JPH0293053A - 高耐蝕性溶融Zn−Mg系合金めっき鋼板の製造方法 - Google Patents
高耐蝕性溶融Zn−Mg系合金めっき鋼板の製造方法Info
- Publication number
- JPH0293053A JPH0293053A JP63245170A JP24517088A JPH0293053A JP H0293053 A JPH0293053 A JP H0293053A JP 63245170 A JP63245170 A JP 63245170A JP 24517088 A JP24517088 A JP 24517088A JP H0293053 A JPH0293053 A JP H0293053A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- steel sheet
- dip
- plated steel
- alloy powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 86
- 239000010959 steel Substances 0.000 title claims abstract description 86
- 238000005260 corrosion Methods 0.000 title claims abstract description 54
- 230000007797 corrosion Effects 0.000 title claims abstract description 54
- 238000004519 manufacturing process Methods 0.000 title claims description 25
- 229910000861 Mg alloy Inorganic materials 0.000 title description 8
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 107
- 239000000956 alloy Substances 0.000 claims abstract description 107
- 229910009369 Zn Mg Inorganic materials 0.000 claims abstract description 91
- 229910007573 Zn-Mg Inorganic materials 0.000 claims abstract description 91
- 239000000843 powder Substances 0.000 claims abstract description 69
- 238000007747 plating Methods 0.000 claims description 80
- 238000005507 spraying Methods 0.000 claims description 16
- 238000005275 alloying Methods 0.000 abstract description 7
- 238000009792 diffusion process Methods 0.000 abstract description 5
- 239000000428 dust Substances 0.000 abstract description 3
- 238000004880 explosion Methods 0.000 abstract description 3
- 239000002245 particle Substances 0.000 abstract description 3
- 238000000889 atomisation Methods 0.000 abstract description 2
- 229910001335 Galvanized steel Inorganic materials 0.000 abstract 2
- 239000008397 galvanized steel Substances 0.000 abstract 2
- 238000007664 blowing Methods 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000011701 zinc Substances 0.000 description 56
- 239000010410 layer Substances 0.000 description 27
- 238000000034 method Methods 0.000 description 19
- 239000011248 coating agent Substances 0.000 description 16
- 238000000576 coating method Methods 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 14
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 12
- 238000012360 testing method Methods 0.000 description 10
- 239000007789 gas Substances 0.000 description 9
- 239000002344 surface layer Substances 0.000 description 8
- 230000008018 melting Effects 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000009713 electroplating Methods 0.000 description 5
- 239000003973 paint Substances 0.000 description 5
- 230000002265 prevention Effects 0.000 description 5
- 238000010422 painting Methods 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 229910009367 Zn M Inorganic materials 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- 229910018134 Al-Mg Inorganic materials 0.000 description 1
- 241001163841 Albugo ipomoeae-panduratae Species 0.000 description 1
- 229910018467 Al—Mg Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910000655 Killed steel Inorganic materials 0.000 description 1
- 229910000914 Mn alloy Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910007567 Zn-Ni Inorganic materials 0.000 description 1
- 229910007614 Zn—Ni Inorganic materials 0.000 description 1
- RQMIWLMVTCKXAQ-UHFFFAOYSA-N [AlH3].[C] Chemical compound [AlH3].[C] RQMIWLMVTCKXAQ-UHFFFAOYSA-N 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 229910000953 kanthal Inorganic materials 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/261—After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/265—After-treatment by applying solid particles to the molten coating
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Coating With Molten Metal (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は高耐蝕性溶融Zn−Mg系合金めっき鋼板の製
造方法に関4−るらので、さらに詳しくは、自動車、家
庭電気製品、建築材料等に使用する表面処理j14仮に
高耐蝕性を付与する溶融Zn−Mg系合金めっき鋼板の
製造方法に関するしのである。
造方法に関4−るらので、さらに詳しくは、自動車、家
庭電気製品、建築材料等に使用する表面処理j14仮に
高耐蝕性を付与する溶融Zn−Mg系合金めっき鋼板の
製造方法に関するしのである。
[従来技術1
近年、自動車、建築材料、家庭電気製品等に使用されて
いる鋼板に対して、防錆に要望が益々強くなってきてお
り、この防錆にはZn系めっき鋼板が広く使用されてい
る。
いる鋼板に対して、防錆に要望が益々強くなってきてお
り、この防錆にはZn系めっき鋼板が広く使用されてい
る。
特に、自動車の車体に対する防錆は、省資源ばかりでは
なく、安全上においてら重要であり、また、路面凍結防
止のために冬季に融雪塩を使用する方面におけろ車体の
腐蝕は深刻な問題になっている。
なく、安全上においてら重要であり、また、路面凍結防
止のために冬季に融雪塩を使用する方面におけろ車体の
腐蝕は深刻な問題になっている。
このような現状において、純Znめっき鋼板の他に、さ
らに高耐蝕性を有するZn系合金めっき鋼板の使用が検
討されており、一部において実用化されている。例えば
、電気めっき法によって製造されているZn−Fe系合
金めっき鋼板、Pe−Zn/Zn−Fe二層合金めっき
鋼板、Zn−Ni系合金めっき鋼板、Zn−Mn系合金
めっき鋼板等、また、溶融めっき法により製造されてい
る、ZnAl系合金めっき鋼板、合金化溶融Znめっき
鋼板等が目的に応して使用されており、純Znめっき鋼
板に比較して防錆能力が優れたものとして評11iされ
ている。
らに高耐蝕性を有するZn系合金めっき鋼板の使用が検
討されており、一部において実用化されている。例えば
、電気めっき法によって製造されているZn−Fe系合
金めっき鋼板、Pe−Zn/Zn−Fe二層合金めっき
鋼板、Zn−Ni系合金めっき鋼板、Zn−Mn系合金
めっき鋼板等、また、溶融めっき法により製造されてい
る、ZnAl系合金めっき鋼板、合金化溶融Znめっき
鋼板等が目的に応して使用されており、純Znめっき鋼
板に比較して防錆能力が優れたものとして評11iされ
ている。
しかし、特に、車体の防錆に関しては、カナダコード、
ノルデイックコードのような規制は、今後益々強化され
、耐外面詰5年、耐大あきIO年以七という防錆目標を
充分に満足するような、Zn系防錆鋼板への必要性はよ
り一層高まってきている。
ノルデイックコードのような規制は、今後益々強化され
、耐外面詰5年、耐大あきIO年以七という防錆目標を
充分に満足するような、Zn系防錆鋼板への必要性はよ
り一層高まってきている。
しかして、Zn系めっき鋼板の防錆能力は、Zn系めっ
き層の付着量(目付量)に略比例して向上し、腐蝕環境
の厳しいところでは、厚目付型のZn系めっき鋼板が使
用されている。
き層の付着量(目付量)に略比例して向上し、腐蝕環境
の厳しいところでは、厚目付型のZn系めっき鋼板が使
用されている。
しかし、電気めっき法によって厚目付型のめっき鋼板を
製造する場合、めっき浴の槽数を増加するか、ラインス
ピードを遅くするか等により行なわなければならず、生
産性の上から不利な点が多く、現在では厚目付型の必要
性に対しては、溶融めっき法により製造ケることにより
対応している。
製造する場合、めっき浴の槽数を増加するか、ラインス
ピードを遅くするか等により行なわなければならず、生
産性の上から不利な点が多く、現在では厚目付型の必要
性に対しては、溶融めっき法により製造ケることにより
対応している。
そして、溶融めっき法は電気めっき法に比較して容易に
厚[1付型のめっき鋼板を製造することかできので(f
利である。そのため、溶融めっき法により厚口付型高耐
蝕性のZn系合金めっき鋼板を製造することが必要性に
対応できるしのである。
厚[1付型のめっき鋼板を製造することかできので(f
利である。そのため、溶融めっき法により厚口付型高耐
蝕性のZn系合金めっき鋼板を製造することが必要性に
対応できるしのである。
このような溶融めっき法により製造されている高耐蝕性
Zn系合金めっき鋼板は、上記に説明したように合金化
溶融Znめっき(Zn−Fe)J4板、7、n−Al系
合金めっき鋼板(商品名、G alvalume。
Zn系合金めっき鋼板は、上記に説明したように合金化
溶融Znめっき(Zn−Fe)J4板、7、n−Al系
合金めっき鋼板(商品名、G alvalume。
Ga1fan)がある。また、特開昭58−09116
2号公報、特開昭51−120241号公報、米国特許
第4029478号明細書等には、めっき浴中に少量の
Mgを含有さHたZn−Al−Mg系合金めっき鋼板が
記載されている。そして、溶融4口めっき浴中にMgを
含有させ、かつ、t’b含有爪を低く抑えることによっ
て製造されるZn−AlMg系合金めっき鋼板は、溶融
めっき鋼板の欠点とし言われている表面の外観性状を改
善し、また、耐蝕性を向上させると記載されている。
2号公報、特開昭51−120241号公報、米国特許
第4029478号明細書等には、めっき浴中に少量の
Mgを含有さHたZn−Al−Mg系合金めっき鋼板が
記載されている。そして、溶融4口めっき浴中にMgを
含有させ、かつ、t’b含有爪を低く抑えることによっ
て製造されるZn−AlMg系合金めっき鋼板は、溶融
めっき鋼板の欠点とし言われている表面の外観性状を改
善し、また、耐蝕性を向上させると記載されている。
しかしながら、Znめっき浴中にMgを含有させるとM
gは酸化され易い金属であるため、めっき浴表面にMg
O等の酸化物の石が多量に生成しくトップドロス)、め
っき浴原料の歩留りが低下すると共に、酸化物がめつき
綱板表面に付着し、外観を著しく損ない、さらに、多量
のMgをめっき浴中に含有させた場合、めっき浴の粘度
が上昇し、流動性の低下によって、ガスワイピング法に
よるめっき付着昨制御、特に目付量の低いめっき鋼板に
ついては制御が困難となる。
gは酸化され易い金属であるため、めっき浴表面にMg
O等の酸化物の石が多量に生成しくトップドロス)、め
っき浴原料の歩留りが低下すると共に、酸化物がめつき
綱板表面に付着し、外観を著しく損ない、さらに、多量
のMgをめっき浴中に含有させた場合、めっき浴の粘度
が上昇し、流動性の低下によって、ガスワイピング法に
よるめっき付着昨制御、特に目付量の低いめっき鋼板に
ついては制御が困難となる。
このことからMgをZn系めっき層中に含有させると耐
蝕性の向上することが知られているが、生産性からMg
含有量を低く抑えなければならないのである。
蝕性の向上することが知られているが、生産性からMg
含有量を低く抑えなければならないのである。
因に、電気めっき法においては、Zn系めっき層中にM
gを含有さ仕ることは困難であり、これはMgは卑な金
属であり、酸化−還元電位がZn等に比較して極めて低
いからである。従って、水溶液中にMgイオンを溶解さ
せて電析しようとしても事実上不可能であり、非水溶液
中からのMgの電析は原理的には可能であるが、°電流
効率の低いこと、安全」−からの問題等から工業的規模
で生産を行なうことは困難であると考えられる。
gを含有さ仕ることは困難であり、これはMgは卑な金
属であり、酸化−還元電位がZn等に比較して極めて低
いからである。従って、水溶液中にMgイオンを溶解さ
せて電析しようとしても事実上不可能であり、非水溶液
中からのMgの電析は原理的には可能であるが、°電流
効率の低いこと、安全」−からの問題等から工業的規模
で生産を行なうことは困難であると考えられる。
[発明が解決しようとする課題]
本発明は上記に説明したように従来のめつき綱仮におけ
る種々の問題点に鑑み、本発明者か鋭意研究を行ない、
検討を重ねた結果、自動車、家庭電気製品および建築材
料等に使用する表面処理鋼板の耐蝕性を向上させること
ができる高耐蝕性溶融Zn−Mg系合金めっき鋼板の製
造方法を開発したのである。
る種々の問題点に鑑み、本発明者か鋭意研究を行ない、
検討を重ねた結果、自動車、家庭電気製品および建築材
料等に使用する表面処理鋼板の耐蝕性を向上させること
ができる高耐蝕性溶融Zn−Mg系合金めっき鋼板の製
造方法を開発したのである。
[課題を解決するための手段]
本発明に係る高耐蝕性溶融Zn−Mg系合金めっき鋼板
の製造方法は、 (1)鋼板を溶融Zn浴内に浸漬して溶融Znめっきを
行なった後、この溶融Znめっき層か未凝固状態の間に
Mg含有量が1〜50wt%のZn−Mg系合金粉末を
吹き付けることを特徴とする高耐蝕性溶融Zn−Mg系
合金めっき鋼板の製造方法を第1の発明とし、 (2) Q板を溶融Zn浴内に浸漬して溶融Znめっき
を行なった後、この溶融Znめっき層が未凝固状態の間
にMg含有量が1〜50wt%のZn−Mg系合金合金
粉末を吹き付け、次いで、加熱処理を行なって溶融Zn
めっき層とZn−Mg系合金粉末とを合金化することを
特徴とする高耐蝕性溶融Zn−Mg系合金めっき鋼板の
製造方法を第2の発明とする2つの発明よりなるもので
ある。
の製造方法は、 (1)鋼板を溶融Zn浴内に浸漬して溶融Znめっきを
行なった後、この溶融Znめっき層か未凝固状態の間に
Mg含有量が1〜50wt%のZn−Mg系合金粉末を
吹き付けることを特徴とする高耐蝕性溶融Zn−Mg系
合金めっき鋼板の製造方法を第1の発明とし、 (2) Q板を溶融Zn浴内に浸漬して溶融Znめっき
を行なった後、この溶融Znめっき層が未凝固状態の間
にMg含有量が1〜50wt%のZn−Mg系合金合金
粉末を吹き付け、次いで、加熱処理を行なって溶融Zn
めっき層とZn−Mg系合金粉末とを合金化することを
特徴とする高耐蝕性溶融Zn−Mg系合金めっき鋼板の
製造方法を第2の発明とする2つの発明よりなるもので
ある。
本発明に係る高耐蝕性溶融Zn−Mg系合金めっき鋼板
の製造方法について、以下詳細に説明する。
の製造方法について、以下詳細に説明する。
即ち、本発明に係る高耐蝕性溶融Zn−Mg系合金めっ
き鋼板の製造方法において、めっき中に含有されるMg
による耐蝕性向上の効果を解明するために、Mg含有量
の異なるZn−Mg系合金めっき鋼板を真空蒸着法によ
って製造し、Mg含有量と耐蝕性の関係について調査し
た結果、Mg含有量が0,5〜4011%の範囲が耐蝕
性の著しく向上することがわかった。
き鋼板の製造方法において、めっき中に含有されるMg
による耐蝕性向上の効果を解明するために、Mg含有量
の異なるZn−Mg系合金めっき鋼板を真空蒸着法によ
って製造し、Mg含有量と耐蝕性の関係について調査し
た結果、Mg含有量が0,5〜4011%の範囲が耐蝕
性の著しく向上することがわかった。
しかして、真空蒸着めっき法によるZn−Mg系合金め
っき鋼板を工業的に生産するためには、めっきを設ける
ための巨大な真空チャンバーおよびZn、Mg、Zn−
Mg系合金の地金原料を加熱蒸発させるための電子線、
高周波、カンタルヒーター等の加熱源、大気中から真空
系へ、また、真空系から大気中へと連続的に鋼板を搬送
するために必要な真空シール装置、めっき前処理設備等
の種々の設備、装置が必要となり、溶融めっき法に比較
して設備、装置等において非常に不利である。また、電
気めっき法によりZn−Mg系合金めっき鋼板を製造す
ることは、上記に説明したように工業的に不利な点が多
い。
っき鋼板を工業的に生産するためには、めっきを設ける
ための巨大な真空チャンバーおよびZn、Mg、Zn−
Mg系合金の地金原料を加熱蒸発させるための電子線、
高周波、カンタルヒーター等の加熱源、大気中から真空
系へ、また、真空系から大気中へと連続的に鋼板を搬送
するために必要な真空シール装置、めっき前処理設備等
の種々の設備、装置が必要となり、溶融めっき法に比較
して設備、装置等において非常に不利である。また、電
気めっき法によりZn−Mg系合金めっき鋼板を製造す
ることは、上記に説明したように工業的に不利な点が多
い。
従って、溶融めっき法が高耐蝕性溶融Zn−Mg系合金
めっき鋼板を製造する方法として最適であるかどうかを
検討した。
めっき鋼板を製造する方法として最適であるかどうかを
検討した。
先ず、Mg含有量が異なる種々のZn−Mg系合金地金
を溶製し、そのインゴットを再溶解して溶融めっき浴と
し、溶融Zn−Mg系合金めっき鋼板の製造を行なった
。
を溶製し、そのインゴットを再溶解して溶融めっき浴と
し、溶融Zn−Mg系合金めっき鋼板の製造を行なった
。
しかし、このZn−Mg系合金めっき浴はMgの酸化物
を主成分とするトップドロスが多量に発生し、また、製
造されたZn−Mg系合金めっき鋼板は、Mg含有量が
多くなるほど表面の酸化が著しくなって、外観が好まし
くないしのである。
を主成分とするトップドロスが多量に発生し、また、製
造されたZn−Mg系合金めっき鋼板は、Mg含有量が
多くなるほど表面の酸化が著しくなって、外観が好まし
くないしのである。
そのため、めっき浴全体を不活性ガス雰囲気下でシール
することにより、トップドロスの低減を図り、Zn−M
g系合金めっき鋼板を製造したが、Zn−Mg系合金め
っき浴の粘度の増大は不可避的なものであり、めっき膜
厚制御、特に、比較的薄目付量のめっき鋼板を製造する
ことは困難であり、従って、めっき浴中に直接Mgを含
有させてZn−Mg系合金めっき鋼板を製造することは
設備上、品質上から問題のあることが判明した。
することにより、トップドロスの低減を図り、Zn−M
g系合金めっき鋼板を製造したが、Zn−Mg系合金め
っき浴の粘度の増大は不可避的なものであり、めっき膜
厚制御、特に、比較的薄目付量のめっき鋼板を製造する
ことは困難であり、従って、めっき浴中に直接Mgを含
有させてZn−Mg系合金めっき鋼板を製造することは
設備上、品質上から問題のあることが判明した。
このような問題点により、溶融Zn系めっき鋼板の表面
外観の向上、所謂、ミニスパングル化技術である亜鉛粉
末ミニスパプロセスに注目し、溶融Zn−Mg系合金め
っき鋼板の製造に応用することを検討した。
外観の向上、所謂、ミニスパングル化技術である亜鉛粉
末ミニスパプロセスに注目し、溶融Zn−Mg系合金め
っき鋼板の製造に応用することを検討した。
この表面スパングルコントロール技術は、フランスのパ
ーティ社の開発に係るものであり、溶融Zn系めっき鋼
板のめっき表面が凝固する前に、微細なZn粉末と空気
または不活性ガスをその表面に吹き付けることにより、
Znの結晶核を多数形成させて結晶粒を微細化し、外観
の向上を図った乙のである。
ーティ社の開発に係るものであり、溶融Zn系めっき鋼
板のめっき表面が凝固する前に、微細なZn粉末と空気
または不活性ガスをその表面に吹き付けることにより、
Znの結晶核を多数形成させて結晶粒を微細化し、外観
の向上を図った乙のである。
そのために、アトマイズ法によってMg含有量の異なる
種々のZn−Mg系合金粉末を製造し、その後、粒径を
調整してから溶融Zn系めっき浴から引き上げられたZ
nめっき鋼板のめっき表面が未凝固状態のうちに、その
めっき表面に吹き付け、溶融Zn−’Mg系合金めっき
鋼板を製造した。
種々のZn−Mg系合金粉末を製造し、その後、粒径を
調整してから溶融Zn系めっき浴から引き上げられたZ
nめっき鋼板のめっき表面が未凝固状態のうちに、その
めっき表面に吹き付け、溶融Zn−’Mg系合金めっき
鋼板を製造した。
この時の吹き付けるZn−Mg系合金粉末の融点はMg
含有量によって大幅に異なり350〜600℃の温度範
囲であるが、鋼板表面の溶融Zn系めっきとの密着性お
よび吹き付は後の拡散・合金化のために、めっき表面が
未凝固状態下のうちにZn−Mg系合金粉末を吹き付け
ることが製造する上に必須の条件である。
含有量によって大幅に異なり350〜600℃の温度範
囲であるが、鋼板表面の溶融Zn系めっきとの密着性お
よび吹き付は後の拡散・合金化のために、めっき表面が
未凝固状態下のうちにZn−Mg系合金粉末を吹き付け
ることが製造する上に必須の条件である。
そして、溶融Zn系めっきの未凝固状態下でZnMg系
合金粉末を吹き付けるには、めっき浴直後のに行なうか
または溶融Zn系めっき銅板を一旦製造した後、0ロー
1ineかofT−1ineにおいて再加熱・溶融した
後、吹き付ける方法があるか、生産性からは前者の方か
好ましく、設備的には溶融Zn系めっき浴から出てガス
ワイピングによってめっき目付量をコントロールし、加
熱装置等を通過した直後にZn−Mg系合金粉末を吹さ
付ける装置を備えることが好ましい。
合金粉末を吹き付けるには、めっき浴直後のに行なうか
または溶融Zn系めっき銅板を一旦製造した後、0ロー
1ineかofT−1ineにおいて再加熱・溶融した
後、吹き付ける方法があるか、生産性からは前者の方か
好ましく、設備的には溶融Zn系めっき浴から出てガス
ワイピングによってめっき目付量をコントロールし、加
熱装置等を通過した直後にZn−Mg系合金粉末を吹さ
付ける装置を備えることが好ましい。
さらに、吹き付けろZn−Mg系合金粉末は上記に説明
したように、Mg含有量によって融点か異なり、例えば
、Mg含有量が30〜50vL%では融点が350℃と
比較的に低いために、未凝固状態のZn系めっき表面層
と容易に反応・拡散Vるが、一方、Mg含有量か5〜2
0wt%では融点が550°C以上で容易にZn系めっ
き層とは容易に反応・拡散を起さない。
したように、Mg含有量によって融点か異なり、例えば
、Mg含有量が30〜50vL%では融点が350℃と
比較的に低いために、未凝固状態のZn系めっき表面層
と容易に反応・拡散Vるが、一方、Mg含有量か5〜2
0wt%では融点が550°C以上で容易にZn系めっ
き層とは容易に反応・拡散を起さない。
従って、融点の高いZn−Mg系合金粉末を使用する場
合には、予め、予熱室等てこのZn−Mg系合金粉末を
加熱してから、この加熱ガスと一緒に吹き付けるか、ま
たは、吹き付けた後に加熱処理によってZn系めっき層
とZn−Mg系合金粉末を加熱拡散処理づ−ることか望
ましい。この場合の加熱処理温度は600℃以上で行な
うのかよい。
合には、予め、予熱室等てこのZn−Mg系合金粉末を
加熱してから、この加熱ガスと一緒に吹き付けるか、ま
たは、吹き付けた後に加熱処理によってZn系めっき層
とZn−Mg系合金粉末を加熱拡散処理づ−ることか望
ましい。この場合の加熱処理温度は600℃以上で行な
うのかよい。
このようにして製造された溶融Zn−Mg系合金めっき
鋼板の耐蝕性は、全めっき厚さ、Mg含打11等に依存
し、耐蝕性の面からは最適Mg含有!nがめつき厚さ方
向に均一であることが好ましい。
鋼板の耐蝕性は、全めっき厚さ、Mg含打11等に依存
し、耐蝕性の面からは最適Mg含有!nがめつき厚さ方
向に均一であることが好ましい。
しかしなから、Mg含有量をある範囲に制御したZn−
Mg系合金粉末を使用することよって、表面層たけは少
なくとし高耐蝕性を何するZn−Mg系合金めっき層を
形成させることが可能で、使用環境によっては充分であ
る場合かある。
Mg系合金粉末を使用することよって、表面層たけは少
なくとし高耐蝕性を何するZn−Mg系合金めっき層を
形成させることが可能で、使用環境によっては充分であ
る場合かある。
また、溶融Znめっき層とZn−Mg系合金粉末を加熱
処理等で充分に拡散さUることにより、めっき層の深部
まで7.n−Mg系会合金石形成させることが可能であ
るが、この場合には溶融Zn系めっき層の目付量と使用
するZn−Mg系合金粉末のMg含有ら1および吹き付
けMの3つの条件を制御することにより、めっき層全体
を高耐蝕性ZnMg系合金めっきとすることか可能であ
る。なぜなら、製造されたZn−Mg系合金めっき綱板
のめっき層中のMgは、すへてZn−Mg系合金粉末か
ら供給されたものであるから、製造されたZn−Mg系
合金めっき鋼板の耐蝕性を向上させるための最適Mg含
有量の範囲と、それを達成するために必要なZn−Mg
系合金粉末中のMg含有量の範囲とは異なり、Zn−M
g系合金粉末中のMg含存償がZn−Mg系合金粉末単
位では耐蝕性がそれはと良くない範囲の場合があり、こ
のようなZn−Mg系合金粉末を単に溶融Zn系めっき
層表面に吹き付けたとしても、耐蝕性の大幅な向上は期
待できないばかりでなく、後記するように塗装後の塗膜
膨れの原因になる場合がある。
処理等で充分に拡散さUることにより、めっき層の深部
まで7.n−Mg系会合金石形成させることが可能であ
るが、この場合には溶融Zn系めっき層の目付量と使用
するZn−Mg系合金粉末のMg含有ら1および吹き付
けMの3つの条件を制御することにより、めっき層全体
を高耐蝕性ZnMg系合金めっきとすることか可能であ
る。なぜなら、製造されたZn−Mg系合金めっき綱板
のめっき層中のMgは、すへてZn−Mg系合金粉末か
ら供給されたものであるから、製造されたZn−Mg系
合金めっき鋼板の耐蝕性を向上させるための最適Mg含
有量の範囲と、それを達成するために必要なZn−Mg
系合金粉末中のMg含有量の範囲とは異なり、Zn−M
g系合金粉末中のMg含存償がZn−Mg系合金粉末単
位では耐蝕性がそれはと良くない範囲の場合があり、こ
のようなZn−Mg系合金粉末を単に溶融Zn系めっき
層表面に吹き付けたとしても、耐蝕性の大幅な向上は期
待できないばかりでなく、後記するように塗装後の塗膜
膨れの原因になる場合がある。
従って、種々のMg含有量のZn−Mg系合金粉末を使
用する場合は、製造されたZn−Mg系合金めっきの耐
蝕性向上を考慮してその後の加熱処理の必要性を検討す
ることが重要である。
用する場合は、製造されたZn−Mg系合金めっきの耐
蝕性向上を考慮してその後の加熱処理の必要性を検討す
ることが重要である。
このことをさらに詳細に説明すると、Zn−Mg系合金
粉末のMg含有量が30wt%以上のものを使用した場
合、未凝固溶融Zn系めっき層と吹き付けろZn−Mg
系合金粉末の拡散の不充分から製造されるZn−Mg系
合金めっきの表面層のMg含有’i1が高いしのとなる
。
粉末のMg含有量が30wt%以上のものを使用した場
合、未凝固溶融Zn系めっき層と吹き付けろZn−Mg
系合金粉末の拡散の不充分から製造されるZn−Mg系
合金めっきの表面層のMg含有’i1が高いしのとなる
。
このZn−Mg系合金めっき鋼板の耐蝕性は、完全ては
なく、また、その後の燐酸塩処理等の化成処理を行ない
、塗膜を設けて塗装後の耐蝕性試験を行なったところ、
表面層のMgの溶解によるアノード反応およびそれに伴
うH3発生によるカソード反応のために塗膜膨れが著し
くなって、製品」−好ましくないのである。
なく、また、その後の燐酸塩処理等の化成処理を行ない
、塗膜を設けて塗装後の耐蝕性試験を行なったところ、
表面層のMgの溶解によるアノード反応およびそれに伴
うH3発生によるカソード反応のために塗膜膨れが著し
くなって、製品」−好ましくないのである。
この現象は、めっき表面層のMg含(T量に依存するた
め、使用゛4”るZn−Mg系合金粉末のMg含ffm
等製造条件を制御することによって、回m1−ることか
可能であり、事実Mg含有量の低いZnMg系合金粉末
を用いた場合は、無塗装耐蝕性ら極めて優れているもの
である。
め、使用゛4”るZn−Mg系合金粉末のMg含ffm
等製造条件を制御することによって、回m1−ることか
可能であり、事実Mg含有量の低いZnMg系合金粉末
を用いた場合は、無塗装耐蝕性ら極めて優れているもの
である。
しかし、Mg含有量の高いZn−Mg系合金粉末を使用
した場合においてら、このZn−Mg系合金粉末を吹き
付けた後に、溶融Zn系めっき層とZnMg系合金粉末
が充分に拡散・合金化することによって、めっき表面層
のMg含有量を低下させ、高耐蝕性を有するZn−Mg
系合金めっき鋼板を製造することが可能であるが、使用
するZn−Mg系合金粉末のMg含有量が50wt%を
越える場合については、その後の合金化熱処理を行なっ
た場合で乙製造されためっきの表面層のMg含有量を高
耐蝕性を有する範囲にまで低下させるためには、高温・
長時間の合金化熱処理を必要とし、on−1ineで合
金化ずろことが困難となる。
した場合においてら、このZn−Mg系合金粉末を吹き
付けた後に、溶融Zn系めっき層とZnMg系合金粉末
が充分に拡散・合金化することによって、めっき表面層
のMg含有量を低下させ、高耐蝕性を有するZn−Mg
系合金めっき鋼板を製造することが可能であるが、使用
するZn−Mg系合金粉末のMg含有量が50wt%を
越える場合については、その後の合金化熱処理を行なっ
た場合で乙製造されためっきの表面層のMg含有量を高
耐蝕性を有する範囲にまで低下させるためには、高温・
長時間の合金化熱処理を必要とし、on−1ineで合
金化ずろことが困難となる。
また、Zn−Mg系合金粉末を吹き付ける場合に、非酸
化性雰囲気下で行なう時は別として、通常の大気雰囲気
下で実施することは粉塵爆発の危険性がある。
化性雰囲気下で行なう時は別として、通常の大気雰囲気
下で実施することは粉塵爆発の危険性がある。
しかして、この粉塵爆発の危険性について、種々のZn
−Mg系合金粉末について実験を行なった。
−Mg系合金粉末について実験を行なった。
その結果、危険性の最も高い粉末は純Mg粉末であり、
Zn−Mg系合金粉末についてもMg含有量が50wt
%を越える場合には可なり高い危険性がある。また、Z
n−Mg系合金粉末はMg含有量が多くなるほどコスト
が高くなるという問題もある。
Zn−Mg系合金粉末についてもMg含有量が50wt
%を越える場合には可なり高い危険性がある。また、Z
n−Mg系合金粉末はMg含有量が多くなるほどコスト
が高くなるという問題もある。
従って、Zn−Mg系合金めっき鋼板の耐蝕性および安
全性、かっ、経済性をも考慮して、使用するZn−Mg
系合金粉末のMg含有量の上限は50wt%以下とする
ことが望ましい。
全性、かっ、経済性をも考慮して、使用するZn−Mg
系合金粉末のMg含有量の上限は50wt%以下とする
ことが望ましい。
また、Zn−Mg系合金めっき鋼板の耐蝕性が向上する
理由について説明すると、塩素イオン等ハロゲンイオン
を含む(例えば、NaC1溶液)腐蝕環境下におけるZ
n−Mg系合金めっき鋼板の耐蝕性は、めっき層表面に
生成する錆による効果が大きいことが判明した。即ち、
Zn系めっき鋼板のめっき層が腐蝕して生成する錆(白
錆)は、主としてZn0(酸化亜鉛)とZnC1t ・
4 Zn(OH)t(塩基性塩化亜鉛)の2種に大別さ
れ、ZnOは電気伝導性が高く、ポーラスで下地めっき
層を保護する作用を有しておらず、一方、ZnCIt
・4Zn(OH)tは電気伝導性が低く、かつ、Zn−
Mg系合金めっき鋼板から生成する錆は、このZnC1
t・4Zn(oH)2が緻密にめっき層表面を覆い、下
地のめっき層を保護する作用が他のZn系合金めっきに
比較して特に高い。
理由について説明すると、塩素イオン等ハロゲンイオン
を含む(例えば、NaC1溶液)腐蝕環境下におけるZ
n−Mg系合金めっき鋼板の耐蝕性は、めっき層表面に
生成する錆による効果が大きいことが判明した。即ち、
Zn系めっき鋼板のめっき層が腐蝕して生成する錆(白
錆)は、主としてZn0(酸化亜鉛)とZnC1t ・
4 Zn(OH)t(塩基性塩化亜鉛)の2種に大別さ
れ、ZnOは電気伝導性が高く、ポーラスで下地めっき
層を保護する作用を有しておらず、一方、ZnCIt
・4Zn(OH)tは電気伝導性が低く、かつ、Zn−
Mg系合金めっき鋼板から生成する錆は、このZnC1
t・4Zn(oH)2が緻密にめっき層表面を覆い、下
地のめっき層を保護する作用が他のZn系合金めっきに
比較して特に高い。
゛しかして、このような保護作用の強いZnCLy・4
Zn(01()tを優先的に生成させるためには、Z
n−Mg系合金めっき鋼板を製造するためのZn−Mg
系合金粉末のMg含有量はある水準以上の量が必要であ
る。
Zn(01()tを優先的に生成させるためには、Z
n−Mg系合金めっき鋼板を製造するためのZn−Mg
系合金粉末のMg含有量はある水準以上の量が必要であ
る。
このMg含有量がある水準以上必要であることについて
、Zn−Mg系合金粉末のMg含有量と耐蝕性の関係を
検討したところ、1wt%以上のMgを含有するZn−
Mg系合金粉末、好ましくは、10wt%以上のMg含
有量のZn−Mg系合金粉末を使用すると、ZnCL@
42n(OH)tの緻密な錆が優先的に下地めっき層
を略全面にわたって覆うため、耐蝕性が向上することか
わかった。
、Zn−Mg系合金粉末のMg含有量と耐蝕性の関係を
検討したところ、1wt%以上のMgを含有するZn−
Mg系合金粉末、好ましくは、10wt%以上のMg含
有量のZn−Mg系合金粉末を使用すると、ZnCL@
42n(OH)tの緻密な錆が優先的に下地めっき層
を略全面にわたって覆うため、耐蝕性が向上することか
わかった。
そして、1wt5未満のMg含有量のZn−Mg系合金
粉末を使用すると、純Zn粉末を使用する場合よりもZ
nC1t・4Zn(OH)tのZnOに対する錆の生成
率は若干多くなり、耐蝕性はやや改善されるが極めて不
充分である。従って、Zn−Mg系合金粉末のMg含有
量の下限は1wt%以上とするのか望ましい。
粉末を使用すると、純Zn粉末を使用する場合よりもZ
nC1t・4Zn(OH)tのZnOに対する錆の生成
率は若干多くなり、耐蝕性はやや改善されるが極めて不
充分である。従って、Zn−Mg系合金粉末のMg含有
量の下限は1wt%以上とするのか望ましい。
U実 施 例]
本発明に係る高耐蝕性溶融Zn−Mg系合金めっき鋼板
の製造方法の実施例を説明する。
の製造方法の実施例を説明する。
実施例!
予め、焼鈍および還元処理を行なった極低炭素アルミニ
ウムキルド鋼のストリップ(0,5mmtX914mm
w)を、以下説明する溶融浴に浸漬して溶融Znめっき
を行なった。
ウムキルド鋼のストリップ(0,5mmtX914mm
w)を、以下説明する溶融浴に浸漬して溶融Znめっき
を行なった。
浴組成 : Zn−0,16wt%At浴温度 :
480℃ その後、ガスワイピングによりZnめっきの目付ffk
を制御した後、加熱炉によってZnめっき表面層を45
0℃以上の温度に加熱し、Znめっき層表面が未凝固状
態のうちに以下説明する条件により、Zn−Mg系合金
粉末を吹き付けた。
480℃ その後、ガスワイピングによりZnめっきの目付ffk
を制御した後、加熱炉によってZnめっき表面層を45
0℃以上の温度に加熱し、Znめっき層表面が未凝固状
態のうちに以下説明する条件により、Zn−Mg系合金
粉末を吹き付けた。
Zn−Mg系合金粉末粒径 : 5μmZn−Mg系合
金粉末吹き付はガス ・ NガスZn−Mg系合金粉末
吹き付はガス温度: 300°C Zr+−Mg系合金粉末吹き付はガス圧力Ikg/cm
ff Zn−Mg系合金粉末吹き付はガス流速; 約40m/
sec Zn−Mg系合金粉末の種類 : ZnおよびZnMg
系合金粉末(純Mg粉末は使用せず。)製造されためっ
き鋼板から150mm1 X 70mmvの試験片を切
断し、切断端面および非試験面をテープでノールした後
、塩水噴霧試験(5%NaCl溶液)による腐蝕試験を
行なった。
金粉末吹き付はガス ・ NガスZn−Mg系合金粉末
吹き付はガス温度: 300°C Zr+−Mg系合金粉末吹き付はガス圧力Ikg/cm
ff Zn−Mg系合金粉末吹き付はガス流速; 約40m/
sec Zn−Mg系合金粉末の種類 : ZnおよびZnMg
系合金粉末(純Mg粉末は使用せず。)製造されためっ
き鋼板から150mm1 X 70mmvの試験片を切
断し、切断端面および非試験面をテープでノールした後
、塩水噴霧試験(5%NaCl溶液)による腐蝕試験を
行なった。
評価は鋼板からの赤錆発生時間および電着塗装後の塗模
膨れによって行なった。
膨れによって行なった。
第1表にその結果を示す。
この第1表から明らかなように本発明に係る高耐蝕性溶
融Zn−Mg系合金めっき鋼板の製造方法により製造さ
れた溶融Zn−Mg系合金めっき鋼板の耐蝕性は、従来
の溶融Znめっき銅板(No、 I )および純Zn粉
末を吹き付けた銅板(No2)に比較して大変優れてい
ることがわかる。
融Zn−Mg系合金めっき鋼板の製造方法により製造さ
れた溶融Zn−Mg系合金めっき鋼板の耐蝕性は、従来
の溶融Znめっき銅板(No、 I )および純Zn粉
末を吹き付けた銅板(No2)に比較して大変優れてい
ることがわかる。
しかし、塗装後のクロスカットを入れたZnMg系合金
めっき鋼板のクロスカット部の塗膜膨れは、Zn−Mg
系合金粉末のMg含有量が30wt%以上の場合に若干
大きくなった。
めっき鋼板のクロスカット部の塗膜膨れは、Zn−Mg
系合金粉末のMg含有量が30wt%以上の場合に若干
大きくなった。
従って、製造されたZn−Mg系合金めっき鋼板をクロ
メート処理等の化成処理のみを行ない、無塗装で使用す
る場合と、燐酸塩処理等の化成処理後塗装して使用する
場合とては、使用するZnMg系合金粉末のMg含有!
nの上限か異なることに注意ずろ必要があり、換言すれ
ば、塗装後の耐蝕性と塗膜膨れの抑制とを同時に満足す
るZn−Mg系合金粉末のMg含有量は1〜50wt%
、特に、10〜20wt%の範囲が好ましい乙のである
。
メート処理等の化成処理のみを行ない、無塗装で使用す
る場合と、燐酸塩処理等の化成処理後塗装して使用する
場合とては、使用するZnMg系合金粉末のMg含有!
nの上限か異なることに注意ずろ必要があり、換言すれ
ば、塗装後の耐蝕性と塗膜膨れの抑制とを同時に満足す
るZn−Mg系合金粉末のMg含有量は1〜50wt%
、特に、10〜20wt%の範囲が好ましい乙のである
。
実施例2
実施例1と同様の条件により製造した種々のZn−Mg
系合金めっき鋼板を650°Cの温度に加熱し、溶融Z
nめっきと純Zn粉末および種々のMg含有量のZn−
Mg系合金粉末の拡散処理を行なった。
系合金めっき鋼板を650°Cの温度に加熱し、溶融Z
nめっきと純Zn粉末および種々のMg含有量のZn−
Mg系合金粉末の拡散処理を行なった。
このようにして製造されたZn−Mg系合金めっき鋼板
は、実施例!と同様に試験片を切り出し、;it塗装に
ついては端面と非試験面をテープでシールし、塗装材に
ついては燐酸塩処理(約2〜25g/m2)を行なった
後、カチオン型の電着塗装を行ない、クロスカットを入
れ、端面および非試験面をテープでシールを行なって供
試材とした。
は、実施例!と同様に試験片を切り出し、;it塗装に
ついては端面と非試験面をテープでシールし、塗装材に
ついては燐酸塩処理(約2〜25g/m2)を行なった
後、カチオン型の電着塗装を行ない、クロスカットを入
れ、端面および非試験面をテープでシールを行なって供
試材とした。
耐蝕性評価は塩水噴霧試験により行なった。
第2表にその結果を示す。
なお、第2表において、No、IおよびNO12につL
・では加熱処理を行なうとZnめっき層と素地鋼板が合
金化し、合金化溶融Znめつき鋼板の性質に近くなり、
赤錆発生時間を求める0味が不明となるため、加熱処理
は行なっていない。
・では加熱処理を行なうとZnめっき層と素地鋼板が合
金化し、合金化溶融Znめつき鋼板の性質に近くなり、
赤錆発生時間を求める0味が不明となるため、加熱処理
は行なっていない。
さらに、使用するZn−Mg系合金粉末のMg含有量が
高くなるほど加熱処理によるZnめっき屓と素地鋼板の
合金化は実質的に無視できる。
高くなるほど加熱処理によるZnめっき屓と素地鋼板の
合金化は実質的に無視できる。
この第2表から明らかなように、本発明に係る高耐蝕性
溶融Zn−Mg系合金めっき鋼板の製造方法により製造
されたZn−Mg系合金めっき鋼板の耐蝕性は、比較例
に比べて大幅に向上しており、また、加熱処理によるめ
っき層表面のMg含有量の低減により高Mg含有量のZ
n−Mg系合金粉末を使用した場合においても塗膜膨れ
は改善されていることがわかる。
溶融Zn−Mg系合金めっき鋼板の製造方法により製造
されたZn−Mg系合金めっき鋼板の耐蝕性は、比較例
に比べて大幅に向上しており、また、加熱処理によるめ
っき層表面のMg含有量の低減により高Mg含有量のZ
n−Mg系合金粉末を使用した場合においても塗膜膨れ
は改善されていることがわかる。
塗膜膨れ
塗膜膨れ
塗膜膨れ大。
[発明の効果]
以上説明したように、本発明に係る高耐蝕性溶融Zn−
Mg系合金めっき鋼板の製造方法は上記の摺成であるか
ら、従来の溶融めっき浴中にMgを含有さ仕ることによ
って製造していた溶融ZnMg系合金めっき鋼板を製造
する上における種々の問題を解決すると共に、Zn−M
g系合金めっき層のMg含有量を任意の濃度とすること
ができるZn−Mg系合金めっき鋼板を製造することが
でき、さらに、高耐蝕性の溶融Zn−Mg系合金めっき
鋼板を効率よ(製造することができるという優れた効果
を有しているものである。
Mg系合金めっき鋼板の製造方法は上記の摺成であるか
ら、従来の溶融めっき浴中にMgを含有さ仕ることによ
って製造していた溶融ZnMg系合金めっき鋼板を製造
する上における種々の問題を解決すると共に、Zn−M
g系合金めっき層のMg含有量を任意の濃度とすること
ができるZn−Mg系合金めっき鋼板を製造することが
でき、さらに、高耐蝕性の溶融Zn−Mg系合金めっき
鋼板を効率よ(製造することができるという優れた効果
を有しているものである。
Claims (2)
- (1)鋼板を溶融Zn浴内に浸漬して溶融Znめっきを
行なった後、この溶融Znめっき層が未凝固状態の間に
Mg含有量が1〜50wt%のZn−Mg系合金粉末を
吹き付けることを特徴とする高耐蝕性溶融Zn−Mg系
合金めっき鋼板の製造方法。 - (2)鋼板を溶融Zn浴内に浸漬して溶融Znめっきを
行なった後、この溶融Znめっき層が未凝固状態の間に
Mg含有量が1〜50wt%のZn−Mg系合金合金粉
末を吹き付け、次いで、加熱処理を行なって溶融Znめ
っき層とZn−Mg系合金粉末とを合金化することを特
徴とする高耐蝕性溶融Zn−Mg系合金めっき鋼板の製
造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63245170A JPH0293053A (ja) | 1988-09-29 | 1988-09-29 | 高耐蝕性溶融Zn−Mg系合金めっき鋼板の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63245170A JPH0293053A (ja) | 1988-09-29 | 1988-09-29 | 高耐蝕性溶融Zn−Mg系合金めっき鋼板の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0293053A true JPH0293053A (ja) | 1990-04-03 |
Family
ID=17129650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63245170A Pending JPH0293053A (ja) | 1988-09-29 | 1988-09-29 | 高耐蝕性溶融Zn−Mg系合金めっき鋼板の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0293053A (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0769567A1 (fr) * | 1995-10-19 | 1997-04-23 | Sollac S.A. | Procédé de revêtement de tÔle |
JP2006249579A (ja) * | 2005-02-10 | 2006-09-21 | Nippon Steel Corp | 高耐食性めっき鋼材及びその製造方法 |
US20090053555A1 (en) * | 2006-03-20 | 2009-02-26 | Koichi Nose | High Corrosion Resistance Hot dip Galvanized Steel Material |
WO2009083483A1 (fr) * | 2007-12-20 | 2009-07-09 | Centre De Recherches Metallurgiques Asbl - Centrum Voor Research In De Metallurgie Vzw | Alliage de revetement obtenu par projection de poudre |
WO2011030443A1 (ja) * | 2009-09-11 | 2011-03-17 | Nakamura Heihachi | 鋼材の耐蝕被覆層及びその形成方法 |
JP2015143399A (ja) * | 2007-03-15 | 2015-08-06 | 新日鐵住金株式会社 | 溶融Mg−Zn系合金めっき鋼材 |
-
1988
- 1988-09-29 JP JP63245170A patent/JPH0293053A/ja active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0769567A1 (fr) * | 1995-10-19 | 1997-04-23 | Sollac S.A. | Procédé de revêtement de tÔle |
FR2740145A1 (fr) * | 1995-10-19 | 1997-04-25 | Lorraine Laminage | Procede de revetement de tole |
US5711990A (en) * | 1995-10-19 | 1998-01-27 | Sollac | Method of coating sheet metal |
JP2006249579A (ja) * | 2005-02-10 | 2006-09-21 | Nippon Steel Corp | 高耐食性めっき鋼材及びその製造方法 |
JP4751206B2 (ja) * | 2005-02-10 | 2011-08-17 | 新日本製鐵株式会社 | 高耐食性めっき鋼材及びその製造方法 |
US20090053555A1 (en) * | 2006-03-20 | 2009-02-26 | Koichi Nose | High Corrosion Resistance Hot dip Galvanized Steel Material |
US8663818B2 (en) * | 2006-03-20 | 2014-03-04 | Nippon Steel & Sumitomo Metal Corporation | High corrosion resistance hot dip galvanized steel material |
JP2015143399A (ja) * | 2007-03-15 | 2015-08-06 | 新日鐵住金株式会社 | 溶融Mg−Zn系合金めっき鋼材 |
WO2009083483A1 (fr) * | 2007-12-20 | 2009-07-09 | Centre De Recherches Metallurgiques Asbl - Centrum Voor Research In De Metallurgie Vzw | Alliage de revetement obtenu par projection de poudre |
EP2103706A1 (fr) * | 2008-03-17 | 2009-09-23 | CENTRE DE RECHERCHES METALLURGIQUES a.s.b.l., CENTRUM VOOR RESEARCH IN DE METALLURGIE v.z.w. | Alliage de revêtement obtenu par projection de poudre |
WO2011030443A1 (ja) * | 2009-09-11 | 2011-03-17 | Nakamura Heihachi | 鋼材の耐蝕被覆層及びその形成方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3962501A (en) | Method for coating of corrosion-resistant molten alloy | |
US4519878A (en) | Method of Fe-Zn alloy electroplating | |
US20080142125A1 (en) | Coated Steel Sheet or Strip | |
EP0446677B1 (en) | Surface-treated steel sheet having improved weldability and plating properties, and method for producing the same | |
JPH0324255A (ja) | 溶融亜鉛めっき熱延鋼板の製造方法 | |
JP2783452B2 (ja) | 合金化溶融亜鉛めっき鋼板の製造方法 | |
US3712826A (en) | Method of improving the surface of galvanized steel material | |
JPH0293053A (ja) | 高耐蝕性溶融Zn−Mg系合金めっき鋼板の製造方法 | |
KR960009191B1 (ko) | 내식성 및 도금밀착성이 우수한 용융아연도금강판의 제조방법 | |
JPH0533312B2 (ja) | ||
JPH04160142A (ja) | 溶融亜鉛系めっき鋼板とその製造方法 | |
JP3135818B2 (ja) | 亜鉛−錫合金めっき鋼板の製造法 | |
JP2001020050A (ja) | 未塗装加工部ならびに塗装端面部の耐食性に優れた溶融Zn−Al−Mgめっき鋼材及びその製造方法 | |
JPS58189363A (ja) | 合金化亜鉛めつき鋼板の製造方法 | |
JPH0361352A (ja) | 溶融亜鉛めっき熱延鋼板の製造方法 | |
JP3581451B2 (ja) | 亜鉛−錫合金めっき鋼板の製造法 | |
JP2800512B2 (ja) | 合金化溶融亜鉛めっき鋼板の製法 | |
KR980009498A (ko) | 아연도금강판의 제조방법 | |
KR20010063534A (ko) | 내 파우더링성이 우수한 후도금 합금화 용융아연도금강판의 제조방법 | |
JPH04235266A (ja) | 加工性及び耐食性に優れた合金化溶融亜鉛めっき鋼板の製造方法 | |
CA1241572A (en) | Galvanizing procedure and galvanized product thereof | |
JP3095935B2 (ja) | 溶融Znメッキ方法 | |
JP2765078B2 (ja) | 合金化溶融めっき鋼板およびその製造方法 | |
JPH0533311B2 (ja) | ||
JPS62174360A (ja) | 合金化処理溶融亜鉛めつき鋼板の製造方法 |