JPS6138259B2 - - Google Patents

Info

Publication number
JPS6138259B2
JPS6138259B2 JP55109209A JP10920980A JPS6138259B2 JP S6138259 B2 JPS6138259 B2 JP S6138259B2 JP 55109209 A JP55109209 A JP 55109209A JP 10920980 A JP10920980 A JP 10920980A JP S6138259 B2 JPS6138259 B2 JP S6138259B2
Authority
JP
Japan
Prior art keywords
zinc
aluminum
plating
bath
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55109209A
Other languages
Japanese (ja)
Other versions
JPS5735672A (en
Inventor
Susumu Yamamoto
Tomoaki Takechi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP10920980A priority Critical patent/JPS5735672A/en
Publication of JPS5735672A publication Critical patent/JPS5735672A/en
Publication of JPS6138259B2 publication Critical patent/JPS6138259B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/026Deposition of sublayers, e.g. adhesion layers or pre-applied alloying elements or corrosion protection

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、鉄鋼材料の溶融亜鉛めつき法に関す
るものであり、特には鉄鋼材料に高度の耐食性を
与えるためアルミニウムを0.1%以上含む亜鉛合
金を溶融めつきする方法に関係する。 近年、鉄鋼材料の亜鉛めつき製品の用途は増々
拡大しており、それと共に高度の耐食性が要求さ
れてきている。また、構造材等の軽量化に伴い板
厚が薄くなると、それだけ錆代が減るので、一層
改善された耐食性を与える亜鉛めつき法が必要と
されている。 一般に、亜鉛めつき製品の耐食性を向上させる
方法としては亜鉛めつき付着量を増加させる方法
が採用されている。そのためには、亜鉛めつき浴
中への鉄鋼材料の浸漬時間を増加ししかも亜鉛め
つき浴からの引上げ速度を速くせねばならない。
浸漬時間の増大は合金層の厚さを増大しそして引
上げ速度の増大は亜鉛層の厚さを増大する。この
ような方法は、工程管理を面倒にするに加えて、
生成する亜鉛めつき製品についても次のような問
題が生じる: (1) 亜鉛めつき製品のめつき密着性および加工性
が劣化する。 (2) 浸漬時間が長いため、Fe−Zn間の反応によ
る合金層の生成量が多くなり、亜鉛めつき層全
体中に占めるFe−Zn合金層の割合が多くな
る。これは次の点で重大な欠点を呈する (イ) Fe−Zn合金層がめつき層表面にまで達
し、所謂ヤケめつきと称される現象を呈し、
めつき外観を損つて商品価値を減ずる。 (ロ) Fe−Zn合金層の占める割合が大きい程耐
食性が劣化する。 これらの理由により、亜鉛付着量を増大せんと
する従来からのやり方は満足すべきものでな
く、その意図せる耐食性の向上にも限度があ
る。 従つて、上述したような問題点を呈さず、しか
も耐食性を増大させうる新たな溶融亜鉛めつき法
が要望されている。 本発明者は、アルミニウムを0.1%以上含む亜
鉛合金層を鉄鋼材料上に形成することによつて耐
食性の優れためつき層が得られることを見出し
た。更に、アルミニウムに加えて、マグネシウ
ム、銅、チタンおよびジルコニウムのうちの一種
または二種以上を0.01〜5%含めることによつて
一段と耐食性が改善される。 しかしながら、0.1%以上のアルミニウムを含
む亜鉛合金めつきを行うには従来から工業的に行
われている溶融めつき法では不可能である。即
ち、従来法は鉄鋼材料を脱脂、水洗、酸洗い、水
洗、フラクシング等の前処理工程を経た後溶融亜
鉛浴に所定時間浸漬し、然かる後材料を浴から引
上げることによつて実施しているが、溶融亜鉛浴
中にアルミニウムを添加してアルミニウム−亜鉛
合金めつきを得ようとしても、アルミニウム濃度
が0.1%を越えるとめつき層に付着しない部分が
生じ実用上使用に耐えないものとなる。従つて、
0.1%以上のアルミニウムを含む亜鉛合金めつき
の形成は、その組成の浴に単に鉄鋼材料を浸漬す
るだけでは行いえない。 斯くして、アルミニウム−亜鉛合金めつき層を
工業的機模で安定して形成するには別の方策が講
じられねばならない。本発明においては、鉄鋼材
料上に従来法により亜鉛めつきを施した後所要の
アルミニウムを含む亜鉛合金浴に浸漬するという
2段法を採用することによつてこの問題を解決し
た。こうすることによつて、上述した問題は生ぜ
ず、きわめて耐食性に富むと共に、外観、密着
性、加工性等に秀れためつき層が形成される。 斯くして、本発明は、蒸留亜鉛、電気亜鉛また
は最純亜鉛から成る亜鉛浴あるいはアルミニウム
を0.1%未満含む亜鉛浴で鉄鋼材料に溶融亜鉛め
つきを施す第一段階と、その後0.1%以上のアル
ミニウムを含む亜鉛浴あるいは0.1%以上のアル
ミニウムと0.01〜5%のマグネシウム、銅、チタ
ンおよびジルコニウムの少く共一種とを含む亜鉛
浴で溶融めつきを施す第二段階とを含むことを特
徴とする鉄鋼材料の溶融亜鉛めつき法を提供す
る。 従来、複雑な形状の品物等に亜鉛めつきをうす
く均一につけしかも光沢をよくする目的で、亜鉛
浴中にアルミニウムを微量添加することは行なわ
れていたが、これはアルミニウム0.05%以下のも
のであり、本発明のように亜鉛めつきの耐食性の
改善を計つたものではない。また、フラツクスを
使用することに伴う有害ガスの発生を回避する目
的で、被めつき鋼片表面に電気亜鉛めつきを施し
た後溶融亜鉛浴中に浸漬するという2段法の提唱
もあるが、その目的および形成めつき層とも本発
明と全く異るものである。 本発明において、溶融めつき予備処理および溶
融めつき操作自体は従来通り行えばよく説明は省
略する。第一段階の溶融亜鉛めつきは99.9%以上
の蒸留亜鉛、電気亜鉛あるいは最純亜鉛といつた
高純度の亜鉛浴に材料を浸漬することによつて実
施される。浴にアルミニウムを0.1%未満ならば
添加してもよい。0.1%未満の微量のアルミニウ
ムの添加は、亜鉛付着性に影響がほとんどなく、
かえつて亜鉛を一様につけまた鉄−亜鉛合金層の
拡大を抑制するのに効果がある。しかし、アルミ
ニウム添加量が0.1%以上になると、前述した問
題が生じるのでアルミニウム添加量は0.1%未満
で充分に低く抑えられるべきである。浸漬時間は
亜鉛層の付着がもたらされるに充分であればよ
く、1〜3分程度で充分である。第一段階におい
て浴から引上げられた材料は第二段階として0.1
%以上のアルミニウムを含む亜鉛浴に浸漬され
る。アルミニウム含量は0.1%以上であれば耐食
性増大の効果が発現する。アルミニウム含量の上
限は臨界的なものでなく、半分以上例えば55%ま
で、状況によつては70%程度まですら可能であ
る。しかし、めつき湿度、経済性等を考慮して実
用上は1〜5%とすることが望ましい。第二段階
の浴にアルミニウムに加えて、マグネシウム、
銅、チタンおよびジルコニウムから選択される少
く共一種を0.01〜5%添加してもよい。これによ
り耐食性は一層改善される。浸漬時間および引上
げ速度は目的とする用途によつて異るが、1〜3
分程度の浸漬時間が一般的である。 こうして2段処理を終えたら従来態様で冷却乾
燥後使用あるいは保管される。得られる溶融亜鉛
めつき鉄鋼材料は工業地帯の悪環境条件下でも長
期にわたつて鉄錆の発生を防止し、優れた耐食性
を示す。従来の亜鉛めつき製品に較べほぼ2倍の
耐食年数を示す。重工業地帯で30年以上の耐食性
を必要とする場合、従来法では鋼材1m2当り1000
g以上のめつき量を必要としているが、本法では
500〜600gとめつき量を半分にすることができ
る。めつき層を薄くしうることは、(1)めつき用亜
鉛地金の消費量の減少、(2)めつき時間の短縮によ
る部材の熱変形の排除及び(3)ヤケがなくなりそし
てめつき外観が向上することの点できわめて有益
である。加えて、めつき密着性、加工性等につい
ても何等支障を生じない。 以上、本発明は、今後益々需要の増す溶融亜鉛
めつき鉄鋼材料製品に対して従来よりはるかに耐
食性に富むめつき方法を確立したものであり、非
常に薄いめつき層でめつき密着性等に問題を全く
示さずきわめて秀れた耐食性を具備する鉄鋼材料
の製造を可能ならしめる点で、工業的にきわめて
有意義である。 実施例 1 普通鋼材を温度80℃のアルカリ浴に60秒浸漬
し、脱脂を行つた後水洗し、次に硫酸15%溶液
(60℃)に5分浸漬することによつて錆を除去し
た。水洗後、ZnCl2−NH4Clの溶液に浸漬して塩
化物のフラクシング コーテイングを施して部材
の酸化を防止した後、通常の高純度亜鉛浴(亜鉛
99.99%)に460℃の温度で2分間浸漬した。この
第一段階浸漬によつて、部材上にFe−Zn合金層
とZn層とを生成させ、静かに亜鉛浴から部材を
引上げた。次いで、この部材をAl 5%を含む亜
鉛浴(430℃)に3分間浸漬しそしてAlを含む亜
鉛合金層を生成せしめた。めつき外観はきれいな
ものであつた。 従来法(同厚の溶融亜鉛めつき)による亜鉛め
つき鋼材と上記本方法による亜鉛合金めつき鋼材
の幾つかの環境下での腐食速度試験結果の一例を
下記表1に示す(単位g/m2/年):
The present invention relates to a method for hot-dip galvanizing steel materials, and particularly to a method for hot-dip galvanizing zinc alloys containing 0.1% or more of aluminum in order to impart high corrosion resistance to steel materials. In recent years, the uses of galvanized steel products have been expanding rapidly, and along with this, a high degree of corrosion resistance has been required. Furthermore, as the thickness of structural materials decreases as the weight of structural materials decreases, the amount of rust is reduced accordingly, so there is a need for a galvanizing method that provides even more improved corrosion resistance. Generally, a method of increasing the amount of zinc plating deposited is adopted as a method for improving the corrosion resistance of galvanized products. To this end, it is necessary to increase the immersion time of the steel material in the galvanizing bath and to increase the rate of withdrawal from the galvanizing bath.
Increasing the soaking time increases the thickness of the alloy layer and increasing the pulling rate increases the thickness of the zinc layer. In addition to complicating process control, such methods
The following problems also arise with the resulting galvanized products: (1) The plating adhesion and workability of the galvanized products deteriorate. (2) Since the immersion time is long, the amount of alloy layer formed by the reaction between Fe-Zn increases, and the proportion of the Fe-Zn alloy layer in the entire galvanized layer increases. This presents serious drawbacks in the following points: (a) The Fe-Zn alloy layer reaches the surface of the plating layer, causing a phenomenon called so-called burnt plating.
It impairs the plating appearance and reduces the product value. (b) Corrosion resistance deteriorates as the proportion of the Fe-Zn alloy layer increases. For these reasons, conventional approaches to increasing the amount of zinc deposited are unsatisfactory, and their intended improvement in corrosion resistance is limited. Therefore, there is a need for a new hot-dip galvanizing method that does not present the above-mentioned problems and can increase corrosion resistance. The present inventor has discovered that by forming a zinc alloy layer containing 0.1% or more of aluminum on a steel material, a tamped layer with excellent corrosion resistance can be obtained. Furthermore, corrosion resistance is further improved by including 0.01 to 5% of one or more of magnesium, copper, titanium, and zirconium in addition to aluminum. However, it is impossible to perform zinc alloy plating containing 0.1% or more of aluminum using the conventional hot-dip plating method that has been used industrially. That is, in the conventional method, the steel material is subjected to pretreatment steps such as degreasing, water washing, pickling, water washing, and fluxing, and then immersed in a molten zinc bath for a predetermined period of time, and then the material is pulled out of the bath. However, even if an attempt is made to obtain aluminum-zinc alloy plating by adding aluminum to the molten zinc bath, if the aluminum concentration exceeds 0.1%, some parts of the plating layer will not adhere, making it unusable for practical use. Become. Therefore,
Formation of zinc alloy plating containing more than 0.1% aluminum cannot be achieved by simply immersing the steel material in a bath of that composition. Thus, other measures must be taken to stably form an aluminum-zinc alloy plated layer on an industrial machine. In the present invention, this problem has been solved by employing a two-step method in which the steel material is galvanized by a conventional method and then immersed in a zinc alloy bath containing the required amount of aluminum. By doing so, the above-mentioned problems do not occur, and a matted layer is formed which is extremely corrosion resistant and has excellent appearance, adhesion, workability, etc. The invention thus provides a first step of hot-dip galvanizing a steel material in a zinc bath consisting of distilled zinc, electrolytic zinc or purest zinc or containing less than 0.1% aluminum, followed by A second step of hot-dipping in a zinc bath containing aluminum or a zinc bath containing 0.1% or more aluminum and 0.01 to 5% at least one of magnesium, copper, titanium and zirconium. Provides a hot-dip galvanizing method for steel materials. In the past, a small amount of aluminum was added to the zinc bath in order to apply zinc plating thinly and uniformly to items with complex shapes and to improve the luster, but this was done only when the amount of aluminum was less than 0.05%. However, unlike the present invention, it is not intended to improve the corrosion resistance of zinc plating. In addition, in order to avoid the generation of harmful gases associated with the use of flux, a two-step method has been proposed in which the surface of the steel piece to be plated is electrogalvanized and then immersed in a molten zinc bath. , its purpose and formed plating layer are completely different from the present invention. In the present invention, the melt gluing pretreatment and the melt gluing operation itself can be performed as conventionally and their explanation will be omitted. The first step, hot dip galvanizing, is carried out by immersing the material in a high purity zinc bath, such as 99.9% or higher distilled zinc, electrolytic zinc or purest zinc. Aluminum may be added to the bath if it is less than 0.1%. The addition of a trace amount of aluminum, less than 0.1%, has little effect on zinc adhesion;
On the contrary, it is effective in applying zinc uniformly and suppressing the expansion of the iron-zinc alloy layer. However, if the amount of aluminum added exceeds 0.1%, the above-mentioned problems will occur, so the amount of aluminum added should be kept sufficiently low at less than 0.1%. The immersion time should be sufficient to bring about adhesion of the zinc layer, and about 1 to 3 minutes is sufficient. The material pulled from the bath in the first stage is 0.1
% or more of aluminum in a zinc bath. If the aluminum content is 0.1% or more, the effect of increasing corrosion resistance will be exhibited. The upper limit of the aluminum content is not critical; more than half, for example up to 55%, and in some circumstances even up to about 70%, is possible. However, in consideration of plating humidity, economical efficiency, etc., it is practically desirable to set the content to 1 to 5%. In addition to aluminum in the second stage bath, magnesium,
At least 0.01 to 5% of a covalent material selected from copper, titanium, and zirconium may be added. This further improves corrosion resistance. The immersion time and pulling speed vary depending on the intended use, but are 1 to 3
Immersion times of the order of minutes are typical. After the two-stage treatment is completed, the product is cooled and dried in the conventional manner and then used or stored. The resulting hot-dip galvanized steel material prevents the occurrence of iron rust over a long period of time, even under adverse environmental conditions in industrial areas, and exhibits excellent corrosion resistance. The corrosion resistance is almost twice as long as conventional galvanized products. When corrosion resistance of 30 years or more is required in heavy industrial areas, the conventional method uses 1000
This method requires a plating amount of more than g.
The amount of plating can be halved to 500 to 600g. The ability to make the plating layer thinner means (1) a reduction in the consumption of zinc metal for plating, (2) elimination of thermal deformation of the component by shortening the plating time, and (3) elimination of discoloration and plating. This is extremely beneficial in terms of improved appearance. In addition, there is no problem with plating adhesion, workability, etc. As described above, the present invention establishes a plating method that is far more corrosion resistant than the conventional method for hot-dip galvanized steel products, which will be increasingly in demand in the future, and has a very thin plating layer that improves plating adhesion, etc. It is extremely significant industrially in that it enables the production of steel materials that exhibit no problems with corrosion and have extremely excellent corrosion resistance. Example 1 Ordinary steel was immersed in an alkaline bath at a temperature of 80°C for 60 seconds to degrease it, washed with water, and then immersed in a 15% sulfuric acid solution (60°C) for 5 minutes to remove rust. After washing with water, the parts are immersed in a solution of ZnCl 2 -NH 4 Cl to apply a chloride fluxing coating to prevent oxidation of the parts, and then soaked in a normal high-purity zinc bath (zinc
99.99%) for 2 minutes at a temperature of 460°C. This first stage immersion produced a Fe--Zn alloy layer and a Zn layer on the part, and the part was gently pulled out of the zinc bath. This member was then immersed in a zinc bath (430°C) containing 5% Al for 3 minutes to form a zinc alloy layer containing Al. The appearance of the plating was beautiful. Examples of corrosion rate test results under several environments for galvanized steel materials by the conventional method (hot-dip galvanizing of the same thickness) and zinc alloy-plated steel materials by the present method are shown in Table 1 below (unit: g/ m2 /year):

【表】 実施例 2 実施例1における第2段階亜鉛めつき浴にアル
ミニウムに加えて1%の銅を添加する点を除いて
同様のめつき鋼材を作製した。得られた製品を重
工業地帯で腐食速度試験したところ1年間に3.5
g/m2の成績を示し、秀れた耐食性を与えること
が確認された。 上記銅以外にもマグネシウム、チタンおよびジ
ルコニウムについても同じ添加量において試験を
行い同様の腐食防止効果が確認された。 実施例 3 実施例1の第一段階浸漬における高純度亜鉛浴
の代りに高純度亜鉛浴にアルミニウムを0.05%添
加した亜鉛浴を用いた点を除いて、実施例1の手
順を繰返した。結果は実施例と同一であつた。
[Table] Example 2 A plated steel material similar to that of Example 1 was prepared except that 1% copper was added in addition to aluminum to the second stage galvanizing bath. When the obtained product was tested for corrosion rate in a heavy industrial area, the corrosion rate was 3.5 per year.
g/m 2 and was confirmed to provide excellent corrosion resistance. In addition to copper, magnesium, titanium, and zirconium were also tested in the same amounts, and similar corrosion prevention effects were confirmed. Example 3 The procedure of Example 1 was repeated, except that the high purity zinc bath in the first stage soak of Example 1 was replaced by a high purity zinc bath with 0.05% aluminum added. The results were the same as in the example.

Claims (1)

【特許請求の範囲】[Claims] 1 蒸留亜鉛、電気亜鉛または最純亜鉛から成る
亜鉛浴あるいはアルミニウムを0.1%未満含む亜
鉛浴で鉄鋼材料に溶融亜鉛めつきを施す第一段階
と、その後0.1%以上のアルミニウムを含む亜鉛
浴あるいは0.1%以上のアルミニウムと0.01〜5
%のマグネシウム、銅、チタンおよびジルコニウ
ムの少く共一種とを含む亜鉛浴で溶融めつきを施
す第二段階とを含むことを特徴とする鉄鋼材料の
溶融亜鉛めつき法。
1. A first step of hot dip galvanizing the steel material in a zinc bath consisting of distilled zinc, electrolytic zinc or purest zinc or containing less than 0.1% aluminum, followed by a zinc bath containing more than 0.1% aluminum or 0.1% aluminum. % or more aluminum and 0.01~5
% of magnesium, copper, titanium and zirconium.
JP10920980A 1980-08-11 1980-08-11 Galvanizing method providing high corrosion resistance Granted JPS5735672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10920980A JPS5735672A (en) 1980-08-11 1980-08-11 Galvanizing method providing high corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10920980A JPS5735672A (en) 1980-08-11 1980-08-11 Galvanizing method providing high corrosion resistance

Publications (2)

Publication Number Publication Date
JPS5735672A JPS5735672A (en) 1982-02-26
JPS6138259B2 true JPS6138259B2 (en) 1986-08-28

Family

ID=14504356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10920980A Granted JPS5735672A (en) 1980-08-11 1980-08-11 Galvanizing method providing high corrosion resistance

Country Status (1)

Country Link
JP (1) JPS5735672A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201767A (en) * 1985-03-01 1986-09-06 Nippon Mining Co Ltd Two-stage plating method
JPS61295361A (en) * 1985-06-21 1986-12-26 Kowa Kogyosho:Kk Hot dip galvanizing method
JPS63241151A (en) * 1987-03-28 1988-10-06 Nippon Steel Corp Manufacture of alloy-plated steel material excellent in corrosion resistance and workability
EP0602265A1 (en) * 1991-08-22 1994-06-22 Mitsui Mining & Smelting Co., Ltd. Hot dip zinc-aluminum alloy coating process
DE10003680C2 (en) * 2000-01-28 2003-04-10 Thyssenkrupp Stahl Ag Method for producing a steel strip provided with a zinc coating and zinc-coated steel strip
KR20020041029A (en) * 2000-11-25 2002-06-01 이구택 Hot-dip zinc alloy coating steel sheet with superior corrosion resistance
JP4020409B2 (en) * 2006-02-02 2007-12-12 シーケー金属株式会社 Hot dip galvanizing bath and galvanized iron products
DE112007003465T5 (en) * 2007-04-27 2010-05-06 Shine Metal Hot - Galvanization Enterprise Lead free hot dip galvanizing process and lead free hot dipped galvanized product

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5230233A (en) * 1975-09-02 1977-03-07 Nippon Kokan Kk Melttplating method of aluminummzing alloy
JPS5347055A (en) * 1976-10-09 1978-04-27 Ebara Corp Regenerator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5230233A (en) * 1975-09-02 1977-03-07 Nippon Kokan Kk Melttplating method of aluminummzing alloy
JPS5347055A (en) * 1976-10-09 1978-04-27 Ebara Corp Regenerator

Also Published As

Publication number Publication date
JPS5735672A (en) 1982-02-26

Similar Documents

Publication Publication Date Title
JP2517169B2 (en) Method for producing hot dip galvanized steel sheet
JP2777571B2 (en) Aluminum-zinc-silicon alloy plating coating and method for producing the same
US3320040A (en) Galvanized ferrous article
JP3476408B2 (en) Hot-dip Zn-Mg-Al alloy-plated steel wire and method for producing the same
JPH0419299B2 (en)
JPS6138259B2 (en)
JPH0753901B2 (en) Hot dip galvanizing method
JPH03281788A (en) Production of zn-al alloy plated steel wire
JPS6199664A (en) Coating method with zinc-aluminum alloy by hot dipping
JPS63134653A (en) Manufacture of alloy-plated steel material excellent in corrosion resistance and workability
JP3009269B2 (en) Hot-dip zinc alloy plating coating
JP2747554B2 (en) Aluminum / zinc alloy-plated steel sheet and method for producing the same
JPS636620B2 (en)
JPS63297577A (en) Surface structure of steel material strengthened in physical property and its production
JPH08269662A (en) Production of zinc-tin alloy coated steel sheet
JPH05148604A (en) Manufacture of galvanized steel sheet
KR950004777B1 (en) Method for making a zn-fe galvannealed steel sheet with an excellant anti-powdering
JPS6055588B2 (en) Method for producing molten zinc-magnesium alloy plated steel sheet
JPS6217416A (en) Manufacture of thread product
JPS6227536A (en) Zinc alloy for galvanizing and its using method
JPH05287483A (en) Production of galvanized alloy coating object
JPH0215152A (en) Hot dip galvanized steel sheet and its production
KR0136176B1 (en) Method for manufacturing hot-dipped zn steel with zero spangle
JPH07243012A (en) Production of galvannealed steel sheet excellent in external appearance of surface
JPH0544006A (en) Production of alloyed hot dip galvanized steel sheet having excellent workability and corrosion resistance