방법
US9735126B2 (en) * 2011-06-07 2017-08-15 Infineon Technologies Ag Solder alloys and arrangements
CN102268623B (zh) * 2011-08-26 2014-12-10 无锡市广润金属制品有限公司 一种带钢热浸镀锌工艺
CN102312183B (zh) * 2011-08-26 2014-12-24 无锡市广润金属制品有限公司 一种带钢热浸镀锌方法
CN103131986B (zh) * 2011-11-29 2015-05-20 贵州铝厂 含Ca多组合变质的低锌热浸镀铝合金镀层材料
KR20160003078A (ko) 2013-05-03 2016-01-08 허니웰 인터내셔날 인코포레이티드 무연 솔더 접속을 위한 리드 프레임 구조체
KR101500218B1 (ko) * 2013-12-11 2015-03-06 현대자동차주식회사 차량 도어, 그 인너패널 및 인너패널 도금재
KR20160121562A (ko) 2014-02-20 2016-10-19 허니웰 인터내셔날 인코포레이티드 무연 솔더 조성물
CN103882260A (zh) * 2014-02-25 2014-06-25 安徽祈艾特电子科技有限公司 一种耐磨锌合金材料及其制备方法
CN106164323B (zh) * 2014-03-28 2019-01-11 新日铁住金株式会社 含有准晶体的镀覆钢板
KR101823286B1 (ko) 2014-03-28 2018-01-29 신닛테츠스미킨 카부시키카이샤 준결정 함유 도금 강판
CN105277478A (zh) * 2014-07-15 2016-01-27 广东电网公司电力科学研究院 工业大气环境下镀锌钢镀层的腐蚀模拟方法和耐蚀性评价方法
KR101758529B1 (ko) * 2014-12-24 2017-07-17 주식회사 포스코 인산염 처리성과 스폿 용접성이 우수한 아연합금도금강판 및 그 제조방법
TWI568884B (zh) * 2015-04-08 2017-02-01 新日鐵住金股份有限公司 Zn-Al-Mg系鍍敷鋼板及Zn-Al-Mg系鍍敷鋼板之製造方法
KR102058889B1 (ko) 2015-09-29 2019-12-26 닛폰세이테츠 가부시키가이샤 도금 강재
WO2017060745A1 (en) * 2015-10-05 2017-04-13 Arcelormittal Steel sheet coated with a metallic coating based on aluminium and comprising titanium
CN105648273A (zh) * 2016-01-27 2016-06-08 浙江华达新型材料股份有限公司 一种添加稀土的锌铝镁镀层钢板
WO2018139619A1 (ja) * 2017-01-27 2018-08-02 新日鐵住金株式会社 めっき鋼材
CN107142395B (zh) * 2017-04-26 2018-06-19 重庆大学 一种Zn-Mg-Ti中间合金及用于制备Mg-Zn系镁合金的方法
CN107400830A (zh) * 2017-08-19 2017-11-28 广州广钢新材料有限公司 一种螺纹钢及其制备方法
KR102235255B1 (ko) * 2017-12-26 2021-04-02 주식회사 포스코 내식성 및 표면 평활성이 우수한 아연합금도금강재 및 그 제조방법
KR102425278B1 (ko) * 2018-05-16 2022-07-27 닛폰세이테츠 가부시키가이샤 도금 강재
CN109371285B (zh) * 2018-10-24 2021-07-02 国网辽宁省电力有限公司营口供电公司 一种架空导线用钢芯线防腐合金镀层及其制备方法
CN110257750B (zh) * 2019-07-04 2021-07-13 国网山东省电力公司滨州供电公司 一种热浸镀铝合金镀层及其热浸镀方法
CN110331355B (zh) * 2019-08-16 2020-09-22 东北大学 在型钢钢材上获得砂石色镀层的热镀锌方法
CN111575626A (zh) * 2020-06-08 2020-08-25 首钢集团有限公司 一种热镀锌热轧钢及其制备方法
CN111826551A (zh) * 2020-07-16 2020-10-27 江苏麟龙新材料股份有限公司 一种新型的锌铝镁合金材料及生产方法
EP4223897A4 (en) * 2020-11-18 2024-04-10 Nippon Steel Corp CLAD STEEL MATERIAL
CN117265445A (zh) * 2022-06-13 2023-12-22 宝山钢铁股份有限公司 一种热浸镀锌铝镁钙合金镀层钢板及其制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06248424A (ja) 1993-02-25 1994-09-06 Nisshin Steel Co Ltd 加工性に優れた高耐食性Zn−Mg合金めっき鋼板
JPH06346254A (ja) 1993-06-14 1994-12-20 Nisshin Steel Co Ltd 高耐食性Zn/Cr系複層めっき鋼板及び製造方法
JP2001234361A (ja) 2000-02-24 2001-08-31 Ibiden Co Ltd 高耐食ニッケル−金めっき
JP2004149914A (ja) 2002-10-31 2004-05-27 Howmet Research Corp タンタルアモルファス合金
JP2005060805A (ja) 2003-08-20 2005-03-10 Hitachi Metals Ltd アモルファス合金部材及びその製造方法並びにそれを用いた部品
JP2005126795A (ja) 2003-10-27 2005-05-19 Takao Kurahashi アモルファス皮膜の形成方法
JP2005256091A (ja) * 2004-03-11 2005-09-22 Nippon Steel Corp 耐アブレージョン性に優れる高耐食性溶融めっき鋼板とその製造方法
JP2006002252A (ja) 2004-06-14 2006-01-05 Yonsei Univ 非晶質形成能と延性の優れたマグネシウム系非晶質合金
WO2007004671A1 (ja) * 2005-07-05 2007-01-11 Nippon Steel Corporation 良好な耐食性を有する溶融Sn-Zn系めっき鋼板

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1125965A (en) 1964-09-15 1968-09-05 Inland Steel Co Zinc coating and a method of applying same
JPS58133360A (ja) * 1982-02-02 1983-08-09 Shimada Phys & Chem Ind Co Ltd 鉄表面の処理方法
US4401727A (en) * 1982-06-23 1983-08-30 Bethlehem Steel Corporation Ferrous product having an alloy coating thereon of Al-Zn-Mg-Si Alloy, and method
JPS59171645A (ja) * 1983-03-19 1984-09-28 日新製鋼株式会社 防食性の優れた溶接性塗装鋼板
SU1289910A1 (ru) 1985-09-09 1987-02-15 Гомельский политехнический институт Устройство дл нанесени покрытий на длинномерные издели
JPH0293053A (ja) * 1988-09-29 1990-04-03 Kobe Steel Ltd 高耐蝕性溶融Zn−Mg系合金めっき鋼板の製造方法
JPH0432580A (ja) * 1990-05-30 1992-02-04 Kawasaki Steel Corp 耐食性に優れたZn系めっき鋼板
JP3179446B2 (ja) * 1998-07-02 2001-06-25 新日本製鐵株式会社 耐食性に優れためっき鋼板と塗装鋼板及びその製造方法
JP2000054101A (ja) 1998-08-10 2000-02-22 Nkk Corp 耐白錆性に優れた溶融Al−Zn系合金めっき鋼板
JP4136286B2 (ja) * 1999-08-09 2008-08-20 新日本製鐵株式会社 耐食性に優れたZn−Al−Mg−Si合金めっき鋼材およびその製造方法
CN1258613C (zh) 1999-10-25 2006-06-07 新日本制铁株式会社 耐蚀性能高且可加工性能出色的电镀钢丝及其制造方法
JP2002012954A (ja) * 2000-06-28 2002-01-15 Nippon Steel Corp めっき密着性に優れた表面処理ステンレス鋼
JP2002180225A (ja) * 2000-12-13 2002-06-26 Nippon Steel Corp 耐食性、加工性に優れためっき鋼板
JP4696364B2 (ja) 2001-01-24 2011-06-08 Jfeスチール株式会社 耐食性と表面外観に優れた溶融亜鉛系めっき鋼板
JP2003138359A (ja) * 2001-10-29 2003-05-14 Sumitomo Metal Ind Ltd 溶融Zn−Al−Mg−Zr合金めっき鋼板およびその製造方法
JP3779941B2 (ja) 2002-01-09 2006-05-31 新日本製鐵株式会社 塗装後耐食性と塗装鮮映性に優れた亜鉛めっき鋼板
JP2004019000A (ja) 2002-06-20 2004-01-22 Sumitomo Metal Ind Ltd 外観、加工性、耐食性に優れた溶融Zn−Alめっき鋼板とその製造方法
JP4102144B2 (ja) 2002-09-13 2008-06-18 新日本製鐵株式会社 均一塗装性と耐食性に優れた溶融亜鉛メッキ鋼材およびその製造方法
AU2003275688B2 (en) 2002-10-28 2006-12-14 Nippon Steel Corporation High corrosion-resistant hot dip coated steel product excellent in surface smoothness and formability, and method for producing hot dip coated steel product
JP4500113B2 (ja) 2003-06-16 2010-07-14 Jfeスチール株式会社 高耐食性表面処理鋼板及びその製造方法
DE602004029673D1 (de) 2003-11-21 2010-12-02 Jfe Steel Corp Oberflächenbehandeltes stahlblech mit ausgezeichnegkeit und beschichtungsfilmerscheinungsbild
JP4585224B2 (ja) * 2004-04-28 2010-11-24 新日本製鐵株式会社 高耐食性亜鉛系合金めっき鋼材用塗料
JP4377743B2 (ja) * 2004-05-06 2009-12-02 新日本製鐵株式会社 高耐食性合金化溶融亜鉛めっき鋼板
JP4374281B2 (ja) * 2004-05-26 2009-12-02 新日本製鐵株式会社 加工部耐食性に優れる溶融めっき鋼材
CN103320738A (zh) 2004-06-29 2013-09-25 塔塔钢铁艾默伊登有限责任公司 具有热浸镀锌合金镀层的钢片及其制备方法
DE102004037673B4 (de) * 2004-08-04 2009-01-29 Thyssenkrupp Steel Ag Verfahren zur simultanen elektrolytischen Abscheidung von Zink und Magnesium auf einem Substrat aus Blech und Verfahren zur Herstellung eines korrosionsgeschützten lackierten Formteils aus Blech
DE102005002706B4 (de) * 2005-01-19 2009-03-05 Benteler Automobiltechnik Gmbh Beschichtungsverfahren

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06248424A (ja) 1993-02-25 1994-09-06 Nisshin Steel Co Ltd 加工性に優れた高耐食性Zn−Mg合金めっき鋼板
JPH06346254A (ja) 1993-06-14 1994-12-20 Nisshin Steel Co Ltd 高耐食性Zn/Cr系複層めっき鋼板及び製造方法
JP2001234361A (ja) 2000-02-24 2001-08-31 Ibiden Co Ltd 高耐食ニッケル−金めっき
JP2004149914A (ja) 2002-10-31 2004-05-27 Howmet Research Corp タンタルアモルファス合金
JP2005060805A (ja) 2003-08-20 2005-03-10 Hitachi Metals Ltd アモルファス合金部材及びその製造方法並びにそれを用いた部品
JP2005126795A (ja) 2003-10-27 2005-05-19 Takao Kurahashi アモルファス皮膜の形成方法
JP2005256091A (ja) * 2004-03-11 2005-09-22 Nippon Steel Corp 耐アブレージョン性に優れる高耐食性溶融めっき鋼板とその製造方法
JP2006002252A (ja) 2004-06-14 2006-01-05 Yonsei Univ 非晶質形成能と延性の優れたマグネシウム系非晶質合金
WO2007004671A1 (ja) * 2005-07-05 2007-01-11 Nippon Steel Corporation 良好な耐食性を有する溶融Sn-Zn系めっき鋼板

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009091652A (ja) * 2007-09-19 2009-04-30 Nippon Steel Corp 溶融Mg−Al系合金めっき鋼材
EP2295613A1 (en) * 2008-06-03 2011-03-16 National Institute for Materials Science Mg-BASE ALLOY
EP2295613A4 (en) * 2008-06-03 2013-07-24 Nat Inst For Materials Science ALLOY ON Mg BASE
JP2013518183A (ja) * 2010-01-25 2013-05-20 ブルースコープ・スティール・リミテッド 金属被覆された鋼ストリップ
JP7242625B2 (ja) 2010-01-25 2023-03-20 ブルースコープ・スティール・リミテッド 金属被覆された鋼ストリップ
JP2021063295A (ja) * 2010-01-25 2021-04-22 ブルースコープ・スティール・リミテッドBluescope Steel Limited 金属被覆された鋼ストリップ
JP2019065395A (ja) * 2010-01-25 2019-04-25 ブルースコープ・スティール・リミテッドBluescope Steel Limited 金属被覆された鋼ストリップ
JP2016194160A (ja) * 2010-01-25 2016-11-17 ブルースコープ・スティール・リミテッドBluescope Steel Limited 金属被覆された鋼ストリップ
US9884467B2 (en) 2012-06-01 2018-02-06 Hitachi Cable, Ltd. Copper-based material and method for producing the same
US9564255B2 (en) 2013-01-30 2017-02-07 Hitachi Metals, Ltd. High-speed transmission cable conductor, and producing method thereof, and high-speed transmission cable
US9758853B2 (en) 2013-03-28 2017-09-12 Jfe Steel Corporation Hot-dip Al—Zn alloy coated steel sheet and method for producing same
JPWO2014155944A1 (ja) * 2013-03-28 2017-02-16 Jfeスチール株式会社 溶融Al−Zn系めっき鋼板及びその製造方法
JP5994856B2 (ja) * 2013-03-28 2016-09-21 Jfeスチール株式会社 溶融Al−Zn系めっき鋼板及びその製造方法
US9769933B2 (en) 2013-11-29 2017-09-19 Hitachi Metals, Ltd. Printed circuit board and method of manufacturing the same
US10006138B2 (en) 2013-11-29 2018-06-26 Hitachi Metals, Ltd. Copper foil and method of manufacturing the same
JP2015214749A (ja) * 2014-04-23 2015-12-03 Jfeスチール株式会社 溶融Al−Zn系めっき鋼板及びその製造方法
JP2017524806A (ja) * 2014-05-28 2017-08-31 アルセロールミタル ランタンを含む犠牲カソード防食を提供する皮膜を備える鋼板
JP2016160476A (ja) * 2015-02-27 2016-09-05 新日鐵住金株式会社 亜鉛系合金めっき溶接h形鋼及びその製造方法
WO2016162982A1 (ja) * 2015-04-08 2016-10-13 新日鐵住金株式会社 Zn-Al-Mg系めっき鋼板、及びZn-Al-Mg系めっき鋼板の製造方法
KR20170105092A (ko) 2015-04-08 2017-09-18 신닛테츠스미킨 카부시키카이샤 Zn-Al-Mg계 도금 강판 및 Zn-Al-Mg계 도금 강판의 제조 방법
JP6070915B1 (ja) * 2015-04-08 2017-02-01 新日鐵住金株式会社 Zn−Al−Mg系めっき鋼板、及びZn−Al−Mg系めっき鋼板の製造方法
US10472710B2 (en) 2015-04-08 2019-11-12 Nippon Steel Corporation Zn—Al—Mg coated steel sheet, and method of producing Zn—Al—Mg coated steel sheet
JP2017066459A (ja) * 2015-09-29 2017-04-06 新日鐵住金株式会社 めっき鋼材
JP2017066457A (ja) * 2015-09-29 2017-04-06 新日鐵住金株式会社 加工性と耐食性に優れるMg含有合金めっき鋼材
CN105420653A (zh) * 2015-12-01 2016-03-23 宝钢集团南通线材制品有限公司 一种用于桥梁钢丝表面热浸镀Zn-Al-Mg合金层及其制备方法
KR20190045297A (ko) 2016-09-05 2019-05-02 제이에프이 스틸 가부시키가이샤 용융 Al-Zn계 도금 강판
KR20210068627A (ko) 2016-09-05 2021-06-09 제이에프이 스틸 가부시키가이샤 용융 Al-Zn계 도금 강판
KR20220013591A (ko) 2016-09-05 2022-02-04 제이에프이 스틸 가부시키가이샤 도막 부착 용융 Al-Zn계 도금 강판
WO2018043286A1 (ja) 2016-09-05 2018-03-08 Jfeスチール株式会社 溶融Al-Zn系めっき鋼板
WO2018139620A1 (ja) * 2017-01-27 2018-08-02 新日鐵住金株式会社 めっき鋼材
AU2018211811B2 (en) * 2017-01-27 2021-03-11 Nippon Steel Corporation Metallic Coated Steel Product
JP6365807B1 (ja) * 2017-01-27 2018-08-01 新日鐵住金株式会社 めっき鋼材
US11555235B2 (en) 2017-01-27 2023-01-17 Nippon Steel Corporation Metallic coated steel product

Also Published As

Publication number Publication date
ES2601392T3 (es) 2017-02-15
EP1997927A1 (en) 2008-12-03
US8663818B2 (en) 2014-03-04
EP1997927B1 (en) 2016-09-28
TW200736414A (en) 2007-10-01
BRPI0709041B1 (pt) 2018-06-05
NZ571099A (en) 2012-05-25
JPWO2007108496A1 (ja) 2009-08-06
CN101405421B (zh) 2012-04-04
BRPI0709041A2 (pt) 2011-06-21
KR20080094960A (ko) 2008-10-27
CA2646554C (en) 2011-08-02
JP4874328B2 (ja) 2012-02-15
TWI392764B (zh) 2013-04-11
CN101405421A (zh) 2009-04-08
CA2646554A1 (en) 2007-09-27
MY147395A (en) 2012-11-30
AU2007228054A1 (en) 2007-09-27
KR101070061B1 (ko) 2011-10-04
US20090053555A1 (en) 2009-02-26
AU2007228054B2 (en) 2011-03-10
EP1997927A4 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
WO2007108496A1 (ja) 高耐食性溶融Zn系めっき鋼材
JP3779941B2 (ja) 塗装後耐食性と塗装鮮映性に優れた亜鉛めっき鋼板
US8562757B2 (en) Mg-based alloy plated steel material
JP4174058B2 (ja) 表面平滑性と成形性に優れる高耐食性溶融めっき鋼材と溶融めっき鋼材の製造方法
JP5556186B2 (ja) 高耐食性溶融亜鉛めっき鋼板
BRPI1007387B1 (pt) material de aço revestido com liga de zn-al-mg-si-cr por imersão a quente e seu método para produção
JP2017066459A (ja) めっき鋼材
JP5655263B2 (ja) 溶融Mg−Al系合金めっき鋼材
JP4374281B2 (ja) 加工部耐食性に優れる溶融めっき鋼材
JP6128158B2 (ja) 溶融Mg−Zn系合金めっき鋼材
JP7291860B1 (ja) 溶融Al-Zn系めっき鋼板及びその製造方法
JP4374263B2 (ja) 耐アブレージョン性に優れる高耐食性溶融めっき鋼板とその製造方法
WO2023238934A1 (ja) Zn-Al-Mg系溶融めっき鋼板
JP7499849B2 (ja) 溶融Al-Zn系めっき鋼板及びその製造方法
KR20090108737A (ko) Mg기 합금 도금 강재
EP4174203A1 (en) Hot-dip galvanized steel material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739221

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008506327

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 571099

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2007228054

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 7791/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2646554

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 200780009743.3

Country of ref document: CN

Ref document number: 1020087022854

Country of ref document: KR

REEP Request for entry into the european phase

Ref document number: 2007739221

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007739221

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2007228054

Country of ref document: AU

Date of ref document: 20070314

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12224967

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2008141267

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0709041

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080922