WO2023238934A1 - Zn-Al-Mg系溶融めっき鋼板 - Google Patents
Zn-Al-Mg系溶融めっき鋼板 Download PDFInfo
- Publication number
- WO2023238934A1 WO2023238934A1 PCT/JP2023/021552 JP2023021552W WO2023238934A1 WO 2023238934 A1 WO2023238934 A1 WO 2023238934A1 JP 2023021552 W JP2023021552 W JP 2023021552W WO 2023238934 A1 WO2023238934 A1 WO 2023238934A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hot
- phase
- dip
- plating layer
- mass
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 77
- 239000010959 steel Substances 0.000 title claims abstract description 77
- 238000007747 plating Methods 0.000 claims abstract description 131
- 229910018134 Al-Mg Inorganic materials 0.000 claims abstract description 28
- 229910018467 Al—Mg Inorganic materials 0.000 claims abstract description 28
- 239000000203 mixture Substances 0.000 claims abstract description 18
- 239000012535 impurity Substances 0.000 claims abstract description 10
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 7
- 229910052698 phosphorus Inorganic materials 0.000 claims description 6
- 229910052796 boron Inorganic materials 0.000 claims description 5
- 229910052791 calcium Inorganic materials 0.000 claims description 5
- 229910052745 lead Inorganic materials 0.000 claims description 5
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 229910052706 scandium Inorganic materials 0.000 claims description 5
- 229910052712 strontium Inorganic materials 0.000 claims description 5
- 229910052718 tin Inorganic materials 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 229910052727 yttrium Inorganic materials 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 229910052735 hafnium Inorganic materials 0.000 claims description 4
- 239000011701 zinc Substances 0.000 description 164
- 239000012071 phase Substances 0.000 description 143
- 239000010410 layer Substances 0.000 description 91
- 229910017706 MgZn Inorganic materials 0.000 description 46
- 230000005496 eutectics Effects 0.000 description 37
- 238000005260 corrosion Methods 0.000 description 26
- 230000007797 corrosion Effects 0.000 description 26
- 239000000843 powder Substances 0.000 description 26
- 238000003618 dip coating Methods 0.000 description 15
- 229910001335 Galvanized steel Inorganic materials 0.000 description 14
- 239000011247 coating layer Substances 0.000 description 14
- 239000008397 galvanized steel Substances 0.000 description 14
- 239000000126 substance Substances 0.000 description 12
- 230000006911 nucleation Effects 0.000 description 11
- 238000010899 nucleation Methods 0.000 description 11
- 239000002932 luster Substances 0.000 description 10
- 229910052749 magnesium Inorganic materials 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 229910019018 Mg 2 Si Inorganic materials 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 9
- 238000000137 annealing Methods 0.000 description 9
- 229910052725 zinc Inorganic materials 0.000 description 9
- 238000010587 phase diagram Methods 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000006104 solid solution Substances 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- 230000000996 additive effect Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 210000003918 fraction a Anatomy 0.000 description 4
- 238000007711 solidification Methods 0.000 description 4
- 230000008023 solidification Effects 0.000 description 4
- 229910017708 MgZn2 Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 210000002196 fr. b Anatomy 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229910018571 Al—Zn—Mg Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- 229910000655 Killed steel Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910009369 Zn Mg Inorganic materials 0.000 description 1
- 229910007573 Zn-Mg Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
- C22C18/04—Alloys based on zinc with aluminium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
Definitions
- the present invention relates to a Zn-Al-Mg hot-dip galvanized steel sheet with a glossy appearance.
- Hot-dip galvanized steel sheets are used as steel sheets with good corrosion resistance.
- Hot-dip galvanized steel sheets which are a typical example of hot-dip galvanized steel sheets, are widely used in various manufacturing industries such as automobiles, home appliances, and building materials. Further, for the purpose of further improving the corrosion resistance of hot-dip galvanized steel sheets, highly corrosion-resistant hot-dip galvanized steel sheets have been proposed in which the hot-dip galvanized layer contains Al or Mg.
- Patent Documents 1 to 3 propose Zn-Al-Mg hot-dip galvanized steel sheets.
- Zn-Al-Mg hot-dip coated steel sheets have [Al phase], [Zn phase], [MgZn two phases], [ternary eutectic structure of Al/MgZn 2 /Zn], Mainly includes four types of phases and structures.
- Si is contained in the hot-dip plating layer in addition to Zn, Al, and Mg, in addition to the above four types of phases and structures, there are mainly five types of phases and structures including [Mg 2 Si phase].
- the hot-dip coating layer of the Zn-Al-Mg hot-dip galvanized steel sheet contains various phases and structures, so the surface of the hot-dip coating layer has a satin-like appearance.
- Zn-Al-Mg hot-dip coated steel sheets are widely used in various manufacturing industries such as automobiles, home appliances, and building materials.
- customer demands for the surface appearance of plated steel sheets have been increasing, and Zn--Al--Mg hot-dip coated steel sheets are required to have an appearance with stronger metallic luster.
- the present invention has been made in view of the above circumstances, and an object thereof is to provide a Zn-Al-Mg-based hot-dip plated steel sheet that has superior metallic luster on the surface of a hot-dip plated layer and excellent corrosion resistance compared to conventional ones.
- the present invention employs the following configuration.
- the hot-dip plating layer has an average composition of more than 10 to 22% by mass of Al, 1.0 to 10% by mass of Mg, and the remainder contains Zn and impurities,
- the thickness of the hot-dip plating layer is t, and a 5 mm square cross section parallel to the surface of the hot-dip plating layer is exposed at any position of 3t/4 position, t/2 position, or t/4 position from the surface of the hot-dip plating layer.
- a Zn-Al-Mg hot-dipped steel sheet wherein the area fraction of the [Zn phase] in the plating structure in at least one cross section is less than 20%.
- the hot-dip plating layer has an average composition of more than 10 to 22% by mass of Al, 1.0 to 10% by mass of Mg, and the remainder contains Zn and impurities, Furthermore, it contains one or two selected from the group consisting of Group A and Group B below,
- the thickness of the hot-dip plating layer is t, and a 5 mm square cross section parallel to the surface of the hot-dip plating layer is exposed at any position of 3t/4 position, t/2 position, or t/4 position from the surface of the hot-dip plating layer.
- a Zn-Al-Mg hot-dipped steel sheet wherein the area fraction of the [Zn phase] in the plating structure in at least one cross section is less than 20%.
- Si 0.0001 to 2% by mass
- Group B Any one or two of Ni, Ti, Zr, Sr, Fe, Sb, Pb, Sn, Ca, Co, Mn, P, B, Bi, Cr, Sc, Y, REM, Hf, and C 0.0001 to 2% by mass of seeds or more in total
- the ratio of the area fraction B of [Zn phase] to the total area fraction A of [Zn phase] and [ternary eutectic structure of Al/MgZn 2 /Zn] of the plating structure in at least one cross section The Zn-Al-Mg hot-dipped steel sheet according to [1] or [2], wherein B/A (%)) is less than 20%.
- FIG. 1 is a schematic cross-sectional view illustrating an exposed surface for measuring the plating structure of a hot-dip coating layer in a Zn-Al-Mg hot-dip galvanized steel sheet according to an embodiment of the present invention.
- FIG. 2 is a perspective view illustrating an exposed surface for measuring the plating structure of a hot-dip coating layer in a Zn-Al-Mg hot-dip galvanized steel sheet according to an embodiment of the present invention.
- the present inventors investigated in detail the plating layer of a conventional Zn-Al-Mg hot-dip plated steel sheet that exhibits a satin-like appearance.
- the satin-like appearance is caused by the coexistence of fine shiny parts exhibiting metallic luster and fine white parts exhibiting white color.
- the area fraction of the [Zn phase] on the surface of the plating layer was smaller than that in the white part.
- the ratio of the [Zn phase] to the [ternary eutectic structure of Al/MgZn 2 /Zn] was higher than that in the glossy part.
- the present inventors conducted extensive studies to obtain a glossy appearance as a whole by increasing the number of glossy parts and reducing the white parts in the hot-dip plating layer, and found that while adjusting the chemical components of the hot-dip plating layer, It has been found that by reducing the proportion of [Zn phase], the surface appearance of the plating layer as a whole comes to exhibit metallic luster. In addition, by lowering the ratio of the [Zn phase] to the total of [ternary eutectic structure of Al/MgZn 2 /Zn] and [Zn phase] in the entire plating layer, the appearance of the plating layer has a more metallic luster. We found that
- the Zn-Al-Mg hot-dip plated steel sheet of the present embodiment includes a steel plate and a hot-dip coating layer formed on the surface of the steel plate, and the average composition of the hot-dip coating layer is Al: more than 10 to 22% by mass. , Mg: 1.0 to 10% by mass, and the remainder contains Zn and impurities, and the thickness of the hot-dip plating layer is t, and the position is 3t/4 position, t/2 position, or t/2 position from the surface of the hot-dip plating layer.
- the area fraction of the [Zn phase] in the plating structure in at least one cross section is less than 20%.
- the 5 mm square cross section parallel to the surface of the plating layer refers to a square exposed surface that is parallel to the surface and has a width of 5 mm square in plan view.
- the steel material that forms the base of the hot-dip plating layer there are no particular restrictions on the steel material that forms the base of the hot-dip plating layer.
- the material it can be applied to general steel, Al-killed steel, and some high-alloy steels, and there are no particular restrictions on the shape. Further, the steel material may be subjected to Ni pre-plating.
- the hot-dip plating layer according to this embodiment is formed by applying the hot-dip plating method described below to the steel material.
- the hot-dip plating layer according to the present embodiment contains, on average, more than 10 to 22% by mass of Al, 1.0 to 10% by mass of Mg, and the remainder includes Zn and impurities. Furthermore, it may contain one or two selected from the group consisting of Group A and Group B below. [Group A] Si: 0.0001 to 2% by mass [Group B] Any one or two of Ni, Ti, Zr, Sr, Fe, Sb, Pb, Sn, Ca, Co, Mn, P, B, Bi, Cr, Sc, Y, REM, Hf, and C 0.0001 to 2% by mass of seeds or more in total
- the content of Al is in the range of more than 10% by mass and 22% by mass or less in terms of average composition.
- Al is an element necessary to ensure corrosion resistance. If the content of Al in the hot-dip coating layer is 10% by mass or less, the effect of improving corrosion resistance becomes insufficient, and if it exceeds 22% by mass, the corrosion resistance decreases, although the cause is unknown. From the viewpoint of corrosion resistance, the content is preferably more than 10% by mass and 20% by mass or less. More preferably, it is more than 10% by mass and 18% by mass or less. More preferably, it is 11% by mass or more. Moreover, it is more preferably 19% by mass or less.
- the Mg content is in the range of 1.0 to 10% by mass in terms of average composition.
- Mg is an element necessary to improve the corrosion resistance of the hot-dip plated layer. If the content of Mg in the hot-dip coating layer is less than 1.0% by mass, the effect of improving corrosion resistance will be insufficient, and if it exceeds 10% by mass, dross generation in the plating bath will become significant, and it will not be possible to coat steel materials stably. It becomes difficult to manufacture.
- the content is preferably 1.5% by mass or more. Moreover, it is preferably 8% by mass or less. More preferably, it is 2% by mass or more. Further, it is more preferably 6% by mass or less.
- the hot-dip plating layer may contain Si in a range of 0.0001 to 2% by mass.
- Si is an effective element for improving the adhesion of the hot-dip plating layer. It is preferable to contain Si in an amount of 0.0001% by mass or more because the effect of improving adhesion is exhibited by containing 0.0001% by mass or more of Si.
- the effect of improving plating adhesion is saturated even if the content exceeds 2% by mass, so the content of Si is set to 2% by mass or less.
- the content may be 0.01% by mass or more, or may be 1% by mass or less. Furthermore, it may be set to 0.03% by mass or more, or may be set to 0.8% by mass or more.
- the average composition of the hot-dip plating layer is Ni, Ti, Zr, Sr, Fe, Sb, Pb, Sn, Ca, Co, Mn, P, B, Bi, Cr, Sc, Y, REM, Hf. , C may be contained in a total amount of 0.0001 to 2% by mass. Further, the content may be in the range of 0.01 to 2% by mass. By containing these elements, corrosion resistance can be further improved.
- REM is one or more rare earth elements with atomic numbers 57 to 71 in the periodic table.
- the remainder of the chemical components of the hot-dip plated layer are zinc and impurities.
- composition of the hot-dip plating layer can be measured by the following method. First, the surface coating film is removed with a paint film remover that does not corrode the plating (for example, Neoliver SP-751 manufactured by Sansai Kako Co., Ltd.), and then the hot-dip plating layer is removed with hydrochloric acid containing an inhibitor (for example, Hibiron manufactured by Sugimura Kagaku Kogyo Co., Ltd.). It can be determined by dissolving and subjecting the resulting solution to inductively coupled plasma (ICP) emission spectroscopic analysis.
- ICP inductively coupled plasma
- the structure of the hot-dip plating layer of this embodiment may have the following structure, for example.
- the hot-dip plating layer containing Al, Mg, and Zn includes [Al phase], [MgZn 2 phase], [Zn phase], and [ternary eutectic structure of Al/Zn/MgZn 2] . Specifically, it has a form in which [Al phase], [MgZn 2 phase], and [Zn phase] are included in the matrix of [ternary eutectic structure of Al/Zn/MgZn 2 ]. Moreover, when Si is contained, [Mg 2 Si phase] may be included in the matrix of [ternary eutectic structure of Al/Zn/MgZn 2 ].
- [Ternary eutectic structure of Al/Zn/MgZn 2 ] is a ternary eutectic structure of an Al phase, a Zn phase, and an intermetallic compound MgZn 2 phase, and this ternary eutectic structure is formed.
- the Al phase corresponds to, for example, the "Al'' phase (which is an Al solid solution containing Zn and contains a small amount of Mg) at high temperature in the ternary equilibrium phase diagram of Al-Zn-Mg.
- the Zn phase in the ternary eutectic structure contains a small amount of Al as a solid solution, and in some cases is a Zn solid solution containing a small amount of Mg.
- the MgZn two phase in the ternary eutectic structure is a metal that exists near Zn: about 84% by mass in the Zn-Mg binary equilibrium phase diagram. It is an intermediate compound phase. As far as we can see from the phase diagram, it is thought that other additive elements are not solidly dissolved in each phase, or even if they are solidly dissolved, the amount is extremely small. However, since the amounts cannot be clearly distinguished by ordinary analysis, the ternary eutectic structure consisting of these three phases is herein referred to as [ternary eutectic structure of Al/Zn/MgZn 2 ].
- Al phase is a phase that appears like an island with clear boundaries in the matrix of [ternary eutectic structure of Al/Zn/MgZn2 ] , and this is due to the ternary system equilibrium of Al-Zn-Mg, for example.
- the amount of dissolved Zn and Mg in this Al'' phase at high temperature differs depending on the Al and Mg concentrations in the plating bath.
- the Al'' phase at high temperature is normally different from the fine Al phase at room temperature.
- the island-like shape seen at room temperature is thought to be due to the shape of the Al'' phase at high temperatures.
- the phase that is derived from the Al'' phase at high temperatures and whose shape is due to the shape of the Al'' phase is herein referred to as the [Al phase].
- [Al phase] can be clearly distinguished from the Al phase forming [ternary eutectic structure of Al/Zn/MgZn 2] by microscopic observation.
- [Zn phase] is a phase that appears like an island with clear boundaries in the matrix of [ternary eutectic structure of Al/Zn/MgZn2 ] , and actually contains a small amount of Al or Mg in solid solution. There's something I'm doing. As far as we can see from the phase diagram, it is thought that this phase does not contain any other additive elements, or even if they do, the amount is extremely small.
- [Zn phase] is a region where the Zn phase has an equivalent circle diameter of 2.5 ⁇ m or more, and it is clearly distinguished from the Zn phase forming [ternary eutectic structure of Al/Zn/MgZn 2] by microscopic observation. can be distinguished into
- [MgZn 2- phase] [MgZn 2 phase] is a phase that appears like an island with clear boundaries in the matrix of [ternary eutectic structure of Al/Zn/MgZn 2 ], and actually contains a small amount of Al in solid solution. Sometimes. As far as we can see from the phase diagram, it is thought that this phase does not contain any other additive elements, or even if they do, the amount is extremely small. [MgZn 2 phases] and MgZn 2 phases forming [ternary eutectic structure of Al/Zn/MgZn 2 ] can be clearly distinguished by microscopic observation.
- the hot-dip plating layer according to this embodiment may not contain [MgZn two- phase] depending on the manufacturing conditions, but it is included in the hot-dip plating layer under most manufacturing conditions.
- [Mg 2 Si phase] is a phase that appears in the form of islands with clear boundaries in the solidified structure of the hot-dip plating layer to which Si is added. As far as we can see from the phase diagram, it is thought that Zn, Al, and other additive elements are not solidly dissolved in the [Mg 2 Si phase], or even if they are solidly dissolved, the amount is extremely small. [Mg 2 Si phase] can be clearly distinguished from other phases in the hot-dip plating layer by microscopic observation.
- the thickness of the hot-dip plating layer 2 formed on the steel plate 1 is t, and the thickness is 3t/4, t/2, or 3t/4 from the surface 2a of the hot-dip plating layer 2.
- the exposed surfaces 3, 4, and 5 are cut out in a manner that is parallel to the surface 2a and has a width of 5 mm square in plan view at any position of t/4, these exposed surfaces
- the area fraction of the [Zn phase] in the plating structure is less than 20%.
- the area fraction of the [Zn phase] may be 15% or less, may be less than 15%, may be 10% or less, or may be 5% or less.
- the area fraction of [Zn phase] is 20% or less, the proportion of fine glossy parts exhibiting metallic luster increases on the surface of the hot-dip plating layer, and the overall appearance of the hot-dip plating layer exhibits metallic luster. It begins to show itself. Further, the lower limit of the area fraction of [Zn phase] does not need to be particularly limited, but may be more than 0%, 1% or more, or 2% or more. Note that the schematic cross-sectional view shown in FIG. 1 is a cross-sectional view along the AA' plane of FIG. 2.
- the ratio B (B/A (%)) is less than 20%.
- the ratio (B/A (%)) may be 15% or less, less than 15%, or 10% or less.
- the lower limit of the ratio (B/A (%)) is not particularly limited, but is 1% It may be more than 2%, or more than 5%.
- the area fraction of the [Al phase] on the exposed surface where the area fraction of the [Zn phase] is measured may be, for example, 30 to 80 area %, or 40 to 65 area %.
- the area fraction of [ternary eutectic structure of Al/MgZn 2 /Zn] on the exposed surface where the area fraction of [Zn phase] was measured may be, for example, 10 to 75 area %, or 20 to 75 area %. It may be 65 area%.
- the area fraction of [MgZn 2 phase] on the exposed surface where the area fraction of [Zn phase] was measured may be, for example, 0 to 60 area %, or 10 to 40 area %.
- the area fraction of [Mg 2 Si phase] on the exposed surface where the area fraction of [Zn phase] is measured may be, for example, 0 to 5 area %, or even 0 to 1 area %. good.
- the hot-dip plating layer is scraped off by means such as argon sputtering or argon sputtering.
- the exposed surface be a mirror surface, and for example, it is desirable that the maximum height Rz of the exposed surface be 0.2 ⁇ m or less.
- the exposed surface to be observed may be an exposed surface at a depth of 3t/4 position, t/2 position, or t/4 position from the surface of the hot-dip plating layer.
- the exposed surface at the t/2 position is selected.
- the area fraction or B/A ratio of [Zn phase] satisfies the range of the present invention on the exposed surface at the t/2 position, the area fraction or B/A ratio of [Zn phase] will also be the same at other positions. is highly likely to satisfy the scope of the present invention. More preferably, in the exposed surface at a depth of any two of the 3t/4 position, t/2 position, or t/4 position from the surface of the hot-dip plating layer, the area fraction or B/A ratio of [Zn phase] is It is preferable that the scope of the invention be satisfied.
- the area fraction or B/A ratio of the [Zn phase] is within the range of the present invention on the exposed surface at all depths from the surface of the hot-dip plating layer to the 3t/4 position, t/2 position, or t/4 position. It is good to satisfy the following.
- the plating structure was observed using a secondary electron image of a scanning electron microscope (SEM) on an exposed surface of size 5 mm x 5 mm, and it was found that it was a [Zn phase] and a ternary eutectic structure of [Al/MgZn 2 /Zn]. ].
- SEM scanning electron microscope
- elemental analysis by an energy dispersive X-ray elemental analyzer attached to the SEM is used in combination, and the distributions of Zn, Al, and Mg are confirmed and specified.
- the region where Zn is mainly detected is defined as the Zn phase
- the region where Al is mainly detected is defined as the Al phase
- the region where Zn and Mg are mainly detected is defined as the MgZn 2 phase.
- the exposed surface parallel to the surface at any position of 3t/4, t/2 or t/4 from the surface of the hot-dip coating layer. It is necessary to control the structure of the hot-dip plating layer so that the area fraction of the [Zn phase] in .
- the steel plate is immersed in a hot-dip plating bath with adjusted chemical components, thereby causing molten metal to adhere to the surface of the steel plate.
- the steel plate is pulled out of the plating bath, and after controlling the amount of adhesion by gas wiping, the molten metal is solidified.
- [Al phase] is first formed, and then as the temperature of the molten metal decreases, [ternary eutectic structure of Al/Zn/MgZn 2 ] is formed.
- [MgZn 2 phase] and [Zn phase] are formed in the matrix of [ternary eutectic structure of Al/Zn/MgZn 2 ]. Furthermore, when Si is contained in the hot-dip plating layer, a [Mg 2 Si phase] is formed in the matrix of [ternary eutectic structure of Al/Zn/MgZn 2 ].
- the present inventors have found that by increasing the number of Zn nucleation points, the formation of a coarse [Zn phase] can be suppressed and the quality of the surface appearance can be improved.
- As a means for increasing the number of Zn nucleation points it is possible to attach a substance that can become a Zn nucleation point to the surface of the steel sheet that is the original plate. The details of the manufacturing method will be explained below.
- Hot-rolled steel sheets and perform hot-rolled sheet annealing as necessary. After pickling, cold rolling is performed as necessary to obtain a cold rolled sheet. After degreasing and washing the hot-rolled sheet or cold-rolled sheet with water, the hot-rolled sheet or cold-rolled sheet is annealed, and the annealed hot-rolled sheet or cold-rolled sheet is immersed in a hot-dip plating bath to form a hot-dip plating layer.
- Zn powder is attached to the annealed hot-rolled sheet or cold-rolled sheet before immersion in the hot-dip plating bath.
- the attached Zn powder does not completely dissolve during hot-dip plating, and becomes a Zn nucleation site during final solidification of the plating.
- Some Zn powder is diffused into the plating bath as a solid. In the manufacturing method of this embodiment, this is achieved only when Zn powder is attached after annealing and before immersion in a plating bath. If Zn powder is attached before annealing, Zn will alloy with the steel sheet during annealing, and the formation of a hot-dip plating layer will be inhibited.
- the Zn powder to be deposited may be any Zn powder containing Zn and impurities.
- the average particle size of the Zn powder may be, for example, in the range of 4 to 6 ⁇ m.
- the amount of Zn powder deposited is preferably about 1 to 5 g/m 2 per side, for example. If the average particle size and the amount of adhesion are within this range, the Zn powder can function as a Zn nucleation site.
- the Zn powder is preferably attached when the temperature of the hot-rolled or cold-rolled sheet is within the range of bath temperature +10°C to 20°C.
- the hot-dip plating bath preferably contains Al: more than 10 to 22% by mass, Mg: 1.0 to 10% by mass, and the balance contains Zn and impurities. Further, the hot-dip plating bath may contain Si: 0.0001 to 2% by mass. Furthermore, the hot-dip plating bath contains any one of Ni, Ti, Zr, Sr, Fe, Sb, Pb, Sn, Ca, Co, Mn, P, B, Bi, Cr, Sc, Y, REM, Hf, and C. The total amount of the species or two or more species may be 0.0001 to 2% by mass.
- the temperature of the hot-dip plating bath is preferably in the range of 400 to 500°C. This is because if the temperature of the hot-dip plating bath is within this range, a desired hot-dip plating layer can be formed. Further, the amount of the hot-dip coating layer to be deposited may be adjusted by means such as gas wiping on the steel sheet pulled out of the hot-dip coating bath. The amount of hot-dip plating layer deposited is preferably adjusted so that the total amount of deposit on both sides of the steel plate is in the range of 30 to 600 g/m 2 . If the amount of adhesion is less than 30 g/m 2 , the corrosion resistance of the Zn-Al-Mg hot-dip plated steel sheet will decrease, which is not preferable. If the amount of adhesion exceeds 600 g/m 2 , the molten metal adhering to the steel plate will sag, making it impossible to make the surface of the hot-dip plating layer smooth, which is not preferable.
- the steel plate After adjusting the adhesion amount of the hot-dip plating layer, the steel plate is cooled. Cooling of the molten metal adhering to the steel plate is started after the steel plate is pulled up from the hot-dip plating bath. Although it depends on the composition of the hot-dip plating bath, the [Al phase] begins to crystallize around 430°C. Next, [MgZn 2 ] begins to crystallize from around 370°C, [ternary eutectic structure of Al/Zn/MgZn 2] begins to crystallize from around 340°C, and further [Zn phase] crystallizes, completing solidification. do.
- the chemical conversion treatment is performed on the hot-dip galvanized steel sheet after the hot-dip plating layer has been formed.
- the type of chemical conversion treatment is not particularly limited, and any known chemical conversion treatment can be used.
- coating the hot-dip plated steel sheet after forming the hot-dip plating layer or after forming the chemical conversion treatment layer Perform processing.
- the type of coating treatment is not particularly limited, and any known coating treatment can be used.
- the metallic luster of the surface of the hot-dip plating layer can be improved more than before.
- the plating structure was observed using a secondary electron image using a scanning electron microscope (SEM), and the plating structure was found to be [Zn phase] and [ternary eutectic of Al/MgZn 2 /Zn]. organization] was identified.
- SEM scanning electron microscope
- elemental analysis using an energy dispersive X-ray elemental analyzer attached to the SEM was also used, and the distribution of Zn, Al, and Mg was confirmed.
- the area fraction of [Al phase] was in the range of 30 to 80 area %, and [ternary eutectic of Al/MgZn 2 /Zn
- the area fraction of [structure] is in the range of 10 to 75 area %
- the area fraction of [MgZn 2 phase] is in the range of 0 to 60 area %
- the area fraction of [Mg 2 Si phase] is in the range of 0 to 75 area %. It was in the range of 5 area%.
- A No appearance spots other than gloss are observed even from 0.5 m away.
- B Appearance spots other than gloss are observed from 0.5 m away, but no appearance spots other than gloss are observed from 2 m away.
- C Appearance spots other than gloss are observed even from 2 m away.
- the corrosion resistance of the hot-dip plated steel sheet was evaluated by the corrosion weight loss after the CCT test.
- a plated steel plate was cut into a size of 150 x 70 mm, and the corrosion weight loss after 30 cycles of CCT was investigated using CCT in accordance with JASO-M609.
- a corrosion loss of less than 30 g/m 2 was evaluated as F
- a corrosion loss of 30 g/m 2 or more and less than 50 g/m 2 was evaluated as G
- a corrosion loss of 50 g/m 2 or more was evaluated as P
- F and G were evaluated as passing.
- the results are shown in Tables 2A and 2B.
- the chemical composition of the hot-dip-coated layer was within the scope of the present invention, and because the Zn powder was attached after annealing and before hot-dip coating, the Zn powder was mixed at each Zn generation site when the hot-dip coating layer solidified.
- the [Zn phase] of the plating structure on at least one exposed surface is ] was less than 20%. Therefore, the hot-dip plating layer had a shiny appearance. Moreover, the corrosion resistance was also good.
- the hot-dip plated steel plate was annealed and hot-dipped after Zn powder was attached, so the Zn powder alloyed with the steel plate during annealing and did not function as a Zn nucleation site. Therefore, the area fraction of the [Zn phase] is all 20% or more at the 3t/4 position, t/2 position, or t/4 position from the surface of the hot-dip plating layer, and the appearance of the hot-dip plating layer is insufficiently glossy. Became.
- the Zn-Al-Mg hot-dip plated steel sheet of the present disclosure has excellent metallic luster on the surface of the hot-dip plated layer and excellent corrosion resistance, so it has high industrial applicability.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Coating With Molten Metal (AREA)
Abstract
このZn-Al-Mg系溶融めっき鋼板は、鋼板と、鋼板の表面に形成された溶融めっき層と、を備え、溶融めっき層は、平均組成で、Al:10超~22質量%、Mg:1.0~10質量%、を含有し、残部がZnおよび不純物を含み、溶融めっき層の厚みをtとして、溶融めっき層の表面から3t/4位置、t/2位置またはt/4位置のいずれかの位置において表面に平行な5mm四方の断面を露出させた場合に、少なくとも1つの断面におけるめっき組織の〔Zn相〕の面積分率が20%未満である。
Description
本発明は、光沢のある外観を備えたZn-Al-Mg系溶融めっき鋼板に関する。
本願は、2022年6月10日に、日本に出願された特願2022-094346号に基づき優先権を主張し、その内容をここに援用する。
本願は、2022年6月10日に、日本に出願された特願2022-094346号に基づき優先権を主張し、その内容をここに援用する。
耐食性の良好な鋼板として使用されるものに溶融めっき鋼板がある。溶融めっき鋼板の代表例である溶融亜鉛めっき鋼板は、自動車、家電、建材分野など種々の製造業において広く使用されている。また、溶融亜鉛めっき鋼板の耐食性をさらに向上させることを目的として、溶融亜鉛めっき層にAlやMgを含有させた高耐食性溶融亜鉛めっき鋼板が提案されている。例えば、特許文献1~3には、Zn-Al-Mg系溶融めっき鋼板が提案されている。
ところで、Zn-Al-Mg系溶融めっき鋼板は、溶融めっき層中に、〔Al相〕、〔Zn相〕、〔MgZn2相〕、〔Al/MgZn2/Znの三元共晶組織〕、の主に4種類の相及び組織が含まれる。また、Zn、Al、Mgに加えて溶融めっき層にSiが含有される場合は、上記の4種類の相及び組織に加え、〔Mg2Si相〕を含めた、主に5種類の相及び組織が含まれる。このように、Zn-Al-Mg系溶融めっき鋼板の溶融めっき層には、多様な相および組織が混在しているため、溶融めっき層の表面は、梨地状の外観を呈する。
Zn-Al-Mg系溶融めっき鋼板は、溶融亜鉛めっき鋼板と同様に、自動車、家電、建材分野など種々な製造業において広く使用されている。近年、めっき鋼板の表面外観に対する需要家の要求が高まっており、Zn-Al-Mg系溶融めっき鋼板に対して、より金属光沢の強い外観が求められている。
本発明は上記事情に鑑みてなされたものであり、従来よりも溶融めっき層表面の金属光沢性に優れ、耐食性にも優れるZn-Al-Mg系溶融めっき鋼板を提供することを課題とする。
上記課題を解決するため、本発明は以下の構成を採用する。
[1] 鋼板と、前記鋼板の表面に形成された溶融めっき層と、を備え、
前記溶融めっき層は、平均組成で、Al:10超~22質量%、Mg:1.0~10質量%、を含有し、残部がZnおよび不純物を含み、
前記溶融めっき層の厚みをtとして、前記溶融めっき層の表面から3t/4位置、t/2位置またはt/4位置のいずれかの位置において前記表面に平行な5mm四方の断面を露出させた場合に、少なくとも1つの前記断面におけるめっき組織の〔Zn相〕の面積分率が20%未満であることを特徴とするZn-Al-Mg系溶融めっき鋼板。
[2] 鋼板と、前記鋼板の表面に形成された溶融めっき層と、を備え、
前記溶融めっき層は、平均組成で、Al:10超~22質量%、Mg:1.0~10質量%、を含有し、残部がZnおよび不純物を含み、
さらに下記A群、B群からなる群から選択される1種または2種を含有し、
前記溶融めっき層の厚みをtとして、前記溶融めっき層の表面から3t/4位置、t/2位置またはt/4位置のいずれかの位置において前記表面に平行な5mm四方の断面を露出させた場合に、少なくとも1つの前記断面におけるめっき組織の〔Zn相〕の面積分率が20%未満であることを特徴とするZn-Al-Mg系溶融めっき鋼板。
[A群]Si:0.0001~2質量%
[B群]Ni、Ti、Zr、Sr、Fe、Sb、Pb、Sn、Ca、Co、Mn、P、B、Bi、Cr、Sc、Y、REM、Hf、Cのいずれか1種または2種以上を、合計で0.0001~2質量%
[3] 少なくとも1つの前記断面におけるめっき組織の〔Zn相〕および〔Al/MgZn2/Znの三元共晶組織〕の合計面積分率Aに対する〔Zn相〕の面積分率Bの比率(B/A(%))が20%未満である、[1]または[2]に記載のZn-Al-Mg系溶融めっき鋼板。
[4] 前記溶融めっき層が、質量%で、前記A群を含有する平均組成を有する[2]に記載のZn-Al-Mg系溶融めっき鋼板。
[5] 前記溶融めっき層が、質量%で、前記B群を含有する平均組成を有する[2]に記載のZn-Al-Mg系溶融めっき鋼板。
[1] 鋼板と、前記鋼板の表面に形成された溶融めっき層と、を備え、
前記溶融めっき層は、平均組成で、Al:10超~22質量%、Mg:1.0~10質量%、を含有し、残部がZnおよび不純物を含み、
前記溶融めっき層の厚みをtとして、前記溶融めっき層の表面から3t/4位置、t/2位置またはt/4位置のいずれかの位置において前記表面に平行な5mm四方の断面を露出させた場合に、少なくとも1つの前記断面におけるめっき組織の〔Zn相〕の面積分率が20%未満であることを特徴とするZn-Al-Mg系溶融めっき鋼板。
[2] 鋼板と、前記鋼板の表面に形成された溶融めっき層と、を備え、
前記溶融めっき層は、平均組成で、Al:10超~22質量%、Mg:1.0~10質量%、を含有し、残部がZnおよび不純物を含み、
さらに下記A群、B群からなる群から選択される1種または2種を含有し、
前記溶融めっき層の厚みをtとして、前記溶融めっき層の表面から3t/4位置、t/2位置またはt/4位置のいずれかの位置において前記表面に平行な5mm四方の断面を露出させた場合に、少なくとも1つの前記断面におけるめっき組織の〔Zn相〕の面積分率が20%未満であることを特徴とするZn-Al-Mg系溶融めっき鋼板。
[A群]Si:0.0001~2質量%
[B群]Ni、Ti、Zr、Sr、Fe、Sb、Pb、Sn、Ca、Co、Mn、P、B、Bi、Cr、Sc、Y、REM、Hf、Cのいずれか1種または2種以上を、合計で0.0001~2質量%
[3] 少なくとも1つの前記断面におけるめっき組織の〔Zn相〕および〔Al/MgZn2/Znの三元共晶組織〕の合計面積分率Aに対する〔Zn相〕の面積分率Bの比率(B/A(%))が20%未満である、[1]または[2]に記載のZn-Al-Mg系溶融めっき鋼板。
[4] 前記溶融めっき層が、質量%で、前記A群を含有する平均組成を有する[2]に記載のZn-Al-Mg系溶融めっき鋼板。
[5] 前記溶融めっき層が、質量%で、前記B群を含有する平均組成を有する[2]に記載のZn-Al-Mg系溶融めっき鋼板。
本発明によれば、従来よりも溶融めっき層表面の金属光沢性に優れ、耐食性にも優れるZn-Al-Mg系溶融めっき鋼板を提供できる。
本発明者らは、梨地状の外観を呈する従来のZn-Al-Mg系溶融めっき鋼板のめっき層を詳細に調査した。梨地状の外観は、金属光沢を示す微細な光沢部分と、白色を呈する微細な白色部分とが混在することによって現れている。このうち、光沢部分におけるめっき層の組織を調べたところ、めっき層表面における〔Zn相〕の面積分率が、白色部分に比べて少なくなっていることを見出した。他方、白色部分におけるめっき層の組織を調べたところ、〔Al/MgZn2/Znの三元共晶組織〕に対する〔Zn相〕の割合が光沢部分に比べて高くなっていることを見出した。
そこで、溶融めっき層において、光沢部分を多く存在させる一方で白色部分を少なくすることで全体として光沢外観を得るために本発明者らが鋭意検討したところ、溶融めっき層の化学成分を調整するとともに、〔Zn相〕の割合を少なくすることにより、めっき層の表面外観が全体として金属光沢を呈するようになることを見出した。また、めっき層全体において、〔Al/MgZn2/Znの三元共晶組織〕と〔Zn相〕の合計に対する〔Zn相〕の割合を低くすることによって、めっき層の外観がより金属光沢を呈するようになることを見出した。
以下、本発明の実施形態であるZn-Al-Mg系溶融めっき鋼板について説明する。
本実施形態のZn-Al-Mg系溶融めっき鋼板は、鋼板と、鋼板の表面に形成された溶融めっき層と、を備え、溶融めっき層は、平均組成で、Al:10超~22質量%、Mg:1.0~10質量%、を含有し、残部がZnおよび不純物を含み、溶融めっき層の厚みをtとして、溶融めっき層の表面から3t/4位置、t/2位置またはt/4位置のいずれかの位置においてめっき層表面に平行な5mm四方の断面を露出させた場合に、少なくとも1つの断面におけるめっき組織の〔Zn相〕の面積分率が20%未満になっている。ここで、めっき層表面に平行な5mm四方の断面とは、表面に平行でかつ、平面視において5mm四方の広さを持つ正方形状の露出面を指す。
溶融めっき層の下地となる鋼材は、材質に特に制限はない。材質として、一般鋼、Alキルド鋼や一部の高合金鋼に適用することが可能であり、形状にも特に制限はない。また、鋼材には、Niプレめっきを施してもよい。鋼材に対して後述する溶融めっき法を適用することで、本実施形態に係る溶融めっき層が形成される。
次に、溶融めっき層の化学成分について説明する。
本実施形態に係る溶融めっき層は、平均組成で、Al:10超~22質量%、Mg:1.0~10質量%を含有し、残部としてZnおよび不純物を含んでいる。
さらに下記A群、B群からなる群から選択される1種または2種を含有してもよい。
[A群]Si:0.0001~2質量%
[B群]Ni、Ti、Zr、Sr、Fe、Sb、Pb、Sn、Ca、Co、Mn、P、B、Bi、Cr、Sc、Y、REM、Hf、Cのいずれか1種または2種以上を、合計で0.0001~2質量%
本実施形態に係る溶融めっき層は、平均組成で、Al:10超~22質量%、Mg:1.0~10質量%を含有し、残部としてZnおよび不純物を含んでいる。
さらに下記A群、B群からなる群から選択される1種または2種を含有してもよい。
[A群]Si:0.0001~2質量%
[B群]Ni、Ti、Zr、Sr、Fe、Sb、Pb、Sn、Ca、Co、Mn、P、B、Bi、Cr、Sc、Y、REM、Hf、Cのいずれか1種または2種以上を、合計で0.0001~2質量%
Alの含有量は、平均組成で10質量%超、22質量%以下の範囲である。Alは、耐食性を確保するために必要な元素である。溶融めっき層中のAlの含有量が10質量%以下では、耐食性を向上させる効果が不十分になり、22質量%を超えると、原因は不明であるが、耐食性が低下する。耐食性の観点から、好ましくは10質量%超、20質量%以下とする。より好ましくは10質量%超、18質量%以下とする。より好ましくは、11質量%以上とする。また、より好ましくは、19質量%以下とする。
Mgの含有量は、平均組成で1.0~10質量%の範囲である。Mgは、溶融めっき層の耐食性を向上させるために必要な元素である。溶融めっき層中のMgの含有量が1.0質量%未満では、耐食性を向上させる効果が不十分になり、10質量%を超えるとめっき浴でのドロス発生が著しくなり、安定的にめっき鋼材を製造するのが困難となる。耐食性とドロス発生のバランスの観点から、好ましくは1.5質量%以上とする。また、好ましくは8質量%以下とする。より好ましくは2質量%以上とする。また、より好ましくは6質量%以下とする。
また、溶融めっき層は、Siを0.0001~2質量%の範囲で含有していてもよい。Siは、溶融めっき層の密着性を向上させるのに有効な元素である。Siを0.0001質量%以上含有させることで密着性を向上させる効果が発現するため、Siを0.0001質量%以上含有させることが好ましい。一方、2質量%を超えて含有させてもめっき密着性を向上させる効果が飽和するため、Siの含有量は2質量%以下とする。めっき密着性の観点からは、0.01質量%以上としても良く、また、1質量%以下としても良い。さらに0.03質量%以上としてもよく、また、0.8質量%以上にしてもよい。
また、溶融めっき層中には、平均組成で、Ni、Ti、Zr、Sr、Fe、Sb、Pb、Sn、Ca、Co、Mn、P、B、Bi、Cr、Sc、Y、REM、Hf、Cのいずれか1種または2種以上を合計で、0.0001~2質量%含有していてもよい。また、0.01~2質量%の範囲でもよい。これらの元素を含有することで、さらに耐食性を改善することができる。REMは、周期律表における原子番号57~71の希土類元素の1種または2種以上である。
溶融めっき層の化学成分の残部は、亜鉛及び不純物である。
なお、溶融めっき層の組成は、次のような方法で測定できる。まず、めっきを浸食しない塗膜剥離剤(例えば、三彩化工社製ネオリバーSP-751)で表層塗膜を除去した後に、インヒビター(例えば、スギムラ化学工業社製ヒビロン)入りの塩酸で溶融めっき層を溶解し、得られた溶液を誘導結合プラズマ(ICP)発光分光分析に供することで求めることができる。
次に、溶融めっき層の組織について説明する。本実施形態の溶融めっき層の組織は、例えば、以下のような組織を有していてもよい。
Al、Mg及びZnを含有する溶融めっき層は、〔Al相〕、〔MgZn2相〕および〔Zn相〕と、〔Al/Zn/MgZn2の三元共晶組織〕とを含んでいる。具体的には、〔Al/Zn/MgZn2の三元共晶組織〕の素地中に、〔Al相〕、〔MgZn2相〕および〔Zn相〕が包含された形態を有している。また、Siを含有させた場合には、〔Al/Zn/MgZn2の三元共晶組織〕の素地中に、〔Mg2Si相〕が含まれていてもよい。
〔Al/Zn/MgZn2の三元共晶組織〕
〔Al/Zn/MgZn2の三元共晶組織〕とは、Al相と、Zn相と金属間化合物MgZn2相との三元共晶組織であり、この三元共晶組織を形成しているAl相は例えばAl-Zn-Mgの三元系平衡状態図における高温での「Al″相」(Znを固溶するAl固溶体であり、少量のMgを含む)に相当する。
この高温でのAl″相は、常温では通常は微細なAl相と微細なZn相とに分離して現れる。該三元共晶組織中のZn相は少量のAlを固溶し、場合によってはさらに少量のMgを固溶したZn固溶体である。該三元共晶組織中のMgZn2相は、Zn-Mgの二元系平衡状態図のZn:約84質量%の付近に存在する金属間化合物相である。
状態図で見る限りそれぞれの相にはその他の添加元素を固溶していないか、固溶していても極微量であると考えられる。しかしながら、その量は通常の分析では明確に区別できないため、この3つの相からなる三元共晶組織を本明細書では〔Al/Zn/MgZn2の三元共晶組織〕と表す。
〔Al/Zn/MgZn2の三元共晶組織〕とは、Al相と、Zn相と金属間化合物MgZn2相との三元共晶組織であり、この三元共晶組織を形成しているAl相は例えばAl-Zn-Mgの三元系平衡状態図における高温での「Al″相」(Znを固溶するAl固溶体であり、少量のMgを含む)に相当する。
この高温でのAl″相は、常温では通常は微細なAl相と微細なZn相とに分離して現れる。該三元共晶組織中のZn相は少量のAlを固溶し、場合によってはさらに少量のMgを固溶したZn固溶体である。該三元共晶組織中のMgZn2相は、Zn-Mgの二元系平衡状態図のZn:約84質量%の付近に存在する金属間化合物相である。
状態図で見る限りそれぞれの相にはその他の添加元素を固溶していないか、固溶していても極微量であると考えられる。しかしながら、その量は通常の分析では明確に区別できないため、この3つの相からなる三元共晶組織を本明細書では〔Al/Zn/MgZn2の三元共晶組織〕と表す。
〔Al相〕
〔Al相〕とは、〔Al/Zn/MgZn2の三元共晶組織〕の素地中に明瞭な境界をもって島状に見える相であり、これは例えばAl-Zn-Mgの三元系平衡状態図における高温での「Al″相」(Znを固溶するAl固溶体であり、少量のMgを含む)に相当する。この高温でのAl″相は、めっき浴のAlやMg濃度に応じて、固溶するZn量やMg量が相違する。この高温でのAl″相は、常温では通常は微細なAl相と微細なZn相とに分離するが、常温で見られる島状の形状は高温でのAl″相の形状に起因すると考えられる。
状態図で見る限りこの相にはその他の添加元素を固溶していないか、固溶していても極微量であると考えられる。しかしながら、通常の分析では明確に区別できないため、この高温でのAl″相に由来し且つ形状的にはAl″相の形状に起因する相を本明細書では〔Al相〕と呼ぶ。
〔Al相〕は〔Al/Zn/MgZn2の三元共晶組織〕を形成しているAl相とは顕微鏡観察において明瞭に区別できる。
〔Al相〕とは、〔Al/Zn/MgZn2の三元共晶組織〕の素地中に明瞭な境界をもって島状に見える相であり、これは例えばAl-Zn-Mgの三元系平衡状態図における高温での「Al″相」(Znを固溶するAl固溶体であり、少量のMgを含む)に相当する。この高温でのAl″相は、めっき浴のAlやMg濃度に応じて、固溶するZn量やMg量が相違する。この高温でのAl″相は、常温では通常は微細なAl相と微細なZn相とに分離するが、常温で見られる島状の形状は高温でのAl″相の形状に起因すると考えられる。
状態図で見る限りこの相にはその他の添加元素を固溶していないか、固溶していても極微量であると考えられる。しかしながら、通常の分析では明確に区別できないため、この高温でのAl″相に由来し且つ形状的にはAl″相の形状に起因する相を本明細書では〔Al相〕と呼ぶ。
〔Al相〕は〔Al/Zn/MgZn2の三元共晶組織〕を形成しているAl相とは顕微鏡観察において明瞭に区別できる。
〔Zn相〕
〔Zn相〕とは、〔Al/Zn/MgZn2の三元共晶組織〕の素地中に明瞭な境界をもって島状に見える相であり、実際には少量のAlや少量のMgを固溶していることがある。状態図で見る限り、この相にはその他の添加元素を固溶していないか、固溶していても極微量であると考えられる。
〔Zn相〕は、Zn相が円相当直径で2.5μm以上となる領域であり、〔Al/Zn/MgZn2の三元共晶組織〕を形成しているZn相とは顕微鏡観察において明瞭に区別できる。
〔Zn相〕とは、〔Al/Zn/MgZn2の三元共晶組織〕の素地中に明瞭な境界をもって島状に見える相であり、実際には少量のAlや少量のMgを固溶していることがある。状態図で見る限り、この相にはその他の添加元素を固溶していないか、固溶していても極微量であると考えられる。
〔Zn相〕は、Zn相が円相当直径で2.5μm以上となる領域であり、〔Al/Zn/MgZn2の三元共晶組織〕を形成しているZn相とは顕微鏡観察において明瞭に区別できる。
〔MgZn2相〕
〔MgZn2相〕とは、〔Al/Zn/MgZn2の三元共晶組織〕の素地中に明瞭な境界をもって島状に見える相であり、実際には少量のAlを固溶していることがある。状態図で見る限り、この相にはその他の添加元素を固溶していないか、固溶していても極微量であると考えられる。
〔MgZn2相〕と〔Al/Zn/MgZn2の三元共晶組織〕を形成しているMgZn2相とは、顕微鏡観察において明瞭に区別できる。本実施形態に係る溶融めっき層には、製造条件により〔MgZn2相〕が含まれない場合も有るが、ほとんどの製造条件では溶融めっき層中に含まれる。
〔MgZn2相〕とは、〔Al/Zn/MgZn2の三元共晶組織〕の素地中に明瞭な境界をもって島状に見える相であり、実際には少量のAlを固溶していることがある。状態図で見る限り、この相にはその他の添加元素を固溶していないか、固溶していても極微量であると考えられる。
〔MgZn2相〕と〔Al/Zn/MgZn2の三元共晶組織〕を形成しているMgZn2相とは、顕微鏡観察において明瞭に区別できる。本実施形態に係る溶融めっき層には、製造条件により〔MgZn2相〕が含まれない場合も有るが、ほとんどの製造条件では溶融めっき層中に含まれる。
〔Mg2Si相〕
〔Mg2Si相〕とは、Siを添加した溶融めっき層の凝固組織中に、明瞭な境界を持って島状に見える相である。状態図で見る限り、〔Mg2Si相〕にはZn、Al、その他の添加元素は固溶していないか、固溶していても極微量であると考えられる。〔Mg2Si相〕は、溶融めっき層中では顕微鏡観察において明瞭に他の相と区別できる。
〔Mg2Si相〕とは、Siを添加した溶融めっき層の凝固組織中に、明瞭な境界を持って島状に見える相である。状態図で見る限り、〔Mg2Si相〕にはZn、Al、その他の添加元素は固溶していないか、固溶していても極微量であると考えられる。〔Mg2Si相〕は、溶融めっき層中では顕微鏡観察において明瞭に他の相と区別できる。
次に、〔Zn相〕の含有量について説明する。本実施形態では、図1及び図2に示すように、鋼板1上に形成された溶融めっき層2の厚みをtとし、溶融めっき層2の表面2aから3t/4位置、t/2位置またはt/4位置のいずれかの位置において、表面2aに平行でかつ、平面視において5mm四方の広さを持つ正方形状の露出面3,4,5が現れるように切り欠いた場合に、これら露出面3~5のうち少なくとも1つにおいて、めっき組織の〔Zn相〕の面積分率が20%未満になる。〔Zn相〕の面積分率は15%以下であってもよく、15%未満であってもよく、10%以下であってもよく、5%以下であってもよい。〔Zn相〕の面積分率が20%以下であることにより、溶融めっき層の表面において、金属光沢を示す微細な光沢部分の占有割合が増加して、溶融めっき層の外観全体が金属光沢を呈するようになる。また、〔Zn相〕の面積分率の下限は特に限定する必要はないが、0%超でもよく、1%以上でもよく、2%以上でもよい。なお、図1に示す断面模式図は、図2のA-A´面に沿った断面図である。
また、露出面3~5のうち少なくとも1つにおいて、めっき組織の〔Zn相〕および〔Al/MgZn2/Znの三元共晶組織〕の合計面積分率Aに対する〔Zn相〕の面積分率Bの比率(B/A(%))が20%未満であることが好ましい。比率(B/A(%)は、15%以下でもよく、15%未満でもよく、10%以下でもよい。比率(B/A(%))の下限は特に限定する必要はないが、1%以上でもよく、2%以上でもよく、5%以上でもよい。
また、〔Zn相〕の面積分率を測定した露出面における〔Al相〕の面積分率は、例えば30~80面積%であってもよく、40~65面積%であってもよい。
更に、〔Zn相〕の面積分率を測定した露出面における〔Al/MgZn2/Znの三元共晶組織〕の面積分率は、例えば10~75面積%であってもよく、20~65面積%であってもよい。
更にまた、〔Zn相〕の面積分率を測定した露出面における〔MgZn2相〕の面積分率は、例えば0~60面積%であってもよく、10~40面積%であってもよい。
更にまた、〔Zn相〕の面積分率を測定した露出面における〔Mg2Si相〕の面積分率は、例えば0~5面積%であってもよく、0~1面積%であってもよい。
更に、〔Zn相〕の面積分率を測定した露出面における〔Al/MgZn2/Znの三元共晶組織〕の面積分率は、例えば10~75面積%であってもよく、20~65面積%であってもよい。
更にまた、〔Zn相〕の面積分率を測定した露出面における〔MgZn2相〕の面積分率は、例えば0~60面積%であってもよく、10~40面積%であってもよい。
更にまた、〔Zn相〕の面積分率を測定した露出面における〔Mg2Si相〕の面積分率は、例えば0~5面積%であってもよく、0~1面積%であってもよい。
溶融めっき層2の表面2aから3t/4位置、t/2位置またはt/4位置のいずれかの位置において表面に平行な5mm四方の露出面3、4、5を形成する際には、研削やアルゴンスパッタ等の手段により、溶融めっき層を削り取る。また、露出面は鏡面とすることが望ましく、例えば露出面の最大高さRzを0.2μm以下とすることが望ましい。観察対象とする露出面は、溶融めっき層表面から3t/4位置、t/2位置またはt/4位置のいずれかの深さの露出面であってもよい。t/2位置の露出面を選択することが好ましい。t/2位置の露出面において、〔Zn相〕の面積分率またはB/A比率が本発明範囲を満足するならば、他の位置においても〔Zn相〕の面積分率またはB/A比率が本発明範囲を満足する可能性が高い。より好ましくは、溶融めっき層表面から3t/4位置、t/2位置またはt/4位置のいずれか2つの深さの露出面において、〔Zn相〕の面積分率またはB/A比率が本発明範囲を満足するとよい。更に好ましくは、溶融めっき層表面から3t/4位置、t/2位置またはt/4位置の全ての深さの露出面において、〔Zn相〕の面積分率またはB/A比率が本発明範囲を満足するとよい。
5mm×5mmのサイズの露出面に対して、走査型電子顕微鏡(SEM)の二次電子像によりめっき組織を観察して、〔Zn相〕および〔Al/MgZn2/Znの三元共晶組織〕を特定する。各相および組織を特定する際は、SEMに付属するエネルギー分散型X線元素分析装置による元素分析を併用し、Zn、AlおよびMgの分布を確認しつつ特定する。すなわち、Zn、AlおよびMgのうち、Znが主として検出される領域をZn相とし、Alが主として検出される領域をAl相とし、ZnとMgが主として検出される領域をMgZn2相とする。検出された各相の分布から、上述の方法に従って、〔Al相〕、〔MgZn2相〕および〔Zn相〕と、〔Al/Zn/MgZn2の三元共晶組織〕に分類する。そして、露出面における〔Zn相〕の面積分率を求め、更に、〔Zn相〕および〔Al/MgZn2/Znの三元共晶組織〕の合計面積分率Aに対する〔Zn相〕の面積分率Bの比率(B/A(%))を求める。〔Zn相〕は、円相当直径で2.5μm以上となる領域のものを〔Zn相〕として計測する。これにより、〔Al/MgZn2/Znの三元共晶組織〕中のZn相と〔Zn相〕とを区別する。
次に、本実施形態のZn-Al-Mg系溶融めっき鋼板の製造方法について説明する。
本実施形態のZn-Al-Mg系溶融めっき鋼板を製造する場合、溶融めっき層の表面から3t/4位置、t/2位置またはt/4位置のいずれかの位置における表面に平行な露出面での〔Zn相〕の面積分率が少なくなるように、溶融めっき層の組織を制御する必要がある。
本実施形態のZn-Al-Mg系溶融めっき鋼板を製造する場合、溶融めっき層の表面から3t/4位置、t/2位置またはt/4位置のいずれかの位置における表面に平行な露出面での〔Zn相〕の面積分率が少なくなるように、溶融めっき層の組織を制御する必要がある。
Zn-Al-Mg系溶融めっき鋼板を溶融めっき法により製造するには、化学成分を調整した溶融めっき浴に鋼板を浸漬させることにより、溶融金属を鋼板表面に付着させる。次いで、鋼板をめっき浴から引き上げ、ガスワイピングにより付着量を制御した後に、溶融金属を凝固させる。凝固時には、組成にもよるが、最初に、〔Al相〕が形成され、その後、溶融金属の温度低下に伴い、〔Al/Zn/MgZn2の三元共晶組織〕が形成される。また、〔Al/Zn/MgZn2の三元共晶組織〕の素地中に、〔MgZn2相〕および〔Zn相〕が形成される。さらに、溶融めっき層中にSiが含有される場合は、〔Al/Zn/MgZn2の三元共晶組織〕の素地中に〔Mg2Si相〕が形成される。
粗大な〔Zn相〕が形成する場合は、溶融めっき層中の〔Al相〕や〔MgZn2相〕の比率が相対的に増加し、これらの相がめっき表面へ露出するために、表面外観の品位が低下することがわかった。〔Zn相〕の形成は、Znの核生成点の数に影響を受けるものと推測される。すなわち、Znの核生成点が多い場合、最終凝固直前における液相中のZnは〔Al/Zn/MgZn2の三元共晶組織〕中の微細なZn相として晶出される。そこで、Znの核生成点を増やすことで、粗大な〔Zn相〕の形成を抑制させて、表面外観の品位を向上できることを本発明者らが知見するに至った。Znの核生成点が多くする手段としては、原板である鋼板の表面にZnの核生成点となり得る物質を付着させることが考えられる。
以下、製造方法の詳細を説明する。
以下、製造方法の詳細を説明する。
熱間圧延鋼板を製造し、必要に応じて熱延板焼鈍を行う。酸洗後、必要に応じて冷間圧延を行い、冷延板とする。熱延板または冷延板を脱脂、水洗した後、焼鈍し、焼鈍後の熱延板または冷延板を溶融めっき浴に浸漬させて溶融めっき層を形成する。
ここで、溶融めっき浴への浸漬前である焼鈍後の熱延板または冷延板にZn粉を付着させる。付着させたZn粉は溶融めっき中には完全溶解せず、めっきの最終凝固時にZnの核生成サイトとなる。一部のZn粉は固体のままめっき浴中に拡散する。本実施形態の製造方法では、焼鈍後、めっき浴浸漬前にてZn粉を付着させた場合のみ達成される。焼鈍前にZn粉を付着させた場合、焼鈍時にZnが鋼板と合金化してしまい、溶融めっき層の形成が阻害される。溶融めっき浴への浸漬後にZn粉を付着させた場合、付着したZn粉によってかえってめっきの表面外観が荒れる原因となる可能性がある。付着させるZn粉は、Znおよび不純物を含有するZn粉であればよい。Zn粉の平均粒径は例えば4~6μmの範囲であればよい。Zn粉の付着量は、例えば、片面当たり1~5g/m2程度がよい。平均粒径および付着量がこの範囲であれば、Zn粉をZnの核生成サイトとして機能させることができる。Zn粉の付着は、熱延板または冷延板の板温度が浴温+10℃~20℃の範囲にあるときに実施するとよい。
次に、鋼板を、溶融めっき浴に浸漬させる。溶融めっき浴は、Al:10超~22質量%、Mg:1.0~10質量%を含有し、残部としてZnおよび不純物を含むことが好ましい。また、溶融めっき浴は、Si:0.0001~2質量%を含有してもよい。更に、溶融めっき浴は、Ni、Ti、Zr、Sr、Fe、Sb、Pb、Sn、Ca、Co、Mn、P、B、Bi、Cr、Sc、Y、REM、Hf、Cのいずれか1種または2種以上を合計で、0.0001~2質量%を含有してもよい。
溶融めっき浴の温度は、400~500℃の範囲が好ましい。溶融めっき浴の温度がこの範囲であれば、所望の溶融めっき層を形成できるためである。
また、溶融めっき層の付着量は、溶融めっき浴から引き上げられた鋼板に対してガスワイピング等の手段で調整すればよい。溶融めっき層の付着量は、鋼板両面の合計の付着量が30~600g/m2の範囲になるように調整することが好ましい。付着量が30g/m2未満の場合、Zn-Al-Mg系溶融めっき鋼板の耐食性が低下するので好ましくない。付着量が600g/m2超の場合、鋼板に付着した溶融金属の垂れが発生して、溶融めっき層の表面を平滑にすることができなくなるため好ましくない。
また、溶融めっき層の付着量は、溶融めっき浴から引き上げられた鋼板に対してガスワイピング等の手段で調整すればよい。溶融めっき層の付着量は、鋼板両面の合計の付着量が30~600g/m2の範囲になるように調整することが好ましい。付着量が30g/m2未満の場合、Zn-Al-Mg系溶融めっき鋼板の耐食性が低下するので好ましくない。付着量が600g/m2超の場合、鋼板に付着した溶融金属の垂れが発生して、溶融めっき層の表面を平滑にすることができなくなるため好ましくない。
溶融めっき層の付着量を調整した後、鋼板を冷却する。鋼板に付着した溶融金属の冷却は、溶融めっき浴から鋼板を引き上げた後に開始される。溶融めっき浴の組成にもよるが、430℃付近から〔Al相〕が晶出し始める。次いで、370℃付近から〔MgZn2〕が晶出し始め、340℃付近から〔Al/Zn/MgZn2の三元共晶組織〕が晶出し、更に〔Zn相〕が晶出して、凝固が完了する。
このとき、鋼板に付着した数多くのZn粉がZnの核生成点として働くため、液相中のZnは〔Al/Zn/MgZn2の三元共晶組織〕中の微細なZn相として形成され、他方、円相当直径で2.5μm以上となる粗大なZn相(〔Zn相〕)の形成が抑制される。
溶融めっき層の表面に化成処理層を形成する場合には、溶融めっき層を形成した後の溶融めっき鋼板に対して、化成処理を行う。化成処理の種類は特に限定されず、公知の化成処理を用いることができる。
また、溶融めっき層の表面や化成処理層の表面に塗膜層を形成する場合には、溶融めっき層を形成した後、又は、化成処理層を形成した後の溶融めっき鋼板に対して、塗装処理を行う。塗装処理の種類は特に限定されず、公知の塗装処理を用いることができる。
また、溶融めっき層の表面や化成処理層の表面に塗膜層を形成する場合には、溶融めっき層を形成した後、又は、化成処理層を形成した後の溶融めっき鋼板に対して、塗装処理を行う。塗装処理の種類は特に限定されず、公知の塗装処理を用いることができる。
以上説明したように、本実施形態によれば、従来よりも溶融めっき層表面の金属光沢性を高めることができる。
次に、本発明の実施例を説明する。冷間圧延後の鋼板を脱脂、水洗した。その後、鋼板に対して冷延板焼鈍を行った。冷延板焼鈍後の鋼板に対して平均粒径4~6μmの範囲のZn粉を、片面当たり1~5g/m2の付着量で付着させ、溶融めっき浴に浸漬してから引き上げた。その後、付着量をガスワイピングによって調整し、さらに冷却を行った。なお、No.67では、Zn粉を付着してから焼鈍および溶融めっきを行い、また、No.68では、溶融めっき後にZn粉を付着し、更に、No.69では、Zn粉をすることなく溶融めっきを行った。このようにして、表1A及び表2Bに示すNo.1~69の溶融めっき鋼板を製造した。
得られた溶融めっき鋼板に対して、図1に示したように、溶融めっき層の表面からt/4位置、t/2位置および3t/4位置において表面に平行な5mm四方の露出面を形成した。露出面は、研削によって溶融めっき層を削り取ったのちに鏡面研磨を行うことで形成した。
5mm×5mmのサイズの各露出面に対して、走査型電子顕微鏡(SEM)の二次電子像によりめっき組織を観察して、〔Zn相〕および〔Al/MgZn2/Znの三元共晶組織〕を特定した。各相および組織を特定する際は、SEMに付属するエネルギー分散型X線元素分析装置による元素分析を併用し、Zn、AlおよびMgの分布を確認しつつ特定した。そして、各露出面における〔Zn相〕の面積分率を求め、更に、〔Zn相〕および〔Al/MgZn2/Znの三元共晶組織〕の合計面積分率Aに対する〔Zn相〕の面積分率Bの比率(B/A(%))を求めた。〔Zn相〕は、円相当直径で2.5μm以上となる領域のものを〔Zn相〕として計測した。これにより、〔Al/MgZn2/Znの三元共晶組織〕中のZn相と〔Zn相〕とを区別した。
結果を表2Aおよび2Bに示す。
また、No.1~62の〔Zn相〕の面積分率を測定した露出面において、〔Al相〕の面積分率は30~80面積%の範囲であり、〔Al/MgZn2/Znの三元共晶組織〕の面積分率は10~75面積%の範囲であり、〔MgZn2相〕の面積分率は0~60面積%の範囲であり、〔Mg2Si相〕の面積分率は0~5面積%の範囲であった。
結果を表2Aおよび2Bに示す。
また、No.1~62の〔Zn相〕の面積分率を測定した露出面において、〔Al相〕の面積分率は30~80面積%の範囲であり、〔Al/MgZn2/Znの三元共晶組織〕の面積分率は10~75面積%の範囲であり、〔MgZn2相〕の面積分率は0~60面積%の範囲であり、〔Mg2Si相〕の面積分率は0~5面積%の範囲であった。
また、得られた溶融めっき鋼板の溶融めっき層の表面を観察し、下記の判定基準に基づいて目視評価を行った。AおよびBを合格とした。結果を表2Aおよび2Bに示す。
A:0.5m先からでも光沢以外の外観斑が観察されない。
B:0.5m先からは光沢以外の外観斑が観察されるが、2m先からは光沢以外の外観斑が観察されない。
C:2m先からも光沢以外の外観斑が観察される。
B:0.5m先からは光沢以外の外観斑が観察されるが、2m先からは光沢以外の外観斑が観察されない。
C:2m先からも光沢以外の外観斑が観察される。
溶融めっき鋼板の耐食性は、CCT試験後の腐食減量で評価した。めっき鋼板を150×70mmに切断し、JASO-M609に準拠したCCTを用いて、CCT30サイクル後の腐食減量を調査した。評価は、腐食減量30g/m2未満をF、腐食減量30g/m2以上50g/m2未満をG、腐食減量50g/m2以上をPとし、F及びGを合格とした。結果を表2Aおよび2Bに示す。
No.1~No.62の溶融めっき鋼板は、溶融めっき層の化学成分が本発明の範囲であり、焼鈍後、溶融めっき前にZn粉の付着を行ったため、溶融めっき層の凝固時にZn粉がZnの各生成サイトとして機能した結果、溶融めっき層の表面から3t/4位置、t/2位置またはt/4位置にて5mm四方の露出面を形成した場合に、少なくとも1つの露出面におけるめっき組織の〔Zn相〕の面積分率が20%未満となった。このため、溶融めっき層の外観が光沢ある外観となった。また、耐食性も良好であった。
No.63の溶融めっき鋼板は、溶融めっき層のAl含有量が少なかったため、耐食性が低下した。
No.64の溶融めっき鋼板は、溶融めっき層のAl含有量が過剰であったため、耐食性が低下した。
No.65の溶融めっき鋼板は、溶融めっき層のMg含有量が少なかったため、耐食性が低下した。
No.66の溶融めっき鋼板は、溶融めっき層のMg含有量が過剰であったため、耐食性が低下した。また、めっき組織の〔Zn相〕の面積分率が20%以上になり、溶融めっき層の外観の光沢性が不十分になった。
No.64の溶融めっき鋼板は、溶融めっき層のAl含有量が過剰であったため、耐食性が低下した。
No.65の溶融めっき鋼板は、溶融めっき層のMg含有量が少なかったため、耐食性が低下した。
No.66の溶融めっき鋼板は、溶融めっき層のMg含有量が過剰であったため、耐食性が低下した。また、めっき組織の〔Zn相〕の面積分率が20%以上になり、溶融めっき層の外観の光沢性が不十分になった。
No.67の溶融めっき鋼板は、Zn粉を付着してから焼鈍および溶融めっきを行ったため、焼鈍時にZn粉が鋼板と合金化してしまい、Znの核生成サイトとして機能しなかった。このため、溶融めっき層の表面から3t/4位置、t/2位置またはt/4位置において〔Zn相〕の面積分率が全て20%以上となり、溶融めっき層の外観の光沢性が不十分になった。
No.68の溶融めっき鋼板は、溶融めっき後にZn粉を付着したため、Zn粉がZnの核生成サイトとして機能しなかった。このため、溶融めっき層の表面から3t/4位置、t/2位置またはt/4位置において〔Zn相〕の面積分率が全て20%以上となり、溶融めっき層の外観の光沢性が不十分になった。
No.69の溶融めっき鋼板は、Zn粉を付着しなかったため、Zn粉がZnの核生成サイトとして機能しなかった。このため、溶融めっき層の表面から3t/4位置、t/2位置またはt/4位置において〔Zn相〕の面積分率が全て20%以上となり、溶融めっき層の外観の光沢性が不十分になった。
本開示のZn-Al-Mg系溶融めっき鋼板は、溶融めっき層表面の金属光沢性に優れ、耐食性にも優れるので、産業上の利用可能性が高い。
1…鋼板、2…溶融めっき層、2a…溶融めっき層の表面、3…t/4位置における断面(露出面)、4…t/2位置における断面(露出面)、5…3t/4位置における断面(露出面)。
Claims (5)
- 鋼板と、前記鋼板の表面に形成された溶融めっき層と、を備え、
前記溶融めっき層は、平均組成で、Al:10超~22質量%、Mg:1.0~10質量%、を含有し、残部がZnおよび不純物を含み、
前記溶融めっき層の厚みをtとして、前記溶融めっき層の表面から3t/4位置、t/2位置またはt/4位置のいずれかの位置において前記表面に平行な5mm四方の断面を露出させた場合に、少なくとも1つの前記断面におけるめっき組織の〔Zn相〕の面積分率が20%未満であることを特徴とするZn-Al-Mg系溶融めっき鋼板。 - 鋼板と、前記鋼板の表面に形成された溶融めっき層と、を備え、
前記溶融めっき層は、平均組成で、Al:10超~22質量%、Mg:1.0~10質量%、を含有し、残部がZnおよび不純物を含み、
さらに下記A群、B群からなる群から選択される1種または2種を含有し、
前記溶融めっき層の厚みをtとして、前記溶融めっき層の表面から3t/4位置、t/2位置またはt/4位置のいずれかの位置において前記表面に平行な5mm四方の断面を露出させた場合に、少なくとも1つの前記断面におけるめっき組織の〔Zn相〕の面積分率が20%未満であることを特徴とするZn-Al-Mg系溶融めっき鋼板。
[A群]Si:0.0001~2質量%
[B群]Ni、Ti、Zr、Sr、Fe、Sb、Pb、Sn、Ca、Co、Mn、P、B、Bi、Cr、Sc、Y、REM、Hf、Cのいずれか1種または2種以上を、合計で0.0001~2質量% - 少なくとも1つの前記断面におけるめっき組織の〔Zn相〕および〔Al/MgZn2/Znの三元共晶組織〕の合計面積分率Aに対する〔Zn相〕の面積分率Bの比率(B/A(%))が20%未満である、請求項1または請求項2に記載のZn-Al-Mg系溶融めっき鋼板。
- 前記溶融めっき層が、質量%で、前記A群を含有する平均組成を有する請求項2に記載のZn-Al-Mg系溶融めっき鋼板。
- 前記溶融めっき層が、質量%で、前記B群を含有する平均組成を有する請求項2に記載のZn-Al-Mg系溶融めっき鋼板。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-094346 | 2022-06-10 | ||
JP2022094346 | 2022-06-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023238934A1 true WO2023238934A1 (ja) | 2023-12-14 |
Family
ID=89118445
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/021552 WO2023238934A1 (ja) | 2022-06-10 | 2023-06-09 | Zn-Al-Mg系溶融めっき鋼板 |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202407116A (ja) |
WO (1) | WO2023238934A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003060179A1 (fr) * | 2002-01-09 | 2003-07-24 | Nippon Steel Corporation | Plaque en acier a placage en zinc excellente en resistance a la corrosion apres revetement et clarte du revetement |
WO2020213686A1 (ja) * | 2019-04-19 | 2020-10-22 | 日本製鉄株式会社 | めっき鋼板 |
JP2021172878A (ja) * | 2020-04-30 | 2021-11-01 | 日本製鉄株式会社 | 加工性と耐食性に優れる溶融Zn−Al−Mg系めっき鋼材 |
-
2023
- 2023-06-09 WO PCT/JP2023/021552 patent/WO2023238934A1/ja unknown
- 2023-06-09 TW TW112121710A patent/TW202407116A/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003060179A1 (fr) * | 2002-01-09 | 2003-07-24 | Nippon Steel Corporation | Plaque en acier a placage en zinc excellente en resistance a la corrosion apres revetement et clarte du revetement |
WO2020213686A1 (ja) * | 2019-04-19 | 2020-10-22 | 日本製鉄株式会社 | めっき鋼板 |
JP2021172878A (ja) * | 2020-04-30 | 2021-11-01 | 日本製鉄株式会社 | 加工性と耐食性に優れる溶融Zn−Al−Mg系めっき鋼材 |
Also Published As
Publication number | Publication date |
---|---|
TW202407116A (zh) | 2024-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110234780B (zh) | 镀覆钢材 | |
JP6433960B2 (ja) | 溶融Al−Zn−Mg−Siめっき鋼板とその製造方法 | |
JP6368730B2 (ja) | 溶融Al−Zn−Mg−Siめっき鋼板とその製造方法 | |
JP4874328B2 (ja) | 高耐食性溶融Zn系めっき鋼材 | |
JP3779941B2 (ja) | 塗装後耐食性と塗装鮮映性に優れた亜鉛めっき鋼板 | |
JPWO2020179147A1 (ja) | 溶融Al−Zn−Mg−Si−Srめっき鋼板及びその製造方法 | |
CN117026132A (zh) | 熔融Al-Zn-Mg-Si-Sr镀覆钢板及其制造方法 | |
KR20210133266A (ko) | 용융 Al-Zn-Mg-Si-Sr 도금 강판 및 그 제조 방법 | |
JP7549965B2 (ja) | 溶融Al-Zn-Mg-Si系めっき鋼板及びその製造方法、並びに、塗装鋼板及びその製造方法 | |
JP2016166415A (ja) | 溶融Al−Zn−Mg−Siめっき鋼板とその製造方法 | |
JP7063431B1 (ja) | めっき鋼材 | |
WO2020179147A1 (ja) | 溶融Al−Zn−Mg−Si−Srめっき鋼板及びその製造方法 | |
KR102527548B1 (ko) | 도금 강재 | |
JP7436945B1 (ja) | 溶融めっき鋼材 | |
CN114846171A (zh) | 耐腐蚀性优异的热浸镀合金钢材及其制造方法 | |
CN116685706B (zh) | 镀覆钢材 | |
JP7545497B2 (ja) | 耐食性、加工性及び表面品質に優れためっき鋼板、並びにその製造方法 | |
WO2023238934A1 (ja) | Zn-Al-Mg系溶融めっき鋼板 | |
KR20230095102A (ko) | 자동차 구조 부재용 도금 강판 | |
WO2023238940A1 (ja) | Zn-Al-Mg系溶融めっき鋼板 | |
JP2020143369A (ja) | 塗装鋼板及び塗装鋼板の製造方法 | |
TWI787118B (zh) | 熔融Al-Zn系鍍覆鋼板及其製造方法 | |
WO2024214328A1 (ja) | 溶融Al-Zn系めっき鋼板及びその製造方法 | |
WO2024214329A1 (ja) | 溶融Al-Zn系めっき鋼板及びその製造方法 | |
WO2024219122A1 (ja) | 溶融めっき鋼材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23819914 Country of ref document: EP Kind code of ref document: A1 |