WO2011013300A1 - 非水電解質二次電池及びその製造方法 - Google Patents

非水電解質二次電池及びその製造方法 Download PDF

Info

Publication number
WO2011013300A1
WO2011013300A1 PCT/JP2010/004395 JP2010004395W WO2011013300A1 WO 2011013300 A1 WO2011013300 A1 WO 2011013300A1 JP 2010004395 W JP2010004395 W JP 2010004395W WO 2011013300 A1 WO2011013300 A1 WO 2011013300A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
separator
polyolefin
positive electrode
negative electrode
Prior art date
Application number
PCT/JP2010/004395
Other languages
English (en)
French (fr)
Inventor
中桐康司
柴野靖幸
立石さお里
山本典博
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/063,372 priority Critical patent/US20110171509A1/en
Priority to CN2010800030223A priority patent/CN102197511A/zh
Priority to JP2011524630A priority patent/JPWO2011013300A1/ja
Publication of WO2011013300A1 publication Critical patent/WO2011013300A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/454Separators, membranes or diaphragms characterised by the material having a layered structure comprising a non-fibrous layer and a fibrous layer superimposed on one another
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49112Electric battery cell making including laminating of indefinite length material

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery that can be manufactured with high productivity with reduced defects during manufacturing. Specifically, the present invention relates to a non-aqueous electrolyte secondary battery in which defects due to damage to the separator accompanying extraction of the core from the electrode group are suppressed.
  • Non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries have a large energy density. However, due to misuse such as external short circuit and overcharge, the battery temperature rapidly rises, so it is necessary to ensure sufficient safety. To ensure safety, in addition to using safety mechanisms such as PTC (Positive Temperature Coefficient) elements and SU circuits (protection circuits), softening or melting characteristics of the resin that composes the separator and so on.
  • PTC Physical Temperature Coefficient
  • SU circuits protection circuits
  • Patent Document 1 uses a composite film having a porous heat-resistant layer containing polyimide, polyamideimide, aramid, or the like and a shutdown layer containing polyethylene as a separator.
  • This separator has a three-layer structure in which the intermediate layer is polyethylene, the positive electrode side is polypropylene, and the negative electrode side is a heat-resistant layer.
  • Patent Document 2 proposes to improve safety by suppressing shrinkage at the time of shutdown by using a separator having a three-layer structure including a polyethylene intermediate layer and heat-resistant layers on both sides thereof.
  • Non-aqueous electrolyte secondary batteries use an electrode group in which a long positive electrode, a negative electrode, and a separator are wound in a spiral shape. At the beginning of the electrode group, there are two overlapping separators, and there are no positive and negative electrodes. Winding starts with two separators held between a pair of cores. After forming the electrode group, the sandwiching of the separator at the beginning of rolling is loosened, and the core is removed. However, when the core is removed, the separator may be displaced. As a result, current leakage occurs in the product, resulting in a product defect. In order to suppress such a shift of the separator, Patent Document 3 proposes to provide a resin layer having good slipperiness at the winding start portion of the polyolefin separator.
  • the porous heat-resistant layer is located on the outermost layer of the separator.
  • the porous heat-resistant layer has a high hardness and a high friction coefficient, and a low slip property.
  • a vortex-shaped electrode group is configured, such a porous heat-resistant layer is in contact with the core, so that it is difficult to smoothly extract the core after winding.
  • the separator at the beginning of the punching may be displaced or damaged.
  • Patent Document 3 since only a polyolefin separator is used, heat resistance is insufficient. In addition, in order to impart slipperiness only to the beginning of rolling, it is necessary to accurately perform alignment between the separators and alignment between the separator and the positive electrode and / or the negative electrode. As a result, productivity and yield are reduced and costs are increased.
  • the present invention has been made in view of the above problems, and provides a nonaqueous electrolyte secondary battery in which defects during manufacturing are reduced and safety is improved by smooth pulling out of the core.
  • One aspect of the present invention is a positive electrode including a long (sheet or strip) positive electrode current collector and a positive electrode active material layer attached to the surface of the positive electrode current collector, and a long (sheet or belt) negative electrode current collector.
  • a negative electrode including a negative electrode active material layer attached to a surface of an electric current collector and the negative electrode current collector, an electrode group in which a separator separating the positive electrode and the negative electrode is wound in a spiral shape, and a non-aqueous electrolyte
  • the separator includes a heat-resistant porous membrane containing a heat-resistant resin, a first polyolefin porous membrane covering the entire positive-electrode-side surface of the heat-resistant porous membrane, and an entire negative-electrode-side surface of the heat-resistant porous membrane.
  • the present invention relates to a non-aqueous electrolyte secondary battery having a second polyolefin porous film to cover.
  • the melting point or heat distortion temperature of the heat resistant resin is higher than the melting point or heat distortion temperature of the polyolefin contained in the first and second polyolefin porous membranes.
  • the heat resistant porous membrane has a thickness of 1 to 16 ⁇ m
  • the first polyolefin porous membrane has a thickness of 2 to 17 ⁇ m
  • the second polyolefin porous membrane has a thickness of 2 to 17 ⁇ m
  • the separator has a thickness of 5 to 35 ⁇ m.
  • Another aspect of the present invention is: Prepare the above separator, A positive electrode including a long (sheet or strip) positive electrode current collector and a positive electrode active material layer attached to the surface of the positive electrode current collector, a long (sheet or band) negative electrode current collector and the negative electrode current collector Prepare a negative electrode including a negative electrode active material layer attached to the surface of the electric body, The positive electrode, the negative electrode, and the separator disposed so as to isolate the positive electrode from the negative electrode, in a state where one end in the longitudinal direction of the separator is sandwiched between a pair of cores, To form an electrode group, The core is extracted from the electrode group,
  • the present invention relates to a method for manufacturing a non-aqueous electrolyte secondary battery in which the electrode group is housed in a battery case together with a non-aqueous electrolyte.
  • the core can be smoothly pulled out from the electrode group wound using the core even though the separator has high heat resistance.
  • difference or damage of a separator can be suppressed effectively. Therefore, a nonaqueous electrolyte secondary battery excellent in safety can be provided with high productivity while reducing defects during manufacture.
  • the non-aqueous electrolyte secondary battery of the present invention includes a long positive electrode, a long negative electrode, and a long separator that separates the positive electrode and the negative electrode in a spiral shape, and a non-aqueous electrode group. It has an electrolyte.
  • the electrode group is formed by winding the positive electrode, the negative electrode, and the separator using a core. More specifically, the positive electrode, the separator, and the negative electrode are overlapped with the separator interposed between the positive electrode and the negative electrode, with the end of the separator protruding in the longitudinal direction.
  • a spiral electrode group is formed by winding the stacked positive electrode, negative electrode, and separator in a state where the end of the protruding separator is sandwiched between a pair of cores.
  • a heat resistant porous membrane containing a heat resistant resin, a first polyolefin porous membrane covering the entire one surface of the heat resistant porous membrane, and a second polyolefin porous covering the other surface of the heat resistant porous membrane A separator having a membrane is prepared. The winding is performed in a state where the first polyolefin porous film is disposed on the positive electrode side and the second polyolefin porous film is disposed on the negative electrode side. Since the core is extracted from the electrode group after winding, the electrode group is usually not provided with the core in the secondary battery.
  • the separator includes a heat-resistant porous film containing a heat-resistant resin, a first polyolefin porous film that covers the entire surface on the positive electrode side of the heat-resistant porous film, and a second polyolefin porous film that covers the entire surface on the negative electrode side of the heat-resistant porous film And have.
  • the heat resistant porous membrane has higher heat resistance than the first and second polyolefin porous membranes. That is, the melting point or heat distortion temperature of the heat resistant resin contained in the heat resistant porous film is higher than the melting point or heat distortion temperature of the polyolefin contained in the first and second polyolefin porous films.
  • the heat-resistant resin a resin having a sufficiently high glass transition point, melting point, and thermal decomposition starting temperature accompanied by a chemical change is used.
  • the heat distortion temperature for example, a deflection temperature under load can be used.
  • the heat-resistant resin includes a resin having a heat distortion temperature calculated at a load of 1.82 MPa and a heat distortion temperature of 260 ° C. or higher in a deflection temperature measurement according to the testing method ASTM-D648 of the American Society for Testing Materials. It can be illustrated.
  • the upper limit of the heat distortion temperature is not particularly limited, but is about 400 ° C. from the viewpoint of the separator characteristics and the thermal decomposability of the resin. The higher the heat distortion temperature, the easier it is to maintain the separator shape even if heat shrinkage or the like occurs in the polyolefin porous membrane.
  • a resin having a heat distortion temperature of 260 ° C. or higher sufficiently high thermal stability can be exhibited even when the battery temperature rises due to heat storage during overheating (usually about 180 ° C.).
  • heat-resistant resins include aromatic polyamides such as polyarylate and aramid (fully aromatic polyamides); polyimide resins such as polyimide, polyamideimide, polyetherimide, and polyesterimide; aromatic polyesters such as polyethylene terephthalate; polyphenylene sulfide; Polyether nitrile; polyether ether ketone; polybenzimidazole and the like.
  • the heat resistant resins can be used alone or in combination of two or more. From the viewpoint of nonaqueous electrolyte retention and heat resistance, aramid, polyimide, polyamideimide and the like are preferable.
  • the heat-resistant porous membrane may contain an inorganic filler as necessary in order to further improve the heat resistance.
  • the inorganic filler include metals or metal oxides such as iron powder and iron oxide; ceramics such as silica, alumina, titania and zeolite; mineral fillers such as talc and mica; carbon fillers such as activated carbon and carbon fibers. Examples thereof include: carbides such as silicon carbide; nitrides such as silicon nitride; glass fibers, glass beads, and glass flakes.
  • the form of the inorganic filler is not particularly limited, and may be granular or powdery, fibrous, flaky, massive or the like. An inorganic filler can be used by 1 type or in combination of 2 or more types.
  • the proportion of the inorganic filler is, for example, 50 to 400 parts by weight, preferably 80 to 300 parts by weight with respect to 100 parts by weight of the heat resistant resin.
  • the 1st and 2nd polyolefin porous membrane is arrange
  • the thickness of the heat-resistant porous film is 1 to 16 ⁇ m, preferably 2 to 10 ⁇ m, from the viewpoint of the balance between safety against internal short circuit and battery capacity.
  • the thickness of the heat-resistant porous film is 1 to 16 ⁇ m, preferably 2 to 10 ⁇ m, from the viewpoint of the balance between safety against internal short circuit and battery capacity.
  • the porosity of the heat resistant porous membrane is, for example, 20 to 70%, preferably 25 to 65%, from the viewpoint of sufficiently securing the mobility of lithium ions.
  • the first and second polyolefin porous membranes are disposed at the position where the separator and the core are in contact. Further, it is desirable that the entire surface on the positive electrode side of the heat-resistant porous membrane is covered with the first polyolefin porous membrane, and the entire surface on the negative electrode side is covered with the second polyolefin porous membrane. In such a separator, the heat-resistant porous film is not exposed on the surface. Therefore, the core can be extracted more smoothly from the electrode group.
  • the alignment of the constituent elements of the electrode group is facilitated, so that the constituent elements of the electrode group (positive electrode, negative electrode and separator) are more effectively used. Dispersion can be suppressed.
  • polystyrene resins examples include polyethylene, polypropylene, and ethylene-propylene copolymer. These resins can be used alone or in combination of two or more. If necessary, other thermoplastic polymers may be used in combination with the polyolefin.
  • the first and second polyolefin porous membranes may be a porous film made of polyolefin, or may be a woven fabric or a non-woven fabric formed of polyolefin fibers.
  • the porous film is formed, for example, by forming a molten resin into a sheet and stretching it uniaxially or biaxially.
  • Each of the first and second polyolefin porous films may be a single layer (a porous film composed of one porous polyolefin layer) or may include a plurality of porous polyolefin layers.
  • the first polyolefin porous membrane and the second polyolefin porous membrane may be the same or different.
  • the first or second polyolefin porous membrane includes a plurality of porous polyolefin layers, it may be a laminate of a plurality of layers having different compositions, or may be a laminate of a woven fabric or a nonwoven fabric and a porous film. Good. Further, in the first and / or second polyolefin porous membrane, another (second) heat-resistant porous membrane may be interposed between the plurality of porous polyolefin layers as necessary. As another heat resistant porous membrane, a porous membrane similar to the above-mentioned heat resistant porous membrane can be used.
  • the number of porous polyolefin layers contained in the first or second polyolefin porous membrane is not particularly limited, but is, for example, 1 to 3 layers, preferably 1 or 2 layers.
  • the number of porous polyolefin layers may be different, but is preferably the same.
  • both the first and second polyolefin porous membranes have one or two porous polyolefin layers.
  • the first and second polyolefin porous membranes preferably have a porous polyethylene layer or a porous polypropylene layer as the porous polyolefin layer.
  • the first polyolefin porous film may be a porous film composed of one porous polypropylene layer, or may be a porous film composed of a plurality of porous polyolefin layers whose outermost layer is a porous polypropylene layer.
  • the second polyolefin porous film may be a porous film composed of one porous polyethylene layer, or may be a porous film composed of a plurality of porous polyolefin layers whose outermost layer is a porous polyethylene layer. .
  • the polyolefin porous membrane whose outermost layer is a porous polyethylene layer (including a polyolefin porous membrane consisting of one porous polyethylene layer) has an appropriate shutdown temperature and high safety.
  • a porous polyethylene layer including a polyolefin porous membrane consisting of one porous polyethylene layer
  • such a polyolefin porous membrane is used as the second polyolefin porous membrane, and the polyolefin porous membrane whose outermost layer is a porous polypropylene layer (including a polyolefin porous membrane consisting of one porous polypropylene layer) is used as the first polyolefin porous membrane. It is preferable to use it as a polyolefin porous membrane. In the separator having such a layer configuration, the shutdown function can be stably exhibited.
  • the thicknesses of the first and second polyolefin porous membranes are independently 2 to 17 ⁇ m, preferably 3 to 10 ⁇ m, from the standpoints of the core take-out property and shutdown property. Since the heat resistant porous membrane is harder than the polyolefin porous membrane, the total thickness of the first and second polyolefin porous membranes is preferably larger than the thickness of the heat resistant porous membrane. However, if the thickness of the polyolefin porous film is too large, the polyolefin porous film may be greatly shrunk when exposed to high temperature, the heat-resistant layer may be pulled, and the electrode lead portion may be exposed.
  • the total thickness of the first and second polyolefin porous membranes is, for example, 1.5 to 8 times, preferably 2 to 7 times, more preferably 3 to 6 times the thickness of the heat resistant porous membrane.
  • the porosity in the first or second polyolefin porous membrane (or porous polyolefin layer) is, for example, 20 to 80%, preferably 30 to 70%.
  • the average pore diameter in the first or second polyolefin porous membrane (or porous polyolefin layer) can be selected from the range of 0.01 to 10 ⁇ m, preferably 0, from the viewpoint of achieving both ionic conductivity and mechanical strength. .05 to 5 ⁇ m.
  • the first and second polyolefin porous membranes have lower hardness and lower friction coefficient than heat resistant porous membranes. Therefore, by arranging the first and second polyolefin porous membranes on the surface of the heat resistant porous membrane, the core can be smoothly extracted after the electrode group is formed as described above using the core. Therefore, the separator is not displaced or damaged by removing the core. As a result, it is possible to effectively suppress the occurrence of a leak failure and the accompanying yield reduction. In addition to such effects, the presence of the heat-resistant porous film and the first and second polyolefin porous films can achieve both heat resistance and shutdown performance at a high level.
  • the static friction coefficient of the surfaces of the first and second polyolefin porous membranes is 0.08 to 0.18, preferably 0.09 to 0.17.
  • the static friction coefficient can be measured by a method based on ASTM (D1894) by measuring the force when pulling the weight of a separator with a weight placed on a test plate with an apparatus equipped with a load cell.
  • the surface roughness of the first and second polyolefin porous membranes is preferably smaller than the surface roughness of the core.
  • the surface roughness (arithmetic average roughness Ra) of the core is 1, the surface roughness (arithmetic average roughness Ra) of the first and second polyolefin porous membranes is, for example, 0.1 to 0.9. Preferably, it is 0.2 to 0.5.
  • the deviation between the orientation direction of the polyolefin molecule on the surface of the polyolefin porous membrane and the extraction direction is small.
  • the deviation between the orientation direction of the polyolefin molecules on the surface and the extraction direction is, for example, 0 to 45 °, preferably 0 to 30 °.
  • the orientation of polyolefin molecules on the surface of the porous polyolefin film can be adjusted by adjusting the draw ratio of the film forming, the draw ratio, etc. in the process of manufacturing the porous film.
  • a polyolefin porous film or a porous polyolefin layer is formed by uniaxial stretching, the polyolefin molecules are oriented in the stretching direction, so that the deviation between the stretching direction and the core drawing direction is within the above range.
  • a polyolefin porous membrane or a porous polyolefin layer is disposed.
  • a polyolefin molecule can be orientated in a direction with a high draw ratio by making a draw ratio different about each draw direction.
  • the thickness of the separator can be selected, for example, from the range of 5 to 35 ⁇ m, and may preferably be 10 to 30 ⁇ m, or 12 to 20 ⁇ m. If the thickness of the separator is too small, a minute short circuit tends to occur inside the battery. If the thickness is too large, the thickness of the positive electrode and the negative electrode needs to be reduced, and the battery capacity may be insufficient.
  • the heat-resistant porous membrane and the first and second polyolefin porous membranes may be prepared separately and overlapped to constitute a separator. After forming any one porous film, another porous film may be formed on the surface of the porous film.
  • a separator having a laminated structure can be obtained directly by coextrusion molding using the constituent materials of each porous membrane. Moreover, you may combine these methods suitably.
  • the coating using a solution or dispersion of the constituent material of the porous membrane is combined with the bonding of the porous membrane produced by a known method.
  • the first and second polyolefin porous membranes are each produced by a known method for producing a porous membrane, and a constituent material of the heat resistant porous membrane (a heat resistant resin such as aramid, inorganic if necessary) is formed on the surface of one of the polyolefin porous membranes.
  • a solution or dispersion liquid containing a filler and a pore-forming agent such as calcium chloride is applied and dried as necessary.
  • a separator can be formed by laminating
  • the polyolefin porous film is laminated on the coated surface after the solution or dispersion is applied and before it is completely dried, the adhesion between the layers can be improved.
  • the heat resistant porous membrane and the first and second polyolefin porous membranes are integrated, it is possible to more effectively suppress the displacement and damage of the separator due to the removal of the core.
  • the separator can be produced as follows. First, a polyamic acid solution as a precursor is cast and then stretched to prepare a porous film. The first and second polyolefin porous membranes are overlapped on both sides of the obtained porous membrane and integrated at a temperature (a temperature lower than the melting temperature) at which the pores of the polyolefin porous membrane do not shut down (for example, with a hot roll) A separator can be produced by integrating the structure. Due to the heat roll, imidization of the polyamic acid proceeds, and the polyamic acid in the porous film is converted into polyimide or polyamideimide.
  • the polyamic acid may be converted to polyamide or polyamideimide by heating the polyamic acid porous film before superimposing it on the polyolefin porous film.
  • the porosity of the heat resistant porous film can be adjusted by changing the stretching conditions.
  • the polyolefin porous membrane may be prepared in advance using a known method such as coextrusion molding. Two polyolefin porous membranes are prepared, and a heat-resistant porous membrane is formed on the surface of one polyolefin porous membrane by coating as described above, and the other polyolefin porous membrane can be laminated. A separator using a polyolefin porous membrane having three or more porous polyolefin layers can also be produced by the same method or a method based thereon.
  • Solvents that dissolve or disperse the constituent material of the heat-resistant porous membrane include alcohols such as methanol, ethanol, and ethylene glycol (C 2-4 alkanol or C 2-4 alkane diol); ketones such as acetone; diethyl ether, tetrahydrofuran Examples thereof include ethers such as: amides such as dimethylformamide; nitriles such as acetonitrile; sulfoxides such as dimethyl sulfoxide; N-methyl-2-pyrrolidone (NMP) and the like. These solvents can be used alone or in combination of two or more.
  • the separator may contain a conventional additive (such as an antioxidant).
  • the additive may be contained in any of the heat resistant porous membrane and the first and second polyolefin porous membranes.
  • the antioxidant may be contained in the first and / or second polyolefin porous membrane.
  • the outermost layer may contain an antioxidant.
  • an antioxidant is contained in the surface layer of the separator, the oxidation resistance of the polyolefin porous membrane (or porous polyolefin layer) can be enhanced.
  • an antioxidant include at least one selected from the group consisting of a phenolic antioxidant, a phosphoric acid antioxidant, and a sulfur antioxidant.
  • phenolic antioxidant a phosphoric acid type antioxidant, or a sulfur type antioxidant.
  • Sulfur-based antioxidants are highly compatible with polyolefins. Therefore, it is preferable to make it contain in polyolefin porous membrane (polypropylene porous membrane etc.).
  • phenolic antioxidants examples include 2,6-di-t-butyl-p-cresol, 2,6-di-t-butyl-4-ethylphenol, triethylene glycol-bis [3- (3- Examples thereof include hindered phenol compounds such as [t-butyl-5-methyl-4-hydroxyphenyl) propionate] and n-octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate.
  • sulfur-based antioxidant examples include dilauryl thiodipropionate, distearyl thiodipropionate, and dimyristyl thiodipropionate.
  • phosphoric acid antioxidant tris (2,4-di-t-butylphenyl) phosphite is preferable.
  • FIG. 1 is a partially cutaway perspective view showing the configuration of a cylindrical lithium ion secondary battery according to an embodiment of the present invention.
  • the lithium ion secondary battery of FIG. 1 includes an electrode group 14 in which a strip-shaped positive electrode 5 and a strip-shaped negative electrode 6 are wound through a separator 7, and the electrode group 14 includes a non-aqueous electrolyte (not shown). And a bottomed cylindrical metal battery case 1.
  • the positive electrode 5 includes a positive electrode current collector made of a metal foil and a positive electrode active material layer attached to the surface thereof.
  • the negative electrode 6 is a negative electrode current collector made of a metal foil and a negative electrode active material layer attached to the surface thereof. And.
  • the positive electrode lead terminal 5 a is electrically connected to the positive electrode 5, and the negative electrode lead terminal 6 a is electrically connected to the negative electrode 6.
  • the electrode group 14 is housed in the battery case 1 together with the lower insulating plate 9 with the positive electrode lead terminal 5a led out, and the sealing plate 2 is welded to the end of the positive electrode lead terminal 5a.
  • the sealing plate 2 includes a positive electrode terminal 12 and a safety mechanism for a PTC element and an explosion-proof valve (not shown).
  • the lower insulating plate 9 is disposed between the bottom surface of the electrode group 14 and the negative electrode lead terminal 6 a led out downward from the electrode group 14, and the negative electrode lead terminal 6 a is welded to the inner bottom surface of the battery case 1.
  • An upper insulating ring (not shown) is placed on the upper surface of the electrode group 14, and a stepped portion protruding inward is formed on the upper side surface of the battery case 1 above the upper insulating ring. Thereby, the electrode group 14 is held in the battery case 1.
  • a predetermined amount of non-aqueous electrolyte is injected into the battery case 1, and the positive electrode lead terminal 5 a is bent and accommodated in the battery case 1.
  • a sealing plate 2 having a gasket 13 at its peripheral edge is placed. Then, the open end of the battery case 1 is caulked and sealed inward to produce a cylindrical lithium ion secondary battery.
  • the electrode group 14 includes a positive electrode 5, a separator 7, a negative electrode 6, and another separator 7 that are stacked in this order and wound in a spiral shape using a core (not shown). It is produced by extracting.
  • the components of the electrode group 14 (the positive electrode 5, the negative electrode 6, and the separator 7) are overlapped with the end portions of the two separators 7 protruding from the end portions in the longitudinal direction of the positive electrode 5 and the negative electrode 6. In a state where the protruding end portion of the separator 7 is sandwiched between a pair of cores, the constituent elements of the electrode group 14 are wound. Only a few separators 7 may be wound for the first few turns (for example, the first to third turns). A portion where only the separator 7 is wound is shown in FIG. 1 as a separator portion 16.
  • the holding by the core may be loosened by slightly rotating the core in the direction opposite to the winding direction.
  • the core is composed of two members so that the separator 7 can be sandwiched, and the portions of these members that sandwich the separator 7 are made flat so that the separator 7 can be held.
  • the separator 7 includes a heat-resistant porous film as an intermediate layer and first and second polyolefin porous films as surface layers disposed on both surfaces of the heat-resistant porous film.
  • the heat-resistant porous film is not exposed on the front and back surfaces (particularly, the front and back surfaces in contact with the core). Therefore, the sliding property of the surface is high, the contact resistance between the core and the separator 7 is reduced, and the core can be pulled out smoothly.
  • Such a separator is particularly useful when an electrode group is produced by winding with a high tension together with a positive electrode or a negative electrode having a large amount of positive electrode active material or negative electrode active material. For example, since the 18650 type high capacity cylindrical battery has a nominal capacity of 1800 mA or more, preferably 2000 mA or more, the use of the separator is suitable.
  • the outer diameter of the electrode group tends to increase.
  • the adhesion between the core and the separator becomes stronger.
  • the adhesiveness between the separator portion at the beginning of rolling and the core is high, and the separator tends to be displaced following the extraction of the core.
  • the core can be removed very smoothly by using a separator in which the first and second polyolefin porous membranes are arranged on the surface layer.
  • the wound electrode group may be a flat electrode group having an oval end surface perpendicular to the winding axis.
  • the electrode group 14 is subjected to drying prior to or after accommodation in the battery case 1.
  • the drying condition is preferably an atmosphere of low humidity and high temperature. However, if the temperature is too high, the separator 7 may be thermally contracted to block the micropores. In this case, since the porosity and the Gurley number change, the battery characteristics are adversely affected. Therefore, drying is preferably performed under conditions where the dew point is ⁇ 30 ° C. to ⁇ 80 ° C. and the temperature is 80 ° C. to 120 ° C.
  • FIG. 2 to 5 are schematic cross-sectional views showing an embodiment of the separator 7.
  • the separator 7 interposed between the positive electrode 5 and the negative electrode 6 is composed of a heat-resistant porous film 7a as an intermediate layer and a single porous polyethylene layer formed on both surfaces of the heat-resistant porous film 7a. It has a three-layer structure having a polyethylene porous membrane 7b. The heat-resistant porous membrane 7a is entirely covered with a polyethylene porous membrane 7b.
  • the heat-resistant porous film 7a as an intermediate layer has one surface entirely covered with a polyethylene porous film 7b, and the other surface entirely composed of one porous polypropylene layer. 7c.
  • the polypropylene porous film 7 c faces the positive electrode 5.
  • a polyethylene porous film 7b is disposed on the surface of the heat-resistant porous film 7a serving as an intermediate layer on the negative electrode 6 side, and the first polyolefin porous film 7d is porous on the surface on the positive electrode 5 side.
  • the polyethylene layer 7e and the porous polypropylene layer 7f are arranged in this order.
  • the porous polypropylene layer 7 f located on the outermost layer faces the positive electrode 5.
  • polyolefin porous films 7d and 7g having a two-layer structure of a porous polyethylene layer 7e and a porous polypropylene layer 7f are formed on both surfaces of a heat-resistant porous film 7a as an intermediate layer.
  • the surface of the heat resistant porous membrane 7a on the positive electrode 5 side is in contact with the porous polypropylene layer 7f, and the surface on the negative electrode 6 side is in contact with the porous polyethylene layer 7e.
  • Each of such separators 7 has a polyolefin porous film having a high slip property on the surface layer. For this reason, even if the separator 7 is sandwiched between the cores and wound together with the positive electrode 5 and the negative electrode 6, the cores can be smoothly extracted, and the separators may be displaced or damaged following the core during extraction. There's nothing to do.
  • the first and second polyolefin porous membranes are arranged on the entire surface of the heat resistant porous membrane, the alignment is easier than in the case where the first and second polyolefin porous membranes are arranged only at the beginning of the rolling, and the displacement caused by winding is effective. Can be suppressed.
  • the positive electrode includes a long (sheet or strip) positive electrode current collector and a positive electrode active material layer attached to the surface of the positive electrode current collector.
  • a known positive electrode current collector for non-aqueous electrolyte secondary battery applications for example, a metal foil formed of aluminum, aluminum alloy, stainless steel, titanium, titanium alloy, or the like can be used.
  • the material of the positive electrode current collector can be appropriately selected in consideration of workability, practical strength, adhesion to the positive electrode active material layer, electronic conductivity, corrosion resistance, and the like.
  • the thickness of the positive electrode current collector is, for example, 1 to 100 ⁇ m, preferably 10 to 50 ⁇ m.
  • the positive electrode active material layer may contain a conductive agent, a binder, a thickener and the like in addition to the positive electrode active material.
  • a lithium-containing transition metal compound that accepts lithium ions as a guest can be used.
  • a composite metal oxide of at least one metal selected from cobalt, manganese, nickel, chromium, iron and vanadium with lithium LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiCo x Ni (1-x) O 2 ( 0 ⁇ x ⁇ 1), LiCo y M 1-y O 2 (0.6 ⁇ y ⁇ 1), LiNi z M 1-z O 2 (0.6 ⁇ z ⁇ 1), LiCrO 2 , ⁇ LiFeO 2 , LiVO 2 etc.
  • LiCoO 2 , LiMn 2 O 4 LiNiO 2 , LiCo x Ni (1-x) O 2 ( 0 ⁇ x ⁇ 1), LiCo y M 1-y O 2 (0.6 ⁇ y ⁇ 1), LiNi z M 1-z O 2 (0.6 ⁇ z ⁇ 1), LiCrO 2 , ⁇ LiFeO 2 , LiVO 2 etc.
  • M is at least one element selected from the group consisting of Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb and B (in particular, Mg And / or Al).
  • the positive electrode active materials can be used alone or in combination of two or more.
  • the binder is not particularly limited as long as it can be dissolved or dispersed in the dispersion medium by kneading.
  • the binder include fluororesins, rubbers, acrylic polymers or vinyl polymers (monomers or copolymers of monomers such as acrylic monomers such as methyl acrylate and acrylonitrile, vinyl monomers such as vinyl acetate, etc.). it can.
  • the fluororesin include polyvinylidene fluoride, a copolymer of vinylidene fluoride and propylene hexafluoride, and polytetrafluoroethylene.
  • rubbers include acrylic rubber, modified acrylonitrile rubber, and styrene butadiene rubber (SBR). You may use a binder individually or in combination of 2 or more types.
  • the binder may be used in the form of a dispersion dispersed in a dispersion medium.
  • Examples of the conductive agent include acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black and other carbon blacks; various graphites such as natural graphite and artificial graphite; conductive fibers such as carbon fibers and metal fibers Can be used. You may use a thickener as needed. Examples of the thickener include ethylene-vinyl alcohol copolymers, cellulose derivatives (carboxymethyl cellulose, methyl cellulose, etc.) and the like.
  • the dispersion medium is not particularly limited as long as the binder can be dissolved or dispersed, and either an organic solvent or water (including warm water) can be used depending on the affinity of the binder for the dispersion medium.
  • the organic solvent include N-methyl-2-pyrrolidone; ethers such as tetrahydrofuran; ketones such as acetone, methyl ethyl ketone and cyclohexanone; amides such as N, N-dimethylformamide and dimethylacetamide; sulfoxides such as dimethyl sulfoxide; Examples include tetramethylurea. You may use a dispersion medium individually or in combination of 2 or more types.
  • the positive electrode active material layer is prepared as a positive electrode active material, and if necessary, a slurry-like mixture in which a binder, a conductive agent and / or a thickener are kneaded together with a dispersion medium, and this mixture is used as a positive electrode current collector. It can be formed by adhering. Specifically, the positive electrode active material layer can be formed by applying a mixture to the surface of the positive electrode current collector by a known coating method, drying, and rolling if necessary. Part of the positive electrode current collector is formed with a portion where the surface of the current collector is exposed without forming the positive electrode active material layer, and the positive electrode lead is welded to the exposed portion.
  • the positive electrode is preferably superior in flexibility.
  • the mixture can be applied using a known coater, for example, a slit die coater, a reverse roll coater, a lip coater, a blade coater, a knife coater, a gravure coater, or a dip coater. Drying after coating is preferably performed under conditions close to natural drying, but may be dried at a temperature range of 70 ° C. to 200 ° C. for 10 minutes to 5 hours in consideration of productivity.
  • the active material layer can be rolled by, for example, using a roll press machine and repeating the rolling several times under a condition of a linear pressure of 1000 to 2000 kgf / cm (19.6 kN / cm) until a predetermined thickness is reached. . If necessary, the linear pressure may be changed and rolled.
  • the positive electrode active material layer can be formed on one side or both sides of the positive electrode current collector.
  • the active material density in the positive electrode active material layer is 3 to 4 g / ml, preferably 3.4 to 3.9 g / ml, 3.5 to 3.7 g / ml when a lithium-containing transition metal compound is used as the active material. is there.
  • the thickness of the positive electrode is, for example, 70 to 250 ⁇ m, preferably 100 to 210 ⁇ m.
  • the negative electrode includes a long (sheet-shaped or strip-shaped) negative electrode current collector and a negative electrode active material layer attached to the surface of the negative electrode current collector.
  • the negative electrode current collector include known negative electrode current collectors for non-aqueous electrolyte secondary battery applications, such as metal foils formed of copper, copper alloys, nickel, nickel alloys, stainless steel, aluminum, aluminum alloys, and the like. Can be used.
  • the negative electrode current collector is preferably a copper foil or a metal foil made of a copper alloy in consideration of processability, practical strength, adhesion to the positive electrode active material layer, electronic conductivity, and the like.
  • the form of the current collector is not particularly limited, and may be, for example, a rolled foil, an electrolytic foil, a perforated foil, an expanded material, a lath material, or the like.
  • the thickness of the negative electrode current collector is, for example, 1 to 100 ⁇ m, preferably 2 to 50 ⁇ m.
  • the negative electrode active material layer may contain a conductive agent, a binder, a thickener and the like in addition to the negative electrode active material.
  • a material having a graphite type crystal structure capable of reversibly occluding and releasing lithium ions such as natural graphite, spherical or fibrous artificial graphite, non-graphitizable carbon (hard carbon), easy graphite Examples thereof include carbon materials such as carbonizable carbon (soft carbon).
  • a carbon material having a graphite-type crystal structure in which a lattice spacing (002) interval (d002) is 0.3350 to 0.3400 nm is preferable.
  • silicon; silicon-containing compounds such as silicide; lithium alloys containing at least one selected from tin, aluminum, zinc, and magnesium, and various alloy composition materials can also be used.
  • Examples of the silicon-containing compound include silicon oxide SiO ⁇ (0.05 ⁇ ⁇ 1.95). ⁇ is preferably 0.1 to 1.8, more preferably 0.15 to 1.6. In the silicon oxide, a part of silicon may be substituted with one or more elements. Examples of such elements include B, Mg, Ni, Co, Ca, Fe, Mn, Zn, C, N, and Sn. As the binder, the conductive agent, the thickener, and the dispersion medium, those exemplified for the positive electrode can be used.
  • the negative electrode active material layer is not limited to the coating using a binder or the like, but can be formed by a known method.
  • the negative electrode active material may be formed by depositing on the current collector surface by a vapor phase method such as a vacuum deposition method, a sputtering method, or an ion plating method.
  • a slurry-like mixture containing a negative electrode active material, a binder, and a conductive material as necessary may be formed by the same method as that for the positive electrode active material layer.
  • the negative electrode active material layer may be formed on one side of the negative electrode current collector or on both sides.
  • the active material density is 1.3 to 2 g / ml, preferably 1.4 to 1.9 g / ml, more preferably 1 .5 to 1.8 g / ml.
  • the thickness of the negative electrode is, for example, 100 to 250 ⁇ m, preferably 110 to 210 ⁇ m. A flexible negative electrode is preferred.
  • the nonaqueous electrolyte is prepared by dissolving a lithium salt in a nonaqueous solvent.
  • the non-aqueous solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate; chain carbonates such as dimethyl carbonate and diethyl carbonate; lactones such as ⁇ -butyrolactone; halogenated alkanes such as 1,2-dichloroethane; Alkoxyalkanes such as 1,2-dimethoxyethane and 1,3-dimethoxypropane; ketones such as 4-methyl-2-pentanone; ethers such as 1,4-dioxane, tetrahydrofuran and 2-methyltetrahydrofuran; acetonitrile, propionitrile Nitriles such as butyronitrile, valeronitrile and benzonitrile; sulfolane, 3-methyl-sulfolane; amides such as dimethylformamide; sul
  • lithium salts having a strong electron-withdrawing property such as LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ). 2 and LiC (SO 2 CF 3 ) 3 .
  • a lithium salt can be used individually or in combination of 2 or more types.
  • the concentration of the lithium salt in the nonaqueous electrolyte is, for example, 0.5 to 1.5M, preferably 0.7 to 1.2M.
  • An additive may be appropriately added to the nonaqueous electrolyte.
  • vinylene carbonate (VC), cyclohexylbenzene (CHB), and modified products thereof may be used.
  • VC vinylene carbonate
  • CHB cyclohexylbenzene
  • modified products thereof may be used.
  • an additive that acts when the lithium ion secondary battery is overcharged for example, terphenyl, cyclohexylbenzene, diphenyl ether, or the like may be used.
  • the additives may be used alone or in combination of two or more.
  • the ratio of these additives is not particularly limited, but is, for example, about 0.05 to 10% by weight with respect to the non-aqueous electrolyte.
  • the battery case may be made of metal or laminate film.
  • the battery case material is preferably an aluminum alloy containing a trace amount of a metal such as manganese or copper, or a steel plate with an inexpensive nickel plating.
  • the shape of the battery case may be a cylindrical shape, a square shape, or the like depending on the shape of the electrode group.
  • the nonaqueous electrolyte secondary battery of the present invention can be preferably used as a 18650 type cylindrical battery or the like.
  • Example 1 (1) Preparation of positive electrode 5 An appropriate amount of N-methyl-2-pyrrolidone, 100 parts by weight of lithium cobaltate as a positive electrode active material, 2 parts by weight of acetylene black as a conductive agent, and polyvinylidene fluoride resin as a binder 3 parts by weight was added and kneaded to prepare a slurry mixture. This slurry was intermittently applied to both sides of a strip-shaped aluminum foil (thickness: 15 ⁇ m) and dried. Next, rolling was performed 2-3 times with a roller at a linear pressure of 1000 kgf / cm (9.8 kN / cm), and the thickness was adjusted to 180 ⁇ m. A positive electrode 5 having a positive electrode active material layer on its surface was produced by cutting into a size of 57 mm in width and 620 mm in length. The active material density of the positive electrode active material layer was 3.6 g / ml.
  • the positive electrode lead terminal 5a made of aluminum was ultrasonically welded to the exposed portion of the aluminum foil to which the mixture was not applied.
  • an insulating tape made of polypropylene resin was attached so as to cover the positive electrode lead terminal 5a.
  • Negative Electrode 6 In a suitable amount of water, 100 parts by weight of scaly graphite capable of occluding and releasing lithium as a negative electrode active material, and an aqueous dispersion of styrene butadiene rubber (SBR) as a solid content as a solid content 1 1 part by weight of sodium carboxymethyl cellulose as a thickener and a thickener was added and kneaded, and these components were dispersed to prepare a slurry mixture. This slurry was applied intermittently and continuously on both sides of a strip-shaped copper foil (thickness 10 ⁇ m), and dried at 110 ° C. for 30 minutes.
  • SBR styrene butadiene rubber
  • the negative electrode 6 which has a negative electrode active material layer on the surface was produced by cutting into a size having a width of 59 mm and a length of 645 mm.
  • the active material density of the negative electrode active material layer is It was 1.6 g / ml.
  • the negative electrode lead terminal 6a made of nickel was resistance-welded to the exposed portion of the copper foil to which the mixture was not applied.
  • an insulating tape made of polypropylene resin was attached so as to cover the negative electrode lead terminal 6a.
  • a separator 7 having a three-layer structure shown in FIG. 2 was produced, in which a heat-resistant porous membrane 7a containing an aramid as an intermediate layer was sandwiched between two polyethylene porous membranes 7b. Specifically, an N-methyl-2-pyrrolidone (NMP) solution of aramid (pore forming agent) is formed on one surface of a polyethylene porous membrane (thickness 8.5 ⁇ m) 7b at a ratio such that the thickness of the separator is 20 ⁇ m. As an anhydrous calcium chloride). Before the drying was completed, a polyethylene porous film 7b similar to the above was bonded to the coated surface and dried.
  • NMP N-methyl-2-pyrrolidone
  • aramid pore forming agent
  • the obtained separator 7 was cut into a size having a width of 60.9 mm, and used for production of an electrode group.
  • An aramid NMP solution was prepared as follows. First, in a reaction tank, a predetermined amount of dry anhydrous calcium chloride was added to an appropriate amount of NMP and heated to be completely dissolved. After returning this calcium chloride-added NMP solution to room temperature, a predetermined amount of paraphenylenediamine (PPD) was added and completely dissolved. Next, terephthalic acid dichloride (TPC) was added dropwise little by little, and polyparaphenylene terephthalamide (PPTA) was synthesized by a polymerization reaction. After completion of the reaction, the mixture was deaerated by stirring for 30 minutes under reduced pressure. The obtained polymerization solution was further appropriately diluted with a calcium chloride-added NMP solution to prepare an NMP solution of an aramid resin.
  • TPC terephthalic acid dichloride
  • PPTA polyparaphenylene terephthalamide
  • the positive electrode 5 and the negative electrode 6 were wound in a vortex shape with the separator 7 interposed therebetween to form the electrode group 14. Specifically, the positive electrode 5, the separator 7, and the negative electrode 6 are interposed between the positive electrode 5 and the negative electrode 6, and the end of the separator 7 in the longitudinal direction protrudes from the positive electrode 5 and the negative electrode 6. In this state, they were superposed.
  • the protruding end portions of the separator were sandwiched between a pair of cores, and wound around the winding core as a winding shaft, thereby forming a spiral electrode group 14. After winding, the separator was cut, the holding by the core was loosened, and the core was removed from the electrode group. In the electrode group, the length of the separator was 700 to 720 mm.
  • a nickel-plated steel plate (thickness 0.20 mm) is placed in a metal battery case (diameter 17.8 mm, total height 64.8 mm) 1 produced by press molding.
  • the electrode group 14 and the lower insulating plate 9 were accommodated.
  • the lower insulating plate 9 was disposed in a state of being sandwiched between the bottom surface of the electrode group 14 and the negative electrode lead terminal 6 a led out downward from the electrode group 14.
  • the negative electrode lead terminal 6 a was resistance welded to the inner bottom surface of the battery case 1.
  • An upper insulating ring is placed on the upper surface of the electrode group 14 accommodated in the battery case 1, and an inward projecting step is formed above the upper insulating ring and on the upper side surface of the battery case 1. 14 was held in case 1.
  • the sealing plate 2 was laser welded to the positive electrode lead terminal 5a led out above the battery case 1, and then a nonaqueous electrolyte was injected.
  • the nonaqueous electrolyte was prepared by dissolving LiPF 6 in a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (volume ratio 2: 1) to a concentration of 1.0 M, and cyclohexylbenzene. It was prepared by adding 0.5% by weight.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • the positive electrode lead terminal 5 a was bent and accommodated in the battery case 1, and the sealing plate 2 provided with the gasket 13 at the periphery was placed on the stepped portion.
  • the cylindrical lithium ion secondary battery was produced by crimping the opening edge part of the battery case 1 inward.
  • This battery is a 18650 type having a diameter of 18.1 mm and a height of 65.0 mm, and has a nominal capacity of 2600 mAh. 300 cylindrical lithium ion secondary batteries were produced.
  • Example 2 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the separator 7 having the three-layer structure shown in FIG. 3 was used as the separator.
  • the separator 7 was produced in the same manner as in Example 1 except that a polypropylene porous film (thickness 8.5 ⁇ m) 7c was used instead of one of the two polyethylene porous films 7b.
  • the separator 7 was disposed so that the polypropylene porous film 7 c faced the positive electrode 5.
  • Example 3 A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the separator 7 having a three-layer structure in which the intermediate layer 7a in FIG. 2 is a heat-resistant porous film containing polyimide was used as the separator.
  • the separator 7 was produced by the following procedure.
  • Example 4 A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 2 except that the separator 7 having a three-layer structure in which the intermediate layer 7a in FIG. 3 is a heat-resistant porous film containing polyimide was used as the separator.
  • the separator 7 was produced in the same manner as in Example 3 except that the polypropylene porous film 7c was used instead of the polyethylene porous film 7b.
  • Example 5 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the separator 7 having a three-layer structure in which the intermediate layer 7a in FIG. 2 is a heat-resistant porous film containing polyamideimide was used as the separator.
  • an NMP solution of polyamic acid was applied to one surface of a polyethylene porous membrane (thickness 8.5 ⁇ m) 7 b at a ratio such that the thickness of the separator was 20 ⁇ m.
  • the NMP solution of polyamic acid was obtained by mixing calcium chloride, trimellitic anhydride monochloride, and diamine in NMP.
  • a polyethylene porous film 7b similar to the above was bonded to the coated surface and dried.
  • the obtained laminate was washed with water to remove calcium chloride.
  • a separator 7 was produced by applying hot air at 80 ° C. to the laminate to dehydrate and cyclize the polyamic acid and convert it into polyamideimide.
  • Example 6 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 2 except that the separator 7 having a three-layer structure in which the intermediate layer 7a in FIG. 3 is a heat-resistant porous film containing polyamideimide was used.
  • the separator 7 was produced in the same manner as in Example 5 except that a polypropylene porous film (thickness 8.5 ⁇ m) 7c was used instead of one of the two polyethylene porous films 7b.
  • Example 7 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the separator 7 having a four-layer structure shown in FIG. 4 was used as the separator.
  • the separator 7 is replaced with one of the two polyethylene porous membranes 7b, and is composed of a porous polyethylene layer (4 ⁇ m) 7e and a porous propylene layer (thickness 4.5 ⁇ m) produced by coextrusion molding. It was produced in the same manner as Example 1 except that the polyolefin porous membrane 7d having the structure was used.
  • the separator 7 was disposed so that the porous polypropylene layer 7 f faced the positive electrode 5.
  • Example 8 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the separator 7 having a five-layer structure shown in FIG.
  • the separator 7 was produced in the same manner as in Example 1 except that two porous polyolefin membranes 7d and 7g were used instead of the two polyethylene porous membranes 7b.
  • the polyolefin porous films 7d and 7g were both porous films composed of a porous polyethylene layer (4 ⁇ m) 7e and a porous propylene layer (thickness 4.5 ⁇ m) produced by coextrusion molding.
  • the porous polyethylene layer 7e of the polyolefin porous film 7d was disposed on the surface of the heat-resistant porous film 7a on the positive electrode side, and the porous polypropylene layer 7f of the polyolefin porous film 7g was disposed on the surface of the negative electrode side. Further, in the electrode group of the non-aqueous electrolyte secondary battery, the separator 7 was disposed so that the porous polypropylene layer 7 f faced the positive electrode 5.
  • Example 1 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the separator 17 having the three-layer structure shown in FIG. 6 was used as the separator.
  • the separator 17 was produced by the following procedure.
  • aramid was applied to the surface of the porous polyethylene layer of the polyolefin porous film having a two-layer structure composed of the porous propylene layer (thickness 8.5 ⁇ m) 17f and the porous polyethylene layer (thickness 8.5 ⁇ m) 17e.
  • the separator 17 was produced by forming the heat-resistant porous film 17a containing.
  • a separator was disposed so that the heat-resistant porous film 17a was opposed to the negative electrode 6.
  • the core and the heat-resistant porous film 17a were in contact.
  • Example 2 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the separator 27 having a three-layer structure shown in FIG. 7 was used as the separator.
  • the separator 27 was produced by forming a heat-resistant porous film 27a containing aramid on both surfaces of a polyethylene porous film (thickness 14 ⁇ m) 27b in the same manner as in Example 1.
  • Example 3 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the separator 37 having the two-layer structure shown in FIG. 8 was used as the separator.
  • the separator 37 was produced by forming a heat-resistant porous film 37a containing aramid on one surface of a polyethylene porous film (thickness 17 ⁇ m) 37b in the same manner as in Example 1.
  • the separator 37 was disposed so that the heat-resistant porous film 37 a faces the positive electrode 5.
  • the core and the heat-resistant porous film 37a were in contact.
  • the defect rate based on a leak test was evaluated.
  • a high voltage 250 V
  • the battery case that is the external terminal of the negative electrode before injecting the nonaqueous electrolyte in the production of the secondary battery, and the current waveform at that time
  • the evaluation results are shown in Table 1 together with the layer structure of the separator.
  • all the separators used in Examples and Comparative Examples had a thickness of 20 ⁇ m, and the heat-resistant porous film had a thickness of 3 ⁇ m.
  • the defect rate of the leak inspection is expressed by the number and percentage of 300 secondary batteries.
  • the polyethylene porous film is represented by PE
  • the polypropylene porous film is represented by PP.
  • Polyimide was represented by PI
  • PAI polyamideimide
  • the nonaqueous electrolyte secondary batteries of Examples 1 to 8 using the separator 7 having a three-layer to five-layer structure did not have any defects due to a leak test at the time of battery assembly.
  • 3 out of 300 secondary batteries in Comparative Example 1, 2 out of 300 secondary batteries in Comparative Example 2, and 7 out of 300 secondary batteries in Comparative Example 3 are defective. confirmed.
  • the first and second polyolefin porous membranes were disposed on the surface of the heat-resistant porous membrane to form a well-balanced layer structure. Therefore, after producing the electrode group 14 by sandwiching and winding the separator with the core, the core could be smoothly extracted. Even after the core is pulled out, the separator portion 16 at the beginning of rolling can be prevented from being displaced or damaged in the direction in which the core is pulled out, which is considered to have reduced the defective rate of leak inspection during battery assembly.
  • the battery of the present invention is particularly useful for a lithium ion secondary battery having a wound electrode group with an increased energy density such as higher density of a positive electrode active material and a negative electrode active material.

Abstract

 本発明の非水電解質二次電池は、長尺の正極集電体及び前記正極集電体の表面に付着した正極活物質層を含む正極、長尺の負極集電体及び前記負極集電体の表面に付着した負極活物質層を含む負極、並びに前記正極と前記負極との間を隔絶するセパレータを、渦捲状に捲回した電極群、並びに非水電解質を備え、前記セパレータが、耐熱性樹脂を含む耐熱性多孔膜と、前記耐熱性多孔膜の正極側の面全体を覆う第1ポリオレフィン多孔膜と、前記耐熱性多孔膜の負極側の面全体を覆う第2ポリオレフィン多孔膜とを有し、前記耐熱性樹脂の融点又は熱変形温度が、前記第1及び第2ポリオレフィン多孔膜に含まれるポリオレフィンの融点又は熱変形温度よりも高く、前記耐熱性多孔膜が厚み1~16μmを有し、前記第1ポリオレフィン多孔膜が厚み2~17μmを有し、前記第2ポリオレフィン多孔膜が厚み2~17μmを有し、前記セパレータが厚み5~35μmを有する。

Description

非水電解質二次電池及びその製造方法
 本発明は、製造時の不良が低減され、高い生産性で製造可能な非水電解質二次電池に関する。具体的には、電極群からの捲芯の抜き取りに伴うセパレータの損傷等による不良が抑制された非水電解質二次電池に関する。
 リチウムイオン二次電池に代表される非水電解質二次電池は、大きなエネルギー密度を有する。しかし、外部短絡、過充電などの誤使用に伴い、電池温度が急激に上昇するため、安全性を十分に確保する必要がある。安全性の確保には、PTC(Positive Temperature Coefficient:正温度特性)素子やSU回路(保護回路)などの安全機構を利用する場合の他、セパレータを構成する樹脂の軟化又は溶融特性を利用する場合などがある。
 セパレータとして汎用されているポリオレフィン多孔膜では、電池温度がある温度まで上昇した場合、ポリオレフィンが軟化することにより膜の細孔が目詰まりする。そのため、イオン伝導性が消失し、電池反応が停止する。このような機能をシャットダウン機能という。しかし、シャットダウン後も電池温度が上昇した場合には、ポリオレフィンが溶融するメルトダウンが生じ、結果として、正負極間で短絡が起こる。
 シャットダウン及びメルトダウンは、双方とも、セパレータを構成する樹脂の軟化又は溶融特性に起因する。そのため、シャットダウン機能を高めながら、メルトダウンを効果的に防止することは困難である。例えば、シャットダウン機能の点から、セパレータの熱溶融性を高めると、メルトダウン温度も低くなる。
 このような問題を解決するため、ポリオレフィン多孔膜と、耐熱性層とを組み合わせた複合膜を、セパレータとして使用することが提案されている。
 例えば、特許文献1は、ポリイミド、ポリアミドイミド又はアラミドなどを含む多孔質耐熱層と、ポリエチレンを含むシャットダウン層とを有する複合膜を、セパレータとして用いている。このセパレータは、中間層がポリエチレン、正極側がポリプロピレン、負極側が耐熱層である3層構造を有している。特許文献1では、このような構成により、安全性を向上させることが提案されている。
 特許文献2は、ポリエチレンの中間層と、その両面の耐熱層とを含む3層構造のセパレータにより、シャットダウン時の収縮を抑制して安全性を向上することを提案している。
 一方、非水電解質二次電池の多くは、それぞれ長尺の正極、負極及びセパレータを渦捲状に捲回した電極群を使用する。このような電極群の捲き始めの部分には、重なり合った2枚のセパレータが存在し、正極及び負極が存在しない。捲回は、2枚のセパレータを一対の捲芯で挟持した状態で開始する。電極群の形成後、捲き始めの部分のセパレータの挟持を緩めて、捲芯を抜き取る。しかし、捲芯を抜き取る際に、セパレータがズレる場合があり、結果として製品において、電流のリークが生じ、製品不良が発生する。
 このようなセパレータのズレを抑制するため、特許文献3は、ポリオレフィンセパレータの捲回開始部分に滑り性のよい樹脂層を設けることを提案している。
特開2006-164873号公報 特開2007-324073号公報 特開2008-108492号公報
 特許文献1及び2では、多孔質耐熱層がセパレータの最表層に位置する。多孔質耐熱層は、硬度及び摩擦係数が高く、滑り性も低い。渦捲状の電極群を構成する場合、このような多孔質耐熱層が、捲芯と接するため、捲回後に捲芯をスムーズに抜き取ることは困難である。捲芯の抜き取り性が低い場合、捲き始め部分のセパレータがズレたり、損傷したりする。
 特許文献1のセパレータでは、片側の最表層に多孔質耐熱層が配置されているため、層構造のバランスが悪い。そのため、捲回の際に、捲きズレが起こる場合がある。このような捲きズレは、電池特性及び電池の安全性などに影響する。また、電池を組み立てる場合の電流のリーク検査において不良率を高める要因にもなっている。
 特許文献3では、ポリオレフィンセパレータのみを用いるため、耐熱性が不十分である。また、捲き始め部分にのみ滑り性を付与するため、セパレータ同士の位置合わせ、並びにセパレータと正極及び/又は負極との位置合わせを、正確に行う必要がある。そのため、生産性及び不留りが低下し、コストが上昇する。
 本発明は、上記問題点に鑑みてなされたものであり、捲芯の円滑な引き抜きにより、製造時の不良が低減されるとともに、安全性が向上された非水電解質二次電池を提供する。
 本発明の一局面は、長尺(シート状もしくは帯状)の正極集電体及び前記正極集電体の表面に付着した正極活物質層を含む正極、長尺(シート状もしくは帯状)の負極集電体及び前記負極集電体の表面に付着した負極活物質層を含む負極、並びに前記正極と前記負極との間を隔絶するセパレータを、渦捲状に捲回した電極群、並びに非水電解質を備え、前記セパレータが、耐熱性樹脂を含む耐熱性多孔膜と、前記耐熱性多孔膜の正極側の面全体を覆う第1ポリオレフィン多孔膜と、前記耐熱性多孔膜の負極側の面全体を覆う第2ポリオレフィン多孔膜とを有する、非水電解質二次電池に関する。前記耐熱性樹脂の融点又は熱変形温度は、前記第1及び第2ポリオレフィン多孔膜に含まれるポリオレフィンの融点又は熱変形温度よりも高い。前記耐熱性多孔膜は厚み1~16μmを有し、前記第1ポリオレフィン多孔膜は厚み2~17μmを有し、前記第2ポリオレフィン多孔膜は厚み2~17μmを有し、前記セパレータは厚み5~35μmを有する。
 本発明の他の一局面は、
 上記のセパレータを準備し、
 長尺(シート状又は帯状)の正極集電体及び前記正極集電体の表面に付着した正極活物質層を含む正極と、長尺(シート状又は帯状)の負極集電体及び前記負極集電体の表面に付着した負極活物質層を含む負極とを準備し、
 前記正極と、前記負極と、前記正極と前記負極との間を隔絶するように配置した前記セパレータとを、前記セパレータの長手方向の一端部を一対の捲芯で挟持した状態で、渦捲状に捲回して電極群を形成し、
 前記捲芯を前記電極群から抜き取り、
 前記電極群を、非水電解質とともに電池ケースに収容する、非水電解質二次電池の製造方法に関する。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
 本発明によれば、セパレータが高い耐熱性を有するにもかかわらず、捲芯を用いて捲回された電極群から捲芯を円滑に引き抜くことができる。これにより、セパレータのズレ又は損傷などを効果的に抑制することができる。そのため、安全性に優れた非水電解質二次電池を、製造時の不良を低減しながら、高い生産性で提供することができる。
本発明の非水電解質二次電池の一例を示す一部切り欠き斜視図である。 非水電解質二次電池の一実施形態における3層構造のセパレータと、正極及び負極との配置を示す断面模式図である。 非水電解質二次電池の一実施形態における3層構造のセパレータと、正極及び負極との配置を示す断面模式図である。 非水電解質二次電池の一実施形態における4層構造のセパレータと、正極及び負極との配置を示す断面模式図である。 非水電解質二次電池の一実施形態における5層構造のセパレータと、正極及び負極との配置を示す断面模式図である。 比較例で用いた3層構造のセパレータと、正極及び負極との配置を示す断面模式図である。 比較例で用いた3層構造のセパレータと、正極及び負極との配置を示す断面模式図である。 比較例で用いた2層構造のセパレータと、正極及び負極との配置を示す断面模式図である。
 本発明の非水電解質二次電池は、長尺の正極、長尺の負極、及び正極と負極との間を隔絶する長尺のセパレータを、渦捲状に捲回した電極群、並びに非水電解質を備えている。電極群は、正極、負極及びセパレータを、捲芯を用いて捲回することにより形成される。より詳細には、正極と、セパレータと、負極とを、正極及び負極間にセパレータを介在させ、セパレータの端部を長手方向に突出させた状態で、重ね合わせる。突出したセパレータの端部を、一対の捲芯で挟み込んだ状態で、重ね合わせた正極、負極及びセパレータを捲回することにより渦捲状の電極群が形成される。
 捲回に先立って、耐熱性樹脂を含む耐熱性多孔膜と、耐熱性多孔膜の一方の面全体を覆う第1ポリオレフィン多孔膜と、耐熱性多孔膜の他方の面全体を覆う第2ポリオレフィン多孔膜とを有するセパレータが準備される。捲回は、第1ポリオレフィン多孔膜が正極側に配置され、第2ポリオレフィン多孔膜が負極側に配置された状態で行われる。捲回後、捲芯は電極群から抜き取られるため、通常、二次電池において、電極群は、捲芯を備えていない。
 (セパレータ)
 セパレータは、耐熱性樹脂を含む耐熱性多孔膜と、耐熱性多孔膜の正極側の面全体を覆う第1ポリオレフィン多孔膜と、耐熱性多孔膜の負極側の面全体を覆う第2ポリオレフィン多孔膜とを有している。
 耐熱性多孔膜は、第1及び第2ポリオレフィン多孔膜よりも高い耐熱性を有している。すなわち、耐熱性多孔膜に含まれる耐熱性樹脂の融点又は熱変形温度は、第1及び第2ポリオレフィン多孔膜に含まれるポリオレフィンの融点又は熱変形温度よりも高い。耐熱性樹脂としては、ガラス転移点及び融点、並びに化学変化を伴う熱分解開始温度のいずれもが、十分に高い樹脂が使用される。熱変形温度としては、例えば、荷重たわみ温度が使用できる。
 具体的には、耐熱性樹脂としては、アメリカ材料試験協会の試験法ASTM-D648に準拠した荷重たわみ温度測定において、荷重1.82MPaで算出される熱変形温度が260℃以上である樹脂などが例示できる。熱変形温度の上限は特に制限されないが、セパレータの特性および樹脂の熱分解性などの点から、400℃程度である。熱変形温度が高いほど、ポリオレフィン多孔膜に熱収縮などが生じても、セパレータ形状の維持が容易である。熱変形温度が260℃以上の樹脂を用いることにより、過熱時の蓄熱により電池温度が上昇した場合(通常180℃程度)でも、十分に高い熱安定性を発揮することができる。
 耐熱性樹脂としては、ポリアリレート、アラミドなどの芳香族ポリアミド(全芳香族ポリアミドなど);ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエステルイミドなどのポリイミド樹脂;ポリエチレンテレフタレートなどの芳香族ポリエステル;ポリフェニレンサルファイド;ポリエーテルニトリル;ポリエーテルエーテルケトン;ポリベンゾイミダゾールなどが挙げられる。耐熱性樹脂は、一種で又は二種以上組み合わせて使用できる。非水電解質保持力および耐熱性の観点から、アラミド、ポリイミド、ポリアミドイミドなどが好ましい。
 耐熱性多孔膜は、耐熱性をさらに高めるため、必要により、無機フィラーを含んでいてもよい。無機フィラーとしては、例えば、鉄粉、酸化鉄などの金属又は金属酸化物;シリカ、アルミナ、チタニア、ゼオライトなどのセラミックス類;タルク、マイカなどの鉱物系フィラー;活性炭、炭素繊維などの炭素系フィラー;炭化ケイ素などの炭化物;窒化ケイ素などの窒化物;ガラス繊維、ガラスビーズ、ガラスフレークなどが例示できる。無機フィラーの形態は特に制限されず、粒状又は粉末状、繊維状、フレーク状、塊状などであってもよい。無機フィラーは、一種で又は二種以上組み合わせて使用できる。
 無機フィラーの割合は、耐熱性樹脂100重量部に対して、例えば、50~400重量部、好ましくは80~300重量部である。無機フィラーが多いほど、耐熱性多孔膜の硬度及び摩擦係数が高くなり、滑り性は低くなる。一方、本発明では、耐熱性多孔膜の両面に第1及び第2ポリオレフィン多孔膜を配置する。そのため、無機フィラーの割合が多くとも、捲回性や捲芯の抜き取り性を損なうことがなく、セパレータに高い耐熱性を付与することが可能である。
 耐熱性多孔膜の厚みは、内部短絡に対する安全性と電池の容量とのバランスの観点から、1~16μm、好ましくは2~10μmである。厚みが小さすぎると、高温環境下における第1及び第2ポリオレフィン多孔膜の熱収縮に対する抑止効果が低くなる。耐熱性多孔膜は、空隙率及びイオン伝導性が比較的低いため、厚みが大きすぎると、インピーダンスが上昇し、充放電特性が若干ながら低下する。
 耐熱性多孔膜の空隙率は、リチウムイオンの移動性を十分に確保する観点から、例えば、20~70%、好ましくは25~65%である。
 捲芯の抜き取り性の観点から、セパレータと捲芯とが接する位置には、第1及び第2ポリオレフィン多孔膜が配置される。また、耐熱性多孔膜の正極側の面全体を、第1ポリオレフィン多孔膜で覆い、負極側の面全体を、前記第2ポリオレフィン多孔膜で覆うことが望ましい。このようなセパレータでは、耐熱性多孔膜が表面に露出していない。そのため、電極群から、より円滑に捲芯を抜き取ることができる。また、捲き始め位置にのみポリオレフィン多孔膜を形成する場合と比較して、電極群の構成要素の位置合わせが容易になるため、より有効に、電極群の構成要素(正極、負極及びセパレータ)の捲きズレを抑制することができる。
 第1及び第2ポリオレフィン多孔膜を構成するポリオレフィンとしては、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体などが例示できる。これらの樹脂は、単独で又は二種以上組み合わせて使用できる。必要により、他の熱可塑性ポリマーを、ポリオレフィンと併用してもよい。
 第1及び第2ポリオレフィン多孔膜は、ポリオレフィンからなる多孔フィルムであってもよく、ポリオレフィン繊維で形成された織布又は不織布であってもよい。なお、多孔フィルムは、例えば、溶融樹脂をシート化し、一軸又は二軸延伸することにより形成される。また、第1及び第2ポリオレフィン多孔膜は、それぞれ、単一の層(1層の多孔質ポリオレフィン層からなる多孔膜)であってもよく、複数の多孔質ポリオレフィン層を含んでもよい。第1ポリオレフィン多孔膜と第2ポリオレフィン多孔膜とは、同じであっても、異なっていてもよい。
 第1又は第2ポリオレフィン多孔膜が、複数の多孔質ポリオレフィン層を含む場合、組成の異なる複数の層の積層体であってもよく、織布又は不織布と多孔フィルムとの積層体であってもよい。また、第1及び/又は第2ポリオレフィン多孔膜において、複数の多孔質ポリオレフィン層の間に、必要により、他の(第2の)耐熱性多孔膜を介在させてもよい。他の耐熱性多孔膜としては、前述の耐熱性多孔膜と同様の多孔膜が使用できる。
 第1又は第2ポリオレフィン多孔膜に含まれる多孔質ポリオレフィン層の数は、特に制限されないが、例えば、1~3層、好ましくは1又は2層である。
 第1及び第2ポリオレフィン多孔膜において、多孔質ポリオレフィン層の数は、異なっていてもよいが、同じであることが好ましい。好ましい態様では、第1及び第2ポリオレフィン多孔膜の双方が、1層又は2層の多孔質ポリオレフィン層を有している。
 第1及び第2ポリオレフィン多孔膜は、多孔質ポリエチレン層又は多孔質ポリプロピレン層を、前記多孔質ポリオレフィン層として有していることが好ましい。例えば、第1ポリオレフィン多孔膜は、1層の多孔質ポリプロピレン層からなる多孔膜であってもよく、最表層が多孔質ポリプロピレン層である複数の多孔質ポリオレフィン層からなる多孔膜であってもよい。また、第2ポリオレフィン多孔膜は、1層の多孔質ポリエチレン層からなる多孔膜であってもよく、最表層が多孔質ポリエチレン層である複数の多孔質ポリオレフィン層からなる多孔膜であってもよい。
 最表層が多孔質ポリエチレン層であるポリオレフィン多孔膜(1層の多孔質ポリエチレン層からなるポリオレフィン多孔膜も含む)は、シャットダウン温度が適切で、安全性が高い。一方、正極の充電電位下では安定性に劣るため、長時間高温下に晒した場合、非水電解質の消費を伴う分解が起こると考えられる。そのため、このようなポリオレフィン多孔膜は、第2ポリオレフィン多孔膜として用い、最表層が多孔質ポリプロピレン層であるポリオレフィン多孔膜(1層の多孔質ポリプロピレン層からなるポリオレフィン多孔膜も含む)を、第1ポリオレフィン多孔膜として用いることが好ましい。このような層構成を有するセパレータでは、シャットダウン機能を安定に発現させることができる。
 第1及び第2ポリオレフィン多孔膜の厚みは、それぞれ、独立に、捲芯の抜き取り性及びシャットダウン性の点から、2~17μm、好ましくは3~10μmである。耐熱性多孔膜はポリオレフィン多孔膜よりも硬いため、第1及び第2ポリオレフィン多孔膜の厚みの合計が、耐熱性多孔膜の厚みより大きいことが好ましい。ただし、ポリオレフィン多孔膜の厚みが大きすぎると、高温に晒された場合に、ポリオレフィン多孔膜が大きく収縮し、耐熱層が引っ張られて、電極リード部が露出する場合がある。第1及び第2ポリオレフィン多孔膜の合計厚みは、耐熱性多孔膜の厚みに対して、例えば、1.5~8倍、好ましくは2~7倍、さらに好ましくは3~6倍である。
 第1又は第2ポリオレフィン多孔膜(又は多孔質ポリオレフィン層)における空隙率は、例えば、20~80%、好ましくは30~70%である。また、第1又は第2ポリオレフィン多孔膜(又は多孔質ポリオレフィン層)における平均孔径は、イオン伝導性と機械的強度との両立の観点から、0.01~10μmの範囲から選択でき、好ましくは0.05~5μmである。
 第1及び第2ポリオレフィン多孔膜は、耐熱性多孔膜に比較して、硬度が低く、摩擦係数が低い。そのため、耐熱性多孔膜の表面に、第1及び第2ポリオレフィン多孔膜を配置することにより、捲芯を用いて上述のように電極群を形成した後に、捲芯をスムーズに抜き取ることができる。そのため、捲芯の抜き取りにより、セパレータがズレたり、損傷したりすることがない。その結果、リーク不良の発生、及びこれに伴う歩留まりの低下を有効に抑制することができる。このような効果に加え、耐熱性多孔膜、並びに第1及び第2ポリオレフィン多孔膜の存在により、耐熱性と、シャットダウン性とを、高いレベルで両立することができる。
 このようなセパレータにおいて、第1及び第2ポリオレフィン多孔膜の表面の静摩擦係数は、0.08~0.18、好ましくは0.09~0.17である。このような範囲の静摩擦係数を有するポリオレフィン多孔膜を用いる場合、きわめて円滑に捲芯を抜き取ることができる。なお、静摩擦係数は、ロードセルを具備した装置で、試験板上に設置した錘付きのセパレータの錘を引っ張る時の力を計測することにより、ASTM(D1894)に準拠した方法により測定できる。
 第1及び第2のポリオレフィン多孔膜の表面粗さは、捲芯の表面粗さよりも小さいことが好ましい。捲芯の表面粗さ(算術平均粗さRa)を1としたとき、第1及び第2のポリオレフィン多孔膜の表面粗さ(算術平均粗さRa)は、例えば、0.1~0.9、好ましくは0.2~0.5である。
 捲芯の円滑な抜き取りの観点から、ポリオレフィン多孔膜の表面におけるポリオレフィン分子の配向方向と、抜き取り方向(捲芯の長軸方向)とのズレが小さい方が好ましい。表面におけるポリオレフィン分子の配向方向と、抜き取り方向とのズレは、例えば、0~45°、好ましくは0~30°である。ポリオレフィン多孔膜の表面におけるポリオレフィン分子の配向は、多孔膜の製造過程において、膜成形のドロー比、延伸倍率などを調整することにより調整できる。例えば、一軸延伸によりポリオレフィン多孔膜又は多孔質ポリオレフィン層を形成する場合、ポリオレフィン分子は、延伸方向に配向するため、延伸方向と、捲芯の抜き取り方向とのズレが上記の範囲となるように、ポリオレフィン多孔膜又は多孔質ポリオレフィン層を配置する。なお、二軸延伸によりポリオレフィン多孔膜又は多孔質ポリオレフィン層を形成する場合には、各延伸方向について延伸倍率を相違させることにより、ポリオレフィン分子を延伸倍率が高い方向に配向させることができる。
 セパレータの厚みは、例えば、5~35μmの範囲から選択でき、好ましくは10~30μm、又は12~20μmであってもよい。セパレータの厚みが小さすぎると、電池内部で、微小な短絡が発生しやすくなり、大きすぎると、正極及び負極の厚みを小さくする必要が生じ、電池容量が不十分となる場合がある。
 耐熱性多孔膜、並びに第1及び第2ポリオレフィン多孔膜は、それぞれ、別個に作製し、重ね合わせることによりセパレータを構成してもよい。いずれか1つの多孔膜を形成した後、この多孔膜の表面に他の多孔膜を形成してもよい。各多孔膜の構成材料を用いて、共押出成形などにより積層構造を有するセパレータを直接得ることもできる。また、これらの方法を適宜組み合わせてもよい。なお、各多孔膜を重ね合わせる場合には、必要により、公知の接着剤、公知の溶着方法(熱溶着など)を用いてもよい。
 好ましい方法では、多孔膜の構成材料の溶液又は分散液を用いるコーティングと、公知の方法により製造された多孔膜の貼り合わせとを組み合わせる。例えば、第1及び第2ポリオレフィン多孔膜をそれぞれ公知の多孔膜の製造方法により製造し、一方のポリオレフィン多孔膜の表面に、耐熱性多孔膜の構成材料(アラミドなどの耐熱性樹脂、必要により無機フィラー、及び塩化カルシウムなどの造孔剤など)を含む溶液又は分散液を塗布し、必要に応じて乾燥する。そして、塗布面(耐熱性多孔膜の表面)に、他方のポリオレフィン多孔膜を積層することによりセパレータを形成することができる。セパレータは、必要により、水洗などに供し、造孔剤を溶出させる。
 前記溶液又は分散液を塗布した後、完全に乾燥する前に、ポリオレフィン多孔膜を、塗布面に積層すると、層間の密着性を向上させることができる。このようなセパレータでは、耐熱性多孔膜と、第1及び第2のポリオレフィン多孔膜とが一体化しているため、捲芯の抜き取りに伴うセパレータのズレや損傷をより効果的に抑制できる。
 また、耐熱性樹脂としてポリイミド又はポリアミドイミドを用いる場合には、次のようにしてセパレータを作製することができる。
 まず、前駆体であるポリアミド酸溶液を、流延した後、延伸することにより多孔膜を作製する。得られた多孔膜の両面に、第1及び第2のポリオレフィン多孔膜を重ねて、ポリオレフィン多孔膜の孔がシャットダウンしない程度の温度(溶融温度より低い温度)で一体化(例えば、熱ロールなどで一体化)させることによりセパレータを作製できる。熱ロールにより、ポリアミド酸のイミド化が進行し、多孔膜中のポリアミド酸は、ポリイミド又はポリアミドイミドに変換される。必要により、ポリオレフィン多孔膜と重ね合わせる前に、ポリアミド酸の多孔膜を、加熱することによりポリアミド酸をポリアミド又はポリアミドイミドに変換してもよい。このような方法では、延伸条件を変化させることにより、耐熱性多孔膜の空隙率を調整することができる。
 第1又は第2ポリオレフィン多孔膜が、複数の多孔質ポリオレフィン層を有する場合、例えば、共押出成形などの公知の方法を利用して、予めポリオレフィン多孔膜を作製してもよい。2枚のポリオレフィン多孔膜を用意し、一方のポリオレフィン多孔膜の表面に、上記のように塗布により耐熱性多孔膜を形成して、他方のポリオレフィン多孔膜を積層させることができる。これと同様の方法又はこれに準じた方法により、3層以上の多孔質ポリオレフィン層を有するポリオレフィン多孔膜を用いたセパレータも作製できる。
 耐熱性多孔膜の構成材料を溶解又は分散する溶媒としては、メタノール、エタノール、エチレングリコールなどのアルコール(C2-4アルカノール又はC2-4アルカンジオールなど);アセトンなどのケトン;ジエチルエーテル、テトラヒドロフランなどのエーテル;ジメチルホルムアミドなどのアミド;アセトニトリルなどのニトリル;ジメチルスルホキシドなどのスルホキシド;N-メチル-2-ピロリドン(NMP)などが例示できる。これらの溶媒は一種で又は二種以上組み合わせて使用できる。
 セパレータは、慣用の添加剤(酸化防止剤など)を含有してもよい。添加剤は、耐熱性多孔膜、並びに第1及び第2ポリオレフィン多孔膜のいずれに含有させてもよい。例えば、酸化防止剤は、第1及び/又は第2ポリオレフィン多孔膜に含有させてもよい。ポリオレフィン多孔膜が複数の多孔質ポリオレフィン層を有する場合には、最表層に酸化防止剤を含有させてもよい。セパレータの表層に酸化防止剤を含有させる場合、ポリオレフィン多孔膜(又は多孔質ポリオレフィン層)の耐酸化性を高めることができる。このような酸化防止剤としては、フェノール系酸化防止剤、リン酸系酸化防止剤及び硫黄系酸化防止剤よりなる群から選ばれた少なくとも1種が挙げられる。フェノール系酸化防止剤と、リン酸系酸化防止剤又は硫黄系酸化防止剤とを併用してもよい。硫黄系酸化防止剤は、ポリオレフィンとの相溶性が高い。そのため、ポリオレフィン多孔膜(ポリプロピレン多孔膜など)に含有させることが好ましい。
 フェノール系酸化防止剤としては、例えば、2,6-ジ-t-ブチル-p-クレゾール、2,6-ジ-t-ブチル-4-エチルフェノール、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、n-オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート等のヒンダードフェノール化合物が例示できる。硫黄系酸化防止剤としては、ジラウリルチオジプロピオネート、ジステアリルチオジプロピオネート、ジミリスチルチオジプロピオネートなどが例示できる。リン酸系酸化防止剤としては、トリス(2,4-ジ-t-ブチルフェニル)ホスファイトなどが好ましい。
 以下、本発明の非水電解質二次電池について図面を参照して説明する。
 図1は本発明の一実施形態である円筒型リチウムイオン二次電池の構成を示した一部切り欠き斜視図である。図1のリチウムイオン二次電池は、帯状の正極5と、帯状の負極6とがセパレータ7を介して捲回された電極群14を備えており、電極群14は、非水電解質(図示せず)とともに有底円筒型の金属製電池ケース1に収容されている。正極5は、金属箔からなる正極集電体とその表面に付着した正極活物質層とを備えており、負極6は、金属箔からなる負極集電体とその表面に付着した負極活物質層とを備えている。
 電極群14において、正極5には正極リード端子5aが電気的に接続され、負極6には負極リード端子6aが電気的に接続されている。電極群14は、正極リード端子5aを導出した状態で、下部絶縁板9とともに電池ケース1に収納され、正極リード端子5aの端部には封口板2が溶接される。封口板2は、正極端子12と、PTC素子及び防爆弁(図示せず)の安全機構とを備えている。
 下部絶縁板9は、電極群14の底面と、電極群14から下方へ導出された負極リード端子6aとの間に配され、負極リード端子6aは電池ケース1の内底面に溶接される。電極群14の上面に上部絶縁リング(図示せず)を載置し、上部絶縁リングの上方の電池ケース1の上部側面に、内方に突出した段部を形成する。これにより、電極群14を電池ケース1内に保持する。次いで、所定量の非水電解質が電池ケース1内に注入され、正極リード端子5aは折り曲げられ電池ケース1内に収容される。前記段部の上には、周縁部にガスケット13を備えた封口板2が載置される。そして、電池ケース1の開口端部を内方にかしめ封口して円筒型リチウムイオン二次電池を作製する。
 電極群14は、正極5と、セパレータ7と、負極6と、別のセパレータ7とを、この順序で重ねて、捲芯(図示せず)を用いて渦捲状に捲回し、次いで捲芯を抜き取ることにより作製される。電極群14の構成要素(正極5、負極6及びセパレータ7)は、2枚のセパレータ7の端部が、正極5及び負極6の長手方向の端部よりも突出した状態で重ねられる。この突出したセパレータ7の端部を一対の捲芯で挟持した状態で、電極群14の構成要素を捲回する。捲き始めから数周目(例えば、捲回の1~3周目)は、2枚のセパレータ7のみが捲回された状態であってもよい。セパレータ7のみが捲回されている部分を、セパレータ部分16として図1中に示す。
 捲回後、一対の捲芯によるセパレータ7の挟持を緩めて捲芯を抜き取る。捲芯を抜き取りやすくするため、捲芯を捲回方向に対して反対の方向に、僅かに回転させることにより、捲芯による挟持を緩めてもよい。捲芯は、セパレータ7を挟持できるように2本の部材からなり、これらの部材のセパレータ7を挟持する部分は、セパレータ7を保持できるように平坦にされている。
 セパレータ7は、中間層としての耐熱性多孔膜と、耐熱性多孔膜の両面に配置された表層としての第1及び第2ポリオレフィン多孔膜とを備えている。このようなセパレータは、表裏面(特に、捲芯と接触する部分の表裏面)に、耐熱性多孔膜が露出していない。そのため、表面の滑り性が高く、捲芯とセパレータ7との接触抵抗が小さくなり、捲芯をスムーズに抜き取ることができる。
 このようなセパレータは、特に、正極活物質又は負極活物質の充填量が多い正極又は負極とともに、高いテンションで捲回して電極群を作製する場合に有用である。例えば、18650型の高容量の円筒型電池は、公称容量が、1800mA以上、好ましくは2000mA以上であるため、上記セパレータの使用が好適である。
 活物質の充填量を多くした正極又は負極とともにセパレータを捲回する場合には、電極群の外径が大きくなりやすい。この場合、一定容積の有底ケース内に電極群を収容するためには、捲芯で挟持したセパレータを、高いテンションで、正極及び負極とともに捲回する必要がある。しかし、高いテンションで捲回を行うと、捲芯と、セパレータとの密着が強くなる。そのため、捲き始めのセパレータ部分と、捲芯との密着性が高く、捲芯の抜き取りに追随してセパレータのズレが生じやすい。しかし、このような電極群においても、表層に第1及び第2ポリオレフィン多孔膜を配置したセパレータを用いることにより、捲芯を極めてスムーズに抜き取ることが可能である。
 図1では、円筒型の電極群について説明したが、捲回された電極群は、捲回軸に垂直な端面が長円形である扁平形状の電極群であってもよい。
 電極群14は、電池ケース1への収容に先立って、又は収容後に、乾燥に供される。この乾燥条件としては、低湿度、高温の雰囲気であることが好ましいが、温度が高すぎるとセパレータ7が熱収縮し微多孔が塞がれる場合がある。この場合、空孔率、及びガーレー数が変化するため、電池特性に悪影響を及ぼす。そのため、乾燥は、露点が-30℃~-80℃であり、温度が80~120℃である条件で行うことが好ましい。
 図2~図5は、セパレータ7の実施形態を示す断面模式図である。図2では、正極5と負極6との間に介在するセパレータ7は、中間層としての耐熱性多孔膜7aと、耐熱性多孔膜7aの両面に形成された1層の多孔質ポリエチレン層からなるポリエチレン多孔膜7bとを有する3層構造を備えている。耐熱性多孔膜7aは、両面の全体が、ポリエチレン多孔膜7bで覆われている。
 図3~図5は、図2の変更例である。図3のセパレータ7では、中間層としての耐熱性多孔膜7aは、一方の面全体が、ポリエチレン多孔膜7bで覆われ、他方の面全体が、1層の多孔質ポリプロピレン層からなるポリプロピレン多孔膜7cで覆われている。そして、ポリプロピレン多孔膜7cは、正極5と対向している。
 図4のセパレータ7では、中間層としての耐熱性多孔膜7aの負極6側の表面にはポリエチレン多孔膜7bが配置され、正極5側の表面には、第1ポリオレフィン多孔膜7dとして、多孔質ポリエチレン層7eと、多孔質ポリプロピレン層7fとがこの順序で配置されている。そして、最表層に位置する多孔質ポリプロピレン層7fは、正極5と対向している。
 図5のセパレータ7では、多孔質ポリエチレン層7eと多孔質ポリプロピレン層7fとの2層構造を有するポリオレフィン多孔膜7d及び7gが、中間層としての耐熱性多孔膜7aの両面に形成されている。耐熱性多孔膜7aの正極5側の表面は、多孔質ポリプロピレン層7fと接し、負極6側の表面は、多孔質ポリエチレン層7eと接している。
 このようなセパレータ7は、いずれも、表層に滑り性が高いポリオレフィン多孔膜を有する。そのため、セパレータ7を捲芯で挟持して、正極5及び負極6とともに捲回しても、捲芯をスムーズに抜き取ることができ、抜き取りの際に捲芯に追随してセパレータがズレたり、損傷したりすることもない。また、耐熱性多孔膜の表面全体に第1及び第2ポリオレフィン多孔膜を配置すると、捲き始めだけに配置する場合と比較して、位置合わせが容易であり、捲回に伴う捲きズレを効果的に抑制することができる。従って、電流のリークを伴う製品不良(リーク不良)及びこれに伴う歩留まりの低下を抑制できる。しかも、セパレータは、適切なシャットダウン効果と高い耐熱性とを合わせ持つため、十分な耐熱安全性を確保でき、信頼性の高い非水電解質二次電池を得ることができる。最表層の多孔質ポリプロピレン層を、正極と対向させて配置すると、セパレータ表面の酸化を抑制することができる。
 以下、本発明の各構成要素について、さらに詳細に説明する。
 (正極)
 正極は、長尺(シート状もしくは帯状)の正極集電体と、正極集電体の表面に付着した正極活物質層とを含む。正極集電体としては、非水電解質二次電池用途で公知の正極集電体、例えば、アルミニウム、アルミニウム合金、ステンレス鋼、チタン、チタン合金などで形成された金属箔などが使用できる。正極集電体の材料は、加工性、実用強度、正極活物質層との密着性、電子伝導性、耐食性などを考慮して適宜選択できる。正極集電体の厚みは、例えば、1~100μm、好ましくは10~50μmである。
 正極活物質層は、正極活物質の他、導電剤、結着剤、増粘剤などを含有してもよい。正極活物質としては、例えばリチウムイオンをゲストとして受け入れるリチウム含有遷移金属化合物が使用できる。例えばコバルト、マンガン、ニッケル、クロム、鉄およびバナジウムから選ばれる少なくとも一種の金属とリチウムとの複合金属酸化物、LiCoO2、LiMn24、LiNiO2、LiCoxNi(1-x)2(0<x<1)、LiCoy1-y2(0.6≦y<1)、LiNiz1-z2(0.6≦z<1)、LiCrO2、αLiFeO2、LiVO2などが例示できる。上記組成式において、Mは、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、SbおよびBの群から選ばれる少なくとも1つの元素(特に、Mg及び/又はAl)を示す。正極活物質は、一種で又は二種以上組み合わせて使用できる。
 結着剤は、分散媒に混練により溶解又は分散できるものであれば特に限定されない。結着剤としては、例えば、フッ素樹脂、ゴム類、アクリルポリマー又はビニルポリマー(アクリル酸メチル、アクリロニトリルなどのアクリルモノマー、酢酸ビニルなどのビニルモノマーなどのモノマーの単独又は共重合体など)などが例示できる。フッ素樹脂としては、例えばポリフッ化ビニリデン、フッ化ビニリデンと六フッ化プロピレンとの共重合体、ポリテトラフルオロエチレンなどが例示できる。ゴム類としては、アクリルゴム、変性アクリロニトリルゴム、スチレンブタジエンゴム(SBR)などが例示できる。結着剤は、単独で又は二種以上組み合わせて用いてもよい。結着剤は、分散媒に分散したディスパージョンの形態で使用してもよい。
 導電剤としては、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック;天然黒鉛、人造黒鉛などの各種グラファイト;炭素繊維、金属繊維などの導電性繊維などが使用できる。
 必要に応じて増粘剤を用いてもよい。増粘剤としては、エチレン-ビニルアルコール共重合体、セルロース誘導体(カルボキシメチルセルロース、メチルセルロースなど)などが例示できる。
 分散媒としては、結着剤が溶解又は分散可能であれば特に制限されず、結着剤の分散媒に対する親和性に応じて、有機溶媒及び水(温水を含む)のいずれも使用できる。有機溶媒としては、N-メチル-2-ピロリドン;テトラヒドロフランなどのエーテル類;アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン類;N,N-ジメチルホルムアミド、ジメチルアセトアミドなどのアミド類;ジメチルスルホキシドなどのスルホキシド類;テトラメチル尿素などが例示できる。分散媒は、単独で又は二種以上組み合わせて用いてもよい。
 正極活物質層は、正極活物質、必要により、結着剤、導電剤及び/又は増粘剤を、分散媒とともに混練したスラリー状の合剤を調製し、この合剤を正極集電体に付着させることにより形成できる。具体的には、正極集電体の表面に、合剤を公知のコーティング方法により塗布し、乾燥し、必要により圧延することにより正極活物質層を形成できる。正極集電体の一部には、正極活物質層が形成されずに集電体の表面が露出した部位が形成されており、この露出部に正極リードが溶接される。正極は、柔軟性に優れる方が好ましい。
 合剤の塗布は、公知のコーター、例えば、スリットダイコーター、リバースロールコーター、リップコーター、ブレードコーター、ナイフコーター、グラビアコーター、ディップコーターなどを用いて行うことができる。塗布後の乾燥は、自然乾燥に近い条件で行うことが好ましいが、生産性を考慮して、70℃~200℃の温度範囲で10分間~5時間乾燥させてもよい。活物質層の圧延は、例えば、ロールプレス機を用い、線圧1000~2000kgf/cm(19.6kN/cm)の条件で、所定の厚みになるまで数回圧延を繰り返すことにより行うことができる。必要により、線圧を変えて圧延してもよい。
 スラリー状の合剤の混練の際に、必要に応じて、各種分散剤、界面活性剤、安定剤などを添加してもよい。
 正極活物質層は、正極集電体の片面又は両面に形成することができる。正極活物質層における活物質密度は、活物質としてリチウム含有遷移金属化合物を用いる場合、3~4g/ml、好ましくは3.4~3.9g/ml、3.5~3.7g/mlである。
 正極の厚みは、例えば、70~250μm、好ましくは100~210μmである。
 (負極)
 負極は、長尺(シート状もしくは帯状)の負極集電体と、負極集電体の表面に付着した負極活物質層とを含む。負極集電体としては、非水電解質二次電池用途で公知の負極集電体、例えば、銅、銅合金、ニッケル、ニッケル合金、ステンレス鋼、アルミニウム、アルミニウム合金などで形成された金属箔などが使用できる。負極集電体は、加工性、実用強度、正極活物質層との密着性、電子伝導性などを考慮して、銅箔、銅合金からなる金属箔などが好ましい。集電体の形態は特に制限されず、例えば、圧延箔、電解箔などであってもよく、孔開き箔、エキスパンド材、ラス材などであってもよい。負極集電体の厚みは、例えば、1~100μm、好ましくは2~50μmである。
 負極活物質層は、負極活物質の他、導電剤、結着剤、増粘剤などを含有してもよい。負極活物質としては、リチウムイオンを可逆的に吸蔵及び放出し得る黒鉛型結晶構造を有する材料、例えば、天然黒鉛や球状又は繊維状の人造黒鉛、難黒鉛化性炭素(ハードカーボン)、易黒鉛化性炭素(ソフトカーボン)などの炭素材料が例示できる。特に、格子面(002)の面間隔(d002)が0.3350~0.3400nmである黒鉛型結晶構造を有する炭素材料が好ましい。さらに、ケイ素;シリサイドなどのケイ素含有化合物;スズ、アルミニウム、亜鉛、及びマグネシウムから選ばれる少なくとも一種を含むリチウム合金および各種合金組成材料を用いることもできる。
 ケイ素含有化合物としては、例えば、ケイ素酸化物SiOα(0.05<α<1.95)などが挙げられる。αは、好ましくは0.1~1.8、さらに好ましくは0.15~1.6である。ケイ素酸化物においては、ケイ素の一部が1または2以上の元素で置換されていてもよい。このような元素としては、例えば、B、Mg、Ni、Co、Ca、Fe、Mn、Zn、C、N、Snなどが挙げられる。
 結着剤、導電剤、増粘剤及び分散媒としては、それぞれ、正極について例示したものなどが使用できる。
 負極活物質層は、結着剤などを併用した前記コーティングに限らず、公知の方法により形成することができる。例えば、負極活物質を、真空蒸着法、スパッタリング法、イオンプレーティング法などの気相法により集電体表面に堆積させることにより形成してもよい。また、正極活物質層と同様の方法により、負極活物質と、結着剤と必要により導電材とを含むスラリー状の合剤を用いて、形成してもよい。
 負極活物質層は、負極集電体の片面に形成してもよく、両面に形成してもよい。活物質として炭素材料を含む合剤を用いて形成される負極活物質層において、活物質密度は、1.3~2g/ml、好ましくは1.4~1.9g/ml、さらに好ましくは1.5~1.8g/mlである。
 負極の厚みは、例えば、100~250μm、好ましくは110~210μmである。柔軟性を有する負極が好ましい。
 非水電解質は、非水溶媒にリチウム塩を溶解することにより調製される。非水溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどの環状カーボネート;ジメチルカーボネート、ジエチルカーボネートなどの鎖状カーボネート;γ-ブチロラクトンなどのラクトン;1,2-ジクロロエタンなどのハロゲン化アルカン;1,2-ジメトキシエタン、1,3-ジメトキシプロパンなどのアルコキシアルカン;4-メチル-2-ペンタノンなどのケトン;1,4-ジオキサン、テトラヒドロフラン、2-メチルテトラヒドロフランなどのエーテル;アセトニトリル、プロピオニトリル、ブチロニトリル、バレロニトリル、ベンゾニトリルなどのニトリル;スルホラン、3-メチル-スルホラン;ジメチルホルムアミドなどのアミド;ジメチルスルホキシドなどのスルホキシド;リン酸トリメチル、リン酸トリエチルなどのリン酸アルキルエステルなどが例示できる。非水溶媒は、単独で又は二種以上組み合わせて使用できる。
 リチウム塩としては、電子吸引性の強いリチウム塩、例えば、LiPF6、LiBF4、LiClO4、LiAsF6、LiCF3SO3、LiN(SO2CF32、LiN(SO2252、LiC(SO2CF33などが挙げられる。リチウム塩は、単独で又は二種以上組み合わせて使用できる。非水電解質中のリチウム塩の濃度は、例えば、0.5~1.5M、好ましくは0.7~1.2Mである。
 非水電解質には、適宜添加剤を含有させてもよい。例えば、正負極上に良好な皮膜を形成させたりするために、ビニレンカーボネート(VC)、シクロヘキシルベンゼン(CHB)、およびこれらの変性体などを用いてもよい。リチウムイオン二次電池が過充電状態になったときに作用する添加剤として、例えば、ターフェニル、シクロヘキシルベンゼン、ジフェニルエーテルなどを使用してもよい。添加剤は、一種で又は二種以上組み合わせて用いてもよい。これらの添加剤の割合は、特に制限されないが、例えば、非水溶電解質に対して0.05~10重量%程度である。
 電池ケースは、金属製又はラミネートフィルム製などであってもよい。耐圧強度の観点から、電池ケースの材料としては、マンガン、銅等の金属を微量含有するアルミニウム合金、安価なニッケルメッキを施した鋼鈑などが好ましい。電池ケースの形状は、電極群の形状に応じて、円筒型、角型などであってもよい。
 本発明の非水電解質二次電池は、好ましくは18650型円筒型電池などとして使用できる。
 以下、図面を参照して本発明の実施例について説明する。尚、ここで述べる内容は本発明の例示に過ぎず、本発明はこれらに限定されるものではない。
 (実施例1)
 (1)正極5の作製
 適量のN-メチル-2-ピロリドンに、正極活物質としてコバルト酸リチウムを100重量部、導電剤としてアセチレンブラックを2重量部、及び結着剤としてポリフッ化ビニリデン樹脂を3重量部加えて混練し、スラリー状の合剤を調製した。このスラリーを、帯状のアルミニウム箔(厚さ15μm)の両面に対して間欠的に、連続して塗布し、乾燥した。次いで、ローラにより線圧1000kgf/cm(9.8kN/cm)で、2~3回圧延を行い、厚みを180μmに調整した。幅57mm、長さ620mmのサイズに裁断することにより、表面に正極活物質層を有する正極5を作製した。正極活物質層の活物質密度は、3.6g/mlであった。
 合剤が塗布されていないアルミニウム箔の露出部には、アルミニウム製の正極リード端子5aを超音波溶接した。この超音波溶接した部分において、正極リード端子5aを覆うようにポリプロピレン樹脂製の絶縁テープを貼り付けた。
 (2)負極6の作製
 適量の水に、負極活物質としてリチウムを吸蔵及び放出可能な鱗片状黒鉛を100重量部、結着剤としてスチレンブタジエンゴム(SBR)の水性ディスパージョンを固形分として1重量部、増粘剤としてカルボキシメチルセルロースナトリウムを1重量部加えて混練し、これらの成分を分散させてスラリー状の合剤を調製した。このスラリーを、帯状の銅箔(厚さ10μm)の両面に対して間欠的に、連続して塗布し、110℃で30分間乾燥した。次いで、ローラにより線圧110kgf/cm(1.08kN/cm)で、2~3回圧延を行い、厚みを174μmに調整した。幅59mm、長さ645mmのサイズに裁断することにより、表面に負極活物質層を有する負極6を作製した。負極活物質層の活物質密度は、
1.6g/mlであった。
 合剤が塗布されていない銅箔の露出部には、ニッケル製の負極リード端子6aを抵抗溶接した。この抵抗溶接した部分において、負極リード端子6aを覆うようにポリプロピレン樹脂製の絶縁テープを貼り付けた。
 (3)セパレータ7の作製
 中間層としてのアラミドを含む耐熱性多孔膜7aが、2枚のポリエチレン多孔膜7bで挟み込まれた、図2に示す3層構造のセパレータ7を作製した。具体的には、ポリエチレン多孔膜(厚み8.5μm)7bの一方の表面に、セパレータの厚みが20μmとなるような割合で、アラミドのN-メチル-2-ピロリドン(NMP)溶液(造孔剤として無水塩化カルシウムを含む)を塗布した。乾燥が完了しないうちに、塗布面に、上記と同様のポリエチレン多孔膜7bを貼り合わせ、乾燥させた。得られた積層体を水洗に供して無水塩化カルシウムを除去することにより、アラミドを含む中間層に微孔を形成し、乾燥することにより、長尺フープ状のセパレータ7を作製した。得られたセパレータ7を、幅60.9mmのサイズにカットし、電極群の作製に供した。
 なお、アラミドのNMP溶液は、次のようにして調製した。まず、反応槽内で、適量のNMPに対し、所定量の乾燥した無水塩化カルシウムを添加し、加温して完全に溶解した。この塩化カルシウム添加NMP溶液を常温に戻した後、パラフェニレンジアミン(PPD)を所定量添加し、完全に溶解した。次に、テレフタル酸ジクロライド(TPC)を、少しずつ滴下し、重合反応によりポリパラフェニレンテレフタルアミド(PPTA)を合成した。反応終了後、減圧下で30分間撹拌して脱気した。得られた重合液を、さらに、塩化カルシウム添加NMP溶液にて、適宜希釈することにより、アラミド樹脂のNMP溶解液を調製した。
 (4)電極群14の作製
 正極5と負極6とを、これらの間に、セパレータ7を介在させて、渦捲状に捲回して電極群14を構成した。具体的には、正極5と、セパレータ7と、負極6とを、セパレータ7を正極5及び負極6間に介在させて、セパレータ7の長手方向における端部を、正極5及び負極6よりも突出させた状態で、重ね合わせた。突出したセパレータの端部を一対の捲芯で挟持し、捲芯を捲回軸として捲回することにより渦捲状の電極群14を形成した。捲回後、セパレータを裁断し、捲芯による挟持を緩め、電極群から捲芯を抜き取った。なお、電極群において、セパレータの長さは、700~720mmであった。
 (5)非水電解質二次電池の作製
 ニッケルメッキした鋼鈑(肉厚0.20mm)を、プレス成型により作製した金属製の電池ケース(直径17.8mm、総高64.8mm)1内に、電極群14及び下部絶縁板9を収納した。このとき、下部絶縁板9は、電極群14の底面と電極群14から下方に導出された負極リード端子6aとの間に挟持させた状態で配設した。負極リード端子6aは、電池ケース1の内底面と抵抗溶接した。
 電池ケース1に収容された電極群14の上面に上部絶縁リングを載置し、上部絶縁リングの上方かつ電池ケース1の上部側面に、内方に突出した段部を形成することにより、電極群14をケース1内に保持した。
 電池ケース1の上方に導出した正極リード端子5aに、封口板2をレーザー溶接し、次いで、非水電解質を注液した。なお、非水電解質は、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合溶媒(容積比2:1)に、LiPFを1.0Mの濃度となるように溶解し、シクロヘキシルベンゼンを0.5重量%添加することにより調製した。
 次いで、正極リード端子5aを屈曲させて電池ケース1内に収容し、前記段部の上には、周縁部にガスケット13を備えた封口板2を載置した。そして、電池ケース1の開口端部を、内方にかしめて封口することにより、円筒型リチウムイオン二次電池を作製した。この電池は、直径18.1mm、高さ65.0mmの18650型で、公称容量2600mAhである。円筒型リチウムイオン二次電池は、300個作製した。
 (実施例2)
 セパレータとして、図3に示す3層構造を有するセパレータ7を用いる以外は、実施例1と同様にして非水電解質二次電池を作製した。
 セパレータ7は、2枚のポリエチレン多孔膜7bのうち1枚に代えて、ポリプロピレン多孔膜(厚み8.5μm)7cを用いる以外は、実施例1と同様に作製した。
 非水電解質二次電池の電極群14において、セパレータ7は、ポリプロピレン多孔膜7cが正極5と対向するように配置した。
 (実施例3)
 セパレータとして、図2の中間層7aがポリイミドを含む耐熱性多孔膜である3層構造のセパレータ7を用いる以外は、実施例1と同様にして非水電解質二次電池を作製した。セパレータ7は、次のような手順で作製した。
 塩化カルシウム、及びポリイミドの前駆体であるポリアミド酸を所定濃度で含むNMP溶液を流延したのち、得られたフィルムを延伸した。延伸フィルムを水洗に供し、塩化カルシウムを除去することにより、多孔膜を作製した。この多孔膜を、300℃で加熱して脱水イミド化を行い、厚み3μmのポリイミドを含む耐熱性多孔膜7aを得た。得られた耐熱性多孔膜7aを、2枚の厚み8.5μmのポリエチレン多孔膜7bで挟み、80℃の熱ロールで圧延することにより、セパレータ7を作製した。
 (実施例4)
 セパレータとして、図3の中間層7aがポリイミドを含む耐熱性多孔膜である3層構造のセパレータ7を用いる以外は、実施例2と同様にして非水電解質二次電池を作製した。
 セパレータ7は、ポリエチレン多孔膜7bに代えてポリプロピレン多孔膜7cを用いる以外は、実施例3と同様に作製した。
 (実施例5)
 セパレータとして、図2の中間層7aがポリアミドイミドを含む耐熱性多孔膜である3層構造のセパレータ7を用いる以外は、実施例1と同様にして非水電解質二次電池を作製した。
 セパレータ7は、ポリエチレン多孔膜(厚み8.5μm)7bの一方の表面に、セパレータの厚みが20μmとなるような割合で、ポリアミド酸のNMP溶液を塗布した。なお、ポリアミド酸のNMP溶液は、塩化カルシウムと、無水トリメリット酸モノクロライドと、ジアミンとをNMP中で混合することにより得た。乾燥が完了しないうちに、塗布面に、上記と同様のポリエチレン多孔膜7bを貼り合わせ、乾燥させた。得られた積層体を水洗に供して塩化カルシウムを除去した。積層体に、80℃の熱風を当てて、ポリアミド酸を脱水閉環してポリアミドイミドに変換することにより、セパレータ7を作製した。
 (実施例6)
 セパレータとして、図3の中間層7aがポリアミドイミドを含む耐熱性多孔膜である3層構造のセパレータ7を用いる以外は、実施例2と同様にして非水電解質二次電池を作製した。
 セパレータ7は、2枚のポリエチレン多孔膜7bのうち1枚に代えて、ポリプロピレン多孔膜(厚み8.5μm)7cを用いる以外は、実施例5と同様にして作製した。
 (実施例7)
 セパレータとして、図4に示す4層構造を有するセパレータ7を用いる以外は、実施例1と同様にして非水電解質二次電池を作製した。
 セパレータ7は、2枚のポリエチレン多孔膜7bのうちの1枚に代えて、共押出成形により作製された多孔質ポリエチレン層(4μm)7e及び多孔質プロピレン層(厚み4.5μm)からなる2層構造のポリオレフィン多孔膜7dを用いる以外は実施例1と同様にして作製した。
 非水電解質二次電池の電極群において、セパレータ7は、多孔質ポリプロピレン層7fが正極5と対向するように配置した。
 (実施例8)
 セパレータとして、図5に示す5層構造を有するセパレータ7を用いる以外は、実施例1と同様にして非水電解質二次電池を作製した。
 セパレータ7は、2枚のポリエチレン多孔膜7bに代えて、2層構造のポリオレフィン多孔膜7d及び7gを用いる以外は実施例1と同様にして作製した。ポリオレフィン多孔膜7d及び7gは、いずれも、共押出成形により作製された多孔質ポリエチレン層(4μm)7e及び多孔質プロピレン層(厚み4.5μm)からなる多孔膜であった。
 耐熱性多孔膜7aの正極側の表面には、ポリオレフィン多孔膜7dの多孔質ポリエチレン層7eを配置し、負極側の表面には、ポリオレフィン多孔膜7gの多孔質ポリプロピレン層7fを配置した。また、非水電解質二次電池の電極群において、セパレータ7は、多孔質ポリプロピレン層7fが正極5と対向するように配置した。
 (比較例1)
 セパレータとして、図6に示す3層構造を有するセパレータ17を用いる以外は、実施例1と同様にして非水電解質二次電池を作製した。セパレータ17は、次のような手順で作製した。
 多孔質プロピレン層(厚み8.5μm)17f及び多孔質ポリエチレン層(厚み8.5μm)17eからなる2層構造のポリオレフィン多孔膜の多孔質ポリエチレン層の表面に、実施例1と同様にしてアラミドを含む耐熱性多孔膜17aを形成することにより、セパレータ17を作製した。
 耐熱性多孔膜17aが、負極6と対向するようにセパレータを配置した。電極群14を形成する際には、捲芯と、耐熱性多孔膜17aとが接していた。
 (比較例2)
 セパレータとして、図7に示す3層構造を有するセパレータ27を用いる以外は、実施例1と同様にして非水電解質二次電池を作製した。
 セパレータ27は、ポリエチレン多孔膜(厚み14μm)27bの両面に、実施例1と同様にしてアラミドを含む耐熱性多孔膜27aを形成することにより作製した。
 (比較例3)
 セパレータとして、図8に示す2層構造を有するセパレータ37を用いる以外は、実施例1と同様にして非水電解質二次電池を作製した。
 セパレータ37は、ポリエチレン多孔膜(厚み17μm)37bの一方の面に、実施例1と同様にしてアラミドを含む耐熱性多孔膜37aを形成することにより作製した。
 セパレータ37は、耐熱性多孔膜37aが、正極5と対向するように配置した。電極群14を形成する際には、捲芯と、耐熱性多孔膜37aとが接していた。
 実施例及び比較例の非水電解質二次電池について、リーク検査に基づく不良率を評価した。
 リーク検査は、二次電池の作製において、非水電解質を注入する前に、正極リード端子と負極の外部端子である電池ケースとの間に高電圧(250V)を印加し、その際の電流波形により良及び不良を検出する方法で行った。検査時の電流波形が所定の良品設定幅から外れた場合のみ不良と判定する方法である。
 セパレータの層構造とともに、評価結果を表1に示す。なお、実施例及び比較例で用いたセパレータはいずれも、厚みが20μmであり、耐熱性多孔膜の厚みは3μmであった。
 リーク検査の不良率は、二次電池300個中の個数及びその百分率で表した。表1中、ポリエチレン多孔膜はPEで、ポリプロピレン多孔膜はPPで、それぞれ表した。また、ポリイミドはPIで、ポリアミドイミドはPAIで表した。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、3層~5層構造のセパレータ7を用いた実施例1~8の非水電解質二次電池は、電池組立て時のリーク検査による不良は皆無であった。一方、リーク検査により、比較例1の二次電池は300個中3個、比較例2の二次電池は300個中2個、比較例3の二次電池は300個中7個の不良が確認された。
 実施例1~8については、耐熱性多孔膜の表面に第1及び第2ポリオレフィン多孔膜を配置し、バランスの良い層構成とした。そのため、捲芯によりセパレータを挟持して捲回することにより電極群14を作製した後、捲芯をスムーズに抜き取ることができた。捲芯を抜き取った後も、捲き始めのセパレータ部分16が捲芯を抜き取る方向にズレたり損傷したりすることを抑制でき、電池組立て時のリーク検査の不良率を低減できたと考えられる。
 比較例1~3の二次電池については、捲芯と耐熱性の耐熱性多孔膜とが直接接触しているために、捲芯をスムーズに抜き取ることができていなかった。また、比較例3で不良発生が多いのは、2層構造のために表裏のバランスが悪いことも影響していると考えられる。
 比較例1~3の二次電池のうち、リーク検査による不良品を抜き出して分解し、捲き始めのセパレータ部分16を目視確認した。その結果、セパレータ部分16が捲芯を抜き取る方向にズレて損傷しており、この部分において電流がリークしていたことが確認できた。比較例の二次電池のうち、良品と判定されたものについても同様にセパレータ部分16を目視確認した。その結果、リーク検査による不良品と同様に、捲き始めのセパレータ部分16が捲芯を抜き取る方向にズレており、損傷まで至っていないが同様の傾向があることが確認できた。比較例3では、特にズレ度合いが大きく見られた。
 また、実施例1~8の二次電池についてもリーク検査後の良品を分解して捲き始めのセパレータ部分16を目視確認したが、このようなセパレータ部分16がズレた形跡はなかった。また、電極群の構成要素の捲きズレも生じていなかった。
 上記のように、実施例1~8の二次電池のリーク検査の結果によれば、耐熱性多孔膜の表面に第1及び第2ポリオレフィン多孔膜を配置すると、捲芯の抜き出しに伴う、セパレータのズレや損傷を有効に抑制できることがわかった。
 なお、本実施例は円筒型リチウムイオン二次電池を用いたが、円筒型リチウム一次電池および円筒型アルカリ蓄電池、また、角型リチウムイオン二次電池でも同様の効果が得られる。本発明の構成は捲回してなる渦捲状の電極群を備えた電池系全てに同様の効果が得られるものである。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
 本発明の電池は、特に正極活物質および負極活物質の高密度化などエネルギー密度を上させた捲回型の電極群を備えたリチウムイオン二次電池に有用である。
 1    電池ケース
 2    封口板
 5    正極
 5a   正極リード端子
 6    負極
 6a   負極リード端子
 7    セパレータ
 7a   耐熱性多孔膜
 7b   ポリエチレン多孔膜
 7c   ポリプロピレン多孔膜
 7d   第1ポリオレフィン多孔膜
 7e   多孔質ポリエチレン層
 7f   多孔質ポリプロピレン層
 7g   第2ポリオレフィン多孔膜
 8    上部絶縁リング
 9    下部絶縁板
 12   正極外部端子
 13   ガスケット
 14   電極群
 16   セパレータ部分
 17   セパレータ
 17a  耐熱性多孔膜
 17e  多孔質ポリエチレン層
 17f  多孔質ポリプロピレン層
 27   セパレータ
 27a  耐熱性多孔膜
 27b  ポリエチレン多孔膜
 37   セパレータ
 37a  耐熱性多孔膜
 37b  ポリエチレン多孔膜

Claims (11)

  1.  長尺の正極集電体及び前記正極集電体の表面に付着した正極活物質層を含む正極、長尺の負極集電体及び前記負極集電体の表面に付着した負極活物質層を含む負極、並びに前記正極と前記負極との間を隔絶するセパレータを、渦捲状に捲回した電極群、並びに
     非水電解質を備え、
     前記セパレータが、耐熱性樹脂を含む耐熱性多孔膜と、前記耐熱性多孔膜の正極側の面全体を覆う第1ポリオレフィン多孔膜と、前記耐熱性多孔膜の負極側の面全体を覆う第2ポリオレフィン多孔膜とを有し、
     前記耐熱性樹脂の融点又は熱変形温度が、前記第1及び第2ポリオレフィン多孔膜に含まれるポリオレフィンの融点又は熱変形温度よりも高く、
     前記耐熱性多孔膜が厚み1~16μmを有し、前記第1ポリオレフィン多孔膜が厚み2~17μmを有し、前記第2ポリオレフィン多孔膜が厚み2~17μmを有し、前記セパレータが厚み5~35μmを有する、非水電解質二次電池。
  2.  前記電極群が捲芯を備えていない、請求項1に記載の非水電解質二次電池。
  3.  前記第1及び第2ポリオレフィン多孔膜の表面が、それぞれ、静摩擦係数0.09~0.17を有する、請求項1又は2に記載の非水電解質二次電池。
  4.  前記耐熱性樹脂の熱変形温度が260℃以上である、請求項1~3の何れか1項に記載の非水電解質二次電池。
  5.  前記耐熱性樹脂が、アラミド、ポリイミド及びポリアミドイミドから選択された少なくとも一種である請求項1~4の何れか1項に記載の非水電解質二次電池。
  6.  前記耐熱性多孔膜がさらに無機フィラーを含む、請求項1~5の何れか1項に記載の非水電解質二次電池。
  7.  前記第1ポリオレフィン多孔膜が、1層の多孔質ポリプロピレン層からなる、請求項1~6の何れか1項に記載の非水電解質二次電池。
  8.  前記第2ポリオレフィン多孔膜が、1層の多孔質ポリエチレン層からなる、請求項1~7の何れか1項に記載の非水電解質二次電池。
  9.  前記第1ポリオレフィン多孔膜が、複数の多孔質ポリオレフィン層からなり、かつ最表層が多孔質ポリプロピレン層である、請求項1~8の何れか1項に記載の非水電解質二次電池。
  10.  前記第2ポリオレフィン多孔膜が、複数の多孔質ポリオレフィン層からなり、かつ最表層が多孔質ポリエチレン層である、請求項1~7及び9の何れか1項に記載の非水電解質二次電池。
  11.  耐熱性樹脂を含む耐熱性多孔膜と、前記耐熱性多孔膜の一方の面全体を覆う第1ポリオレフィン多孔膜と、前記耐熱性多孔膜の他方の面全体を覆う第2ポリオレフィン多孔膜とを有し、前記耐熱性樹脂の融点又は熱変形温度が、前記第1及び第2ポリオレフィン多孔膜に含まれるポリオレフィンの融点又は熱変形温度よりも高く、前記耐熱性多孔膜が厚み1~16μmを有し、前記第1ポリオレフィン多孔膜が厚み2~17μmを有し、前記第2ポリオレフィン多孔膜が厚み2~17μmを有し、全体の厚みが5~35μmであるセパレータを準備し、
     長尺の正極集電体及び前記正極集電体の表面に付着した正極活物質層を含む正極と、長尺の負極集電体及び前記負極集電体の表面に付着した負極活物質層を含む負極とを準備し、
     前記正極と、前記負極と、前記第1ポリオレフィン多孔膜が正極側に配置され、前記第2ポリオレフィン多孔膜が負極側に配置され、前記正極と前記負極との間を隔絶するように配置した前記セパレータとを、前記セパレータの長手方向における一端部を一対の捲芯で挟持した状態で、渦捲状に捲回して電極群を形成し、
     前記捲芯を前記電極群から抜き取り、
     前記電極群を、非水電解質とともに電池ケースに収容する、非水電解質二次電池の製造方法。
PCT/JP2010/004395 2009-07-31 2010-07-06 非水電解質二次電池及びその製造方法 WO2011013300A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/063,372 US20110171509A1 (en) 2009-07-31 2010-07-06 Non-aqueous electrolyte secondary battery and method for producing the same
CN2010800030223A CN102197511A (zh) 2009-07-31 2010-07-06 非水电解质二次电池及其制造方法
JP2011524630A JPWO2011013300A1 (ja) 2009-07-31 2010-07-06 非水電解質二次電池及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-178596 2009-07-31
JP2009178596 2009-07-31

Publications (1)

Publication Number Publication Date
WO2011013300A1 true WO2011013300A1 (ja) 2011-02-03

Family

ID=43528974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004395 WO2011013300A1 (ja) 2009-07-31 2010-07-06 非水電解質二次電池及びその製造方法

Country Status (5)

Country Link
US (1) US20110171509A1 (ja)
JP (1) JPWO2011013300A1 (ja)
KR (1) KR20110054012A (ja)
CN (1) CN102197511A (ja)
WO (1) WO2011013300A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013145693A (ja) * 2012-01-16 2013-07-25 Toyota Motor Corp セパレータ及びリチウムイオン二次電池
JP2013218913A (ja) * 2012-04-10 2013-10-24 Toyota Motor Corp 非水電解質二次電池
WO2015034080A1 (ja) * 2013-09-09 2015-03-12 宇部興産株式会社 セパレータ及びそれを用いた蓄電デバイス
JP2015053134A (ja) * 2013-09-05 2015-03-19 株式会社豊田自動織機 蓄電装置
WO2015049996A1 (ja) * 2013-10-01 2015-04-09 トヨタ自動車株式会社 二次電池
JP2015208881A (ja) * 2014-04-24 2015-11-24 株式会社ダイセル 微細孔と取り扱い強度を有した多孔膜積層体及びその製造方法
JP2015216127A (ja) * 2015-07-29 2015-12-03 トヨタ自動車株式会社 二次電池
KR20160086977A (ko) 2014-08-29 2016-07-20 스미또모 가가꾸 가부시키가이샤 적층체, 비수 전해액 이차 전지용 세퍼레이터, 비수 전해액 이차 전지용 부재 및 비수 전해액 이차 전지

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6016038B2 (ja) 2012-04-10 2016-10-26 トヨタ自動車株式会社 非水電解質二次電池
JP5875487B2 (ja) * 2012-08-29 2016-03-02 株式会社日立製作所 リチウムイオン二次電池の製造方法及び製造装置
CN104854751A (zh) * 2012-12-28 2015-08-19 日产自动车株式会社 电气装置、电气装置的隔膜接合装置及其接合方法
TWI633695B (zh) 2013-05-30 2018-08-21 明基材料股份有限公司 一種用於鋰電池之隔離膜及其製造方法
CN103367673B (zh) * 2013-06-17 2015-09-23 明基材料有限公司 一种用于锂电池的隔离膜及其制造方法
CN103928649B (zh) * 2014-04-10 2016-08-24 佛山市金辉高科光电材料有限公司 一种改性无纺布锂离子电池隔膜及其制备方法
JP6680238B2 (ja) * 2017-02-17 2020-04-15 トヨタ自動車株式会社 電極体の製造方法
JP2018163855A (ja) * 2017-03-27 2018-10-18 三洋電機株式会社 非水電解質二次電池
EP3406751A1 (en) * 2017-05-24 2018-11-28 Walter Ag A coated cutting tool and a method for its production
JP6936670B2 (ja) * 2017-09-14 2021-09-22 三洋化成工業株式会社 リチウムイオン電池用セパレータ
EP3859821A4 (en) * 2018-09-25 2021-12-01 Panasonic Intellectual Property Management Co., Ltd. NON-AQUEOUS ELECTROLYTE SEPARATOR AND RECHARGEABLE BATTERY
CN109904368B (zh) * 2019-01-24 2021-11-23 深圳市新非泽科技有限公司 芳纶涂覆耐热锂离子电池隔膜及其制备方法
CN110993866B (zh) * 2019-12-18 2022-08-16 江苏厚生新能源科技有限公司 耐高温热收缩的锂电池隔膜及其制备方法
CN112563584B (zh) * 2020-12-10 2022-04-19 珠海冠宇电池股份有限公司 一种锂电池
KR20240039536A (ko) * 2022-09-19 2024-03-26 주식회사 엘지에너지솔루션 전극조립체, 그의 제조방법 및 이차전지

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213296A (ja) * 1996-02-05 1997-08-15 Sony Corp 電池用セパレーター及び電池
JPH11115084A (ja) * 1997-10-14 1999-04-27 Ube Ind Ltd 積層多孔質フイルム
JPH11144697A (ja) * 1997-11-10 1999-05-28 Japan Storage Battery Co Ltd 非水電解質電池
JP2000030686A (ja) * 1998-04-27 2000-01-28 Sumitomo Chem Co Ltd 非水電解質電池セパレ―タ―とリチウム二次電池
JP2001023602A (ja) * 1999-07-13 2001-01-26 Sumitomo Chem Co Ltd 非水電解液二次電池用セパレータの製造方法および非水電解液二次電池
JP2005209570A (ja) * 2004-01-26 2005-08-04 Teijin Ltd 非水系二次電池用セパレータ、その製造法および非水系二次電池
WO2005080487A1 (ja) * 2004-02-23 2005-09-01 Toyo Boseki Kabushiki Kaisha 多孔質膜とその製造法及びこれを用いたリチウムイオン二次電池
JP2006032246A (ja) * 2004-07-21 2006-02-02 Sanyo Electric Co Ltd 非水電解質電池用セパレータ及び非水電解質電池
JP2006164873A (ja) * 2004-12-10 2006-06-22 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2007048738A (ja) * 2005-07-14 2007-02-22 Tomoegawa Paper Co Ltd 電子部品用セパレータおよびその製造方法
WO2007049568A1 (ja) * 2005-10-24 2007-05-03 Tonen Chemical Corporation ポリオレフィン多層微多孔膜及びその製造方法並びに電池用セパレータ
JP2010123381A (ja) * 2008-11-19 2010-06-03 Tdk Corp リチウムイオン二次電池用セパレータ及びリチウムイオン二次電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW460505B (en) * 1998-04-27 2001-10-21 Sumitomo Chemical Co Separator for nonaqueous electrolyte battery and lithium secondary battery made from the same
KR100399785B1 (ko) * 2001-04-07 2003-09-29 삼성에스디아이 주식회사 겔형 고분자 전해질을 포함하는 권취형 리튬 2차 전지용세퍼레이터 및 그 제조방법
JP2007324073A (ja) * 2006-06-05 2007-12-13 Matsushita Electric Ind Co Ltd リチウム二次電池並びにそのセパレータ及びその製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213296A (ja) * 1996-02-05 1997-08-15 Sony Corp 電池用セパレーター及び電池
JPH11115084A (ja) * 1997-10-14 1999-04-27 Ube Ind Ltd 積層多孔質フイルム
JPH11144697A (ja) * 1997-11-10 1999-05-28 Japan Storage Battery Co Ltd 非水電解質電池
JP2000030686A (ja) * 1998-04-27 2000-01-28 Sumitomo Chem Co Ltd 非水電解質電池セパレ―タ―とリチウム二次電池
JP2001023602A (ja) * 1999-07-13 2001-01-26 Sumitomo Chem Co Ltd 非水電解液二次電池用セパレータの製造方法および非水電解液二次電池
JP2005209570A (ja) * 2004-01-26 2005-08-04 Teijin Ltd 非水系二次電池用セパレータ、その製造法および非水系二次電池
WO2005080487A1 (ja) * 2004-02-23 2005-09-01 Toyo Boseki Kabushiki Kaisha 多孔質膜とその製造法及びこれを用いたリチウムイオン二次電池
JP2006032246A (ja) * 2004-07-21 2006-02-02 Sanyo Electric Co Ltd 非水電解質電池用セパレータ及び非水電解質電池
JP2006164873A (ja) * 2004-12-10 2006-06-22 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2007048738A (ja) * 2005-07-14 2007-02-22 Tomoegawa Paper Co Ltd 電子部品用セパレータおよびその製造方法
WO2007049568A1 (ja) * 2005-10-24 2007-05-03 Tonen Chemical Corporation ポリオレフィン多層微多孔膜及びその製造方法並びに電池用セパレータ
JP2010123381A (ja) * 2008-11-19 2010-06-03 Tdk Corp リチウムイオン二次電池用セパレータ及びリチウムイオン二次電池

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013145693A (ja) * 2012-01-16 2013-07-25 Toyota Motor Corp セパレータ及びリチウムイオン二次電池
JP2013218913A (ja) * 2012-04-10 2013-10-24 Toyota Motor Corp 非水電解質二次電池
JP2015053134A (ja) * 2013-09-05 2015-03-19 株式会社豊田自動織機 蓄電装置
JPWO2015034080A1 (ja) * 2013-09-09 2017-03-02 宇部興産株式会社 セパレータ及びそれを用いた蓄電デバイス
WO2015034080A1 (ja) * 2013-09-09 2015-03-12 宇部興産株式会社 セパレータ及びそれを用いた蓄電デバイス
WO2015049996A1 (ja) * 2013-10-01 2015-04-09 トヨタ自動車株式会社 二次電池
JP2015069967A (ja) * 2013-10-01 2015-04-13 トヨタ自動車株式会社 二次電池
JP2015208881A (ja) * 2014-04-24 2015-11-24 株式会社ダイセル 微細孔と取り扱い強度を有した多孔膜積層体及びその製造方法
KR20160086977A (ko) 2014-08-29 2016-07-20 스미또모 가가꾸 가부시키가이샤 적층체, 비수 전해액 이차 전지용 세퍼레이터, 비수 전해액 이차 전지용 부재 및 비수 전해액 이차 전지
KR20160086976A (ko) 2014-08-29 2016-07-20 스미또모 가가꾸 가부시키가이샤 적층체, 적층체를 포함하는 비수 전해액 이차 전지용 세퍼레이터 및 비수 전해액 이차 전지용 세퍼레이터를 포함하는 비수 전해액 이차 전지
KR20160088434A (ko) 2014-08-29 2016-07-25 스미또모 가가꾸 가부시키가이샤 비수 이차 전지용 세퍼레이터, 적층체, 적층체의 제조 방법, 및 비수 이차 전지
KR20160096536A (ko) 2014-08-29 2016-08-16 스미또모 가가꾸 가부시키가이샤 적층체, 세퍼레이터 및 비수 이차 전지
KR20170038761A (ko) 2014-08-29 2017-04-07 스미또모 가가꾸 가부시키가이샤 적층체, 세퍼레이터 및 비수 이차 전지
US9711776B2 (en) 2014-08-29 2017-07-18 Sumitomo Chemical Company, Limited Laminated body, separator, and nonaqueous secondary battery
US9711775B2 (en) 2014-08-29 2017-07-18 Sumitomo Chemical Company, Limited Laminated body, separator, and nonaqueous secondary battery
US9865857B2 (en) 2014-08-29 2018-01-09 Sumitomo Chemical Company, Limited Laminated body, separator, and nonaqueous secondary battery
US10014506B2 (en) 2014-08-29 2018-07-03 Sumitomo Chemical Company, Limited Laminated body, separator, and nonaqueous secondary battery
JP2015216127A (ja) * 2015-07-29 2015-12-03 トヨタ自動車株式会社 二次電池

Also Published As

Publication number Publication date
CN102197511A (zh) 2011-09-21
US20110171509A1 (en) 2011-07-14
KR20110054012A (ko) 2011-05-24
JPWO2011013300A1 (ja) 2013-01-07

Similar Documents

Publication Publication Date Title
WO2011013300A1 (ja) 非水電解質二次電池及びその製造方法
JP4981195B2 (ja) 非水電解質二次電池用セパレータおよびそれを用いた非水電解質二次電池
JP5340408B2 (ja) 電池用セパレータ、それを用いた電池および電池の製造方法
JP5105386B2 (ja) 非水電解質二次電池及びその製造方法
TWI497791B (zh) Non-aqueous secondary battery separator and non-aqueous secondary battery
TWI501451B (zh) Non-aqueous secondary battery separator and non-aqueous secondary battery
KR101602867B1 (ko) 비수 전해질 전지용 세퍼레이터 및 비수 전해질 전지
JPWO2012117473A1 (ja) 非水電解質二次電池
WO2013153619A1 (ja) 非水電解質二次電池
JP2010225539A (ja) リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP2011204585A (ja) リチウムイオン電池
JP2013073787A (ja) 非水電解質二次電池およびその製造方法
WO2012147425A1 (ja) 円筒形リチウムイオン二次電池およびその製造方法
JP5348720B2 (ja) 扁平形非水二次電池
JP2008108492A (ja) 電池
JP5883029B2 (ja) 円筒形二次電池のための上部キャップ、および上部キャップを含む二次電池
WO2012120579A1 (ja) 非水電解質二次電池
JP2012160273A (ja) 非水電解質二次電池及びその製造方法
WO2020003846A1 (ja) リチウムイオン二次電池
JP5566671B2 (ja) 扁平形非水二次電池
US11545721B2 (en) Secondary batteries
JP5129412B2 (ja) 非水電解質二次電池及びその製造方法
JP7448867B2 (ja) 電池外装体用フッ素樹脂フィルム、電池外装体及び二次電池
JP2012084255A (ja) 非水電解質二次電池
WO2020003847A1 (ja) リチウムイオン二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003022.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 13063372

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117005879

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804053

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011524630

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10804053

Country of ref document: EP

Kind code of ref document: A1