JPH04224666A - Production of hot-dip galvanized stainless steel strip excellent in adhesive strength of plating and corrosion resistance - Google Patents

Production of hot-dip galvanized stainless steel strip excellent in adhesive strength of plating and corrosion resistance

Info

Publication number
JPH04224666A
JPH04224666A JP41864090A JP41864090A JPH04224666A JP H04224666 A JPH04224666 A JP H04224666A JP 41864090 A JP41864090 A JP 41864090A JP 41864090 A JP41864090 A JP 41864090A JP H04224666 A JPH04224666 A JP H04224666A
Authority
JP
Japan
Prior art keywords
stainless steel
plating
hot
steel strip
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP41864090A
Other languages
Japanese (ja)
Inventor
Wakahiro Harada
原田和加大
Hideji Ohashi
大橋秀次
Toshiro Adachi
足立俊郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP41864090A priority Critical patent/JPH04224666A/en
Publication of JPH04224666A publication Critical patent/JPH04224666A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To activate the surface of a stainless steel by a reducing method and to obtain a hot-dip galvanized stainless steel strip excellent in adhesive strength of plating, corrosion resistance, etc., by applying Zn-Ni precoating to a stainless steel strip. CONSTITUTION:A precoating layer of Zn-Ni is formed by means of electroplating on a stainless steel strip to which degreasing, pickling, electrolytic activation treatment, etc., are previously applied. It is preferable that the precoating layer contains 8-50wt.% Ni, and this precoating layer is formed by 3-20g/m<2> coating weight. Further, the precoated stainless steel strip is reduced by means of heating up to 500-700 deg.C in a hydrogen-nitrogen atmosphere and formed into active surface condition. Because the surface to be plated can be maintained in the active condition, wettability to molten Zn can be improved and a galvanizing layer free from uncoating and excellent in adhesive strength and corrosion resistance can be formed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、密着性,耐食性,表面
性状等が優れた亜鉛めっき層が溶融めっき法によって形
成されためっきステンレス鋼帯の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a plated stainless steel strip in which a galvanized layer having excellent adhesion, corrosion resistance, surface quality, etc. is formed by hot-dip plating.

【0002】0002

【従来の技術】普通鋼等の素材に亜鉛めっきする方法と
して、電気めっき法,溶融めっき法等がある。電気めっ
き法は、目付け量を制御することが容易であるものの、
厚目付けのめっき層を形成する場合には長時間のめっき
が必要とされ、生産的でない。そこで、厚目付けの亜鉛
めっきが要求される場合には、溶融亜鉛めっき法が採用
されている。この溶融亜鉛めっきの前工程として、フラ
ックス法や還元法によって素材の表面を活性化している
2. Description of the Related Art Methods for galvanizing materials such as ordinary steel include electroplating and hot-dip plating. Although the electroplating method makes it easy to control the basis weight,
When forming a thick plating layer, long plating is required, which is not productive. Therefore, when thick galvanizing is required, hot-dip galvanizing is used. As a pre-process to this hot-dip galvanizing, the surface of the material is activated using a flux method or a reduction method.

【0003】フラックス法では、還元等の反応によって
酸化皮膜を素材表面から除去し、溶解する能力があるフ
ラックスを素材表面に塗布することによって、表面の活
性化を行っている。しかし、塗布されたフラックスは、
素材表面に残留したままで溶融亜鉛浴にもち込まれるこ
とになる。そのため、溶融亜鉛めっき時に亜鉛灰が生成
し、めっき作業性を低下させる。また、溶融亜鉛後のめ
っき層に残留することもある。残留したフラックス残渣
は、亜鉛めっき層の表面性状を劣化させることは勿論、
腐食や変色等が発生する起点となる場合もある。
[0003] In the flux method, the oxide film is removed from the material surface by a reaction such as reduction, and the surface is activated by applying a flux capable of dissolving the material onto the material surface. However, the applied flux is
It remains on the surface of the material and is carried into the molten zinc bath. Therefore, zinc ash is generated during hot-dip galvanizing, reducing plating workability. In addition, it may remain in the plating layer after hot-dip zinc. The remaining flux residue not only deteriorates the surface quality of the galvanized layer, but also
It may also become a starting point for corrosion, discoloration, etc.

【0004】フラックス法におけるこれらの問題を回避
するため、被めっき材料に対する活性化前処理として、
現在では専ら還元法が採用されている。還元法では、水
素−窒素雰囲気中で素材を高温に加熱することによって
、素材表面に存在している酸化皮膜を還元除去する。 加熱・還元により酸化皮膜が除去された素材は、活性な
表面状態をもち、溶融亜鉛に対する濡れ性が向上する。 また、活性化処理後の素材表面に、フラックス残渣のよ
うな異物を残留させることがないので、得られた亜鉛め
っき層の表面性状は良好なものとなる。
In order to avoid these problems in the flux method, as a pre-activation treatment for the material to be plated,
Currently, the reduction method is exclusively used. In the reduction method, the oxide film present on the surface of the material is reduced and removed by heating the material to a high temperature in a hydrogen-nitrogen atmosphere. A material whose oxide film has been removed by heating and reduction has an active surface state and improved wettability with molten zinc. Further, since no foreign matter such as flux residue remains on the surface of the material after the activation treatment, the surface quality of the obtained galvanized layer is good.

【0005】ところで、本発明者等は、被めっき素材と
して従来から使用されている普通鋼に代えてステンレス
鋼を使用すると、耐食性に優れた材料が得られることを
見い出し、特公平1−132792号公報として紹介し
た。この場合、従来の亜鉛めっき鋼帯にみられるように
亜鉛による犠牲防食作用のみではなく、亜鉛の腐食生成
物によっても基地の防食が図られる。その結果、亜鉛め
っきステンレス鋼は、無垢のステンレス鋼が腐食を起こ
す過酷な腐食環境においても優れた耐食性をもつ構造材
料として使用することが可能となる。
By the way, the present inventors have discovered that a material with excellent corrosion resistance can be obtained by using stainless steel in place of the conventionally used ordinary steel as a material to be plated, and published Japanese Patent Publication No. 1-132792. It was introduced as a public notice. In this case, corrosion protection of the base is achieved not only by the sacrificial corrosion protection effect of zinc as seen in conventional galvanized steel strips, but also by the corrosion products of zinc. As a result, galvanized stainless steel can be used as a structural material with excellent corrosion resistance even in harsh corrosive environments where solid stainless steel corrodes.

【0006】[0006]

【発明が解決しようとする課題】ところが、ステンレス
鋼の亜鉛めっきに際し、従来のような条件下で還元法を
適用しても素材であるステンレス鋼の表面は活性化され
ず、ステンレス鋼を溶融亜鉛浴に導入したときにめっき
弾き,密着性不良等の欠陥をもつめっき層が形成される
。すなわち、ステンレス鋼の表面にある不動態皮膜は、
従来の還元法に従った水素−窒素雰囲気中での加熱によ
っては還元除去されることなく、却って強固な酸化皮膜
になる場合がある。その結果、溶融亜鉛に対する素材表
面の濡れ性や親和性が十分でなく、前述した欠陥がめっ
き層に発生する。
[Problems to be Solved by the Invention] However, when galvanizing stainless steel, the surface of the stainless steel material is not activated even if the reduction method is applied under conventional conditions, and the stainless steel is coated with molten zinc. When introduced into the bath, a plating layer with defects such as plating repellency and poor adhesion is formed. In other words, the passive film on the surface of stainless steel is
Heating in a hydrogen-nitrogen atmosphere according to the conventional reduction method may not reduce and remove the oxide film, but may instead form a strong oxide film. As a result, the material surface has insufficient wettability and affinity for molten zinc, and the aforementioned defects occur in the plating layer.

【0007】溶融亜鉛に対する濡れ性や親和性等を改良
し、優れた品質のめっき層を形成する手段として、酸化
皮膜が形成され難いFe,Ni等のFe族金属でステン
レス鋼の表面をプレめっきすることが考えられる。しか
し、Fe,Ni等を主成分とするプレめっき層は、融点
が高い。他方、溶融亜鉛めっきするときに使用される溶
融亜鉛めっき浴の温度は、440〜460℃程度である
。そのため、亜鉛めっきが施されたステンレス鋼の表面
層にプレめっき層が残存し、フラックス法によるめっき
材よりも耐食性が劣るめっき製品となり易い。
[0007] As a means of improving wettability and affinity for molten zinc and forming a plating layer of excellent quality, the surface of stainless steel is pre-plated with Fe group metals such as Fe and Ni, which do not easily form an oxide film. It is possible to do so. However, the pre-plating layer mainly composed of Fe, Ni, etc. has a high melting point. On the other hand, the temperature of the hot-dip galvanizing bath used for hot-dip galvanizing is about 440 to 460°C. Therefore, a pre-plating layer remains on the surface layer of zinc-plated stainless steel, which tends to result in a plated product with inferior corrosion resistance compared to a plated material using the flux method.

【0008】本発明は、このような問題を解消するため
に案出されたものであり、溶融亜鉛めっきが施されるス
テンレス鋼の表面にZn−Ni合金のプレめっきを施す
ことにより、ステンレス鋼の溶融亜鉛めっきに還元法を
取り込んだめっきプロセスを可能とし、めっき密着性及
び耐食性に優れた溶融亜鉛めっきステンレス鋼を製造す
ることを目的とする。
[0008] The present invention was devised to solve these problems, and by applying pre-plating of Zn-Ni alloy to the surface of stainless steel to be hot-dip galvanized, it is possible to The objective is to enable a plating process that incorporates a reduction method in hot-dip galvanizing, and to produce hot-dip galvanized stainless steel with excellent plating adhesion and corrosion resistance.

【0009】[0009]

【課題を解決するための手段】本発明の製造方法は、そ
の目的を達成するため、ステンレス鋼帯を脱脂,酸洗及
び/又は電解活性化処理した後、Zn−Ni合金を電気
めっき法によってプレめっきし、次いで溶融亜鉛めっき
を施すことを特徴とする。
[Means for Solving the Problems] In order to achieve the object, the manufacturing method of the present invention degreases, pickles and/or electrolytically activates a stainless steel strip, and then coats a Zn-Ni alloy by electroplating. It is characterized by pre-plating and then hot-dip galvanizing.

【0010】ここで、プレめっきによって形成されるZ
n−Ni合金は、8〜50重量%のNiを含有すること
ができる。また、Zn−Ni合金のプレめっきは、目付
け量3〜20g/m2 で行われることが好ましい。プ
レめっきを行う際、流速0.5m/秒以上でめっき液を
循環させながら電気めっきを行うと、凹凸がなく付回り
性の良好なプレめっき層が形成される。
[0010] Here, Z formed by pre-plating
The n-Ni alloy can contain 8-50% by weight Ni. Further, it is preferable that the pre-plating of Zn--Ni alloy is carried out at a basis weight of 3 to 20 g/m2. When performing pre-plating, if electroplating is performed while circulating the plating solution at a flow rate of 0.5 m/sec or more, a pre-plated layer with no irregularities and good coverage will be formed.

【0011】プレめっきされたステンレス鋼帯は、表面
にある酸化皮膜が無視できる程度であれば、そのままの
状態で溶融亜鉛めっき浴に導入することができる。或い
は、普通鋼に対する還元法と同様な条件下で、ステンレ
ス鋼表面を活性化することができる。還元条件としては
、H2 −N2 雰囲気中における温度500〜700
℃での加熱が採用される。
[0011] The pre-plated stainless steel strip can be introduced into the hot-dip galvanizing bath as is if the oxide film on the surface is negligible. Alternatively, the stainless steel surface can be activated under conditions similar to the reduction method for ordinary steel. The reduction conditions include a temperature of 500 to 700 in a H2-N2 atmosphere.
Heating at °C is employed.

【0012】0012

【作用】Zn−Ni合金をプレめっきしたステンレス鋼
帯を溶融亜鉛めっきするとき、めっき層と下地ステンレ
ス鋼との界面にプレめっき層が存在しても、耐食性に優
れたFeZn7 (δ1 )相が形成される。また、腐
食によってZnめっき層が消失した後では、耐食性に優
れたNiZn3 (γ)相の皮膜が下地ステンレス鋼の
表面に形成される。そのため、還元法によって、耐食性
に優れた亜鉛めっきステンレス鋼の製造が可能となる。
[Operation] When hot-dip galvanizing a stainless steel strip pre-plated with a Zn-Ni alloy, even if a pre-plating layer exists at the interface between the plating layer and the underlying stainless steel, the FeZn7 (δ1) phase with excellent corrosion resistance is formed. It is formed. Furthermore, after the Zn plating layer disappears due to corrosion, a NiZn3 (γ) phase film with excellent corrosion resistance is formed on the surface of the base stainless steel. Therefore, the reduction method enables the production of galvanized stainless steel with excellent corrosion resistance.

【0013】しかも、プレめっきされたZn−Ni合金
は、比較的高い融点を持ち、還元熱処理時の加熱で蒸散
することがない。そのため、このプレめっき層の上に形
成される溶融亜鉛めっき層は、密着性に優れたものとな
る。
Furthermore, the pre-plated Zn--Ni alloy has a relatively high melting point and does not evaporate during heating during reduction heat treatment. Therefore, the hot-dip galvanized layer formed on this pre-plated layer has excellent adhesion.

【0014】素材としてのステンレス鋼帯は、使用目的
に応じた鋼種が選択される。本発明によるとき、前処理
としてZn−Ni合金のプレめっき層を形成するため、
素材に対する溶融亜鉛めっき性が鋼種によって変わるこ
とはない。溶融亜鉛めっき性に与える素材の表面仕上げ
状態の影響は小さいため、酸洗仕上げ,光輝焼鈍仕上げ
,研磨仕上げ等を始めとして種々の方法で表面仕上げし
た素材を使用することができる。なかでも、酸洗仕上げ
した素材が好ましい。
[0014] For the stainless steel strip as a raw material, the steel type is selected depending on the purpose of use. According to the present invention, in order to form a pre-plating layer of Zn-Ni alloy as a pre-treatment,
The hot-dip galvanizing property of the material does not change depending on the steel type. Since the effect of the surface finish of the material on hot-dip galvanizing properties is small, it is possible to use materials whose surface has been finished by various methods including pickling finish, bright annealing finish, polishing finish, etc. Among these, pickled and finished materials are preferred.

【0015】ステンレス鋼に対するプレめっきは、脱脂
,酸洗及び/又は電解活性,次いでZn−Ni合金の電
気めっきの順に行われる。
Pre-plating on stainless steel is carried out in the following order: degreasing, pickling and/or electrolytic activation, and then electroplating of Zn--Ni alloy.

【0016】脱脂は、ステンレス鋼帯の表面に存在する
油類を除去し、以降の処理ムラを無くすために行われる
。脱脂方法としては、たとえば浸漬脱脂,電解脱脂等の
通常の電気めっき工程で行われている方法を採用するこ
とができる。なお、通常取り扱われているステンレス鋼
帯のように油類の付着が少ない素材にあっては、オルソ
ケイ酸ソーダを使用した電解脱脂のみでも良い。
[0016] Degreasing is performed to remove oils present on the surface of the stainless steel strip and to eliminate unevenness in subsequent processing. As the degreasing method, methods used in normal electroplating processes such as immersion degreasing and electrolytic degreasing can be employed. In addition, in the case of materials to which oil does not easily adhere, such as stainless steel strips that are commonly handled, electrolytic degreasing using sodium orthosilicate alone may be sufficient.

【0017】酸洗は、ステンレス鋼表面を活性化するた
めに行われる。酸洗に使用される酸としては、たとえば
、塩酸,低濃度の硫酸等の非酸化性酸が使用される。 ただし、硝酸や濃硫酸等は、ステンレス鋼を不動態化さ
せる作用を持っているので、使用することができない。 酸洗後に電解活性化処理を行う場合、ステンレス鋼帯に
付着した酸液を中和する程度の処理で十分である。
Pickling is performed to activate the stainless steel surface. As the acid used for pickling, for example, a non-oxidizing acid such as hydrochloric acid or low concentration sulfuric acid is used. However, nitric acid, concentrated sulfuric acid, etc. have the effect of passivating stainless steel, so they cannot be used. When performing electrolytic activation treatment after pickling, a treatment to neutralize the acid solution adhering to the stainless steel strip is sufficient.

【0018】電解活性化処理は、硫酸又は塩酸を使用し
て行われる。対極として不溶性陽極を使用する場合、対
極から塩素ガスが発生することから、硫酸浴を使用する
ことが好ましい。また、酸濃度2〜20%程度の酸浴が
使用される。酸濃度をこの程度に維持するとき、電解液
の電気導電性が高く保たれ、浴電圧を低下させることが
できる。
The electrolytic activation treatment is carried out using sulfuric acid or hydrochloric acid. When using an insoluble anode as a counter electrode, it is preferable to use a sulfuric acid bath since chlorine gas is generated from the counter electrode. Further, an acid bath having an acid concentration of about 2 to 20% is used. When the acid concentration is maintained at this level, the electrical conductivity of the electrolyte is kept high and the bath voltage can be lowered.

【0019】このような酸洗及び/又は電解活性化処理
によって、不動態皮膜が除去され、ステンレス鋼表面が
活性度の高い状態に調整される。その結果、密着性に優
れたZn−Ni合金の電気めっきが可能となる。
By such pickling and/or electrolytic activation treatment, the passive film is removed and the stainless steel surface is adjusted to a highly active state. As a result, electroplating of Zn-Ni alloy with excellent adhesion becomes possible.

【0020】プレめっきの効果を顕著に発揮させる上で
、Zn−Ni合金めっき層に含まれるNiの含有量を8
〜50重量%にすることが好ましい。Ni含有量が8重
量%未満であると、還元処理時の加熱によってプレめっ
き層が蒸散し、ステンレス鋼の地肌面が露出し易くなる
。その結果、めっき弾き等の不めっきが発生する。他方
、Ni含有量が50重量%を超えると、溶融亜鉛めっき
浴に溶け込むNiの量が多くなり、めっき浴の汚染が促
進されると共に、耐食性自体も低下する。また、50重
量%を超えるNi含有量の組成をもつめっき層を電気め
っきで精度良く析出させるためには、めっき浴の組成管
理を厳格に行うことが必要になり、操業上不利になる。
[0020] In order to bring out the effect of pre-plating significantly, the Ni content contained in the Zn-Ni alloy plating layer is set to 8.
It is preferable to make it 50% by weight. If the Ni content is less than 8% by weight, the pre-plating layer evaporates due to heating during the reduction treatment, and the bare surface of the stainless steel is likely to be exposed. As a result, non-plating such as plating removal occurs. On the other hand, when the Ni content exceeds 50% by weight, the amount of Ni dissolved in the hot-dip galvanizing bath increases, promoting contamination of the plating bath, and reducing the corrosion resistance itself. Furthermore, in order to accurately deposit a plating layer having a Ni content of more than 50% by weight by electroplating, it is necessary to strictly control the composition of the plating bath, which is disadvantageous in terms of operation.

【0021】電気Zn−Ni合金めっきの目付け量は、
優れた性質をもつ溶融Znめっき層を形成させる上で、
ステンレス鋼帯の片面当り3〜20g/m2 の範囲に
維持することが好ましい。目付け量が3g/m2 未満
であると、溶融亜鉛めっき時に不めっきが発生し易くな
る。 これは、溶融亜鉛めっきに先立って行われる還元時の加
熱でZn−Niプレめっき層が蒸散し、地肌ステンレス
鋼の表面が露出するためである。この不めっきを完全に
無くすためには、片面当り3g/m2 以上の目付け量
でZn−Niプレめっき層を電気めっきにより形成する
ことが必要である。逆に、目付け量20g/m2 を超
える厚目付けでプレめっき層を形成すると、めっき界面
で合金層が形成し難くなり、溶融Znめっき層の密着性
が低下する。また、このような厚目付けは、コスト的に
も不利である。
[0021] The basis weight of electric Zn-Ni alloy plating is
In forming a hot-dip Zn plating layer with excellent properties,
It is preferable to maintain it in the range of 3 to 20 g/m2 per side of the stainless steel strip. If the basis weight is less than 3 g/m2, non-plating is likely to occur during hot-dip galvanizing. This is because the Zn-Ni pre-plating layer evaporates during the heating during reduction performed prior to hot-dip galvanizing, and the surface of the bare stainless steel is exposed. In order to completely eliminate this non-plating, it is necessary to form a Zn--Ni pre-plating layer by electroplating with a basis weight of 3 g/m2 or more per side. On the other hand, if the pre-plating layer is formed with a thick basis weight exceeding 20 g/m2, it becomes difficult to form an alloy layer at the plating interface, and the adhesion of the hot-dip Zn plating layer decreases. Furthermore, such thick coating is disadvantageous in terms of cost.

【0022】Zn−Ni合金層を電気めっきで形成する
とき、均質なプレめっき層を形成するため、めっき液を
流速0.5m/秒以上の流速で循環させることが好まし
い。めっき液の流速が0.5m/秒未満であると、形成
されたプレめっき層の表面に凹凸が生じ、溶融亜鉛に対
する濡れ性が劣化する。また、安定したZn−Ni合金
組成を得難くなる。
When forming the Zn--Ni alloy layer by electroplating, it is preferable to circulate the plating solution at a flow rate of 0.5 m/sec or more in order to form a homogeneous pre-plated layer. When the flow rate of the plating solution is less than 0.5 m/sec, the surface of the formed pre-plating layer becomes uneven, and the wettability to molten zinc deteriorates. Furthermore, it becomes difficult to obtain a stable Zn-Ni alloy composition.

【0023】プレめっきされたステンレス鋼帯は、溶融
亜鉛めっきに先立って還元雰囲気中で500〜700℃
の温度に加熱される。この加熱温度が500℃未満であ
ると、プレめっき層がめっきままの安定な状態で溶融め
っき時に残存するため、合金層の形成が促進されず、密
着性不良,不めっき等の欠陥が発生し易くなる。逆に、
加熱温度が700℃を超えると、プレめっき層が蒸散し
、地肌ステンレス鋼の表面が露出する。その結果、不め
っきが発生する。また、ステンレス鋼中のFeが表層に
拡散し、耐食性に悪影響を及ぼす。
The pre-plated stainless steel strip is heated at 500-700° C. in a reducing atmosphere prior to hot-dip galvanizing.
heated to a temperature of If this heating temperature is less than 500°C, the pre-plating layer will remain in a stable state as plated during hot-dip plating, so the formation of the alloy layer will not be promoted and defects such as poor adhesion and non-plating will occur. It becomes easier. vice versa,
When the heating temperature exceeds 700°C, the pre-plating layer evaporates and the bare stainless steel surface is exposed. As a result, non-plating occurs. Furthermore, Fe in stainless steel diffuses into the surface layer, which adversely affects corrosion resistance.

【0024】[0024]

【実施例】以下、実施例によって、本発明を具体的に説
明する。
[Examples] The present invention will be specifically explained below with reference to Examples.

【0025】−実施例1−市販の硝フッ酸酸洗仕上げし
た板厚0.4mmのステンレス鋼帯SUS430を電解
脱脂し、5%硫酸で酸洗した後、表1に示した条件下で
プレめっきし、表2に示した条件下で溶融亜鉛めっきし
た。なお、溶融亜鉛めっき層の目付け量は、100〜1
50g/m2 に調節した。
- Example 1 - A commercially available stainless steel strip SUS430 with a thickness of 0.4 mm that was pickled with nitric and hydrofluoric acid was electrolytically degreased, pickled with 5% sulfuric acid, and then plated under the conditions shown in Table 1. and hot-dip galvanizing under the conditions shown in Table 2. The area weight of the hot-dip galvanized layer is 100 to 1
It was adjusted to 50g/m2.

【0026】[0026]

【表1】[Table 1]

【0027】[0027]

【表2】[Table 2]

【0028】溶融亜鉛めっきの表面状態を観察し、不め
っき率を次のように測定した。すなわち、溶融亜鉛めっ
き後の試験片に5×5cmの格子を当てがい、不めっき
が存在する格子の数をカウントした。そして、この格子
数を百分率で表示して不めっき率とし、Ni析出量との
関係を図1に示した。なお、ここでいう不めっきとは、
ピンホール状の局部的なめっき欠陥をいう。図1から明
らかなように、Niの含有量が低下するに従って、不め
っきの発生がみられる。
[0028] The surface condition of the hot-dip galvanizing was observed, and the unplated rate was measured as follows. That is, a 5×5 cm grid was applied to the hot-dip galvanized test piece, and the number of grids in which unplated areas were present was counted. The number of lattices was expressed as a percentage to give the non-plating rate, and the relationship with the amount of Ni precipitation is shown in FIG. In addition, unplated here means
A pinhole-like local plating defect. As is clear from FIG. 1, as the Ni content decreases, unplated areas occur.

【0029】また、Zn−Niプレめっきの目付け量と
溶融亜鉛めっき層の密着性との関係を表3に示した。な
お、めっき密着性は、溶融亜鉛めっきされたステンレス
鋼帯から試験片を切り出し、この試験片に2t曲げを施
した面におけるめっき剥離面積で評価した。表3から明
らかなように、Zn−Ni合金めっきの目付け量が3〜
20g/m2 の範囲にあるとき、溶融Znめっき層は
良好な密着性を呈した。
Table 3 shows the relationship between the basis weight of Zn--Ni pre-plating and the adhesion of the hot-dip galvanized layer. The plating adhesion was evaluated by cutting out a test piece from a hot-dip galvanized stainless steel strip, and determining the peeled area of the plating on the surface of the test piece, which was bent by 2t. As is clear from Table 3, the basis weight of Zn-Ni alloy plating is 3~
When it was in the range of 20 g/m2, the hot-dip Zn plating layer exhibited good adhesion.

【0030】[0030]

【表3】[Table 3]

【0031】また、図2には、Zn−12重量%Niプ
レめっき材の還元温度に対するZnの不めっき率の関係
を示した。図2から明らかなように、500〜700℃
の範囲に還元温度を設定するとき、良好なめっき性が得
られていることが判る。
Furthermore, FIG. 2 shows the relationship between the Zn unplating rate and the reduction temperature of the Zn-12% by weight Ni pre-plated material. As is clear from Figure 2, 500-700℃
It can be seen that good plating properties are obtained when the reduction temperature is set within the range of .

【0032】−実施例2−市販の硝フッ酸酸洗仕上げし
た板厚0.4mmのステンレス鋼帯SUS430を電解
脱脂し、5%硫酸で酸洗仕上げした後、Fe,Ni及び
Zn−Niプレめっきを施し、溶融亜鉛めっきを行った
。このときのプレめっきの条件を、表4に示す。なお、
溶融亜鉛めっきは、実施例1と同じ条件下で行い、目付
け量100〜150g/m2 で亜鉛めっき層を形成し
た。
- Example 2 - After electrolytically degreasing a commercially available stainless steel strip SUS430 with a thickness of 0.4 mm that had been pickled with nitric and hydrofluoric acid and finished with pickling with 5% sulfuric acid, Fe, Ni and Zn-Ni plates were Plating was applied and hot-dip galvanizing was performed. Table 4 shows the pre-plating conditions at this time. In addition,
Hot-dip galvanizing was performed under the same conditions as in Example 1, and a galvanized layer was formed with a basis weight of 100 to 150 g/m2.

【0033】[0033]

【表4】[Table 4]

【0034】また、溶融亜鉛めっきされたステンレス鋼
帯から試験片を切り出し、腐食促進試験を行った後、発
銹状況を測定した。その結果を、図3に示す。なお、図
3における発銹率は、試験片に5×5mmの格子を当て
がい、赤錆が存在する格子の数を百分率で表示した。図
3から明らかなように、Zn−Niプレめっきを施すこ
とによって、溶融亜鉛めっきされたステンレス鋼帯の耐
食性が向上していることが判る。
Further, a test piece was cut out from a hot-dip galvanized stainless steel strip, subjected to a corrosion acceleration test, and then the rusting state was measured. The results are shown in FIG. In addition, the rusting rate in FIG. 3 is expressed by applying a 5 x 5 mm grid to the test piece, and the number of grids in which red rust exists is expressed as a percentage. As is clear from FIG. 3, it can be seen that the corrosion resistance of the hot-dip galvanized stainless steel strip is improved by applying Zn-Ni pre-plating.

【0035】−実施例3−市販の硝フッ酸酸洗仕上げし
た板厚0.4mmのステンレス鋼帯SUS430を電解
脱脂し、5%硫酸で酸洗した後、めっき液の流速を変え
ながらZn−12重量%Ni合金プレめっきを目付け量
5g/m2 で施した。
- Example 3 - After electrolytically degreasing a commercially available stainless steel strip SUS430 with a thickness of 0.4 mm and finishing with nitric-hydrofluoric acid pickling and pickling with 5% sulfuric acid, Zn- A 12% by weight Ni alloy pre-plating was applied at a basis weight of 5 g/m2.

【0036】形成されたプレめっき層の表面状態をめっ
き液の流速との関係で調査したところ、両者の間に図4
に示すようにめっき液の流速如何に応じて表面状態が大
きく異なることが判った。すなわち、めっき液の循環流
速が小さいと、図4aに示すように形成されたプレめっ
き層の表面に凹凸が生じている。特にこの傾向は、循環
流速が0.5m/秒未満になると顕著に現れる。この凹
凸のため、溶融めっきしたときに不めっきの発生が助長
された。
When the surface condition of the formed pre-plating layer was investigated in relation to the flow rate of the plating solution, it was found that there was a gap between the two as shown in FIG.
As shown in Figure 2, it was found that the surface condition varied greatly depending on the flow rate of the plating solution. That is, when the circulation flow rate of the plating solution is low, irregularities occur on the surface of the pre-plated layer formed as shown in FIG. 4a. This tendency becomes particularly noticeable when the circulating flow velocity is less than 0.5 m/sec. These irregularities promoted the occurrence of unplated surfaces during hot-dip plating.

【0037】他方、流速0.5m/秒でめっき液を循環
させたところ、図4bに示すように凹凸のないプレめっ
き層が形成された。このプレめっき層の上に形成された
溶融亜鉛めっき層は、不めっきがなく均質な表面状態を
もっていた。
On the other hand, when the plating solution was circulated at a flow rate of 0.5 m/sec, a pre-plated layer with no irregularities was formed as shown in FIG. 4b. The hot-dip galvanized layer formed on this pre-plated layer had a homogeneous surface condition with no unplated areas.

【0038】なお、以上の実施例においては、溶融亜鉛
めっきを説明した。しかし、本発明はこれに拘束される
ものではなく、たとえばZn−5%Al,Zn−55%
Al等の亜鉛合金めっきも同様に行うことができる。
[0038] In the above examples, hot-dip galvanizing was explained. However, the present invention is not limited to this. For example, Zn-5%Al, Zn-55%
Zinc alloy plating such as Al can also be performed in the same manner.

【0039】[0039]

【発明の効果】以上に説明したように、本発明に従って
ステンレス鋼帯の表面にZn−Ni合金のプレめっき層
を形成することにより、ステンレス鋼の表面を活性状態
に維持することが容易になり、溶融Znに対する濡れ性
が改善される。そのため、還元法によってステンレス鋼
に溶融亜鉛めっきすることができ、得られた溶融Znめ
っき層に不めっきが発生することが抑えられ、しかもめ
っき層の密着性は優れたものとなる。このようにして、
フラックス法にみられたようにフラックス残渣等の異物
がなく、表面性状,耐食性及びめっき密着性に優れた亜
鉛めっきステンレス鋼帯が還元法で製造される。しかも
、溶融亜鉛めっきされるステンレス鋼帯は、予めZn−
Niプレめっきされているので、鋼種に拘らず同じ条件
下で溶融亜鉛めっきすることが可能となる。
[Effects of the Invention] As explained above, by forming a pre-plated layer of Zn-Ni alloy on the surface of a stainless steel strip according to the present invention, it becomes easy to maintain the surface of the stainless steel in an active state. , the wettability to molten Zn is improved. Therefore, stainless steel can be hot-dip galvanized by the reduction method, the occurrence of unplated areas in the obtained hot-dip Zn plating layer is suppressed, and the adhesion of the plating layer is excellent. In this way,
A galvanized stainless steel strip with excellent surface quality, corrosion resistance, and plating adhesion is produced by the reduction method, without foreign substances such as flux residue as seen in the flux method. Moreover, the stainless steel strip to be hot-dip galvanized is preliminarily coated with Zn-
Since it is pre-plated with Ni, it is possible to hot-dip galvanize it under the same conditions regardless of the steel type.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】ステンレス鋼帯に施したプレめっき層の合金組
成と、溶融亜鉛めっきの不めっき率との関係を表したグ
ラフ。
FIG. 1 is a graph showing the relationship between the alloy composition of a pre-plated layer applied to a stainless steel strip and the uncoated rate of hot-dip galvanizing.

【図2】ステンレス鋼帯に施したプレめっき層の目付け
量と、溶融亜鉛めっきの不めっき率との関係を表したグ
ラフ。
FIG. 2 is a graph showing the relationship between the basis weight of a pre-plated layer applied to a stainless steel strip and the uncoated rate of hot-dip galvanizing.

【図3】Fe,Ni及びZn−Ni合金をプレめっきし
たステンレス鋼帯を溶融亜鉛めっきした材料の発銹率と
試験サイクルとの関係を表したグラフ。
FIG. 3 is a graph showing the relationship between the rusting rate and the test cycle of a hot-dip galvanized stainless steel strip pre-plated with Fe, Ni and Zn-Ni alloys.

【図4】ステンレス鋼帯をZn−Niプレめっきしたと
きのめっき液の循環流速がプレめっき層の表面状態に与
える影響を表した写真。
FIG. 4 is a photograph showing the influence of the circulating flow rate of the plating solution on the surface condition of the pre-plated layer when a stainless steel strip is pre-plated with Zn-Ni.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  ステンレス鋼帯を脱脂,酸洗及び/又
は電解活性化処理した後、Zn−Ni合金を電気めっき
法によってプレめっきし、次いで溶融亜鉛めっきを施す
ことを特徴とするめっき密着性及び耐食性に優れた溶融
亜鉛めっきステンレス鋼帯の製造方法。
[Claim 1] Plating adhesion characterized by degreasing, pickling and/or electrolytically activating a stainless steel strip, pre-plating with Zn-Ni alloy by electroplating, and then hot-dip galvanizing. and a method for producing hot-dip galvanized stainless steel strip with excellent corrosion resistance.
【請求項2】  請求項1記載のプレめっきによって形
成されるZn−Ni合金は、8〜50重量%のNiを含
有するものであることを特徴とするめっき密着性及び耐
食性に優れた溶融亜鉛めっきステンレス鋼帯の製造方法
2. The Zn-Ni alloy formed by pre-plating according to claim 1 contains 8 to 50% by weight of Ni, which is a molten zinc alloy having excellent plating adhesion and corrosion resistance. Method of manufacturing plated stainless steel strip.
【請求項3】  請求項1又は2記載のZn−Ni合金
のプレめっきは、目付け量3〜20g/m2 で行われ
ることを特徴とするめっき密着性及び耐食性に優れた溶
融亜鉛めっきステンレス鋼帯の製造方法。
3. A hot-dip galvanized stainless steel strip with excellent plating adhesion and corrosion resistance, wherein the Zn-Ni alloy pre-plating according to claim 1 or 2 is performed at a basis weight of 3 to 20 g/m2. manufacturing method.
【請求項4】  請求項1〜3の何れかに記載のプレめ
っきが、流速0.5m/秒以上でめっき液を循環させな
がら行うことを特徴とするめっき密着性及び耐食性に優
れた溶融亜鉛めっきステンレス鋼帯の製造方法。
4. Molten zinc having excellent plating adhesion and corrosion resistance, wherein the pre-plating according to any one of claims 1 to 3 is performed while circulating the plating solution at a flow rate of 0.5 m/sec or more. Method of manufacturing plated stainless steel strip.
【請求項5】  請求項1〜4の何れかに記載されたプ
レめっき後のステンレス鋼帯をH2 −N2 雰囲気中
で500〜700℃に加熱・還元することにより、その
表面を活性化することを特徴とするめっき密着性及び耐
食性に優れた溶融亜鉛めっきステンレス鋼帯の製造方法
5. Activating the surface of the pre-plated stainless steel strip according to any one of claims 1 to 4 by heating and reducing it to 500 to 700°C in an H2-N2 atmosphere. A method for producing a hot-dip galvanized stainless steel strip with excellent plating adhesion and corrosion resistance.
JP41864090A 1990-12-26 1990-12-26 Production of hot-dip galvanized stainless steel strip excellent in adhesive strength of plating and corrosion resistance Withdrawn JPH04224666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41864090A JPH04224666A (en) 1990-12-26 1990-12-26 Production of hot-dip galvanized stainless steel strip excellent in adhesive strength of plating and corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41864090A JPH04224666A (en) 1990-12-26 1990-12-26 Production of hot-dip galvanized stainless steel strip excellent in adhesive strength of plating and corrosion resistance

Publications (1)

Publication Number Publication Date
JPH04224666A true JPH04224666A (en) 1992-08-13

Family

ID=18526440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41864090A Withdrawn JPH04224666A (en) 1990-12-26 1990-12-26 Production of hot-dip galvanized stainless steel strip excellent in adhesive strength of plating and corrosion resistance

Country Status (1)

Country Link
JP (1) JPH04224666A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008135445A1 (en) * 2007-05-02 2008-11-13 Corus Staal B.V. Method for hot dip galvanising of ahss or uhss strip material, and such material
WO2019050039A1 (en) * 2017-09-08 2019-03-14 ジオネーション株式会社 Resin-metal bonded body and method for manufacturing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008135445A1 (en) * 2007-05-02 2008-11-13 Corus Staal B.V. Method for hot dip galvanising of ahss or uhss strip material, and such material
US8465806B2 (en) 2007-05-02 2013-06-18 Tata Steel Ijmuiden B.V. Method for hot dip galvanizing of AHSS or UHSS strip material, and such material
WO2019050039A1 (en) * 2017-09-08 2019-03-14 ジオネーション株式会社 Resin-metal bonded body and method for manufacturing same
JP2019049023A (en) * 2017-09-08 2019-03-28 ジオネーション株式会社 Resin metal joined body and method for manufacturing the same
CN111279022A (en) * 2017-09-08 2020-06-12 Geo国民株式会社 Resin-metal bonded body and method for producing same

Similar Documents

Publication Publication Date Title
US3343930A (en) Ferrous metal article coated with an aluminum zinc alloy
JP4551268B2 (en) Method for producing alloyed hot-dip galvanized steel sheet
JPH0324255A (en) Hot-dip galvanized hot rolled steel plate and its production
JP2013151734A (en) Electrogalvanized steel sheet for high image clarity coating substrate excellent in corrosion resistance after coating and enamel hair resistance, and method for producing the same
JPH03138389A (en) Zn-mg alloy plated steel sheet having excellent plating adhesion and corrosion resistance and its production
JPS6056418B2 (en) Manufacturing method of hot-dip galvanized steel sheet
JPH0328359A (en) Production of hot-dip aluminized chromium-containing steel sheet
CN113699475A (en) Hot-dip galvanizing method for steel
JPH04224666A (en) Production of hot-dip galvanized stainless steel strip excellent in adhesive strength of plating and corrosion resistance
JPS6138259B2 (en)
JP3135818B2 (en) Manufacturing method of zinc-tin alloy plated steel sheet
JP2003064493A (en) Electrogalvanized steel sheet having excellent appearance
JPS63297577A (en) Surface structure of steel material strengthened in physical property and its production
JP2952612B2 (en) Manufacturing method of hot-dip galvanized stainless steel
JP7290757B2 (en) Plated steel wire and its manufacturing method
JP3322662B2 (en) Hot-dip zinc-aluminum alloy plating coating
CA1241572A (en) Galvanizing procedure and galvanized product thereof
JPH05171392A (en) Method for galvanizing high-strength steel sheet
JP2724045B2 (en) Method for producing chromium-containing steel sheet plated with hot-dip zinc or zinc alloy
Wesley et al. Coating steel with nickel by immersion in nickel chloride solutions
JPH116047A (en) Base metal for hot dip zinc alloy coating bath, hot dip coating bath, hot dip zinc alloy coated steel and its production
JPH01108396A (en) Production of galvannealed steel sheet for coating by cationic electrodeposition
JP4166412B2 (en) Method for producing hot-dip galvanized steel sheet
JPS59162294A (en) Steel sheet having two-layered zn plating provided with superior workability and its manufacture
JP2000160315A (en) Hot dip galvannealed steel

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980312