WO2004097851A1 - 固体高分子電解質材料、製造方法及び固体高分子型燃料電池用膜電極接合体 - Google Patents

固体高分子電解質材料、製造方法及び固体高分子型燃料電池用膜電極接合体 Download PDF

Info

Publication number
WO2004097851A1
WO2004097851A1 PCT/JP2004/006127 JP2004006127W WO2004097851A1 WO 2004097851 A1 WO2004097851 A1 WO 2004097851A1 JP 2004006127 W JP2004006127 W JP 2004006127W WO 2004097851 A1 WO2004097851 A1 WO 2004097851A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer electrolyte
solid polymer
repeating unit
electrolyte material
Prior art date
Application number
PCT/JP2004/006127
Other languages
English (en)
French (fr)
Inventor
Atsushi Watakabe
Original Assignee
Asahi Glass Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company Limited filed Critical Asahi Glass Company Limited
Priority to JP2005505925A priority Critical patent/JP4774988B2/ja
Priority to EP04730031A priority patent/EP1583106A4/en
Publication of WO2004097851A1 publication Critical patent/WO2004097851A1/ja
Priority to US11/166,371 priority patent/US7429428B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/182Monomers containing fluorine not covered by the groups C08F214/20 - C08F214/28
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid polymer made of a polymer having an ionic group, which is useful as, for example, an electrolyte membrane for salt electrolysis or a solid polymer fuel cell, an electrolyte used for a catalyst layer of a fuel cell, an electrolyte for a lithium battery, and the like.
  • the present invention relates to an electrolyte material and a method for producing the same. Background art
  • CF 2 CF-(OCF 2 CFY) m — ⁇ p — (CF 2 ) n — S ⁇ 2 F (Where Y is a fluorine atom or a trifluoromethyl group, n is an integer of 1 to 12, m is an integer of 0 to 3, p is 0 or 1, m + p> 0.)
  • a polymer obtained by hydrolyzing a copolymer of tetrafluoroethylene and a polymer having a sulfonic acid group obtained by further converting it into an acid form hereinafter referred to as a sulfonate group
  • a sulfonic acid polymer a polymer having a sulfonic acid group obtained by further converting it into an acid form
  • the operating temperature of a fuel cell using this polymer is usually 80 ° C or less.
  • hydrogen obtained by reforming carbon and hydrogen atoms such as methanol, natural gas, and gasoline or an organic compound composed of carbon, hydrogen, and oxygen atoms is used as a fuel gas for a fuel cell. If a small amount of carbon oxide is contained, the electrode catalyst is poisoned, and the output of the fuel cell tends to decrease. Therefore, it is required to raise the operating temperature to prevent this.
  • these conventional polymers could not meet these demands because of their low softening temperatures.
  • Japanese Patent No. 2,675,548 proposes to use a sulfonic acid polymer having a short side chain and a high softening temperature as an electrolyte for a fuel cell.
  • sulfonic acid polymers are difficult to manufacture and expensive, so that It has not been.
  • the softening temperature generally becomes higher, and it is considered that power generation at a temperature higher than the current level is possible.
  • an ionic group such as a sulfonate group
  • a monomer having the ionic group and having a polymerization site of vinyl ether is copolymerized, so that the polymer has a sufficient softening temperature. There was a problem that did not rise.
  • M represents hydrogen, an alkali metal, an alkaline earth metal, etc.
  • X is a fluorine atom, a chlorine atom or a trifluoromethyl group
  • n is 0 to 10
  • Q is a hydrogen atom
  • R is -CH 3, one C 2 H 5, -CH 2 CF 3), - S_ ⁇ 2 F, there is a showing various functional groups such as one S_ ⁇ 2 C 1.
  • X is one S_ ⁇ 2 F or one S0 2 C 1
  • compound (R fl is a fluorine atom or a perfluoroalkyl full O b alkyl group, R f 2 is contained E one te Le bonding oxygen atom Is a difficult perfluoroalkenyl group), and synthesis thereof is difficult, and no synthesis example is described.
  • Japanese Patent Application Laid-Open No. 2002-260705 discloses that a solid polymer electrolyte having a ring structure not only has a high softening temperature of a polymer but also can increase the output by being used as an electrolyte contained in a cathode of a fuel cell. Have been.
  • a sulfonic acid group or a functional group that can be converted to a sulfonic acid group (hereinafter referred to as the In the detailed description, these are collectively referred to as sulfonic acid type functional groups), but there is a perfluorovinyl ether monomer having a sulfonic acid type functional group and no ring structure, and a sulfonic acid type functional group.
  • a copolymer having a ring structure and a sulfonic acid group is obtained by copolymerizing a monomer having a ring structure or a cyclopolymerizable monomer.
  • this polymer cannot sufficiently increase the ratio of the ring structure to the whole polymer.
  • an object of the present invention is to provide a solid polymer electrolyte material which has a higher softening temperature than the conventional one and which can operate the fuel cell at a higher temperature than the conventional one when used as an electrolyte of a polymer electrolyte fuel cell. And It is another object of the present invention to provide a solid polymer electrolyte material that can contribute not only to high temperature operation but also to high output of a fuel cell.
  • the present invention has a carbon-carbon double bond having radical polymerization reactivity, and one of carbon atoms at both ends of the double bond contains a repeating unit based on an alicyclic fluorinated monomer constituting a ring structure A polymer, wherein the fluorine-containing monomer is — (so 2 x (
  • the ionic group (hereinafter referred to as the present ionic group) is, for example, a strong acid group such as a sulfonic acid group or a salt thereof, and is suitable as an ionic group of an electrolyte material.
  • the repeating unit based on the alicyclic fluorine-containing monomer may contain two or more of the present ionic group.
  • the polymer constituting the solid polymer electrolyte material of the present invention has a high softening temperature due to its ring structure, and can be used at higher temperatures than conventional electrolyte materials made of fluoropolymers. It is possible.
  • the present invention provides a solid polymer electrolyte membrane comprising a membrane made of the above-mentioned electrolyte material.
  • a membrane is suitable, for example, as an electrolyte membrane for a polymer electrolyte fuel cell.
  • the present invention provides a liquid composition, wherein the electrolyte material is dissolved or dispersed in a solvent having a hydroxyl group and / or water.
  • a liquid composition wherein the electrolyte material is dissolved or dispersed in a solvent having a hydroxyl group and / or water.
  • an electrolyte membrane can be produced. It is also useful, for example, when producing a catalyst layer for a solid polymer fuel cell.
  • the present invention provides a membrane / electrode assembly comprising: a cathode and an anode having a catalyst layer containing a catalyst and a solid polymer electrolyte; and a solid polymer electrolyte membrane disposed between the force source and the anode.
  • the present invention provides a membrane electrode assembly comprising: a power source having a catalyst layer containing a catalyst and a solid polymer electrolyte; an anode; and a solid polymer electrolyte membrane disposed between the power source and the anode. Further, there is provided a membrane / electrode assembly for a polymer electrolyte fuel cell, wherein at least one of the catalyst layers of the force source and the anode contains the above-mentioned polymer electrolyte material.
  • FIG. 1 is a diagram showing the relationship between the water content of the films obtained in Example 7 and Comparative Example 2 and the temperature of immersion in ion-exchanged water.
  • FIG. 2 is a diagram showing the relationship between the water content and the temperature at which the films obtained in Example 8 and Comparative Example 2 are immersed in ion-exchanged water.
  • the compound represented by the formula (X) is referred to as a compound (X).
  • the repeating unit represented by the formula (Y) is referred to as a repeating unit (Y).
  • the polymerization site has a ring structure, and is an ionic group or a group that can be converted to the ionic group.
  • R A to R D each independently represent a monovalent perfluoro organic compound which may contain at least one of the present ionic group or its precursor group and an ether-bonding oxygen atom. Selected from the group consisting of a group and a fluorine atom, but containing at least one of the present ionizable group or a precursor group thereof and an ether-bonding oxygen atom in which two of R A to R D are connected to each other. It may be a divalent perfluoro organic group.
  • at least one of RA to RD contains the present ionic group or its precursor group.
  • R E and R F are each independently a monovalent perfluoro organic group or a fluorine atom which may contain an etheric oxygen atom.
  • the precursor group of the present ionic group is a group that becomes the present ionic group by a known treatment such as hydrolysis or acidification treatment, and is, for example, a 1 SO 2 F group. If converted to the present ionic group after polymerization, a polymer electrolyte material can be obtained.
  • the perfluoro organic group specifically, a perfluorocarbon group which may contain an etheric oxygen atom is preferable.
  • a compound represented by the formula (3) is particularly preferable.
  • R 1 is a divalent perfluoro organic group which may contain an etheric oxygen atom
  • R 2 to R 6 each independently contain a fluorine atom or an ether-bonded oxygen atom.
  • It may be a monovalent perfluoro organic group.
  • the organic group refers to a group containing one or more carbon atoms.
  • a linear or branched perfluoroalkyl group in particular, an ether at the inner end of the alkyl chain and at one end of the alkyl chain) (Which may contain a basic oxygen atom).
  • At least one of R 5 and R 6 is preferably a fluorine atom.
  • the other is more preferably a fluorine atom or a perfluoroalkoxy group, and the following formula (3) in which both R 5 and R 6 are fluorine atoms. ').
  • Compound R 1 2 ⁇ R 1 4 fluorine atom Komata are each independently of the (3 ') is (may contain an etheric oxygen atom therein Ya one-terminal alkyl chain) per full O b alkyl group And R 1 is a divalent perfluoro organic group which may contain an etheric oxygen atom, and the atom bonded to the ring may be an oxygen atom. (3,)
  • the compound (4) is particularly preferable because of high polymerization reactivity and easy synthesis.
  • R f ′ in the synthesis scheme represents a linear or branched perfluoroalkyl group which may contain an etheric oxygen atom.
  • the compound (3) is a compound having a highly polymerizable double bond, a ring structure, and all fluorosulfonyl groups (one SO 2 F group).
  • a polymer obtained by hydrolyzing a polymer obtained by polymerizing the compound can be usefully used as a salt electrolyte, a fuel cell, a lithium battery, and other electrolyte materials.
  • a fluorosulfonyl group-containing polymer obtained by homopolymerizing compound (3) can have a high molecular weight, and a sulfonic acid polymer obtained by hydrolyzing the fluorosulfonyl group of the polymer. Has a high ion exchange capacity.
  • a fluorosulfonyl group-containing polymer obtained by copolymerizing the compound (3) with another polymerizable monomer hereinafter, referred to as a comonomer
  • new characteristics can be provided by selecting a comonomer.
  • the comonomer may be one kind or two or more kinds.
  • nonionic means that it has no ionic group or its precursor group.
  • examples of the above comonomer include tetrafluoroethylene, chlorofluoroethylene, trifluoroethylene, vinylidene fluoride, pinyl fluoride, ethylene, perfluoro mouth (3-butenyl vinyl ether), perfluoro (a).
  • the following monomers (where p is an integer of 2 to 6) can also be suitably used.
  • tetrafluoroethylene is preferred because the copolymer not only has excellent chemical stability and heat resistance, but also has high mechanical strength and a higher softening temperature than conventional sulfonic acid polymers. .
  • Examples of comonomers that can be further copolymerized with the comonomers exemplified above include perfluorophenols such as propene and hexafluoropropene, and (perfluoroalkyl) ethylenes such as (perfluorobutyl) ethylene.
  • (Perfluoroalkyl) propenes such as propene
  • perfluorovinyl alkylene ethers such as perfluoro (alkyl vinyl ether) and perfluoro (alkyl vinyl ether containing etheric oxygen atom). Ters and the like may be used.
  • CF 2 CF— (OC F 2 CFZ) t —O—R f
  • t is an integer of 0 to 3
  • Z is a fluorine atom or a trifluoromethyl group
  • R f is a perfluoro group having 1 to 12 carbon atoms which may have a linear or branched structure. Oroalkyl group.
  • V is an integer of 1 to 9
  • w is an integer of 1 to 9
  • X is 2 or 3.
  • CF 2 CFOCF 2 CF (CF 3 ) O (CF 2 ) W CF 3- (6)
  • CF 2 CF (OCF 2 CF (CF 3 )) x O (CF 2 ) 2 CF 3-
  • a solid polymer electrolyte membrane having a high softening temperature or a solid polymer electrolyte having high oxygen solubility or oxygen permeability it is preferable to introduce a large number of ring structures into the solid polymer electrolyte.
  • Comonomer having ring structure or cyclopolymerizable comonomer It is preferable to select —.
  • Specific examples of the comonomer having a ring structure include perfluoro (2,21-dimethyl-1,3-dioxole), perfluoro (1,3-dioxole), and perfluoro (2-methylene-1-4-methyl-1,3-dioxolan).
  • perfluoro (4-methoxy-1,3-dioxol) are exemplified.
  • Specific examples of the cyclopolymerizable comonomer include perfluoro (3-butenyl vinyl ether), perfluoro (aryl vinyl ether), and perfluoro (3,5-dioxer 1,6-butadiene).
  • the polymerization reaction is not particularly limited as long as it is carried out under conditions in which radicals are generated.
  • it may be carried out by bulk polymerization, solution polymerization, suspension polymerization, emulsion polymerization, polymerization in liquid or supercritical carbon dioxide, and the like.
  • the method for generating radicals is not particularly limited.For example, a method of irradiating radiation such as ultraviolet rays, a ray, and an electron beam can be used, and a method of using a radical initiator used in ordinary radical polymerization can also be used. it can.
  • the reaction temperature of the polymerization reaction is not particularly limited, and is, for example, usually 15 to 15 (about TC.)
  • examples of the radical initiator include bis (fluoroacyl) peroxides, Bis (chlorofluoroacyl) peroxides, dialkyl peroxide dicarbonates, diasyl peroxides, peroxide esters, azo compounds, persulfates and the like.
  • the solvent to be used usually preferably has a boiling point of 20 to 350 ° C, and preferably has a boiling point of 40 to 150, from the viewpoint of handleability. Is more preferable. Then, a predetermined amount of one or more kinds of the above fluorinated monomers is added to a solvent, and a radical initiator or the like is added to generate a radical to perform polymerization. In the case of gas monomers, they may be added all at once, sequentially or continuously.
  • examples of the solvent that can be used include the following solvents (i) to (ix).
  • Polyfluorotrialkylamine compounds such as perfluorotributylamine and perfluorotripropylamine.
  • Fluorolorefin having no double bond at the molecular chain terminal such as a dimer of hexafluoropropene and a trimer of hexafluoropropene.
  • solvents may be used alone or in combination of two or more.
  • Other solvents used for solution polymerization include 1,1,2-trichloro-1,2,2-trifluorotrifluoroethane, 1,1,1,1-trichloro-1,2,2,2 1,1-, 1,1,3-tetrachloro-2,2,3,3-tetrafluoropropane, 1,1,3,4-tetrachloro-1,2,2,3,4, 4 Fluororecapones such as monohexafluorobutane.
  • fluorene carbonates can be used technically, their use is not preferred in view of the impact on the global environment.
  • a dispersion medium water is used as a dispersion medium, a monomer to be polymerized is added, and bis (fluoroacyl) peroxides, bis (chlorofluorosilyl) peroxides, and dialkyl peroxides are used as radical initiators.
  • a non-ionic initiator such as acetic acid, disilpa, one-year oxides, peroxyesters, and azo compounds.
  • the solvent described in the section of solution polymerization can be added as an auxiliary.
  • a surfactant may be appropriately added as a dispersion stabilizer.
  • the compound (3) is preferable because it has higher homopolymerization reactivity and can increase the molecular weight than the perfluorovinyl ether monomer. The comparison of the homopolymerization reactivity of the two monomers is based on the fact that when the polymerization is carried out under the same polymerization conditions, if the polymer yield and the degree of polymerization are both large, the higher monomer has higher homopolymerization reactivity.
  • the same polymerization conditions as used herein means that the same radical initiator is added to the monomer in such an amount as to give the same concentration by mass ratio, and after degassing, polymerization is performed at the same temperature and for the same time. For example, it is evaluated by the method described in the examples of the present specification.
  • a polymer containing the repeating unit (1) By polymerizing using the compound (3), and further performing hydrolysis or acidification, a polymer containing the repeating unit (1) can be obtained.
  • a polymer is suitable as a polymer electrolyte material.
  • M + is H +, a monovalent metal cation, or an ammonium ion in which one or more hydrogen atoms may be substituted with a hydrocarbon group
  • 1 ⁇ ! ⁇ 6 and Ri ⁇ R 6 in the compound (3) is the same us.
  • a polymer containing a repeating unit in which both R 5 and R 6 in the formula (1) are fluorine atoms is preferable. This is because when R 5 and R 6 are both fluorine atoms, they can be synthesized from monomers having high polymerization reactivity, so that the molecular weight can be increased. Further, a polymer containing the repeating unit (2) is particularly preferable for the same reason.
  • the polymer which is the solid polymer electrolyte material of the present invention preferably has a softening temperature of 90 ° C. or higher, more preferably 100 ° C. or higher.
  • the softening temperature of a polymer is defined as the polymer elastic modulus when the polymer elastic modulus is measured in an evaluation test of the dynamic viscoelasticity of the polymer while gradually increasing the temperature of the polymer from around room temperature. The temperature at which the temperature begins to drop. Therefore, the softening temperature in the present invention is different from the glass transition temperature usually obtained from the value of tan ⁇ , and is generally observed in a temperature range lower than the glass transition temperature.
  • the softening temperature can be measured by a dynamic viscoelasticity analyzer (DMA), but also by the penetration measurement method using a lmm-diameter quartz probe using a thermal mechanical analyzer (TMA). That is, a solution of a polymer to be measured is prepared, and A film is cast from a solution to form a film, and a quartz probe is brought into contact with this film from the normal direction of the film surface, and the temperature is raised at a rate of 1 to 10 ° C / min. The temperature at which the thickness of the film begins to rapidly decrease due to the penetration of the probe into the film is measured as the softening temperature.
  • DMA dynamic viscoelasticity analyzer
  • TMA thermal mechanical analyzer
  • the present inventor has determined that the value of the softening temperature obtained by this method coincides with the temperature at which a sudden decrease in the elastic modulus that appears in the above-described profile of the temperature dependence of the elastic modulus of the polymer starts to be observed. Has been confirmed in advance.
  • the film a precursor polymer obtained by subjecting a film obtained by melt extrusion molding or hot pressing to hydrolysis or hydrolysis and then acidification treatment may be used.
  • the operating temperature of a polymer electrolyte fuel cell is generally 80 ° C. or lower, but is desired to be 90 ° C. or higher, and more preferably 100 ° C. or higher. If the operating temperature of the fuel cell is set to 100 ° C. or higher, the exhaust heat of the battery can be used more effectively, and the heat control of the battery during operation can be easily performed. It will be easier. Also, in this case, catalyst poisoning due to carbon monoxide and the like contained in the anode reaction gas can be reduced, and as a result, the battery life can be improved and the battery output can be increased.
  • the softening temperature of the solid polymer electrolyte material contained in the catalyst layer and the electrolyte material constituting the electrolyte membrane is 90 ° C. or more, more preferably 100 ° C. or more, the solid polymer electrolyte material Since the durability of the battery is improved, it is possible to suppress a change with time or a change in physical properties such as a degree of swelling of the solid polymer electrolyte material during operation of the battery. As a result, battery life can be improved.
  • the solid polymer electrolyte material of the present invention having a softening temperature of 10 ot or more is used for the catalyst layer of a power sword in which water is generated by the reaction of the battery, the effect of improving the durability is high and is preferable.
  • the voltage can be increased. It is considered that since the solid polymer electrolyte material of the present invention contains a ring structure, oxygen solubility and permeability are increased.
  • the cross-linking suppresses excessive swelling, prevents a decrease in strength, and can withstand use at a higher temperature than before even if the softening temperature is not necessarily high.
  • Introducing a crosslinked structure into a polymer with a high softening temperature will increase the durability effect. Since the crosslinked polymer can maintain its shape even at a softening temperature or higher, it is preferable to obtain a highly reliable membrane especially when a polymer electrolyte membrane is obtained.
  • the solid polymer electrolyte material of the present invention can be used as a solid acid catalyst, but in this case, the reaction temperature can be raised if the softening temperature is high, so that the desired reaction proceeds in a higher temperature range. It becomes possible.
  • Solid polymer electrolyte material of the present invention the ion exchange capacity (hereinafter, referred to as A R) is from 0.5 to 2.5 meq Zg dried resin (hereinafter, me and CiZg) is good preferable is.
  • a R of the solid polymer electrolyte material is less than 0. 5me q / g, since a solid high molecular electrolyte material moisture content and ion conductivity becomes lower reduction, the solid polymer electrolyte membrane of a polymer electrolyte fuel cell When used as a constituent material of a membrane or a catalyst layer, it tends to be difficult to obtain a sufficient battery output. On the other hand, if A R of the solid polymer electrolyte material is more than 2.
  • a R of the solid polymer electrolyte material of the present invention from the same viewpoint as above, more preferable to be 0. 7 ⁇ 2.
  • the solid polymer electrolyte material of the present invention can also have a crosslinked structure.
  • the preferred lower limit of A R is the same as described above, but the presence of a crosslinked structure suppresses the water content. Therefore, the preferred upper limit of A R is determined by the molecular weight of the monomer used and the crosslinking monomer described below. It has a higher AR value than non-crosslinked, depending on the molecular weight and crosslink density of the polymer.
  • the number average molecular weight of the solid polymer electrolyte material of the present invention is not particularly limited, and can be appropriately set by changing the degree of polymerization of the copolymer according to the application.
  • 5 It is preferably from 000 to 500,000, and more preferably from 10,000 to 300,000. If the number average molecular weight of the solid polymer electrolyte material is less than 5,000, physical properties such as the degree of swelling may change over time, resulting in insufficient durability. On the other hand, if the number average molecular weight exceeds 500,000, it may be difficult to prepare a solution.
  • the number average molecular weight is preferably 10,000 to 100,000,000, particularly preferably 50,000 to 5,000, more preferably 100,000 to 300,000. If the molecular weight is too low, the strength of the film will be insufficient, and if the molecular weight is too high, film formation tends to be difficult.
  • the electrolyte material of the present invention may be crosslinked.
  • a radical initiating source group which can be converted into the ionic group or the ionic group (e.g., - S_ ⁇ 2 F group) having, one radical polymerizable having carbon one-carbon double bond with Copolymerizing an alicyclic fluorinated monomer in which one of the carbon atoms at both ends of the double bond forms a ring structure with a fluorinated monomer having two or more radically polymerizable double bonds in the molecule.
  • a crosslinked electrolyte material can be obtained.
  • a perfluorinated monomer is particularly preferable.
  • Q F1 is a single bond, an oxygen atom Or a perfluoroalkylene group having 1 to 10 carbon atoms which may have an etheric oxygen atom.
  • the former monomer include the following monomers.
  • h and k are integers of 2 to 8
  • i and j are each independently an integer of 0 to 5 and i + j ⁇ 1.
  • a polymer having a crosslinked structure which is obtained by adding the above-mentioned comonomer and copolymerizing the copolymer, may be used.
  • the preferred AR value is as described above.
  • the molecular weight is a large value due to the formation of a three-dimensional network structure, which is difficult to identify.
  • the monomer used is a liquid at ordinary temperature and a polymerization temperature because of good handleability.
  • the crosslinked electrolyte membrane is preferably formed into a membrane at the same time as the polymerization.
  • the electrolyte material of the present invention is not limited to a homopolymer or a random copolymer, but may be a daft copolymer or a block copolymer.
  • a graft copolymer polyethylene-tetrafluoroethylene-ethylene copolymer (ETFE), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropene copolymer (FEP)
  • a substrate such as tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer (PFA) is irradiated with radiation such as an electron beam or an electron beam to generate radicals.
  • the monomer can be polymerized to obtain a graft polymer.
  • the above-mentioned comonomers may be added for copolymerization.
  • the monomers may be crosslinked by copolymerization with a monomer having a plurality of unsaturated bonds having radical polymerization reactivity in the molecule.
  • Block copolymer the weight, for example, F (CF 2) 4 I, I (CF 2) 1 or more of the above in the presence of 4 iodinated compounds such as 1 and the radical initiator source alicyclic fluoromonomer And then polymerizing another monomer.
  • examples of other monomers include the above-mentioned comonomer having no functional group.
  • the order of polymerization may be reversed.
  • the polymerization of each segment may be homopolymerization or copolymerization.
  • the polymerization of a monomer having a ring structure with an ionic group or a group capable of being converted to the ionic group used in the present invention may be a copolymerization with another comonomer having no such group.
  • the ionic group in the solid polymer electrolyte material of the present invention is represented by (so 2 x (SO 2 x
  • 2 R f) a) is represented by -M +, specifically from the definition of X and a, one S0 3 such as a sulfonic acid group - M + group, sulfonimide group (an S0 2 N-M + S_ ⁇ 2 R f) or sulfo Nmechido group (one S_ ⁇ 2 C- M + (S0 2 R f) 2) are preferred.
  • M + is H +, a -valent metal cation, or an ammonium ion in which one or more hydrogen atoms may be substituted with a hydrocarbon group
  • R f includes an ether-bonding oxygen atom. It is a linear or branched perfluoroalkyl group.
  • R f is a linear or branched perfluoroalkyl group which may contain an ether-bonding oxygen atom, and preferably has 1 to 8 carbon atoms, and more preferably 1 to 6 carbon atoms. Preferably, there is. Specifically, a perfluoromethyl group, a perfluoroethyl group and the like are preferable.
  • One S0 2 F group the reaction with R f S0 2 NHM a (M a represents an alkali metal, or 1-4 class ⁇ Nmoniumu), alkali hydroxide, alkali metal carbonates, M a F (M a is The same), the reaction with R f S0 2 NH 2 in the presence of ammonia or primary to tertiary Amin, or R f S_ ⁇ 2 NM a S i (CH 3 ) 3 (M a is similar to the above) Can be converted into a sulfonimide group. In these reactions, the sulfonimide group is obtained in a salt form derived from the base used.
  • a reaction example using compound (4) is shown below.
  • the salt type sulfonimide group can be converted to the acid type by treating it with an acid such as sulfuric acid, nitric acid, or hydrochloric acid.
  • This reaction is applicable with respect to chlorine adducts of compounds as described above (4), a port Rimmer with full O b sulfonyl group (_S_ ⁇ 2 F group) compound (4) polymerizing manufactured, it is possible to obtain a polymer having a Suruhonimido group by the carrying out the same processing on the polymer one single S0 2 F group.
  • a copolymer having one SO 2 F group is subjected to hydrolysis in the presence of a base or an acid-formation treatment after hydrolysis to contain a sulfonate group or a sulfonate group.
  • Polymers can be produced.
  • the polymer constituting the solid polymer electrolyte material of the present invention may be fluorinated with fluorine gas after polymerization, or in the presence of air and / or water.
  • the heat treatment may be used to stabilize unstable sites such as one terminal of the polymer.
  • hydrochloric acid, nitric acid or sulfuric acid is preferably used.
  • full O b sulfonyl groups sulfonate (an S_ ⁇ 3 M b group: wherein, M b is a counter ion.) It can be converted into.
  • M b is an alkali metal ion or N ⁇ ′ —R 15 R 16 R 17 R 18 (where R 15 to R 18 are each independently a hydrogen atom or an alkyl having 1 to 5 carbon atoms. A) is preferred.
  • R 15 to R 18 are each independently a hydrogen atom or an alkyl having 1 to 5 carbon atoms. A
  • the alkali metal ion a sodium ion, a potassium ion or a lithium ion is preferable.
  • N + R 15 R 16 R 17 R 18 is N + (CH 3 ) 4 , N + (CH 2 CH 3 ) 4 , N + (CH 2 CH 2 CH 3 ) 4 , N + (CH 2 CH 2 CH 2 CH 3 ) 4 is also preferred.
  • Polymer when M b in the sulfonate group is an alkali metal ion is preferably obtained Ri by the reacting alkali metal hydroxide to the full O b sulfonyl group-containing polymer.
  • the polymer one when M b in the sulfonate group is N + R 15 R 16 R 17 R 18 is a full O b sulfonyl group-containing polymer in N + R 15 R 16 R 17 R 18 (OH) - and Although it can be obtained by a reaction, it is preferably obtained by reacting N + R 15 R 16 R 17 R 18 (OH) — with a sulfonic acid group-containing polymer.
  • the polymer one containing a sulfonic acid base by immersing in an aqueous solution containing ions which can be a different and counterion and M b, can be converted to the counterion.
  • the sulfonate group (an S0 3 M b group) can be converted hydrochloric, sulfonic acid group (one S0 3 H group) by treatment with an acid such as nitric acid or sulfuric acid.
  • the ionic group-containing polymer thus obtained may be treated with aqueous hydrogen peroxide as needed.
  • the conversion method of these groups can be performed according to known methods and conditions.
  • the solid polymer electrolyte material of the present invention can be formed into a membrane and used as a solid polymer electrolyte membrane.
  • the method for forming the film is not particularly limited, and the solid polymer electrolyte material is dissolved.
  • a cast film may be formed using a liquid obtained by dissolving or dispersing in a medium, or may be obtained through operations such as extrusion molding and stretching. Extrusion molding requires the use of a polymer having a single SO 2 F group, which is a precursor of a solid polymer electrolyte material, because of its excellent melt fluidity.After molding, it is converted to a solid polymer electrolyte membrane by hydrolysis. Is preferred.
  • the solid polymer electrolyte membrane is made of polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoro (alkoxy vinyl ether) copolymer ( It may be reinforced with a porous material such as PFA), polyethylene, or polypropylene, a fiber, a woven fabric, or a nonwoven fabric.
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • alkoxy vinyl ether alkoxy vinyl ether copolymer
  • the electrolyte membrane is made of a crosslinked polymer, it can be produced, for example, as follows. First, at least one kind of an alicyclic fluorinated monomer having the present ionic group or its precursor group, and at least one kind of a fluorinated monomer having two or more radically polymerizable double bonds in a molecule are required.
  • the above comonomer is mixed according to the above, and a liquid composition is prepared by adding a polymerization initiator thereto. Next, if necessary, this is heated for a short time to increase the viscosity appropriately.
  • the liquid composition is applied on a substrate to form a liquid film, and then heated and polymerized to form a film. When applying and forming a film, it can be combined with the above-mentioned reinforcing material.
  • the solid polymer electrolyte material of the present invention can be well dissolved or dispersed in an organic solvent having a hydroxyl group.
  • the organic solvent having a hydroxyl group is not particularly limited, but an organic solvent having an alcoholic hydroxyl group is preferable.
  • organic solvent having an alcoholic hydroxyl group examples include methanol, ethanol, 1-propanol, 2-propanol, 2,2,2-trifluoroethanol, 2,2,3,3,3-pentanofluoro-1 —Propanol, 2,2,3,3-tetrafluoro-1-propanol, 4,4,5,5,5 pen-fluor 1-pentanol, 1,1,1,3,3,3— Hexafluoro-2-propanol, 3,3,3_trifluoro-1-monopropanol, 3,3,4,4,5,5,6,6,6-nonafluoro-1-hexanol, 3,3,4,4,4, 5,5,6,6,7,7,7,8,8,8-tridecafluoro-1-oxanol.
  • organic solvents other than alcohols include hydroxyl groups such as acetic acid. Organic solvents can also be used.
  • the organic solvent having a hydroxyl group the above-mentioned solvents may be used alone, or two or more kinds may be used as a mixture, and may be used as a mixture with water or another fluorine-containing solvent. Good.
  • fluorinated solvents include the fluorinated solvents exemplified as preferred fluorinated solvents in the solution polymerization reaction in the production of the solid polymer electrolyte material described above.
  • the content of the organic solvent having a hydroxyl group is preferably at least 10% based on the total mass of the solvent, More preferably, it is 0% or more.
  • the solid polymer electrolyte material may be dissolved or dispersed in the mixed solvent from the beginning, but the solid polymer electrolyte material is first dissolved or dispersed in the organic solvent having a hydroxyl group, and then dissolved in water or other solvent. May be mixed. Further, the dissolution or dispersion of the solid polymer electrolyte material in such a solvent can be performed at a temperature in the range of 0 to 250 ° C under atmospheric pressure or under conditions of tightly pressurizing with auto crepe or the like. It is more preferable to carry out in the range of 20 to 150 ° C. When an organic solvent having a boiling point lower than that of water is contained, it is possible to replace the solvent with water after distilling off the solvent or by adding water while distilling off the solvent.
  • the liquid composition of the present invention obtained by using such a solvent is useful for producing a cast membrane made of a polymer electrolyte material or for producing a catalyst layer of a polymer electrolyte fuel cell.
  • a liquid obtained by mixing a catalyst with a liquid composition may be applied.
  • the content of the solid polymer electrolyte material in the liquid composition used for such a purpose is preferably 1 to 50% with respect to the total mass of the liquid composition, and 3 to 30%. % Is more preferable. If it is less than 1%, it is necessary to increase the number of coatings in order to obtain a desired thickness when producing a membrane or a catalyst layer, and it takes a long time to remove a solvent. It is difficult to perform efficiently. On the other hand, if it exceeds 50%, the viscosity of the liquid composition becomes too high, and it becomes difficult to handle.
  • the liquid composition may contain, in addition to the solid polymer electrolyte material of the present invention, a resin that is another solid polymer electrolyte material. In this case, it is necessary to ensure sufficient gas diffusion and water repellency of the catalyst layer obtained from the liquid composition as a raw material. From the above, the content of the solid polymer electrolyte material of the present invention in the liquid composition is preferably 20% or more with respect to the total mass of all the solid polymer electrolyte materials in the liquid composition, 50% More preferably.
  • the ionic group is usually used in the state of a strongly acidic group, that is, the counter ion of the ionic group is H +. Is done.
  • the method for producing the catalyst layer and the method for producing the membrane electrode assembly having the catalyst layer are described.
  • the catalyst layer, the polymer electrolyte material of the present invention having an S 0 3 H groups, the liquid composition is dissolved or dispersed in a solvent medium having a hydroxyl group in the molecule, it was prepared by mixing the catalyst It can be formed using a coating solution for forming a catalyst layer.
  • the catalyst is preferably fine particles such as carbon black carrying platinum or a platinum alloy.
  • the coating liquid is applied on a polymer electrolyte membrane, a gas diffusion layer, or a separately prepared support plate so that the thickness becomes uniform, and after removing the solvent by drying, applying hot pressing if necessary. To form a catalyst layer.
  • the catalyst layer thus obtained is excellent in gas diffusivity and water repellency, and is particularly suitable for a power source.
  • the catalyst layer is formed using a liquid composition containing a solid polymer electrolyte material in which the softening temperature of the polymer itself is 100 ° C. or higher, the gas diffusion property of the catalyst layer is improved. If the softening temperature of the solid polymer electrolyte material is 100 or more, the solid polymer electrolyte material does not easily shrink when the solvent gradually evaporates from the coating solution, so that the solid polymer electrolyte material is solid or solid. This is probably because pores of an appropriate size are formed between the aggregates of the catalyst particles coated with the polymer electrolyte material.
  • the solid polymer electrolyte material of the present invention may be contained in the catalyst layers of both the power source and the anode, but may be contained only in one, and the other may be formed by dissolving or dispersing the conventional solid polymer electrolyte material in a predetermined solvent. Alternatively, it may be prepared by using a liquid.
  • the catalyst layer of the force sword and the catalyst layer of the anode are arranged between the polymer electrolyte membrane and the gas diffusion layer, whereby a membrane-electrode assembly for a polymer electrolyte fuel cell can be manufactured.
  • a separately prepared gas diffusion layer may be arranged or joined adjacent to the catalyst layer.
  • the catalyst layer is When formed on the anode diffusion layer, a separately prepared polymer electrolyte membrane is arranged and preferably joined between the catalyst layer of the power source and the catalyst layer of the anode.
  • the catalyst layer When the catalyst layer is formed on a support plate (support film), for example, it is transferred to a separately prepared polymer electrolyte membrane, and then the support plate is peeled off and a separately prepared gas diffusion layer is formed on the catalyst layer. Place them adjacent to each other.
  • the gas diffusion layer uses a conductive porous body such as carbon paper and has both a function of uniformly supplying gas to the catalyst layer and a function of a current collector.
  • the joining of the polymer electrolyte membrane and the catalyst layer, or the joining of the catalyst layer and the gas diffusion layer may be performed by, for example, a hot press-roll press.
  • the solid polymer electrolyte material of the present invention can be used not only for hydrogen-Z oxygen and hydrogen-Z air-type fuel cells, but also for direct methanol-type fuel cells (DMFC).
  • DMFC direct methanol-type fuel cells
  • the methanol or aqueous methanol solution used as the DMFC fuel may be a liquid feed or a gas feed.
  • the solid polymer electrolyte material of the present invention is not limited to salt electrolysis and fuel cell applications, but can be used for various applications.
  • the solid polymer electrolyte material refers to a solid polymer material used by utilizing the function of an ionic group, and the ionic group has an ion conduction function, an ion exchange function, a water absorption function, and the like. When it contains a strong acid group, it has acid catalysis. It can also be used as a proton selective permeable membrane used for water electrolysis, hydrogen peroxide production, ozone production, waste acid recovery, etc. .
  • polymer electrolytes for lithium primary batteries, lithium secondary batteries, and lithium ion secondary batteries can also be used for ion exchange filters, electrochromic display devices, etc. That is, it can be used as a material for various electrochemical processes.
  • the solid polymer electrolyte material of the present invention includes a membrane for diffusion dialysis for separating and purifying acids, bases, and salts, and a charged porous membrane for separating proteins (charged reverse osmosis membrane, charged ultra-thin membrane). Filtration membrane, charged microfiltration membrane, etc.), dehumidification membrane, humidification membrane, etc.
  • the solid polymer electrolyte material of the present invention has a small refractive index because it is made of a fluorine-containing polymer. Therefore, when a liquid in which the polymer electrolyte material of the present invention having an ionic group and a large ion exchange capacity is dissolved or dispersed is applied and dried to form a thin film, water or aluminum is formed. It can also be used as an anti-reflection film that can be removed with an aqueous potassium solution. In this case, water and / or an organic solvent can be used as the solvent of the liquid, but water is preferable. It can also be used for an antireflection film applied on a resist in the manufacturing process of semiconductor devices and the like. Further, it can be used as a hydrophilicity imparting agent for a filter made of a porous PTFE material.
  • perfluorobenzene was used as an internal standard.
  • the quantitative value by GC is a value obtained from the peak area ratio.
  • GPC was manufactured by Toso Corporation, and the equipment name was SEC HLC-8020.
  • the mobile phase used was HC FC 225 cb / hexafluoroisopropyl alcohol (99/1 by volume), and the column used was P manufactured by Polymer Raporatori.
  • Two lgel 5a MIXED-Cs were used, and polymethyl methacrylate was used as a standard sample for molecular weight conversion.
  • compound (4) was synthesized through the synthesis of compounds (A1) to (A5).
  • Compound (A1) was synthesized by the method described in J. Fluorine Chem., 46, 39 (1990).
  • the obtained crude liquid was separated to obtain a fluorocarbon layer. Further, the fluorocarbon layer was washed twice with water (250 mL) and dried over magnesium sulfate. Further, the mixture was filtered to obtain a crude liquid. The filtrate was distilled under reduced pressure to obtain a compound (A2) (167.3 g) as a fraction of 47.1 to 47.9 ° C / 0.7 kPa (absolute pressure). The purity of the fraction by GC was 99%.
  • R-113 (312 g) was added to a 50 OmL nickel autoclave, stirred, and kept at 25 ° C.
  • a cooler kept at 20 At the autoclave gas outlet, a cooler kept at 20, a packed bed of NaF pellets, and a cooler kept at -10 ° C were installed in series.
  • a liquid return line was installed to return the aggregated liquid from the cooler to the autoclave.
  • diluted fluorine gas fluorine gas diluted to 20% with nitrogen gas
  • diluted fluorine gas fluorine gas diluted to 20% with nitrogen gas
  • a solution of the compound (A3) (20.0 g) dissolved in R-113 (200 g) was injected over 7.6 hours while blowing fluorine gas at the same flow rate.
  • the R-113 solution with a benzene concentration of 0.1 gZmL is reduced from 25 to 40 ° C. 23 mL was injected while the temperature was being raised.
  • the benzene inlet of the autoclave was closed, the reactor pressure was kept at 0.15 MPa, the reactor temperature was kept at 40 ° C, and stirring was continued for 1.0 hour.
  • the total amount of benzene injected was 0.22 g, and the total amount of R-113 injected was 23 mL. Further, nitrogen gas was blown for 1.0 hour.
  • the product was analyzed by 19 F-NMR, and as a result, formation of compound (A4) was recognized, and the yield was 98%.
  • a 1/2 inch inner diameter stainless steel reaction tube (fluidized bed type) filled with glass beads is heated to 350 ° C, and a heated mixed gas of compound (A5) and nitrogen (molar ratio 1: 9) flows. I let it. The dwell time was 10 seconds and the linear velocity was 2.5 cm / sec. The amount of compound (A5) used was 68.1 g. By cooling the gas coming out of the reaction tube, a liquid containing compound (4) as a main component was obtained. The reaction yield was 52%. Next, methanol was added to the reaction solution, and the unreacted compound (A5) was subjected to methyl esterification. After washing with water, compound (4) was purified by distillation. The boiling point was 48 ° C / 2.7 kPa.
  • a homopolymer of the compound (4) was obtained as follows.
  • the filtrate was concentrated under reduced pressure, reprecipitated and washed, and low-boiling components were distilled off under reduced pressure. After drying under reduced pressure at 80 ° C for 16 hours, the compound (4) A powdery polymer (0.072 g) consisting of the coalescence was recovered. The combined yield with the previously obtained polymer was 71%.
  • CF 2 CF ⁇ CF 2 CF (CF 3 ) ⁇ CF 2 CF 2 S ⁇ 2 F (1.25 g) and benzoyl peroxide (4.5 mg) are placed in a glass tube and filled with liquid nitrogen. After solidification, the tube was sealed under vacuum. After the reaction with 7 Ot: for 45 hours, it remained a colorless and transparent liquid. The reaction solution was transferred to a round bottom flask, the glass tube wall was washed with HC FC225 cb, and the washing solution was added to the round bottom flask. The low-boiling components were distilled off under reduced pressure, and dried under reduced pressure at 80 ° C for 16 hours. A syrup-like oligomer (0.328 g) was obtained. Polymer yield 26%.
  • the ion exchange capacity A R of the polymer obtained from the sulfur content determined by elemental analysis was 1.13 med / g.
  • the intrinsic viscosity at 30 measured using perfluoro (2-butyltetrahydrofuran) as a solvent was 0.16 dl / g.
  • the ion exchange capacity A R of the polymer obtained from the sulfur content determined by elemental analysis was 0.97 medZg.
  • the intrinsic viscosity at 30 ° C. measured using perfluoro (2-butylethyltetrahydrofuran) as a solvent was 0.16 d 1 /.
  • This polymer was hydrolyzed and converted to the acid form in the same manner as in Example 2. A colorless and transparent ethanol solution of mass% was prepared.
  • a cast film was prepared using an ethanol solution of the above polymer, and the softening temperature of the polymer was measured by the penetration method using a 1 mm ⁇ quartz probe described above. First, 10 parts by mass of an ethanol solution of the above copolymer and 2 parts by mass of toluene were mixed, and the resulting solution was cast into a film at room temperature, and dried at 160 ° C. for 30 minutes to form a film having a thickness of about 30 minutes. 200 cast films were obtained. Next, the obtained cast film was set on TMA (manufactured by Mac Science).
  • the ion exchange capacity A R of the polymer obtained from the sulfur content determined by elemental analysis was 1.27 medZg.
  • the intrinsic viscosity at 30 ° C. measured using perfluoro (2-butyltetrahydrofuran) as a solvent was 0.14 dl / g. After hydrolyzing and acidifying this polymer in the same manner as in Example 2, 10% by mass was obtained. A colorless and transparent ethanol solution of was prepared.
  • a cast film was produced in the same manner as in Example 3, and the softening temperature was measured.
  • Compound (4) was copolymerized with perfluoro (2-methylene-1-methyl_1,3-dioxolane) as follows, and then hydrolyzed and converted to an acid form.
  • the intrinsic viscosity at 30 ° C measured using perfluoro (2-butyltetrahydrofuran) as a solvent was 0-46 dl / g. After hydrolyzing and acidifying this polymer in the same manner as in Example 2, it was converted to 10% by mass. A colorless and transparent ethanol solution was prepared.
  • the ion exchange capacity A R of the polymer obtained from the sulfur content determined by elemental analysis was 1.48 medZg.
  • the intrinsic viscosity at 30 ° C. measured using perfluoro (2-butyltetrahydrofuran) as a solvent was 0.23 dlZg. After hydrolyzing and acidifying this polymer in the same manner as in Example 2, 10% by mass was obtained. A colorless and transparent ethanol solution was prepared.
  • the volume flow rate of this polymer was measured.
  • the volume flow rate is the extrusion amount when the resin is melt-extruded under the conditions of an extrusion pressure of 30 kg / cm 2 using a nozzle having a length of lmm and an inner diameter of lmm, and the unit is mm 3 / Expressed in seconds.
  • the volume flow rate of this polymer at 300 ° C. was measured using a flow tester CFT-50 OA (manufactured by Shimadzu Corporation) to be 34 mm 3 / sec.
  • the polymer was pressed at 300 ° C to produce a film with a thickness of about 100 m.
  • This film was immersed in a solution containing 30% of DMS, 11% of KOH and 59% of water at 90 for 16 hours to convert a fluorosulfonyl group into a mono-SO 3 K group. After washing with water, immersed in lmo 1 / L sulfuric acid, by washing with water, to convert an S_ ⁇ 3 K groups to sulfonic acid groups, and then dried.
  • the film was sampled with a sample width of 0.5 cm, grip length of 2 cm, measurement frequency of 10 Hz, and heating rate of 3 ° C / min. Dynamic viscoelasticity was measured.
  • the softening temperature obtained from the temperature at which the elastic modulus began to drop sharply was 104 ° C.
  • the breaking strength was 19.8 MPa and the breaking elongation was 116%, confirming that the film had sufficient strength.
  • the mechanical strength of the film was measured at a length of 100 mm, width of 10 mm, distance between marked lines of 50 mm, initial distance between chucks of 50 mm, tensile speed of 5 OmmZm in, 25 ° C, and relative humidity of 50%. It was measured by performing a tensile test.
  • tetrafurfuryl O Roe Ji Ren ZCF 2 CFOCF 2 CF (CF 3) OCF 2 CF 2 S_ ⁇ 2
  • the F copolymer was produced by a known method.
  • the resulting resulting ion exchange capacity Alpha kappa from the content of sulfur obtained by the elemental analysis of the polymer was 1. lme ciZg.
  • the polymer obtained by converting the fluorosulfonyl group to a sulfonic acid group by hydrolysis and acidification treatment had a softening temperature of 79 ° C.
  • a film having a thickness of about 100 m was prepared by hot pressing in the same manner as in Example 7, and hydrolyzed in the same manner as in Example 7.
  • a film comprising a copolymer having a sulfonic acid group was obtained by performing decomposition and acidification treatment.
  • the films comprising the sulfonic acid group-containing polymers obtained in Example 7 and Comparative Example 2 were immersed in ion-exchanged water at 90 for 16 hours, and the water content was determined in the same manner as above. They were 70% and 59%, respectively.
  • FIG. 1 shows the results of examining the relationship between the water content and the temperature of immersion in ion-exchanged water for the films obtained in Example 7 and Comparative Example 2.
  • FIG. 2 shows the results obtained by comparing the relationship between the water content and the temperature at which the film was immersed in ion-exchanged water with Comparative Example 2 for the film obtained in Example 8.
  • a value obtained by subtracting the weight of the porous body from the weight of the membrane was used.
  • the solid polymer electrolyte material of the present invention has a small temperature dependency of the water content even at a high temperature, and is excellent in high-temperature characteristics as compared with a conventional polymer.
  • the oxygen gas permeability of the film (acid type) of Example 7 and Comparative Example 2 which were the same as the film used in the measurement of the water content was evaluated by a high vacuum pressure method (ASTM D 1434-75 iv).
  • the device used was a gas permeation device manufactured by Rika Seiki.
  • the oxygen gas permeability coefficient P is 0. 69 X 1 0- 13 cm 3 (STP) ⁇ cm ⁇ cm- 2 ⁇ s- 1 ⁇ P a- oxygen gas diffusion coefficient D is 0. 030 X 10- 6 cm 2 's one 1, an oxygen gas dissolved coefficient S is 2. 3 X 10 one 6 cm 3 (S TP)' cm- 3 ' was P a one 1. Comparative Example 2 In contrast, the oxygen gas permeability coefficient P is 0. 40 X 1 0 one 1 3 cm 3 (S TP) ⁇ cm - cm- 2 's- P a- 1, the oxygen gas diffusion coefficient D 0. 026 X 10- 6 cm 2 ' s- oxygen gas dissolved coefficient S was 1. 5 X 10- 6 cm 3 ( S TP) ⁇ cm- 3 ⁇ P a -1.
  • the ethanol solution of the polymer obtained in Example 4 was mixed with a supported catalyst in which platinum was supported on 55% by mass of carbon and water, and the above-mentioned polymer and the supported catalyst (mass ratio of polymer to carbon: 4: 5) were mixed. ) Is dispersed in a mixed dispersion medium of ethanol and water (1: 1 by mass ratio). A dispersion having a solid content concentration of 12% by mass was obtained, and this was used as a coating solution for forming a force catalyst layer.
  • This coating liquid is applied by a die coating method on a 100-thick polyethylene terephthalate (PET) film whose surface has been treated with a silicone release agent, and dried at 80 ° C to a thickness of about 10 / m and a force-sword catalyst layer having a platinum carrying amount of about 0.5 mgZcm 2 .
  • PET polyethylene terephthalate
  • the solid polymer electrolyte material of the present invention has a higher softening temperature and a lower temperature dependency of the water content at a higher temperature than conventional ones.
  • the fuel cell can be operated at a higher temperature than before.
  • the solid polymer electrolyte material of the present invention has a ring structure, it has excellent oxygen gas permeability. Therefore, particularly when the catalyst layer of the power source of the polymer electrolyte fuel cell is contained as an electrolyte, the gas diffusion property is excellent.
  • one monomer unit in the polymer constituting the solid polymer electrolyte material has both a ring structure and a sulfonic acid group, the ion exchange capacity of the solid polymer electrolyte material is increased to increase the conductivity. Can be increased. Therefore, a fuel cell using the electrolyte material can have a low output.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Fuel Cell (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Inert Electrodes (AREA)

Abstract

ラジカル重合反応性を有する炭素−炭素二重結合を有し、該二重結合の両端の炭素原子の一方が環構造を構成している脂環式含フッ素モノマーに基づく繰り返し単位を含んでおり、当該繰り返し単位にはスルホン酸基等の強酸性基が含まれるポリマー、好ましくはペルフルオロ化されているポリマーからなる固体高分子電解質材料を提供する。この電解質材料は軟化温度が高く、この電解質材料を用いた固体高分子型燃料電池は、従来よりも高い温度で運転可能である。また、この電解質材料を固体高分子型燃料電池のカソードの触媒層に使用すると、電池の出力電圧を高めることができる。

Description

明細書 固体高分亍電解質材料、 製造方法及び固体高分子型燃料電池用膜電極接合体 技術分野
本発明は、 たとえば、 食塩電解や固体高分子型燃料電池用の電解質膜、 燃料電 池の触媒層に用いる電解質、 リチウム電池用電解質等として有用な、 イオン性基 を有するポリマーからなる固体高分子電解質材料及びその製造方法に関する。 背景技術
従来、 食塩電解用膜、 固体高分子型燃料電池の膜又は触媒層には、 CF2 = C F- (OCF2CFY) m—〇p— (CF2) n— S〇2Fで表される含フッ素モノ マー (ただし、 Yはフッ素原子又はトリフルォロメチル基であり、 nは 1〜12 の整数であり、 mは 0〜3の整数であり、 pは 0又は 1であり、 m+p>0であ る。 ) とテトラフルォロエチレンとの共重合体を加水分解して得られるポリマー 、 又はさらに酸型化して得られるスルホン酸基を有するポリマー (以下、 スルホ ン酸基を有するポリマ一をスルホン酸ポリマーという) が用いられている。 上記スルホン酸ポリマ一は、 軟化温度が 80°C付近であるため、 このポリマー を使用した燃料電池の運転温度は通常 80°C以下である。 しかし、 メタノール、 天然ガス、 ガソリン等の炭素原子と水素原子、 又は炭素原子、 水素原子及び酸素 原子からなる有機化合物を改質して得られる水素を燃料電池の燃料ガスとして使 用する場合、 一酸化炭素が微量でも含まれると電極触媒が被毒して燃料電池の出 力が低下しやすくなる。 したがって、 これを防止するため運転温度を高めること が要望されている。 また、 燃料電池の冷却装置を小型化するためにも運転温度を 高めることが要望されている。 しかし、 従来の上記ポリマーは軟化温度が低いた めこれらの要望に対応できなかった。
特許第 267 5548号公報には、 側鎖が短く軟化温度の高いスルホン酸ポリ マーを燃料電池の電解質として使用することが提案されている。 しかし、 このよ うなスルホン酸ポリマ一は製造が困難であり高コストであるため、 実際には製造 されていない。
ポリマーが環構造を有していると、 一般に軟化温度が高くなり、 現状よりも高 い温度での発電が可能となると考えられる。 しかし、 従来は、 ポリマーにスルホ ン酸基等のイオン性基を含有させるために、 当該イオン性基を有しビニルエーテ ルを重合部位とするモノマーを共重合していたため、 ポリマーとして軟化温度が 充分に高くならない問題があった。
一方、 スルホン酸基等のイオン性基又はその前駆体基を有し、 環構造を有し、 かつペルフルォロビニルエーテルよりも重合反応性の高い重合部位を有するモノ マーは、 これまでに合成された例がない。 特表 200 1— 522376号公報に は、 下記 (A) 〜 (E) のモノマーが例示されているが、 実際には合成困難であ り、 合成法や合成例の記載はない。 また当該モノマーに基づく繰り返し単位を含 むポリマーについても記載がない。 なお下式中 M' は水素、 アルカリ金属、 アル カリ土類金属等を示し、 Xはフッ素原子、 塩素原子又はトリフルォロメチル基で あり、 nは 0〜1 0、 Qは水素原子、 フッ素原子、 シァノ基、 アルキル基、 SO 2R (Rはアルキル基等) 等を表す。
(A)
Figure imgf000003_0001
~ CF2-CF— 0十 CF2- CF2— S03M'
X
Figure imgf000003_0002
- CFp-CF— O -CF2— CF2— S02— N— S02— R (B)
M'
X
J n
Figure imgf000004_0001
米国特許第 49737 14号には下記式 (F) で表わされるモノマーが開示さ れており、 式中 Xは F、 C l、 一 OC6F5、 一 CN、 一 C〇F、 一 CO〇R (
Rは—CH3、 一 C2H5、 -CH2CF3) 、 — S〇2F、 一 S〇2C 1等の種々 の官能基を示すとされている。 しかし、 Xが一 S〇2F又は一 S02C 1である 化合物 (R f lはフッ素原子又はペルフルォロアルキル基であり、 Rf 2はェ一テ ル結合性酸素原子を含有してもよいペルフルォロアルケニル基である) は合成困 難であり、 その合成例は記載されていない。 (F)
Figure imgf000004_0002
また、 環構造を有する固体高分子電解質は、 ポリマーの軟化温度が高いだけで なく、 燃料電池のカソードに含有させる電解質として適用することにより出力を 高められることが特開 2002— 260705号公報に記載されている。 この文 献においては、 スルホン酸基又はスルホン酸基に変換可能な官能基 (以下、 本明 細書ではこれらをまとめてスルホン酸型官能基という) を有するが、 スルホン酸 型官能基を有し環構造を有しないペルフルォロビニルェ一テルモノマーと、 スル ホン酸型官能基を有さず環構造含有又は環化重合性のモノマーとを共重合するこ とにより、 環構造とスルホン酸基とを有するボリマーを得ている。 しかし、 この ポリマーでは、 ポリマー全体に対する環構造の割合を充分には高められない。 ま た、 上記ペルフルォロビニルェ一テルモノマーを用いると、 高分子量のポリマー を得るのが困難であった。 発明の開示
そこで本発明は、 従来よりも軟化温度が高く、 固体高分子型燃料電池の電解質 として使用した場合に従来よりも高温における燃料電池の運転を可能とする固体 高分子電解質材料を提供することを目的とする。 さらに、 高温での運転だけでは なく燃料電池の高出力化にも寄与しうる固体高分子電解質材料を提供することを 目的とする。
本発明は、 ラジカル重合反応性を有する炭素一炭素二重結合を有し、 該二重結 合の両端の炭素原子の一方は環構造を構成する脂環式含フッ素モノマーに基づく 繰り返し単位を含むポリマーであって、 前記含フッ素モノマーは— (s o 2 x (
S〇2 R f ) a) _M +で表されるイオン性基 (式中、 M +は H +、 一価の金属カチ オン、 又は 1以上の水素原子が炭化水素基と置換されていてもよいアンモニゥム イオンであり、 R fは、 エーテル結合性酸素原子を含んでいてもよい直鎖又は分 岐のペルフルォロアルキル基であり、 Xは酸素原子、 窒素原子又は炭素原子であ つて、 Xが酸素原子の場合 a = 0であり、 Xが窒素原子の場合 a = 1であり、 X が炭素原子の場合 a = 2である。 ) を有するポリマーからなることを特徴とする 固体高分子電解質材料を提供する。
上記イオン性基 (以下、 本イオン性基という) は例えばスルホン酸基等の強酸 性基又はその塩であり、 電解質材料のイオン性基として好適である。 脂環式含フ ッ素モノマーに基づく繰り返し単位は本イオン性基を 2以上含んでいてもよい。 本発明の固体高分子電解質材料を構成するポリマーは環構造を有するため軟化温 度が高く、 従来の含フッ素ポリマーからなる電解質材料に比べ、 高温での使用が 可能である。
また、 本発明は、 上記電解質材料からなる膜からなることを特徴とする固体高 分子電解質膜を提供する。 このような膜は例えば固体高分子型燃料電池の電解質 膜として好適である。
また、 本発明は、 上記電解質材料が水酸基を有する溶媒及び/又は水中に溶解 又は分散していることを特徴とする液状組成物を提供する。 当該液状組成物を使 用することにより、 電解質膜を作製することが可能である。 また、 例えば固体高 分子型燃料電池の触媒層を作製する際にも有用である。
さらに本発明は、 ラジカル開始源の存在下で、 フルォロスルホニル基とラジカ ル重合反応性を有する炭素一炭素二重結合とを有し、 該二重結合の両端の炭素原 子の一方は環構造を構成する脂環式含フッ素モノマーを、 ラジカル重合した後、 前記フルォロスルホニル基をスルホン酸基に変換することを特徴とする固体高分 子電解質材料の製造方法を提供する。
さらに本発明は、 触媒と固体高分子電解質とを含む触媒層を有するカソード及 びアノードと、 前記力ソードと前記アノードとの間に配置される固体高分子電解 質膜とを備える膜電極接合体であって、 前記固体高分子電解質膜は、 上述の固体 高分子電解質材料からなることを特徴とする固体高分子型燃料電池用膜電極接合 体を提供する。
また本発明は、 触媒と固体高分子電解質とを含む触媒層を有する力ソード及び アノードと、 前記力ソードと前記アノードとの間に配置される固体高分子電解質 膜とを備える膜電極接合体であって、 前記力ソード及び前記アノードの少なくと も一方の触媒層には上述の固体高分子電解質材料が含まれることを特徴とする固 体高分子型燃料電池用膜電極接合体を提供する。 図面の簡単な説明
図 1 :例 7と比較例 2で得られたフィルムの、 含水率とィォン交換水に浸漬す る温度との関係を示す図である。
図 2 :例 8と比較例 2で得られたフィルムの、 含水率とイオン交換水に浸漬す る温度との関係を示す図である。 発明を実施するための最良の形態
本明細書においては、 式 (X) で表される化合物を化合物 (X ) と記す。 同様 に式 ( Y ) で表される繰り返し単位を繰り返し単位 ( Y ) と記す。
本発明の製造方法では、 固体高分子電解質材料を構成するポリマーの主鎖に環 構造を導入するため、 重合部位に環構造を有し、 かつイオン性基又は当該イオン 性基に変換しうる基を有する含フッ素モノマー、 好ましくはペルフルォ口化され たモノマーが使用される。
本発明者は、 高い軟化温度を有する固体高分子電解質膜や酸素溶解性又は酸素 透過性の大きい固体高分子電解質を得るためには、 環構造の導入が好ましく、 下 記式 (F ) 又は (G) の構造を有するモノマーを重合することが好適であると考 えたが、 従来の技術の項で述べたように式 (F ) の化合物の合成は困難である。 合成上の観点から、 下記式 (G) の構造を有するモノマーが好適である。
Figure imgf000007_0001
ただし、 式 (G) において、 R A〜R Dは、 それぞれ独立に、 本イオン性基又 はその前駆体基及びエーテル結合性酸素原子の少なくとも一つを含有してもよい 1価のペルフルォロ有機基並びにフッ素原子からなる群から選ばれるが、 R A〜 R Dの 2つが互いに連結された、 本ィオン性基又はその前駆体基及びェ一テル結 合性酸素原子の少なくとも一つを含有してもよい 2価のペルフルォロ有機基であ つてもよい。 ここで、 R A〜R Dの少なくとも 1つは本イオン性基又はその前駆 体基を含む。 R E、 R Fはそれぞれ独立に、 エーテル結合性酸素原子を含有して もよい 1価のペルフルォロ有機基又はフッ素原子である。 ここで本イオン性基の前駆体基とは、 加水分解や酸型化処理等の公知の処理に より本イオン性基となる基であり、 例えば一 S O 2 F基等である。 重合後に本ィ オン性基に変換すれば高分子電解質材料が得られる。 また、 上記ペルフルォロ有 機基としては具体的にはエーテル結合性酸素原子を含んでもよいペルフルォロカ 一ボン基が好ましい。 式 ( G) で表わされる化合物のなかでも、 特に式 ( 3 ) で 表わされる化合物が好ましい。
Figure imgf000008_0001
ただし、 式 (3 ) において、 R 1はエーテル性酸素原子を含有してもよい 2価 のペルフルォロ有機基であり、 R 2〜R 6はそれぞれ独立にフッ素原子又はエー テル結合性酸素原子を含有してもよい 1価のペルフルォロ有機基である。 なお、 ここで有機基とは、 炭素原子を 1以上含む基をいい、 1価のペルフルォロ有機基 としては特に直鎖又は分岐状のペルフルォロアルキル基 (アルキル鎖の内部ゃ片 末端にエーテル性酸素原子を含有していてもよい) が好ましい。
化合物 (3 ) において、 高い重合反応性を有するためには、 R 5、 R 6の少な くとも一方はフッ素原子であることが好ましい。 R 5、 R 6の一方がフッ素原子 のとき、 他方は、 フッ素原子又はペルフルォロアルコキシ基であることがより好 ましく、 さらには R 5、 R 6ともにフッ素原子である下記式 (3 ' ) の構造を有 することが好ましい。 化合物 (3 ' ) の R 1 2〜R 1 4はそれぞれ独立にフッ素原 子又はペルフルォロアルキル基 (アルキル鎖の内部ゃ片末端にエーテル性酸素原 子を含有していてもよい) を表し、 R 1はエーテル性酸素原子を含有してもよい 2価のペルフルォロ有機基であり環と結合する原子は酸素原子であってもよい。 (3,)
Figure imgf000009_0001
化合物 (3 ' ) のなかでも、 化合物 (4) は、 重合反応性が高く、 合成も容易 であるので特に好ましい。
Figure imgf000009_0002
化合物 (4) は、 国際出願番号 PCT/J P 02/1 13 1 0号に記載されて いる幾つかの方法によって合成される。 例えば、 下記の合成スキームによって合 成することができる。 ただし、 合成スキームの中の Rf ' は直鎖又は分岐状のェ 一テル結合性の酸素原子を含有してもよいペルフルォロアルキル基を表す。
Figure imgf000009_0003
楚巷え爾絨 m 上記合成スキームにおいてェピブロモヒドリンゃヒドロキシアセトンのペルフ ルォロアルキルエステルのかわりに、 置換基を導入したェピブロモヒドリンゃ置 換基を導入したヒドロキシアセトンのペルフルォロアルキルエステルを使用する こともできる。 この場合、 化合物 ( 4 ) に当該置換基がペルフルォロ化されて導 入された化合物を合成することができる。
化合物 (3 ) は重合性の高い二重結合、 環構造及びフルォロスルホニル基 (一 S 0 2 F基) をすベて有する化合物である。 該化合物を重合させたボリマ一を加 水分解してなるポリマーは、 食塩電解、 燃料電池、 リチウム電池やその他の電解 質材料として有用に用いうる。
例えば、 化合物 (3 ) を単独重合して得られるフルォロスルホニル基含有ポリ マーは、 高分子量とすることができるし、 そのポリマーのフルォロスルホニル基 を加水分解して得られるスルホン酸ポリマーはイオン交換容量が高い。 また、 化 合物 (3 ) を、 化合物 (3 ) と共重合しうる他の重合性単量体 (以下、 コモノマ —と記載する。 ) と共重合させて得られるフルォロスルホニル基含有ポリマーは 、 コモノマ一の選択によりさらに新たな特性を付与することもできる。 コモノマ —は、 1種であっても 2種以上であってもよい。
コモノマーとしては、 通常非イオン性のモノマーが選択される。 ここで非ィォ ン性とは、 イオン性基又はその前駆体基を有しないことを意味する。 上記コモノ マーの例としては、 テトラフルォロエチレン、 クロ口トリフルォロエチレン、 ト リフルォロエチレン、 フッ化ビニリデン、 フッ化ピニル、 エチレン、 ペルフルォ 口 (3—ブテニルビニルエーテル) 、 ペルフルォロ (ァリルビニルエーテル) 、 ペルフルォロ (2, 2 _ジメチルー 1 , 3—ジォキソール) 、 ペルフルォロ (1 , 3—ジォキソール) 、 ペルフルォロ (2—メチレン一 4一メチル _ 1 , 3—ジ ォキソラン) 、 ペルフルォロ (3, 5ージォキサー 1 , 6—へブタジエン) 、 ぺ ルフルォロ (4ーメトキシー 1, 3—ジォキソール) 等が挙げられる。 また、 下 記モノマ一 (式中 pは 2〜6の整数である。 ) も好適に使用され得る。 なかでも テ卜ラフルォロエチレンは、 その共重合体が化学的な安定性、 耐熱性に優れてい るだけでなく、 高い機械強度を有し、 軟化温度も従来のスルホン酸ポリマーより 高いので好ましい。
Figure imgf000011_0001
また、 上記に例示したコモノマーとともにさらに共重合できるコモノマーとし て、 プロペン、 へキサフルォロプロペン等のペルフルォロひーォレフイン類、 ( ペルフルォロブチル) エチレン等の (ペルフルォロアルキル) エチレン類、 3一 ペルフルォロォクチルー 1一プロペン等の (ペルフルォロアルキル) プロペン類 、 ペルフルォロ (アルキルビニルエーテル) やペルフルォロ (エーテル性酸素原 子含有アルキルビニルエーテル) 等のペルフルォロビニルェ一テル類等を用いて もよい。 , ペルフルォロビニルエーテル類のコモノマ一としては、 CF2 = CF— (OC F2CFZ) t— O— R fで表わされる化合物が好ましい。 ただし、 tは 0〜3の 整数であり、 Zはフッ素原子又はトリフルォロメチル基であり、 Rf は直鎖構造 であっても分岐構造であってもよい炭素数 1〜 12のペルフルォロアルキル基で ある。 なかでも、 下記化合物 (5) 〜 (7) が好ましい。 ただし、 式中、 Vは 1 〜 9の整数であり、 wは 1〜9の整数であり、 Xは 2又は 3である。
CF2 = CFO (CF2) VCF3 · · · (5)
CF2 = CFOCF2CF (CF3) O (CF2) WCF3 - · · (6)
CF2 = CF (OCF2CF (CF3) ) xO (CF2) 2CF3 - · (7)
高い軟化温度を有する固体高分子電解質膜や酸素溶解性又は酸素透過性の大き い固体高分子電解質を得るためには、 環構造を多く固体高分子電解質の中に導入 することが好適であり、 環構造を含有するコモノマー又は環化重合性のコモノマ —を選択することが好ましい。 環構造を含有するコモノマーとしては、 具体的に はペルフルォロ (2 , 2一ジメチルー 1, 3ージォキソール) 、 ペルフルォロ ( 1 , 3ージォキソール) 、 ペルフルォロ (2—メチレン一 4一メチル— 1 , 3一 ジォキゾラン) 、 ペルフルォロ ( 4—メトキシ一 1, 3ージォキソ一ル) が例示 される。 環化重合性のコモノマーとしては、 具体的にはペルフルォロ (3—ブテ 二ルビニルエーテル) 、 ペルフルォロ (ァリルビニルエーテル) 、 ペルフルォロ ( 3 , 5—ジォキサー 1, 6—へブタジエン) が例示される。
重合反応は、 ラジカルが生起する条件のもとで行われるものであれば特に限定 されない。 例えば、 バルク重合、 溶液重合、 懸濁重合、 乳化重合、 液体又は超臨 界の二酸化炭素中の重合等により行ってもよい。
ラジカルを生起させる方法は特に限定されず、 例えば、 紫外線、 ァ線、 電子線 等の放射線を照射する方法を用いることもできるし、 通常のラジカル重合で用い られるラジカル開始剤を使用する方法も使用できる。 重合反応の反応温度は特に 限定されず、 例えば、 通常は 1 5〜1 5 (TC程度である。 ラジカル開始剤を使用 する場合、 ラジカル開始剤としては、 例えば、 ビス (フルォロアシル) パーォキ シド類、 ビス (クロ口フルォロアシル) パーォキシド類、 ジアルキルパ一ォキシ ジカーボネート類、 ジァシルパ一ォキシド類、 パーォキシエステル類、 ァゾ化合 物類、 過硫酸塩類等が挙げられる。
溶液重合を行う場合には、 使用する溶媒は取り扱い性の観点から、 通常は 2 0 〜3 5 0 °Cの沸点を有していることが好ましく、 4 0〜 1 5 0 の沸点を有して いることがより好ましい。 そして、 溶媒中に 1種又は 2種以上の上記含フッ素モ ノマ一を所定量投入し、 ラジカル開始剤等を添加してラジカルを生起させて重合 を行う。 ガスモノマーの場合は、 一括添加でも逐次添加でも連続添加でもよい。 ここで、 使用可能な溶媒としては、 例えば、 下記 ( i ) 〜 ( i x ) の各溶媒が 挙げられる。
( i ) ペルフルォロトリブチルァミン、 ペルフルォロトリプロピルアミン等の ポリフルォロトリアルキルアミン化合物。
( i i ) ペルフルォ口へキサン、 ペルフルォロオクタン、 ペルフルォロデカン 、 ペルフルォロドデカン、 ペルフルォロ (2, 7—ジメチルオクタン) 、 2 H , 3 H—ペルフルォロペンタン、 1 H—ペルフルォ口へキサン、 1H—ペルフルォ 口オクタン、 1 H_ペルフルォロデカン、 1 H, 4H—ペルフルォロブタン、 1
H, 1 H, 1 H, 2 H, 2 H—ペルフルォ口へキサン、 1 H, 1 H, 1 H, 2 H , 2 H—ペルフルォロオクタン、 1H, 1 H, 1 H, 2 H, 2H—ペルフルォロ デカン、 3 H, 4H—ペルフルォロ (2—メチルペンタン) 、 2 H, 3 H—ペル フルォロ (2—メチルペンタン) 等のフルォロアルカン。
( i i i) 3, 3 _ジクロロー 1, 1, 1, 2, 2一ペンタフルォロプロパン 、 1 , 3—ジクロロー 1, 1 , 2 , 2, 3一ペンタフルォロプロパン、 1, 1― ジクロロ— 1一フルォロェタン等のクロ口フルォロアルカン。
( i v) へキサフルォロプロペンの 2量体、 へキサフルォロプロペンの 3量体 等の分子鎖末端に二重結合を有しないフルォロォレフィン。
(V) ペルフルォロデ力リン、 ペルフルォロシクロへキサン、 ペルフルォロ (
I , 2—ジメチルシクロへキサン) 、 ペルフルォロ (1, 3—ジメチルシクロへ キサン) 、 ペルフルォロ (1, 3, 5—トリメチルシクロへキサン) 、 ペルフル ォロジメチルシクロブタン ·(構造異性を問わない) 等のポリフルォロシクロアル カン。
(v i ) ペルフルォロ (2—プチルテトラヒドロフラン) 等のポリフルォロ環 状エーテル化合物。
(V i i ) n_C3F7OCH3、 n - C 3 F 7〇 C H2 C F 3、 n— C3F7OC HFCF3、 n— C3F7〇C2H5、 n— C4F9〇CH3、 i s o -C4F9OC H3、 n— C4F9OC2H5、 i s o— C 4 F 9 O C 2H5、 n— C4F9〇CH2C F3
Figure imgf000013_0001
n— C6F13OCH3、 n - C 5 F , x O C 2 H 5, C F 3OC F (CF3) CF2OCH3、 C F 3 O C H F C H 2〇 C H 3、 CF3OCH FCH2OC2H5、 n-C3F7OCF2CF (CF3) OCHFCF3等のヒドロ フルォロェ一テル類。
(V i i i ) フッ素含有低分子量ポリエーテル。
( i x) t e r tーブ夕ノール等。
なお、 これらの溶媒は、 単独で用いてもよいし、 2種以上を混合して用いても よい。 また、 溶液重合を行う場合に使用する溶媒として他にも、 1, 1, 2—トリク ロロ一 1 , 2, 2—トリフルォロェタン、 1 , 1, 1一トリクロ口一 2, 2 , 2 一トリフルォロェタン、 1 , 1 , 1, 3—テトラクロロー 2 , 2 , 3, 3—テト ラフルォロプロパン、 1 , 1 , 3 , 4ーテ卜ラクロロー 1 , 2, 2 , 3, 4 , 4 一へキサフルォロブタン等のクロ口フルォロカ一ポン類を挙げることができる。 ただし、 これらのクロ口フルォロカ一ボン類は、 技術的には使用できるが、 地球 環境に与える影響を考慮すると、 その使用は好ましくない。
懸濁重合は、 水を分散媒として用いて、 重合させるモノマーを添加し、 ラジカ ル開始剤としてビス (フルォロアシル) パーォキシド類、 ビス (クロ口フルォロ ァシル) パーォキシド類、 ジアルキルパーォキシジ力一ポネート類、 ジァシルパ 一才キシド類、 パーォキシエステル類、 ァゾ化合物類等の非イオン性の開始剤を 用いることにより行うことができる。 溶液重合の項で述べた溶媒を助剤として添 加することもできる。 また、 懸濁粒子の凝集を防ぐために、 適宜界面活性剤を分 散安定剤として添加してもよい。
本発明において、 本イオン性基とラジカル重合反応性を有する炭素一炭素二重 結合を有し、 該二重結合を構成する炭素原子の少なくとも一方が環構造を構成す る脂環式含フッ素モスマーは、 単独重合反応性が高い。 特に化合物 (3 ) はペル フルォロビニルエーテルモノマーよりも単独重合反応性が大きく分子量を大きく できるので好ましい。 2つのモノマーの単独重合反応性の大小の比較は、 同一の 重合条件で重合を行ったとき、 ポリマー収率及び重合度がいずれも大きい場合に その大きい方のモノマーを単独重合反応性が大きいと判断する。 ここでいう同一 の重合条件とは、 同一のラジカル開始剤をモノマーに対して質量比で同じ濃度に なる量を添加し、 脱気後、 同一の温度、 同一の時間重合を行うことを指す。 例え ば本明細書の実施例に記載されている方法によって評価される。
化合物 (3 ) を用いて重合し、 さらに加水分解や酸型化を行うことにより、 繰 り返し単位 (1 ) を含むポリマーが得られる。 このようなポリマーは、 高分子電 解質材料として好適である。 式 (1 ) 中、 M +は H +、 一価の金属カチオン、 又 は 1以上の水素原子が炭化水素基と置換されていてもよいアンモニゥムイオンで あり、 R fは、 エーテル結合性酸素原子を含んでいてもよい直鎖又は分岐のペル フルォロアルキル基であり、 Xは酸素原子、 窒素原子又は炭素原子であって、 X が酸素原子の場合 a- 0であり、 Xが窒素原子の場合 a =1であり、 Xが炭素原 子の場合 a = 2である。 また 1〜!^6は化合物 (3) における Ri〜R6とは同 我である。
Figure imgf000015_0001
繰り返し単位 (1) を含むポリマーのなかでも、 式 (1) 中 R5、 R6がいず れもフッ素原子である繰り返し単位を含むポリマーが好ましい。 R5、 R6とも にフッ素原子である場合は重合反応性の高いモノマーにより合成できるため高分 子量とすることができるためである。 さらには、 繰り返し単位 (2) を含むポリ マーが、 同様の理由で特に好ましい。
Figure imgf000015_0002
.. 本発明の固体高分子電解質材料であるポリマ一は、 軟化温度が 90°C以上であ ることが好ましく、 100°C以上であるとさらに好ましい。 ここで、 ポリマーの 軟化温度とは、 ポリマーの動的粘弾性の評価試験において、 ポリマーの温度を室 温付近から徐々に昇温させながらその弾性率を測定した場合に、 ポリマーの弾性 率が急激に低下しはじめるときの温度をいう。 したがって本発明における軟化温 度は、 通常 t a n δの値より求めるガラス転移温度とは異なり、 一般にガラス転 移温度よりも低い温度領域で観測される。
軟化温度は、 動的粘弾性測定装置 (DMA) により測定できるが、 熱的機械分 析装置 (TMA) を用い、 直径 lmmの石英プローブによるぺネトレ一シヨン法 により測定することもできる。 すなわち、 測定するポリマーの溶液を作製し、 該 溶液からキャスト製膜してフィルムとし、 このフィ.ルムに対して石英プローブを 当該フィルムの面の法線方向から接触させ、 1〜1 0 °C/m i nの昇温速度で温 度を上昇させてフィルムに対するプローブのめり込みによりフィルムの厚さが急 激に減少しはじめる温度を軟化温度として計測する。 なお、 本発明者は、 この方 法により得られる軟化温度の値が、 先に述べたポリマーの弾性率の温度依存性の プロフィールに現れる急激な弾性率の低下が観測されはじめる温度と一致するこ とを予め確認している。
また、 フィルムにかかるプロ一ブの荷重が小さすぎる場合にはフィルムの熱膨 張が観測されるが、 荷重を最適化することにより支障なくフィルムの軟化温度に おけるプローブのめり込みの度合いを計測することができる。 フィルムは、 前駆 体ポリマーを溶融押し出し成形や熱プレスによって得たフィルムを加水分解又は 加水分解した後酸型化処理したものを用いてもよい。
固体高分子型燃料電池の作動温度は一般に 8 0 °C以下であるが、 9 0で以上、 さらには 1 0 0 °C以上とすることが望まれている。 燃料電池の作動温度を 1 0 0 °C以上とすれば、 電池の排熱をより有効に利用することが可能となるとともに、 電池の除熱が容易となるため作動中の電池の温度制御がより容易となる。 また、 この場合には、 アノード反応ガス中に含まれる一酸化炭素等による触媒被毒を軽 減することが可能となり、 その結果電池寿命を向上させることが可能となり電池 出力も高められる。
したがって、 触媒層に含有される固体高分子電解質材料及び電解質膜を構成す る電解質材料の軟化温度が 9 0 °C以上、 より好ましくは 1 0 0 °C以上であると、 固体高分子電解質材料の耐久性が向上するため、 電池の作動中において固体高分 子電解質材料の膨潤度等の物性の経時的な変化や変形を抑制することが可能とな る。 その結果、 電池寿命を向上させることができる。 特に電池の反応により水が 生成する力ソードの触媒層に、 軟化温度が 1 0 o t以上の本発明の固体高分子電 解質材料を使用すると耐久性向上の効果が高く好ましく、 さらに電池の出力電圧 を高めることもできる。 本発明の固体高分子電解質材料は環構造を含有している ので、 酸素溶解性や透過性が高くなるためと考えられる。
また、 固体高分子型高分子電解質材料となるポリマーに架橋構造を導入するこ とによっても、 架橋により過膨潤が抑制され、 強度の低下を防ぐことができ、 軟 化温度が必ずしも高くなくても従来よりも高温での使用に耐えうる。 軟化温度の 高いポリマ一に架橋構造を導入すると、 より耐久性の効果が高まる。 架橋された ポリマーは軟化温度以上でも形状を保持できるので、 特に高分子電解質膜を得る 場合は信頼性の高い膜が得られ好ましい。
また、 本発明の固体高分子電解質材料は固体酸触媒としても使用できるが、 こ の場合には、 その軟化温度が高ければ反応温度を高くできるので、 所望の反応を より高い温度領域において進行させることが可能となる。
本発明の固体高分子電解質材料は、 イオン交換容量 (以下、 ARという) が 0 . 5〜2. 5ミリ当量 Zg乾燥樹脂 (以下、 me ciZgとする) であることが好 ましい。 固体高分子電解質材料の ARが 0. 5me q/g未満となると、 固体高 分子電解質材料は含水率が低下してイオン伝導性が低くなるので、 固体高分子型 燃料電池の固体高分子電解質膜又は触媒層の構成材料として使用すると、 十分な 電池出力を得ることが困難になりやすい。 一方、 固体高分子電解質材料の ARが 2. 5me qZgを超えると、 固体高分子電解質材料中のイオン交換基の密度が 増大し、 固体高分子電解質材料の強度が低くなりやすい。 また、 固体高分子型燃 料電池の触媒層の構成材料として使用すると、 含水率が高くて.触媒層におけるガ ス拡散性又は排水性が低下してフラッディングが発生しやすくなり、 膨潤による 寸法変化も大きくなりやすい。
上記と同様の観点から本発明の固体高分子電解質材料の ARは、 0. 7〜2. Ome Q/gであるとより好ましく、 0. 9〜1. 5 m e Q Z gであるとさらに 好ましい。 ただし、 後述するように本発明の固体高分子電解質材料は架橋構造を 有することもできる。 この場合は、 ARの好ましい下限値は上記と同様であるが 、 架橋構造を有すると含水率が抑制されるため、 ARの好ましい上限値は、 用い るモノマーの分子量と後述する架橋用モノマーの分子量及び架橋密度により異な り、 架橋していない場合より高い AR値を有することができる。
また、 本発明の固体高分子電解質材料の数平均分子量は特に限定されず、 用途 に応じて共重合体の重合度を変化させることにより適宜設定できる。 本実施形態 のように固体高分子型燃料電池の触媒層の構成材料として使用する場合には、 5 000〜 5000000であることが好ましく、 10000〜 3000000で あることがより好ましい。 固体高分子電解質材料の数平均分子量が 5000未満 であると、 膨潤度等の物性が経時的に変化するため耐久性が不十分になるおそれ がある。 一方、 数平均分子量が 5000000を超えると、 溶液の調製が困難に なるおそれがある。
さらに、 非架橋の固体高分子電解質材料を膜として使用する場合には、 数平均 分子量は 10000〜 1 0000000が好ましく、 特に 50000〜 5000 000、 さらには 100000〜 3000000であることが好ましい。 分子量 が低すぎると膜としての強度が不足し、 分子量が高すぎると成膜が困難になる傾 向があるためである。
本発明の電解質材料は、 架橋されていてもよい。 ラジカル開始源の存在下、 本 イオン性基又は本イオン性基に変換しうる基 (例えば— S〇2F基) を有し、 つラジカル重合反応性を有する炭素一炭素二重結合を有し、 該二重結合の両端の 炭素原子の一方が環構造を構成する脂環式含フッ素モノマ一を、 分子内に 2以上 のラジカル重合性の二重結合を有する含フッ素モノマーと共重合することにより 、 架橋した電解質材料を得ることができる。 上記分子内に 2以上のラジカル重合 性の二重結合を持つ含フッ素モノマーとしては特にペルフルォロ化されたモノマ —が好ましく、 なかでも下式で表されるモノマー (QF1は、 単結合、 酸素原子 、 またはエーテル性酸素原子を有していてもよい炭素数 1〜10のペルフルォロ アルキレン基を示す。 ) や、 CF2 = CFORf 3OCF = CF2で表されるペル フルォロジビニルエーテル (Rf 3は、 直鎖又は分岐構造を有するエーテル結合 性酸素原子を有していてもよいペルフルォロアルキレン基。 ) が特に好ましい。
Figure imgf000018_0001
前者のモノマーの具体例としては、 下記モノマーが挙げられる。
Figure imgf000019_0001
後者のモノマーの具体例としては下記モノマーが挙げられる。 ただし、 式中 h 、 kは 2〜8の整数であり、 iと jはそれぞれ独立に 0〜5の整数で i + j≥ 1 である。
CF2=CFOCF=CF2
CF2 = CFO (CF2) hOCF = CF2
C F 2 = C F [O C F 2 C F (C F 3)] i 0(C F 2)k[0 C F (C F 3)C F 2] j O C F = C F 2
さらに、 前述のコモノマーを加えて共重合した、 架橋構造を有するポリマーと してもよい。 この場合、 好適な AR値は前述した通りである。 分子量は 3次元網 目構造が生成するため大きな値となり、 特定困難である。
架橋した電解質材料を合成する場合には、 使用するモノマーは常圧下、 重合温 度で液体のものが取り扱い性が良好なので好ましい。 架橋した電解質膜は、 重合 と同時に膜状に成形するのが好ましい。
本発明の電解質材料は、 ホモポリマーやランダム共重合体に限定されず、 ダラ フト共重合体又はブロック共重合体であってもよい。 グラフト共重合体の場合に は、 ポリエチレンゃテトラフルォロエチレン一エチレン共重合体 (ETFE) 、 ポリテトラフルォロエチレン (PTFE) 、 テトラフルォロエチレン一へキサフ ルォロプロペン共重合体 (FEP) 、 テトラフルォロエチレン一ペルフルォロ ( アルキルビニルエーテル) 共重合体 (PFA) 等の基材に、 ァ線ゃ電子線等の放 射線を照射してラジカルを発生させ、 本イオン性基又は本イオン性基に変換しう る基を有しかつラジカル重合反応性を有する炭素一炭素二重結合を有し、 該二重 結合の両端の炭素原子の一方が環構造を構成する脂環式含フッ素モノマーの 1種 以上と接触させることにより該モノマーを重合して、 グラフトポリマーを得るこ とができる。 グラフト重合時には、 前述のコモノマ一を加えて共重合してもよい また、 分子内に複数のラジカル重合反応性を有する不飽和結合を持つモノマー と共重合して架橋してもよい。
ブロック共重合体は、 例えば F (CF2) 4 I、 I (CF2) 41等のヨウ素化 合物とラジカル開始源の存在下で上述の脂環式含フッ素モノマーの 1種以上を重 合し、 次いで他のモノマーを重合することにより得ることができる。 他のモノマ —としては前述の官能基を有しないコモノマーを例示することができる。 重合の 順番は逆であってもよい。 それぞれのセグメントの重合は単独重合でも共重合で もよい。 本発明で用いられるイオン性基又は当該イオン性基に変換しうる基と環 構造を有するモノマーの重合は、 これらの基を有しない他のコモノマーとの共重 合であってもよい。
本発明の固体高分子電解質材料における本イオン性基は、 一 (so2x (SO
2Rf) a) —M +で表わされるが、 Xと aの定義から具体的には、 スルホン酸基 等の一 S03— M+基、 スルホンイミド基 (一 S02N— M+S〇2Rf) 又はスルホ ンメチド基 (一 S〇2C— M+ (S02Rf) 2) が好ましい。 ここで M +は H +、 ― 価の金属カチオン、 又は 1以上の水素原子が炭化水素基と置換されていてもよい アンモニゥムイオンであり、 Rfは、 エーテル結合性酸素原子を含んでいてもよ い直鎖又は分岐状のペルフルォロアルキル基であり、 スルホンメチド基の場合 2 つの R fは同じであっても異なっていてもよい。 ここで Rfはェ一テル結合性酸 素原子を含んでもよい直鎖状又は分岐のペルフルォロアルキル基であるが、 その 炭素数は 1〜 8であることが好ましく特に 1〜 6であることが好ましい。 具体的 にはペルフルォロメチル基、 ペルフルォロェチル基等が好ましい。
本発明の固体高分子電解質材料にスルホンイミド基を含有させることは比較的 容易である。 化合物 (3) の不飽和結合に塩素を付加し、 一 S02F基をスルホ ンイミド基に変換した後、 脱塩素反応を行うことにより、 スルホンイミド基含有 のモノマーを合成できる。 したがつてこのモノマーを用いて重合すればよい。 一 S02F基は、 Rf S02NHMa (Maはアルカリ金属、 又は 1〜4級のァ ンモニゥム) との反応、 水酸化アルカリ、 アルカリ金属炭酸塩、 MaF (Maは 前記と同様) 、 アンモニア又は 1〜3級ァミンの存在下での Rf S02NH2との 反応、 又は Rf S〇2NMaS i (CH3) 3 (Maは前記と同様) との反応により 、 スルホンイミド基に変換することができる。 これらの反応では、 スルホンィミ ド基は使用した塩基由来の塩型で得られる。 化合物 (4) を用いた場合の反応例 を以下に示す。
Figure imgf000021_0001
塩型のスルホンイミド基は、 硫酸、 硝酸、 塩酸などの酸で処理することにより 、 酸型に変換することが可能である。
この反応は、 前述のように化合物 (4) の塩素付加物に対して適用可能である が、 化合物 (4) を重合してフルォロスルホニル基 (_S〇2F基) を有するポ リマーを作製し、 このポリマ一の一 S02F基に対して同様の処理を行うことに よってもスルホンィミド基を有するポリマーを得ることができる。
また、 本発明においては、 一 S02F基を有する共重合体を塩基の存在下で加 水分解、 又は加水分解後酸型化処理することにより、 スルホン酸塩基又はスルホ ン酸基を含有するポリマーを製造することができる。
さらに、 耐久性改善等のため、 本発明の固体高分子電解質材料を構成するポリ マ一は、 重合した後にフッ素ガスでフッ素化したり、 空気及び/又は水の存在下 で加熱処理することにより、 ポリマ一末端等の不安定部位を安定化してもよい。 上記の加水分解においては、 アル力リ金属水酸化物又はアル力リ金属炭酸塩を 用いるのが好ましい。 酸処理においては、 塩酸、 硝酸又は硫酸を用いるのが好ま しい。 これにより、 フルォロスルホニル基はスルホン酸塩基 (一 S〇3Mb基: ここで、 Mbは対イオンを示す。 ) に変換されうる。 ここで Mbとしては、 アル カリ金属イオン又は N ·'— R 15 R 16 R 17 R 18 (ただし、 R15〜R18はそれぞれ独 立に、 水素原子、 又は、 炭素数 1〜5のアルキル基。 ) であるのが好ましい。 ァ ルカリ金属イオンとしては、 ナトリウムイオン、 力リゥムイオン又はリチウムィ オンが好ましい。 また、 N+R15R16R17R18は N+ (CH3) 4、 N+ (CH2 CH3) 4、 N+ (CH2CH2CH3) 4、 N+ (CH2 CH2 CH2 CH3) 4も好ま しい。
スルホン酸塩基における Mbがアルカリ金属イオンである場合のポリマーは、 フルォロスルホニル基含有重合体にアルカリ金属水酸化物を反応させることによ り得ることが好ましい。 またスルホン酸塩基における Mbが N + R 15 R 16 R 17 R 18である場合のポリマ一は、 フルォロスルホニル基含有重合体に N + R 15 R 16 R17R18 (OH) —を反応させることにより得ることもできるが、 スルホン酸 基含有重合体に N + R15R16R17R18 (OH) —を反応させて得るのが好まし い。
さらに、 スルホン酸塩基を含有するポリマ一は、 Mbとは異なりかつ対イオン となりうるイオンを含む水溶液に浸漬することにより、 当該対イオンに変換する ことができる。
また、 スルホン酸塩基 (一 S03Mb基) は、 塩酸、 硝酸又は硫酸等の酸で処 理することによりスルホン酸基 (一 S03H基) に変換することができる。 この ようにして得られるイオン性基含有ポリマーは、 必要に応じて過酸化水素水で処 理してもよい。
これらの基の変換方法ゃポリマ一処理は、 公知の方法及び条件にしたがつて実 施できる。
本発明の固体高分子電解質材料は、 膜状に成形して固体高分子電解質膜として 使用できる。 膜状にする成形方法は特に限定されず、 固体高分子電解質材料を溶 媒に溶解又は分散させて得られる液を用いてキャスト製膜してもよいし、 押し出 し成形、 延伸等の操作を経て得てもよい。 押し出し成形には、 溶融流動性に優れ る点から、 固体高分子電解質材料の前駆体である一 S 0 2 F基を有するポリマー を用い、 成形後加水分解により固体高分子電解質膜に変換することが好ましい。 また、 固体高分子電解質膜は、 ポリテトラフルォロエチレン (P T F E ) 、 テ トラフルォロエチレン一へキサフルォロプロピレン共重合体 (F E P ) 、 テトラ フルォロエチレン一ペルフルォロ (アルコキシビニルエーテル) 共重合体 ( P F A) 、 ポリエチレン、 ポリプロピレン等の多孔体、 繊維、 織布、 不織布等で補強 されていてもよい。
電解質膜が架橋されたポリマーからなる場合には、 例えば以下のようにして作 製できる。 まず、 本イオン性基又はその前駆体基を有する脂環式含フッ素モノマ —の 1種以上、 分子内に 2以上のラジカル重合性の二重結合を有する含フッ素モ ノマーの 1種以上及び必要に応じて前述のコモノマーを混合し、 これに重合開始 剤を添加した液状組成物を調製する。 次に、 これを必要に応じて短時間加熱して 適度に粘度を上昇させる。 該液状組成物を基材上に塗布して液膜状にした後、 加 熱、 重合することにより製膜する。 塗布して製膜する際に、 上述の補強材と複合 化することもできる。
本発明の固体高分子電解質材料は、 水酸基を有する有機溶媒に良好に溶解又は 分散することができる。 水酸基を有する有機溶媒は特に限定されないが、 アルコ ール性の水酸基を有する有機溶媒が好ましい。
アルコール性の水酸基を有する有機溶媒としては、 例えば、 メタノール、 エタ ノール、 1—プロパノール、 2—プロパノール、 2 , 2, 2—トリフルォロェ夕 ノール、 2 , 2 , 3 , 3 , 3—ペン夕フルオロー 1—プロパノール、 2 , 2 , 3 , 3—テトラフルオロー 1—プロパノール、 4, 4 , 5, 5, 5一ペン夕フルォ ロー 1—ペン夕ノール、 1, 1, 1 , 3, 3 , 3—へキサフルオロー 2—プロパ ノール、 3, 3 , 3 _トリフルオロー 1 一プロパノール、 3 , 3 , 4 , 4 , 5 , 5 , 6, 6, 6ーノナフルオロー 1—へキサノール、 3, 3 , 4 , 4 , 5, 5 , 6 , 6 , 7 , 7 , 8, 8 , 8—トリデカフルオロー 1 _ォク夕ノール等が挙げら れる。 また、 アルコール以外の有機溶媒としては、 酢酸等の力ルポキシル基を有 する有機溶媒も使用できる。
ここで、 水酸基を有する有機溶媒としては上記の溶媒を単独で用いてもよく、 2種以上を混合して用いてもよく、 さらに、 水又は他の含フッ素溶媒等と混合し て用いてもよい。 他の含フッ素溶媒としては、 先に述べた固体高分子電解質材料 の製造における溶液重合反応において、 好ましい含フッ素溶媒として例示した含 フッ素溶媒が挙げられる。 なお、 水酸基を有する有機溶媒を水又は他の含フッ素 溶媒との混合溶媒として使用する場合、 水酸基を有する有機溶媒の含有量は溶媒 全質量に対して 1 0 %以上であることが好ましく、 2 0 %以上であることがより 好ましい。
また、 この場合、 はじめから固体高分子電解質材料を混合溶媒中に溶解又は分 散させてもよいが、 固体高分子電解質材料を先ず水酸基を有する有機溶媒に溶解 又は分散させた後、 水又は他の含フッ素溶媒を混合してもよい。 さらに、 このよ うな溶媒に対する固体高分子電解質材料の溶解又は分散は、 大気圧下又はォート クレープなどで密閉加圧した条件のもとで、 0〜2 5 0 °Cの温度範囲で行うこと が好ましく、 2 0〜1 5 0 °Cの範囲で行うことがより好ましい。 水よりも沸点が 低い有機溶媒を含有する場合には、 溶媒を留去した後に、 又は留去しながら水添 加を行うことにより溶媒を水へ置換することも可能である。
このような溶媒を用いて得られる本発明の液状組成物は、 固体高分子電解質材 料からなるキャスト膜を作製したり、 固体高分子型燃料電池の触媒層を作製する 際に有用である。 触媒層を作製する場合は、 液状組成物に触媒を混合し得られた 液を塗工すればよい。 このような目的に使用される液体組成物中の固体高分子電 解質材料の含有量は、 液状組成物全質量に対して 1〜5 0 %であることが好まし く、 3〜3 0 %であることがより好ましい。 1 %未満であると、 膜や触媒層を作 製する際に所望の厚さとするためには塗工回数を多くする必要が生じ、 また溶媒 の除去にも時間が長くなる等、 製造作業を効率よく行いにくい。 一方、 5 0 %を 超えると液状組成物の粘度が高くなりすぎて取扱いにくくなりやすい。
さらに、 液状組成物には本発明の固体高分子電解質材料に加え、 これとは別の 固体高分子電解質材料となる樹脂を含有させることもできる。 この場合、 液状組 成物を原料として得られる触媒層のガス拡散性及び撥水性を十分に確保する観点 から、 液状組成物中の本発明の固体高分子電解質材料の含有量は液状組成物中の 全ての固体高分子電解質材料の総質量に対して 2 0 %以上であることが好ましく 、 5 0 %以上であることがより好ましい。
本発明の固体高分子電解質材料を固体高分子型燃料電池の材料として膜や触媒 層に適用する場合、 通常イオン性基は強酸性基、 すなわちイオン性基の対イオン が H +の状態で使用される。
本発明の固体高分子電解質材料を固体高分子型燃料電池のアノード又はカソー ドの触媒層に電解質として使用する場合について、 触媒層の作製方法と当該触媒 層を有する膜電極接合体の作製方法の一例を説明する。 例えば、 触媒層は、 一 S 0 3 H基を有する本発明の固体高分子電解質材料を、 分子中に水酸基を有する溶 媒に溶解又は分散させた液状組成物に、 触媒を混合して調製した触媒層形成用の 塗工液を用いて形成することができる。 ここで触媒は白金又は白金合金が担持さ れたカーボンブラック等の微粒子が好ましい。 塗工液は高分子電解質膜、 ガス拡 散層、 又は別途用意した支持板上に厚さが均一になるように塗工し、 溶媒を乾燥 除去後、 必要に応じてホットプレスを施すなどして触媒層を作製できる。
このようにして得られる触媒層はガス拡散性及び撥水性に優れ、 特に力ソード に好適である。 特に、 ポリマー自体の軟化温度が 1 0 0 °C以上である固体高分子 電解質材料を含む液状組成物を用いて触媒層.を作製すると、 触媒層のガス拡散性 が向上する。 固体高分子電解質材料の軟化温度が 1 0 0で以上であると、 塗工液 から溶媒が徐々に揮発する際に固体高分子電解質材料が収縮しにくいため、 固体 高分子電解質材料の内部又は固体高分子電解質材料により被覆された触媒粒子の 凝集体間に適度な大きさの細孔が形成されるためと考えられる。
本発明の固体高分子電解質材料は力ソード、 アノード両方の触媒層に含まれて もよいが、 一方のみに含有させ、 他方は従来の固体高分子電解質材料を所定の溶 媒に溶解又は分散させた液を用いて作製してもよい。
力ソードの触媒層及びァノードの触媒層は、 高分子電解質膜とガス拡散層との 間に配置されることにより、 固体高分子型燃料電池用膜電極接合体を作製できる 。 ここで、 触媒層を高分子電解質膜上に形成した場合には、 例えば、 別途用意し たガス拡散層を触媒層上に隣接して配置又は接合すればよい。 また、 触媒層をガ ス拡散層上に形成した場合には、 別途用意した高分子電解質膜を力ソードの触媒 層とアノードの触媒層の間に配置し好ましくは接合する。 また、 触媒層を支持板 (支持フィルム) 上に形成した場合には、 例えば、 別途用意した高分子電解質膜 に転写し、 その後支持板を剥離して別途用意したガス拡散層を触媒層上に隣接し て配置する。 ここでガス拡散層は、 カーボンペーパー等の導電性多孔質体を用い 、 触媒層にガスを均一に供給する機能と集電体としての機能の両方を備える。 高分子電解質膜と触媒層、 触媒層とガス拡散層の接合は、 例えば、 ホットプレ スゃロールプレスにより行ってもよい。
本発明の固体高分子電解質材料は、 水素 Z酸素、 水素 Z空気型の燃料電池のみ ならず、 直接メタノール型燃料電池 (D M F C ) にも使用することができる。 D M F Cの燃料に用いるメタノールやメタノール水溶液は、 液フィードであっても ガスフィードであってもよい。
また本発明の固体高分子電解質材料は、 食塩電解や燃料電池用途に限定されず 、 種々の用途に使用できる。 本発明において固体高分子電解質材料とは、 イオン 性基の機能を活かして使用される固体高分子材料のことをいい、 イオン性基はィ オン伝導機能、 イオン交換機能、 吸水機能等を有し、 強酸基を含有する場合には 酸触媒作用を有する。 水電解、 過酸化水素製造、 オゾン製造、 廃酸回収等に使用 するプロトン選択透過膜、 レドックスフ口一電池の隔膜、 脱塩又は製塩に使用す る電気透析用陽イオン交換膜等にも使用できる。 また、 リチウム一次電池、 リチ ゥム二次電池、 リチウムイオン二次電池のポリマー電解質、 固体酸触媒、 陽ィォ ン交換樹脂、 修飾電極を用いたセンサー、 空気中の微量イオンを除去するための イオン交換フィル夕ゃァクチユエ一夕一、 エレクトロクロミック表示素子等にも 使用できる。 すなわち、 各種の電気化学プロセスの材料として使用できる。 また、 本発明の固体高分子電解質材料は、 酸、 塩基、 及び塩類の分離精製に用 いる拡散透析用の膜、 蛋白質分離のための荷電型多孔膜 (荷電型逆浸透膜、 荷電 型限外ろ過膜、 荷電型ミクロろ過膜等) 、 除湿膜、 加湿膜等にも使用できる。 本発明の固体高分子電解質材料は、 含フッ素ボリマーからなるため屈折率が小 さい。 そのため、 イオン性基を有し、 イオン交換容量の大きい本発明の高分子電 解質材料が溶解又は分散した液を塗工、 乾燥して薄膜を形成させると、 水やアル カリ水溶液で除去可能な反射防止膜として活用することもできる。 この場合該液 の溶媒は水及び/又は有機溶媒が使用できるが水が好ましい。 半導体デバイス等 の製造工程におけるレジスト上に塗布する反射防止膜への活用も可能である。 さ らに、 PTFE多孔体からなるフィルターへの親水性付与剤として使用すること もできる。
以下に本発明を実施例により具体的に説明するが、 本発明はこれらに限定され ない。
なお、 以下において 1, 1, 2—トリクロ口トリフルォロェタンを R_ 1 1 3 と記し、 CC 1 F2CF2CHC 1 Fを HCFC 225 c bと記し、 ガスクロマ トグラフィーを GCと、 サイズ排除クロマトグラフィーを GP Cと、 数平均分子 量を Mnと、 重量平均分子量を Mwと記す。
1 9 F— NMRを用いた定量は、 ペルフルォロベンゼンを内部標準とした。 G Cによる定量値はピーク面積比から求めた値である。 GPCは東ソ一社製、 装置 名: SEC HLC— 8020を用い、 移動相は HC F C 225 c b/へキサフ ルォロイソプロピルアルコール (99/1体積比) を、 カラムはポリマーラポラ トリ一社製の P l g e l 5 a M I XED— Cを 2本、 分子量換算用標準試料 はポリメタクリル酸メチルを用いた。
[化合物 (4) の合成]
先に示した合成スキームに基づき、 化合物 (A 1) 〜 (A5) の合成を経て化 合物 (4) を合成した。 化合物 (A 1) は、 J . F l u o r i n e C h em. , 46, 39 ( 1 990 ) に記載される方法で合成した。
Figure imgf000028_0001
(Al) (A2)
Figure imgf000028_0002
ぐ化合物 (A 2) の合成 >
CH3 C〇CH2 OH (1 50. 0 g) とトリェチルァミン ( 225. 4 g) をフラスコに入れ、 氷浴下で撹拌した。 窒素ガスで希釈した CF3 CF2 COF (377. 5 g) を、 内温を 10 以下に保ちながら 4時間かけて吹き込んだ。 次に、 室温で 2時間撹拌して、 氷水 500mLに加えた。
得られた粗液を分液し、 フルォロカーボン層を得た。 さらにフルォロカーボン 層を水 (250mL) で 2回洗浄し、 硫酸マグネシウムで乾燥した。 さらに、 ろ 過して粗液を得た。 ろ液を減圧蒸留して化合物 (A2) (1 67. 3 g) を 47 . 1〜47. 9°C/0. 7 k P a (絶対圧) の留分として得た。 留分の GCによ る純度は、 99 %であった。
ぐ化合物 (A3) の合成 >
乾燥雰囲気下で三フッ化ホウ素ェ一テラート (32. 0 1 g) と脱水アセトン (4. 5 L) を混合し、 化合物 (A 1) (1 198. l g) を脱水アセトン (1 . 2L) で希釈して上記混合物に滴下し、 1時間加熱還流した。 アセトンを約半 分留去した後、 化合物 (A2) (103 1. 41 g) をトルエン (2 L) で希釈 して反応系に加え、 65で以下で加熱しながら減圧下で残りのアセトンを留去し た。 反応混合物を飽和炭酸水素ナトリゥム水溶液と氷の混合物に注ぎ、 t一プチ ルメチルエーテル (2. 9 L) で 3回に分けて抽出し、 抽出液を硫酸マグネシゥ ムで乾燥し、 乾燥剤を減圧濾過で除去し、 濾液を濃縮した。 残存物をシリカゲル カラムクロマ卜グラフィ (展開溶媒: HCFC 225 c bZn—へキサン 1 : 1 (体積比)の後、 HCFC 225 C bのみ) で精製して化合物 (A3) (1 78 . 95 g) を得た。 GC純度は 99 %であった。
<化合物 (A4) の合成 >
50 OmLのニッケル製オートクレーブに、 R— 1 13 (31 2 g) を加えて 撹拌し、 25°Cに保った。 ォ一トクレーブガス出口には、 20 に保持した冷却 器、 NaFペレット充填層、 及び— 1 0°Cに保持した冷却器を直列に設置した。 冷却器からは凝集した液をオートクレープに戻すための液体返送ラインを設置し た。
窒素ガスを 1. 0時間吹き込んだ後、 窒素ガスで 20 %に希釈したフッ素ガス (以下、 希釈フッ素ガスと記す。 ) を、 流速 12. 72 LZhで 1時間吹き込ん だ。 つぎに、 フッ素ガスを同じ流速で吹き込みながら、 化合物 (A3) (20. 0 g) を R— 1 13 (200 g) に溶解した溶液を 7. 6時間かけて注入した。 次に、 希釈フッ素ガスを同じ流速で吹き込み、 かつ、 反応器圧力を 0. 1 5M P aに保ちながら、 ベンゼン濃度が 0. O l gZmLの R— 1 13溶液を 25で から 40°Cにまで昇温しながら 23mL注入した。 さらに、 オートクレープのべ ンゼン注入口を閉め、 反応器圧力を 0. 1 5MP aに、 反応器内温度を 40°Cに 保ち、 1. 0時間撹拌を続けた。 ベンゼンの注入総量は 0. 22 g、 R— 1 1 3 の注入総量は 23mLであった。 さらに、 窒素ガスを 1. 0時間吹き込んだ。 生 成物を19 F— N M Rで分析した結果、 化合物 (A4) の生成が認められ、 収率 は 98 %であった。
ぐ化合物 (A5) の合成 > 化合物 (A4) (1 0. 6 g) を、 充分に乾燥させた KF粉末 (0. 1 8 g) と共にフラスコに仕込み、 室温で 24時間撹拌した。 冷却後、 フラスコより回収 したサンプル (8. 8 g) をろ過し、 液状サンプルを回収した。 NMR、 及び G C一 MSにより、 主生成物が化合物 (A5) であることを確認した。 収率は 7 7 . 8 %であった。
上記と同様にして化合物 (A4) 7 06 gから化合物 (A5) を主成分とする 反応液 53 1 gを得た。 減圧蒸留により純度 9 9 %の化合物 (A 5) 48 1 gを 得た。 留出温度は 7 1— 7 3 ノ5. 3 kP aであった。
<化合物 (4) の合成 >
ガラスビーズが充填された内径 1/2インチのステンレス反応管 (流動層型) を 3 50°Cに加熱し、 加熱された化合物 (A5) と窒素の混合ガス (モル比 1 : 9) を流通させた。 滞留時間は 1 0秒、 線速度は 2. 5 cm/秒であった。 化合 物 (A5) の使用量は 6 8. 1 gであった。 反応管から出てきたガスを冷却する ことにより化合物 (4) を主成分とする液を得た。 反応収率は 5 2 %であった。 次に反応液にメタノールを加え、 未反応の化合物 (A5) をメチルエステル化 した。 水洗後、 蒸留により化合物 (4) を精製した。 沸点は 48 °C/ 2. 7 kP aであった。
[ポリマーの合成]
[例 1]
化合物 (4) の単独重合体を以下のとおり得た。
化合物 (4) (1. 2 5 g) とペルフルォロ過酸化ベンゾィル (4. 5mg) をガラス管に入れ、 液体窒素で固めた後真空下で封管した。 7 0°〇で45時間保 持した後、 生成したポリマーを取り出し、 n_C6F13Hに溶解してへキサンで 再沈殿させ、 ろ過後へキサンで洗浄し、 8 0°Cで 1 6時間減圧乾燥した。 化合物 (4) の単独重合体の収量は 0. 82 3 g (収率 6 6 %) であった。 GPCによ る Mnは 6. 5 X 1 04、 MWは 9. 8 X 1 04であった。 D S Cで測定したガラ ス転移温度は 9 2 であった。 屈折率は 1. 3 5であった。
さらに、 ろ液を減圧下濃縮した後、 再沈殿及び洗浄して、 低沸点成分を減圧下 で留去した。 さらに 8 0°Cで 1 6時間減圧乾燥した結果、 化合物 (4) の単独重 合体からなる粉状ポリマ一 (0. 0 7 2 g) を回収した。 先に得たポリマーと合 わせた収率は 7 1 %であった。
先に得たポリマーを 1 0 %K 0 Η水溶液中で一晩加水分解したところ、 ボリマ —はこの水溶液中に溶解していた。
[比較例 1 ]
C F2 = C F〇C F2C F (C F3) 〇C F2C F2 S〇2F ( 1. 2 5 g) とべ ルフルォ口過酸化べンゾィル (4. 5mg) をガラス管に入れて、 液体窒素で固 めた後、 真空下で封管した。 7 Ot:で 4 5時間反応させた後も、 無色透明の液体 のままであった。 反応液を丸底フラスコに移し、 HC F C 2 2 5 c bでガラス管 壁を洗浄して、 洗液を前記丸底フラスコに添加した。 減圧下で低沸点成分を留去 して、 8 0°Cで 1 6時間減圧乾燥した。 水飴状のオリゴマー (0. 3 2 8 g) を 得た。 ポリマー収率は 2 6 %。 GP Cによる Mnは 3. 7 X 1 03、 Mwは 4. 7 X 1 03であった。 この結果から、 CF2 = C FOC F2C F (C F3) OC F2C F2 S 02Fに比べ化合物 (4) は重合反応性が高いことが確認された。
[例 2 ]
化合物 (4) とペルフルォロ (2—メチレン— 4—メチル一 1, 3—ジォキソ ラン) とを以下のとおり共重合した後、 加水分解、 酸型化した。
容積 0. 1 Lのステンレス製ォ一トクレーブに、 化合物 (4) 7. 9 0 g、 ぺ ルフルォロ (2—メチレン一 4—メチル一 1 , 3ージォキソラン) 9. 6 0 g、 HC F C 2 2 5 c b l 0 9. 7 g、 ペルフルォロ過酸化ベンゾィル 2 5 5mgを 入れ、 液体窒素で冷却して脱気した。 7 0^で 5時間反応させた後、 へキサンに 投入することでポリマーを沈殿させた。 へキサンで洗浄した後、 1 0 0 で真空 乾燥することにより、 白色のポリマ一 1 4. 0 gを得た。
元素分析で求めた硫黄の含有量から得られた上記ポリマーのイオン交換容量 A Rは、 1. 1 3me d/gであった。 ペルフルォロ ( 2ーブチルテトラヒドロフ ラン) を溶媒に用いて測定した 3 0でにおける固有粘度は 0. 1 6 d l /gであ つた。
このポリマー 1 0 gにメタノール 4 0 g、 1 0 %KOH水溶液 1 6 0 gを添加 し、 1週間 6 0^に保持することによりポリマー中のフルォロスルホニル基を一 S03K基に変換した。 ろ過後、 イオン交換水に浸漬し、 60°Cで一晩保持した 。 このろ過 '水浸潢の操作を 3回行った。 ろ過後、 lmo 1 ZLの塩酸に 60°C で一晚浸漬した。 このろ過 '塩酸浸漬の操作を 4回行った。 次いで、 前記と同様 のろ過 ·水浸漬の操作を 3回行った。 ろ液が中性であることを確認し、 共重合体 を空気下 8 Ot:のオープン中で一晩乾燥した後、 さらに 80°Cで一晩真空乾燥し 、 一 S 03K基をスルホン酸基に変換した。
得られたポリマー 1 0質量部に対して、 エタノール 90質量部を添加し、 60 °Cに加熱し、 孔径 5 ^の PVd Fフィルターでろ過して、 濃度 10質量%の無色 透明のェタノール溶液を得た。
[例 3]
化合物 (4) とペルフルォロ (2—メチレン一 4—メチルー 1, 3—ジォキソ ラン) とを以下のとおり共重合した後、 加水分解、 酸型化した。
容積 1 Lのステンレス製ォ一トクレーブに、 化合物 (4) 4. 36 g、 ぺ ルフルォロ (2—メチレン一 4—メチルー 1 , 3—ジォキソラン) 7. 31 g、 HCFC225 c b 72. 59 g、 ペルフルォロ過酸化ベンゾィル 1 70 mgを 入れ、 液体窒素で冷却して脱気した。 70 で 5時間反応した後、 例 2と同様に ポリマ一凝集、 洗浄及び乾燥を行い、 白色のポリマー 9. 35 gを得た。
元素分析で求めた硫黄の含有量から得られたポリマ一のイオン交換容量 ARは 、 0. 97me dZgであった。 ペルフルォロ ( 2—プチルテ卜ラヒドロフラン ) を溶媒に用いて測定した 30°Cにおける固有粘度は 0. 1 6 d 1 / であった このポリマーを例 2と同様に加水分解、 酸型化した後、 10質量%の無色透明 のェ夕ノール溶液を調製した。
上記ポリマーのエタノール溶液を使用してキャスト膜を作製し、 先に述べた 1 mm φ石英プローブによるべネトレーシヨン法によりポリマーの軟化温度を測定 した。 先ず、 上記共重合体のエタノール溶液 10質量部とブ夕ノール 2質量部を 混合し、 得られた溶液を用いて室温でキャスト製膜し、 160°Cにおいて 30分 乾燥させることにより厚さ約 200 のキャスト膜を得た。 次に、 得られたキ ヤスト膜を TMA (マックサイエンス社製) にセットした。 そして昇温速度 5°C /m i nでキャスト膜の温度を昇温させながら、 キャスト膜と Ιππτιφ石英プロ —ブとの接触部に対して 10 gの荷重をかけて、 キャス卜膜の厚みの変化を測定 した。 そして、 キャスト膜に対するプロ一プのめり込みにより膜の厚みが急激に 減少しはじめる温度を軟化点として計測した。 このポリマーの軟化温度は 1 50 °Cであった。
[例 4]
化合物 (4) とペルフルォロ (2—メチレン一 4ーメチルー 1, 3—ジォキソ ラン) とを以下のとおり共重合した後、 加水分解、 酸型化した。
容積 0. 1 Lのステンレス製ォ一卜クレープに、 化合物 (4) 5. 44 g、 ぺ ルフルォロ (2—メチレン一 4ーメチルー 1, 3—ジォキソラン) 6. 23 g、 HCFC 225 c b 72. 65 g、 ペルフルォロ過酸化ベンゾィル 170 m gを 入れ、 液体窒素で冷却して脱気した。 70°Cで 5時間反応した後、 例 2と同様に ポリマー凝集、 洗浄及び乾燥を行い、 白色のポリマー 9. l l gを得た。
元素分析で求めた硫黄の含有量から得られたポリマーのイオン交換容量 AR は 、 1. 27me dZgであった。 ペルフルォロ (2—ブチルテトラヒドロフラン ) を溶媒に用いて測定した 30°Cにおける固有粘度は 0. 14 d l /gであった このポリマ一を例 2と同様に加水分解、 酸型化した後 10質量%の無色透明の エタノール溶液を調製した。
例 3と同様にしてキャストフィルムを作製し、 軟化温度を測定したところ 1 5 5°Cであった。
[例 5]
化合物 (4) とペルフルォロ (2—メチレン一 4一メチル _ 1 , 3—ジォキソ ラン) とを以下のとおり共重合した後、 加水分解、 酸型化した。
容積 0. 1 Lのステンレス製オートクレープに、 化合物 (4) 9. 99 g、 ぺ ルフルォロ (2—メチレン一 4ーメチルー 1, 3—ジォキソラン) 1 1. 44 g 、 HCFC 225 c b 28. 58 g、 ペルフルォロ過酸化ベンゾィル 10◦ m g を入れ、 液体窒素で冷却して脱気した。 70°Cで 5時間反応した後、 例 2と同様 にポリマー凝集、 洗浄及び乾燥を行い、 白色のポリマ一 14. 1 5 gを得た。 元素分析で求めた硫黄の含有量から得られたポリマーのイオン交換容量 AR は 、 1 · 25me q/gであった。 ペルフルォロ ( 2―プチルテトラヒドロフラン ) を溶媒に用いて測定した 30 °Cにおける固有粘度は 0 - 46 d l /gであった このポリマーを例 2と同様に加水分解、 酸型化した後 10質量%の無色透明の エタノール溶液を調製した。
[例 6]
化合物 (4) とペルフルォロ (2, 2—ジメチルー 1, 3—ジォキソ一ル) と を以下のとおり共重合した後、 加水分解、 酸型化した。
容積 0. 1 Lのステンレス製オートクレープに、 化合物 (4) 6. 18 g、 ぺ ルフルォロ (2, 2—ジメチルー 1, 3—ジォキソール) 14. 23 g、 HCF C 225 c b 29. 6 1 g、 ペルフルォロ過酸化ベンゾィル 10 Omgを入れ、 液体窒素で冷却して脱気した。 65 で 5時間反応した後、 例 2と同様にポリマ —凝集、 洗浄及び乾燥を行い、 白色のポリマー 7. 45 gを得た。
元素分析で求めた硫黄の含有量から得られたポリマ一のイオン交換容量 AR は 、 1. 48me dZgであった。 ペルフルォロ ( 2—ブチルテトラヒドロフラン ) を溶媒に用いて測定した 30°Cにおける固有粘度は 0. 23 d lZgであった このポリマ一を例 2と同様に加水分解、 酸型化した後 10質量%の無色透明の エタノール溶液を調製した。
[例 7]
化合物 (4) とテトラフルォロエチレンとを以下のとおり共重合、 加水分解、 酸型化した。
容積 0. 1 Lのステンレス製オートクレープに、 化合物 (4) 8. 48 g、 1 7mgのメタノールを含有する HCFC 225 c b 76. 3 g、 ペルフルォロ過 酸化ベンゾィル 1 7 Omgを入れ、 液体窒素で冷却して脱気した。 テトラフルォ 口エチレン 1 1. 3 gを導入した後、 70°Cで 50分反応を行った。 この間ゲ一 ジ圧力は 0. 97MP aから 0. 43 MP aに低下した。 冷却後、 系内のガスを パージし、 へキサンに投入することでポリマーを沈殿させた。 へキサンで洗浄し た後、 100°Cで真空乾燥することにより、 白色のポリマー 14. l gを得た。 元素分析で求めた硫黄の含有量から得られたポリマーのイオン交換容量 ARは 、 1. 1 2 m e Q Z gであった。
次に、 このポリマーの容量流速を測定した。 本発明において容量流速とは、 長 さ lmm、 内径 lmmのノズルを用い、 30 k g / c m2の押出し圧力の条件で 樹脂の溶融押出しを行った際の押出し量であって、 単位は mm3/秒で表される 。 このポリマーの 300°Cにおける容量流速をフローテスタ CFT— 50 OA ( 島津製作所製) を用いて測定したところ 34mm3/秒であった。
このポリマーを 300°Cで加圧プレスし、 厚さ約 100 mのフィルムを作製 した。 このフィルムを DMS〇 30 %、 KOH 1 1 %、 水 59%からなる液に 9 0 で16時間浸漬してフルォロスルホニル基を一 SO 3K基に変換した。 水洗 後、 lmo 1 /L硫酸に浸漬し、 水洗することにより、 一 S〇3K基をスルホン 酸基に変換し、 さらに乾燥した。
このフィルムに対し、 アイティ一計測社製動的粘弾性測定装置 DVA 200を 用いて、 試料幅 0. 5 c m、 つかみ間長 2 c m、 測定周波数 10 H z、 昇温速度 3 °C/分にて動的粘弾性の測定を行った。 弾性率が急激に低下し始める温度から 得られた軟化温度は 1 04 °Cであった。
25DC、 相対湿度 50 %において上記フィルムの機械強度を測定したところ、 破断強度は 19. 8MP a、 破断伸度は 1 16 %であり、 膜として十分な強度を 有していることが確認された。 なお、 フィルムの機械強度は、 フィルムを長さ 1 00 mm, 幅 10mm、 標線間距離 50 mmに切り出し、 チャック間初期距離 5 0mm、 引張速度 5 OmmZm i n、 25°C、 相対湿度 50 %において引張試験 を行って測定した。
[例 8]
化合物 (4) 90質量部と CF2 = CFOCF2CF2CF2CF2OCF (C F3) C F 2〇C F = C 2で表されるジビニルエーテル 1 0質量部の混合液にぺ ルフルォロ過酸化べンゾィル 3質量部を溶解し、 60°Cにて数分加熱して少し粘 度の高い溶液 Aを調製した。
ガラス板上にポリイミドフィルムを配置し、 その上にポリテトラフルォロェチ レン多孔体 (商品名: F l u o r o p o r e FP— 1 00、 日東電工製、 孔径 1 urn) を配置した。 この多孔体上に溶液 Aを塗布した後、 その上にポリイミド フィルムを重ね、 さらにガラス板を重ねた。 こうしてガラス板及びポリイミドフ イルムで挟まれた溶液 Aを含浸したボリテトラフルォロエチレン多孔体を、 ォー ブン中で 16時間 70°Cにて加熱し、 次いで、 90DCで 4時間加熱した。 ガラス 板とポリイミドフィルムを取り除くことにより、 化合物 (4) の架橋ポリマーが ポリテトラフルォロエチレン多孔体で補強された膜を作製した。
HC F C 225 c bに 40°Cで一晚浸漬し、 40 °Cでー晚真空乾燥した。 DM S〇30 %、 1:0111 1 %及び水59 % (質量比) からなる液に 90 °Cで 16時 間浸漬してフルォロスルホニル基を— S〇3K基に変換した。 水洗後、 lmo l ZL硫酸に浸漬し、 水洗することにより、 —S03K基をスルホン酸基に変換し 、 スルホン酸基を有する共重合体からなるフィルムを得た。
[比較例 2 ]
固体高分子型燃料電池の電極の触媒層の材料又は高分子電解質膜の材料として 従来より用いられている、 テトラフルォロェチレンZCF2=CFOCF2CF (CF3) OCF2CF2S〇2F共重合体を公知の方法により製造した。 得られ たポリマーの元素分析で求めた硫黄の含有量から得られたイオン交換容量 Ακは 、 1. lme ciZgであった。 例 7と同様に、 加水分解、 酸型化処理してフルォ ロスルホニル基をスルホン酸基に変換して得られたポリマーの軟化温度は 79°C であった。
次に、 加水分解、 酸型化する前のフルォロスルホニル基を有するポリマーを用 い、 例 7と同様に熱プレスにより厚さ約 1 00 mのフィルムを作製し、 例 7と 同様に加水分解、 酸型化処理を施して、 スルホン酸基を有する共重合体からなる フィルムを得た。
[含水率の測定]
例 2〜 4で得られたポリマーのエタノ一ル溶液からそれぞれキャス卜膜を作製 し、 1 60でで 30分熱処理を行った。 このキャスト膜を 90 のイオン交換水 に 16時間浸漬した後、 室温にて測定した含水率は、 それぞれ 62%、 40%、 146 %であった。 なお、 含水率は以下のとおり算出した。 すなわち、 90 のイオン交換水に浸 漬後の室温における質量を W1とし、 その後 80°Cで 16時間真空乾燥してから 測定した質量を W 2として、 含水率 AW%を式 (%) = (Wl - W2) /W 2 X 100により求めた。
次に例 7、 比較例 2でそれぞれ得られたスルホン酸基を有するボリマーからな るフィルムを、 90でのイオン交換水に 1 6時間浸演し、 上記同様に含水率を求 めたところ、 それぞれ 70%、 59%であった。
また、 例 7と比較例 2で得られたフィルムについて、 含水率とイオン交換水に 浸漬する温度との関係を調べた結果を図 1に示す。 また、 例 8で得られたフィル ムについても同様に、 含水率とイオン交換水に浸漬する温度との関係を比較例 2 と比較した結果を図 2に示す。 なお、 例 8の含水率の計算では、 膜重量から多孔 体重量を差し引いた値を用いた。 図 1、 2からわかるように、 本発明の固体高分 子電解質材料は、 高温においても含水率の温度依存性が小さく、 従来ポリマーに 比べて高温特性に優れている。
[酸素ガス溶解性の測定]
含水率の測定で使用したフィルムと同様の例 7と比較例 2のフィルム (酸型) に対し、 高真空圧力法 (ASTM D 1434— 7 5iv^¾) により酸素ガス透過 性を評価した。 使用した装置は理化精機工業社製、 ガス透過装置である。
例 7は、 酸素ガス透過係数 Pは 0. 69 X 1 0— 13cm3 (STP) · c m · cm-2 · s— 1 · P a— 酸素ガス拡散係数 Dは 0. 030 X 10— 6 cm2 ' s 一1、 酸素ガス溶解係数 Sは 2. 3 X 10一6 cm3 (S TP) ' cm— 3 ' P a一1 であった。 これに対して比較例 2は、 酸素ガス透過係数 Pは 0. 40 X 1 0一1 3 cm3 (S TP) · cm - cm—2 ' s— P a— 1, 酸素ガス拡散係数 Dは 0. 026 X 10— 6cm2 ' s— 酸素ガス溶解係数 Sは 1. 5 X 10-6cm3 (S TP) · cm— 3 · P a-1であった。
[固体高分子型燃料電池の作製 (実施例) ]
例 4で得られたポリマ一のェタノール溶液と、 白金をカーボンに 55質量%担 持させた担持触媒と水を混合し、 上記ポリマーと担持触媒 (ポリマーと力一ボン との質量比 4 : 5) がエタノールと水の混合分散媒 (質量比で 1 : 1) に分散し た固形分濃度 1 2質量%の分散液を得て、 これを力ソード触媒層形成用塗工液と した。 この塗工液を、 シリコーン系離型剤で表面を処理した厚さ 100 のポ リエチレンテレフ夕レー卜 (PET) フィルム上にダイコート法で塗工し、 80 °Cで乾燥して厚さ約 10 / m、 白金担持量約 0. 5mgZcm2 の力ソード触媒 層を形成した。
CF2 = CF2に基づく繰り返し単位と CF2 = CF—〇CF3CF (CF2) 一 OCF2CF2S03Hに基づく繰り返し単位とからなる AR1. lme q/g のポリマーのエタノール溶液、 白金 Zルテニウム合金 (質量比 5 : 4) をカーボ ンに担持させた担持触媒と水を混合し、 上記ポリマーと担持触媒 (質量比 27 : 73) がエタノールと水の混合分散媒 (質量比で 1 : 1) に分散した固形分濃度 1 2質量%の分散液を得て、 これをアノード触媒層形成用塗工液とした。 この塗 ェ液を用いて力ソード触媒層同様に PETフィルム上にダイコ一ト法で塗工し、 厚さ約 10 m、 白金担持量約 0. 5mgZcm2のアノード触媒層を形成した
CF2 = CF2に基づく繰り返し単位とCF2 = CF—〇CF3CF (CF2) —0 223〇311に基づく繰り返し単位とからなる厚さ 30 mのイオン 交換膜 (イオン交換容量: 1. lme q/g) の一方の面に、 上記力ソード触媒 層を、 他方の面に上記アノード触媒層を配置し、 転写法により膜の両面にカソ一 ド触媒層とアノード触媒層をそれぞれ転写し、 PETフィルムをはく離して、 有 効電極面積 25 cm2の膜 ·触媒層接合体を作製した。 転写は温度 130°Cで 3 MP aの圧力で行った。
次にカーボンブラックとポリテトラフルォロエチレン粒子とからなる厚さ約 1 0 mの導電層が表面に形成された、 厚さ約 300 のカーボンクロスを 2枚 用意してガス拡散層とし、 上記膜 ·触媒層接合体の両面に配置しガス拡散層つき の膜電極接合体を得た。 これを反応ガス供給流路を備えたセパレー夕にガスケッ 卜を周囲につけて挟み込み、 電池性能測定用セルを得た。 このセルのアノードに 水素ガス、 力ソードに空気をそれぞれ供給した。 セル温度 70°C、 水素ガスの利 用率 70 %、 空気の利用率 40 %とし、 水素及び空気は加湿して露点 70°Cのガ スとして供給した。 このサンプルを 2つ作製し、 発電試験を行った。 電流密度と セル電圧の関係の結果を表 1に示す。
[固体高分子型燃料電池の作製 (比較例) ]
例 4で得られたポリマーのかわりに C F 2 = C F 2に基づく繰り返し単位と C F2 = CF-OCF3CF (CF2) 一 OCF2CF2S03Hに基づく繰り返し単 位とからなる AR 1. 1 me q/gのポリマーを用いた以外は上記実施例と同様 にしてカソード触媒層を作製した。 この力ソード触媒層を用いた以外は上記実施 例と同様にして膜電極接合体を作製し、 発電試験を行った。 電流密度とセル電圧 の関係の結果を表 1に示す。
[表 1]
Figure imgf000039_0001
産業上の利用の可能性
本発明の固体高分子電解質材料は、 従来のものに比べ軟化温度が高く、 また高 温での含水率の温度依存性が低いので、 例えば固体高分子型燃料電池に使用した 場合においては、 当該燃料電池を従来より高温で作動させることが可能となる。 また、 本発明の固体高分子電解質材料は環構造を有しているため、 酸素ガス透 過性に優れている。 したがって、 特に固体高分子型燃料電池の力ソードの触媒層 に電解質として含有させると、 ガス拡散性に優れる。 さらに、 固体高分子電解質 材料を構成するポリマーにおける 1つのモノマ一単位が環構造とスルホン酸基と を同時に有しているため、 固体高分子電解質材料のイオン交換容量を高くして導 電性を高めることもできる。 したがって、 当該電解質材料を使用した燃料電池は 髙出力となり得る。

Claims

請求の範囲
1. ラジカル重合反応性を有する炭素一炭素二重結合を有し、 該二重結合の両 端の炭素原子の一方は環構造を構成する脂環式含フッ素モノマーに基づく繰り返 し単位を含むポリマーであって、 前記含フッ素モノマーは一 (S o2x (so2 Rf) a) 一 M +で表されるイオン性基 (式中、 M +は H +、 一価の金属カチオン、 又は 1以上の水素原子が炭化水素基と置換されていてもよいアンモニゥムイオン であり、 Rfは、 エーテル結合性酸素原子を含んでいてもよい直鎖又は分岐のぺ ルフルォロアルキル基であり、 Xは酸素原子、 窒素原子又は炭素原子であって、 Xが酸素原子の場合 a = 0であり、 Xが窒素原子の場合 a =1であり、 Xが炭素 原子の場合 a=2である。 ) を有するポリマーからなることを特徴とする固体高 分子電解質材料。
2. 前記ポリマーは、 非イオン性で環構造を有しラジカル重合性を有する含フ ッ素モノマーに基づく繰り返し単位、 非イオン性の環化重合性含フッ素モノマー に基づく繰り返し単位、 及びテトラフルォロエチレンに基づく繰り返し単位から なる群から選ばれる 1種以上を含む共重合体である請求の範囲 1に記載の固体高 分子電解質材料。
3. 前記ポリマーは、 ペルフルォロ化されたポリマーである請求の範囲 1又は 2に記載の固体高分子電解質材料。
4. 前記脂環式含フッ素モノマーに基づく繰り返し単位は、 下式 (1) で表わ される繰り返し単位である (ただし、 R1 はエーテル結合性の酸素原子を含有し てもよい 2価のペルフルォロ有機基であり、 R2〜R6 はそれぞれ独立にェ一テ ル結合性酸素原子を含有してもよい 1価のペルフルォロ有機基又はフッ素原子。
) 請求の範囲 3に記載の固体高分子電解質材料。
(1)
Figure imgf000040_0001
5. 式 (1 ) において、 R5 及び R6 がフッ素原子である請求の範囲 4に記載 の固体高分子電解質材料。
6. 前記イオン性基は、 — (S〇2 X (S〇2 R F ) A ) - H÷ で表わされ、 かつ軟化温度が 9 0°C以上である請求の範囲 1〜 5のいずれかに記載の固体高分 子電解質材料。
7. 前記脂環式含フッ素モノマーに基づく繰り返し単位は、 下式 (2) で表わ される請求の範囲 5又は 6に記載の固体高分子電解質材料。
Figure imgf000041_0001
8. ラジカル開始源の存在下で、 フルォロスルホニル基とラジカル重合反応性 を有する炭素一炭素二重結合とを有し、 該二重結合の両端の炭素原子の一方は環 構造を構成する脂環式含フッ素モノマーを、 ラジカル重合した後、 前記フルォロ スルホニル基をスルホン酸基に変換することを特徴とする固体高分子電解質材料 の製造方法。
9. 非イオン性で環構造を有しラジカル重合性を有する含フッ素モノマー、 非 ィォン性の環化重合性含フッ素モノマー、 及びテトラフルォロエチレンからなる 群から選ばれる 1種以上と、 前記脂環式含フッ素モノマーとをラジカル重合する 請求の範囲 8に記載の固体高分子電解質材料の製造方法。
1 0. 前記脂環式含フッ素モノマーが下式 (3) で表わされる (ただし、 R1 はエーテル性酸素原子を含有してもよい 2価のペルフルォロ有機基であり、 R2 〜R6 はそれぞれ独立にエーテル結合性酸素原子を含有してもよい 1価のペルフ ルォロ有機基又はフッ素原子。 ) 請求の範囲 8又は 9に記載の固体高分子電解質 材料の製造方法。
Figure imgf000042_0001
1 1 . 前記脂環式含フッ素モノマーが下式 (4 ) で表わされる請求の範囲 1 0 に記載の固体高分子電解質材料の製造方法。
Figure imgf000042_0002
1 2 . 前記脂環式モノマーとともに、 分子内に 2以上のラジカル重合性の二重 結合を有する含フッ素モノマーを共重合することにより、 架橋させる請求の範囲 8〜 1 1のいずれかに記載の固体高分子電解質材料の製造方法。
1 3 . ラジカル重合反応性を有する炭素一炭素二重結合を有し、 該二重結合の 両端の炭素原子の一方は環構造を構成する脂環式含フッ素モノマーに基づく繰り 返し単位を含むポリマーであって、 前記含フッ素モノマーは一 (s o 2 x ( S O 2 R ) a) —M +で表されるイオン性基 (式中、 M +は H +、 一価の金属カチオン
、 又は 1以上の水素原子が炭化水素基と置換されていてもよいアンモニゥムィォ ンであり、 R fは、 エーテル結合性酸素原子を含んでいてもよい直鎖又は分岐の ペルフルォロアルキル基であり、 Xは酸素原子、 窒素原子又は炭素原子であって 、 Xが酸素原子の場合 a = 0であり、 Xが窒素原子の場合 a = 1であり、 Xが炭 素原子の場合 a = 2である。 ) を有するポリマーからなる膜であることを特徴と する固体高分子電解質膜。
1 4. 前記ポリマ一は、 非イオン性で環構造を有しラジカル重合性を有する含 フッ素モノマーに基づく繰り返し単位、 非ィォン性の環化重合性含フッ素モノマ 一に基づく繰り返し単位、 及びテトラフルォロエチレンに基づく繰り返し単位か らなる群から選ばれる 1種以上を含む共重合体である請求の範囲 1 3に記載の固 体高分子電解質膜。
1 5. 前記脂環式含フッ素モノマーに基づく繰り返し単位は、 下式 (1) で表 わされる繰り返し単位である (ただし、 R1 はエーテル結合性の酸素原子を含有 してもよい 2価のペルフルォロ有機基であり、 R2 〜R6 はそれぞれ独立にエー テル結合性酸素原子を含有してもよい 1価のペルフルォロ有機基又はフッ素原子 。 ) 請求の範囲 1 4に記載の固体高分子電解質膜。
Figure imgf000043_0001
6 前記イオン性基は、 一 (S 02 X (S〇2 R F ) A ) — H+ で表わされ 、 かつ軟化温度が 9 0で以上である請求の範囲 1 3〜1 5のいずれかに記載の固 体高分子電解質膜。
1 7. 前記脂環式含フッ素モノマーに基づく繰り返し単位は、 下式 (2) で表 わされる請求の範囲 1 5又は 1 6に記載の固体高分子電解質材料。
Figure imgf000043_0002
1 8. 分子内に 2以上のラジカル重合性の二重結合を有する含フッ素モノマー に基づく繰り返し単位を含み、 当該繰り返し単位により架橋されている請求の範 囲 1 3〜1 7のいずれかに記載の固体高分子電解質膜。
1 9. 固体高分子電解質材料が水酸基を有する溶媒及び水からなる群から選ば れる 1種以上の溶媒中に溶解又は分散した液状組成物であって、 前記固体高分子 電解質材料は、 ラジカル重合反応性を有する炭素一炭素二重結合を有し、 該二重 結合の両端の炭素原子の一方は環構造を構成する脂環式含フッ素モノマーに基づ く繰り返し単位を含むポリマーであって、 前記含フッ素モノマーは— (so2x
(S 02RF) A) —M +で表されるイオン性基 (式中、 M +は H +、 一価の金属力 チオン、 又は 1以上の水素原子が炭化水素基と置換されていてもよいアンモニゥ ムイオンであり、 R fは、 エーテル結合性酸素原子を含んでいてもよい直鎖又は 分岐のペルフルォロアルキル基であり、 Xは酸素原子、 窒素原子又は炭素原子で あって、 Xが酸素原子の場合 a = 0であり、 Xが窒素原子の場合 a == 1であり、 Xが炭素原子の場合 a = 2である。 ) を有するポリマーからなることを特徴とす る液状組成物。
2 0 . 前記ポリマーは、 非イオン性で環構造を有しラジカル重合性を有する含 フッ素モノマーに基づく繰り返し単位、 非イオン性の環化重合性含フッ素モノマ 一に基づく繰り返し単位、 及びテトラフルォロェチレンに基づく繰り返し単位か らなる群から選ばれる 1種以上を含む共重合体である請求の範囲 1 9に記載の液 状組成物。
2 1 . 前記脂環式含フッ素モノマーに基づく繰り返し単位は、 下式 (1 ) で表 わされる繰り返し単位である (ただし、 R 1 はエーテル結合性の酸素原子を含有 してもよい 2価のペルフルォロ有機基であり、 R 2 〜R 6 はそれぞれ独立にエー テル結合性酸素原子を含有してもよい 1価のペルフルォロ有機基又はフッ素原子 。 ) 請求の範囲 2 0に記載の液状組成物。
Figure imgf000044_0001
2 2 . 触媒と固体高分子電解質とを含む触媒層を有する力ソード及びアノード と、 前記力ソードと前記アノードとの間に配置される固体高分子電解質膜とを備 える膜電極接合体であって、 前記固体高分子電解質膜は、 ラジカル重合反応性を 有する炭素一炭素二重結合を有し、 該二重結合の両端の炭素原子の一方は環構造 を構成する脂環式含フッ素モノマーに基づく繰り返し単位を含むポリマーであつ て、 前記含フッ素モノマ一は一 ( S O z X ( S 0 2 R f ) a) 一 M +で表されるィォ ン性基 (式中、 M +は H +、 一価の金属カチオン、 又は 1以上の水素原子が炭化 水素基と置換されていてもよいアンモニゥムイオンであり、 R fは、 エーテル結 合性酸素原子を含んでいてもよい直鎖又は分岐のペルフルォロアルキル基であり 、 Xは酸素原子、 窒素原子又は炭素原子であって、 Xが酸素原子の場合 a = 0で あり、 Xが窒素原子の場合 a = 1であり、 Xが炭素原子の場合 a = 2である。 ) を有するポリマーからなる膜であることを特徴とする固体高分子型燃料電池用膜 電極接合体。
2 3 . 触媒と固体高分子電解質とを含む触媒層を有する力ソード及びアノード と、 前記力ソードと前記アノードとの間に配置される固体高分子電解質膜とを備 える膜電極接合体であって、 前記カソ一ド及び前記アノードの少なくとも一方の 触媒層には、 ラジカル重合反応性を有する炭素一炭素二重結合を有し、 該二重結 合の両端の炭素原子の一方は環構造を構成する脂環式含フッ素モノマーに基づく 繰り返し単位を含み、 前記含フッ素モノマーは一 (S〇2 X ( S 0 2 R f ) a) 一 M +で表されるイオン性基 (式中、 M +は H +、 一価の金属カチオン、 又は 1以上 の水素原子が炭化水素基と置換されていてもよいアンモニゥムイオンであり、 R fは、 エーテル結合性酸素原子を含んでいてもよい直鎖又は分岐のペルフルォロ アルキル基であり、 Xは酸素原子、 窒素原子又は炭素原子であって、 Xが酸素原 子の場合 a = 0であり、 Xが窒素原子の場合 a = 1であり、 Xが炭素原子の場合 a = 2である。 ) を有するポリマーが含まれることを特徴とする固体高分子型燃 料電池用膜電極接合体。
2 4 . 前記ポリマーは、 非イオン性で環構造を有しラジカル重合性を有する含 フッ素モノマーに基づく繰り返し単位、 非ィォン性の環化重合性含フッ素モノマ 一に基づく繰り返し単位、 及びテトラフルォロエチレンに基づく繰り返し単位か らなる群から選ばれる 1種以上を含む共重合体である請求の範囲 2 2又は 2 3に 記載の固体高分子型燃料電池用膜電極接合体。
2 5 . 前記脂環式含フッ素モノマーに基づく繰り返し単位は、 下式 (1 ) で表 わされる繰り返し単位である (ただし、 R 1 はエーテル結合性の酸素原子を含有 してもよい 2価のペルフルォロ有機基であり、 R 2〜R 6 はそれぞれ独立にエー テル結合性酸素原子を含有してもよい 1価のペルフルォロ有機基又はフッ素原子 。 ) 請求の範囲 2 4に記載の固体高分子型燃料電池用膜電極接合体。
Figure imgf000046_0001
前記イオン性基は、 (S O? X (S O., R F ) つ ) — H+ で表わされ
、 かつ前記固体高分子電解質材料の軟化温度が 9 0°C以上である請求の範囲 2 3 〜 2 5のいずれかに記載の固体高分子型燃料電池用膜電極接合体。
2 7. 前記脂環式含フッ素モノマーに基づく繰り返し単位は、 下式 (2) で表 わされる請求の範囲 2 5又は 2 6に記載の固体高分子型燃料電池用膜電極接合体
Figure imgf000046_0002
(2)
図 1
Figure imgf000047_0001
水浸漬温度 (°c) 図 2
Figure imgf000047_0002
水浸漬温度 ( )
PCT/JP2004/006127 2003-04-28 2004-04-28 固体高分子電解質材料、製造方法及び固体高分子型燃料電池用膜電極接合体 WO2004097851A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005505925A JP4774988B2 (ja) 2003-04-28 2004-04-28 固体高分子電解質材料、製造方法及び固体高分子型燃料電池用膜電極接合体
EP04730031A EP1583106A4 (en) 2003-04-28 2004-04-28 FESTPOLYMER ELECTROLYTE MATERIAL, PROCESS FOR ITS MANUFACTURE AND MEMBRANE / ELECTRODE ASSEMBLY FOR A FESTPOLYMER FUEL CELL
US11/166,371 US7429428B2 (en) 2003-04-28 2005-06-27 Polymer electrolyte material, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003123383 2003-04-28
JP2003-123383 2003-04-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/166,371 Continuation US7429428B2 (en) 2003-04-28 2005-06-27 Polymer electrolyte material, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell

Publications (1)

Publication Number Publication Date
WO2004097851A1 true WO2004097851A1 (ja) 2004-11-11

Family

ID=33410125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006127 WO2004097851A1 (ja) 2003-04-28 2004-04-28 固体高分子電解質材料、製造方法及び固体高分子型燃料電池用膜電極接合体

Country Status (5)

Country Link
US (1) US7429428B2 (ja)
EP (1) EP1583106A4 (ja)
JP (1) JP4774988B2 (ja)
CN (1) CN100530442C (ja)
WO (1) WO2004097851A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005096422A1 (ja) 2004-04-02 2005-10-13 Asahi Glass Company, Limited 固体高分子形燃料電池用電解質材料、電解質膜及び膜電極接合体
JP2006143702A (ja) * 2004-11-22 2006-06-08 Japan Science & Technology Agency 含フッ素化合物の製造方法、含フッ素化合物、含フッ素ポリマー、及び含フッ素ポリマーを用いた光学材料若しくは電気材料
JP2006152249A (ja) * 2004-10-26 2006-06-15 Asahi Glass Co Ltd フルオロスルホニル基と1,3−ジオキソラン構造を有する重合体およびその用途
JP2006290864A (ja) * 2004-10-26 2006-10-26 Asahi Glass Co Ltd 新規な含フッ素エポキシ化合物およびその製造方法
JP2006290779A (ja) * 2005-04-08 2006-10-26 Asahi Glass Co Ltd 新規な、含フッ素化合物および含フッ素重合体
JP2006302600A (ja) * 2005-04-19 2006-11-02 Asahi Glass Co Ltd 固体高分子型燃料電池用電解質膜、その製造方法、固体高分子型燃料電池用膜電極接合体及びその運転方法
JP2006310216A (ja) * 2005-05-02 2006-11-09 Toyota Motor Corp 触媒電極層形成用塗工液の製造方法
EP1914824A1 (en) * 2005-07-27 2008-04-23 Asahi Glass Company, Limited Electrolyte material for solid polymer fuel cell, electrolyte membrane and membrane-electrode assembly
WO2010137627A1 (ja) 2009-05-29 2010-12-02 旭硝子株式会社 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体
WO2011013577A1 (ja) * 2009-07-31 2011-02-03 旭硝子株式会社 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体
US8124295B2 (en) * 2007-01-26 2012-02-28 Asahi Glass Company, Limited Polymer, polymer electrolyte membrane for polymer electrolyte fuel cell, and membrane/electrode assembly
CN102382017A (zh) * 2005-07-27 2012-03-21 旭硝子株式会社 含氟磺酰基的化合物的制造方法
JP2012084398A (ja) * 2010-10-12 2012-04-26 Toyota Central R&D Labs Inc 高分子電解質及びその製造方法、並びに、燃料電池
JP2012107219A (ja) * 2010-10-29 2012-06-07 Asahi Kasei Corp イオン性高分子
JP2013216811A (ja) * 2012-04-10 2013-10-24 Toyota Central R&D Labs Inc 高分子電解質及びその製造方法、並びに、燃料電池
JP2014135144A (ja) * 2013-01-08 2014-07-24 Asahi Kasei E-Materials Corp レドックスフロー二次電池
JP2015168690A (ja) * 2014-03-04 2015-09-28 住友ゴム工業株式会社 フッ素ゴム成形品とその製造方法
WO2020067421A1 (ja) * 2018-09-28 2020-04-02 東ソ-株式会社 フッ素樹脂、フッ素樹脂粒子およびそれらの製造方法
WO2020145287A1 (ja) * 2019-01-08 2020-07-16 Agc株式会社 触媒層、触媒層形成用液および膜電極接合体
JP2020128520A (ja) * 2018-09-28 2020-08-27 東ソー株式会社 フッ素樹脂粒子およびその製造方法
JP2020139093A (ja) * 2019-02-28 2020-09-03 東ソー株式会社 フッ素樹脂およびその製造方法
CN115991825A (zh) * 2021-10-18 2023-04-21 山东东岳未来氢能材料股份有限公司 含氟离子膜及其制备方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60143635D1 (de) * 2000-02-15 2011-01-27 Asahi Glass Co Ltd Blockpolymer, Verfahren zur Herstellung von Polymer und Festpolymerelektrolytbrennstoffzelle
EP1583106A4 (en) * 2003-04-28 2008-07-09 Asahi Glass Co Ltd FESTPOLYMER ELECTROLYTE MATERIAL, PROCESS FOR ITS MANUFACTURE AND MEMBRANE / ELECTRODE ASSEMBLY FOR A FESTPOLYMER FUEL CELL
CN100426575C (zh) * 2003-05-13 2008-10-15 旭硝子株式会社 固体高分子型燃料电池用电解质聚合物、其制造方法和膜·电极接合体
US20050037265A1 (en) * 2003-08-14 2005-02-17 Asahi Glass Company, Limited Polymer electrolyte fuel cell, electrolyte material therefore and method for its production
JPWO2005042511A1 (ja) * 2003-10-31 2007-05-10 旭硝子株式会社 新規な含フッ素化合物、および含フッ素重合体
EP1724291A4 (en) * 2004-03-08 2008-06-18 Asahi Glass Co Ltd VULCANIZABLE COMPOSITION AND METHOD FOR MANUFACTURING FLUOR VULCANIS CHEMICAL
CA2577710A1 (en) 2004-08-18 2006-02-23 Asahi Glass Company, Limited Electrolyte polymer for fuel cells, process for its production, electrolyte membrane and membrane/electrode assembly
WO2006046620A1 (ja) * 2004-10-27 2006-05-04 Asahi Glass Company, Limited 電解質材料、電解質膜、及び固体高分子形燃料電池用膜電極接合体
JP5124097B2 (ja) * 2006-03-20 2013-01-23 日本ゴア株式会社 電解質膜及び固体高分子形燃料電池
KR20070106200A (ko) * 2006-04-28 2007-11-01 삼성에스디아이 주식회사 연료전지용 막-전극 어셈블리, 이의 제조방법 및 이를포함하는 연료전지 시스템
WO2008024780A2 (en) * 2006-08-22 2008-02-28 Georgia Tech Research Corporation Fuel cell vent
JP2008066047A (ja) * 2006-09-06 2008-03-21 Matsushita Electric Ind Co Ltd 非水電解質電池およびそのセパレータ
EP1927601B1 (en) * 2006-11-28 2010-01-13 Asahi Glass Company, Limited Polymer, polymer electrolyte membrane for polymer electrolyte fuel cell, and membrane/electrode assembly
CN101601156B (zh) * 2007-01-10 2012-03-28 旭硝子株式会社 固体高分子电解质膜及固体高分子型燃料电池用膜电极接合体
JP5502079B2 (ja) * 2008-07-08 2014-05-28 ソルヴェイ・スペシャルティ・ポリマーズ・イタリー・エッセ・ピ・ア フルオロポリマーの製造方法
EP2722921A1 (en) * 2009-03-04 2014-04-23 Asahi Kasei E-materials Corporation Fluoropolymer electrolyte membrane
JP5521427B2 (ja) 2009-07-31 2014-06-11 旭硝子株式会社 燃料電池システム
CN102471412B (zh) 2009-07-31 2015-01-14 旭硝子株式会社 电解质材料、液状组合物及固体高分子型燃料电池用膜电极接合体
KR20160138973A (ko) 2014-03-31 2016-12-06 미쓰이금속광업주식회사 막전극 접합체 및 그것을 사용한 고체 고분자형 연료 전지
US11289700B2 (en) 2016-06-28 2022-03-29 The Research Foundation For The State University Of New York KVOPO4 cathode for sodium ion batteries
CN111316380B (zh) * 2017-11-06 2022-05-24 Agc株式会社 固体高分子电解质膜、膜电极接合体及水电解装置
CN112771086B (zh) * 2018-09-28 2023-09-26 东曹株式会社 氟树脂、氟树脂粒子及它们的制造方法
EP3865521A4 (en) * 2018-10-09 2022-10-12 Tosoh Corporation FLUORORESIN, PROCESS FOR PRODUCTION THEREOF AND PROCESS FOR PRODUCTION OF FLUORORESIN PARTICLES
EP3940006A4 (en) * 2019-03-13 2022-11-23 Agc Inc. MEMBRANE ELECTRODE ASSEMBLY
WO2021132475A1 (ja) * 2019-12-27 2021-07-01 Agc株式会社 触媒層、触媒層形成用液および膜電極接合体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1126537A1 (en) * 2000-02-15 2001-08-22 Asahi Glass Company Ltd. Block polymer, process for producing a polymer, and polymer electrolyte fuel cell
JP2002146186A (ja) * 2000-11-16 2002-05-22 Toyobo Co Ltd ポリアゾールポリマー系組成物及びそれを主成分とする膜、並びにポリアゾール系ポリマー組成物の成形方法
JP2002260705A (ja) * 2000-12-26 2002-09-13 Asahi Glass Co Ltd 固体高分子電解質材料、液状組成物、固体高分子型燃料電池、含フッ素ポリマー及び含フッ素ポリマーからなる固体高分子電解質膜
WO2003037885A1 (fr) * 2001-10-30 2003-05-08 Asahi Glass Company, Limited Composes de fluorosulfonyle et procede de production de composes en derivant

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3282875A (en) * 1964-07-22 1966-11-01 Du Pont Fluorocarbon vinyl ether polymers
WO1986006879A1 (en) 1985-05-17 1986-11-20 The Dow Chemical Company Proton exchange polymer film fuel cells
US4973714A (en) * 1987-07-31 1990-11-27 E. I. Du Pont De Nemours And Company Halogenated 1,3-dioxolanes and derivatives
GB2261711B (en) * 1991-11-15 1995-09-20 Ferodo Ltd Brakes
JP3043172B2 (ja) * 1992-01-31 2000-05-22 旭硝子株式会社 含フッ素化合物及びその製造方法
JP3818344B2 (ja) * 1997-11-20 2006-09-06 旭硝子株式会社 含フッ素脂肪族環構造含有重合体の製造方法
EP0973734B1 (fr) * 1998-01-30 2003-06-04 Hydro-Quebec Derives bis-sulfonyles polymerisables et leur utilisation dans la preparation de membranes echangeuses d'ions
CA2362695C (en) * 1999-03-23 2009-12-08 Asahi Glass Company, Limited Process for producing a fluorine-containing compound by liquid phase fluorination
DE60135080D1 (de) * 2000-12-26 2008-09-11 Asahi Glass Co Ltd Festpolymer-Elektrolyt Material, flüssige Zusammensetzung, Festpolymer Brennstoffzelle und Fluorpolymer
EP1583106A4 (en) * 2003-04-28 2008-07-09 Asahi Glass Co Ltd FESTPOLYMER ELECTROLYTE MATERIAL, PROCESS FOR ITS MANUFACTURE AND MEMBRANE / ELECTRODE ASSEMBLY FOR A FESTPOLYMER FUEL CELL
US20050037265A1 (en) * 2003-08-14 2005-02-17 Asahi Glass Company, Limited Polymer electrolyte fuel cell, electrolyte material therefore and method for its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1126537A1 (en) * 2000-02-15 2001-08-22 Asahi Glass Company Ltd. Block polymer, process for producing a polymer, and polymer electrolyte fuel cell
JP2002146186A (ja) * 2000-11-16 2002-05-22 Toyobo Co Ltd ポリアゾールポリマー系組成物及びそれを主成分とする膜、並びにポリアゾール系ポリマー組成物の成形方法
JP2002260705A (ja) * 2000-12-26 2002-09-13 Asahi Glass Co Ltd 固体高分子電解質材料、液状組成物、固体高分子型燃料電池、含フッ素ポリマー及び含フッ素ポリマーからなる固体高分子電解質膜
WO2003037885A1 (fr) * 2001-10-30 2003-05-08 Asahi Glass Company, Limited Composes de fluorosulfonyle et procede de production de composes en derivant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1583106A4 *

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7799468B2 (en) * 2004-04-02 2010-09-21 Asahi Glass Company, Limited Electrolyte material for polymer electrolyte fuel cells, electrolyte membrane and membrane-electrode assembly
EP1734603A1 (en) * 2004-04-02 2006-12-20 Asahi Glass Company, Limited Electrolyte material for solid polymer type fuel cell, electrolyte membrane and membrane electrode assembly
WO2005096422A1 (ja) 2004-04-02 2005-10-13 Asahi Glass Company, Limited 固体高分子形燃料電池用電解質材料、電解質膜及び膜電極接合体
EP1734603A4 (en) * 2004-04-02 2008-09-03 Asahi Glass Co Ltd ELECTROLYTE FOR SOLID POLYMER TYPE FUEL CELL, ELECTROLYTE MEMBRANE, AND MEMBRANE ELECTRODE ASSEMBLY
JP2006152249A (ja) * 2004-10-26 2006-06-15 Asahi Glass Co Ltd フルオロスルホニル基と1,3−ジオキソラン構造を有する重合体およびその用途
JP2006290864A (ja) * 2004-10-26 2006-10-26 Asahi Glass Co Ltd 新規な含フッ素エポキシ化合物およびその製造方法
JP2006143702A (ja) * 2004-11-22 2006-06-08 Japan Science & Technology Agency 含フッ素化合物の製造方法、含フッ素化合物、含フッ素ポリマー、及び含フッ素ポリマーを用いた光学材料若しくは電気材料
JP2006290779A (ja) * 2005-04-08 2006-10-26 Asahi Glass Co Ltd 新規な、含フッ素化合物および含フッ素重合体
JP2006302600A (ja) * 2005-04-19 2006-11-02 Asahi Glass Co Ltd 固体高分子型燃料電池用電解質膜、その製造方法、固体高分子型燃料電池用膜電極接合体及びその運転方法
JP2006310216A (ja) * 2005-05-02 2006-11-09 Toyota Motor Corp 触媒電極層形成用塗工液の製造方法
EP1914824A4 (en) * 2005-07-27 2008-11-19 Asahi Glass Co Ltd SOLID POLYMER FUEL CELL ELECTROLYTE MATERIAL, ELECTROLYTE MEMBRANE, AND MEMBRANE-ELECTRODE ASSEMBLY
US8097383B2 (en) 2005-07-27 2012-01-17 Asahi Glass Company, Limited Electrolyte material for polymer electrolyte fuel cells, electrolyte membrane and membrane/electrode assembly
CN102382017A (zh) * 2005-07-27 2012-03-21 旭硝子株式会社 含氟磺酰基的化合物的制造方法
EP1914824A1 (en) * 2005-07-27 2008-04-23 Asahi Glass Company, Limited Electrolyte material for solid polymer fuel cell, electrolyte membrane and membrane-electrode assembly
JP5130911B2 (ja) * 2005-07-27 2013-01-30 旭硝子株式会社 固体高分子形燃料電池用電解質材料、電解質膜および膜電極接合体
CN102382017B (zh) * 2005-07-27 2014-05-28 旭硝子株式会社 含氟磺酰基的化合物的制造方法
US8124295B2 (en) * 2007-01-26 2012-02-28 Asahi Glass Company, Limited Polymer, polymer electrolyte membrane for polymer electrolyte fuel cell, and membrane/electrode assembly
JP5565410B2 (ja) * 2009-05-29 2014-08-06 旭硝子株式会社 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体
WO2010137627A1 (ja) 2009-05-29 2010-12-02 旭硝子株式会社 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体
US9508463B2 (en) 2009-05-29 2016-11-29 Asahi Glass Company, Limited Electrolyte material, liquid composition and membrane/electrode assembly for polymer electrolyte fuel cell
WO2011013577A1 (ja) * 2009-07-31 2011-02-03 旭硝子株式会社 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体
JPWO2011013577A1 (ja) * 2009-07-31 2013-01-07 旭硝子株式会社 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体
JP2012084398A (ja) * 2010-10-12 2012-04-26 Toyota Central R&D Labs Inc 高分子電解質及びその製造方法、並びに、燃料電池
JP2012107219A (ja) * 2010-10-29 2012-06-07 Asahi Kasei Corp イオン性高分子
JP2013216811A (ja) * 2012-04-10 2013-10-24 Toyota Central R&D Labs Inc 高分子電解質及びその製造方法、並びに、燃料電池
JP2014135144A (ja) * 2013-01-08 2014-07-24 Asahi Kasei E-Materials Corp レドックスフロー二次電池
JP2015168690A (ja) * 2014-03-04 2015-09-28 住友ゴム工業株式会社 フッ素ゴム成形品とその製造方法
JP7339830B2 (ja) 2018-09-28 2023-09-06 東ソー株式会社 フッ素樹脂粒子およびその製造方法
WO2020067421A1 (ja) * 2018-09-28 2020-04-02 東ソ-株式会社 フッ素樹脂、フッ素樹脂粒子およびそれらの製造方法
JP2020128520A (ja) * 2018-09-28 2020-08-27 東ソー株式会社 フッ素樹脂粒子およびその製造方法
US11807702B2 (en) 2018-09-28 2023-11-07 Tosoh Corporation Fluororesin, fluororesin particles, and methods for producing these
WO2020145287A1 (ja) * 2019-01-08 2020-07-16 Agc株式会社 触媒層、触媒層形成用液および膜電極接合体
US20210328247A1 (en) * 2019-01-08 2021-10-21 AGC Inc. Catalyst layer, catalyst layer forming liquid and membrane electrode assembly
JPWO2020145287A1 (ja) * 2019-01-08 2021-11-18 Agc株式会社 触媒層、触媒層形成用液および膜電極接合体
JP7283486B2 (ja) 2019-01-08 2023-05-30 Agc株式会社 触媒層、触媒層形成用液および膜電極接合体
JP2020139093A (ja) * 2019-02-28 2020-09-03 東ソー株式会社 フッ素樹脂およびその製造方法
JP7478370B2 (ja) 2019-02-28 2024-05-07 東ソー株式会社 フッ素樹脂
CN115991825A (zh) * 2021-10-18 2023-04-21 山东东岳未来氢能材料股份有限公司 含氟离子膜及其制备方法
CN115991825B (zh) * 2021-10-18 2023-12-22 山东东岳未来氢能材料股份有限公司 含氟离子膜及其制备方法

Also Published As

Publication number Publication date
US7429428B2 (en) 2008-09-30
CN100530442C (zh) 2009-08-19
EP1583106A4 (en) 2008-07-09
JPWO2004097851A1 (ja) 2006-07-13
US20050266291A1 (en) 2005-12-01
EP1583106A1 (en) 2005-10-05
JP4774988B2 (ja) 2011-09-21
CN1777962A (zh) 2006-05-24

Similar Documents

Publication Publication Date Title
JP4774988B2 (ja) 固体高分子電解質材料、製造方法及び固体高分子型燃料電池用膜電極接合体
JP5454592B2 (ja) 固体高分子形燃料電池用電解質材料、電解質膜及び膜電極接合体
JP7238957B2 (ja) フルオロスルホニル基又はスルホン酸基含有ポリマー、その製造方法及び用途
EP1914824B1 (en) Electrolyte material for solid polymer fuel cell, electrolyte membrane and membrane-electrode assembly
JP5261937B2 (ja) 電解質膜の製造方法
EP1126537A1 (en) Block polymer, process for producing a polymer, and polymer electrolyte fuel cell
JP6172142B2 (ja) 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体
WO2007013532A1 (ja) フルオロスルホニル基含有化合物、その製造方法およびそのポリマー
JP6593346B2 (ja) 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体
WO2004066426A1 (ja) 固体高分子型燃料電池用電解質材料の製造方法及び固体高分子型燃料電池用膜電極接合体
JP2010018674A (ja) ポリマー、その製造方法、固体高分子形燃料電池用電解質膜および膜電極接合体
CN116874653A (zh) 电解质材料、其制造方法和其应用
JPWO2016002889A1 (ja) 電解質材料、液状組成物、固体高分子形燃料電池用膜電極接合体および含フッ素分岐ポリマー
CN113166295B (zh) 含酸型磺酸基的聚合物、液体组合物、电解质膜、膜电极接合体、燃料电池及离子交换膜
JP2002216804A (ja) 固体高分子型燃料電池
JP2002212246A (ja) ブロックポリマー、重合体の製造方法及びブロックポリマーを含む液状組成物
JP2002231268A (ja) 固体高分子型燃料電池用電解質材料及び固体高分子型燃料電池
CN117121240A (zh) 电解质材料、膜电极接合体及固体高分子型燃料电池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004730031

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11166371

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005505925

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2004730031

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20048110237

Country of ref document: CN