US3712826A - Method of improving the surface of galvanized steel material - Google Patents

Method of improving the surface of galvanized steel material Download PDF

Info

Publication number
US3712826A
US3712826A US00819251A US3712826DA US3712826A US 3712826 A US3712826 A US 3712826A US 00819251 A US00819251 A US 00819251A US 3712826D A US3712826D A US 3712826DA US 3712826 A US3712826 A US 3712826A
Authority
US
United States
Prior art keywords
zinc
galvanized
layer
strip
galvanized steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00819251A
Inventor
T Kimuro
T Ataniya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Application granted granted Critical
Publication of US3712826A publication Critical patent/US3712826A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/265After-treatment by applying solid particles to the molten coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9335Product by special process
    • Y10S428/941Solid state alloying, e.g. diffusion, to disappearance of an original layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

THE PRESENT PROCESS FOR IMPROVING SURFACES OF GALVANIZED STEEL MATERIALS, ESPECIALLY THE PROPERTIES OF COATED SURFACES OF STRIP, BESIDES RENDERING THE SURFACES IN CONDITION FOR PAINT ADHENSION WITHOUT DETRACTING FROM THE FORMING PROPERTIES OF GALVANIZED STEL MATERIALS.

Description

1973 TADAO KIMURO ETAL 3,712,826
METHOD OF IMPROVING THE SURFACE OF GALVANIZED STEEL MATERIAL Filed April 25. 1969 INVENTORY TADAO K/MURO AND ATTORNEYS United States Patent Int. Cl. B44d1/08, N06
US. Cl. 117-22 Claims ABSTRACT OF THE DISCLOSURE The present process for improving surfaces of galvanized steel materials, especially the properties of coated surfaces of strip, besides rendering the surfaces in condition for paint adhesion without detracting from the forming properties of galvanized steel materials.
DESCRIPTION The present invention is concerned with methods for improving the surfaces of galvanized steel materials.
It is Well known that spangle, frost flower coating, occurs on surfaces of galvanized steels, especially in the case of strip material, and it can be eliminated and flattened by the following methods. First, is to remove the spangle to make the material spangle free by heating the strip just after the coating to alloy the whole coated layer with iron-zinc in order to provide a smooth surface. Secondly, is a method which fines zinc crystals by spraying water or steam onto hot-dip galvanized surface. Third, is a method which fines zinc crystals by similarly blowing fine powder of metal oxide onto the hot-dip galvanized surface. Fourth, is a spangle minimizing method by roll quench.
However there still remains problems in those methods, that is, since in the galvannealing method the whole coated layer becomes an alloy of iron-zinc and it is hard and brittle, and forming the coatings cannot be avoided, especially this tendency is remarkable as the coated layer becomes thicker, and when the coating thickness goes beyond a certain extent, the coated steel cannot endure utilization. Furthermore it is difiicult to alloy uniformly along the entire area of the coated surface on the strip, and corrosion resistance is generally bad, besides if the fabricated portion is kept in the damping atmosphere, it has the disadvantage of creating reddish rust. There have been such defects as insufficient in fining crystals or lacking of improvement for paint adhesion in multiplication of crystalline nucleus owing to the methods of spraying water or steam, or rapidly cooling the material.
The present invention has solved the above mentioned prior defects or disadvantages, that is, there are no spangles and it further provides good paint adhesion, of course without detracting from the forming of the coatings. The basic object of this invention exists in getting the method to provide galvanized steel materials having surfaces which are non-spangled and with excellent paint adhesion without detracting from the formability of the galvanized layer. For this purpose, this invention sprays uniformly aqueous solutions of metal salts which can alloy with zinc onto galvanized surfaces at more than 420 C. so as to form the thin alloy layer of this metal and zinc on said coated surface, thereby bringing about no alterations in the thickness of the galvanized layer or adherence, besides obtaining superior qualities in paint adhesion by the thin alloy layer. Products made according to 3,712,826 Patented Jan. 23, 1973 this invention are fairly improved in corrosion resistance of the galvanized surface and high valued ones.
Another object of this invention is to obtain a method for applying to such products that have various sizes of spangle. For this purpose, the temperature of the strip on which said metal salts are sprayed should be chosen suitably in the range of more than 300 C. for this invention. The surface properties of the thus formed alloy layer can be suitably changed in accordance to purpose. Alloy surfaces having no spangle .is generally formed by spraying metal salt to the galvanized layer while coated zinc is still molten. On the other hand, when the above mentioned metal salt is once applied to the galvanized layer at 300 to 418 C, the formed spangle remains as it is, besides improvements in the corrosion resistance of said galvanized surface and paint adhesion can be achieved as mentioned above.
Further another object of the present invention is to accomplish economically and advantageously the improving purpose for galvanized layer having the above stated characteristics. For this purpose it is recommended to apply the present invention to the galvanized layer which has just been drawn up from the bath in accordance with the ordinary hot-dip galvanizing process. Such a method enables an apparatus to easily provide a structure of spraying said metal salt to accomplish economically and advantageously the desired purpose by utilizing residual heat after the hot dipping.
Many other characteristics or working effects will be clearly understood through the following explanation of the embodiments hereafter mentioned.
The accompanying drawing is a photomicrographic illustration showing the cross-section of a galvanized steel coating prepared by the embodiment of this invention.
To explain the embodiments of this invention with reference to the drawing, in the present invention powders or aqueous solution of metal salts are sprayed to alloy with zinc to said galvanized steel material at more than 300 C., which contains the following both cases, that is, spraying powders or aqueous solution to the coated surface which is still molten such as just after zinc coating on steel material; and spraying powders or aqueous solution to the coated surface whose steel material has been cooled or once cooled down to ordinary temperature, and again heated up to 418 to 300 C. This invention has such a characteristic that aqueous solutions or fine powders of halide, nitrate or sulfate of the metal are sprayed to alloy with zinc at such temperatures, thereby forming the thin alloy layer of said metal and zinc on the coated surface.
The process which is recommended for obtaining economical and useful products having no spangle is carried out in the following Way. Strip continuously immersed into the bath is taken out after having been adjusted to suitable coatings by means of the coating roll or gaswiping methods, and while coated zinc of this strip is still molten, powders of said metal salt or aqueous solutions are uniformly sprayed onto both. sides of the hot-dip galvanized surface. Then, the metal salts are decomposed to form the thin layer alloy on the galvanized surface.
Since this alloy layer is very thin, the formability of galvanized strip is not detracted at all. Spangling peculiar to the galvanized steel sheet fades away by the formation of this thin alloyed layer, bringing about uniform White grey appearance from one side edge of the strip to the other. Further, it is superior in corrosion resistance of the coating. To compare the galvannealed products with this present product concerning the strip of 2.3 mm. in thickness which has coatings of 20 microns in thick- 3 ness, the salt spray test based on 118 Z 2371 (Japanese Industrial Standard Z 2371) has proved that in the former reddish rust occurred after six hours while the latter created no reddish rust even after two hundred hours.
'In case intending to improve corrosion resistance of a galvanized surface as well as paint adhesion, leaving spangle as it is, powders or solutions of metal salts are sprayed to form the thin alloy layer under the condition that the strip cools a little after having been taken out of the bath and the galvanized layer is solid in the extent of 418 to 300 C. Note that the melting point of zinc is 419 C. When the temperature of coated material such as strip is under 300 C., it is diificult to form suitable alloy layer by decomposition of halide, nitrate or sulfate of metal to alloy with zinc.
The above mentioned is the statement of the economically useful method for production, but it is needless to say that the present method is not only limited to such a hot dipping method, but it is equally applicable for the electroplated zinc layer or another coated layer by other methods. If the one according to the hot-dip galvanized method, or which has been once cooled to the ordinary temperature or under 300 C. is again heated up to the above said temperatures and is appropriately molten. This invention can be just similarly applied to it.
Iron is most usually adopted as the metal which can be alloyed with zinc, but sometimes copper or tin can be also chosen. The present method uses as the surface treating agent one or more than two of a halide, nitrate or sulfate of those metals and a very thin film is formed on the zinc surface. This is the most important purpose of the invention.
In the case of directly spraying those salt powders to the galvanized layer, attention must be paid to, since the particle size of powder greatly effects to the properties of the treated surface. Generally, effective is the particle size of 30 to 150 mesh, especially 60 to 100 mesh. Powders which are coarse more than 30 mesh are difiicult to perfectly accomplish alloy with zinc uniformly, on the contrary, powders which are less than 150 mesh are too fine to contact thoroughly with the molten zinc surface, therefore almost all powders are oxidized before reacting on the surface zinc. At spraying aqueous solution, its concentration is suitably selected, but it is preferable to be as high as possible.
As mentioned above some salts are used as a surface treating agent. However the effect of surface-alloying may be more promoted by means of any one or a mixture selected from Group I or Group II of the Periodic Table, complex salts above mentioned salt and fluoride of boron titanium or silicon; sodium chloride, calcium chloride, ammonium chloride, ammonium fluoride, ammonium hydrogen fluoride, zinc chloride, sodium borofiuoride, ammonium siliconfluoride, sodium titanium fluoride, is further added to the spraying of powders or aqueous solution of the above metal salts as an accelerating agent of said reaction or that of the group consisting of the diluent zinc white, alumina or talc, as a diluting agent. In the case of a solution the evaporating hydrochloric acid or nitric acid is appropriately added to the solution to adjust the acidity, thereby effecting advantageously.
In this connection, these accelerators are not critical but assistant agents for promoting the alloying. The main agents is any one or a mixture selected from the group including halide, nitrate and sulfate of metal.
The galvanized strip through this invention method als brings the satisfactory results in the paint adhesion in each case of spraying metal salt powders and spraying aqueous solution, that is, the coated surface obtained by this method has the paint adhesion equal to that of products of galvannealing method in the case of using iron salt at spraying. When melamine paint was coated on the surface of galvanized strip obtained in the later mentioned Examples 3 and 4 so as to examine its adherence, it showed the excellent equal to that of the products of 4 the galvannealing method. However, in the case of the products according to the above mentioned other conventional spangle-minimizing methods, the satisfactory paint adhesion could not be obtained without the surface treatment for painting.
The above mentioned concerns the galvanizing of strip, and the present method is applied for not only strip, but also steel plate, steel tube, steel wire, and other general steel materials. The method of applying surface treating agents to the galvanized surface is not limited only to spraying, but adopts the roll application, electrostatic spraying or any methods available.
The present method brings galvanized steel products which have been voluntarily adjusted from the silver-grey and uniform surfaces having no spangle to the surface with minimized spangle having dots of alloy of zinc and said metal. Since the above said alloy layer is very thinly formed on the coated surface, the forming properties of the coating is kept well which is the same as the conventional hot-dip coating. The treating method thereof is enough to spray metal salt to the surface to alloy for short period. The surface after treating is often partially covered with black-brown oxides which are easily removed by washing with brushing.
Several examples of this invention are as follows:
Example 1 When the powders of ferrous chloride of 60 mesh were sprayed 1 g./m. to the surface of galvanized steel strip at a temperature of 450 C. such a surface was obtained which had minimized spangle with rough surface of ironzinc alloy.
Example 2 When the particle size of ferrous chloride of Example 1 was changed into mesh, such a surface was obtained as approximately uniform iron-zinc alloy.
Example 3 When 30% aqueous solution or ferrous chloride was sprayed 50 mL/m. to the surface of galvanized steel strip at a temperature of 450 C., such analloyed surface was obtained as silver-white, uniform, smooth, 2 to 3 microns in thickness and having no spangle. The photomicrograph of the cross-section of this strip surface has been illustrated in the drawing, wherein A is the steel substance, B is the zinc layer and C is the alloy surface according to this present treatment.
Example 4 When concentrated hydrochloric acid was added 20 ml./l. to the 50% aqueous solution of ferric chloride and it was sprayed 200 mL/m. to the galvanized steel strip at a temperature of 480 C., the silver-grey surface having no spangle was obtained.
Example 5 When ammonium chloride was added 30 g./l. to the 10% aqueous solution of ferrous chloride and it was sprayed ml./m. to the galvanized steel strip at a temperature of 430 C., the silver-white surface of thin alloy layer was obtained which had no spangle at all.
Example 6 When the 50% aqueous solution of ferrous chloride was sprayed 30 ml./m. to the solidified surface of the galvanized layer which was cooled down to 380 C., the silver-grey surface of thin iron-zinc alloy layer was obtained on the uneven zinc surface having spangle.
Example 7 When the 30% aqueous solution of ferrous nitrate was sprayed 100 mL/m. to the surface of the galvanized steel strip at a temperature of 450 C. the silver-grey surface having no spangle was obtained.
Example 8 When the solution containing ammonium ferrous sulfate and 1% ammonium silocofiuoride was sprayed 100 mL/m. to the surface of the galvanized steel strip at a temperature of 450 C., the thin silver-grey surface having no spangle was obtained.
These solutions were sprayed to ml./m. to the galvanized steel strip at a temperature of 450 C., which was still molten just after zinc coating. These products showed excellent paint adhesion, forming properties and corrosion resistance.
We claim:
1. Method for improving the surface of galvanized steel consisting in zinc-coating a steel by a hot-dip galvanizing process, spraying powders or aqueous solution of one or a mixture selected from the group including halide,
nitrate and sulfate of iron on said zinc-coating layer, while 30 still in its molten state and then further forming a thin alloying layer of said metal-zinc on said zinc-coating layer.
2. A method for improving the surface of galvanized steel consisting in zinc-coating a. steel by a hot-dip galvanizing process, spraying powders of 30 to 150 mesh, of one or a mixture selected from the group including halide, nitrate and sulfate of metal on said zinc-coating layer, while still in its molten state, and then further forming a thin alloying layer of said metal-zinc on said zinc-coating layer.
3. Method of improving the surface of galvanized steel material as described in claim 1 including adding sodium borofluoride as reacting accelerator.
4. Method of improving the surface of galvanized steel material as described in claim 1, including using powders of to mesh as powder composed of sole or mixture of halide, nitrate or sulfate of metal to alloy with 21110.
5. Method of improving the surface of galvanized steel as described in claim 1, including using as reacting accelerator wherein a mixture of the Groups A, B and C are further added as a reacting accelerator,
Group A: chloride or fluoride of Li, K, Na, NH,
Group B: chloride of Mg, Ca, Zn, Cd, Ba
Group C: Na, K, NH complex salts of B134, SiF
TiF
References Cited UNITED STATES PATENTS 2,126,244 8/1938 Cook ct a1 29--l96.5 3,379,557 4/1968 Hoover et al ll7114 X 3,323,938 6/1967 Vaught 1l7130 R EDWARD G. WHITBY, Primary Examiner U.S. Cl. X.R.
29l96.5; l1764 R, 71 M, 105, 114 A, 131
US00819251A 1968-04-25 1969-04-25 Method of improving the surface of galvanized steel material Expired - Lifetime US3712826A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP43027587A JPS4937693B1 (en) 1968-04-25 1968-04-25

Publications (1)

Publication Number Publication Date
US3712826A true US3712826A (en) 1973-01-23

Family

ID=12225070

Family Applications (1)

Application Number Title Priority Date Filing Date
US00819251A Expired - Lifetime US3712826A (en) 1968-04-25 1969-04-25 Method of improving the surface of galvanized steel material

Country Status (7)

Country Link
US (1) US3712826A (en)
JP (1) JPS4937693B1 (en)
BE (1) BE732062A (en)
FR (1) FR2007519A1 (en)
GB (1) GB1225592A (en)
LU (1) LU58486A1 (en)
NL (1) NL142458B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3951723A (en) * 1972-05-22 1976-04-20 Monsanto Company Bonding fibers to rubber with resol condensates of unsaturate-resorcinol polymers
US4568569A (en) * 1983-02-28 1986-02-04 Stein Heurtey Method and apparatus for providing composite metallic coatings on metallic strips
US5049453A (en) * 1990-02-22 1991-09-17 Nippon Steel Corporation Galvannealed steel sheet with distinguished anti-powdering and anti-flaking properties and process for producing the same
US5711990A (en) * 1995-10-19 1998-01-27 Sollac Method of coating sheet metal
EP1831419A1 (en) * 2004-12-28 2007-09-12 Posco Co., Ltd. Galvanized steel-sheet without spangle, manufacturing method thereof and device used therefor
US20210285082A1 (en) * 2018-07-02 2021-09-16 Nippon Telegraph And Telephone Corporation Galvanized Member
CN115279945A (en) * 2020-02-28 2022-11-01 奥钢联钢铁有限责任公司 Method for forming conditional zinc layer by electrolytic galvanizing of steel strip

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE883723A (en) * 1980-06-09 1980-12-09 Centre Rech Metallurgique METHOD FOR THE SURFACE TREATMENT OF SURFACES PROTECTED BY A METAL COATING
JPS59135098U (en) * 1983-02-28 1984-09-10 株式会社安川電機 Motor braking device
FR2560219B1 (en) * 1984-02-27 1989-09-29 Stein Heurtey PROCESS AND DEVICE FOR IMPROVING THE PHYSICO-CHEMICAL PROPERTIES OF HOT-COATED SHEETS
US4873153A (en) * 1987-06-25 1989-10-10 Occidental Chemical Corporation Hot-dip galvanized coating for steel

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3951723A (en) * 1972-05-22 1976-04-20 Monsanto Company Bonding fibers to rubber with resol condensates of unsaturate-resorcinol polymers
US4568569A (en) * 1983-02-28 1986-02-04 Stein Heurtey Method and apparatus for providing composite metallic coatings on metallic strips
US5049453A (en) * 1990-02-22 1991-09-17 Nippon Steel Corporation Galvannealed steel sheet with distinguished anti-powdering and anti-flaking properties and process for producing the same
US5711990A (en) * 1995-10-19 1998-01-27 Sollac Method of coating sheet metal
EP1831419A1 (en) * 2004-12-28 2007-09-12 Posco Co., Ltd. Galvanized steel-sheet without spangle, manufacturing method thereof and device used therefor
US20080206592A1 (en) * 2004-12-28 2008-08-28 Posco Galvanized Stell-Sheet Without Spangle, Manufacturing Method Thereof and Device Used Therefor
EP1831419A4 (en) * 2004-12-28 2009-08-12 Posco Co Ltd Galvanized steel-sheet without spangle, manufacturing method thereof and device used therefor
AU2005320450B2 (en) * 2004-12-28 2011-01-20 Posco Galvanized steel-sheet without spangle, manufacturing method thereof and device used therefor
US7914851B2 (en) 2004-12-28 2011-03-29 Posco Method of manufacturing hot-dipped galvanized steel sheet
US20210285082A1 (en) * 2018-07-02 2021-09-16 Nippon Telegraph And Telephone Corporation Galvanized Member
CN115279945A (en) * 2020-02-28 2022-11-01 奥钢联钢铁有限责任公司 Method for forming conditional zinc layer by electrolytic galvanizing of steel strip

Also Published As

Publication number Publication date
LU58486A1 (en) 1969-07-22
NL142458B (en) 1974-06-17
JPS4937693B1 (en) 1974-10-11
BE732062A (en) 1969-10-01
FR2007519A1 (en) 1970-01-09
NL6906311A (en) 1969-10-28
DE1921086A1 (en) 1970-06-18
GB1225592A (en) 1971-03-17
DE1921086B2 (en) 1973-02-08

Similar Documents

Publication Publication Date Title
US6921439B2 (en) Flux and process for hot dip galvanization
US3712826A (en) Method of improving the surface of galvanized steel material
JPS6096786A (en) Electroplated product and its production
JPS6196077A (en) Copper product and its production
JPH079056B2 (en) Flux for hot-dip metal plating by dry flux method and method for producing hot-dip metal plated steel material using this flux
JPS6138259B2 (en)
US3806356A (en) Flux and method of coating ferrous article
US5292377A (en) Flux suitable for coating molten zinc, molten alloy of aluminum and zinc, and molten aluminum
US3726705A (en) Process for galvanizing a ferrous metal article
JPH0293053A (en) Production of zn-mg alloy plated steel sheet having high corrosion resistance
US3101286A (en) Phosphate composition and method for coating metallic surfaces
JPH08269662A (en) Production of zinc-tin alloy coated steel sheet
JP3071350B2 (en) Manufacturing method of galvannealed steel sheet
CA1241572A (en) Galvanizing procedure and galvanized product thereof
KR980009498A (en) Manufacturing method of galvanized steel sheet
JP3068392B2 (en) Manufacturing method of galvannealed steel sheet
KR20000037538A (en) Method of manufacturing molten galvanized steel sheet excellent in zn pickup resistance and phosphating
JP3077951B2 (en) Manufacturing method of hot-dip zinc alloy plating coating
JPH01222065A (en) Surface treatment for hot dipped steel sheet
JPH04180592A (en) Zn-mg alloy plated steel sheet excellent in plating adhesion and corrosion resistance and its production
JP3603512B2 (en) Al-containing hot-dip galvanized steel sheet and method for producing the same
JPS6133071B2 (en)
JPH042758A (en) Production of hot-dip zinc alloy coated steel sheet excellent in press formability and corrosion resistance after coating
JP2697485B2 (en) Manufacturing method of high corrosion resistant galvannealed steel sheet
JPH04224666A (en) Production of hot-dip galvanized stainless steel strip excellent in adhesive strength of plating and corrosion resistance