WO2015049996A1 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
WO2015049996A1
WO2015049996A1 PCT/JP2014/074664 JP2014074664W WO2015049996A1 WO 2015049996 A1 WO2015049996 A1 WO 2015049996A1 JP 2014074664 W JP2014074664 W JP 2014074664W WO 2015049996 A1 WO2015049996 A1 WO 2015049996A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte layer
negative electrode
positive electrode
electrolyte
solid
Prior art date
Application number
PCT/JP2014/074664
Other languages
English (en)
French (fr)
Inventor
曜 ▲辻▼子
泰正 小熊
道行 井出
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US15/021,310 priority Critical patent/US9843072B2/en
Priority to CN201480050060.2A priority patent/CN105531864B/zh
Publication of WO2015049996A1 publication Critical patent/WO2015049996A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery.
  • a metal ion secondary battery having a solid electrolyte layer using a flame retardant solid electrolyte (for example, a lithium ion secondary battery, etc., hereinafter sometimes referred to as “all solid battery”) is used for ensuring safety. It has advantages such as easy to simplify the system.
  • Patent Document 1 discloses a lithium secondary battery using a sulfide-based solid electrolyte with a copolymer containing vinylidene fluoride and tetrafluoroethylene as a binder.
  • Patent Document 2 discloses a step of forming a coating film made of the paint by applying a paint containing active material particles, a binder containing styrene butadiene rubber and a first solvent on the surface of the current collector, There is disclosed a method for producing an electrode, comprising: applying a paint containing a solid polymer electrolyte, a binder containing polyvinylidene fluoride, and a third solvent to the coating film.
  • Patent Document 3 discloses a solid electrolyte battery including a positive electrode, a solid electrolyte layer having a multilayer structure of two or more layers disposed on the positive electrode, and a negative electrode disposed on the solid electrolyte layer. It is disclosed.
  • Patent Document 1 when a vinylidene fluoride and tetrafluoroethylene copolymer is used as the vinylidene fluoride copolymer, metal ions are occluded in the negative electrode active material or metal from the negative electrode active material. In a potential environment where ions are released (hereinafter sometimes referred to as “negative electrode potential”), a reduction reaction of tetrafluoroethylene occurs. As a result, since the capacity of the battery is reduced, there is a problem that it is difficult to improve the performance of the battery. In order to solve this problem, for example, instead of the polymer disclosed in Patent Document 1, it is conceivable to use styrene butadiene rubber disclosed in Patent Document 2.
  • an object of the present invention is to provide a secondary battery capable of improving performance.
  • PVdF electrolyte an electrolyte containing a monomer containing an element that forms a compound by reacting with a metal ion at a negative electrode potential, and a polymer binder having PVdF.
  • a reduction reaction of the monomer (TFE in the above example) contained in the PVdF electrolyte occurs at the negative electrode potential, and (2) between the PVdF electrolyte and the negative electrode, An electrolyte (hereinafter referred to as “BR electrolyte”) containing a butadiene rubber (hereinafter sometimes referred to as “BR rubber”). It is possible to prevent the reduction reaction of the monomer, and (3) the electrolyte having a two-layer structure of the PVdF electrolyte and the BR electrolyte has the structure of the two-layer structure. It has been found that the conductivity of metal ions is superior to the BR electrolyte having the same thickness as the electrolyte. The present invention has been completed based on this finding.
  • the present invention includes a positive electrode and a negative electrode, and an electrolyte layer disposed therebetween, the electrolyte layer including a positive electrode side electrolyte layer disposed on the positive electrode side, and the positive electrode side electrolyte layer and the negative electrode.
  • a negative electrode side electrolyte layer, the positive electrode side electrolyte layer contains a binder having a fluorocopolymer containing tetrafluoroethylene (TFE) and an electrolyte, and the negative electrode side electrolyte layer is And a secondary battery containing a butadiene rubber-based binder and an electrolyte.
  • TFE tetrafluoroethylene
  • the “secondary battery” may be a form using a liquid electrolyte or a form using a solid electrolyte.
  • the “binder having a fluorocopolymer containing tetrafluoroethylene (TFE)” is, for example, a vinylidene fluoride resin obtained by polymerizing tetrafluoroethylene and hexafluoropropylene as a binder for the positive electrode side electrolyte layer. Say that it is used.
  • the butadiene rubber-based binder is not only butadiene rubber used as a binder (binder), but also a polymer obtained by copolymerizing butadiene rubber with other monomers, for example, acrylate butadiene rubber (ABR). ) Or styrene butadiene rubber (SBR).
  • ABR acrylate butadiene rubber
  • SBR styrene butadiene rubber
  • the BR electrolyte is disposed between the PVdF electrolyte and the negative electrode, it is possible to prevent a reaction that causes a decrease in the capacity of the battery at the negative electrode potential.
  • a PVdF electrolyte it is possible to enhance the conduction performance of metal ions, and the electrolyte layer having a two-layer structure using the PVdF electrolyte and the BR electrolyte has a strength condition required for the electrolyte layer of the secondary battery.
  • an electrolyte layer using a PVdF electrolyte may be referred to as a “PVdF electrolyte layer”, and an electrolyte layer using a BR electrolyte without using a PVdF electrolyte may be referred to as a “BR electrolyte layer”. .
  • the capacity, the conduction performance of metal ions, and the strength can be set to a certain level or more, so the performance of the secondary battery can be improved.
  • the electrolyte contained in the positive electrode side electrolyte layer and the electrolyte contained in the negative electrode side electrolyte layer may be solid electrolytes.
  • a binder is often used.
  • a secondary battery capable of improving performance can be provided.
  • FIG. It is a perspective view explaining a bending strength measurement test. It is sectional drawing explaining a bending strength measurement test. It is sectional drawing explaining a bending strength measurement test. It is sectional drawing explaining a bending strength measurement test. It is a figure explaining the result of a bending strength measurement test. It is a figure explaining the result of an ionic conductivity measurement test. It is a figure explaining the result of a capacity measurement test.
  • FIG. 1 is a diagram illustrating an all solid state battery 10 which is an embodiment of the secondary battery of the present invention.
  • the all solid state battery 10 includes a positive electrode 1 and a negative electrode 2, and an electrolyte layer 3 disposed therebetween.
  • the positive electrode 1 contains a positive electrode active material capable of occluding and releasing lithium ions, and a solid electrolyte
  • the negative electrode 2 is a known negative electrode active material capable of occluding and releasing lithium ions, such as graphite, and A solid electrolyte is contained.
  • the electrolyte layer 3 includes a positive electrode side electrolyte layer 4 disposed on the positive electrode 1 side, and a negative electrode side electrolyte layer 5 disposed between the positive electrode side electrolyte layer 4 and the negative electrode 2.
  • FIG. 2 is a diagram illustrating the binder 4a and the solid electrolyte 6 contained in the positive electrode side electrolyte layer 4
  • FIG. 3 is a diagram illustrating the butadiene rubber 5a and the solid electrolyte 6 contained in the negative electrode side electrolyte layer 5. It is a figure to do.
  • FIG. 2 is an enlarged view showing a part of the positive electrode side electrolyte layer 4
  • FIG. 3 is an enlarged view showing a part of the negative electrode side electrolyte layer 5.
  • the binder and the solid electrolyte are shown in a simplified manner. As shown in FIG.
  • the positive electrode side electrolyte layer 4 is a solid electrolyte layer containing a binder 4 a containing a fluorocopolymer containing tetrafluoroethylene (TFE) and a solid electrolyte 6.
  • the negative electrode side electrolyte layer 5 is a solid electrolyte layer containing a butadiene rubber 5 a that functions as a binder and a solid electrolyte 6. That is, the positive electrode side electrolyte layer 4 and the negative electrode side electrolyte layer 5 are a PVdF electrolyte layer and a BR electrolyte layer, respectively.
  • the negative electrode side electrolyte layer 5 which is a BR electrolyte layer is disposed.
  • FIG. 4 is a diagram illustrating a conventional all solid state battery 90.
  • the same components as those of the all-solid battery 10 are denoted by the same reference numerals as those used in FIG. 1, and description thereof is omitted as appropriate.
  • description of the positive electrode current collector connected to the positive electrode 1 and the negative electrode current collector connected to the negative electrode 2 is omitted.
  • the all solid state battery 90 includes the positive electrode 1 and the negative electrode 2, and a solid electrolyte layer 91 disposed therebetween, and the solid electrolyte layer 91 functions as a binder. It contains a fluorocopolymer containing fluoroethylene (TFE) and a solid electrolyte.
  • TFE fluoroethylene
  • the solid electrolyte layer 91 When the all solid state battery 90 in which the solid electrolyte layer 91 that is a PVdF electrolyte layer and the negative electrode 2 are in direct contact is operated, the solid electrolyte layer 91 is brought into contact with the solid electrolyte layer 91 at the contact interface between the solid electrolyte layer 91 and the negative electrode 2 at the negative electrode potential. Tetrafluoroethylene (TFE) contained therein reacts with lithium. This reaction is shown in FIG.
  • TFE Tetrafluoroethylene
  • the negative electrode side electrolyte layer 5 that is a BR electrolyte layer is disposed between the positive electrode side electrolyte layer 4 that is a PVdF electrolyte layer and the negative electrode 2. Yes. Therefore, the negative electrode side electrolyte layer 5 prevents contact between the positive electrode side electrolyte layer 4 that is a PVdF electrolyte layer and the negative electrode 2.
  • the negative electrode side electrolyte layer 5 prevents contact between the positive electrode side electrolyte layer 4 that is a PVdF electrolyte layer and the negative electrode 2.
  • the all-solid-state battery 10 has the positive electrode side electrolyte layer 4 which is a PVdF electrolyte layer.
  • the strength and ionic conductivity of the electrolyte layer 3 can be easily maintained at a certain level or more. Therefore, according to the present invention, it is possible to provide the all-solid-state battery 10 with improved performance by setting the capacity, the conduction performance of metal ions, and the strength to a certain level or more.
  • the strength of the electrolyte layer and the ionic conductivity are contradictory, and the strength of the electrolyte layer is required to be a certain level or more from the viewpoint of preventing a short circuit.
  • the amount of addition of the fluorocopolymer containing tetrafluoroethylene (TFE) and the displacement and ionic conductivity that were confirmed to have cracked in the electrolyte when a test similar to the bending strength measurement test described later was performed.
  • This relationship is shown in FIG.
  • the vertical axis on the left side of FIG. 6 is displacement (mm)
  • the vertical axis on the right side is ionic conductivity (S / cm)
  • the horizontal axis is the amount of polymer added (vol%).
  • the line that rises to the right is the result of displacement
  • the line that falls to the right is the result of ionic conductivity. Note that the displacement shown in FIG.
  • the form of the positive electrode and the negative electrode is not particularly limited, and the form of the positive electrode current collector connected to the positive electrode and the negative electrode current collector connected to the negative electrode is not particularly limited.
  • a positive electrode active material contained in the positive electrode a known positive electrode active material that can be used in a secondary battery can be appropriately used.
  • positive electrode active materials include rock salt layered active materials such as lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), LiNi 1/3 Co 1/3 Mn 1/3 O 2 , manganese, and the like.
  • Examples include spinel active materials such as lithium acid (LiMn 2 O 4 ) and Li (Ni 0.5 Mn 1.5 ) O 4 , and olivine active materials such as LiFePO 4 , LiMnPO 4 , LiCoPO 4 , and LiNiPO 4. Can do.
  • the shape of the positive electrode active material can be, for example, particulate or thin film.
  • the average particle diameter (D 50 ) of the positive electrode active material is, for example, preferably 1 nm or more, and more preferably 10 nm or more. Furthermore, the average particle diameter (D 50 ) of the positive electrode active material is, for example, preferably 100 ⁇ m or less, and more preferably 30 ⁇ m or less. Although content of the positive electrode active material in a positive electrode layer is not specifically limited, It is preferable to set it as 40% or more and 99% or less by mass%, for example.
  • a known binder that can be contained in the positive electrode of the secondary battery can be used for the positive electrode.
  • a binder include butadiene rubber, fluorine resin, and rubber.
  • the positive electrode may contain a conductive material that improves conductivity.
  • a conductive material that improves conductivity.
  • carbon materials such as vapor-grown carbon fiber, acetylene black (AB), ketjen black (KB), carbon nanotube (CNT), and carbon nanofiber (CNF)
  • the conductive material that can be contained in the positive electrode A metal material that can withstand the environment when the secondary battery is used can be exemplified.
  • the secondary battery of the present invention is an all-solid battery
  • the solid electrolyte layer not only the solid electrolyte layer but also the positive electrode and the negative electrode contain a known solid electrolyte that can be used for the all-solid battery, if necessary. be able to.
  • solid electrolytes include oxide-based amorphous solid electrolytes such as Li 2 O—B 2 O 3 —P 2 O 5 and Li 2 O—SiO 2 , Li 2 S—SiS 2 , LiI—Li 2.
  • Sulfuration such as S-SiS 2 , LiI-Li 2 SP 2 S 5 , LiI-Li 2 S—P 2 O 5 , LiI-Li 3 PO 4 —P 2 S 5 , Li 2 SP—P 2 S 5
  • Physical amorphous solid electrolyte LiI, Li 3 N, Li 5 La 3 Ta 2 O 12 , Li 7 La 3 Zr 2 O 12 , Li 6 BaLa 2 Ta 2 O 12 , Li 3 PO (4-3 / 2w ) N w (w is w ⁇ 1), Li 3.6 Si 0.6 P 0.4 O 4 , etc.
  • crystalline solid electrolytes Li 7 P 3 S 11, Li 3.25 P 0.75 S 4 , etc.
  • Solid electrolyte is a sulfide solid electrolyte (sulfide-based amorphous solid electrolyte or sulfide-based crystalline solid) from the standpoint of making the electrode for all-solid-state battery easy to improve the performance of all-solid-state battery. It is preferable to use an electrolyte.
  • the thickness of the positive electrode is, for example, preferably 0.1 ⁇ m or more, and more preferably 1 ⁇ m or more. Furthermore, the thickness of the positive electrode is preferably 1 mm or less, and more preferably 100 ⁇ m or less.
  • a known negative electrode active material capable of occluding and releasing lithium ions can be used as appropriate.
  • a negative electrode active material include a carbon active material, an oxide active material, and a metal active material.
  • the carbon active material is not particularly limited as long as it contains carbon, and examples thereof include mesocarbon microbeads (MCMB), highly oriented graphite (HOPG), hard carbon, and soft carbon.
  • MCMB mesocarbon microbeads
  • HOPG highly oriented graphite
  • the oxide active material include Nb 2 O 5 and SiO.
  • the metal active material include In, Al, Si, and Sn.
  • a lithium-containing metal active material may be used as the negative electrode active material.
  • the lithium-containing metal active material is not particularly limited as long as it is an active material containing at least Li, and may be Li metal or Li alloy.
  • the Li alloy include an alloy containing Li and at least one of In, Al, Si, and Sn.
  • the shape of the negative electrode active material can be, for example, particulate or thin film.
  • the average particle diameter (D 50 ) of the negative electrode active material is, for example, preferably 1 nm or more, and more preferably 10 nm or more.
  • the average particle diameter (D 50 ) of the negative electrode active material is, for example, preferably 100 ⁇ m or less, and more preferably 30 ⁇ m or less.
  • the content of the negative electrode active material in the negative electrode is not particularly limited, but is preferably 40% or more and 99% or less in mass%, for example.
  • the negative electrode may contain a conductive material that improves conductivity.
  • the conductive material that can be contained in the negative electrode include the conductive materials that can be contained in the positive electrode.
  • a negative electrode is prepared using a slurry-like negative electrode composition prepared by dispersing the negative electrode active material or the like in a liquid, heptane or the like can be exemplified as the liquid for dispersing the negative electrode active material or the like, Nonpolar solvents can be preferably used.
  • the thickness of the negative electrode is, for example, preferably 0.1 ⁇ m or more, and more preferably 1 ⁇ m or more.
  • the thickness of the negative electrode is preferably 1 mm or less, and more preferably 100 ⁇ m or less.
  • an electrolyte layer (both PVdF electrolyte layer and BR electrolyte layer.
  • the secondary battery of the present invention is an all-solid battery
  • the PVdF electrolyte layer and the BR electrolyte layer may be collectively referred to as a “solid electrolyte layer.”
  • the solid electrolyte layer contains a binder that binds the solid electrolytes from the viewpoint of developing plasticity.
  • a binder that binds the solid electrolytes from the viewpoint of developing plasticity.
  • the binder is preferably 5% by mass or less.
  • a PVdF electrolyte layer is produced through a process of applying a slurry-like solid electrolyte composition prepared by dispersing the solid electrolyte or the like in a liquid to a substrate
  • butyl butyrate is used as a liquid for dispersing the solid electrolyte or the like.
  • Etc. can be illustrated.
  • a BR electrolyte layer is produced through a process of applying a slurry-like solid electrolyte composition prepared by dispersing the solid electrolyte or the like in a liquid to a substrate, the liquid in which the solid electrolyte or the like is dispersed includes heptane or the like. Can be illustrated.
  • the content of the solid electrolyte material in the solid electrolyte layer is mass%, for example, preferably 60% or more, more preferably 70% or more, and particularly preferably 80% or more.
  • the thickness of the solid electrolyte layer (here, the total thickness of the PVdF electrolyte layer and the BR electrolyte layer; the same applies hereinafter) varies greatly depending on the battery configuration, but is preferably 0.1 ⁇ m or more, for example, 1 ⁇ m More preferably. Furthermore, the thickness of the solid electrolyte layer is preferably 1 mm or less, and more preferably 100 ⁇ m or less. In the present invention, it is preferable that the thickness of the BR electrolyte layer is made thinner than the thickness of the PVdF electrolyte layer from the viewpoint of easily increasing the ion conduction performance.
  • a binder having a fluorocopolymer containing tetrafluoroethylene (TFE) is used for the PVdF electrolyte layer.
  • the fluorocopolymer containing tetrafluoroethylene (TFE) that can be used for the PVdF electrolyte layer may be a fluorocopolymer in which tetrafluoroethylene (TFE) undergoes the reduction reaction shown in FIG. 5 at the negative electrode potential.
  • TFE tetrafluoroethylene
  • a fluorinated copolymer for example, a fluorinated copolymer containing a vinylidene fluoride monomer unit, a tetrafluoroethylene monomer unit, and a hexafluoropropylene monomer unit in a predetermined ratio.
  • fluorine-based polymers such as vinylidene fluoride resin and polytetrafluoroethylene (PTFE) can be exemplified.
  • a butadiene rubber binder is used for the BR electrolyte layer.
  • the butadiene rubber-based binder that can be used in the BR electrolyte layer include butadiene rubber (BR), acrylate butadiene rubber (ABR), and styrene butadiene rubber (SBR).
  • a known metal that can be used as a current collector of a secondary battery can be used for the positive electrode current collector and the negative electrode current collector.
  • a metal a metal containing one or more elements selected from the group consisting of Cu, Ni, Al, V, Au, Pt, Mg, Fe, Ti, Co, Cr, Zn, Ge, and In. Materials can be exemplified.
  • the form of the positive electrode current collector and the negative electrode current collector is not particularly limited, and can be a known form. In the present invention, the form of the positive electrode current collector or the negative electrode current collector can be, for example, a foil shape or a mesh shape.
  • the secondary battery of the present invention can be configured such that the positive electrode, the electrolyte layer, the negative electrode, and the like are accommodated in the outer package.
  • an exterior body that can be used in the present invention a known exterior body that can be used in a secondary battery can be used. Examples of such an exterior body include a resin-made laminate film, a film obtained by vapor-depositing a metal on a resin-made laminate film, a stainless steel housing, and the like.
  • the secondary battery of the present invention is an all-solid battery is mainly referred to, but the secondary battery of the present invention is not limited to this form.
  • the secondary battery of the present invention may be, for example, a secondary battery using a non-aqueous electrolyte.
  • a non-aqueous electrolyte a known non-aqueous electrolyte that can be used for the secondary battery can be appropriately used.
  • the separator disposed between the positive electrode and the negative electrode is continuously disposed in the direction from the positive electrode to the negative electrode.
  • a multilayer structure having a plurality of layers may be used.
  • the layer disposed on the positive electrode side may be a porous PVdF electrolyte layer, and the layer disposed between the PVdF electrolyte layer and the negative electrode may function as a porous BR electrolyte layer. More specifically, when producing a separator disposed on the positive electrode side, a separator having a porous structure is produced by a known method using a fluorocopolymer containing tetrafluoroethylene (TFE), and The separator disposed on the positive electrode side may function as the PVdF electrolyte layer by holding the non-aqueous electrolyte in the separator having a porous structure.
  • TFE fluorocopolymer containing tetrafluoroethylene
  • a separator disposed on the negative electrode side when a separator disposed on the negative electrode side is prepared, a separator having a porous structure is prepared by a known method using butadiene rubber, and the separator having the porous structure is allowed to hold a nonaqueous electrolytic solution. Therefore, the separator disposed on the negative electrode side may function as the BR electrolyte layer.
  • the secondary battery of the present invention is exemplified as a secondary battery (lithium ion secondary battery) in which lithium ions move between the positive electrode and the negative electrode.
  • the form is not limited.
  • the secondary battery of the present invention may be in a form in which ions other than lithium ions move between the positive electrode and the negative electrode. Examples of such ions include sodium ions and potassium ions.
  • the positive electrode active material, the solid electrolyte or the non-aqueous electrolyte, and the negative electrode active material may be appropriately selected according to the moving ions.
  • positive electrode active material LiNi 1/3 Co 1/3 Mn 1/3 O 2 (manufactured by Nichia Corporation)
  • conductive material vapor-grown carbon fiber (Showa Denko) Manufactured)
  • synthesized solid electrolyte were weighed and mixed in a solvent (heptane) to obtain a positive electrode composition.
  • This positive electrode composition was applied to a positive electrode current collector (aluminum foil) and dried to prepare a positive electrode on the surface of the positive electrode current collector.
  • negative electrode active material graphite (manufactured by Mitsubishi Chemical)
  • 8.24 mg of the synthesized solid electrolyte were weighed and mixed in a solvent (heptane) to obtain a negative electrode.
  • a composition was obtained.
  • This negative electrode composition was applied to a negative electrode current collector (copper foil) and dried to prepare a negative electrode on the surface of the negative electrode current collector.
  • PVdF electrolyte layer 18 mg of the synthesized solid electrolyte was weighed, and a fluorine-based copolymer (vinylidene fluoride monomer unit, tetrafluoroethylene monomer) containing this solid electrolyte and tetrafluoroethylene (TFE).
  • a PVdF electrolyte composition was obtained by mixing 3.6 mg of a butyl butyrate solution containing 5 wt% of a TFE-containing fluorocopolymer) and 30.3 mg of butyl butyrate.
  • the PVdF electrolyte composition was applied to an aluminum foil, further dried, and then the aluminum foil was peeled off to produce a PVdF electrolyte layer.
  • BR electrolyte layer 18 mg of the synthesized solid electrolyte was weighed, and 3.6 mg of heptane solution containing 5 wt% BR and 30.3 mg of heptane were mixed to prepare a BR electrolyte composition. Obtained.
  • the BR electrolyte composition was applied to an aluminum foil, further dried, and then the aluminum foil was peeled off to produce a BR electrolyte layer.
  • the BR electrolyte layer was produced so that it might become the same thickness as the produced said PVdF electrolyte layer.
  • Electrode body A was produced.
  • the electrode body A is shown in FIG. Note that the description of the positive electrode current collector and the negative electrode current collector is also omitted in FIG. 7 in order to match FIG. 1 and FIG. 4 where the description of the positive electrode current collector and the negative electrode current collector is omitted.
  • FIGS. 8A, 8B, and 8C An outline of the bending strength measurement test is shown in FIGS. 8A, 8B, and 8C.
  • FIG. 8A is a perspective view illustrating a state in which an electrolyte layer (BR electrolyte layer or PVdF electrolyte layer) having a diameter of 13 mm is disposed in a hole having a diameter of 8 mm provided on a test stand of the particle compression apparatus.
  • FIG. 8B is a cross-sectional view taken along the line AA ′ of FIG.
  • FIG. 8A illustrating a state before the sample placed on the test bench is pushed with a presser.
  • FIG. 8C is a cross-sectional view taken along the line AA ′ of FIG. 8A for explaining a state in which the sample placed on the test bench is pushed in by the presser.
  • the sample was pushed in with a presser, and the displacement to a position where it was confirmed visually that the sample had cracks was measured.
  • the results are shown in FIG. “BR” in FIG. 9 means a result of a bending strength test in which two stacked BR electrolyte layers are pressed with a presser, and “PVdF” indicates two stacked PVdF electrolyte layers with a presser.
  • the present invention is a bending strength test in which one BR electrolyte layer and one PVdF electrolyte layer (two electrolyte layers in total) stacked are pushed with a presser. It means that the result.
  • the PVdF electrolyte layer had higher strength than the BR electrolyte layer, and the “present invention” had higher strength than “PVdF”.
  • the strength of the “invention” is higher than that of “PVdF” because the strength of the strength of both is increased by superimposing the BR electrolyte layer softer than the PVdF electrolyte layer and the PVdF electrolyte layer harder than the BR electrolyte layer. It is considered that due to the balance, the strength was higher than when only the PVdF electrolyte layer was used. From this result, it was found that an electrolyte layer obtained by stacking a PVdF electrolyte layer and a BR electrolyte layer can have a strength equal to or higher than that of the PVdF electrolyte layer.
  • Ion conductivity measurement test The ion conductivity of the BR electrolyte layer and the PVdF electrolyte layer was measured using an impedance measuring device (1470E CellTest System, manufactured by Toyo Corporation). The results are shown in FIG. “BR” in FIG. 10 means the measurement result of ionic conductivity performed on the BR electrolyte layer, and “PVdF” means the measurement result of ionic conductivity performed on the PVdF electrolyte layer. . As shown in FIG. 10, the ionic conductivity of the PVdF electrolyte layer was higher than that of the BR electrolyte layer.
  • Capacity measurement test About the produced electrode body A, the electrode body B, and the electrode body C, the capacity
  • the electrode body A, the electrode body B, and the electrode body C are the same except for the configuration of the electrolyte, and the test conditions for capacitance measurement were also the same.
  • the thickness of the BR electrolyte layer in the electrode body A (the thickness in the vertical direction on the paper in FIG. 7) is the same as the thickness of the PVdF electrolyte layer in the electrode body B (the thickness in the vertical direction on the paper in FIG. 4).
  • the total thickness of the BR electrolyte layer and the PVdF electrolyte layer in the electrode body C was the same.
  • the results of the capacity measurement test are shown in FIG.
  • the capacities of the electrode body A and the electrode body C were similar, but the capacity of the electrode body B was lower than the capacities of the electrode body A and the electrode body C. This is considered to be because, in the electrode body B, the PVdF electrolyte layer is in contact with the negative electrode, and thus a LiF generation reaction occurred at the interface between the PVdF electrolyte layer and the negative electrode. Since the electrode body C has the same capacity as the electrode body A that does not use the PVdF electrolyte layer, it is considered that no monomer reduction reaction or LiF generation reaction occurs.
  • a secondary battery capable of improving performance can be provided.

Abstract

本発明は、性能を向上させることが可能な二次電池を提供することを主目的とする。 本発明は、正極及び負極と、これらの間に配置される電解質層と、を有し、電解質層は、正極側に配置される正極側電解質層、及び、該正極側電解質層と負極との間に配置される負極側電解質層を備え、正極側電解質層は、テトラフルオロエチレンを含有したフッ素系共重合体を有するバインダーと、電解質と、を含有し、負極側電解質層は、ブタジエンゴム系バインダーと、電解質と、を含有する、二次電池とする。

Description

二次電池
 本発明は、二次電池に関する。
 難燃性の固体電解質を用いた固体電解質層を有する金属イオン二次電池(例えば、リチウムイオン二次電池等。以下において「全固体電池」ということがある。)は、安全性を確保するためのシステムを簡素化しやすい等の長所を有している。
 このような全固体電池に関する技術として、例えば特許文献1には、フッ化ビニリデンとテトラフルオロエチレンを含む共重合体をバインダーとし、硫化物系固体電解質を用いたリチウム二次電池が開示されている。また、特許文献2には、集電体の表面に、活物質粒子とスチレンブタジエンゴムを含むバインダーと第1溶媒とを含む塗料を塗布することにより該塗料からなる塗膜を形成する工程と、固体高分子電解質とポリフッ化ビニリデンを含むバインダーと第3溶媒とを含む塗料を、上記塗膜に塗布する工程と、を有する電極の製造方法が開示されている。また、特許文献3には、正極と、該正極上に配置される、2層以上の多層構造を有する固体電解質層と、該固体電解質層上に配置される負極と、を備える固体電解質電池が開示されている。
特開2013-62228号公報 特開2010-61912号公報 特開2000-285929号公報
 例えば特許文献1に開示されている技術において、フッ化ビニリデン共重合体として、フッ化ビニリデン及びテトラフルオロエチレンの共重合体を用いると、負極活物質に金属イオンが吸蔵されたり負極活物質から金属イオンが放出されたりする電位環境(以下において、「負極電位」ということがある。)において、テトラフルオロエチレンの還元反応が生じる。その結果、電池の容量が低下するため、電池の性能を向上させ難いという問題があった。この問題を解決するために、例えば、特許文献1に開示されている高分子に代えて、特許文献2に開示されているスチレンブタジエンゴムを用いることが考えられる。しかしながら、スチレンブタジエンゴムを用いて作製した電解質層は、特許文献1に開示されている高分子を用いて作製した電解質層よりも、金属イオンの伝導性が低くなりやすい。したがって、特許文献2に開示されている技術を用いても、電池の性能を向上させ難い。この問題は、特許文献1乃至特許文献3に開示されている技術を組み合わせても、解決することが困難であった。
 そこで本発明は、性能を向上させることが可能な二次電池を提供することを課題とする。
 本発明者らは、鋭意検討の結果、(1)テトラフルオロエチレン(以下において、「TFE」ということがある。)及びポリフッ化ビニリデン(以下において、「PVdF」ということがある。)を有するバインダーを含有する電解質(以下において、負極電位で金属イオンと反応することにより化合物を形成する元素を含む単量体、及び、PVdFを有する高分子のバインダーを含有する電解質を、「PVdF電解質」ということがある。)と負極とを接触させると、負極電位においてPVdF電解質に含まれている単量体(上記例ではTFE)の還元反応が生じること、(2)PVdF電解質と負極との間に、ブタジエン系ゴム(以下において、「BRゴム」ということがある。)を含有する電解質(以下において、「BR電解質」ということがある。)を配置することにより、上記単量体の還元反応を防止することが可能になること、(3)PVdF電解質及びBR電解質の二層構造の電解質は、当該二層構造の電解質と同じ厚さのBR電解質よりも金属イオンの伝導性が優れていること、を知見した。本発明は、当該知見に基づいて完成させた。
 上記課題を解決するために、本発明は以下の手段をとる。すなわち、
  本発明は、正極及び負極と、これらの間に配置される電解質層と、を有し、該電解質層は、正極側に配置される正極側電解質層、及び、該正極側電解質層と負極との間に配置される負極側電解質層を備え、正極側電解質層は、テトラフルオロエチレン(TFE)を含有したフッ素系共重合体を有するバインダーと、電解質と、を含有し、負極側電解質層は、ブタジエンゴム系バインダーと、電解質と、を含有する、二次電池である。
 ここに、本発明において、「二次電池」は、液体状の電解質を用いる形態であっても良く、固体状の電解質を用いる形態であっても良い。また、「テトラフルオロエチレン(TFE)を含有したフッ素系共重合体を有するバインダー」とは、例えば、正極側電解質層のバインダーとして、テトラフルオロエチレン及びヘキサフルオロプロピレンを重合させたフッ化ビニリデン樹脂が用いられることを言う。また、本発明において、ブタジエンゴム系バインダーとは、バインダー(結着材)として使用されるブタジエンゴムのほか、ブタジエンゴムを他のモノマーと共重合させたポリマーを用いた、例えばアクリレートブタジエンゴム(ABR)やスチレンブタジエンゴム(SBR)等のバインダーをいう。
 上記形態の二次電池では、PVdF電解質と負極との間にBR電解質が配置されるので、負極電位において、電池の容量低下の原因になる反応を防止することが可能になる。また、PVdF電解質を用いることにより、金属イオンの伝導性能を高めることが可能であり、PVdF電解質及びBR電解質を用いた二層構造の電解質層は、二次電池の電解質層に求められる強度の条件も満たすことができる(以下において、PVdF電解質を用いた電解質層を「PVdF電解質層」ということがあり、PVdF電解質を用いることなくBR電解質を用いた電解質層を「BR電解質層」ということがある。)。したがって、上記形態にすることにより、容量、金属イオンの伝導性能、及び、強度を一定以上にすることが可能になるので、二次電池の性能を向上させることが可能になる。
 また、上記本発明において、正極側電解質層に含有される電解質、及び、負極側電解質層に含有される電解質が、固体電解質であっても良い。固体電解質を用いた電解質層(固体電解質層)の作製時には、バインダーが使用されることが多い。全固体電池の固体電解質層に、本発明における正極側電解質層及び負極側電解質層が含まれていることにより、容量、金属イオンの伝導性能、及び、強度を一定以上にすることが可能になるので、本発明の二次電池の一形態である全固体電池の性能を向上させることが可能になる。
 本発明によれば、性能を向上させることが可能な二次電池を提供することができる。
本発明の二次電池の一形態を説明する図である。 正極側電解質層4を説明する図である。 負極側電解質層5を説明する図である。 従来の全固体電池90を説明する図である。 テトラフルオロエチレンの還元反応を説明する図である。 バインダーの添加量と固体電解質層の強度及びイオン伝導度との関係を説明する図である。 電極体Aを説明する図である。 曲げ強度測定試験を説明する斜視図である。 曲げ強度測定試験を説明する断面図である。 曲げ強度測定試験を説明する断面図である。 曲げ強度測定試験の結果を説明する図である。 イオン伝導度測定試験の結果を説明する図である。 容量測定試験の結果を説明する図である。
 以下、図面を参照しつつ、本発明について説明する。なお、以下の説明では、本発明の二次電池の一形態である、正極と負極との間をリチウムイオンが移動する全固体電池を主に例示するが、本発明は以下に示す形態に限定されない。
 図1は、本発明の二次電池の一形態である全固体電池10を説明する図である。図1では、正極1に接続される正極集電体、及び、負極2に接続される負極集電体等の記載を省略している。図1に示したように、全固体電池10は、正極1及び負極2と、これらの間に配置された電解質層3と、を有している。正極1には、リチウムイオンを吸蔵放出可能な正極活物質、及び、固体電解質が含有されており、負極2には、グラファイト等の、リチウムイオンを吸蔵放出可能な公知の負極活物質、及び、固体電解質が含有されている。そして、電解質層3は、正極1側に配置された正極側電解質層4、及び、該正極側電解質層4と負極2との間に配置された負極側電解質層5を備えている。
 図2は、正極側電解質層4に含有されているバインダー4a及び固体電解質6を説明する図であり、図3は、負極側電解質層5に含有されているブタジエンゴム5a及び固体電解質6を説明する図である。図2は正極側電解質層4の一部を拡大して示す図であり、図3は負極側電解質層5の一部を拡大して示す図である。図2及び図3では、バインダー及び固体電解質を簡略化して示している。
  図2に示したように、正極側電解質層4は、テトラフルオロエチレン(TFE)を含有したフッ素系共重合体を含むバインダー4aと、固体電解質6と、を含有する固体電解質層である。これに対し、図3に示したように、負極側電解質層5は、バインダーとして機能するブタジエンゴム5aと、固体電解質6とを含有する固体電解質層である。すなわち、正極側電解質層4及び負極側電解質層5は、それぞれ、PVdF電解質層及びBR電解質層であり、全固体電池10では、PVdF電解質層である正極側電解質層4と負極2との間に、BR電解質層である負極側電解質層5が配置されている。
 図4は、従来の全固体電池90を説明する図である。図4において、全固体電池10と同様の構成には、図1で使用した符号と同一符号を付し、その説明を適宜省略する。図4では、正極1に接続される正極集電体、及び、負極2に接続される負極集電体等の記載を省略している。
  図4に示したように、全固体電池90は、正極1及び負極2と、これらの間に配置された固体電解質層91と、を有し、固体電解質層91は、バインダーとして機能する、テトラフルオロエチレン(TFE)を含有したフッ素系共重合体と、固体電解質とを含有している。PVdF電解質層である固体電解質層91と負極2とが直接接触している全固体電池90を作動させると、負極電位において、固体電解質層91と負極2との接触界面で、固体電解質層91に含有されているテトラフルオロエチレン(TFE)とリチウムとが反応する。この反応を図5に示す。
 図5に示した反応が生じると、TFEが還元され、且つ、フッ化リチウムが生成する。生成されたフッ化リチウムは、正極活物質や負極活物質に吸蔵放出されないため、この反応が生じると、電池の容量が低下する。したがって、PVdF電解質層である固体電解質層91と負極2とが直接接触している全固体電池90は、容量が低下しやすい。
 これに対し、図1に示したように、全固体電池10は、PVdF電解質層である正極側電解質層4と負極2との間に、BR電解質層である負極側電解質層5が配置されている。そのため、負極側電解質層5によって、PVdF電解質層である正極側電解質層4と負極2との接触が防止されている。全固体電池10のように、PVdF電解質層と負極との接触が防止されると、負極電位になっても、フッ化リチウムの生成反応(正極と負極との間を移動する金属イオンが正極活物質や負極活物質に吸蔵放出されない形態へと変化する反応)は生じない。この反応を防止することにより、容量低下を防止することが可能なので、全固体電池10は、全固体電池90よりも容量を向上させることが可能になる。
 さらに、全固体電池10は、PVdF電解質層である正極側電解質層4を有している。PVdF電解質層を用いることにより、電解質層3の強度及びイオン伝導度を一定水準以上に維持しやすくなる。したがって、本発明によれば、容量、金属イオンの伝導性能、及び、強度を一定以上にすることによって、性能を向上させた全固体電池10を提供することが可能になる。なお、一般に、電解質層の強度とイオン伝導度とは背反の関係にあり、短絡を防止する等の観点から、電解質層の強度を一定以上にすることが求められる。テトラフルオロエチレン(TFE)を含有したフッ素系共重合体の添加量と、後述する曲げ強度測定試験と同様の試験を行った時に電解質に亀裂が生じたことを確認できた変位及びイオン伝導度との関係を、図6に示す。図6の左側の縦軸は変位(mm)、右側の縦軸はイオン伝導度(S/cm)であり、横軸は高分子の添加量(vol%)である。図6の右肩上がりの線が変位の結果であり、右肩下がりの線がイオン伝導度の結果である。なお、図6に示した変位と電解質の強度とは関係しており、亀裂が生じ始める変位が大きいほど、電解質は高強度であると考えることができる。図6に示したように、電解質(固体電解質層)に含有させるバインダーの量を増大させると、強度を向上させやすくなる反面、イオン伝導度が低下しやすくなる。
 本発明において、正極及び負極の形態は特に限定されず、正極に接続される正極集電体、及び、負極に接続される負極集電体の形態も特に限定されない。
 正極に含有させる正極活物質としては、二次電池で使用可能な公知の正極活物質を適宜用いることができる。そのような正極活物質としては、例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、LiNi1/3Co1/3Mn1/3等の岩塩層状型活物質、マンガン酸リチウム(LiMn)、Li(Ni0.5Mn1.5)O等のスピネル型活物質、LiFePO、LiMnPO、LiCoPO、LiNiPO等のオリビン型活物質等を挙げることができる。正極活物質の形状は、例えば粒子状や薄膜状等にすることができる。正極活物質の平均粒径(D50)は、例えば1nm以上であることが好ましく、10nm以上であることがより好ましい。さらに、正極活物質の平均粒径(D50)は、例えば100μm以下であることが好ましく、30μm以下であることがより好ましい。正極層における正極活物質の含有量は、特に限定されないが、質量%で、例えば40%以上99%以下とすることが好ましい。
 また、正極には、二次電池の正極に含有させることが可能な公知のバインダーを用いることができる。そのようなバインダーとしては、ブタジエン系ゴム、フッ素系樹脂およびゴムを例示することができる。
 さらに、正極には、導電性を向上させる導電材が含有されていてもよい。正極に含有させることが可能な導電材としては、気相成長炭素繊維、アセチレンブラック(AB)、ケッチェンブラック(KB)、カーボンナノチューブ(CNT)、カーボンナノファイバー(CNF)等の炭素材料のほか、二次電池の使用時の環境に耐えることが可能な金属材料を例示することができる。
 また、例えば、本発明の二次電池が全固体電池である場合、固体電解質層のみならず、正極や負極にも、必要に応じて、全固体電池に使用可能な公知の固体電解質を含有させることができる。そのような固体電解質としては、LiO-B-P、LiO-SiO等の酸化物系非晶質固体電解質、LiS-SiS、LiI-LiS-SiS、LiI-LiS-P、LiI-LiS-P、LiI-LiPO-P、LiS-P等の硫化物系非晶質固体電解質、LiI、LiN、LiLaTa12、LiLaZr12、LiBaLaTa12、LiPO(4-3/2w)(wはw<1)、Li3.6Si0.60.4等の結晶質固体電解質、Li11、Li3.250.75等のガラスセラミックスやLi3.250.25Ge0.76等のthio-LISIO系の結晶等の硫化物系結晶質固体電解質等を例示することができる。ただし、全固体電池の性能を高めやすい全固体電池用電極を製造可能な形態にする等の観点から、固体電解質は硫化物固体電解質(硫化物系非晶質固体電解質や硫化物系結晶質固体電解質)を用いることが好ましい。
 上記正極活物質、及び、固体電解質等を液体に分散して調整したスラリー状の正極組成物を用いて正極を作製する場合、使用可能な液体としてはヘプタン等を例示することができ、無極性溶媒を好ましく用いることができる。また、正極の厚さは、例えば0.1μm以上であることが好ましく、1μm以上であることが好ましい。さらに、正極の厚さは、1mm以下であることが好ましく、100μm以下であることがより好ましい。
 負極に含有させる負極活物質としては、例えば、リチウムイオンを吸蔵放出可能な公知の負極活物質を適宜用いることができる。そのような負極活物質としては、例えば、カーボン活物質、酸化物活物質、及び、金属活物質等を挙げることができる。カーボン活物質は、炭素を含有していれば特に限定されず、例えばメソカーボンマイクロビーズ(MCMB)、高配向性グラファイト(HOPG)、ハードカーボン、ソフトカーボン等を挙げることができる。酸化物活物質としては、例えばNb、SiO等を挙げることができる。金属活物質としては、例えばIn、Al、Si、及び、Sn等を挙げることができる。また、負極活物質として、リチウム含有金属活物質を用いても良い。リチウム含有金属活物質としては、少なくともLiを含有する活物質であれば特に限定されず、Li金属であっても良く、Li合金であっても良い。Li合金としては、例えば、Liと、In、Al、Si、及び、Snの少なくとも一種とを含有する合金を挙げることができる。負極活物質の形状は、例えば粒子状、薄膜状等にすることができる。負極活物質の平均粒径(D50)は、例えば1nm以上であることが好ましく、10nm以上であることがより好ましい。さらに、負極活物質の平均粒径(D50)は、例えば100μm以下であることが好ましく、30μm以下であることがより好ましい。また、負極における負極活物質の含有量は、特に限定されないが、質量%で、例えば40%以上99%以下とすることが好ましい。
 さらに、負極には、導電性を向上させる導電材が含有されていても良い。負極に含有させることが可能な導電材としては、正極に含有させることが可能な上記導電材等を例示することができる。また、液体に上記負極活物質等を分散して調整したスラリー状の負極組成物を用いて負極を作製する場合、負極活物質等を分散させる液体としては、ヘプタン等を例示することができ、無極性溶媒を好ましく用いることができる。また、負極の厚さは、例えば0.1μm以上であることが好ましく、1μm以上であることがより好ましい。さらに、負極の厚さは、1mm以下であることが好ましく、100μm以下であることがより好ましい。
 また、本発明の二次電池が全固体電池の場合、電解質層(PVdF電解質層及びBR電解質層の両方。以下において、本発明の二次電池が全固体電池である場合であって、且つ、PVdF電解質層及びBR電解質層に共通する説明をする場合、PVdF電解質層及びBR電解質層をまとめて「固体電解質層」ということがある。)には、全固体電池に使用可能な公知の固体電解質を適宜用いることができる。そのような固体電解質としては、正極や負極に含有させることが可能な上記固体電解質等を例示することができる。このほか、固体電解質層には、可塑性を発現させる等の観点から、固体電解質同士を結着させるバインダーを含有させる。ただし、高出力化を図りやすくするために、固体電解質の過度の凝集を防止し且つ均一に分散された固体電解質を有する固体電解質層を形成可能にする等の観点から、固体電解質層に含有させるバインダーは5質量%以下とすることが好ましい。また、液体に上記固体電解質等を分散して調整したスラリー状の固体電解質組成物を基材に塗布する過程を経てPVdF電解質層を作製する場合、固体電解質等を分散させる液体としては、酪酸ブチル等を例示することができる。また、液体に上記固体電解質等を分散して調整したスラリー状の固体電解質組成物を基材に塗布する過程を経てBR電解質層を作製する場合、固体電解質等を分散させる液体としては、ヘプタン等を例示することができる。固体電解質層における固体電解質材料の含有量は、質量%で、例えば60%以上、中でも70%以上、特に80%以上であることが好ましい。固体電解質層の厚さ(ここでは、PVdF電解質層及びBR電解質層の合計厚さ。以下において同じ。)は、電池の構成によって大きく異なるが、例えば、0.1μm以上であることが好ましく、1μm以上であることがより好ましい。さらに、固体電解質層の厚さは、1mm以下であることが好ましく、100μm以下であることがより好ましい。本発明において、イオン伝導性能を高めやすい形態にする観点からは、BR電解質層の厚さをPVdF電解質層の厚さよりも薄くすることが好ましい。
 本発明において、PVdF電解質層には、テトラフルオロエチレン(TFE)を含有したフッ素系共重合体を有するバインダーを用いる。PVdF電解質層に使用可能な、テトラフルオロエチレン(TFE)を含有したフッ素系共重合体は、負極電位においてテトラフルオロエチレン(TFE)が図5に示した還元反応をするフッ素系共重合体であれば、特に限定されない。そのようなフッ素系共重合体としては、例えば、フッ化ビニリデン単量体単位とテトラフルオロエチレン単量体単位とヘキサフルオロプロピレン単量体単位とを所定の割合で含有させたフッ素系共重合体のほか、フッ化ビニリデン系樹脂、ポリテトラフルオロエチレン(PTFE)等のフッ素系ポリマー等を例示することができる。
 また、本発明において、BR電解質層には、ブタジエン系ゴムバインダーを用いる。BR電解質層に使用可能なブタジエンゴム系バインダーとしては、ブタジエンゴム(BR)、アクリレートブタジエンゴム(ABR)、スチレンブタジエンゴム(SBR)等を例示することができる。
 また、正極集電体や負極集電体は、二次電池の集電体として使用可能な公知の金属を用いることができる。そのような金属としては、Cu、Ni、Al、V、Au、Pt、Mg、Fe、Ti、Co、Cr、Zn、Ge、Inからなる群から選択される一又は二以上の元素を含む金属材料を例示することができる。正極集電体及び負極集電体の形態は特に限定されず、公知の形態にすることができる。本発明において、正極集電体や負極集電体の形態は、例えば、箔状やメッシュ状等にすることができる。
 また、本発明の二次電池は、正極、電解質層、及び、負極等が外装体に収容される形態にすることができる。本発明で使用可能な外装体としては、二次電池で使用可能な公知の外装体を用いることができる。そのような外装体としては、樹脂製のラミネートフィルムや、樹脂製のラミネートフィルムに金属を蒸着させたフィルムのほか、ステンレス鋼製の筐体等を例示することができる。
 本発明に関する上記説明では、本発明の二次電池が全固体電池である場合について主に言及したが、本発明の二次電池は当該形態に限定されない。本発明の二次電池は、例えば、非水電解液が用いられる形態の二次電池であっても良い。この場合、非水電解液は、二次電池に使用可能な公知の非水電解液を適宜用いることができる。本発明の二次電池が、非水電解液が用いられる形態の二次電池である場合には、正極と負極との間に配置されるセパレータを、正極から負極への方向に連続して配置された複数の層を有する多層構造にすれば良い。そして、正極側に配置される層を多孔質構造のPVdF電解質層とし、PVdF電解質層と負極との間に配置される層を多孔質構造のBR電解質層として機能させれば良い。より具体的には、正極側に配置されるセパレータを作製する際に、テトラフルオロエチレン(TFE)を含有したフッ素系共重合体を用いて公知の方法で多孔質構造のセパレータを作製し、当該多孔質構造のセパレータに非水電解液を保持させることにより、正極側に配置されるセパレータをPVdF電解質層として機能させれば良い。同様に、負極側に配置されるセパレータを作製する際に、ブタジエン系ゴムを用いて公知の方法で多孔質構造のセパレータを作製し、当該多孔質構造のセパレータに非水電解液を保持させることにより、負極側に配置されるセパレータをBR電解質層として機能させれば良い。
 また、上記説明では、本発明の二次電池が、正極と負極との間をリチウムイオンが移動する形態の二次電池(リチウムイオン二次電池)である形態を例示したが、本発明は当該形態に限定されない。本発明の二次電池は、正極と負極との間を、リチウムイオン以外のイオンが移動する形態であっても良い。そのようなイオンとしては、ナトリウムイオンやカリウムイオン等を例示することができる。リチウムイオン以外のイオンが移動する形態とする場合、正極活物質、固体電解質又は非水電解液、及び、負極活物質は、移動するイオンに応じて適宜選択すれば良い。
 1.試験用試料の作製
  ・固体電解質の合成
  LiS(日本化学工業製)及びP(アルドリッチ社製)を出発原料として、0.7656gのLiS、及び、1.2344gのPを秤量し、さらに、0.016gのデンカブラック(電気化学工業株式会社製、「デンカブラック」は電気化学工業株式会社の登録商標。)を添加した。次に、これらをメノウ乳鉢に入れて5分間に亘って混合した後、4gのヘプタンを入れ、遊星型ボールミル(45cc、ZrOポット、直径5mmのZrOボール53g)を用いて毎分500回転で20時間に亘ってメカニカルミリングした。その後、110℃で1時間に亘って加熱してヘプタンを除去することにより、固体電解質を得た。
 ・正極の作製
  12.03mgの正極活物質(LiNi1/3Co1/3Mn1/3(日亜化学工業製))、0.51mgの導電材(気相成長炭素繊維(昭和電工製))、及び、合成した上記固体電解質5.03mgをそれぞれ秤量し、これらを溶媒(ヘプタン)に入れて混合することにより、正極用組成物を得た。この正極用組成物を、正極集電体(アルミニウム箔)へ塗工し乾燥することにより、正極集電体の表面に正極を作製した。
 ・負極の作製
  9.06mgの負極活物質(グラファイト(三菱化学製))、及び、合成した上記固体電解質8.24mgをそれぞれ秤量し、これらを溶媒(ヘプタン)に入れて混合することにより、負極用組成物を得た。この負極用組成物を、負極集電体(銅箔)へ塗工し乾燥することにより、負極集電体の表面に負極を作製した。
 ・PVdF電解質層の作製
  合成した上記固体電解質を18mg秤量し、この固体電解質と、テトラフルオロエチレン(TFE)を含有したフッ素系共重合体(フッ化ビニリデン単量体単位、テトラフルオロエチレン単量体単位、及び、ヘキサフルオロプロピレン単量体単位を、フッ化ビニリデン単量体単位:テトラフルオロエチレン単量体単位:ヘキサフルオロプロピレン単量体単位=55mol%:25mol%:20mol%の割合で含有する、TFEを有するフッ素系共重合体)を5wt%含有する酪酸ブチル溶液3.6mgと、酪酸ブチル30.3mgとを混合することにより、PVdF電解質組成物を得た。このPVdF電解質組成物をアルミニウム箔に塗工し、さらに乾燥させた後、アルミニウム箔を剥離させることにより、PVdF電解質層を作製した。
 ・BR電解質層の作製
  合成した上記固体電解質を18mg秤量し、この固体電解質と、5wt%のBRを含むヘプタン溶液3.6mgと、ヘプタン30.3mgとを混合することにより、BR電解質組成物を得た。このBR電解質組成物をアルミニウム箔に塗工し、さらに乾燥させた後、アルミニウム箔を剥離させることにより、BR電解質層を作製した。なお、BR電解質層は、作製した上記PVdF電解質層と同じ厚さになるように、作製した。
 ・電極体の作製
  正極集電体の表面に作製した正極と、負極集電体の表面に作製した負極との間に、BR電解質層が配置されるように、これらを積層し、その後プレスすることにより、電極体Aを作製した。電極体Aを図7に示す。なお、正極集電体や負極集電体の記載を省略した図1や図4に合わせるべく、図7においても正極集電体や負極集電体の記載を省略した。
  また、正極集電体の表面に作製した正極と、負極集電体の表面に作製した負極との間に、PVdF電解質層が配置されるように、これらを積層し、その後プレスすることにより、全固体電池90と同様の形態である電極体Bを作製した。
  また、正極集電体の表面に作製した正極と、負極集電体の表面に作製した負極との間に、PVdF電解質層及びBR電解質層を、正極とPVdF電解質層とを接触させ且つBR電解質層と負極とを接触させるように、これらを積層し、その後プレスすることにより、全固体電池10と同様の形態である電極体Cを作製した。
 2.曲げ強度測定試験
  粒子圧縮装置(MCTシリーズ、株式会社島津製作所製)を用いて、BR電解質層及びPVdF電解質層の曲げ強度を測定した。曲げ強度測定試験の概要を図8A、図8B、及び、図8Cに示す。図8Aは、粒子圧縮装置の試験台に設けられた直径8mmの孔に直径13mmの電解質層(BR電解質層やPVdF電解質層)を配置する様子を説明する斜視図である。図8Bは、試験台の上に配置した試料をプレッサーで押し込む前の様子を説明する、図8AのA-A’断面図である。図8Cは、試験台の上に配置した試料をプレッサーで押し込んでいるときの様子を説明する、図8AのA-A’断面図である。曲げ強度測定試験では、プレッサーで試料を押し込み、試料に亀裂が入ったことを目視で確認できた位置までの変位を測定した。結果を図9に示す。図9の「BR」は、重ねられた2枚のBR電解質層をプレッサーで押し込む曲げ強度試験の結果であることを意味し、「PVdF」は、重ねられた2枚のPVdF電解質層をプレッサーで押し込む曲げ強度試験の結果であることを意味し、「本発明」は、重ねられた1枚のBR電解質層及び1枚のPVdF電解質層(合計2枚の電解質層)をプレッサーで押し込む曲げ強度試験の結果であることを意味している。
 図9に示したように、BR電解質層よりもPVdF電解質層の方が高強度であり、さらに、「PVdF」よりも「本発明」の方が高強度であった。「PVdF」よりも「本発明」の方が高強度になったのは、PVdF電解質層よりも柔らかいBR電解質層と、BR電解質層よりも硬いPVdF電解質層とを重ねることにより、両者の強度のバランスによって、PVdF電解質層のみを使用する場合よりも高強度になったものと考えられる。この結果から、PVdF電解質層とBR電解質層とを重ねた電解質層は、PVdF電解質層と同等以上の強度になり得ることが分かった。
 3.イオン伝導度測定試験
  インピーダンス測定装置(1470E CellTest System、株式会社東陽テクニカ製)を用いて、BR電解質層及びPVdF電解質層のイオン伝導度を測定した。結果を図10に示す。図10の「BR」は、BR電解質層について実施したイオン伝導度の測定結果であることを意味し、「PVdF」は、PVdF電解質層について実施したイオン伝導度の測定結果であることを意味する。
  図10に示したように、BR電解質層よりもPVdF電解質層の方が、イオン伝導度が高かった。
 4.容量測定試験
  作製した電極体A、電極体B、及び、電極体Cについて、充放電装置(TOSCAT-3200、東洋システム株式会社製)を用いて容量測定を行った。なお、電極体A、電極体B、及び、電極体Cは、電解質の構成以外は共通であり、容量測定の試験条件も同一にした。また、電極体AにおけるBR電解質層の厚さ(図7の紙面上下方向の厚さ)は、電極体BにおけるPVdF電解質層の厚さ(図4の紙面上下方向の厚さ)と同一であり、且つ、電極体CにおけるBR電解質層及びPVdF電解質層の合計厚さ(図1の紙面上下方向の厚さ)と同一であった。容量測定試験の結果を図11に示す。
 図11に示したように、電極体A及び電極体Cの容量は同程度であったが、電極体Bの容量は電極体A及び電極体Cの容量よりも低かった。これは、電極体BではPVdF電解質層が負極と接触しているため、PVdF電解質層と負極との界面において、LiFの生成反応が生じたためであると考えられる。電極体Cは、PVdF電解質層を用いていない電極体Aと同程度の容量であるため、単量体の還元反応やLiFの生成反応が生じていないと考えられる。
 以上の結果より、本発明によれば、性能を向上させることが可能な二次電池を提供することができる。
 1…正極
 2…負極
 3…電解質層
 4…正極側電解質層
 4a…バインダー
 5…負極側電解質層
 5a…ブタジエンゴム(ブタジエンゴム系バインダー)
 6…固体電解質(電解質)
 10…全固体電池(二次電池)

Claims (2)

  1. 正極及び負極と、これらの間に配置される電解質層と、を有し、
     前記電解質層は、前記正極側に配置される正極側電解質層、及び、該正極側電解質層と前記負極との間に配置される負極側電解質層を備え、
     前記正極側電解質層は、テトラフルオロエチレンを含有したフッ素系共重合体を有するバインダーと、電解質と、を含有し、
     前記負極側電解質層は、ブタジエンゴム系バインダーと、電解質と、を含有する、二次電池。
  2. 前記正極側電解質層に含有される前記電解質、及び、前記負極側電解質層に含有される前記電解質が、固体電解質である、請求項1に記載の二次電池。
PCT/JP2014/074664 2013-10-01 2014-09-18 二次電池 WO2015049996A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/021,310 US9843072B2 (en) 2013-10-01 2014-09-18 Secondary battery
CN201480050060.2A CN105531864B (zh) 2013-10-01 2014-09-18 二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-206422 2013-10-01
JP2013206422A JP2015069967A (ja) 2013-10-01 2013-10-01 二次電池

Publications (1)

Publication Number Publication Date
WO2015049996A1 true WO2015049996A1 (ja) 2015-04-09

Family

ID=52778590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074664 WO2015049996A1 (ja) 2013-10-01 2014-09-18 二次電池

Country Status (4)

Country Link
US (1) US9843072B2 (ja)
JP (1) JP2015069967A (ja)
CN (1) CN105531864B (ja)
WO (1) WO2015049996A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021125150A1 (ja) 2019-12-18 2021-06-24 ダイキン工業株式会社 固体二次電池用スラリー、固体二次電池用層形成方法及び固体二次電池
WO2022054540A1 (ja) 2020-09-09 2022-03-17 ダイキン工業株式会社 固体二次電池用結着剤、固体二次電池用スラリー、固体二次電池用層形成方法及び固体二次電池

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6287945B2 (ja) * 2015-05-08 2018-03-07 トヨタ自動車株式会社 電極積層体の製造方法
WO2018229560A1 (en) * 2017-06-16 2018-12-20 National Research Council Of Canada Solid polymer electrolyte for batteries
JP7178185B2 (ja) * 2018-06-14 2022-11-25 本田技研工業株式会社 固体電池用線条正極、固体電池、固体電池用線条正極の製造方法、および固体電池の製造方法
CN110828883B (zh) * 2018-08-08 2021-09-03 比亚迪股份有限公司 一种锂离子电池及其制备方法和电动车辆
CN110858660B (zh) * 2018-08-24 2021-06-18 比亚迪股份有限公司 锂离子电池及其制备方法和电动车辆
CN109768318A (zh) * 2019-03-12 2019-05-17 浙江锋锂新能源科技有限公司 一种混合固液电解质锂蓄电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123381A (ja) * 2008-11-19 2010-06-03 Tdk Corp リチウムイオン二次電池用セパレータ及びリチウムイオン二次電池
WO2011013300A1 (ja) * 2009-07-31 2011-02-03 パナソニック株式会社 非水電解質二次電池及びその製造方法
WO2011096564A1 (ja) * 2010-02-05 2011-08-11 ダイキン工業株式会社 二次電池用ゲル電解質複合フィルム、及び、二次電池
JP2012146490A (ja) * 2011-01-12 2012-08-02 Toyota Motor Corp リチウムイオン二次電池
JP2013157088A (ja) * 2012-01-26 2013-08-15 Sony Corp 電池ならびに電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2013182836A (ja) * 2012-03-02 2013-09-12 Honda Motor Co Ltd リチウムイオン伝導性電解質及びそれを用いるリチウムイオン二次電池
JP2013200961A (ja) * 2012-03-23 2013-10-03 Toppan Printing Co Ltd 全固体型リチウムイオン二次電池、及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4086939B2 (ja) 1996-09-25 2008-05-14 Tdk株式会社 高分子固体電解質およびこれを用いたリチウム2次電池と電気2重層キャパシタ
JP2000285929A (ja) 1999-03-31 2000-10-13 Sony Corp 固体電解質電池
JP4661843B2 (ja) 2007-08-28 2011-03-30 ソニー株式会社 非水電解質二次電池
JP5365106B2 (ja) 2008-09-02 2013-12-11 Tdk株式会社 電気化学素子用電極の製造方法、及び電気化学素子用電極
JP5675694B2 (ja) 2011-08-25 2015-02-25 トヨタ自動車株式会社 電解質層・電極積層体の製造方法、及び硫化物系固体電池の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123381A (ja) * 2008-11-19 2010-06-03 Tdk Corp リチウムイオン二次電池用セパレータ及びリチウムイオン二次電池
WO2011013300A1 (ja) * 2009-07-31 2011-02-03 パナソニック株式会社 非水電解質二次電池及びその製造方法
WO2011096564A1 (ja) * 2010-02-05 2011-08-11 ダイキン工業株式会社 二次電池用ゲル電解質複合フィルム、及び、二次電池
JP2012146490A (ja) * 2011-01-12 2012-08-02 Toyota Motor Corp リチウムイオン二次電池
JP2013157088A (ja) * 2012-01-26 2013-08-15 Sony Corp 電池ならびに電池パック、電子機器、電動車両、蓄電装置および電力システム
JP2013182836A (ja) * 2012-03-02 2013-09-12 Honda Motor Co Ltd リチウムイオン伝導性電解質及びそれを用いるリチウムイオン二次電池
JP2013200961A (ja) * 2012-03-23 2013-10-03 Toppan Printing Co Ltd 全固体型リチウムイオン二次電池、及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021125150A1 (ja) 2019-12-18 2021-06-24 ダイキン工業株式会社 固体二次電池用スラリー、固体二次電池用層形成方法及び固体二次電池
WO2022054540A1 (ja) 2020-09-09 2022-03-17 ダイキン工業株式会社 固体二次電池用結着剤、固体二次電池用スラリー、固体二次電池用層形成方法及び固体二次電池

Also Published As

Publication number Publication date
US9843072B2 (en) 2017-12-12
CN105531864B (zh) 2018-02-16
CN105531864A (zh) 2016-04-27
US20160226096A1 (en) 2016-08-04
JP2015069967A (ja) 2015-04-13

Similar Documents

Publication Publication Date Title
WO2015049996A1 (ja) 二次電池
JP6729410B2 (ja) 全固体電池
JP5961922B2 (ja) 二次電池用負極およびその製造方法
JP6841971B2 (ja) リチウムイオン二次電池用正極材料、正極活物質層、及びリチウムイオン二次電池
JP5850154B2 (ja) 全固体電池の製造方法
KR20180129638A (ko) 전극 집전체 및 전고체 전지
JP2011192539A (ja) 非水電解質二次電池用電極およびその製造方法、ならびに非水電解質二次電池
JP5413129B2 (ja) 固体電池の製造方法
JP2015050153A (ja) 全固体電池用積層体
US10249880B2 (en) Method for manufacturing current collector and method for manufacturing solid battery
JP7150448B2 (ja) リチウムイオン二次電池用電極、その製造方法、及びリチウムイオン二次電池
TW201939803A (zh) 鋰離子二次電池、鋰離子二次電池用負極構造體、及鋰離子二次電池之製造方法
JP6112152B2 (ja) 二次電池
JP2005317469A (ja) リチウムイオン二次電池用負極、およびこれを用いてなるリチウムイオン二次電池
CN111095603B (zh) 包含溶剂化聚合物、锂盐和选定的卤代聚合物的固体聚合物电解质以及包括该固体聚合物电解质的电池
JP2020140896A (ja) リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP5692605B2 (ja) 非水電解液二次電池
JP2018190537A (ja) 積層電池および積層電池の製造方法
KR101846748B1 (ko) 전고체 전지용 양극의 연속 제조방법
JP6607388B2 (ja) リチウムイオン二次電池用正極及びその製造方法
JP2020140895A (ja) リチウムイオン二次電池用電極及びリチウムイオン二次電池
JP2019220356A (ja) リチウムイオン二次電池用正極材料及びその製造方法、並びにリチウムイオン二次電池用正極材料からなる正極活物質層及びそれを用いたリチウムイオン二次電池
JP2020017492A (ja) 固体電池用電極の製造方法
JP2019220357A (ja) リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JP7331873B2 (ja) 全固体電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480050060.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14850342

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15021310

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14850342

Country of ref document: EP

Kind code of ref document: A1