WO2007049568A1 - ポリオレフィン多層微多孔膜及びその製造方法並びに電池用セパレータ - Google Patents

ポリオレフィン多層微多孔膜及びその製造方法並びに電池用セパレータ Download PDF

Info

Publication number
WO2007049568A1
WO2007049568A1 PCT/JP2006/321084 JP2006321084W WO2007049568A1 WO 2007049568 A1 WO2007049568 A1 WO 2007049568A1 JP 2006321084 W JP2006321084 W JP 2006321084W WO 2007049568 A1 WO2007049568 A1 WO 2007049568A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyethylene
polypropylene
microporous membrane
film
gel
Prior art date
Application number
PCT/JP2006/321084
Other languages
English (en)
French (fr)
Inventor
Shintaro Kikuchi
Kotaro Takita
Original Assignee
Tonen Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Chemical Corporation filed Critical Tonen Chemical Corporation
Priority to EP06812144.1A priority Critical patent/EP1942000B1/en
Priority to US12/091,351 priority patent/US8932748B2/en
Priority to JP2007542569A priority patent/JP5026981B2/ja
Priority to CN2006800394613A priority patent/CN101296795B/zh
Priority to CA002627137A priority patent/CA2627137A1/en
Publication of WO2007049568A1 publication Critical patent/WO2007049568A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/32Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed at least two layers being foamed and next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249978Voids specified as micro

Definitions

  • the present invention comprises a polyolefin multilayer microporous membrane having a polyethylene-based resin layer and a polypropylene-containing layer, and having an excellent balance of permeability, mechanical strength, heat shrinkage resistance, shutdown characteristics and meltdown characteristics, and
  • the present invention relates to a manufacturing method and a battery separator.
  • Polyolefin microporous membranes are widely used for battery separators including lithium batteries, diaphragms for electrolytic capacitors, various filters, moisture-permeable waterproof clothing, various filtration membranes, and the like.
  • battery separators including lithium batteries, diaphragms for electrolytic capacitors, various filters, moisture-permeable waterproof clothing, various filtration membranes, and the like.
  • the polyolefin microporous membrane is required to have excellent permeability, mechanical properties, heat shrinkage, shutdown properties, meltdown properties, and the like.
  • a microporous membrane that has only a force of polyethylene has a low meltdown temperature
  • a microporous membrane that has only a force of polypropylene has a high shutdown temperature. Therefore, a microporous membrane mainly composed of polyethylene and polypropylene is preferable for the battery separator. Therefore, a microporous film made of a mixed resin of polyethylene and polypropylene and a multilayer microporous film made of a polyethylene layer and a polypropylene layer have been proposed.
  • Japanese Patent Laid-Open No. 05-251069 and Japanese Patent Laid-Open No. 05-251070 are made of an ethylene-butene copolymer or an ethylene-hexene copolymer as a separator for preventing the occurrence of thermal runaway at 80 to 150 ° C.
  • a microporous multilayer sheet having a first layer that causes shutdown and a second layer that is made of polypropylene and that causes shutdown at a temperature 10 ° C. or more higher than the first layer is also described.
  • Japanese Patent Application Laid-Open No. 05-251069 discloses a method for producing a microporous multilayer sheet, which is a laminated sheet having the above-mentioned copolymer and a layer having extractable solvent power, and a layer having polypropylene and extractable solvent power. Is described, and a microporous sheet obtained by removing the extractable solvent therefrom is drawn at a temperature of 25 to 110 ° C.
  • JP 05-251070 As a method for producing a microporous multilayer sheet, a laminated sheet obtained by simultaneously extruding and cooling the above-mentioned copolymer melt and polypropylene melt at a temperature of 198 ° C to 170 ° C is used. Describe how to heat-treat after stretching!
  • Japanese Patent Application Laid-Open No. 62-10857 is a battery separator excellent in dimensional stability and shutdown characteristics, and is composed of (a) a microporous sheet formed of polyethylene or polypropylene. A first layer that becomes nonporous while maintaining dimensions substantially at a temperature of 150 ° C., and (b) a microporous sheet formed of polyethylene or polypropylene and a granular filler, from room temperature to first.
  • a battery separator is proposed having a microporous structure and a second layer that retains dimensions to a temperature at least about 10 ° C. above the non-porous temperature of the layer.
  • the battery separator disclosed in JP-A-6 2-10857 optimizes the aspect ratio of the granular filler! Because of / ⁇ , mechanical strength is insufficient.
  • an object of the present invention is to provide a polyolefin multilayer having a polyethylene-based resin layer and a polypropylene-containing layer, and having excellent balance of permeability, mechanical strength, heat shrinkage resistance, shutdown characteristics and meltdown characteristics. It is to provide a microporous membrane, a production method thereof, and a battery separator.
  • the present inventors have (1) a porous layer composed of a polyethylene-based resin, a polypropylene and a heat-resistant resin having a melting point or a glass transition temperature force of S170 ° C. or higher. Or (2) a porous layer made of polyethylene-based resin and a porous layer When a porous layer containing polypropylene and an inorganic filler having an aspect ratio of 2 or more is provided, a polyolefin multilayer microporous membrane excellent in balance of permeability, mechanical strength, heat shrinkage resistance, shutdown characteristics and meltdown characteristics As a result, the present invention has been conceived.
  • the first polyolefin multilayer microporous membrane of the present invention contains a porous layer made of a polyethylene-based resin and polypropylene and a heat-resistant resin having a melting point or a glass transition temperature force of S170 ° C or higher. And a porous layer.
  • the second polyolefin multilayer microporous membrane of the present invention is characterized by having a porous layer made of polyethylene-based resin and a porous layer containing polypropylene and an inorganic filler having an aspect ratio of 2 or more. To do.
  • a polyethylene solution is prepared by melting and kneading a polyethylene-based resin and a film-forming solvent, and polypropylene, melting point or glass transition temperature force S170.
  • a polypropylene 'heat-resistant resin mixture solution by melting and kneading a heat-resistant resin and a film-forming solvent at a temperature of ° C or higher.
  • the step (1) is performed by removing the both film-forming solvents after stretching the gel-like laminated sheet, or removing both the film-forming solvents.
  • the layered microporous membrane obtained later is stretched, or the layered microporous membrane obtained after the stretching of the gel-like laminated sheet and the removal of both the film-forming solvents in this order is further stretched. Is preferred. in front (2) (i) The gel-like sheet is stretched and then laminated, or (2) (ii) the gel-like laminate sheet is stretched and then both the film-forming solvents are removed.
  • the second method for producing a polyolefin multilayer microporous membrane of the present invention comprises preparing a polyethylene solution by melting and kneading a polyethylene-based resin and a film-forming solvent, and melting polypropylene and the film-forming solvent.
  • An inorganic filler having an aspect ratio of 2 or more is dispersed in the kneaded material to prepare an polypropylene-containing polypropylene solution, and (1) the obtained polyethylene solution and the inorganic filler-containing polypropylene solution are simultaneously extruded from a die.
  • the extruded molded body is cooled to form a gel-like laminated sheet, and both the film-forming solvents are removed from the obtained gel-like laminated sheet, or (2) the polyethylene solution and the inorganic filler-containing polypropylene solution.
  • Each extruded product obtained by extruding individually from the die is cooled to form a gel sheet, and each of the obtained gel sheets is laminated, and the resulting gel is obtained.
  • the polyethylene solution and the inorganic filler-containing polypropylene solution are individually extruded from a die, and the obtained extruded products are cooled to gel.
  • a film-like sheet is formed, the film-forming solvent is removed from each of the resulting gel sheets, and the resulting polyethylene microporous film and polypropylene microporous film are laminated.
  • the step (1) is performed by removing the both film-forming solvents after stretching the gel-like laminated sheet, or removing both the film-forming solvents.
  • the layered microporous membrane obtained later is stretched, or the layered microporous membrane obtained after the stretching of the gel-like laminated sheet and the removal of both the film-forming solvents in this order is further stretched.
  • the battery separator of the present invention is formed by the first or second polyolefin multilayer microporous membrane.
  • a polyolefin multi-layer microporous material having a polyethylene-based resin layer and a polypropylene-containing layer, and having an excellent balance of permeability, mechanical strength, heat shrinkage resistance, shutdown characteristics, and meltdown characteristics.
  • a membrane is obtained.
  • the strong multilayer microporous membrane is excellent in electrolyte permeability because the pore size of the porous layer containing polypropylene is sufficiently large.
  • the first polyolefin multilayer microporous membrane is composed of a porous layer made of polyethylene-based resin (hereinafter referred to as “polyethylene-based resin layer” unless otherwise specified), polypropylene and melting point, or glass transition temperature force S170 °. It has a porous layer (hereinafter referred to as “polypropylene” heat-resistant resin mixed layer ”unless otherwise specified) containing a heat-resistant resin of C or higher.
  • Polyethylene-based resin includes ( a ) ultrahigh molecular weight polyethylene, (b) polyethylene other than ultrahigh molecular weight polyethylene, (c) a mixture of ultrahigh molecular weight polyethylene and other polyethylene (polyethylene composition), or (d ) Any of these (a) to (: c) and other than polyethylene It is a mixture (polyolefin composition) with polyolefin.
  • Ultra high molecular weight polyethylene has a Mw of 5 ⁇ 10 5 or more.
  • the ultrahigh molecular weight polyethylene may be not only an ethylene homopolymer but also an ethylene ⁇ a-olefin copolymer containing a small amount of other ⁇ -olefin.
  • ⁇ -olefins other than ethylene propylene, butene-1, pentene-1, hexene-1, 4-methylpentene-1, otaten-1, butyl acetate, methyl methacrylate, and styrene are preferable.
  • Mw of the ultra-high-molecular-weight polyethylene is more preferably 1 X 10 6 ⁇ 15 X 10 6 are preferably tool 1 X 10 6 ⁇ 5 X 10 6 .
  • the ultra high molecular weight polyethylene is not limited to a single substance, and may be a mixture of two or more types of ultra high molecular weight polyethylene. Examples of the mixture include a mixture of two or more types of ultrahigh molecular weight polyethylenes having different Mw.
  • Polyethylenes other than ultra-high molecular weight polyethylene have an Mw of 1 x 10 4 or more and less than 5 x 10 5 , and high density polyethylene, medium density polyethylene, branched low density polyethylene and chained low density polyethylene are preferred. Polyethylene is more preferred. Polyethylene with an Mw force of 1 X 10 4 or more and less than 5 X 10 5 is not only a homopolymer of ethylene but also a co-polymer containing a small amount of other ⁇ -olefins such as propylene, butene-1, and hexene-1. Combined may be used. Such a copolymer is preferably produced using a single-site catalyst.
  • the polyethylene other than the ultra high molecular weight polyethylene is not limited to a single product, and may be a mixture of two or more types of polyethylene other than the ultra high molecular weight polyethylene.
  • Examples of the mixture include a mixture of two or more types of high-density polyethylenes having different Mw, a mixture of similar medium-density polyethylenes, and a mixture of similar low-density polyethylenes.
  • Polyethylene yarn is composed of ultra high molecular weight polyethylene having an Mw of 5 ⁇ 10 5 or more, and other polyethylene having a Mw of 1 ⁇ 10 4 or more and less than 5 ⁇ 10 5 (high density polyethylene, medium density polyethylene).
  • Ultra high molecular weight polyethylene and other polyethylenes may be the same as described above.
  • This polyethylene yarn composition can easily control the molecular weight distribution [mass average molecular weight Z number average molecular weight (MwZMn)] according to the application.
  • MwZMn mass average molecular weight
  • the content of ultrahigh molecular weight polyethylene in the polyethylene composition is more preferably 10 to 80% by mass, preferably 1% by mass or more, with the entire polyethylene composition being 100% by mass.
  • the polyolefin composition is a mixture of ultra high molecular weight polyethylene, other polyethylene or polyethylene composition, and polyolefin other than polyethylene.
  • Ultra high molecular weight polyethylene, other polyethylenes and polyethylene yarns may be the same as above.
  • Polyolefins other than polyethylene each having an Mw of 1 X 10 4 to 4 X 10 6 , polybutene-1, polypentene-1, polymethylpentene, polyhexene-1, polyoctene-1, poly It is possible to use at least one selected from the group consisting of butyl acetate, polymethyl methacrylate, polystyrene, and ethylene′ ⁇ _olefin copolymer, and polyethylene wax having Mw of 1 ⁇ 10 3 to 1 ⁇ 10 4 .
  • Polypropylene, polybutene-1, polypentene-1, polymethylpentene, polyhexene-1, polyoctene-1, polyvinyl acetate, polymethyl methacrylate and polystyrene contain not only homopolymers but also other ⁇ -olefins It may be a copolymer.
  • the proportion of polyolefin other than polyethylene is preferably 20% by mass or less, more preferably 10% by mass or less, based on 100% by mass of the entire polyolefin composition.
  • MwZMn is a measure of molecular weight distribution. The larger this value, the wider the molecular weight distribution. MwZMn of polyethylene-based resin is not limited, but when polyethylene-based resin also has ultra-high molecular weight polyethylene strength, other polyethylene strength, or polyethylene composition strength, 5-300 is preferable. 10-100 are more preferable. MwZMn is not 5 If it is full, there are too many high molecular weight components and melt extrusion is difficult, and if MwZMn is over 300, there are too many low molecular weight components and the strength of the microporous membrane is reduced. Polyethylene (homopolymer or ethylene alpha -.
  • MwZMn the can and appropriately adjusted child by multi-stage polymerization.
  • the multi-stage polymerization method a two-stage polymerization in which a high molecular weight polymer component is produced in the first stage and a low molecular weight polymer ingredient is produced in the second stage is preferred.
  • the MwZMn is large! /, And the difference in Mw between ultrahigh molecular weight polyethylene and other polyethylenes is large, and vice versa.
  • MwZMn of the polyethylene composition can be appropriately adjusted depending on the molecular weight and mixing ratio of each component.
  • the type of polypropylene is not particularly limited, and may be a homopolymer of propylene, a copolymer of propylene and other olefins, a copolymer of Z or olefin, or a mixture thereof, but a homopolymer is preferred.
  • a deviation of a random copolymer or a block copolymer can also be used.
  • Preferred olefins other than propylene are ethylene, butene-1, pentene-1, hexene-1, 4-methylpentene-1, otaten-1, butyl acetate, methyl methacrylate, and styrene.
  • the number of carbon atoms of diolephin is preferably 4-14.
  • diolefins having 4 to 14 carbon atoms include butadiene, 1,5-hexagen, 1,7-octadiene, 1,9-decadiene and the like.
  • the content of olefin and olefin other than propylene in the copolymer is preferably within a range that does not impair the physical properties of polypropylene such as heat resistance, compression resistance, and heat shrinkage.
  • the content of other Orefin and Jiorefuin is preferably a copolymer whole less than 10 mole 0/0 100 mole 0/0.
  • the weight average molecular weight (Mw) of polypropylene is preferably 1 X 10 4 to 4 X 10 6 1 X 10 5 to 8
  • X 10 5 is more preferable.
  • the molecular weight distribution (MwZMn) of polypropylene is 1.01-100 Is more preferably 1.1 to 50.
  • a heat-resistant resin has a melting point or glass transition temperature (Tg) force of S170 ° C or higher.
  • Tg glass transition temperature
  • crystalline resin having a melting point of 70 ° C. or higher (including partially crystalline resin) and amorphous resin having a T g of 170 ° C. or higher are preferable.
  • Tg can be measured according to JIS K7121 (the same shall apply hereinafter).
  • the polypropylene contains a heat-resistant resin
  • the meltdown characteristics are improved, so that the high-temperature storage characteristics of the battery are improved.
  • the heat-resistant resin is dispersed in polypropylene as spherical or spheroid fine particles during melt kneading.
  • the fibrils composed of the polypropylene phase are cleaved with the fine particles composed of heat-resistant coagulum as nuclei, and crazed pores with fine particles held in the center are formed. Therefore, the permeability and compression resistance when the multilayer microporous membrane is used as a battery separator are further improved.
  • the particle diameter of spherical fine particles made of heat-resistant resin and the major axis of spheroidal fine particles are preferably 0.1 to 15 / ⁇ ⁇ , and more preferably 1 to 1, more preferably 0.5 to 10 / ⁇ ⁇ .
  • a crystalline resin having a melting point of less than 70 ° C or an amorphous resin having a Tg of less than 170 ° C are highly dispersed in polypropylene during melt kneading, or when cooled.
  • the solidification rate of polypropylene and heat-resistant resin is close to each other, and fine particles with an appropriate diameter cannot be formed. For this reason, voids that are cleaved with the fine particles of coconut resin become small, and improvement in permeability and compression resistance cannot be expected.
  • the upper limit of the melting point or Tg of the heat-resistant resin is not particularly limited, but 350 ° C is preferred from the viewpoint of ease of kneading with polypropylene.
  • the melting point or Tg of the heat-resistant rosin is more preferably from 180 to 260 ° C.
  • Preferable Mw of the heat-resistant resin is generally a force that varies depending on the type of resin, and is generally 1 ⁇ 10 3 to 1 ⁇ 10 6 , more preferably 1 ⁇ 10 4 to 7 ⁇ 10 5 .
  • a heat-resistant resin having an Mw of less than 1 ⁇ 10 3 is used, it is highly dispersed in polypropylene and fine particles are not formed.
  • a heat-resistant resin exceeding 1 X 10 6 is used, kneading with polypropylene becomes difficult.
  • the heat-resistant resin include polyester, polyamide (melting point: 215 to 265 ° C), fluorine resin, polycarbonate (melting point: 220 to 240 ° C), polyarylene sulfide, polymethylpen Tensyl, polystyrene (melting point: 230 ° C), polybutyl alcohol (melting point: 220-240 ° C), polyimide (Tg: 280 ° C or higher), polyamideimide (Tg: 280 ° C), polyethersulfone ( Tg: 223 ° C), polyetheretherketone (melting point: 334 ° C), cellulose acetate (melting point: 220 ° C), cellulose triacetate (melting point: 300 ° C), polysulfone (Tg: 190 ° C), polyetherimide (Melting point: 216 ° C).
  • polyester, polyamide, polymethylpentene, fluorine resin, polycarbonate and polyarylens sulfide are preferable.
  • the heat-resistant rosin is not limited to one having a single rosin component strength, and may be a plurality of rosin component strengths.
  • Polyesters include polybutylene terephthalate (PBT, melting point: about 160-230 ° C), polyethylene terephthalate (PET, melting point: about 230-270 ° C), polyethylene naphthalate (melting point: 272 ° C), polybutylene naphthalate. Forces that include phthalate (melting point: 245 ° C) PBT is preferred
  • PBT is a saturated polyester basically composed of 1,4-butanediol and terephthalic acid.
  • a diol component other than 1,4-butanediol or a cambonic acid component other than terephthalic acid may be included as a copolysynthesis component as long as the physical properties such as heat resistance, compression resistance and heat shrinkage are not impaired.
  • Examples of such a diol component include ethylene glycol, diethylene glycol, neopentyl glycol, 1,4-cyclohexane methanol and the like.
  • the dicarboxylic acid component include isophthalic acid, sebacic acid, adipic acid, azelaic acid, and succinic acid.
  • PBT is not limited to a single composition, and may have a plurality of PBT oil component powers.
  • PBT Mw is particularly preferred to be 2 x 10 4 or more and 3 x 10 5 or less.
  • Preferred polyamides are polyamide 6 (6-nylon), polyamide 66 (6, 6-nylon), polyamide 12 (12-nylon) and amorphous polyamide! /.
  • Polymethylpentene is basically composed of 4-methyl-1-pentene, 2-methyl-1-pentene, 2-methyl-2-pentene, 3-methyl-1-pentene and 3-methyl-2- Any of the pentene A homopolymer of force 4-methyl-1-pentene, which is a polyolefin composed of force, is preferred.
  • PMP may be a copolymer containing a small amount of ⁇ -olefin other than methylpentene as long as physical properties such as heat resistance, compression resistance and heat shrinkage are not impaired.
  • ⁇ -olefins other than methylpentene, ethylene, propylene, butene-1, hexene-1, pentene-1, otaten-1, vinyl acetate, methyl methacrylate, styrene and the like are suitable.
  • the melting point of soot is usually 230-245 ° C.
  • the Mw of PMP is particularly preferably 3 ⁇ 10 5 or more and 7 ⁇ 10 5 or less.
  • Fluorine resin includes polyvinylidene fluoride (PVDF, melting point: 171 ° C), polytetrafluoroethylene (melting point: 327 ° C), and tetrafluoroethylene perfluoroalkyl butyl ether.
  • PVDF polyvinylidene fluoride
  • Polymer melting point: 310 ° C
  • tetrafluoroethylene 'hexafluoropropylene' perfluoro (propyl butyl ether) copolymer (melting point: 295 ° C)
  • tetrafluoroethylene Xafluoropropylene copolymer (melting point: 275 ° C)
  • ethylene'tetrafluoroethylene copolymer (melting point: 270 ° C), and the like.
  • PVDF is preferred as the fluorine resin.
  • PVDF may be a copolymer with other olefins (vinylidene fluoride copolymer).
  • the vinylidene fluoride unit content of the vinylidene fluoride copolymer is preferably 75% by mass or more, more preferably 90% by mass or more.
  • monomers that copolymerize with vinylidene fluoride include hexafluoropropylene, tetrafluoroethylene, triphenolopropylene, ethylene, propylene, isobutylene, styrene, vinyl chloride, vinylidene chloride, and diflurane.
  • Poly (hexafluoropropylene-vinylidene fluoride) copolymer is preferred as the vinylidene fluoride copolymer! /.
  • the polycarbonate (PC) is preferably bisphenol A-based PC.
  • Bisphenol A-based PC is a (method of transesterification of bisphenol A and diphenol carbonate in the absence of a solvent (transesterification method), (ii) bisphenol A and phosgene in an acid binder and solvent. Desalination polycondensation reaction in the presence (phosgene method), or (iii) Add phosgene to a suspension of an aqueous solution in which bisphenol A is dissolved with alkali and an organic solvent, and add an aqueous phase and an organic solvent.
  • PC Mw is preferably 2 x 10 4 or more to 4 x 10 4 or less! /.
  • PPS polyphenylene sulfide
  • Polypropylene 'heat-resistant resin mixture layer may contain inorganic filler! / !.
  • Inorganic fillers include silica, alumina, silica-alumina, zeolite, my strength, clay, kaolin, talc, calcium carbonate, calcium carbonate, calcium sulfate, barium carbonate, barium sulfate, magnesium carbonate, magnesium sulfate, Examples include magnesium oxide, diatomaceous earth, glass powder, aluminum hydroxide, titanium dioxide, zinc oxide, satin white, and acid clay.
  • the inorganic filler may be used in combination of not only one type but also a plurality of types.
  • the particle shape of the inorganic filler is not particularly limited.
  • a spherical or crushed inorganic filler can be selected as appropriate.
  • the inorganic filler may be surface-treated.
  • examples of the inorganic filler surface treatment agent include various silane coupling agents, fatty acids (eg, stearic acid, etc.) or derivatives thereof.
  • the permeability is further improved.
  • a crazed void (pore) is formed even when a fibril having polypropylene strength is cleaved around an inorganic filler particle, and the void (pore) volume is further increased. It is estimated that this is because of an increase.
  • the proportion of heat-resistant resin is more preferably 5 to 25% by mass, preferably 3 to 30% by mass, with the total of polypropylene and heat-resistant resin being 100% by mass.
  • the proportion of the inorganic filler is preferably 0.1 to 15% by mass with respect to 100% by mass of the total of polypropylene and heat-resistant resin. The mass% is more preferable.
  • Polypropylene 'Heat-resistant resin mixed layer gives the polyolefin multi-layer microporous membrane excellent permeability, mechanical strength, heat shrinkage resistance, meltdown property and compression resistance.
  • the first polyolefin multi-layer microporous membrane may have at least one polyethylene-based resin layer A and polypropylene / heat-resistant resin mixed layer B.
  • the composition of the same kind of layers may be the same or different.
  • examples of the combination of porous layers include layer AZ layer B, layer AZ layer BZ layer A, layer BZ layer AZ layer B, and the like.
  • both surface layers are polyethylene-based resin layer A and the inner layer is polypropylene 'heat-resistant resin-mixed layer B (for example, layer AZ layer BZ layer A etc.), especially shutdown characteristics, permeability and The balance of mechanical strength is improved.
  • the ratio of polyethylene-based resin layer A and polypropylene 'heat-resistant resin mixed layer B is not limited, but it is preferable that the film thickness ratio (layer AZ layer B) is 70Z30 to 10Z90. 60 40 to 2 0 to 80 It is more preferable that
  • the second polyolefin multi-layer microporous membrane is composed of a polyethylene-based resin layer, a porous layer containing polypropylene and an inorganic filler having an aspect ratio of 2 or more (hereinafter referred to as “polypropylene” inorganic filler mixed layer unless otherwise specified). ").
  • the polyethylene-based resin may be the same as the first polyolefin multi-layer microporous membrane, description thereof is omitted.
  • the action of the polyethylene-based resin layer is the same as that of the first polyolefin microporous film.
  • Polypropylene can be the same as the first polyolefin multilayer microporous membrane, so the explanation is omitted. Abbreviated.
  • the second polyolefin multilayer microporous membrane requires an inorganic filler having an aspect ratio of 2 or more.
  • an inorganic filler having an aspect ratio of 2 or more By adding an inorganic filler having an aspect ratio of 2 or more to polypropylene, the porosity, permeability, mechanical strength and meltdown characteristics of the porous layer containing polypropylene are improved.
  • the aspect ratio of the inorganic filler is preferably 4 or more, more preferably 8 or more.
  • the aspect ratio was determined by producing a second polyolefin multilayer microporous membrane, firing the resulting multilayer microporous membrane, taking a micrograph of the remaining inorganic filler, and measuring 100 or more of the resulting photos. The major and minor diameters of the above inorganic filler particles were measured, and the average value of the ratio (major axis Z minor axis) was calculated.
  • Examples of the inorganic filler having an aspect ratio of 2 or more include glass fiber, carbon fiber, dosonite, my strength, talc, and aluminum hydroxide. These inorganic fillers may be used alone or in combination. These inorganic fillers may be treated with the above surface treatment agent.
  • the equivalent circle diameter of an inorganic filler with an aspect ratio of 2 or more is preferably 0.1 to 100 m, and is preferably 0.5 to 15 ⁇ m. More preferred.
  • Polypropylene 'inorganic filler mixed layer may contain the above heat-resistant resin! /.
  • the content of the inorganic filler is 0.1 to 15 based on 100% by mass of the resin component of the polypropylene 'inorganic filler mixed layer (which may be a force of only polypropylene or a mixture of polypropylene and heat-resistant resin). 0.5% to 10% by mass is more preferable. If this ratio is less than 0.1% by mass, the mechanical strength becomes insufficient. On the other hand, if it exceeds 15% by mass, the drop of the inorganic filler increases when the laminated microporous membrane is slit as the puncture strength is lowered. If a large amount of powder is generated due to falling off of the inorganic filler, defects such as pinholes and black spots may occur in the multilayer microporous membrane product.
  • the proportion of the heat-resistant resin is preferably 3 to 30% by mass, where the total of polypropylene and heat-resistant resin is 100% by mass. 5 to 25% by mass is more preferable.
  • Polypropylene 'Inorganic filler mixed layer gives excellent permeability, mechanical strength, heat shrinkage and meltdown properties to polyolefin multilayer microporous membrane.
  • the second polyolefin multilayer microporous membrane may have at least one polyethylene-based resin layer A ′ and polypropylene “inorganic filler mixed layer B”.
  • polyethylene resin layers A ′ or polypropylene “inorganic filler mixed layers B” are provided, the compositions of the same layers may be the same or different.
  • layer A 'Z layer B', layer A'Z layer B'Z layer A ', layer B'Z layer A'Z layer B' and the like can be mentioned.
  • both surface layers are polyethylene-based resin layers A 'and the inner layer is polypropylene' inorganic filler-mixed layer B '(for example, layer A'Z layer B'Z layer A'), The balance between shutdown characteristics, permeability and mechanical strength is improved.
  • the ratio of polyethylene-based resin layer A 'and polypropylene' inorganic filler mixed layer B ' is not limited, but it is preferable that the film thickness ratio (layer A'Z layer ⁇ ') is 70Z30 to 10Z90. 40 ⁇ 20 ⁇ 80 is more preferred!
  • the first method for producing the first polyolefin multilayer microporous membrane is as follows: (l) (a) a step of preparing a polyethylene solution by melt-kneading the polyethylene-based resin and a film-forming solvent; A process of preparing a polypropylene / heat-resistant resin mixture solution by melting and kneading polypropylene, heat-resistant resin and a film-forming solvent, (2) A process of simultaneously extruding a polyethylene solution and a polypropylene 'heat-resistant resin mixture solution from a die (3) a step of cooling the obtained extruded product to form a gel-like laminated sheet, (4) a solvent removal step for film formation, and (5) a drying step.
  • (6) stretching step, (7) hot solvent treatment step, etc. may be provided between steps (3) and (4).
  • step (5) (8) step of stretching the laminated microporous membrane, (9) heat treatment step, (10) thermal solvent treatment step, (11) cross-linking treatment step by ionizing radiation, (12) hydrophilization treatment step , (1 3) A surface coating treatment step or the like may be provided.
  • a polyethylene film solution is prepared by melting and kneading a suitable film-forming solvent into polyethylene-based resin. If necessary, various additives such as anti-oxidation agents can be added to the polyethylene solution in a range that does not impair the effects of the present invention. For example, finely divided silicic acid can be added as a pore forming agent.
  • the film-forming solvent is preferably a liquid at room temperature.
  • a liquid solvent By using a liquid solvent, it is possible to stretch at a relatively high magnification.
  • Liquid solvents include nonane, decane, decalin, norxylene, undecane, dodecane, chain or cyclic aliphatic hydrocarbons such as liquid paraffin, mineral oil fractions with boiling points corresponding to these, dibutyl phthalate, A liquid phthalic acid ester can be mentioned at room temperature such as dioctyl phthalate.
  • a non-volatile liquid solvent such as liquid paraffin.
  • a solid solvent may be mixed with the liquid solvent at room temperature.
  • examples of such a solid solvent include stearyl alcohol, seryl alcohol, and paraffin wax.
  • stearyl alcohol stearyl alcohol
  • seryl alcohol stearyl alcohol
  • paraffin wax paraffin wax
  • the viscosity of the liquid solvent is preferably 30 to 500 cSt at 25 ° C, more preferably 30 to 200 cSt. If the viscosity at 25 ° C is less than 30 cSt, kneading and foaming are difficult. On the other hand, if it exceeds 500 cSt, it is difficult to remove the liquid solvent.
  • Uniform melt-kneading of the polyethylene solution is not particularly limited, but is preferably performed in a twin-screw extruder. Melt kneading in a twin screw extruder is suitable for preparing highly concentrated polyethylene solutions.
  • the melt-kneading temperature is preferably set to the melting point Tm + 10 ° C. to Tm + 100 ° C. of the polyethylene resin, regardless of the case of the polyethylene resin. Polie
  • the melting point Tm of polyethylene-based resin is that polyethylene-based resin is (a) ultra-high molecular weight polyethylene, (b)
  • the above ultra-polymer Polyethylene other than high-molecular-weight polyethylene, ultra-high-molecular-weight polyethylene, and polyethylene yarns have a melting point of about 130-140 ° C. Therefore, the melt kneading temperature is preferably in the range of 140 to 250 ° C, more preferably in the range of 170 to 240 ° C.
  • the film-forming solvent may be added before the start of kneading, or may be added from the middle of the twin-screw extruder during kneading, but the latter is preferred.
  • an acid-proofing agent In order to prevent acidity of the polyethylene-based resin during melt kneading, it is preferable to add an acid-proofing agent.
  • the ratio (LZD) of the screw length (L) to the diameter (D) of the twin screw extruder is preferably in the range of 20-100, more preferably in the range of 35-70.
  • LZD is less than 20, melt kneading becomes insufficient. If LZD exceeds 100, the residence time of the polyethylene solution will increase too much.
  • the cylinder inner diameter of the twin screw extruder is preferably 40-80 mm! /.
  • the polyethylene solution is 100% by mass, and the content of the polyethylene-based resin is preferably 10 to 50% by mass, more preferably 20 to 45% by mass. If the polyethylene resin is less than 10% by mass, the swell and neck-in will increase at the die outlet when forming the extruded product, and the moldability and self-supporting property of the extruded product will decrease. On the other hand, if the polyethylene-based resin exceeds 50% by mass, the moldability of the extruded product is lowered.
  • the polypropylene 'heat-resistant resin mixture solution is prepared by adding the film-forming solvent to polypropylene and heat-resistant resin and then melt-kneading.
  • the melt kneading temperature is higher than the melting point of crystalline heat resistant resin or Tg of amorphous heat resistant resin depending on the type of heat resistant resin.
  • U is the same as the method for preparing a polyethylene solution except that the content of the resin component (polypropylene + heat-resistant resin) in the solution is preferably 10 to 60% by mass.
  • the melt-kneading temperature is equal to or higher than the melting point of the crystalline heat-resistant resin or equal to or higher than the Tg of the amorphous heat-resistant resin.
  • the melting and kneading temperature is more preferably the melting point of the crystalline heat-resistant resin or the Tg of the amorphous heat-resistant resin to the melting point of the polypropylene + 100 ° C. or less.
  • the melting point of polypropylene is usually 155-175 ° C.
  • the melt kneading temperature is preferably 215 to 270 ° C.
  • PBT melting point: about 160 to 230 ° C
  • the melt kneading temperature is preferably 160 to 270 ° C, more preferably 180 to 270 ° C.
  • PET melting point: about 230 to 270 ° C
  • it is preferably 230 to 270 ° C.
  • a heat-resistant resin mixture solution is simultaneously extruded from the die through each extruder.
  • both solutions when both solutions are combined in layers in one die and extruded into a sheet (adhesion within the die), multiple extruders are connected to one die, and both solutions are separated.
  • the die When extruding into a sheet from a die and laminating (adhesion outside the die), the die is connected to each of a plurality of extruders. In-die bonding is preferred.
  • either a flat die method or an inflation method may be used.
  • the solution when bonding inside the die, the solution is supplied to separate molds of a multi-layer die and laminated in layers at the die lip inlet (multiple-mould method), or the solution is flowed in advance in layers.
  • block method Use the deviation of the method of supplying to the die (block method). Since the majority hold method and the block method itself are well known, detailed description thereof is omitted.
  • Known flat dies and inflation dies for the multilayer can be used.
  • the gap of the multi-layer flat die is preferably in the range of 0.1 to 5 mm.
  • the sheet solution extruded from each die die is pressed by passing between a pair of rolls.
  • the die is heated to a temperature of 140 to 250 ° C. during extrusion.
  • the extrusion rate of the heated solution is preferably within the range of 0.2 to 15 mZ.
  • Cooling is preferably performed at a rate of at least 50 ° CZ min. By performing such cooling, the structure in which the polyethylene-based resin phase and the polypropylene heat-resistant resin mixture phase are microphase-separated by the film-forming solvent can be fixed. Cooling is preferably performed to 25 ° C or less. In general, when the cooling rate is slowed down, the pseudo cell unit becomes large and the higher order structure of the resulting gel-like laminated sheet becomes rough, but when the cooling rate is fast, it becomes a dense cell unit.
  • the cooling rate is less than 50 ° CZ, the degree of crystallinity increases and it is difficult to obtain a gel-like laminated sheet suitable for stretching.
  • a cooling method a method of contacting with a coolant such as cold air or cooling water, a method of contacting with a cooling roll, or the like can be used.
  • a cleaning solvent is used to remove (clean) the film-forming solvent.
  • Polyethylene-based resin phase and polypropylene 'Heat-resistant resin mixture phase is separated from the film-forming solvent phase, so when the film-forming solvent is removed, it consists of fibrils that form a fine three-dimensional network structure.
  • a porous film having pores (voids) communicating irregularly in nature can be obtained.
  • washing solvent examples include saturated hydrocarbons such as pentane, hexane, and heptane, chlorinated hydrocarbons such as methylene chloride and carbon tetrachloride, ethers such as jetyl ether and dioxane, ketones such as methyl ethyl ketone, Fluorocarbon, CF, CF chain fluorocarbons, CHF, etc.
  • These cleaning solvents have a low surface tension (eg, 24 mN / m or less at 25 ° C).
  • a low surface tension cleaning solvent By using a low surface tension cleaning solvent, the network that forms micropores is prevented from shrinking due to the surface tension of the gas-liquid interface during drying after cleaning, and thus has a high porosity and permeability. A microporous membrane is obtained.
  • the gel laminated sheet can be washed by a method of immersing in a washing solvent, a method of showering the washing solvent, or a combination thereof.
  • the washing solvent is preferably used in an amount of 300 to 30,000 parts by mass with respect to 100 parts by mass of the membrane.
  • the washing temperature is usually 15 to 30 ° C, and heat washing may be performed if necessary.
  • the temperature for the heat washing is preferably 80 ° C or lower. Cleaning with a cleaning solvent is performed until the residual amount of liquid solvent is less than 1% by mass of the initial amount added. It is preferable to carry out.
  • the laminated microporous film obtained by removing the film forming solvent is dried by a heat drying method or an air drying method.
  • the drying temperature is preferably below the crystal dispersion temperature Ted of the polyethylene-based resin.
  • polyethylene-based resin is the above-mentioned (a) ultrahigh molecular weight polyethylene, (b) ultrahigh molecular weight polyethylene.
  • the crystal dispersion temperatures are the crystal dispersion temperatures, and when polyethylene-based resin is (d) polyolefin yarn and composition, among the above (a) to (c) This is the crystal dispersion temperature of the polyolefin yarn and the composition (hereinafter the same).
  • the crystal dispersion temperature is a value obtained by measuring the temperature characteristic of dynamic viscoelasticity based on ASTM D 4065.
  • the above ultra-high molecular weight polyethylene, polyethylene other than ultra-high molecular weight polyethylene and polyethylene composition have a crystal dispersion temperature of about 90-100 ° C.
  • the drying is preferably performed until the residual micro solvent is 100% by mass (dry weight) until the remaining cleaning solvent is 5% by mass or less, and more preferably 3% by mass or less. Insufficient drying is preferable because the porosity of the laminated microporous film decreases and the permeability deteriorates when a re-stretching step or a heat treatment step is performed later.
  • the gel-like laminated sheet is stretched at a predetermined ratio after heating by a tenter method, a roll method, an inflation method, a rolling method, or a combination of these methods. Since the gel-like laminated sheet contains a film-forming solvent, it can be stretched uniformly. The stretching improves the mechanical strength and enlarges the pores, which is particularly preferable when used as a battery separator.
  • the stretching may be uniaxial stretching or biaxial stretching, but biaxial stretching is preferred. In the case of biaxial stretching, simultaneous biaxial stretching, sequential stretching or multi-stage stretching (for example, a combination of simultaneous biaxial stretching and sequential stretching) may be shifted! However, simultaneous biaxial stretching is particularly preferred.
  • the draw ratio is preferably 2 times or more, more preferably 3 to 30 times.
  • biaxial stretching it is more preferably at least 3 times or more in any direction, and an area magnification of 9 times or more, more preferably an area magnification of 25 times or more. If the area magnification is less than 9 times, Elongation is insufficient and a multilayer microporous film having high elasticity and high strength cannot be obtained. On the other hand, if the area magnification exceeds 400 times, there will be restrictions in terms of stretching equipment and stretching operations.
  • the stretching temperature is preferably the melting point of polyethylene-based resin Tm + 10 ° C or lower.
  • the crystal dispersion temperature is more preferably in the range of Ted or higher and lower than the melting point Tm.
  • the film is broken by stretching, and high-stretching cannot be performed immediately.
  • the polyethylene-based resin has a crystal dispersion temperature of about 90-100 ° C. Therefore, the stretching temperature is usually in the range of 90 to 140 ° C, preferably in the range of 100 to 130 ° C.
  • the fibrils made of polypropylene are cleaved with the fine particles made of the heat-resistant resin as the core, and crazed pores with fine particles held at the center are formed.
  • the film may be stretched with a temperature distribution in the film thickness direction, whereby a multilayer microporous film having excellent single-layer mechanical strength can be obtained.
  • the method is specifically described in Japanese Patent No. 3347854.
  • Treat the gel-laminated sheet with a hot solvent By the hot solvent treatment, the fibrils formed by stretching become vein-like and the trunk fibers are relatively thick. Therefore, a laminated microporous membrane having a large pore diameter and excellent strength and permeability can be obtained.
  • “vein-like fibrils” refer to a state in which the fibrils are composed of thick trunk fibers and thin fibers connected to the outside thereof, and the thin fibers form a complex network structure.
  • the hot solvent treatment method is specifically described in WO 2000Z20493.
  • the dried microporous membrane after drying may be stretched at least in the uniaxial direction.
  • Laminated microporous membrane Stretching can be performed by the tenter method or the like as described above while heating the film. This stretching may be uniaxial stretching or biaxial stretching. In the case of biaxial stretching, simultaneous biaxial stretching or sequential stretching may be used, but simultaneous biaxial stretching is preferred.
  • the stretching temperature is preferably not higher than the melting point Tm.
  • the stretching temperature is usually in the range of 90 to 135 ° C, preferably in the range of 95 to 130 ° C.
  • the stretching ratio in the uniaxial direction is 1.1 to 2.5 times.
  • the pore diameter of the laminated microporous film is further increased and the compression resistance is further improved.
  • MD longitudinal direction
  • biaxial stretching it should be 1.1 to 2.5 times each in the MD direction and TD direction.
  • the stretching ratios in the MD direction and the TD direction are 1.1 to 2.5 times, they may be different from each other in the MD direction and the TD direction, but are preferably the same.
  • this magnification is less than 1.1 times, the compression resistance is not sufficiently improved.
  • the magnification is more than 2.5, the possibility of film breakage increases and the heat shrinkage resistance decreases, which is not preferable.
  • the stretching ratio is more preferably 1.1 to 2.0 times.
  • the heat treatment stabilizes the crystals and makes the lamellar layer uniform.
  • heat setting treatment and Z or heat relaxation treatment may be used.
  • the heat setting treatment is more preferably performed by a tenter method, a roll method or a rolling method.
  • the heat setting treatment is the melting point Tm + 10 ° C or less, preferably the crystal
  • the dispersion temperature is in the temperature range from Ted to melting point Tm.
  • the heat relaxation treatment may be performed using a belt conveyor or an air floating heating furnace, in addition to the above method.
  • Thermal relaxation treatment is performed at a temperature below the melting point Tm, preferably 60 ° C or less.
  • the laminated microporous membrane after drying may be subjected to a crosslinking treatment by irradiation with ionizing radiation such as ⁇ rays,
  • ionizing radiation such as ⁇ rays,
  • an acceleration voltage of 100 to 300 kV is preferred, with an electron dose of 0.1 to 100 Mrad being preferred.
  • the crossdown process increases the meltdown temperature of the laminated microporous membrane.
  • the laminated microporous membrane after drying may be subjected to a hydrophilic treatment.
  • the hydrophilization treatment can be performed by monomer graph, surfactant treatment, corona discharge or the like. Monomer grafting is preferably performed after the bridge treatment.
  • any of a nonionic surfactant, a cationic surfactant, an anionic surfactant or an amphoteric surfactant can be used. Is preferred.
  • a force is applied to immerse the laminated microporous membrane in a solution obtained by dissolving the surfactant in water or a lower alcohol such as methanol, ethanol, isopropyl alcohol, and the solution is applied to the laminated microporous membrane by the doctor blade method.
  • the laminated microporous membrane after drying is made of a polypropylene porous body; a fluororesin porous body such as polyvinylidene fluoride or polytetrafluoroethylene; a porous body such as polyimide or polyphenylene sulfide. Coating the surface further improves the meltdown characteristics when used as a battery separator.
  • the polypropylene for the coating layer preferably has a solubility in 100 g of toluene at a temperature of 25 ° C. where Mw is preferably in the range of 5,000 to 500,000.
  • this polypropylene has a fraction of racemic dyad (a structural unit in which two linked monomer units are in an enantiomeric relationship) of 0.12 to 0.88.
  • the surface coating layer is formed by applying a mixed solution containing the above-described coating layer resin and its good solvent to the laminated microporous membrane, and removing the good solvent to increase the concentration of the resin, thereby increasing the concentration of the resin layer. After the structure separated into the solvent phase, it can be formed by removing the remainder of the good solvent.
  • the second method for producing the first polyolefin multilayer microporous membrane is as follows: (1) First production method (2) A step of preparing a polyethylene solution and a polypropylene 'heat-resistant resin mixture solution in the same manner as in (2) A step of individually extruding a polyethylene solution and a polypropylene' heat-resistant resin mixture solution from a die, (3) Each of the obtained A step of cooling the extruded product to form a gel-like sheet, (4) a step of laminating the gel-like sheets, (5) a solvent removal step for film formation, and (6) a drying step. If necessary, (7) stretching step, (8) hot solvent treatment step, etc. may be provided between steps (3) and (4).
  • step (6) (9) stretching step, (10) hot solvent treatment step, etc. may be provided.
  • step (6) (11) Step of stretching laminated microporous membrane, (12) Heat treatment step, (13) Thermal solvent treatment step, (14) Crosslinking treatment step by ionizing radiation, (15) Hydrophilization treatment A process, (16) surface coating treatment step, etc. may be provided.
  • step (1) is the same as the first method
  • step (2) is the first except that the polyethylene solution and the polypropylene 'heat-resistant resin mixture solution are individually extruded from the die.
  • steps (3) and (6) are the same as the first method, but steps (5) and (6) may be the same as the first method except that individual gel sheets are formed.
  • Step (4) of laminating gel-like sheet A made of polyethylene-based resin and film-forming solvent and gel-like sheet B made of polypropylene 'heat-resistant resin mixture and film-forming solvent explain.
  • the lamination method is not particularly limited, but the thermal lamination method is preferable.
  • Examples of the thermal lamination method include a heat sealing method, an impulse sealing method, and an ultrasonic lamination method, and the heat sealing method is preferable.
  • the heat sealing method a method using a heat roll is preferable. In the hot roll method, the stacked gel sheets A and B are passed between a pair of heated rolls or between a heated roll and a cradle and heat sealed.
  • the temperature and pressure at the time of heat sealing are not particularly limited as long as the gel sheet is sufficiently adhered and the properties of the obtained multilayer microporous film are not deteriorated.
  • the heat seal temperature is, for example, 90 to 135 ° C, preferably 90 to 115 ° C.
  • the heat seal pressure is preferably 0.01 to 50 MPa.
  • the stretching step (7) and the hot solvent treatment step (8) between the steps (3) and (4) may be the same as the first method except that it is applied to either of the gel sheets A and B.
  • the melting point Tm + 10 ° C or less is preferred. It is more preferable that the temperature is in the range of Ted or higher to the melting point Tm. Place to stretch gel sheet B
  • the melting point of polypropylene, Tm + 10 ° C or less is the preferred polypropylene crystal dispersion temperature
  • the crystal dispersion temperature of polypropylene is
  • the stretching step (9) and the hot solvent treatment step (10) between steps (4) and (5) may be the same as in the first method. Stretching process of laminated microporous membrane after process (6) (11), heat treatment process (12), thermal solvent treatment process (13), crosslinking process by ionizing radiation (14), hydrophilization process process (15) And the surface coating process (16) is the same as the first method!
  • the third method for producing the first polyolefin multilayer microporous membrane is as follows: (1) A step of preparing a polyethylene solution and a polypropylene 'heat-resistant resin mixture solution in the same manner as the first production method; (2) Polyethylene Solution and polypropylene 'The process of extruding the heat-resistant resin mixture solution individually from the die, (3) The step of cooling each obtained extrusion to form a gel sheet, (4) The film formation from each gel sheet A step of removing the solvent, (5) a drying step, and (6) a step of laminating the obtained polyethylene microporous membrane and polypropylene microporous membrane. If necessary, (7) stretching step, (8) hot solvent treatment step, etc. may be provided between steps (3) and (4).
  • a step of stretching the microporous membrane (10) a heat treatment step, (11) a hot solvent treatment step and the like may be provided.
  • step (1) is the same as the first method
  • step (2) is the first except that polyethylene solution and polypropylene 'heat-resistant resin mixture solution are individually extruded from the die.
  • step (3) is the same as the above method except that the individual gel-like sheet is formed
  • step (4) is the same as the first method except that the film-forming solvent is removed from the individual gel-like sheet.
  • step (5) which is the same as the one method, may be the same as the first method except that the individual microporous membrane is dried.
  • the step (6) of laminating the polyethylene microporous membrane and the polypropylene microporous membrane will be described.
  • the laminating method is not particularly limited, but the heat sealing method is preferred, in which the thermal laminating method is preferred as in the case of laminating the gel-like sheets in the second method.
  • the heat seal temperature is For example, it is 90 to 135 ° C, preferably 90 to 115 ° C.
  • the heat seal pressure is preferably 0.01 to 50 MPa.
  • the stretching step (7) and the hot solvent treatment step (8) between steps (3) and (4) may be the same as in the second method.
  • the step (9), the heat treatment step (10) and the thermal solvent treatment step (11) for stretching the microporous membrane between steps (5) and (6) are either polyethylene microporous membrane or polypropylene microporous membrane. The same as the first method, except for the above. However, in the step (9) of stretching the microporous membrane between the steps (5) and (6), when stretching the polyethylene microporous membrane, the stretching temperature is not more than the melting point Tm.
  • the melting point Tm + 10 ° C or less preferably the crystal dispersion temperature Ted or more Melting point Tm
  • the above melting point Tm or less preferably 60 ° C or more to the above melting point Tm — 10 ° C or less
  • the melting point ⁇ m + 10 ° C or less preferably the crystal dispersion temperature Ted or higher to the melting point Tm or lower.
  • the melting point is preferably not higher than Tm, preferably not lower than 60 ° C and not lower than Tm-10 ° C.
  • Step (6) after stretching step (6), heat treatment step (13), thermal solvent treatment step (14), cross-linking treatment step by ionizing radiation (15), hydrophilization treatment Step (16) and surface coating treatment step (17) may both be the same as in the first method.
  • the first method for producing the second polyolefin multi-layer microporous membrane is as follows: (1) (0 The step of preparing a polyethylene solution by melting and kneading the polyethylene-based resin and the film-forming solvent, GO, the polypropylene and the component A step of preparing an inorganic filler-containing polypropylene solution by dispersing an inorganic filler having an aspect ratio of 2 or more in a melt-kneaded product of a membrane solvent; (2) Polyethylene A step of simultaneously extruding a len solution and an inorganic filler-containing polypropylene solution from a die, (3) a step of cooling the obtained extruded product to form a gel-like laminated sheet, (4) a solvent removal step for film formation, and (5) Including a drying step.
  • a (6) stretching step and (7) a hot solvent treatment step may be provided between the steps (3) and (4).
  • step (5) (8) Step of stretching laminated microporous membrane, (9) Heat treatment step, (10) Thermal solvent treatment step, (11) Cross-linking treatment step by ionizing radiation, (12) Hydrophilization treatment Step (13) A surface coating treatment step and the like may be provided.
  • the steps (l) except GO are the same as the first method for producing the first polyolefin multi-layer microporous membrane, and thus the description thereof is omitted.
  • the step (lXii) for preparing the inorganic filler-containing polypropylene solution will be described.
  • An inorganic filler-containing polypropylene solution is prepared by dispersing an inorganic filler having an aspect ratio of 2 or more in a melt-kneaded product of polypropylene and a film-forming solvent.
  • the melt kneading temperature is the melting point of polypropylene, Tm + 90 ° C.
  • This method is the same as the method for preparing a polyethylene solution except that the polypropylene content in the solution is preferably 10 to 50% by mass. Polypropylene content in the solution is more preferably 20 to 45 mass 0/0.
  • the inorganic filler is preferably dry blended in advance with polypropylene.
  • the second method for producing the second polyolefin multi-layer microporous membrane is as follows: (1) a step of preparing a polyethylene solution and a polypropylene solution containing an inorganic filler in the same manner as the first production method; (2) a polyethylene solution and an inorganic filler. A step of individually extruding the contained polypropylene solution from a die, (3) a step of cooling each obtained extruded product to form a gel-like sheet, (4) a step of laminating each gel-like sheet, (5) A solvent removal step for forming a film, and (6) a drying step. If necessary, (7) stretching step, (8) hot solvent treatment step, etc. may be provided between steps (3) and (4).
  • step (6) (9) stretching step, (10) hot solvent treatment step, etc. may be provided.
  • step (6) (11) step of stretching the laminated microporous membrane, (12) heat treatment step, (13) thermal solvent treatment step, (14) cross-linking treatment step by ionizing radiation, (15) hydrophilization treatment step (16) A surface coating treatment process may be provided.
  • step (2) the polypropylene-containing heat-resistant resin mixture solution is replaced with an inorganic filler-containing polymer.
  • the method may be the same as the second method for producing the first polyolefin multilayer microporous membrane, except that a propylene solution is used.
  • Steps (3) to (16) may be the same as the second method for producing the first polyolefin multi-layer microporous membrane, and thus the description thereof is omitted.
  • the third method for producing the second polyolefin multilayer microporous membrane is as follows: (1) a step of preparing a polyethylene solution and an inorganic filler-containing polypropylene solution in the same manner as the first production method; (2) a polyethylene solution and an inorganic filler. A process of extruding the contained polypropylene solution individually from a die, (3) a step of cooling each of the obtained extruded products to form a gel-like sheet, and (4) removing a film-forming solvent from each gel-like sheet. A step, (5) a drying step, and (6) a step of laminating the obtained polyethylene microporous membrane and polypropylene microporous membrane. If necessary, (7) stretching step, (8) hot solvent treatment step, etc.
  • steps (3) and (4) may be provided between steps (3) and (4).
  • steps (5) and (6) (9) a step of stretching the microporous membrane, (10) a heat treatment step, (11) a hot solvent treatment step and the like may be provided.
  • step (6) (12) step of stretching the laminated microporous membrane, (1 3) heat treatment step, (14) thermal solvent treatment step, (15) cross-linking step by ionizing radiation, (16) hydrophilization
  • a treatment step, (17) a surface coating treatment step and the like may be provided.
  • Step (2) may be the same as the third method for producing the first polyolefin multi-layer microporous membrane, except that an polypropylene-containing heat-resistant resin mixture solution is used instead of a polypropylene solution containing an inorganic filler.
  • Steps (3) to (17) may be the same as the third method for producing the first polyolefin multi-layer microporous membrane, and thus the description thereof is omitted.
  • the first and second polyolefin multilayer microporous membranes according to a preferred embodiment of the present invention have the following physical properties.
  • the porosity is less than 25%, the polyolefin multilayer microporous membrane does not have good air permeability! /.
  • it exceeds 80% the strength when the multilayer microporous membrane is used as a battery separator is insufficient, and there is a great risk of short-circuiting the electrodes.
  • the air permeability is 20 to 400 seconds Z100 cm 3
  • separator for batteries polyolefin multi-layer, microporous membrane When used as a modulator, the cycle characteristics of a battery having a large battery capacity are also good.
  • air permeability is more than 400 seconds Z100 cm 3, the capacity of the battery is reduced.
  • the air permeability is less than 20 seconds Z100 cm 3 , shutdown may not be performed sufficiently when the temperature inside the battery rises.
  • the piercing strength is less than 3,000 ⁇ 20 / ⁇ ⁇ , a short circuit may occur when a polyolefin multilayer microporous membrane is incorporated in a battery as a battery separator.
  • the puncture strength is preferably 3,500 mN / 20 ⁇ m or more.
  • the tensile strength at break is preferably 100,000 kPa or more in both the MD and TD directions.
  • the thermal shrinkage after exposure to 105 ° C for 8 hours is 10% or less in both the longitudinal direction (MD) and the transverse direction (TD).
  • MD longitudinal direction
  • TD transverse direction
  • the thermal shrinkage rate is preferably 8% or less in both the MD and TD directions.
  • the meltdown temperature is preferably 160-190 ° C.
  • the first polyolefin multilayer microporous membrane also has the following physical properties.
  • the rate of change in film thickness after heating and compression at 90 ° C for 5 minutes under a pressure of 5 MPa (51 kgfZcm 2 ) is 20% or more, with the film thickness before compression being 100%.
  • the film thickness change rate is preferably 25% or more.
  • the battery separator composed of the polyolefin multi-layer microporous membrane has a force of 5 to 50 / ⁇ ⁇ which can be appropriately selected depending on the type of the battery, but preferably has a thickness of 10 to 35 m. Is more preferable.
  • the melting point measured was 135 ° C and the crystal dispersion temperature was 90 ° C.
  • Calibration curve Prepared from a calibration curve obtained using a monodisperse polystyrene standard sample using a predetermined conversion constant.
  • the obtained polyethylene solution A and polypropylene / heat-resistant resin mixture solution B are supplied from each twin-screw extruder to a three-layer T-die so that a molded body is formed by laminating solution AZ solution BZ solution A in this order. Extruded. The extruded molded body was cooled while being drawn with a cooling roll adjusted to 18 ° C. to form a gel-like three-layer sheet. The obtained gel-like three-layer sheet was simultaneously biaxially stretched by a tenter stretching machine at 115 ° C so that the longitudinal direction (MD) and the transverse direction (TD) were 5 times.
  • MD longitudinal direction
  • TD transverse direction
  • a polyolefin three-layer microporous membrane was prepared in the same manner as in Example 1 except that polybutylene terephthalate (PBT) having an Mw of 3.8 ⁇ 10 4 was used instead of polyamide 6.
  • PBT polybutylene terephthalate
  • a polyolefin three-layer microporous membrane was prepared in the same manner as in Example 1 except that polyethylene terephthalate (PET) having an Mw force of 3.5 ⁇ 10 4 was used instead of polyamide 6.
  • PET polyethylene terephthalate
  • a polyethylene solution was prepared in the same manner as in Example 1 except that the melt kneading temperature was 210 ° C.
  • the obtained polyethylene solution A ′ and inorganic filler-containing polypropylene solution B ′ were fed from each twin-screw extruder to a three-layer T-die and laminated in the order of solution A′Z solution B′Z solution A ′. It pushed out to become.
  • a gel-like three-layer sheet is formed from the obtained extruded product in the same manner as in Example 1, and simultaneously biaxially stretched, washed, air-dried, and heat-fixed to subject it to a polyolefin three-layer microporous structure.
  • Microscope photograph of the remaining glass fiber after firing the obtained polyolefin three-layer microporous film The aspect ratio determined by measuring the major axis and minor axis of 100 particles in the photograph and calculating the average of the ratio (major axis Z minor axis) was 40.
  • Example 4 with the exception of using talc (product name: Hi-micron HE5, manufactured by Takehara Chemical Co., Ltd.) instead of GF chopped strands and setting the concentration of the mixture (PP + talc) in the polypropylene solution containing inorganic filler to 27% by mass.
  • talc product name: Hi-micron HE5, manufactured by Takehara Chemical Co., Ltd.
  • a polyethylene solution was prepared in the same manner as in Example 1.
  • a polypropylene solution containing no heat-resistant resin was prepared in the same manner as in Example 1 except that only polypropylene was used.
  • a polyolefin three-layer microporous membrane was prepared in the same manner as in Example 1 except that the obtained polyethylene solution and polypropylene solution were used.
  • a polyethylene microporous film was prepared in the same manner as in Example 1 except that the film was formed using only the polyethylene solution.
  • Calcium carbonate (CaCO) instead of GF chopped strand (Product name: Sunlight, bamboo)
  • Polyolefin 3 in the same manner as in Example 4 except that the concentration of PP + CaCO 3 was changed to 27% by mass.
  • a layer microporous membrane was prepared.
  • the aspect ratio of calcium carbonate obtained in the same manner as described above was 1.1.
  • the film thickness was measured with a contact thickness meter over a 30 cm width of the multilayer microporous film at a longitudinal interval of 5 mm, and the film thickness measurements were averaged.
  • a multilayer microporous membrane with a thickness of T is 2
  • Measurement was performed by ASTM D882 using a strip-shaped test piece having a width of 10 mm.
  • the shrinkage in the longitudinal direction (MD) and transverse direction (TD) was measured 3 times each when the multilayer microporous membrane was exposed to 105 ° C for 8 hours, and the average value was calculated.
  • thermomechanical analyzer TMAZSS6000, manufactured by Seiko Denshi Kogyo Co., Ltd.
  • TD 10 mm
  • MD X 3 mm
  • the temperature at the inflection point observed near the melting point was taken as the shutdown temperature.
  • test piece of 10 mm (TD) X 3 mm (MD) was pulled from the room temperature at a rate of 5 ° CZmin while pulling in the longitudinal direction of the test piece with a load of 2 g to melt. The temperature at which the membrane broke was measured.
  • a microporous membrane sample was sandwiched between a pair of press plates having a high smooth surface, and this was heated and compressed at 90 ° C for 5 minutes under a pressure of 5 MPa (51 kgfZcm 2 ) using a press machine, and averaged by the above method. The film thickness was measured. The film thickness change rate was calculated with the average film thickness before compression as 100%.
  • microporous membrane sample (film thickness T ') after heat compression under the above conditions, apply to P8117.
  • the value converted to 2 ' was defined as the ultimate air permeability.
  • Example No. Example 1 Example 2 Example 3 Resin composition
  • Thickness variation rate (%) Single 30 one 32 -35 Itatsurukido (sec / 100cm 3/20 ⁇ m) 320 310 330 [0153] Note: (l) Mw represents mass average molecular weight.
  • A represents a solution of the polyethylene composition
  • B represents a solution of the ⁇ ⁇ heat resistant resin mixture
  • ⁇ 6 represents polyamide 6.
  • Mw represents mass average molecular weight.
  • a ′ represents a polyethylene composition solution
  • B ′ represents a PP solution containing an inorganic filler.
  • MD represents the longitudinal direction
  • TD represents the transverse direction
  • A represents a solution of the polyethylene composition
  • B represents a solution containing PP.
  • MD represents the longitudinal direction
  • TD represents the transverse direction
  • the polyolefin three-layer microporous membranes of Examples 1 to 6 were excellent in the balance of permeability, mechanical strength, heat shrinkage resistance, shutdown characteristics, and meltdown characteristics. .
  • the polyolefin three-layer microporous membranes of Examples 1 to 3 were excellent in compression resistance (deformability during compression and permeability after compression).
  • the three-layer microporous membrane of Comparative Example 2 was inferior in deformability due to heat compression as compared with Examples 1 to 3, and the air permeability due to heat compression was large.
  • the polyolefin three-layer microporous membrane of Comparative Example 3 is inferior in mechanical strength and meltdown characteristics to Examples 4 to 6 because an inorganic filler having an aspect ratio of less than 2 is added to the polypropylene-containing layer. It was.

Abstract

 (1) ポリエチレン系樹脂からなる多孔質層と、ポリプロピレン及び融点又はガラス転移温度が170°C以上の耐熱性樹脂を含有する多孔質層とを設けるか、(2) ポリエチレン系樹脂からなる多孔質層と、ポリプロピレン及びアスペクト比が2以上の無機フィラーを含有する多孔質層とを設けると、透過性、機械的強度、耐熱収縮性、シャットダウン特性及びメルトダウン特性のバランスに優れたポリオレフィン多層微多孔膜が得られる。

Description

明 細 書
ポリオレフイン多層微多孔膜及びその製造方法並びに電池用セパレータ 技術分野
[0001] 本発明は、ポリエチレン系榭脂層とポリプロピレン含有層とを有し、透過性、機械的 強度、耐熱収縮性、シャットダウン特性及びメルトダウン特性のバランスに優れたポリ ォレフィン多層微多孔膜及びその製造方法並びに電池用セパレータに関する。 背景技術
[0002] ポリオレフイン微多孔膜は、リチウム電池用を始めとする電池用セパレータ、電解コ ンデンサ用隔膜、各種フィルタ、透湿防水衣料、各種濾過膜等に広く用いられている 。ポリオレフイン微多孔膜を電池用セパレータとして用いる場合、その性能は電池の 特性、生産性及び安全性に深く関わる。そのためポリオレフイン微多孔膜には、優れ た透過性、機械的特性、耐熱収縮性、シャットダウン特性、メルトダウン特性等が要求 される。
[0003] 一般にポリエチレンのみ力もなる微多孔膜はメルトダウン温度が低ぐまたポリプロ ピレンのみ力もなる微多孔膜はシャットダウン温度が高い。そのため、電池用セパレ 一タにはポリエチレン及びポリプロピレンを主成分とする微多孔膜が好ましい。そこで 、ポリエチレン及びポリプロピレンの混合榭脂からなる微多孔膜や、ポリエチレン層及 びポリプロピレン層からなる多層微多孔膜が提案されている。
[0004] 例えば特開平 05-251069号及び特開平 05-251070号は、熱暴走の発生を防止する セパレータとして、エチレンーブテン共重合体又はエチレン一へキセン共重合体から なり、 80〜150°Cでシャットダウンを起こす第一層と、ポリプロピレンからなり、第一層よ り 10°C以上高い温度でシャットダウンを起こす第二層とを有する微多孔性多層シート 力もなるセパレータを記載して 、る。
[0005] 特開平 05-251069号は、微多孔性多層シートの製造方法として、上記共重合体及 び抽出可能溶媒力 なる層と、ポリプロピレン及び抽出可能溶媒力もなる層とを有す る積層シートを作製し、これから抽出可能溶媒を除去することにより得られた微多孔 性シートを、 25〜110°Cの温度で延伸する方法を記載している。特開平 05-251070号 は、微多孔性多層シートの製造方法として、上記共重合体の溶融物及びポリプロピ レン溶融物を同時に押出し、冷却することにより得られた積層シートを 198°C〜一 7 0°Cの温度で延伸した後、熱処理する方法を記載して!/、る。
[0006] しかし本発明者らが調べた結果、ポリプロピレン層とポリエチレン層とを有する多層 微多孔膜を製造するにあたり、上記各文献に記載の製造方法を用いても、得られる 多層微多孔膜はポリプロピレン層の細孔径が小さぐ透過性が不十分であることが分 かった。
[0007] 特開昭 62-10857号は、寸法安定性及びシャットダウン特性に優れた電池用セパレ ータとして、(a)ポリエチレン又はポリプロピレンにより形成された微細孔性シートから なり、約 80°C〜150°Cの温度で実質的に寸法を保持したまま無孔化する第 1層と、 (b) ポリエチレン又はポリプロピレンと粒状充填材とから形成された微細孔性シートからな り、常温〜第 1層の無孔化温度より少なくとも約 10°C高い温度まで微細孔構造及び 寸法を保持する第 2層とを有する電池用セパレータを提案している。しかし、特開昭 6 2-10857号の電池用セパレータは、粒状充填材のアスペクト比を最適化して!/、な!/ヽの で、機械的強度が不十分である。
[0008] 従って、ポリエチレンを含む層とポリプロピレンを含む層とを有し、透過性、機械的 強度、耐熱収縮性、シャットダウン特性及びメルトダウン特性をバランス良く有するポ リオレフイン多層微多孔膜が求められて 、る。
発明の開示
発明が解決しょうとする課題
[0009] 従って、本発明の目的は、ポリエチレン系榭脂層とポリプロピレン含有層とを有し、 透過性、機械的強度、耐熱収縮性、シャットダウン特性及びメルトダウン特性のバラン スに優れたポリオレフイン多層微多孔膜及びその製造方法並びに電池用セパレータ を提供することである。
課題を解決するための手段
[0010] 上記課題に鑑み鋭意研究の結果、本発明者らは、 (1)ポリエチレン系榭脂からなる 多孔質層と、ポリプロピレン及び融点又はガラス転移温度力 S170°C以上の耐熱性榭 脂を含有する多孔質層とを設けるか、 (2)ポリエチレン系榭脂からなる多孔質層と、ポ リプロピレン及びアスペクト比が 2以上の無機フィラーを含有する多孔質層とを設ける と、透過性、機械的強度、耐熱収縮性、シャットダウン特性及びメルトダウン特性のバ ランスに優れたポリオレフイン多層微多孔膜が得られることを見出し、本発明に想到し た。
[0011] すなわち、本発明の第一のポリオレフイン多層微多孔膜は、ポリエチレン系榭脂か らなる多孔質層と、ポリプロピレン及び融点又はガラス転移温度力 S170°C以上の耐熱 性榭脂を含有する多孔質層とを有することを特徴とする。
[0012] 本発明の第二のポリオレフイン多層微多孔膜は、ポリエチレン系榭脂からなる多孔 質層と、ポリプロピレン及びアスペクト比が 2以上の無機フィラーを含有する多孔質層 とを有することを特徴とする。
[0013] 本発明の第一のポリオレフイン多層微多孔膜の製造方法は、ポリエチレン系榭脂及 び成膜用溶剤を溶融混練してポリエチレン溶液を調製するとともに、ポリプロピレン、 融点又はガラス転移温度力 S170°C以上の耐熱性榭脂及び成膜用溶剤を溶融混練し てポリプロピレン '耐熱性榭脂混合物溶液を調製し、 (1)得られたポリエチレン溶液と ポリプロピレン '耐熱性榭脂混合物溶液とをダイより同時に押出し、得られた押出し成 形体を冷却してゲル状積層シートを形成し、得られたゲル状積層シートから前記両 成膜用溶剤を除去するか、 (2)前記ポリエチレン溶液と前記ポリプロピレン '耐熱性榭 脂混合物溶液とを個別にダイより押し出し、得られた各押出し成形体を冷却してゲル 状シートを形成し、得られた各ゲル状シートを積層し、得られたゲル状積層シートから 前記両成膜用溶剤を除去するか、 (3)前記ポリエチレン溶液と前記ポリプロピレン'耐 熱性榭脂混合物溶液とを個別にダイより押し出し、得られた各押出し成形体を冷却し てゲル状シートを形成し、得られた各ゲル状シートから前記成膜用溶剤を除去し、得 られたポリエチレン微多孔膜及びポリプロピレン微多孔膜を積層することを特徴とす る。
[0014] 上記第一の方法にお!、て、前記工程 (1)を、前記ゲル状積層シートを延伸した後前 記両成膜用溶剤を除去するか、前記両成膜用溶剤の除去後に得られた積層微多孔 膜を延伸するか、前記ゲル状積層シートの延伸及び前記両成膜用溶剤の除去を順 に行った後得られた積層微多孔膜をさらに延伸することにより行うのが好ましい。前 記工程 (2)を、(2)(i)前記ゲル状シートを延伸した後積層するか、 (2)(ii)前記ゲル状積 層シートを延伸した後前記両成膜用溶剤を除去するか、 (2)(iii)前記両成膜用溶剤 の除去後に得られた積層微多孔膜を延伸するか、 (2)(iv)前記工程 (2)(i)〜(2)(m)のう ちから少なくとも二つの工程を選択することにより行うのが好ましい。前記工程 (3)を、 ( 3X0前記各ゲル状シートを延伸した後前記成膜用溶剤を除去するか、 (3)(ii)前記ポ リエチレン微多孔膜及び前記ポリプロピレン微多孔膜を延伸した後積層するか、 (3)(ii i)前記ポリエチレン微多孔膜及び前記ポリプロピレン微多孔膜を積層した後延伸す るか、 (3)(iv)前記工程 (3)G)〜(3)(iii)のうちから少なくとも二つの工程を選択することに より行うのが好ましい。
[0015] 本発明の第二のポリオレフイン多層微多孔膜の製造方法は、ポリエチレン系榭脂及 び成膜用溶剤を溶融混練してポリエチレン溶液を調製するとともに、ポリプロピレン及 び成膜用溶剤の溶融混練物にアスペクト比が 2以上の無機フィラーを分散させて無 機フイラ一含有ポリプロピレン溶液を調製し、 (1)得られたポリエチレン溶液と無機フィ ラー含有ポリプロピレン溶液とをダイより同時に押出し、得られた押出し成形体を冷却 してゲル状積層シートを形成し、得られたゲル状積層シートから前記両成膜用溶剤 を除去するか、 (2)前記ポリエチレン溶液と前記無機フィラー含有ポリプロピレン溶液 とを個別にダイより押し出し、得られた各押出し成形体を冷却してゲル状シートを形 成し、得られた各ゲル状シートを積層し、得られたゲル状積層シートから前記両成膜 用溶剤を除去するか、 (3)前記ポリエチレン溶液と前記無機フィラー含有ポリプロピレ ン溶液とを個別にダイより押し出し、得られた各押出し成形体を冷却してゲル状シー トを形成し、得られた各ゲル状シートから前記成膜用溶剤を除去し、得られたポリエ チレン微多孔膜及びポリプロピレン微多孔膜を積層することを特徴とする。
[0016] 上記第二の方法にお!、て、前記工程 (1)を、前記ゲル状積層シートを延伸した後前 記両成膜用溶剤を除去するか、前記両成膜用溶剤の除去後に得られた積層微多孔 膜を延伸するか、前記ゲル状積層シートの延伸及び前記両成膜用溶剤の除去を順 に行った後得られた積層微多孔膜をさらに延伸することにより行うのが好ましい。前 記工程 (2)を、(2X0前記ゲル状シートを延伸した後積層するか、 (2)(ii)前記ゲル状積 層シートを延伸した後前記両成膜用溶剤を除去するか、 (2)(iii)前記両成膜用溶剤 の除去後に得られた積層微多孔膜を延伸するか、 (2)(iv)前記工程 (2)G)〜(2)(m)のう ちから少なくとも二つの工程を選択することにより行うのが好ましい。前記工程 (3)を、 ( 3X0前記各ゲル状シートを延伸した後前記成膜用溶剤を除去するか、 (3)(ii)前記ポ リエチレン微多孔膜及び前記ポリプロピレン微多孔膜を延伸した後積層するか、 (3)(ii i)前記ポリエチレン微多孔膜及び前記ポリプロピレン微多孔膜を積層した後延伸す るか、 (3)(iv)前記工程 (3)G)〜(3)(iii)のうちから少なくとも二つの工程を選択することに より行うのが好ましい。
[0017] 本発明の電池用セパレータは上記第一又は第二のポリオレフイン多層微多孔膜に より形成される。
発明の効果
[0018] 本発明によれば、ポリエチレン系榭脂層とポリプロピレン含有層とを有し、透過性、 機械的強度、耐熱収縮性、シャットダウン特性及びメルトダウン特性のバランスに優 れたポリオレフイン多層微多孔膜が得られる。力かる多層微多孔膜は、特にポリプロ ピレンを含む多孔質層の細孔径が十分に大きいので、電解液の透過性に優れてい る。本発明のポリオレフイン多層微多孔膜を電池用セパレータとして用いると、容量特 性、サイクル特性、放電特性、耐熱性、保存特性及び生産性に優れた電池が得られ る。
発明を実施するための最良の形態
[0019] [1]第一のポリオレフイン多層微多孔膜
第一のポリオレフイン多層微多孔膜は、ポリエチレン系榭脂からなる多孔質層(以下 特段の断りがない限り、「ポリエチレン系榭脂層」とよぶ)と、ポリプロピレン及び融点 又はガラス転移温度力 S170°C以上の耐熱性榭脂を含有する多孔質層(以下特段の 断りがない限り、「ポリプロピレン '耐熱性榭脂混合層」とよぶ)とを有する。
[0020] (A)ポリエチレン系榭脂層
(1)ポリエチレン系榭脂
ポリエチレン系榭脂は、(a)超高分子量ポリエチレン、 (b)超高分子量ポリエチレン 以外のポリエチレン、 (c)超高分子量ポリエチレンとそれ以外のポリエチレンとの混合 物(ポリエチレン組成物)、又は (d)これらの (a)〜(: c)のいずれかと、ポリエチレン以外 のポリオレフインとの混合物(ポリオレフイン組成物)である。いずれの場合も、ポリエ チレン系榭脂の質量平均分子量 (Mw)は特に制限されないが、好ましくは 1 X 104〜1 X 107であり、より好ましくは 1 X 104〜5 X 106であり、特に好ましくは 1 X 104〜4 X 106で ある。
[0021] (a)超高分子量ポリエチレンからなる場合
超高分子量ポリエチレンは 5 X 105以上の Mwを有する。超高分子量ポリエチレンは 、エチレンの単独重合体のみならず、他の α -ォレフィンを少量含有するエチレン · a -ォレフイン共重合体でもよい。エチレン以外の α -ォレフィンとしては、プロピレン、ブ テン- 1、ペンテン- 1、へキセン- 1、 4-メチルペンテン- 1、オタテン- 1、酢酸ビュル、メタ クリル酸メチル、及びスチレンが好ましい。超高分子量ポリエチレンの Mwは 1 X 106〜 15 X 106が好ましぐ 1 X 106〜5 X 106がより好ましい。超高分子量ポリエチレンは単独 物に限定されず、二種以上の超高分子量ポリエチレン同士の混合物であってもよい 。混合物として、例えば Mwの異なる二種以上の超高分子量ポリエチレン同士の混合 物が挙げられる。
[0022] (b)超高分子量ポリエチレン以外のポリエチレンからなる場合
超高分子量ポリエチレン以外のポリエチレンは 1 X 104以上〜 5 X 105未満の Mwを有 し、高密度ポリエチレン、中密度ポリエチレン、分岐状低密度ポリエチレン及び鎖状 低密度ポリエチレンが好ましぐ高密度ポリエチレンがより好ましい。 Mw力 1 X 104以上 〜5 X 105未満のポリエチレンは、エチレンの単独重合体のみならず、プロピレン、ブ テン- 1、へキセン- 1等の他の α -ォレフィンを少量含有する共重合体でも良い。この ような共重合体としてシングルサイト触媒により製造されたものが好まし 、。超高分子 量ポリエチレン以外のポリエチレンは単独物に限定されず、二種以上の超高分子量 ポリエチレン以外のポリエチレンの混合物であってもよい。混合物として、例えば Mw の異なる二種以上の高密度ポリエチレン同士の混合物、同様な中密度ポリエチレン 同士の混合物、同様な低密度ポリエチレン同士の混合物等が挙げられる。
[0023] (c)ポリエチレン組成物力 なる場合
ポリエチレン糸且成物は、 Mwが 5 X 105以上の超高分子量ポリエチレンと、それ以外 の Mwが 1 X 104以上〜 5 X 105未満のポリエチレン(高密度ポリエチレン、中密度ポリェ チレン、分岐状低密度ポリエチレン、及び鎖状低密度ポリエチレンからなる群から選 ばれた少なくとも一種)とからなる混合物である。超高分子量ポリエチレン及びそれ以 外のポリエチレンは上記と同じで良い。このポリエチレン糸且成物は、用途に応じて分 子量分布 [質量平均分子量 Z数平均分子量 (MwZMn) ]を容易に制御することがで きる。ポリエチレン組成物としては、上記超高分子量ポリエチレンと高密度ポリエチレ ンとの組成物が好ましい。ポリエチレン組成物中の超高分子量ポリエチレンの含有量 は、ポリエチレン組成物全体を 100質量%として、 1質量%以上が好ましぐ 10〜80質 量%がより好ましい。
[0024] (d)ポリオレフイン組成物力もなる場合
ポリオレフイン組成物は、超高分子量ポリエチレン、それ以外のポリエチレン又はポ リエチレン組成物と、ポリエチレン以外のポリオレフインとの混合物である。超高分子 量ポリエチレン、それ以外のポリエチレン及びポリエチレン糸且成物は上記と同じで良 い。
[0025] ポリエチレン以外のポリオレフインとして、各々の Mwが 1 X 104〜4 X 106のポリプロピ レン、ポリブテン- 1、ポリペンテン- 1、ポリメチルペンテン、ポリへキセン- 1、ポリオクテ ン- 1、ポリ酢酸ビュル、ポリメタクリル酸メチル、ポリスチレン及びエチレン' α _ォレフ イン共重合体、並びに Mwが 1 X 103〜1 X 104のポリエチレンワックスからなる群から選 ばれた少なくとも一種を用いることができる。ポリプロピレン、ポリブテン- 1、ポリペンテ ン- 1、ポリメチルペンテン、ポリへキセン- 1、ポリオクテン- 1、ポリ酢酸ビニル、ポリメタ クリル酸メチル及びポリスチレンは単独重合体のみならず、他の α -ォレフィンを含有 する共重合体であってもよい。ポリエチレン以外のポリオレフインの割合は、ポリオレ フィン組成物全体を 100質量%として 20質量%以下が好ましぐ 10質量%以下がより 好ましい。
[0026] (e)分子量分布 MwZMn
MwZMnは分子量分布の尺度であり、この値が大きいほど分子量分布の幅は大き い。ポリエチレン系榭脂の MwZMnは限定的でないが、ポリエチレン系榭脂が超高分 子量ポリエチレン力もなる場合、その他のポリエチレン力もなる場合、又はポリェチレ ン組成物力もなる場合、 5〜300が好ましぐ 10〜100がより好ましい。 MwZMnが 5未 満だと高分子量成分が多過ぎて溶融押出が困難であり、また MwZMnが 300超だと 低分子量成分が多過ぎて微多孔膜の強度低下を招く。ポリエチレン (単独重合体又 はエチレン. α -ォレフィン共重合体)の MwZMnは、多段重合により適宜調整するこ とができる。多段重合法としては、一段目で高分子量ポリマー成分を生成し、二段目 で低分子量ポリマー成分を生成する二段重合が好ま 、。ポリエチレン組成物の場 合、 MwZMnが大き!/、ほど超高分子量ポリエチレンとその他のポリエチレンとの Mwの 差が大きぐまたその逆も真である。ポリエチレン組成物の MwZMnは、各成分の分 子量及び混合割合により適宜調整することができる。
[0027] (2)ポリエチレン系榭脂層の作用
ポリエチレン系榭脂層は、ポリオレフイン多層微多孔膜に優れたシャットダウン特性
(低いシャットダウン温度及び高いシャットダウン速度)、及び優れた機械的強度を与 える。
[0028] (B)ポリプロピレン '耐熱性榭脂混合層
(1)ポリプロピレン
ポリプロピレンの種類は特に限定されず、プロピレンの単独重合体、プロピレンと他 のォレフイン及び Z又はジォレフインとの共重合体、あるいはこれらの混合物の 、ず れでも良いが、単独重合体が好ましい。共重合体としてはランダム共重合体又はプロ ック共重合体の 、ずれも用いることができる。プロピレン以外のォレフィンとしてはェ チレン、ブテン- 1、ペンテン- 1、へキセン- 1、 4-メチルペンテン- 1、オタテン- 1、酢酸 ビュル、メタクリル酸メチル、及びスチレンが好ましい。ジォレフインの炭素数は 4〜14 が好ましい。炭素数 4〜14のジォレフインとして、例えばブタジエン、 1,5-へキサジェ ン、 1,7-ォクタジェン、 1,9-デカジエン等が挙げられる。
[0029] 共重合体中のプロピレン以外のォレフィン及びジォレフインの含有量は、ポリプロピ レンの耐熱性、耐圧縮性、耐熱収縮性等の物性を損なわない範囲であるのが好まし い。具体的には、他のォレフィン及びジォレフインの含有量は、共重合体全体を 100 モル0 /0として 10モル0 /0未満であるのが好ましい。
[0030] ポリプロピレンの質量平均分子量(Mw)は 1 X 104〜4 X 106が好ましぐ 1 X 105〜8
X 105がより好ましい。ポリプロピレンの分子量分布(MwZMn)は 1.01〜100であるの が好ましぐ 1.1〜50であるのがより好ましい。
[0031] (2)耐熱性榭脂
耐熱性榭脂は融点又はガラス転移温度 (Tg)力 S170°C以上である。耐熱性榭脂とし ては、融点力 70°C以上の結晶性榭脂 (部分的に結晶性である榭脂を含む)、及び T gが 170°C以上の非晶性榭脂が好ましい。ここで Tgは JIS K7121により測定することが できる(以下同じ)。
[0032] ポリプロピレンが耐熱性榭脂を含むと、多層微多孔膜を電池用セパレータとして用 いた場合にメルトダウン特性が向上するので、電池の高温保存特性が向上する。ま た耐熱性榭脂は、溶融混練時に球状又は回転楕円体状の微粒子としてポリプロピレ ン中で分散する。そして延伸時に、耐熱性榭脂からなる微粒子を核として、ポリプロピ レン相からなるフィブリルが開裂し、中心部に微粒子が保持されたクレーズ状の細孔 が形成される。そのため多層微多孔膜を電池用セパレータとして用いた場合の透過 性及び耐圧縮性が一層向上する。耐熱性榭脂からなる球状微粒子の粒径及び回転 楕円体状微粒子の長径は、 0.1〜15 /ζ πιが好ましぐ 0.5〜10 /ζ πιがより好ましぐ 1〜1 が特に好ましい。
[0033] 融点力 70°C未満の結晶性榭脂又は Tgが 170°C未満の非晶性榭脂を用いると、溶 融混練時にこれらの榭脂がポリプロピレン中で高分散したり、冷却時にポリプロピレン と耐熱性榭脂の凝固速度が近くなつたりしてしま ヽ、適度な径の微粒子が形成されな い。そのため榭脂微粒子を核として開裂する空隙が小さくなり、透過性及び耐圧縮性 の向上が望めない。耐熱性榭脂の融点又は Tgの上限は特に制限されないが、ポリプ ロピレンとの混練容易性の観点から 350°Cが好ま 、。耐熱性榭脂の融点又は Tgは 1 80〜260°Cであるのがより好ましい。
[0034] 耐熱性榭脂の好ましい Mwは、榭脂の種類により異なる力 一般的に 1 X 103〜1 X 1 06であり、より好ましくは 1 X 104〜7 X 105である。 Mwが 1 X 103未満の耐熱性榭脂を用 いると、ポリプロピレン中で高分散してしまい、微粒子が形成されない。一方 1 X 106超 の耐熱性榭脂を用いると、ポリプロピレンとの混練が困難になる。
[0035] 耐熱性榭脂の具体例としては、ポリエステル、ポリアミド (融点: 215〜265°C)、フッ素 榭脂、ポリカーボネート(融点: 220〜240°C)、ポリアリレンスルフイド、ポリメチルペン テン、ポリスチレン(融点: 230°C)、ポリビュルアルコール(融点: 220〜240°C)、ポリイ ミド (Tg: 280°C以上)、ポリアミドイミド (Tg: 280°C)、ポリエーテルサルフォン (Tg: 223 °C)、ポリエーテルエーテルケトン(融点: 334°C)、セルロースアセテート(融点: 220°C )、セルローストリアセテート(融点: 300°C)、ポリスルホン(Tg: 190°C)、ポリエーテルィ ミド (融点: 216°C)等が挙げられる。中でもポリエステル、ポリアミド、ポリメチルペンテ ン、フッ素榭脂、ポリカーボネート及びポリアリレンスルフイドが好ましい。耐熱性榭脂 は、単一榭脂成分力 なるものに限定されず、複数の榭脂成分力 なるものでもよい
[0036] (a)ポリエステル
ポリエステルとしては、ポリブチレンテレフタレート(PBT、融点:約 160〜230°C)、ポリ エチレンテレフタレート(PET、融点:約 230〜270°C)、ポリエチレンナフタレート(融点 : 272°C)、ポリブチレンナフタレート(融点: 245°C)等が挙げられる力 PBTが好ましい
[0037] PBTは、基本的に 1,4-ブタンジオールとテレフタル酸とからなる飽和ポリエステルで ある。但し耐熱性、耐圧縮性、耐熱収縮性等の物性を損なわない範囲で、 1,4-ブタン ジオール以外のジオール成分、又はテレフタル酸以外のカンボン酸成分を共重合成 分として含んでいてもよい。そのようなジオール成分としては、例えば、エチレングリコ ール、ジエチレングリコール、ネオペンチルグリコール、 1,4-シクロへキサンメタノーノレ 等が挙げられる。またジカルボン酸成分としては、例えば、イソフタル酸、セバシン酸 、アジピン酸、ァゼライン酸、コハク酸等が挙げられる。ただし PBTは、単一組成物か らなるものに限定されず、複数の PBT榭脂成分力もなるものでもよい。 PBTの Mwは 2 X 104以上〜 3 X 105以下であるのが特に好まし 、。
[0038] (b)ポリアミド
ポリアミドとしてはポリアミド 6 (6-ナイロン)、ポリアミド 66 (6, 6-ナイロン)、ポリアミド 12 (12-ナイロン)及びアモルファスポリアミドが好まし!/、。
[0039] (c)ポリメチルペンテン
ポリメチルペンテン(PMP)は、基本的に 4-メチル -1-ペンテン、 2-メチル -1-ペンテ ン、 2-メチル -2-ペンテン、 3-メチル -1-ペンテン及び 3-メチル -2-ペンテンのいずれ 力からなるポリオレフインである力 4-メチル -1-ペンテンの単独重合体であるのが好 ましい。ただし PMPは耐熱性、耐圧縮性、耐熱収縮性等の物性を損なわない範囲で 、メチルペンテン以外の他の α -ォレフィンを少量含有する共重合体であってもよい。 メチルペンテン以外の他の α -ォレフィンとしてはエチレン、プロピレン、ブテン- 1、へ キセン- 1、ペンテン- 1、オタテン- 1、酢酸ビニル、メタクリル酸メチル、スチレン等が好 適である。 ΡΜΡの融点は通常 230〜245°Cである。 PMPの Mwは 3 X 105以上〜 7 X 105 以下が特に好ましい。
[0040] (d)フッ素榭脂
フッ素榭脂としては、ポリフッ化ビ-リデン (PVDF、融点: 171°C)、ポリテトラフルォロ エチレン(融点: 327°C)、テトラフルォロエチレン'ペルフルォロアルキルビュルエー テル共重合体(融点: 310°C)、テトラフルォロエチレン'へキサフルォロプロピレン'パ 一フルォロ(プロピルビュルエーテル)共重合体(融点: 295°C)、テトラフルォロェチレ ン .へキサフルォロプロピレン共重合体(融点: 275°C)、エチレン'テトラフルォロェチ レン共重合体 (融点: 270°C)等が挙げられる。
[0041] フッ素榭脂としては PVDFが好ましい。 PVDFは他のォレフィンとの共重合体(フッ化 ビ-リデン共重合体)でもよ 、。フッ化ビ-リデン共重合体のフッ化ビ-リデン単位含 有率は 75質量%以上であるのが好ましぐ 90質量%以上であるのがより好ましい。フ ッ化ビ -リデンと共重合するモノマーの例としては、へキサフルォロプロピレン、テトラ フノレオ口エチレン、トリフノレオ口プロピレン、エチレン、プロピレン、イソブチレン、スチ レン、塩化ビニル、塩化ビ-リデン、ジフルォロクロロエチレン、ギ酸ビュル、酢酸ビ- ル、プロピオン酸ビュル、酪酸ビニル、アクリル酸及びその塩、メタクリル酸メチル、メ タクリル酸ァリル、アクリロニトリル、メタタリ口-トリル、 N-ブトキシメチルアクリルアミド、 酢酸ァリル、酢酸イソプロぺニル等がある。フッ化ビ-リデン共重合体としては、ポリ( へキサフルォロプロピレン-フッ化ビ-リデン)共重合体が好まし!/、。
[0042] (e)ポリカーボネート
ポリカーボネート (PC)としてはビスフエノール A系 PCが好ましい。ビスフエノール A系 PCは、(0ビスフエノール Aとジフエ-ルカーボネートを無溶媒下でエステル交換反応 させる方法 (エステル交換法)、(ii)ビスフエノール Aとホスゲンを酸結合剤及び溶媒の 存在下で脱塩重縮合反応させる方法 (ホスゲン法)、又は (iii)ビスフエノール Aをアル カリとともに溶解させた水溶液と、有機溶媒との懸濁液にホスゲンを添加し、水相と有 機溶媒相の界面で反応させる方法 (界面重縮合法) ヽずれの方法により製造され たものでもよ 、。 PCの Mwは 2 X 104以上〜 4 X 104以下が好まし!/、。
[0043] (Dポリアリレンスルフイド
ポリアリレンスルフイドとしてはポリフエ-レンスルフイド(PPS、融点: 285°C)を使用す るのが好まし 、。 PPSは線状又は分岐状の 、ずれのものでも使用することができる。
[0044] (3)無機フィラー
ポリプロピレン'耐熱性榭脂混合層は無機フィラーを含有してもよ!/ヽ。無機フィラーと しては、シリカ、アルミナ、シリカ一アルミナ、ゼォライト、マイ力、クレイ、カオリン、タル ク、炭酸カルシウム、酸ィ匕カルシウム、硫酸カルシウム、炭酸バリウム、硫酸バリウム、 炭酸マグネシウム、硫酸マグネシウム、酸化マグネシウム、珪藻土、ガラス粉末、水酸 化アルミニウム、二酸化チタン、酸化亜鉛、サチンホワイト、酸性白土等が挙げられる 。無機フイラ一は、一種のみならず複数種を併用してもよい。
[0045] 無機フィラーの粒子形状に特に制限はない。例えば球状、破砕状等の無機フイラ 一を適宜選択することができる。無機フイラ一は表面処理されたものであってもよい。 無機フィラーの表面処理剤として、例えば各種シランカップリング剤や、脂肪酸 (例え ばステアリン酸等)又はその誘導体等が挙げられる。
[0046] 耐熱性榭脂とともに無機フィラーを含有することにより、透過性が一層向上する。そ れは、無機フィラーを含有すると、ポリプロピレン力もなるフィブリルが無機フイラ一粒 子を中心として開裂することによつてもクレーズ状の空隙 (細孔)が形成され、空隙( 細孔)容積が一層増加するためであると推測される。
[0047] (4)配合割合
耐熱性榭脂の割合は、ポリプロピレン及び耐熱性榭脂の合計を 100質量%として 3 〜30質量%が好ましぐ 5〜25質量%がより好ましい。この割合を 3質量%未満とする と、空孔率と透気度とのバランスが悪くなる。この割合を 30質量%超とすると、突刺強 度、引張破断強度及び膜の平滑性が低下する。無機フィラーの割合は、ポリプロピレ ン及び耐熱性榭脂の合計 100質量%に対して、 0.1〜15質量%が好ましぐ 0.5〜10 質量%がより好ましい。
[0048] (5)ポリプロピレン '耐熱性榭脂混合層の作用
ポリプロピレン '耐熱性榭脂混合層は、ポリオレフイン多層微多孔膜に、優れた透過 性、機械的強度、耐熱収縮性、メルトダウン特性及び耐圧縮性を与える。
[0049] (C)層構成例
第一のポリオレフイン多層微多孔膜は、ポリエチレン系榭脂層 A及びポリプロピレン •耐熱性榭脂混合層 Bを、それぞれ少なくとも一層有すればよい。ポリエチレン系榭 脂層 A又はポリプロピレン '耐熱性榭脂混合層 Bを複数設ける場合、同種層同士の組 成は同じであっても、異なっていてもよい。例えば多孔質層の組合せとしては、層 AZ 層 B、層 AZ層 BZ層 A、層 BZ層 AZ層 B等が挙げられる。電池用セパレータとして用 いる場合、両表層をポリエチレン系榭脂層 Aとし、内層をポリプロピレン '耐熱性榭脂 混合層 Bとすると (例えば層 AZ層 BZ層 A等)、特にシャットダウン特性、透過性及び 機械的強度のバランスが向上する。
[0050] (D)ポリエチレン系榭脂層及びポリプロピレン '耐熱性榭脂混合層の割合
ポリエチレン系榭脂層 A及びポリプロピレン '耐熱性榭脂混合層 Bの割合は限定的 ではないが、膜厚比(層 AZ層 B)が 70Z30〜10Z90であるのが好ましぐ 60 40〜2 0Ζ80であるのがより好ましい。
[0051] [2]第二のポリオレフイン多層微多孔膜
第二のポリオレフイン多層微多孔膜は、ポリエチレン系榭脂層と、ポリプロピレン及 びアスペクト比が 2以上の無機フィラーを含有する多孔質層(以下特段の断りがない 限り、「ポリプロピレン '無機フィラー混合層」とよぶ)とを有する。
[0052] (Α)ポリエチレン系榭脂層
ポリエチレン系榭脂は、第一のポリオレフイン多層微多孔膜と同じでよいので、説明 を省略する。ポリエチレン系榭脂層の作用は第一のポリオレフイン多層微多孔膜と同 じである。
[0053] (Β)ポリプロピレン '無機フィラー混合層
(1)ポリプロピレン
ポリプロピレンは、第一のポリオレフイン多層微多孔膜と同じでよいので、説明を省 略する。
[0054] (2)無機フィラー
第二のポリオレフイン多層微多孔膜は、アスペクト比が 2以上の無機フィラーを必須 とする。ポリプロピレンにアスペクト比が 2以上の無機フィラーを添加することにより、ポ リプロピレンを含む多孔質層の空孔率、透過性、機械的強度及びメルトダウン特性が 向上する。無機フィラーのアスペクト比は 4以上が好ましぐ 8以上がより好ましい。ァ スぺタト比は、第二のポリオレフイン多層微多孔膜を製造し、得られた多層微多孔膜 を焼成し、残留した無機フィラーの顕微鏡写真を撮影し、得られた写真中の 100個以 上の無機フィラー粒子の長径及び短径を測定し、その比 (長径 Z短径)の平均値を 計算することにより求めた。
[0055] アスペクト比が 2以上の無機フイラ一としては、ガラス繊維、カーボン繊維、ドーソナ イト、マイ力、タルク、水酸ィ匕アルミニウム等が挙げられる。これらの無機フイラ一は一 種のみならず複数種を併用してもよい。これらの無機フイラ一は上記の表面処理剤に より処理されたものであってもよい。アスペクト比が 2以上の無機フィラーの円相当径( 顕微鏡法による粒子の投影面積と同じ面積を持つ円の直径)は 0.1〜100 mである のが好ましぐ 0.5〜15 μ mであるのがより好ましい。
[0056] (3)耐熱性榭脂
ポリプロピレン'無機フィラー混合層は上記耐熱性榭脂を含有してもよ!/、。
[0057] (4)配合割合
無機フィラーの含有量は、ポリプロピレン '無機フィラー混合層の榭脂成分 (ポリプロ ピレンのみ力もなる場合と、ポリプロピレン及び耐熱性榭脂の混合物力もなる場合と がある)を 100質量%として、 0.1〜15質量%が好ましぐ 0.5〜10質量%がより好ましい 。この割合を 0.1質量%未満とすると、機械的強度が不十分となる。一方 15質量%超 とすると、突刺強度が低下するだけでなぐ積層微多孔膜をスリットした時の無機フィ ラーの脱落が増加する。無機フィラーの脱落による粉発生が多いと、多層微多孔膜 製品にピンホールや黒点等の欠陥が生じる恐れがある。
[0058] ポリプロピレン'無機フィラー混合層が耐熱性榭脂を含む場合、耐熱性榭脂の割合 は、ポリプロピレン及び耐熱性榭脂の合計を 100質量%として 3〜30質量%が好ましく 、 5〜25質量%がより好ましい。
[0059] (5)ポリプロピレン '無機フィラー混合層の作用
ポリプロピレン '無機フィラー混合層は、ポリオレフイン多層微多孔膜に、優れた透 過性、機械的強度、耐熱収縮性及びメルトダウン特性を与える。
[0060] (C)層構成例
第二のポリオレフイン多層微多孔膜は、ポリエチレン系榭脂層 A'及びポリプロピレン '無機フィラー混合層 B'を、それぞれ少なくとも一層有すればよい。ポリエチレン系榭 脂層 A'又はポリプロピレン '無機フィラー混合層 B'を複数設ける場合、同種層同士の 組成は同じであっても、異なっていてもよい。例えば多孔質層の組合せとしては、層 A 'Z層 B'、層 A'Z層 B'Z層 A'、層 B'Z層 A'Z層 B'等が挙げられる。電池用セパレータ として用いる場合、両表層をポリエチレン系榭脂層 A'とし、内層をポリプロピレン '無 機フイラ一混合層 B'とすると(例えば層 A'Z層 B'Z層 A'等)、特にシャットダウン特性 、透過性及び機械的強度のバランスが向上する。
[0061] (D)ポリエチレン系榭脂層及びポリプロピレン '無機フィラー混合層の割合
ポリエチレン系榭脂層 A'及びポリプロピレン '無機フィラー混合層 B'の割合は限定 的ではないが、膜厚比(層 A'Z層 Β')が 70Z30〜10Z90であるのが好ましぐ 60/40 〜20Ζ80であるのがより好まし!/、。
[0062] [3]第一のポリオレフイン多層微多孔膜の製造方法
(Α)第一の製造方法
第一のポリオレフイン多層微多孔膜を製造する第一の方法は、 (l)(a)上記ポリェチ レン系榭脂及び成膜用溶剤を溶融混練してポリエチレン溶液を調製する工程、(b) 上記ポリプロピレン、耐熱性榭脂及び成膜用溶剤を溶融混練してポリプロピレン ·耐 熱性榭脂混合物溶液を調製する工程、 (2)ポリエチレン溶液及びポリプロピレン'耐 熱性榭脂混合物溶液をダイより同時に押出す工程、 (3)得られた押出し成形体を冷 却してゲル状積層シートを形成する工程、 (4)成膜用溶剤除去工程、及び (5)乾燥ェ 程を含む。必要に応じて、工程 (3)と (4)の間に (6)延伸工程、 (7)熱溶剤処理工程等 を設けてもよい。工程 (5)の後、(8)積層微多孔膜を延伸する工程、 (9)熱処理工程、 ( 10)熱溶剤処理工程、 (11)電離放射による架橋処理工程、 (12)親水化処理工程、 (1 3)表面被覆処理工程等を設けてもよい。
[0063] (1)ポリエチレン溶液及びポリプロピレン '耐熱性榭脂混合物溶液の調製
(a)ポリエチレン溶液の調製工程
ポリエチレン系榭脂に適当な成膜用溶剤を溶融混練し、ポリエチレン溶液を調製す る。ポリエチレン溶液には必要に応じて酸ィ匕防止剤等の各種添加剤を本発明の効果 を損なわな 、範囲で添加することができる。例えば孔形成剤として微粉珪酸を添カロ することができる。
[0064] 成膜用溶剤は室温で液体であるのが好ま 、。液体溶剤を用いることにより比較的 高倍率の延伸が可能となる。液体溶剤としては、ノナン、デカン、デカリン、ノ ラキシレ ン、ゥンデカン、ドデカン、流動パラフィン等の鎖状又は環式の脂肪族炭化水素、及 び沸点がこれらに対応する鉱油留分、並びにジブチルフタレート、ジォクチルフタレ ート等の室温では液状のフタル酸エステルが挙げられる。液体溶剤の含有量が安定 なゲル状シートを得るためには、流動パラフィンのような不揮発性の液体溶剤を用い るのが好ま 、。また溶融混練状態ではポリエチレンと混和するが室温では固体の 溶剤を液体溶剤に混合してもよい。このような固体溶剤として、ステアリルアルコール 、セリルアルコール、パラフィンワックス等が挙げられる。ただし固体溶剤のみを使用 すると、延伸むら等が発生する恐れがある。
[0065] 液体溶剤の粘度は 25°Cにおいて 30〜500 cStであるのが好ましぐ 30〜200 cStであ るのがより好ましい。 25°Cにおける粘度が 30 cSt未満では発泡し易ぐ混練が困難で ある。一方 500 cSt超では液体溶剤の除去が困難である。
[0066] ポリエチレン溶液の均一な溶融混練は特に限定されないが、二軸押出機中で行う のが好ましい。二軸押出機中での溶融混練は高濃度のポリエチレン溶液を調製する のに適する。溶融混練温度は、ポリエチレン系榭脂が上記のいずれの場合であって も、ポリエチレン系榭脂の融点 Tm + 10°C〜Tm + 100°Cとするのが好ましい。ポリエ
1 1
チレン系榭脂の融点 Tmは、ポリエチレン系榭脂が (a)超高分子量ポリエチレン、 (b)
1
超高分子量ポリエチレン以外のポリエチレン、又は (c)ポリエチレン組成物の場合、こ れらの融点であり、ポリエチレン系榭脂が (d)ポリオレフイン糸且成物の場合、上記 〜 (c)のうちポリオレフイン糸且成物が含むものの融点である(以下同じ)。上記の超高分子 量ポリエチレン、超高分子量ポリエチレン以外のポリエチレン及びポリエチレン糸且成 物は約 130〜140°Cの融点を有する。よって溶融混練温度は 140〜250°Cの範囲内で あるのが好ましぐ 170〜240°Cの範囲内であるのがより好ましい。成膜用溶剤は混練 開始前に添加しても、混練中に二軸押出機の途中から添加してもよいが、後者が好 ましい。溶融混練に当たってポリエチレン系榭脂の酸ィ匕を防止するために、酸ィ匕防 止剤を添加するのが好まし 、。
[0067] 二軸押出機のスクリュの長さ(L)と直径 (D)の比(LZD)は 20〜100の範囲が好まし ぐ 35〜70の範囲がより好ましい。 LZDを 20未満にすると、溶融混練が不十分となる 。 LZDを 100超にすると、ポリエチレン溶液の滞留時間が増大し過ぎる。二軸押出機 のシリンダ内径は 40〜80 mmであるのが好まし!/、。
[0068] ポリエチレン溶液を 100質量%として、ポリエチレン系榭脂の含有量は 10〜50質量 %であるのが好ましぐ 20〜45質量%であるのがより好ましい。ポリエチレン系榭脂が 10質量%未満では押出し成形体を形成する際にダイス出口でスゥエルやネックイン が大きくなり、押出し成形体の成形性及び自己支持性が低下する。一方ポリエチレン 系榭脂が 50質量%を超えると、押出し成形体の成形性が低下する。
[0069] (b)ポリプロピレン '耐熱性榭脂混合物溶液の調製工程
ポリプロピレン'耐熱性榭脂混合物溶液はポリプロピレン及び耐熱性榭脂に上記成 膜用溶剤を添加した後、溶融混練することにより調製する。ポリプロピレン '耐熱性榭 脂混合物溶液の調製方法は、耐熱性榭脂の種類に応じて溶融混練温度を結晶性 耐熱性榭脂の融点又は非晶性耐熱性榭脂の Tg以上とするのが好ま U、点、及び溶 液中の榭脂成分 (ポリプロピレン +耐熱性榭脂)の含有量を 10〜60質量%とするのが 好ましい点以外ポリエチレン溶液の調製方法と同じである。
[0070] ポリプロピレン '耐熱性榭脂混合物溶液中の榭脂成分の割合が 10質量%未満では ゲル状積層シートを形成する際にダイ出口でスゥエルやネックインが大きくなり、押出 し成形体の成形性及び自己支持性が低下する。溶液中の榭脂成分の割合が 60質 量%を超えると延伸後の空孔率が著しく低下する。ポリプロピレン '耐熱性榭脂混合 物溶液中の榭脂成分含有量は 20〜50質量%がより好ま 、。
[0071] 溶融混練温度を結晶性耐熱性榭脂の融点以上又は非晶性耐熱性榭脂の Tg以上 とすることにより、後段の冷却によるゲル状積層シート形成時に耐熱性榭脂がポリプ ロピレン中に微粒子状に分散する。溶融混練温度は結晶性耐熱性榭脂の融点又は 非晶性耐熱性榭脂の Tg以上〜ポリプロピレンの融点 + 100°C以下がより好ましい。ポ リプロピレンの融点は通常 155〜175°Cである。例えば耐熱性榭脂としてポリアミド (融 点: 215〜265°C)を含む場合、溶融混練温度は 215〜270°Cであるのが好ましい。耐 熱性榭脂として PBT (融点:約 160〜230°C)を含む場合、溶融混練温度は 160〜270 °Cであるのが好ましぐ 180〜270°Cであるのがより好ましい。耐熱性榭脂として PET ( 融点:約 230〜270°C)を含む場合、 230〜270°Cであるのが好ましい。
[0072] (2)押出工程
ポリエチレン溶液及びポリプロピレン.耐熱性榭脂混合物溶液を、各押出機を介し てダイから同時に押し出す。両溶液の同時押出において、両溶液を 1つのダイ内で 層状に組み合せてシート状に押し出す (ダイ内接着)場合には 1つのダイに複数の押 出機を接続し、また両溶液を別々のダイカゝらシート状に押し出して積層(ダイ外接着) する場合には複数の押出機の各々にダイを接続する。ダイ内接着の方が好ましい。
[0073] 同時押出にはフラットダイ法及びインフレーション法のいずれを用いてよい。いずれ の方法においても、ダイ内接着する場合、溶液を多層用ダイの別々のマ-ホールド に供給してダイリップ入口で層状に積層する方法 (多数マ-ホールド法)、又は溶液 を予め層状の流れにしてダイに供給する方法 (ブロック法)の 、ずれを用いてょ 、。 多数マ-ホールド法及びブロック法自体は公知であるので、その詳細な説明は省略 する。多層用のフラットダイ及びインフレーションダイとしては公知のものが使用できる 。多層用フラットダイのギャップは 0.1〜5mmの範囲内であるのが好ましい。フラットダ ィ法によりダイ外接着する場合、各ダイカゝら押し出したシート状溶液を、一対のロール 間に通すことにより圧接する。上記いずれの方法においても、ダイは押し出し時には 140〜250°Cの温度に加熱する。加熱溶液の押し出し速度は 0.2〜15 mZ分の範囲 内であるのが好ましい。ポリエチレン溶液及びポリプロピレン '耐熱性榭脂混合物溶 液の各押出量を調節することにより、ポリエチレン系榭脂層及びポリプロピレン '耐熱 性榭脂混合層の割合を調節することができる。
[0074] (3)ゲル状積層シートの形成工程 押出により得られた層状の押出し成形体を冷却することによりゲル状積層シートを 形成する。冷却は少なくともゲルィヒ温度以下まで 50°CZ分以上の速度で行うのが好 ましい。このような冷却を行うことによりポリエチレン系榭脂相及びポリプロピレン '耐熱 性榭脂混合物相が成膜用溶剤によりミクロ相分離された構造を固定ィ匕できる。冷却 は 25°C以下まで行うのが好ま 、。一般に冷却速度を遅くすると擬似細胞単位が大 きくなり、得られるゲル状積層シートの高次構造が粗くなるが、冷却速度を速くすると 密な細胞単位となる。冷却速度を 50°CZ分未満にすると結晶化度が上昇し、延伸に 適したゲル状積層シートとなりにくい。冷却方法としては冷風、冷却水等の冷媒に接 触させる方法、冷却ロールに接触させる方法等を用いることができる。
[0075] (4)成膜用溶剤除去工程
成膜用溶剤の除去 (洗浄)には洗浄溶媒を用いる。ポリエチレン系榭脂相及びポリ プロピレン '耐熱性榭脂混合物相は成膜用溶剤相と分離しているので、成膜用溶剤 を除去すると、微細な三次元網目構造を形成するフイブリルからなり、三次元的に不 規則に連通する孔 (空隙)を有する多孔質の膜が得られる。洗浄溶媒としては、例え ばペンタン、へキサン、ヘプタン等の飽和炭化水素、塩化メチレン、四塩化炭素等の 塩素化炭化水素、ジェチルエーテル、ジォキサン等のエーテル類、メチルェチルケト ン等のケトン類、三フッ化工タン, C F , C F 等の鎖状フルォロカーボン、 C H F等
6 14 7 16 5 3 7 の環状ハイド口フルォロカーボン、 C F OCH , C F OC H等のハイド口フルォロエー
4 9 3 4 9 2 5
テル、 C F OCF , C F OC F等のパーフルォロエーテル等の易揮発性溶媒が挙げら
4 9 3 4 9 2 5
れる。これらの洗浄溶媒は低い表面張力(例えば 25°Cで 24 mN/m以下)を有する。低 表面張力の洗浄溶媒を用いることにより、微多孔を形成する網状組織が洗浄後の乾 燥時に気 液界面の表面張力により収縮するのが抑制され、もって高い空孔率及び 透過性を有する積層微多孔膜が得られる。
[0076] ゲル状積層シートの洗浄は、洗浄溶媒に浸漬する方法、洗浄溶媒をシャワーする 方法、又はこれらの組合せにより行うことができる。洗浄溶媒は、膜 100質量部に対し 、 300〜30,000質量部使用するのが好ましい。洗浄温度は通常 15〜30°Cでよぐ必要 に応じて加熱洗浄すればよい。加熱洗浄の温度は 80°C以下であるのが好ましい。洗 浄溶媒による洗浄は、液体溶剤の残留量が当初の添加量の 1質量%未満になるま で行うのが好ましい。
[0077] (5)膜の乾燥工程
成膜用溶剤除去により得られた積層微多孔膜を、加熱乾燥法又は風乾法により乾 燥する。乾燥温度は、ポリエチレン系榭脂の結晶分散温度 Ted以下であるのが好ま
1
しぐ特に Tedより 5°C以上低いのが好ましい。ポリエチレン系榭脂の結晶分散温度 T
1
cdは、ポリエチレン系榭脂が上記の (a)超高分子量ポリエチレン、 (b)超高分子量ポ
1
リエチレン以外のポリエチレン、又は (c)ポリエチレン組成物の場合、これらの結晶分 散温度であり、ポリエチレン系榭脂が (d)ポリオレフイン糸且成物の場合、上記 (a)〜(c) のうちポリオレフイン糸且成物が含むものの結晶分散温度である(以下同じ)。ここで結 晶分散温度とは、 ASTM D 4065に基づいて動的粘弾性の温度特性測定により求め られる値を言う。上記の超高分子量ポリエチレン、超高分子量ポリエチレン以外のポ リエチレン及びポリエチレン組成物は約 90〜100°Cの結晶分散温度を有する。
[0078] 乾燥は、積層微多孔膜を 100質量% (乾燥重量)として、残存洗浄溶媒が 5質量% 以下になるまで行うのが好ましぐ 3質量%以下になるまで行うのがより好ましい。乾 燥が不十分であると、後段で再延伸工程や熱処理工程を行った場合に積層微多孔 膜の空孔率が低下し、透過性が悪ィ匕するので好ましくな!/、。
[0079] (6)延伸工程
洗浄前のゲル状積層シートを延伸するのが好ましい。ゲル状積層シートは、加熱後 、テンター法、ロール法、インフレーション法、圧延法又はこれらの方法の組合せによ り所定の倍率で延伸するのが好ま ヽ。ゲル状積層シートは成膜用溶剤を含むので 、均一に延伸できる。延伸により機械的強度が向上するとともに、細孔が拡大するの で、電池用セパレータとして用いる場合に特に好ましい。延伸は一軸延伸でも二軸 延伸でもよいが、二軸延伸が好ましい。二軸延伸の場合、同時二軸延伸、逐次延伸 又は多段延伸(例えば同時二軸延伸及び逐次延伸の組合せ)の 、ずれでもよ!、が、 特に同時二軸延伸が好ま U、。
[0080] 延伸倍率は、一軸延伸の場合、 2倍以上が好ましぐ 3〜30倍がより好ましい。二軸 延伸ではいずれの方向でも少なくとも 3倍以上とし、面積倍率で 9倍以上とするのが 好ましぐ面積倍率で 25倍以上とするのがより好ましい。面積倍率が 9倍未満では延 伸が不十分であり、高弾性及び高強度の多層微多孔膜が得られない。一方面積倍 率が 400倍を超えると、延伸装置、延伸操作等の点で制約が生じる。
[0081] 延伸温度は、ポリエチレン系榭脂の融点 Tm + 10°C以下にするのが好ましぐ上記
1
結晶分散温度 Ted以上〜上記融点 Tm未満の範囲内にするのがより好ましい。この
1 1
延伸温度が融点 Tm + 10°Cを超えるとポリエチレン系榭脂が溶融し、延伸による分子
1
鎖の配向ができない。一方結晶分散温度 Ted未満ではポリエチレン系榭脂の軟ィ匕
1
が不十分で、延伸により破膜しやすぐ高倍率の延伸ができない。上記のようにポリエ チレン系榭脂は、約 90〜100°Cの結晶分散温度を有する。よって延伸温度を通常 90 〜140°Cの範囲内にし、好ましくは 100〜130°Cの範囲内にする。
[0082] 以上のような延伸によりポリエチレン結晶ラメラ層間の開裂が起こり、ポリエチレン相
(超高分子量ポリエチレン、それ以外のポリエチレン又はポリエチレン組成物)が微細 化し、多数のフィブリルが形成される。得られるフィブリルは三次元網目構造 (三次元 的に不規則に連結したネットワーク構造)を形成する。またポリプロピレン '耐熱性榭 脂混合物を含む層では、耐熱性榭脂からなる微粒子を核として、ポリプロピレンから なるフィブリルが開裂し、中心部に微粒子が保持されたクレーズ状の細孔が形成され る。
[0083] 所望の物性に応じて、膜厚方向に温度分布を設けて延伸してもよぐこれにより一 層機械的強度に優れた多層微多孔膜が得られる。その方法は、具体的には、特許 第 3347854号に記載されて ヽる。
[0084] (7)熱溶剤処理工程
ゲル状積層シートを熱溶剤に接触させる処理を施してもょ ヽ。熱溶剤処理により、 延伸により形成されたフイブリルが葉脈状になり、かつその幹となる繊維が比較的太 くなる。そのため細孔径が大きぐ強度及び透過性に優れた積層微多孔膜が得られ る。ここで「葉脈状のフィブリル」とは、フィブリルが太い幹の繊維とその外方に連なる 細い繊維とからなり、細い繊維が複雑な網状構造を形成している状態をいう。熱溶剤 処理方法は、具体的には、 WO 2000Z20493に記載されている。
[0085] (8)積層微多孔膜を延伸する工程
乾燥後の積層微多孔膜を、少なくとも一軸方向に延伸してもよい。積層微多孔膜の 延伸は、膜を加熱しながら、上記と同様にテンター法等により行うことができる。この 延伸は一軸延伸でも二軸延伸でもよい。二軸延伸の場合、同時二軸延伸又は逐次 延伸の 、ずれでもよ 、が、同時二軸延伸が好まし 、。
[0086] 延伸温度は、上記融点 Tm以下にするのが好ましぐ上記結晶分散温度 Ted〜融
1 1 点 Tmの範囲内にするのがより好ましい。延伸温度が融点 Tmを超えると耐圧縮性が
1 1
低下したり、横手方向(TD)に延伸した場合にシート幅方向において物性 (特に透気 度)のばらつきが大きくなつたりする。一方延伸温度が結晶分散温度 Ted未満ではポ
1 リエチレン系榭脂の軟ィ匕が不十分で、延伸において破膜しやすぐ均一に延伸でき ない。具体的には、延伸温度を通常 90〜135°Cの範囲内にし、好ましくは 95〜130°C の範囲内にする。
[0087] 延伸の一軸方向への倍率は 1.1〜2.5倍にするのが好ましぐこれにより積層微多孔 膜の細孔径が一層大きくなるとともに耐圧縮性が一層向上する。例えば一軸延伸の 場合、長手方向(MD)又は TD方向に 1.1〜2.5倍にする。二軸延伸の場合、 MD方向 及び TD方向に各々 1.1〜2.5倍にする。二軸延伸の場合、 MD方向及び TD方向の各 延伸倍率は 1.1〜2.5倍である限り、 MD方向と TD方向で互いに異なってもよいが、同 じであるのが好ましい。この倍率が 1.1倍未満だと、耐圧縮性が十分に向上しない。 一方この倍率を 2.5倍超とすると、破膜する可能性が高くなるとともに耐熱収縮性が低 下するので、好ましくない。この延伸の倍率は 1.1〜2.0倍にするのがより好ましい。
[0088] (9)熱処理工程
乾燥後の積層微多孔膜を熱処理するのが好ましい。熱処理によって結晶が安定化 し、ラメラ層が均一化される。熱処理方法としては、熱固定処理及び Z又は熱緩和処 理を用いればよい。熱固定処理は、テンター方式、ロール方式又は圧延方式により 行うのがより好ましい。熱固定処理は上記融点 Tm + 10°C以下、好ましくは上記結晶
1
分散温度 Ted以上〜融点 Tm以下の温度範囲内で行う。
1 1
[0089] 熱緩和処理は、上記方式の他に、ベルトコンベア又はエアフローティング式加熱炉 を用いて行ってもよい。熱緩和処理は上記融点 Tm以下の温度、好ましくは 60°C以
1
上〜上記融点 Tm— 10°C以下の温度範囲内で行う。以上のような熱緩和処理により
1
、透過性の良好な高強度の積層微多孔膜が得られる。また熱固定処理及び熱緩和 処理を多数組み合せて行ってもょ ヽ。
[0090] (10)膜の架橋処理工程
乾燥後の積層微多孔膜に対して、 α線、 |8線、 γ線、電子線等の電離放射線の照 射により架橋処理を施してもよい。電子線の照射の場合、 0.1〜100 Mradの電子線量 が好ましぐ 100〜300 kVの加速電圧が好ましい。架橋処理により積層微多孔膜のメ ルトダウン温度が上昇する。
[0091] (11)親水化処理工程
乾燥後の積層微多孔膜に親水化処理を施してもよい。親水化処理は、モノマーグ ラフト、界面活性剤処理、コロナ放電等により行うことができる。モノマーグラフトは架 橋処理後に行うのが好ましい。
[0092] 界面活性剤処理の場合、ノニオン系界面活性剤、カチオン系界面活性剤、ァニォ ン系界面活性剤又は両イオン系界面活性剤のいずれも使用できるが、ノ-オン系界 面活性剤が好ましい。界面活性剤を水又はメタノール、エタノール、イソプロピルアル コール等の低級アルコールに溶解してなる溶液中に積層微多孔膜を浸漬する力、積 層微多孔膜にドクターブレード法により溶液を塗布する。
[0093] (12)表面被覆処理工程
乾燥後の積層微多孔膜は、ポリプロピレン多孔質体;ポリビ-リデンフルオライド、ポ リテトラフルォロエチレン等のフッ素系榭脂多孔質体;ポリイミド、ポリフエ-レンスルフ イド等の多孔質体等で表面を被覆することにより、電池用セパレータとして用いた場 合のメルトダウン特性が一層向上する。被覆層用のポリプロピレンは、 Mwが 5,000〜5 00,000の範囲内が好ましぐ 25°Cの温度における 100 gのトルエンに対する溶解量が 0.5 g以上が好ましい。このポリプロピレンは、ラセミダイアド (連なった 2つの単量体単 位が互いに鏡像異性の関係にある構成単位)の分率が 0.12〜0.88であるのがより好 ましい。表面被覆層は、例えば上記被覆層用の榭脂とその良溶媒とを含む混合液を 積層微多孔膜に塗布し、良溶媒を除去して榭脂濃度を上げることにより、榭脂相と良 溶媒相とに分離した構造とした後、良溶媒の残部を除去することにより形成できる。
[0094] (B)第二の製造方法
第一のポリオレフイン多層微多孔膜を製造する第二の方法は、 (1)第一の製造方法 と同様にしてポリエチレン溶液及びポリプロピレン'耐熱性榭脂混合物溶液を調製す る工程、 (2)ポリエチレン溶液及びポリプロピレン '耐熱性榭脂混合物溶液を個別に ダイより押し出す工程、 (3)得られた各押出し成形体を冷却してゲル状シートを形成 する工程、 (4)各ゲル状シートを積層する工程、 (5)成膜用溶剤除去工程、及び (6) 乾燥工程を有する。必要に応じて、工程 (3)と (4)の間に、 (7)延伸工程、 (8)熱溶剤処 理工程等を設けてもよい。工程 (4)と (5)の間に、 (9)延伸工程、 (10)熱溶剤処理工程 等を設けてもよい。工程 (6)の後、(11)積層微多孔膜を延伸する工程、 (12)熱処理ェ 程、 (13)熱溶剤処理工程、 (14)電離放射による架橋処理工程、 (15)親水化処理工 程、(16)表面被覆処理工程等を設けてもよい。
[0095] 上記の各工程のうち、工程 (1)は第一の方法と同じでよぐ工程 (2)はポリエチレン溶 液及びポリプロピレン '耐熱性榭脂混合物溶液を個別にダイより押し出す以外第一の 方法と同じでよぐ工程 (3)は個別のゲル状シートを形成する以外第一の方法と同じで よぐ工程 (5)及び (6)は第一の方法と同じでよい。
[0096] 以下ポリエチレン系榭脂及び成膜用溶剤からなるゲル状シート Aと、ポリプロピレン' 耐熱性榭脂混合物及び成膜用溶剤からなるゲル状シート Bとを積層する工程 (4)につ いて説明する。積層方法は特に限定されないが、熱積層法が好ましい。熱積層法と しては、ヒートシール法、インパルスシール法、超音波積層法等が挙げられるが、ヒー トシール法が好ましい。ヒートシール法としては熱ロールを用いたものが好ましい。熱 ロール法では、一対の加熱ロール間、又は加熱ロールと受台の間に、重ねたゲル状 シート A及び Bを通し、ヒートシールする。ヒートシール時の温度及び圧力は、ゲル状 シートが十分に接着し、かつ得られる多層微多孔膜の特性が低下しない限り特に制 限されない。ヒートシール温度は、例えば 90〜135°Cとし、好ましくは 90〜115°Cとする 。ヒートシール圧力は 0.01〜50 MPaが好ましい。ゲル状シート A及び Bの各厚さを調 節することにより、ポリエチレン系榭脂層 A及びポリプロピレン '耐熱性榭脂混合物層 Bの割合を調節することができる。
[0097] 工程 (3)と (4)の間の延伸工程 (7)及び熱溶剤処理工程 (8)は、ゲル状シート A及び B のいずれかに施す以外第一の方法と同じでよい。ただし延伸工程 (7)では、延伸温度 は、ゲル状シート Aを延伸する場合、上記融点 Tm + 10°C以下が好ましぐ結晶分散 温度 Ted以上〜融点 Tm未満の範囲内がより好ましい。ゲル状シート Bを延伸する場
1 1
合、ポリプロピレンの融点 Tm + 10°C以下が好ましぐポリプロピレンの結晶分散温度
2
Ted以上〜融点 Tm未満の範囲内がより好ましい。ポリプロピレンの結晶分散温度は
2 2
通常約 100〜110°Cである。
[0098] 工程 (4)と (5)の間の延伸工程 (9)及び熱溶剤処理工程 (10)は、第一の方法と同じで よい。工程 (6)の後の積層微多孔膜の延伸工程 (11)、熱処理工程 (12)、熱溶剤処理ェ 程 (13)、電離放射による架橋処理工程 (14)、親水化処理工程 (15)、及び表面被覆処 理工程 (16)は 、ずれも第一の方法と同じでよ!、。
[0099] (C)第三の製造方法
第一のポリオレフイン多層微多孔膜を製造する第三の方法は、 (1)第一の製造方法 と同様にしてポリエチレン溶液及びポリプロピレン'耐熱性榭脂混合物溶液を調製す る工程、 (2)ポリエチレン溶液及びポリプロピレン '耐熱性榭脂混合物溶液を個別に ダイより押し出す工程、 (3)得られた各押出し成形体を冷却してゲル状シートを形成 する工程、 (4)各ゲル状シートから成膜用溶剤を除去する工程、 (5)乾燥工程、並び に (6)得られたポリエチレン微多孔膜及びポリプロピレン微多孔膜を積層する工程を 有する。必要に応じて、工程 (3)と (4)の間に、 (7)延伸工程、 (8)熱溶剤処理工程等を 設けてもよい。工程 (5)と (6)の間に(9)微多孔膜を延伸する工程、 (10)熱処理工程、 ( 11)熱溶剤処理工程等を設けてもよい。工程 (6)の後、(12)積層微多孔膜を延伸する 工程、 (13)熱処理工程、 (14)熱溶剤処理工程、 (15)電離放射による架橋処理工程、 (16)親水化処理工程、 (17)表面被覆処理工程等を設けてもよい。
[0100] 上記の各工程のうち、工程 (1)は第一の方法と同じでよぐ工程 (2)はポリエチレン溶 液及びポリプロピレン '耐熱性榭脂混合物溶液を個別にダイより押し出す以外第一の 方法と同じでよぐ工程 (3)は個別のゲル状シートを形成する以外第一の方法と同じで よぐ工程 (4)は個別のゲル状シートから成膜用溶剤を除去する以外第一の方法と同 じでよぐ工程 (5)は個別の微多孔膜を乾燥する以外第一の方法と同じでよい。
[0101] ポリエチレン微多孔膜及びポリプロピレン微多孔膜を積層する工程 (6)について説 明する。積層方法は特に限定されないが、第二の方法でのゲル状シートを積層する 場合と同様に熱積層法が好ましぐヒートシール法が好ましい。ヒートシール温度は、 例えば 90〜135°Cとし、好ましくは 90〜115°Cとする。ヒートシール圧力は 0.01〜50 M Paが好ましい。
[0102] 工程 (3)と (4)の間の延伸工程 (7)及び熱溶剤処理工程 (8)は、第二の方法と同じでよ い。工程 (5)と (6)の間の微多孔膜を延伸する工程 (9)、熱処理工程 (10)及び熱溶剤処 理工程 (11)は、ポリエチレン微多孔膜及びポリプロピレン微多孔膜のいずれかに施す 以外第一の方法と同じでよい。ただし、工程 (5)と (6)の間の微多孔膜を延伸する工程 ( 9)では、延伸温度は、ポリエチレン微多孔膜を延伸する場合、上記融点 Tm以下が
1 好ましぐ上記結晶分散温度 Ted〜融点 Tmの範囲内がより好ましい。ポリプロピレン
1 1
微多孔膜を延伸する場合、上記融点 Tm以下が好ましぐ上記結晶分散温度 Ted〜
2 2 融点 Tmの範囲内がより好ましい。
2
[0103] 工程 (5)と (6)の間の熱処理工程 (10)では、ポリエチレン微多孔膜を熱固定処理する 場合、上記融点 Tm + 10°C以下、好ましくは上記結晶分散温度 Ted以上〜融点 Tm
1 1 1 以下の温度範囲内で行うのが好ましい。ポリエチレン微多孔膜を熱緩和処理する場 合、上記融点 Tm以下、好ましくは 60°C以上〜上記融点 Tm — 10°C以下の温度範囲
1 1
内で行うのが好ましい。ポリプロピレン微多孔膜を熱固定処理する場合、上記融点 τ m + 10°C以下、好ましくは上記結晶分散温度 Ted以上〜融点 Tm以下の温度範囲
2 2 2
内で行うのが好ましい。ポリプロピレン微多孔膜を熱緩和処理する場合、上記融点 T m以下、好ましくは 60°C以上〜上記融点 Tm — 10°C以下の温度範囲内で行うのが好
2 2
ましい。
[0104] 工程 (6)の後の積層微多孔膜を延伸する工程 (12)、熱処理工程 (13)、熱溶剤処理ェ 程 (14)、電離放射による架橋処理工程 (15)、親水化処理工程 (16)、及び表面被覆処 理工程 (17)はいずれも第一の方法と同じでよい。
[0105] [4]第二のポリオレフイン多層微多孔膜の製造方法
(A)第一の製造方法
第二のポリオレフイン多層微多孔膜を製造する第一の方法は、(1)(0上記ポリェチ レン系榭脂及び成膜用溶剤を溶融混練してポリエチレン溶液を調製する工程、 GO 上記ポリプロピレン及び成膜用溶剤の溶融混練物にアスペクト比が 2以上の無機フィ ラーを分散させて無機フィラー含有ポリプロピレン溶液を調製する工程、 (2)ポリェチ レン溶液及び無機フィラー含有ポリプロピレン溶液をダイより同時に押出す工程、 (3) 得られた押出し成形体を冷却してゲル状積層シートを形成する工程、 (4)成膜用溶 剤除去工程、及び (5)乾燥工程を含む。必要に応じて、工程 (3)と (4)の間に (6)延伸 工程、 (7)熱溶剤処理工程等を設けてもよい。工程 (5)の後、 (8)積層微多孔膜を延伸 する工程、 (9)熱処理工程、 (10)熱溶剤処理工程、 (11)電離放射による架橋処理ェ 程、(12)親水化処理工程、 (13)表面被覆処理工程等を設けてもよい。
[0106] 上記の各工程のうち、工程 (l)GO以外は、第一のポリオレフイン多層微多孔膜を製 造する第一の方法と同じでよいので、説明を省略する。以下無機フィラー含有ポリプ ロピレン溶液を調製する工程 (lXii)につ 、て説明する。無機フィラー含有ポリプロピレ ン溶液は、ポリプロピレン及び成膜用溶剤の溶融混練物にアスペクト比が 2以上の無 機フイラ一を分散させることにより調製する。無機フィラー含有ポリプロピレン溶液の 調製方法は、溶融混練温度をポリプロピレンの融点 Tm +90°Cとするのが好ま
2〜Tm
2
しい点、溶液中のポリプロピレン含有量を 10〜50質量%とするのが好ましい点以外、 ポリエチレン溶液の調製方法と同じである。溶液中のポリプロピレン含有量は 20〜45 質量0 /0がより好ましい。無機フイラ一はポリプロピレンに予めドライブレンドしておくの が好ましい。
[0107] (B)第二の製造方法
第二のポリオレフイン多層微多孔膜を製造する第二の方法は、 (1)第一の製造方法 と同様にしてポリエチレン溶液及び無機フィラー含有ポリプロピレン溶液を調製する 工程、 (2)ポリエチレン溶液及び無機フィラー含有ポリプロピレン溶液を個別にダイよ り押し出す工程、 (3)得られた各押出し成形体を冷却してゲル状シートを形成するェ 程、(4)各ゲル状シートを積層する工程、 (5)成膜用溶剤除去工程、及び (6)乾燥ェ 程を有する。必要に応じて、工程 (3)と (4)の間に、 (7)延伸工程、 (8)熱溶剤処理工程 等を設けてもよい。工程 (4)と (5)の間に、 (9)延伸工程、 (10)熱溶剤処理工程等を設 けてもよい。工程 (6)の後、(11)積層微多孔膜を延伸する工程、 (12)熱処理工程、 (13 )熱溶剤処理工程、 (14)電離放射による架橋処理工程、 (15)親水化処理工程、 (16) 表面被覆処理工程等を設けてもょ ヽ。
[0108] 工程 (2)は、ポリプロピレン '耐熱性榭脂混合物溶液に代えて無機フィラー含有ポリ プロピレン溶液を用いる以外、第一のポリオレフイン多層微多孔膜を製造する第二の 方法と同じでよい。工程 (3)〜(16)は、第一のポリオレフイン多層微多孔膜を製造する 第二の方法と同じでよいので、説明を省略する。
[0109] (C)第三の製造方法
第二のポリオレフイン多層微多孔膜を製造する第三の方法は、 (1)第一の製造方法 と同様にしてポリエチレン溶液及び無機フィラー含有ポリプロピレン溶液を調製する 工程、 (2)ポリエチレン溶液及び無機フィラー含有ポリプロピレン溶液を個別にダイよ り押し出す工程、 (3)得られた各押出し成形体を冷却してゲル状シートを形成するェ 程、(4)各ゲル状シートから成膜用溶剤を除去する工程、 (5)乾燥工程、並びに (6)得 られたポリエチレン微多孔膜及びポリプロピレン微多孔膜を積層する工程を有する。 必要に応じて、工程 (3)と (4)の間に、 (7)延伸工程、 (8)熱溶剤処理工程等を設けても よい。工程 (5)と (6)の間に(9)微多孔膜を延伸する工程、 (10)熱処理工程、 (11)熱溶 剤処理工程等を設けてもよい。工程 (6)の後、(12)積層微多孔膜を延伸する工程、 (1 3)熱処理工程、 (14)熱溶剤処理工程、 (15)電離放射による架橋処理工程、 (16)親 水化処理工程、 (17)表面被覆処理工程等を設けてもよい。
[0110] 工程 (2)は、ポリプロピレン '耐熱性榭脂混合物溶液に代えて無機フィラー含有ポリ プロピレン溶液を用いる以外、第一のポリオレフイン多層微多孔膜を製造する第三の 方法と同じでよい。工程 (3)〜(17)は、第一のポリオレフイン多層微多孔膜を製造する 第三の方法と同じでよいので、説明を省略する。
[0111] [5]ポリオレフイン多層微多孔膜の物性
本発明の好ましい実施態様による第一及び第二のポリオレフイン多層微多孔膜は 次の物性を有する。
[0112] (a) 25〜80%の空孔率
空孔率が 25%未満では、ポリオレフイン多層微多孔膜は良好な透気度を有さな!/、。 一方 80%を超えていると、多層微多孔膜を電池セパレータとして用いた場合の強度 が不十分であり、電極が短絡する危険が大きい。
[0113] (b) 20〜400秒 Z100 cm3の透気度(膜厚 20 μ m換算)
透気度が 20〜400秒 Z100 cm3であると、ポリオレフイン多層微多孔膜を電池用セパ レータとして用いたとき、電池の容量が大きぐ電池のサイクル特性も良好である。透 気度が 400秒 Z100 cm3を超えると、電池の容量が小さくなる。一方透気度が 20秒 Z1 00 cm3未満では電池内部の温度上昇時にシャットダウンが十分に行われな 、おそれ がある。
[0114] (c) 3,000 mN/20 μ m以上の突刺強度
突刺強度が 3,000 πιΝΖ20 /ζ πι未満では、ポリオレフイン多層微多孔膜を電池用セ パレータとして電池に組み込んだ場合に短絡が発生する恐れがある。突刺強度は 3, 500 mN/20 μ m以上が好ましい。
[0115] (d) 80,000 kPa以上の引張破断強度
引張破断強度が長手方向(MD)及び横手方向(TD)の
Figure imgf000030_0001
、ても 80,000 k Pa以上であると、電池用セパレータとして用いたときに破膜の心配がない。引張破断 強度は MD方向及び TD方向のいずれにおいても 100,000 kPa以上であるのが好まし い。
[0116] (e) 100%以上の引張破断伸度
引張破断伸度が長手方向(MD)及び横手方向(TD)の 、ずれにぉ 、ても 100%以 上であると、電池用セパレータとして用いたときに破膜の心配がな 、。
[0117] (D 10%以下の熱収縮率
105°Cに 8時間暴露した後の熱収縮率が長手方向(MD)及び横手方向(TD)ともに 1 0%以下である。熱収縮率が 10%を超えると、ポリオレフイン多層微多孔膜を電池用 セパレータとして用いた場合、電池の発熱によりセパレータが収縮し、その端部で短 絡が発生する可能性が高くなる。熱収縮率は MD方向及び TD方向ともに 8%以下で あるのが好ましい。
[0118] (g) 140°C以下のシャットダウン温度
シャットダウン温度が 140°Cを超えると、多層微多孔膜をリチウム電池用セパレータと して用いた場合に、過熱時の遮断応答性が低下する。
[0119] (h) 160°C以上のメルトダウン温度
メルトダウン温度は好ましくは 160〜190°Cである。
[0120] 特に第一のポリオレフイン多層微多孔膜は次の物性も有する。 [0121] (i) 20%以上の加熱圧縮後膜厚変化率
5MPa (51 kgfZcm2)の圧力下、 90°Cで 5分間加熱圧縮した後の膜厚変化率は、圧 縮前の膜厚を 100%として 20%以上である。膜厚変化率が 20%以上であると、微多孔 膜を電池セパレータとして用いた場合に、充電時の電極の膨張を吸収でき、電極に 圧迫されても透過性の変化が小さ 、。この膜厚変化率は 25%以上が好ま 、。
[0122] (j) 700 sec/100 cm3以下の到達透気度
上記条件で加熱圧縮した後の到達透気度 (ガーレー値)は 700 sec/100 cm3/20 μ m以下である。到達透気度が 700 sec/100 cm3/20 μ m以下であると、電池セパレ ータとして用いた場合に、電池容量が大きぐ電池のサイクル特性も良好である。到 達透気度は 600 sec/100 cm3/20 μ m以下であるのが好ましい。
[0123] [6]電池用セパレータ
上記ポリオレフイン多層微多孔膜からなる電池用セパレータは、電池の種類に応じ て適宜選択しうる力 5〜50 /ζ πιの膜厚を有するが好ましぐ 10〜35 mの膜厚を有 するのがより好ましい。
実施例
[0124] 本発明を以下の実施例によりさらに詳細に説明する力 本発明はこれらの例に限 定されるものではない。
[0125] 実施例 1
(1)ポリエチレン溶液の調製
質量平均分子量(Mw)力 X 106の超高分子量ポリエチレン(UHMWPE) 25質量% 、及び Mw力 ¾.5 X 105の高密度ポリエチレン(HDPE) 75質量0 /0力もなるポリエチレン(P E)組成物 100質量部に、テトラキス [メチレン- 3-(3,5-ジターシャリーブチル- 4-ヒドロキ シフエ-ル) -プロピオネート]メタン 0.2質量部をドライブレンドした。 UHMWPE及び HD PEからなる PE組成物にっ 、て測定した融点は 135°Cであり、結晶分散温度は 90°Cで あった。得られた混合物 30質量部を二軸押出機(内径 58 mm, L/D=42,強混練タ イブ)に投入し、二軸押出機のサイドフィーダ一力も流動パラフィン [35 cSt (40°C) ] 70 質量部を供給し、 230°C及び 250 rpmの条件で溶融混練して、ポリエチレン溶液を調 製した。 [0126] (2)ポリプロピレン '耐熱性榭脂混合物溶液の調製
Mw力 .3 X 105のポリプロピレン(PP) 90質量0 /0、及び Mw力 1.1 X 104のポリアミド 6 (P
A6) 10質量%からなる混合物 100質量部に、上記酸化防止剤 0.2質量部をドライブレ ンドした。得られた混合物 30質量部を二軸押出機に投入し、二軸押出機のサイドフィ ーダ一から流動パラフィン 70質量部を供給し、 230°C及び 250 rpmの条件で溶融混練 して、ポリプロピレン'耐熱性榭脂混合物溶液を調製した。
[0127] UHMWPE, HDPE及び PPの Mwは以下の条件でゲルパーミエーシヨンクロマトグラフ ィー(GPC)法により求めた (以下同じ)。
•測定装置: Waters Corporation製 GPC- 150C
•カラム:昭和電工株式会社製 Shodex UT806M
•カラム温度: 135°C
•溶媒 (移動相): 0-ジクロルベンゼン
•溶媒流速: l.O mlZ分
•試料濃度: 0.1質量% (溶解条件: 135°C/lh)
•インジェクション量: 500
'恢出¾:: Watersし orporation製アイファレンンヤノレリフフクトメ ~~タ' ~~
•検量線:単分散ポリスチレン標準試料を用いて得られた検量線から、所定の換算定 数を用いて作成した。
[0128] (3)成膜
得られたポリエチレン溶液 A及びポリプロピレン ·耐熱性榭脂混合物溶液 Bを、各二 軸押出機から三層用 Tダイに供給し、溶液 AZ溶液 BZ溶液 Aの順で積層した成形体 となるように押し出した。押し出した成形体を、 18°Cに温調した冷却ロールで引き取り ながら冷却し、ゲル状三層シートを形成した。得られたゲル状三層シートを、テンター 延伸機により 115°Cで長手方向(MD)及び横手方向(TD)ともに 5倍となるように同時 二軸延伸した。延伸ゲル状三層シートを枠板 [サイズ: 20 cm X 20 cm、アルミニウム製 ]に固定し、 25°Cに温調した塩化メチレンの洗浄槽中に浸漬し、 100 rpmで 3分間摇 動させながら洗浄し、流動パラフィンを除去した。洗浄した膜を室温で風乾し、テンタ 一に固定し、 125°Cで 10分間熱固定処理することによりポリオレフイン三層微多孔膜 を作製した (層厚比: PE組成物層 ΖΡΡ·耐熱性榭脂混合物層 ZPE組成物層 = 20/ 60/20) o
[0129] 実施例 2
ポリアミド 6の代わりに Mwが 3.8 X 104のポリブチレンテレフタレート(PBT)を用いた以 外実施例 1と同様にして、ポリオレフイン三層微多孔膜を作製した。
[0130] 実施例 3
ポリアミド 6の代わりに Mw力 3.5 X 104のポリエチレンテレフタレート(PET)を用いた以 外実施例 1と同様にして、ポリオレフイン三層微多孔膜を作製した。
[0131] 実施例 4
(1)ポリエチレン溶液の調製
溶融混練温度を 210°Cとした以外実施例 1と同様にして、ポリエチレン溶液を調製し た。
[0132] (2)無機フィラー含有ポリプロピレン溶液の調製
Mw力 .3 X 105のポリプロピレン(PP) 90質量部と、ガラス繊維 (GF)のチョップドストラ ンド (単繊維径 5 μ m、カット長 lmm、旭ファイバーグラス株式会社製) 10質量部とから なる混合物に、上記酸ィ匕防止剤 0.2質量部をドライブレンドした。得られた混合物 30 質量部を二軸押出機に投入し、二軸押出機のサイドフィーダ一力 流動パラフィン 70 質量部を供給し、 210°C及び 250 rpmの条件で溶融混練して、無機フィラー含有ポリ プロピレン溶液を調製した。
[0133] (3)成膜
得られたポリエチレン溶液 A'及び無機フィラー含有ポリプロピレン溶液 B'を、各二軸 押出機から三層用 Tダイに供給し、溶液 A'Z溶液 B'Z溶液 A'の順で積層した成形体 となるように押し出した。得られた押し出し成形体から、各々実施例 1と同様にしてゲ ル状三層シートを形成し、同時二軸延伸し、洗浄し、風乾し、熱固定処理することに よりポリオレフイン三層微多孔膜を作製した (層厚比: PE組成物層/無機フィラー含 有 PP層 ZPE組成物層 = 25Z50Z25)。
[0134] (4)無機フィラーのアスペクト比
得られたポリオレフイン三層微多孔膜を焼成し、残留したガラス繊維の顕微鏡写真 を撮影し、得られた写真中の 100個の粒子の長径及び短径を測定し、その比 (長径 Z短径)の平均値を計算することにより求めたアスペクト比は 40であった。
[0135] 実施例 5
GFチョップドストランドの代わりにマイ力 (製品名: A-ll、株式会社山口雲母工業所 製)を用い、無機フィラー含有ポリプロピレン溶液中の混合物(PP+マイ力)の濃度を 27質量%とした以外実施例 4と同様にして、ポリオレフイン三層微多孔膜を作製した。 上記と同様にして求めたマイ力のアスペクト比は 30であった。
[0136] 実施例 6
GFチョップドストランドの代わりにタルク (製品名:ハイミクロン HE5、竹原化学工業 株式会社製)を用い、無機フィラー含有ポリプロピレン溶液中の混合物 (PP+タルク) の濃度を 27質量%とした以外実施例 4と同様にして、ポリオレフイン三層微多孔膜を 作製した。上記と同様にして求めたタルクのアスペクト比は 20であった。
[0137] 比較例 ί
実施例 1と同様にしてポリエチレン溶液を調製した。ポリプロピレンのみを用いた以 外実施例 1と同様にして、耐熱性榭脂を含まないポリプロピレン溶液を調製した。得ら れたポリエチレン溶液及びポリプロピレン溶液を用いた以外実施例 1と同様にしてポ リオレフイン三層微多孔膜を作製した。
[0138] 比較例 2
ポリエチレン溶液のみを用いて成膜した以外実施例 1と同様にして、ポリエチレン微 多孔膜を作製した。
[0139] 比較例 3
GFチョップドストランドの代わりに炭酸カルシウム (CaCO ) (製品名:サンライト、竹
3
原化学工業株式会社製)を用い、無機フィラー含有ポリプロピレン溶液中の混合物(
PP+CaCO )の濃度を 27質量%とした以外実施例 4と同様にして、ポリオレフイン三
3
層微多孔膜を作製した。上記と同様にして求めた炭酸カルシウムのアスペクト比は 1. 1であった。
[0140] 実施例 1〜6及び比較例 1〜3で得られたポリオレフイン (三層)微多孔膜の物性を 以下の方法により測定した。結果を表 1〜3に示す。 [0141] (1)平均膜厚 m)
多層微多孔膜の 30 cmの幅にわたって 5mmの長手方向間隔で接触厚み計により膜 厚を測定し、膜厚の測定値を平均した。
[0142] (2)透気度(sec/100 cm3/20
膜厚 Tの多層微多孔膜に対して JIS P8117に準拠して測定した透気度 Pを、式: P
1 1 2
= (P X 20) /Tにより、膜厚を 20 mとしたときの透気度 Ρに換算した。
1 1 2
[0143] (3)空孔率(%)
質量法により測定した。
[0144] (4)突刺強度 (mN/20 μ m)
先端が球面(曲率半径 R: 0.5 mm)の直径 lmmの針で、膜厚 Tの多層微多孔膜を 2
1
mmZ秒の速度で突刺したときの最大荷重を測定した。最大荷重の測定値 L
1を、式:
L = (L X 20) /Tにより、膜厚を 20 mとしたときの最大荷重 Lに換算し、突刺強度
2 1 1 2
とした。
[0145] (5)引張破断強度及び引張破断伸度
幅 10 mmの短冊状試験片を用いて ASTM D882により測定した。
[0146] (6)熱収縮率(%)
多層微多孔膜を 105°Cに 8時間暴露したときの長手方向(MD)及び横手方向(TD) の収縮率をそれぞれ 3回ずつ測定し、平均値を算出することにより求めた。
[0147] (7)シャットダウン温度
熱機械的分析装置 (セイコー電子工業株式会社製、 TMAZSS6000)を用い、 10 m m (TD) X 3mm (MD)の試験片を、荷重 2gで試験片の長手方向に引っ張りながら、 5 °CZminの速度で室温から昇温し、融点付近で観測された変曲点の温度をシャットダ ゥン温度とした。
[0148] (8)メルトダウン温度 (°C)
上記熱機械的分析装置を用い、 10 mm (TD) X 3mm (MD)の試験片を、荷重 2gで 試験片の長手方向に引っ張りながら、 5°CZminの速度で室温から昇温し、溶融によ り破膜した温度を測定した。
[0149] (9)シャットダウン速度 135°Cに温調したプレート上に面接触するように固定し、接触時間を種々変えて熱 処理した複数の多層微多孔膜について透気度を測定し、透気度が 100,000秒 Z100 cm3 (膜厚 20 μ m換算)に達するのに要した時間 (秒)をシャットダウン速度とした。
[0150] (10)加熱圧縮による膜厚変化率
高平滑面を有する一対のプレス板の間に微多孔膜サンプルを挟み、これをプレス 機により、 5MPa(51 kgfZcm2)の圧力下、 90°Cで 5分間加熱圧縮し、上記の方法によ り平均膜厚を測定した。圧縮前の平均膜厚を 100%として膜厚変化率を算出した。
[0151] (11)到達透気度(sec/100 cm3/20 μ m)
上記条件で加熱圧縮した後の微多孔膜サンプル (膜厚 T ')に対して P8117に準
1
拠して測定した透気度 Ρ 'を、式: Ρ ' = (Ρ ' Χ 20) /Τ 'により、膜厚を 20 mとしたとき
1 2 1 1
の透気度 P
2 'に換算した値を到達透気度とした。
[0152] [表 1]
例 No. 実施例 1 実施例 2 実施例 3 樹脂組成
ポリエチレン組成物 A
UHMWPE Mw'D 2.0 X 106 2.0X 106 2.0X 106 質量% 25 25 25
HDPE Mw(" 3.5X 105 3.5X 105 3.5X 105 質量% 75 75 75
PP · 耐熱性樹脂混合物 B
PP Mw(i) 5.3X 105 5.3X 105 5.3X 105 質量% 90 90 90 耐熱性樹脂 化合物 PA6(4) PBT PET
Mw<i) 1.1X 104 3.8X 104 3.5X 104 質量% 10 10 10 製造条件
PE組成物濃度(質量%) 30 30 30
PP .薩生樹脂混合物濃度 (質量0 /。) 30 30 30 同時押出
層構成 (表層/内層/表層)(2) A/B/A A/B/A A/B/A 延伸
温度(°c) 115 115 115 倍率 (MDXTD)(3) 5X5 5X5 5X5 熱固定処理
温度 (°C) 125 125 125 時間(分) 10 10 10 物性
平均膜厚 m) 24.8 24.9 24.8 層厚比 (表層/内層/表層) 20/60/20 20/60/20 20/60/20 透気度(sec/100 οπι3/20μ m) 260 250 270 空孔率 (%) 45 44 45 突刺強度(g/20/ m) 420 400 410
(πιΝ/20μ m) 4,116 3,920 4018 引張破断強度 (kg/cm2) MD 1,320 1,290 1,300
(kPa) MD 129,360 126,420 127,400
(kg/cm2) TD 1,120 1,090 1,100
(kPa) TD 109,760 106,820 107,800 引張破断伸度(%) MD 140 140 140
(%) TD 130 130 130 熱収縮率(%) MD 3 3 4
(%) TD 4 3 3 シャッ トダウン温度 (°C) 135 135 135 メルトダウン温度 ( ) 175 174 176 耐圧縮性
膜厚変化率(%) 一 30 一 32 -35 到鶴気度 (sec/100cm3/20 μ m) 320 310 330 [0153] 注:(l) Mwは質量平均分子量を表す。
(2) Aはポリエチレン組成物の溶液を表し、 Bは ΡΡ·耐熱性榭脂混合物の溶液を表 す。
(3) MDは長手方向を表し、 TDは横手方向を表す。
(4) ΡΑ6はポリアミド 6を表す。
[0154] [表 2]
例 No. 実施例 4 実施例 5 実施例 6 樹脂組成
ポリエチレン組成物 A'
UHMWPE Mw") 2.0X 106 2.0X 106 2.0 X 106 質量% 25 25 25
HDPE Mw(" 3.5X 105 3.5X 105 3.5X 105
質量% 75 75 75
PP · 無機フィラー混合物 B'
PP Mw") 5.3X 105 5.3X 105 5.3X 105 質量% 90 90 90 フイラ一 GF(5) マイ力(6) タルク(7> ァスぺクト比 (2) 40 30 20 質量% 10 10 10 製造条件
PE組成物濃度(質量%) 30 30 30
PP ·應フイラ一混合物濃度 (質量%) 30 27 27 同時押出
層構成 (表層/内層/表層)(3) A'/B'/A' A'/B'/A' A'/B'/A' 延伸
温度 (で) 115 115 115 倍率 (MDXTD)") 5X5 5X5 5X5 熱固定処理
温度 CC) 125 125 125 時間 (分) 10 10 10 物性
平均膜厚 m) 24.8 24.7 24.9 層厚比(表層/内層/表層) 25/50/25 25/50/25 25/50/25 透気度(sec/100 cm3/20/i m) 270 280 290 空孔率 (%) 45 44 43 突刺強度(g/20/ι m) 430 420 415
(mN/20 μ m) 4,214 4,116 4,067 引張破断強度(kg/cm2) MD 1,350 1,340 1,330
(kPa) MD 132,300 131,320 130,340
(kg/cm2) TD 1,150 1,140 1,130
(kPa) TD 112,700 111,720 110,740 引張破断伸度(%) MD 120 120 120
(%) TD 110 110 110 熱収縮率(%) MD 3 3 3
(%) TD 4 4 4 シャツ トダウン温度 (で) 135 135 135 メルトダウン温度 CC) 180 178 177 :(l)Mwは質量平均分子量を表す。 (2)ポリオレフイン三層微多孔膜を焼成し、残留した無機フィラーの顕微鏡写真を 撮影し、得られた写真中の 100個の無機フィラー粒子の長径及び短径を測定し、その 比 (長径 Z短径)の平均値を計算することにより求めた。
(3) A'はポリエチレン組成物の溶液を表し、 B'は無機フィラーを含有する PP溶液を 表す。
(4) MDは長手方向を表し、 TDは横手方向を表す。
(5)ガラス繊維 (GF)のチョップドストランド(単繊維径 5 μ m、カット長 lmm、旭フアイ バーグラス株式会社製)。
(6)製品名: A-ll、株式会社山口雲母工業所製。
(7)製品名:ハイミクロン HE5、竹原化学工業株式会社製。
[表 3]
Figure imgf000041_0001
[0157] 注:(l) Mwは質量平均分子量を表す。
(2)ポリオレフイン三層微多孔膜を焼成し、残留した無機フィラーの顕微鏡写真を 撮影し、得られた写真中の 100個の無機フィラー粒子の長径及び短径を測定し、その 比 (長径 Z短径)の平均値を計算することにより求めた。
(3) A"はポリエチレン組成物の溶液を表し、 B"は PPを含む溶液を表す。
(4) MDは長手方向を表し、 TDは横手方向を表す。
(5)製品名:サンライト、竹原化学工業株式会社製。
[0158] 表 1及び 2から明らかなように、実施例 1〜6のポリオレフイン三層微多孔膜は、透過 性、機械的強度、耐熱収縮性、シャットダウン特性及びメルトダウン特性のバランスに 優れていた。特に実施例 1〜3のポリオレフイン三層微多孔膜は、耐圧縮性 (圧縮時 の変形性及び圧縮後の透過性)に優れていた。
[0159] これに対して、比較例 1のポリオレフイン三層微多孔膜は、ポリプロピレン含有層に 耐熱性榭脂、又はアスペクト比が 2以上の無機フィラーを添加していないので、実施 例 1〜6に比べて透過性、突刺強度及びメルトダウン特性が劣っていた。さらに比較 例 1の三層微多孔膜は、実施例 1〜3に比べて、加熱圧縮による変形性が劣っており 、加熱圧縮による透気度の悪ィ匕が大き力つた。比較例 2の微多孔膜はポリエチレン組 成物のみからなるので、実施例 1〜6に比べて突刺強度及びメルトダウン特性が劣つ ていた。さらに比較例 2の三層微多孔膜は、実施例 1〜3に比べて、加熱圧縮による 変形性が劣っており、加熱圧縮による透気度の悪ィ匕が大き力つた。比較例 3のポリオ レフイン三層微多孔膜は、ポリプロピレン含有層に、アスペクト比が 2未満の無機フィ ラーを添加したので、実施例 4〜6に比べて機械的強度及びメルトダウン特性が劣つ ていた。

Claims

請求の範囲
[1] ポリエチレン系榭脂からなる多孔質層と、ポリプロピレン及び融点又はガラス転移温 度力 S170°C以上の耐熱性榭脂を含有する多孔質層とを有することを特徴とするポリオ レフイン多層微多孔膜。
[2] ポリエチレン系榭脂からなる多孔質層と、ポリプロピレン及びアスペクト比が 2以上の 無機フィラーを含有する多孔質層とを有することを特徴とするポリオレフイン多層微多 孔膜。
[3] ポリエチレン系榭脂及び成膜用溶剤を溶融混練してポリエチレン溶液を調製するとと もに、ポリプロピレン、融点又はガラス転移温度が 170°C以上の耐熱性榭脂及び成膜 用溶剤を溶融混練してポリプロピレン '耐熱性榭脂混合物溶液を調製し、 (1)得られ たポリエチレン溶液とポリプロピレン ·耐熱性榭脂混合物溶液とをダイより同時に押出 し、得られた押出し成形体を冷却してゲル状積層シートを形成し、得られたゲル状積 層シートから前記両成膜用溶剤を除去する力、 (2)前記ポリエチレン溶液と前記ポリ プロピレン '耐熱性榭脂混合物溶液とを個別にダイより押し出し、得られた各押出し 成形体を冷却してゲル状シートを形成し、得られた各ゲル状シートを積層し、得られ たゲル状積層シートから前記両成膜用溶剤を除去するカゝ、 (3)前記ポリエチレン溶液 と前記ポリプロピレン '耐熱性榭脂混合物溶液とを個別にダイより押し出し、得られた 各押出し成形体を冷却してゲル状シートを形成し、得られた各ゲル状シートから前記 成膜用溶剤を除去し、得られたポリエチレン微多孔膜及びポリプロピレン微多孔膜を 積層することを特徴とするポリオレフイン多層微多孔膜の製造方法。
[4] 請求項 3に記載のポリオレフイン多層微多孔膜の製造方法において、前記工程 (1)を 、前記ゲル状積層シートを延伸した後前記両成膜用溶剤を除去するか、前記両成膜 用溶剤の除去後に得られた積層微多孔膜を延伸するか、前記ゲル状積層シートの 延伸及び前記両成膜用溶剤の除去を順に行った後得られた積層微多孔膜をさら〖こ 延伸することにより行い、前記工程 (2)を、(2X0前記ゲル状シートを延伸した後積層 するか、 (2)(ii)前記ゲル状積層シートを延伸した後前記両成膜用溶剤を除去するか 、 (2)(iii)前記両成膜用溶剤の除去後に得られた積層微多孔膜を延伸するか、 (2)(iv) 前記工程 (2)(i)〜(2)(m)のうちから少なくとも二つの工程を選択することにより行い、前 記工程 (3)を、(3)(i)前記各ゲル状シートを延伸した後前記成膜用溶剤を除去するか 、 (3)(ii)前記ポリエチレン微多孔膜及び前記ポリプロピレン微多孔膜を延伸した後積 層するか、 (3)(iii)前記ポリエチレン微多孔膜及び前記ポリプロピレン微多孔膜を積層 した後延伸するか、 (3)(iv)前記工程 (3)(i)〜(3)(m)のうちから少なくとも二つの工程を 選択することにより行うことを特徴とする方法。
[5] ポリエチレン系榭脂及び成膜用溶剤を溶融混練してポリエチレン溶液を調製するとと もに、ポリプロピレン及び成膜用溶剤の溶融混練物にアスペクト比が 2以上の無機フ イラ一を分散させて無機フィラー含有ポリプロピレン溶液を調製し、 (1)得られたポリエ チレン溶液と無機フィラー含有ポリプロピレン溶液とをダイより同時に押出し、得られ た押出し成形体を冷却してゲル状積層シートを形成し、得られたゲル状積層シートか ら前記両成膜用溶剤を除去するか、 (2)前記ポリエチレン溶液と前記無機フィラー含 有ポリプロピレン溶液とを個別にダイより押し出し、得られた各押出し成形体を冷却し てゲル状シートを形成し、得られた各ゲル状シートを積層し、得られたゲル状積層シ ートから前記両成膜用溶剤を除去するか、 (3)前記ポリエチレン溶液と前記無機フィ ラー含有ポリプロピレン溶液とを個別にダイより押し出し、得られた各押出し成形体を 冷却してゲル状シートを形成し、得られた各ゲル状シートから前記成膜用溶剤を除 去し、得られたポリエチレン微多孔膜及びポリプロピレン微多孔膜を積層することを 特徴とするポリオレフイン多層微多孔膜の製造方法。
[6] 請求項 5に記載のポリオレフイン多層微多孔膜の製造方法において、前記工程 (1)を 、前記ゲル状積層シートを延伸した後前記両成膜用溶剤を除去するか、前記両成膜 用溶剤の除去後に得られた積層微多孔膜を延伸するか、前記ゲル状積層シートの 延伸及び前記両成膜用溶剤の除去を順に行った後得られた積層微多孔膜をさら〖こ 延伸することにより行い、前記工程 (2)を、(2X0前記ゲル状シートを延伸した後積層 するか、 (2)(ii)前記ゲル状積層シートを延伸した後前記両成膜用溶剤を除去するか 、 (2)(iii)前記両成膜用溶剤の除去後に得られた積層微多孔膜を延伸するか、 (2)(iv) 前記工程 (2)(i)〜(2)(m)のうちから少なくとも二つの工程を選択することにより行い、前 記工程 (3)を、(3X0前記各ゲル状シートを延伸した後前記成膜用溶剤を除去するか 、 (3)(ii)前記ポリエチレン微多孔膜及び前記ポリプロピレン微多孔膜を延伸した後積 層するか、 (3)(iii)前記ポリエチレン微多孔膜及び前記ポリプロピレン微多孔膜を積層 した後延伸するか、 (3)(iv)前記工程 (3)(i)〜(3)(m)のうちから少なくとも二つの工程を 選択することにより行うことを特徴とする方法。
[7] ポリエチレン系榭脂からなる多孔質層と、ポリプロピレン及び融点又はガラス転移温 度力 170°C以上の耐熱性榭脂を含有する多孔質層とを有するポリオレフイン多層微 多孔膜からなることを特徴とする電池用セパレータ。
[8] ポリエチレン系榭脂からなる多孔質層と、ポリプロピレン及びアスペクト比が 2以上の 無機フィラーを含有する多孔質層とを有するポリオレフイン多層微多孔膜からなること を特徴とする電池用セパレータ。
PCT/JP2006/321084 2005-10-24 2006-10-23 ポリオレフィン多層微多孔膜及びその製造方法並びに電池用セパレータ WO2007049568A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP06812144.1A EP1942000B1 (en) 2005-10-24 2006-10-23 Polyolefin multilayer microporous film, method for producing same and battery separator
US12/091,351 US8932748B2 (en) 2005-10-24 2006-10-23 Multi-layer, microporous polyolefin membrane, its production method, and battery separator
JP2007542569A JP5026981B2 (ja) 2005-10-24 2006-10-23 ポリオレフィン多層微多孔膜及びその製造方法並びに電池用セパレータ
CN2006800394613A CN101296795B (zh) 2005-10-24 2006-10-23 聚烯烃多层微孔膜及其制造方法以及电池用隔离件
CA002627137A CA2627137A1 (en) 2005-10-24 2006-10-23 Multi-layer, microporous polyolefin membrane, its production method, and battery separator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005308743 2005-10-24
JP2005-308744 2005-10-24
JP2005308744 2005-10-24
JP2005-308743 2005-10-24

Publications (1)

Publication Number Publication Date
WO2007049568A1 true WO2007049568A1 (ja) 2007-05-03

Family

ID=37967680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321084 WO2007049568A1 (ja) 2005-10-24 2006-10-23 ポリオレフィン多層微多孔膜及びその製造方法並びに電池用セパレータ

Country Status (10)

Country Link
US (1) US8932748B2 (ja)
EP (1) EP1942000B1 (ja)
JP (2) JP5026981B2 (ja)
KR (1) KR20080068722A (ja)
CN (1) CN101296795B (ja)
CA (1) CA2627137A1 (ja)
HU (1) HUE041980T2 (ja)
RU (1) RU2431521C2 (ja)
TW (1) TWI445623B (ja)
WO (1) WO2007049568A1 (ja)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008226785A (ja) * 2007-03-15 2008-09-25 Hitachi Maxell Ltd 非水電解質電池
JP2008311220A (ja) * 2007-05-11 2008-12-25 Mitsubishi Plastics Inc 積層多孔性フィルム、電池用セパレータおよび電池
JP2009039910A (ja) * 2007-08-07 2009-02-26 Mitsubishi Plastics Inc 積層多孔性フィルムおよび電池用セパレータ
WO2009028734A1 (en) * 2007-08-31 2009-03-05 Tonen Chemical Corporation Multi-layer, microporous polyolefin membrane, its production method, battery separator and battery
WO2009069533A1 (en) 2007-11-30 2009-06-04 Tonen Chemical Corporation Microporous films, methods for their production, and applications thereof
JP2009129668A (ja) * 2007-11-22 2009-06-11 Asahi Kasei Chemicals Corp 多層多孔膜
EP2075126A1 (en) * 2007-12-26 2009-07-01 SK Energy Co., Ltd. Microporous polyolefin multi layer film and preparing method thereof
EP2151471A1 (en) * 2007-05-24 2010-02-10 Nitto Denko Corporation Method for production of porous film, porous film, separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using the separator
WO2009139585A3 (en) * 2008-05-16 2010-03-11 Sk Energy Co., Ltd. Microporous polyolefin film with thermally stable porous layer at high temperature
EP2169743A1 (en) * 2007-06-19 2010-03-31 Teijin Limited Separator for nonaqueous secondary battery, method for producing the same, and nonaqueous secondary battery
WO2010055834A1 (en) 2008-11-17 2010-05-20 Tonen Chemical Corporation Microporous membranes and methods for producing and using such membranes
US20100203396A1 (en) * 2007-06-06 2010-08-12 Hiroshi Murata Multilayer porous film
JP2010538859A (ja) * 2007-09-14 2010-12-16 東燃化学株式会社 押出金型および押出金型用マニホールド
WO2011013300A1 (ja) * 2009-07-31 2011-02-03 パナソニック株式会社 非水電解質二次電池及びその製造方法
JP2011074214A (ja) * 2009-09-30 2011-04-14 Asahi Kasei E-Materials Corp 微多孔性フィルム、積層微多孔性フィルム、電池用セパレータ、及び微多孔性フィルムの製造方法
WO2011055731A1 (ja) * 2009-11-06 2011-05-12 住友化学株式会社 積層フィルムおよび非水電解質二次電池
JP2011516684A (ja) * 2008-04-08 2011-05-26 エスケー エナジー カンパニー リミテッド 高耐熱性被覆層を有するポリオレフィン系複合微多孔膜の製造方法
JP2011126122A (ja) * 2009-12-17 2011-06-30 Asahi Kasei E-Materials Corp 積層微多孔性フィルム及びその製造方法、並びに電池用セパレータ
JP2011131470A (ja) * 2009-12-24 2011-07-07 Sumitomo Chemical Co Ltd 積層フィルムおよび非水電解質二次電池
JP2012501869A (ja) * 2008-09-03 2012-01-26 東レ東燃機能膜合同会社 熱可塑性シートを乾燥させる装置および方法
US20120070644A1 (en) * 2009-04-06 2012-03-22 Sk Innovation Co., Ltd. Microporous Polyolefin Multilayer Film Possessing Good Mechanical Properties and Thermal Stability
WO2012042965A1 (ja) * 2010-09-30 2012-04-05 三菱樹脂株式会社 積層多孔フィルム、非水電解液二次電池用セパレータ、および非水電解液二次電池
WO2012081556A1 (ja) * 2010-12-17 2012-06-21 帝人株式会社 非水電解質電池用セパレータ及び非水電解質電池
US20120177976A1 (en) * 2010-08-02 2012-07-12 Wensley C Glen High melt temperature microporous lithium-ion rechargeable battery separators and methods of preparation and use
WO2012096248A1 (ja) * 2011-01-11 2012-07-19 東レバッテリーセパレータフィルム合同会社 多層微多孔膜、かかる膜の製造方法、およびかかる膜の使用
WO2012099149A1 (ja) * 2011-01-20 2012-07-26 東レ株式会社 多孔質積層フィルム、蓄電デバイス用セパレータ、および蓄電デバイス
JP2012221741A (ja) * 2011-04-08 2012-11-12 Teijin Ltd 非水系二次電池用セパレータおよび非水系二次電池
JP2012529742A (ja) * 2009-06-17 2012-11-22 エスケー イノベーション シーオー., エルティーディー. 高耐熱性有機/無機被覆層を有するポリエチレン系複合微多孔膜
RU2470700C2 (ru) * 2008-12-19 2012-12-27 Чанчжоу Чжункэ Лайфан Пауэр Дивелопмент Ко., Лтд. Микропористая полимерная мембрана, модифицированная водорастворимым полимером, способ ее изготовления и применение
US20130011743A1 (en) * 2010-03-17 2013-01-10 Mitsubishi Plastics, Inc. Porous polypropylene film
JP2013010365A (ja) * 2012-10-09 2013-01-17 Mitsubishi Plastics Inc 積層多孔性フィルムの製造方法
WO2013051468A1 (ja) * 2011-10-04 2013-04-11 日産自動車株式会社 耐熱絶縁層付セパレータ
JP2013145693A (ja) * 2012-01-16 2013-07-25 Toyota Motor Corp セパレータ及びリチウムイオン二次電池
US8563120B2 (en) 2007-12-26 2013-10-22 Sk Innovation Co., Ltd. Microporous polyolefin multi layer film
JP2013224033A (ja) * 2007-10-12 2013-10-31 Toray Battery Separator Film Co Ltd 微小孔性膜及びその製造及び使用
JP2014027261A (ja) * 2012-07-25 2014-02-06 Samsung Electro-Mechanics Co Ltd 積層型インダクタ、及び積層型インダクタの保護層の組成物
US20140295061A1 (en) * 2008-04-08 2014-10-02 Sk Innovation Co., Ltd. Microporous polyolefin composite film with a thermally stable porous layer at high temperature
JP2015053282A (ja) * 2014-11-11 2015-03-19 住友化学株式会社 積層フィルムおよび非水電解質二次電池
JP2015068637A (ja) * 2013-09-27 2015-04-13 三星エスディアイ株式会社Samsung SDI Co.,Ltd. 乾燥装置及び乾燥方法
WO2015083591A1 (ja) * 2013-12-03 2015-06-11 東レバッテリーセパレータフィルム株式会社 積層多孔質膜及びその製造方法
WO2015170653A1 (ja) * 2014-05-09 2015-11-12 東レバッテリーセパレータフィルム株式会社 ポリオレフィン製積層多孔質膜、それを用いた電池用セパレータおよびそれらの製造方法
JP2016013660A (ja) * 2014-07-02 2016-01-28 旭化成イーマテリアルズ株式会社 積層微多孔性フィルム及びリチウムイオン二次電池用セパレータ
EP2101368B1 (en) * 2007-12-11 2018-07-04 Samsung SDI Co., Ltd. Separator for non-aqueous rechargeable lithium battery
JPWO2017146237A1 (ja) * 2016-02-25 2018-08-30 旭化成株式会社 非水電解質電池用無機粒子及び非水電解質電池
JP2018530105A (ja) * 2015-07-31 2018-10-11 セルガード エルエルシー 改良された多層積層膜、セパレータ、電池及び方法
WO2020179294A1 (ja) * 2019-03-07 2020-09-10 東レ株式会社 ポリオレフィン微多孔膜、電池
WO2020218583A1 (ja) * 2019-04-26 2020-10-29 有限会社 ケー・イー・イー 耐熱性ポリオレフィン系微多孔膜及びその製造方法
JP2020183522A (ja) * 2019-04-26 2020-11-12 有限会社ケー・イー・イー 耐熱性ポリオレフィン系微多孔膜及びその製造方法
WO2021033736A1 (ja) * 2019-08-22 2021-02-25 東レ株式会社 ポリオレフィン微多孔膜
WO2021211914A1 (en) * 2020-04-17 2021-10-21 Celgard, Llc Assymetric porous membrane

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101231752B1 (ko) * 2005-03-31 2013-02-08 도레이 배터리 세퍼레이터 필름 주식회사 폴리올레핀 미세 다공막의 제조 방법 및 그 미세 다공막
KR100864681B1 (ko) * 2007-06-13 2008-10-23 한국타이어 주식회사 연료전지 분리판 제조용 소재
WO2009077481A1 (en) * 2007-12-18 2009-06-25 Basell Poliolefine Italia S.R.L. Membranes
KR101404451B1 (ko) * 2008-06-03 2014-06-10 에스케이이노베이션 주식회사 다층 폴리올레핀계 미세다공막 및 그 제조방법
WO2010008003A1 (ja) * 2008-07-16 2010-01-21 東レ株式会社 蓄電デバイス用セパレータ
WO2010021248A1 (ja) * 2008-08-19 2010-02-25 帝人株式会社 非水系二次電池用セパレータ
WO2010048395A2 (en) * 2008-10-24 2010-04-29 Tonen Chemical Corporation Multilayer microporous membranes, methods of making such membranes and the use of such membranes on battery separator film
US20100255376A1 (en) 2009-03-19 2010-10-07 Carbon Micro Battery Corporation Gas phase deposition of battery separators
DE102009035759A1 (de) * 2009-07-27 2011-02-03 Varta Microbattery Gmbh Galvanisches Element und Separator mit verbesserten Sicherheitseigenschaften
HUE062495T2 (hu) * 2009-09-29 2023-11-28 Lg Energy Solution Ltd Eljárás szeparátor elõállítására
KR101084068B1 (ko) * 2009-11-25 2011-11-16 삼성에스디아이 주식회사 리튬 이차 전지
DE102009055944B4 (de) 2009-11-26 2013-08-08 Continental Automotive Gmbh Separator für eine elektrochemische Zelle und elektrochemische Zelle mit einem solchen Separator
JP2011210524A (ja) * 2010-03-30 2011-10-20 Sanyo Electric Co Ltd 積層式電池
KR101408844B1 (ko) * 2010-06-10 2014-06-20 에스케이이노베이션 주식회사 고내열성 유/무기 피복층을 갖는 복합 미세다공막
EP2646246B1 (en) * 2010-11-29 2015-03-18 Basell Poliolefine Italia S.r.l. Membranes
TWI491096B (zh) 2010-12-06 2015-07-01 Ind Tech Res Inst 多層電池隔離膜及其製造方法
CN102064299A (zh) * 2010-12-25 2011-05-18 佛山塑料集团股份有限公司 一种锂离子电池用聚烯烃多层多孔隔膜及其制备方法
CN102527260B (zh) * 2010-12-31 2014-09-03 重庆云天化纽米科技有限公司 一种多层聚乙烯微孔膜及其制备方法
CN102268700A (zh) * 2011-07-27 2011-12-07 金川集团有限公司 一种用于隔膜电解的隔膜架
CN102394282B (zh) * 2011-11-25 2014-12-10 佛山市金辉高科光电材料有限公司 一种锂离子二次电池多孔多层隔膜及其制造方法
TWI482340B (zh) 2011-12-14 2015-04-21 Ind Tech Res Inst 鋰二次電池的電極模組
US9911958B2 (en) * 2012-02-24 2018-03-06 Research & Business Foundation Sungkyunkwan University Separator with enhanced heat resistance and electrochemical device containing the same
DE102012107848A1 (de) 2012-08-27 2014-05-28 Karlsruher Institut für Technologie Mehrlagiger Separator für eine elektrochemische Zelle
JP2014113734A (ja) * 2012-12-10 2014-06-26 Mitsubishi Plastics Inc 積層多孔フィルム、非水電解液二次電池用セパレータ及び非水電解液二次電池
JP6103921B2 (ja) * 2012-12-25 2017-03-29 三菱樹脂株式会社 積層多孔性フィルム、電池用セパレータ、および電池
JP2015062174A (ja) * 2013-08-22 2015-04-02 ユニチカ株式会社 多孔質フィルム
US9776142B2 (en) * 2014-02-28 2017-10-03 Pall Corporation Porous polymeric membrane with high void volume
CN103904276B (zh) * 2014-03-28 2017-09-19 东莞新能源科技有限公司 复合多孔隔离膜及电化学装置
JP6486621B2 (ja) * 2014-07-22 2019-03-20 旭化成株式会社 積層微多孔性フィルム及びその製造方法、並びに電池用セパレータ
JP6359368B2 (ja) * 2014-07-22 2018-07-18 旭化成株式会社 積層微多孔性フィルム及びその製造方法、並びに電池用セパレータ
KR102299957B1 (ko) * 2014-07-30 2021-09-08 에스케이이노베이션 주식회사 폴리올레핀계 다층 복합 다공막의 제조방법
JP2017528561A (ja) 2014-08-21 2017-09-28 イエン,ウイリアム・ウインチン 微小孔性シート製品ならびにその製造法および使用法
KR101910222B1 (ko) * 2014-10-20 2018-10-19 주식회사 엘지화학 이차 전지용 고내열성 다층 분리막
CN104269505B (zh) * 2014-10-27 2016-09-14 沧州明珠隔膜科技有限公司 一种复合锂离子电池隔膜及其制备方法
EP3216070A4 (en) 2014-11-05 2018-09-26 Yen, William Winchin Microporous sheet product and methods for making and using the same
EP3216068A4 (en) 2014-11-05 2018-04-25 Yen, William Winchin Microporous sheet product and methods for making and using the same
JP6403278B2 (ja) * 2015-06-30 2018-10-10 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池
CN107304260B (zh) 2016-04-22 2020-03-24 上海恩捷新材料科技股份有限公司 一种宽温域低收缩隔离膜及其制备方法和用途
US10109843B2 (en) 2016-08-17 2018-10-23 Hong Kong Applied Science and Technology Research Institute Company Limited Separator for a rechargeable battery
CN106463683A (zh) * 2016-08-17 2017-02-22 香港应用科技研究院有限公司 一种用于充电电池的隔离膜
EP3340342B1 (en) * 2016-12-20 2020-10-28 Asahi Kasei Kabushiki Kaisha Separator for power storage device, laminated body, roll, lithium-ion secondary battery or power storage device using it
CN106926515A (zh) * 2017-02-09 2017-07-07 重庆伟业电源材料有限公司 一种复合型电池隔板及其制作方法
CN108623876B (zh) * 2017-03-24 2021-07-06 旭化成株式会社 聚烯烃微多孔膜及聚烯烃微多孔膜的制备方法
JP7045862B2 (ja) * 2017-03-24 2022-04-01 旭化成株式会社 ポリオレフィン微多孔膜及びポリオレフィン微多孔膜の製造方法
KR101918448B1 (ko) 2017-04-28 2018-11-13 스미또모 가가꾸 가부시키가이샤 비수 전해액 이차 전지용 절연성 다공질층
US10842902B2 (en) * 2017-09-01 2020-11-24 Ppg Industries Ohio, Inc. Treated membrane for fragrance delivery
US20180043656A1 (en) * 2017-09-18 2018-02-15 LiSo Plastics, L.L.C. Oriented Multilayer Porous Film
CN108274870A (zh) * 2018-01-19 2018-07-13 全椒光太胶粘制品有限公司 一种无毒害三层隔离膜及其制备方法
WO2020060886A1 (en) * 2018-09-17 2020-03-26 Celgard, Llc Multilayer membranes, separators, batteries, and methods
KR102380227B1 (ko) * 2018-12-21 2022-03-29 주식회사 엘지화학 가교 폴리올레핀 분리막 및 이의 제조방법
CN110429229A (zh) * 2019-07-31 2019-11-08 宁德新能源科技有限公司 多层隔离膜及使用其的装置
CN112442224A (zh) * 2019-09-02 2021-03-05 国家能源投资集团有限责任公司 交联聚乙烯用组合物、交联聚乙烯微孔膜及其制备方法
CN112194935A (zh) * 2020-08-28 2021-01-08 河北金力新能源科技股份有限公司 Pvdf浆料、隔膜及其制备方法
CN112210150A (zh) * 2020-10-17 2021-01-12 苏州惠国塑料制品有限公司 一种耐热性塑料袋及其制备方法
CN112937006B (zh) * 2021-04-02 2022-06-03 江苏厚生新能源科技有限公司 一种基于高强度聚乙烯微孔膜的多层复合耐冲击板材及其制备方法
WO2023149389A1 (ja) * 2022-02-02 2023-08-10 東レ株式会社 多孔性フィルム、二次電池用セパレータおよび二次電池
CN115122712B (zh) * 2022-07-25 2023-12-29 广西雄塑科技发展有限公司 一种改性ppr耐低温管道及其制备方法
CN116207440A (zh) * 2023-05-06 2023-06-02 四川卓勤新材料科技有限公司 一种交联锂离子电池隔膜及其制备方法
CN116231231B (zh) * 2023-05-09 2023-08-01 合肥长阳新能源科技有限公司 一种层间交联共挤电池隔膜及其制备方法与电池

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210857A (ja) 1985-05-16 1987-01-19 ダブリユー・アール・グレイス・アンド・カンパニー−コネチカツト 電池用セパレ−タ
JPH05251069A (ja) 1991-12-20 1993-09-28 Wr Grace & Co Connecticut 電池用セパレータおよびその製造方法
JPH06182918A (ja) * 1992-12-18 1994-07-05 Mitsubishi Kasei Corp ポリエチレン積層多孔膜およびその製造方法
JPH06240036A (ja) * 1991-01-30 1994-08-30 Tonen Corp ポリオレフィン微多孔膜及びその製造方法
WO1999048959A1 (en) * 1998-03-24 1999-09-30 Asahi Kasei Kogyo Kabushiki Kaisha Microporous polyolefin film
JPH11317212A (ja) * 1998-03-12 1999-11-16 Celgard Llc 三層構造の電池セパレ―タ―
WO2000020493A1 (en) 1998-10-01 2000-04-13 Tonen Chemical Corporation Microporous polyolefin film and process for producing the same
WO2000020492A1 (en) * 1998-10-01 2000-04-13 Tonen Chemical Corporation Microporous polyolefin film and process for producing the same
JP2001162741A (ja) * 1999-12-08 2001-06-19 Nitto Denko Corp 複合多孔質フィルム及びこれを用いた電池用セパレーター
JP3347854B2 (ja) 1993-12-27 2002-11-20 東燃化学株式会社 ポリオレフィン微多孔膜、その製造方法、それを用いた電池用セパレーター及びフィルター
JP2003105123A (ja) * 2001-09-28 2003-04-09 Tonen Chem Corp ポリオレフィン微多孔膜及びその製造方法
JP2004149637A (ja) * 2002-10-29 2004-05-27 Tonen Chem Corp 微多孔膜及びその製造方法並びに用途
JP2004161899A (ja) * 2002-11-13 2004-06-10 Tonen Chem Corp 微多孔膜及びその製造方法並びに用途

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2625798B2 (ja) * 1987-07-04 1997-07-02 東レ株式会社 電解液セパレータ
US5691047A (en) * 1994-05-12 1997-11-25 Ube Industries, Ltd. Porous multi-layer film
TW297171B (ja) * 1994-12-20 1997-02-01 Hoechst Celanese Corp
JPH09171808A (ja) * 1995-12-20 1997-06-30 Nitto Denko Corp 電池用セパレータの製造方法
JP3939778B2 (ja) * 1996-02-09 2007-07-04 日東電工株式会社 電池用セパレータ
JPH11115084A (ja) * 1997-10-14 1999-04-27 Ube Ind Ltd 積層多孔質フイルム
KR100676080B1 (ko) * 1999-02-19 2007-01-31 토넨 케미칼 코퍼레이션 폴리올레핀 미세다공성 막과 그의 제조방법
CN1134491C (zh) 1999-02-19 2004-01-14 东燃化学株式会社 聚烯烃微多孔膜及其制造方法
TW539705B (en) 2000-06-30 2003-07-01 Tonen Sekiyukagaku Kk Process for preparing heat curable resin micro-porous film
WO2002065561A1 (en) * 2001-02-14 2002-08-22 Sony Corporation Non-aqueous electrolytic battery
WO2002068193A1 (fr) * 2001-02-23 2002-09-06 Idemitsu Petrochemical Co., Ltd. Stratifié pour emballage et emballage
JP2002322442A (ja) * 2001-04-24 2002-11-08 Chisso Corp 粘着ラベル
AR035104A1 (es) * 2001-08-13 2004-04-14 Clopay Plastic Prod Co Peliculas microporosas de varias capas y metodo para su fabricacion
US20070012617A1 (en) * 2003-09-05 2007-01-18 Sadakatsu Suzuki Method for producing micro-porous film of thermoplastic resin
EP1693408B1 (en) * 2003-12-03 2010-04-14 Tonen Chemical Corporation Microporous composite film, process for producing the same, and use
CA2602827A1 (en) * 2005-03-31 2006-10-12 Tonen Chemical Corporation Microporous polyolefin membrane and method for producing the same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210857A (ja) 1985-05-16 1987-01-19 ダブリユー・アール・グレイス・アンド・カンパニー−コネチカツト 電池用セパレ−タ
JPH06240036A (ja) * 1991-01-30 1994-08-30 Tonen Corp ポリオレフィン微多孔膜及びその製造方法
JPH05251069A (ja) 1991-12-20 1993-09-28 Wr Grace & Co Connecticut 電池用セパレータおよびその製造方法
JPH05251070A (ja) 1991-12-20 1993-09-28 Wr Grace & Co Connecticut 電池用セパレータの製造方法
JPH06182918A (ja) * 1992-12-18 1994-07-05 Mitsubishi Kasei Corp ポリエチレン積層多孔膜およびその製造方法
JP3347854B2 (ja) 1993-12-27 2002-11-20 東燃化学株式会社 ポリオレフィン微多孔膜、その製造方法、それを用いた電池用セパレーター及びフィルター
JPH11317212A (ja) * 1998-03-12 1999-11-16 Celgard Llc 三層構造の電池セパレ―タ―
WO1999048959A1 (en) * 1998-03-24 1999-09-30 Asahi Kasei Kogyo Kabushiki Kaisha Microporous polyolefin film
WO2000020493A1 (en) 1998-10-01 2000-04-13 Tonen Chemical Corporation Microporous polyolefin film and process for producing the same
WO2000020492A1 (en) * 1998-10-01 2000-04-13 Tonen Chemical Corporation Microporous polyolefin film and process for producing the same
JP2001162741A (ja) * 1999-12-08 2001-06-19 Nitto Denko Corp 複合多孔質フィルム及びこれを用いた電池用セパレーター
JP2003105123A (ja) * 2001-09-28 2003-04-09 Tonen Chem Corp ポリオレフィン微多孔膜及びその製造方法
JP2004149637A (ja) * 2002-10-29 2004-05-27 Tonen Chem Corp 微多孔膜及びその製造方法並びに用途
JP2004161899A (ja) * 2002-11-13 2004-06-10 Tonen Chem Corp 微多孔膜及びその製造方法並びに用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1942000A4

Cited By (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008226785A (ja) * 2007-03-15 2008-09-25 Hitachi Maxell Ltd 非水電解質電池
JP2008311220A (ja) * 2007-05-11 2008-12-25 Mitsubishi Plastics Inc 積層多孔性フィルム、電池用セパレータおよび電池
JP2013032017A (ja) * 2007-05-11 2013-02-14 Mitsubishi Plastics Inc 積層多孔性フィルムの製造方法
JP2014223812A (ja) * 2007-05-11 2014-12-04 三菱樹脂株式会社 積層多孔性フィルム、電池用セパレータおよび電池
US9077025B2 (en) 2007-05-24 2015-07-07 Nitto Denko Corporation Method for production of porous film, porous film, separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using the separator
US9340653B2 (en) 2007-05-24 2016-05-17 Nitto Denko Corporation Method for production of porous film, porous film, separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using the separator
EP2151471A4 (en) * 2007-05-24 2012-06-20 Nitto Denko Corp METHOD FOR THE PRODUCTION OF A POROUS FILM, SEPARATOR FOR A BATTERY WITH A WATER-FREE ELECTROLYTE AND BATTERY WITH A WATER-FREE ELECTROLYTE WITH SUCH A SEPARATOR
EP2151471A1 (en) * 2007-05-24 2010-02-10 Nitto Denko Corporation Method for production of porous film, porous film, separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using the separator
US9070935B2 (en) 2007-06-06 2015-06-30 Asahi Kasei E-Materials Corporation Multilayer porous film
US20100203396A1 (en) * 2007-06-06 2010-08-12 Hiroshi Murata Multilayer porous film
JP4789274B2 (ja) * 2007-06-06 2011-10-12 旭化成イーマテリアルズ株式会社 多層多孔膜
EP2517880A1 (en) * 2007-06-06 2012-10-31 Asahi Kasei E-materials Corporation Multilayer porous film
JPWO2008149986A1 (ja) * 2007-06-06 2010-08-26 旭化成イーマテリアルズ株式会社 多層多孔膜
US9029002B2 (en) 2007-06-19 2015-05-12 Teijin Limited Separator for nonaqueous secondary battery, method for producing the same, and nonaqueous secondary battery
US20120321929A1 (en) * 2007-06-19 2012-12-20 Teijin Limited Separator for nonaqueous secondary battery, method for producing the same, and nonaqueous secondary battery
EP2169743A4 (en) * 2007-06-19 2012-04-11 Teijin Ltd SEPARATOR FOR NONAQUEOUS SECONDARY BATTERY, METHOD FOR PRODUCING THE SAME, AND NONAQUEOUS SECONDARY BATTERY
US20110171514A1 (en) * 2007-06-19 2011-07-14 Teijin Limited Separator for nonaqueous secondary battery, method for producing the same, and nonaqueous secondary battery
EP2169743A1 (en) * 2007-06-19 2010-03-31 Teijin Limited Separator for nonaqueous secondary battery, method for producing the same, and nonaqueous secondary battery
EP2549566A1 (en) * 2007-06-19 2013-01-23 Teijin Limited Separator for Nonaqueous Secondary Battery, Method for Producing the Same, and Nonaqueous Secondary Battery
US8597816B2 (en) 2007-06-19 2013-12-03 Teijin Limited Separator for nonaqueous secondary battery, method for producing the same, and nonaqueous secondary battery
JP2009039910A (ja) * 2007-08-07 2009-02-26 Mitsubishi Plastics Inc 積層多孔性フィルムおよび電池用セパレータ
WO2009028734A1 (en) * 2007-08-31 2009-03-05 Tonen Chemical Corporation Multi-layer, microporous polyolefin membrane, its production method, battery separator and battery
JP2010537845A (ja) * 2007-08-31 2010-12-09 東燃化学株式会社 ポリオレフィン多層微多孔膜、その製造方法、電池用セパレータ及び電池
CN101795866B (zh) * 2007-08-31 2014-02-26 东丽电池隔膜株式会社 多层微孔聚烯烃膜,其制备方法,电池隔板和电池
US8709640B2 (en) 2007-08-31 2014-04-29 Toray Battery Separator Film Co., Ltd Multi-layer, microporous polyolefin membrane, its production method, battery separator and battery
JP2010538860A (ja) * 2007-09-14 2010-12-16 東燃化学株式会社 片持梁状の金型リップ部調整システムを備えた押出金型
JP2010538859A (ja) * 2007-09-14 2010-12-16 東燃化学株式会社 押出金型および押出金型用マニホールド
JP2010538857A (ja) * 2007-09-14 2010-12-16 東燃化学株式会社 改良されたクロスフローマニホールドを使用した押出金型
JP2010538858A (ja) * 2007-09-14 2010-12-16 東燃化学株式会社 共押出金型とそのマニホールドシステム
JP2013224033A (ja) * 2007-10-12 2013-10-31 Toray Battery Separator Film Co Ltd 微小孔性膜及びその製造及び使用
JP2009129668A (ja) * 2007-11-22 2009-06-11 Asahi Kasei Chemicals Corp 多層多孔膜
US9147868B2 (en) 2007-11-30 2015-09-29 Toray Battery Separator Film Co., Ltd. Microporous films, methods for their production, and applications thereof
WO2009069533A1 (en) 2007-11-30 2009-06-04 Tonen Chemical Corporation Microporous films, methods for their production, and applications thereof
WO2009069534A2 (en) * 2007-11-30 2009-06-04 Tonen Chemical Corporation Microporous polymeric membrane, battery separator, and battery
WO2009069534A3 (en) * 2007-11-30 2009-09-24 Tonen Chemical Corporation Microporous polymeric membrane, battery separator, and battery
EP2101368B1 (en) * 2007-12-11 2018-07-04 Samsung SDI Co., Ltd. Separator for non-aqueous rechargeable lithium battery
EP2075126A1 (en) * 2007-12-26 2009-07-01 SK Energy Co., Ltd. Microporous polyolefin multi layer film and preparing method thereof
US8003204B2 (en) 2007-12-26 2011-08-23 Sk Energy Co., Ltd. Microporous polyolefin multi layer film and preparing method thereof
US8563120B2 (en) 2007-12-26 2013-10-22 Sk Innovation Co., Ltd. Microporous polyolefin multi layer film
US8801984B2 (en) 2007-12-26 2014-08-12 Sk Innovation Co., Ltd. Microporous polyolefin multi layer film and preparing method thereof
KR101437621B1 (ko) * 2007-12-26 2014-09-04 에스케이이노베이션 주식회사 다층 폴리올레핀계 미세다공막 및 그 제조방법
KR101437852B1 (ko) * 2007-12-26 2014-09-04 에스케이이노베이션 주식회사 다층 폴리올레핀계 미세다공막 및 그 제조방법
US20140295061A1 (en) * 2008-04-08 2014-10-02 Sk Innovation Co., Ltd. Microporous polyolefin composite film with a thermally stable porous layer at high temperature
JP2011516684A (ja) * 2008-04-08 2011-05-26 エスケー エナジー カンパニー リミテッド 高耐熱性被覆層を有するポリオレフィン系複合微多孔膜の製造方法
WO2009139585A3 (en) * 2008-05-16 2010-03-11 Sk Energy Co., Ltd. Microporous polyolefin film with thermally stable porous layer at high temperature
JP2011521413A (ja) * 2008-05-16 2011-07-21 エスケー エナジー カンパニー リミテッド 2次電池用微細多孔膜
CN102017268A (zh) * 2008-05-16 2011-04-13 Sk能源株式会社 具有高温热稳定多孔层的微孔聚烯烃膜
KR101439478B1 (ko) * 2008-05-16 2014-09-11 에스케이이노베이션 주식회사 2차 전지용 미세다공막
JP2012501869A (ja) * 2008-09-03 2012-01-26 東レ東燃機能膜合同会社 熱可塑性シートを乾燥させる装置および方法
US9647253B2 (en) 2008-11-17 2017-05-09 Toray Battery Separator Film Co., Ltd. Methods of producing and using microporous membranes
WO2010055834A1 (en) 2008-11-17 2010-05-20 Tonen Chemical Corporation Microporous membranes and methods for producing and using such membranes
RU2470700C2 (ru) * 2008-12-19 2012-12-27 Чанчжоу Чжункэ Лайфан Пауэр Дивелопмент Ко., Лтд. Микропористая полимерная мембрана, модифицированная водорастворимым полимером, способ ее изготовления и применение
JP2012522669A (ja) * 2009-04-06 2012-09-27 エスケー イノベーション シーオー., エルティーディー. 物性及び高温安全性に優れたポリオレフィン系多層微多孔膜
US20120070644A1 (en) * 2009-04-06 2012-03-22 Sk Innovation Co., Ltd. Microporous Polyolefin Multilayer Film Possessing Good Mechanical Properties and Thermal Stability
JP2012529742A (ja) * 2009-06-17 2012-11-22 エスケー イノベーション シーオー., エルティーディー. 高耐熱性有機/無機被覆層を有するポリエチレン系複合微多孔膜
WO2011013300A1 (ja) * 2009-07-31 2011-02-03 パナソニック株式会社 非水電解質二次電池及びその製造方法
JP2011074214A (ja) * 2009-09-30 2011-04-14 Asahi Kasei E-Materials Corp 微多孔性フィルム、積層微多孔性フィルム、電池用セパレータ、及び微多孔性フィルムの製造方法
WO2011055731A1 (ja) * 2009-11-06 2011-05-12 住友化学株式会社 積層フィルムおよび非水電解質二次電池
JP2011126122A (ja) * 2009-12-17 2011-06-30 Asahi Kasei E-Materials Corp 積層微多孔性フィルム及びその製造方法、並びに電池用セパレータ
JP2011131470A (ja) * 2009-12-24 2011-07-07 Sumitomo Chemical Co Ltd 積層フィルムおよび非水電解質二次電池
US20130011743A1 (en) * 2010-03-17 2013-01-10 Mitsubishi Plastics, Inc. Porous polypropylene film
US20120177976A1 (en) * 2010-08-02 2012-07-12 Wensley C Glen High melt temperature microporous lithium-ion rechargeable battery separators and methods of preparation and use
US10826108B2 (en) * 2010-08-02 2020-11-03 Celgard, Llc High melt temperature microporous lithium-ion rechargeable battery separators and methods of preparation and use
JPWO2012042965A1 (ja) * 2010-09-30 2014-02-06 三菱樹脂株式会社 積層多孔フィルム、非水電解液二次電池用セパレータ、および非水電解液二次電池
JP5690832B2 (ja) * 2010-09-30 2015-03-25 三菱樹脂株式会社 積層多孔フィルム、非水電解液二次電池用セパレータ、および非水電解液二次電池
WO2012042965A1 (ja) * 2010-09-30 2012-04-05 三菱樹脂株式会社 積層多孔フィルム、非水電解液二次電池用セパレータ、および非水電解液二次電池
WO2012081556A1 (ja) * 2010-12-17 2012-06-21 帝人株式会社 非水電解質電池用セパレータ及び非水電解質電池
JP5172047B2 (ja) * 2010-12-17 2013-03-27 帝人株式会社 非水電解質電池用セパレータ及び非水電解質電池
JPWO2012081556A1 (ja) * 2010-12-17 2014-05-22 帝人株式会社 非水電解質電池用セパレータ及び非水電解質電池
WO2012096248A1 (ja) * 2011-01-11 2012-07-19 東レバッテリーセパレータフィルム合同会社 多層微多孔膜、かかる膜の製造方法、およびかかる膜の使用
KR101883512B1 (ko) 2011-01-20 2018-07-30 도레이 카부시키가이샤 다공질 적층 필름, 축전 디바이스용 세퍼레이터 및 축전 디바이스
CN103328209A (zh) * 2011-01-20 2013-09-25 东丽株式会社 多孔质层合膜、蓄电装置用隔板及蓄电装置
WO2012099149A1 (ja) * 2011-01-20 2012-07-26 東レ株式会社 多孔質積層フィルム、蓄電デバイス用セパレータ、および蓄電デバイス
CN103328209B (zh) * 2011-01-20 2015-05-06 东丽株式会社 多孔质层合膜、蓄电装置用隔板及蓄电装置
KR20140031844A (ko) * 2011-01-20 2014-03-13 도레이 카부시키가이샤 다공질 적층 필름, 축전 디바이스용 세퍼레이터 및 축전 디바이스
JP2012221741A (ja) * 2011-04-08 2012-11-12 Teijin Ltd 非水系二次電池用セパレータおよび非水系二次電池
US9496535B2 (en) 2011-10-04 2016-11-15 Nissan Motor Co., Ltd. Separator with heat resistant insulation layer
WO2013051468A1 (ja) * 2011-10-04 2013-04-11 日産自動車株式会社 耐熱絶縁層付セパレータ
JP2013145693A (ja) * 2012-01-16 2013-07-25 Toyota Motor Corp セパレータ及びリチウムイオン二次電池
JP2018019109A (ja) * 2012-07-25 2018-02-01 サムソン エレクトロ−メカニックス カンパニーリミテッド. 積層型インダクタ
JP2014027261A (ja) * 2012-07-25 2014-02-06 Samsung Electro-Mechanics Co Ltd 積層型インダクタ、及び積層型インダクタの保護層の組成物
JP2013010365A (ja) * 2012-10-09 2013-01-17 Mitsubishi Plastics Inc 積層多孔性フィルムの製造方法
JP2015068637A (ja) * 2013-09-27 2015-04-13 三星エスディアイ株式会社Samsung SDI Co.,Ltd. 乾燥装置及び乾燥方法
WO2015083591A1 (ja) * 2013-12-03 2015-06-11 東レバッテリーセパレータフィルム株式会社 積層多孔質膜及びその製造方法
JP5792914B1 (ja) * 2013-12-03 2015-10-14 東レバッテリーセパレータフィルム株式会社 積層多孔質膜及びその製造方法
WO2015170653A1 (ja) * 2014-05-09 2015-11-12 東レバッテリーセパレータフィルム株式会社 ポリオレフィン製積層多孔質膜、それを用いた電池用セパレータおよびそれらの製造方法
CN106457804A (zh) * 2014-05-09 2017-02-22 东丽电池隔膜株式会社 聚烯烃制叠层多孔质膜、使用其的电池用隔膜以及它们的制造方法
CN106457804B (zh) * 2014-05-09 2018-12-28 东丽株式会社 聚烯烃制叠层多孔质膜、使用其的电池用隔膜以及它们的制造方法
US10343382B2 (en) 2014-05-09 2019-07-09 Toray Industries, Inc. Multi-layer polyolefin porous membrane, battery separator obtained using the same, and method for producing the same
JP2016013660A (ja) * 2014-07-02 2016-01-28 旭化成イーマテリアルズ株式会社 積層微多孔性フィルム及びリチウムイオン二次電池用セパレータ
JP2015053282A (ja) * 2014-11-11 2015-03-19 住友化学株式会社 積層フィルムおよび非水電解質二次電池
JP2018530105A (ja) * 2015-07-31 2018-10-11 セルガード エルエルシー 改良された多層積層膜、セパレータ、電池及び方法
JP2021132040A (ja) * 2015-07-31 2021-09-09 セルガード エルエルシー 改良された多層積層膜、セパレータ、電池及び方法
US10680291B2 (en) 2016-02-25 2020-06-09 Asahi Kasei Kabushiki Kaisha Nonaqueous electrolyte battery inorganic particles and nonaqueous electrolyte battery
JPWO2017146237A1 (ja) * 2016-02-25 2018-08-30 旭化成株式会社 非水電解質電池用無機粒子及び非水電解質電池
WO2020179294A1 (ja) * 2019-03-07 2020-09-10 東レ株式会社 ポリオレフィン微多孔膜、電池
WO2020218583A1 (ja) * 2019-04-26 2020-10-29 有限会社 ケー・イー・イー 耐熱性ポリオレフィン系微多孔膜及びその製造方法
JP2020183522A (ja) * 2019-04-26 2020-11-12 有限会社ケー・イー・イー 耐熱性ポリオレフィン系微多孔膜及びその製造方法
WO2021033736A1 (ja) * 2019-08-22 2021-02-25 東レ株式会社 ポリオレフィン微多孔膜
WO2021211914A1 (en) * 2020-04-17 2021-10-21 Celgard, Llc Assymetric porous membrane

Also Published As

Publication number Publication date
JP5026981B2 (ja) 2012-09-19
CN101296795A (zh) 2008-10-29
HUE041980T2 (hu) 2019-06-28
RU2431521C2 (ru) 2011-10-20
CA2627137A1 (en) 2007-05-03
EP1942000B1 (en) 2018-12-12
RU2008120617A (ru) 2009-12-10
CN101296795B (zh) 2012-07-11
KR20080068722A (ko) 2008-07-23
EP1942000A4 (en) 2012-03-07
US8932748B2 (en) 2015-01-13
TWI445623B (zh) 2014-07-21
US20090098450A1 (en) 2009-04-16
TW200728081A (en) 2007-08-01
JPWO2007049568A1 (ja) 2009-04-30
JP5491565B2 (ja) 2014-05-14
JP2012179910A (ja) 2012-09-20
EP1942000A1 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
JP5491565B2 (ja) ポリオレフィン多層微多孔膜及び電池用セパレータ
JP4902537B2 (ja) ポリエチレン多層微多孔膜並びにそれを用いた電池用セパレータ及び電池
JP5283383B2 (ja) ポリエチレン微多孔膜の製造方法及び電池用セパレータ
JP5148093B2 (ja) ポリエチレン多層微多孔膜及びその製造方法、並びに電池用セパレータ
JP4911723B2 (ja) ポリエチレン多層微多孔膜並びにそれを用いた電池用セパレータ及び電池
JP4902455B2 (ja) ポリオレフィン多層微多孔膜、その製造方法、電池用セパレータ及び電池
JP5202816B2 (ja) ポリオレフィン微多孔膜及びその製造方法
US20150372276A1 (en) Separator for batteries and method of producing separator for batteries
WO2007046473A1 (ja) ポリオレフィン多層微多孔膜の製造方法
US20140315065A1 (en) Battery separator
WO2023053930A1 (ja) ポリオレフィン微多孔膜、電池用セパレータ及び二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680039461.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007542569

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2627137

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12091351

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006812144

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 4109/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020087012211

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2008120617

Country of ref document: RU