WO2010137627A1 - 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体 - Google Patents

電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体 Download PDF

Info

Publication number
WO2010137627A1
WO2010137627A1 PCT/JP2010/058934 JP2010058934W WO2010137627A1 WO 2010137627 A1 WO2010137627 A1 WO 2010137627A1 JP 2010058934 W JP2010058934 W JP 2010058934W WO 2010137627 A1 WO2010137627 A1 WO 2010137627A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
group
compound
ion exchange
electrolyte material
Prior art date
Application number
PCT/JP2010/058934
Other languages
English (en)
French (fr)
Inventor
了 本村
貢 齋藤
下平 哲司
淳 渡壁
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201080024638.9A priority Critical patent/CN102449006B/zh
Priority to JP2011516043A priority patent/JP5565410B2/ja
Priority to EP10780582.2A priority patent/EP2436705B1/en
Publication of WO2010137627A1 publication Critical patent/WO2010137627A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F216/14Monomers containing only one unsaturated aliphatic radical
    • C08F216/1408Monomers containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/44Preparation of metal salts or ammonium salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrolyte material for a polymer electrolyte fuel cell, a liquid composition containing the electrolyte material, and a membrane electrode assembly for a polymer electrolyte fuel cell containing the electrolyte material in a catalyst layer.
  • the following polymer (1) is generally known as the electrolyte material contained in the catalyst layer of the membrane electrode assembly for a polymer electrolyte fuel cell.
  • a —SO 2 F group of a polymer having a repeating unit based on the compound represented by the following formula (m3) and a repeating unit based on tetrafluoroethylene (hereinafter referred to as TFE) is converted to a sulfonic acid group (—SO 3 H group). ) Converted to (1).
  • CF 2 CF (OCF 2 CFZ ) m O p (CF 2) n SO 2 F ⁇ (m3).
  • Z is a fluorine atom or a trifluoromethyl group
  • m is an integer of 0 to 3
  • p is 0 or 1
  • n 1 to 12
  • Polymer electrolyte fuel cells require low humidification with low relative humidity of the reaction gas (fuel gas and oxidant gas) and operation without humidification in order to simplify the fuel cell system and reduce costs. It has been.
  • the conductivity of the electrolyte material contained in the catalyst layer that is, to increase the ion exchange capacity of the electrolyte material.
  • the ion exchange capacity of the polymer (1) is increased, that is, when the ratio of the repeating unit based on the compound represented by the formula (m3) is increased, the water content (water absorption) of the polymer (1) is increased.
  • pore clogging due to condensation of water vapor is likely to occur in the catalyst layer, and it is difficult to increase the ion exchange capacity.
  • polymers having a ring structure in the molecule are also known as electrolyte materials.
  • the repeating units based on perfluoro monomer having a -SO 2 F group and dioxolane ring, having no -SO 2 F group, -SO 2 F groups of the polymer having the repeating units based on perfluoro monomer having a dioxolane ring Is a polymer (2) in which is converted to a sulfonic acid group (—SO 3 H group) (Patent Document 1).
  • the polymer electrolyte fuel cell using the polymer (2) as the electrolyte material of the catalyst layer has a feature that is superior in power generation characteristics as compared with the polymer (1). It is effective to increase the ion exchange capacity of the polymer (2) in order to develop further high performance under low humidification and non-humidification conditions. However, simply increasing the ion exchange capacity of the polymer (2) causes the water content (water absorption) of the polymer (2) to increase rapidly, so that flooding does not occur under high humidification conditions where the relative humidity of the reaction gas is high. It tends to occur and power generation characteristics (output voltage, etc.) are lowered, and the characteristics of the polymer (2) cannot be fully extracted.
  • the present invention relates to an electrolyte material in which an increase in water content can be suppressed even when the ion exchange capacity of a polymer having a repeating unit based on a monomer having a dioxolane ring is increased; low humidification, non-humidification conditions and high humidification conditions
  • a membrane electrode assembly excellent in power generation characteristics; and a liquid composition suitable for forming a catalyst layer in the membrane electrode assembly are provided.
  • the electrolyte material of the present invention is characterized by comprising a polymer (H) in which a precursor group of the following polymer (F) is converted to an ion exchange group and an ion exchange capacity is 1.35 meq / g or more of a dry resin.
  • Polymer (F) Repeating unit (A) based on a perfluoromonomer having a precursor group of an ion exchange group and a dioxolane ring, and repeating based on a perfluoromonomer having no ion exchange group and its precursor group and having a dioxolane ring
  • the polymer which has a unit (B) and TQ defined below is 200 degreeC or more.
  • TQ a temperature at which the extrusion rate when the polymer (F) is melt-extruded from a nozzle having a length of 1 mm and an inner diameter of 1 mm under an extrusion pressure of 2.94 MPa is 100 mm 3 / sec.
  • the ion exchange group of the polymer (H) is preferably a group represented by the following formula (g1). - (SO 2 X (SO 2 R f) a) - M + ⁇ (g1).
  • M + is H + , a monovalent metal cation, or an ammonium ion in which one or more hydrogen atoms may be substituted with a hydrocarbon group, and R f has an etheric oxygen atom.
  • At least one of the repeating units obtained by converting the precursor group of the repeating unit (A) into an ion exchange group is a repeating unit represented by the following formula (u1).
  • R 1 is a divalent perfluoro organic group that may have an etheric oxygen atom
  • R 2 to R 6 are each independently a monovalent group that may have an etheric oxygen atom.
  • R 5 and R 6 are preferably fluorine atoms.
  • the M + is preferably H + .
  • At least one of the repeating units represented by the formula (u1) is preferably a repeating unit represented by the following formula (u1-1).
  • At least one of the repeating units (B) is a repeating unit represented by the following formula (u2).
  • R 7 to R 12 are each independently a monovalent perfluoro organic group which may have an etheric oxygen atom or a fluorine atom.
  • At least one of the repeating units represented by the formula (u2) is preferably a repeating unit represented by the following formula (u2-1).
  • the liquid composition of the present invention includes a dispersion medium and the electrolyte material of the present invention dispersed in the dispersion medium, and the dispersion medium includes an organic solvent having a hydroxyl group.
  • the solid polymer membrane electrode assembly of the present invention is disposed between an anode having a catalyst layer containing a proton conductive polymer, a cathode having a catalyst layer containing a proton conductive polymer, and the anode and the cathode.
  • a proton conductive polymer contained in at least one of the catalyst layer of the cathode and the anode is the electrolyte material of the present invention. It is characterized by that.
  • the electrolyte material of the present invention can suppress an increase in water content even if the ion exchange capacity of a polymer having a repeating unit based on a monomer having a dioxolane ring is increased.
  • the membrane / electrode assembly of the present invention is excellent in power generation characteristics under low humidification, non-humidification conditions and high humidification conditions.
  • the liquid composition of the present invention is suitable for forming a catalyst layer in the membrane electrode assembly of the present invention.
  • the repeating unit represented by the formula (u1) is referred to as a unit (u1). Repeating units represented by other formulas are also described in the same manner.
  • the compound represented by a formula (m1) is described as a compound (m1). The same applies to compounds represented by other formulas.
  • group represented by a formula (g1) is described as group (g1). Groups represented by other formulas are also described in the same manner.
  • the electrolyte material of the present invention comprises a polymer (H) obtained by converting a precursor group of the polymer (F) into an ion exchange group.
  • a polymer (F) is a polymer which has a specific repeating unit (A), a specific repeating unit (B), and another repeating unit (C) as needed.
  • the repeating unit (A) is a repeating unit based on a perfluoromonomer having a precursor group of an ion exchange group and a dioxolane ring (hereinafter also referred to as a monomer (a)).
  • the repeating unit means a unit derived from the monomer formed by polymerization of the monomer.
  • the repeating unit may be a unit directly formed by a polymerization reaction, or may be a unit in which a part of the unit is converted into another structure by treating the polymer.
  • a monomer is a compound having a polymerization-reactive carbon-carbon double bond.
  • the precursor group is a group that can be converted into an ion exchange group by a known treatment such as a hydrolysis treatment or an acidification treatment.
  • Examples of the precursor group include —SO 2 F group.
  • the dioxolane ring is a ring having a skeleton represented by the following formula (s1).
  • the dioxolane ring does not include a ring having a skeleton represented by the following formula (s2) in which the carbon-carbon bond constituting the ring is a double bond.
  • the monomer (a) is preferably the compound (m1) from the viewpoint of high reactivity during polymerization.
  • R 1 is a divalent perfluoro organic group which may have an etheric oxygen atom.
  • An organic group is a group having one or more carbon atoms.
  • a perfluoroalkylene group is preferable.
  • the oxygen atom may be one or may be two or more.
  • the oxygen atom may be inserted between the carbon-carbon bonds of the perfluoroalkylene group or may be inserted at the carbon atom bond terminal.
  • the perfluoroalkylene group may be linear or branched, and is preferably linear.
  • R 2 to R 6 are each independently a monovalent perfluoro organic group which may have an etheric oxygen atom or a fluorine atom.
  • a perfluoroalkyl group is preferable.
  • the oxygen atom may be one or two or more.
  • the oxygen atom may be inserted between the carbon-carbon bonds of the perfluoroalkyl group, or may be inserted at the carbon atom bond terminal.
  • the perfluoroalkyl group may be linear or branched, and is preferably linear.
  • At least one of R 5 and R 6 is preferably a fluorine atom, and more preferably both are fluorine atoms.
  • the compound (m1) is particularly preferable from the viewpoint of easy synthesis and high polymerization reactivity.
  • the compound (m1) can be synthesized by the methods described in International Publication No. 2003/037885 pamphlet, Japanese Patent Application Laid-Open No. 2005-314388, Japanese Patent Application Laid-Open No. 2009-040909, and the like.
  • the repeating unit (B) is a repeating unit based on a perfluoromonomer (hereinafter also referred to as a monomer (b)) having no ion exchange group and its precursor group and having a dioxolane ring.
  • the ion exchange group is a group having H + , a monovalent metal cation, an ammonium ion, or the like. Examples of the ion exchange group include a group (g1) described later.
  • the monomer (b) is preferably a compound (m2) from the viewpoint of high reactivity during polymerization.
  • R 7 to R 12 are each independently a monovalent perfluoro organic group which may have an etheric oxygen atom or a fluorine atom.
  • a perfluoroalkyl group is preferable.
  • the oxygen atom may be one or two or more.
  • the oxygen atom may be inserted between the carbon-carbon bonds of the perfluoroalkyl group, or may be inserted at the carbon atom bond terminal.
  • the perfluoroalkyl group may be linear or branched, and is preferably linear.
  • At least one of R 11 and R 12 is preferably a fluorine atom, and more preferably both are fluorine atoms.
  • the compound (m2) is particularly preferable from the viewpoint of easy synthesis and high polymerization reactivity.
  • a perfluoromonomer having no ion exchange group and its precursor group, a dioxolane ring, and one carbon-carbon double bond having polymerization reactivity (hereinafter referred to as a monomer (b ′) )
  • a perfluoromonomer (hereinafter referred to as monomer (b) having no ion exchange group and its precursor group, having a dioxolane ring, and having two or more carbon-carbon double bonds having polymerization reactivity. ”)) May also be used together.
  • the molecular weight of the polymer (F), that is, the TQ is increased by polymerizing three monomers of the monomer (a), the monomer (b ') and the monomer (b "). be able to.
  • the monomer (b ′′) is preferably a compound (m2 ′′).
  • Q F1 is a C 1-10 perfluoroalkylene group which may have a single bond, an oxygen atom, or an etheric oxygen atom.
  • the compounds (m2 ′′ -1) to (m2 ′′ -6) are preferable from the viewpoint of easy synthesis and high polymerization reactivity.
  • the addition amount of the monomer (b ′′) is 0.001 to 50 in 100 mol% of all monomers constituting the polymer (F) (total of monomer (a), monomer (b ′) and monomer (b ′′)). Mole% is preferred. If it is less than 0.001 mol%, the effect of increasing the molecular weight is small, and if it is more than 50 mol%, the molecular weight becomes too high, and it becomes difficult to prepare a liquid composition in the subsequent steps.
  • the other repeating unit (C) is a repeating unit based on a monomer other than the perfluoromonomer having the dioxolane ring (hereinafter also referred to as monomer (c)).
  • monomer (c) a monomer other than the perfluoromonomer having the dioxolane ring
  • TFE chlorotrifluoroethylene, trifluoroethylene, vinylidene fluoride, vinyl fluoride, ethylene, propylene, perfluoro (3-butenyl vinyl ether), perfluoro (allyl vinyl ether), perfluoro ⁇ -olefin (Perfluoroalkyl) ethylenes (such as (perfluorobutyl) ethylene), (perfluoroalkyl) propenes (such as 3-perfluorooctyl-1-propene), and perfluoro (alkyl vinyl ethers) It is done.
  • TFE is particularly preferable. Since TFE has high crystallinity
  • monomer (c ) a perfluoromonomer having two or more carbon-carbon double bonds having polymerization reactivity (hereinafter also referred to as monomer (c ′′)) may be used.
  • monomer (c ′′) By using, the TQ of the polymer (F) can be increased, and the water content of the polymer (H) is suppressed.
  • Examples of the monomer (c ′′) include the compound (m5).
  • R f3 is a perfluoroalkylene group which may have an etheric oxygen atom having a linear or branched structure.
  • CF 2 CFO (CF 2 )
  • h OCF CF 2 (m5-2)
  • CF 2 CF [OCF 2 CF (CF 3)] i O (CF 2)
  • k [OCF (CF 3) CF 2] j
  • OCF CF 2 ⁇ (m5-3).
  • h and k are integers of 2 to 8
  • i and j are each independently an integer of 0 to 5, and i + j ⁇ 1.
  • the addition amount of the monomer (c ′′) is 0.001 to 20 mol% of 100 mol% of all monomers constituting the polymer (F) (total of monomer (a), monomer (b) and monomer (c)). If it is less than 0.001 mol%, the effect of increasing the molecular weight is not sufficient, and if it is more than 20 mol%, the polymer (F) has a difference in reactivity with the monomer (a) and the monomer (b). Manufacturing becomes difficult.
  • Ion exchange capacity The ion exchange capacity of the polymer (H) is 1.35 meq / g dry resin or more, and preferably 1.4 to 3.8 meq / g dry resin. If the ion exchange capacity is 1.35 meq / g dry resin or more, the conductivity of the polymer (H) is increased. Output can be obtained. When the ion exchange capacity is 3.8 meq / g dry resin or less, the synthesis of the polymer (F) having a high TQ is easy, and the increase in the water content of the polymer (H) is suppressed.
  • the ratio of the compound (m1) when the polymer (F) is synthesized is adjusted. Specifically, it is important to control the monomer composition at the time of polymerization. For this purpose, it is necessary to determine the charged composition in consideration of the polymerization reactivity of the monomer. Moreover, when making it react 2 or more types of monomers, reaction can be advanced with a fixed composition by adding a more highly reactive monomer sequentially or continuously.
  • the TQ of the polymer (F) is 200 ° C. or higher, preferably 230 ° C. or higher, and more preferably 250 ° C. or higher. If the TQ is 200 ° C. or higher, even if the ion exchange capacity of the polymer (F) is increased, the increase in the water content of the polymer (H) can be suppressed, and it can be used as an electrolyte material for the catalyst layer of the polymer electrolyte fuel cell If so, flooding in the catalyst layer is suppressed.
  • the TQ of the polymer (F) is a temperature at which the extrusion rate when the polymer (F) is melt-extruded from a nozzle having a length of 1 mm and an inner diameter of 1 mm under an extrusion pressure of 2.94 MPa is 100 mm 3 / sec. Yes, it is an index of the molecular weight of the polymer (F).
  • the method for adjusting the TQ of the polymer (F) to 200 ° C. or higher is not particularly limited, but (i) a method for adjusting the polymerization conditions, (ii) two or more carbon-carbon double bonds having polymerization reactivity. And a method of adding a perfluoromonomer having the same.
  • it is important to suppress chain transfer during polymerization. Specifically, it is preferable to perform bulk polymerization without using a solvent as a form of polymerization. When solution polymerization is performed, it is effective to use a solvent having a low chain transfer property.
  • radical initiator it is preferable to use a radical initiator having a low chain transfer property, particularly a radical initiator composed of a perfluoro compound. It is also effective to reduce the amount of radical initiator relative to the monomer in order to reduce the recombination termination reaction by the radical initiator.
  • TQ can be increased by adding a perfluoromonomer having two or more carbon-carbon double bonds having polymerization reactivity.
  • the polymer (F) is produced by polymerizing the monomer (a), the monomer (b), and, if necessary, the monomer (c).
  • Examples of the polymerization method include known polymerization methods such as a bulk polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method. Moreover, you may superpose
  • the polymerization temperature is usually 10 to 150 ° C.
  • radical initiators include bis (fluoroacyl) peroxides, bis (chlorofluoroacyl) peroxides, dialkyl peroxydicarbonates, diacyl peroxides, peroxyesters, azo compounds, persulfates, etc.
  • Perfluoro compounds such as bis (fluoroacyl) peroxides are preferred from the viewpoint of obtaining a polymer (F) having few stable end groups.
  • Solvents include perfluorotrialkylamines (perfluorotributylamine, etc.), perfluorocarbons (perfluorohexane, perfluorooctane, etc.), hydrofluorocarbons (1H, 4H-perfluorobutane, 1H-perfluorohexane, etc.), hydrochlorofluorocarbons (3,3-dichloro-1,1,1,2,2-pentafluoropropane, 1,3-dichloro-1,1,2,2,3-pentafluoropropane and the like).
  • a monomer, a radical initiator, and the like are added to a solvent, and radicals are generated in the solvent to polymerize the monomer.
  • the monomer may be added all at once, sequentially, or continuously.
  • Nonionic radical initiators include bis (fluoroacyl) peroxides, bis (chlorofluoroacyl) peroxides, dialkyl peroxydicarbonates, diacyl peroxides, peroxyesters, dialkyl peroxides, bis (fluoroalkyl) Examples thereof include peroxides and azo compounds.
  • the dispersion medium may be added with the above-mentioned solvent as an auxiliary agent; a surfactant as a dispersion stabilizer that prevents aggregation of suspended particles; a hydrocarbon compound (hexane, methanol, etc.) as a molecular weight regulator.
  • a surfactant as a dispersion stabilizer that prevents aggregation of suspended particles
  • a hydrocarbon compound hexane, methanol, etc.
  • the polymer (H) is a polymer obtained by converting the precursor group of the polymer (F) into an ion exchange group, and includes a specific repeating unit (A ′), a specific repeating unit (B), and other if necessary.
  • the repeating unit (A ′) is a repeating unit obtained by converting the precursor group of the repeating unit (A) into an ion exchange group.
  • the ion exchange group is preferably a group (g1). - (SO 2 X (SO 2 R f) a) - M + ⁇ (g1).
  • M + is H + , a monovalent metal cation, or an ammonium ion in which one or more hydrogen atoms may be substituted with a hydrocarbon group, and H + is preferable from the viewpoint of high conductivity.
  • R f is a linear or branched perfluoroalkyl group which may have an etheric oxygen atom. The perfluoroalkyl group preferably has 1 to 8 carbon atoms, and more preferably 1 to 6 carbon atoms. When two or more R f are present, R f may be the same group or different groups.
  • X is an oxygen atom, a nitrogen atom or a carbon atom
  • a 0 when X is an oxygen atom
  • a 1 when X is a nitrogen atom
  • a 2 when X is a carbon atom.
  • the unit (u1) is preferable because of high polymerization reactivity of the monomer (a) constituting the repeating unit (A).
  • R 1 to R 6 are as described for the compound (m1). From the viewpoint of high polymerization reactivity, at least one of R 5 and R 6 is preferably a fluorine atom, and more preferably both are fluorine atoms. As the unit (u1), the unit (u1-1) is particularly preferable from the viewpoint of easy synthesis of the monomer (a) constituting the repeating unit (A).
  • Repeating unit (B) is a repeating unit based on a perfluoromonomer having a dioxolane ring and having no ion exchange group and its precursor group.
  • the unit (u2) is preferable because of high polymerization reactivity of the monomer (b).
  • R 7 to R 12 are as described for the compound (m2). From the viewpoint of high polymerization reactivity, at least one of R 11 and R 12 is preferably a fluorine atom, and more preferably both are fluorine atoms. As the unit (u2), the unit (u2-1) is particularly preferable from the viewpoint of easy synthesis of the monomer (b).
  • the other repeating unit (C) is a repeating unit based on a monomer other than the perfluoromonomer having the dioxolane ring. Examples of the other monomer include the other monomers described above.
  • the polymer (H) is produced by converting the precursor group of the polymer (F) into an ion exchange group.
  • -SO 2 F groups sulfonic acid groups - as a way to convert (-SO 3 H + group) include the following methods (i), a -SO 2 F group sulfonimide group (-SO 2 N ( As a method for converting into (SO 2 R f ) ⁇ H + group), the following method (ii) may be mentioned.
  • IIi A method in which the —SO 2 F group of the polymer (F) is imidized to form a salt-type sulfonimide group, which is further converted to an acid type sulfonimide group.
  • the basic compound include sodium hydroxide and potassium hydroxide.
  • the solvent include water, a mixed solvent of water and a polar solvent, and the like.
  • the polar solvent include alcohols (methanol, ethanol, etc.), dimethyl sulfoxide and the like.
  • the acidification is performed, for example, by bringing a polymer having a sulfonate into contact with an aqueous solution such as hydrochloric acid or sulfuric acid. Hydrolysis and acidification are usually performed at 0 to 120 ° C.
  • (Ii-1) A method of reacting —SO 2 F group with R f SO 2 NHM.
  • (Ii-2) A method of reacting —SO 2 F group with R f SO 2 NH 2 in the presence of alkali metal hydroxide, alkali metal carbonate, MF, ammonia or primary to tertiary amine.
  • (Ii-3) A method of reacting —SO 2 F group with R f SO 2 NMSi (CH 3 ) 3 .
  • M is an alkali metal or primary to quaternary ammonium. Acidification is carried out by treating a polymer having a salt-type sulfonimide group with an acid (sulfuric acid, nitric acid, hydrochloric acid, etc.).
  • the polymer (H) in which the ion exchange group is a sulfonimide group includes a compound (m1 ′) obtained by converting the —SO 2 F group of the compound (m1) into a sulfonimide group, a compound (m2), and, if necessary, It can also be produced by polymerizing with other monomers.
  • Compound (m1 ′) was prepared by adding chlorine or bromine to the carbon-carbon double bond of compound (m1), converting the —SO 2 F group into a sulfonimide group by the method (ii), and then using metal zinc. And can be produced by dechlorination or debromination reaction.
  • an ion having a specific repeating unit (A) and a specific repeating unit (B) and having a polymer (F) precursor group converted into an ion exchange group Since the exchange capacity is made of polymer (H) having a dry capacity of 1.35 meq / g dry resin or more, the membrane / electrode assembly in which the electrolyte material is contained in the catalyst layer has sufficient power generation under low and no humidification conditions. The characteristics (output voltage etc.) can be exhibited.
  • a conventional polymer having crystallinity for example, a polymer in which a —SO 2 F group of a polymer having a repeating unit based on the above compound (m3) and a repeating unit based on TFE is converted into a sulfonic acid group
  • the molecular weight ie, It is known that when TQ is increased, the mechanical strength is increased, but even if TQ is increased, the moisture content suppressing effect is small.
  • the phenomenon that an increase in moisture content can be suppressed by increasing the TQ is a phenomenon that is particularly noticeable in an amorphous polymer such as the polymer (H) in the present invention.
  • the liquid composition of the present invention is a composition comprising a dispersion medium and the electrolyte material of the present invention dispersed in the dispersion medium.
  • the dispersion medium contains an organic solvent having a hydroxyl group.
  • the organic solvent having a hydroxyl group include methanol, ethanol, 1-propanol, 2-propanol, 2,2,2-trifluoroethanol, 2,2,3,3,3-pentafluoro-1-propanol, 2,2 , 3,3-tetrafluoro-1-propanol, 4,4,5,5,5-pentafluoro-1-pentanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 3, , 3,3-trifluoro-1-propanol, 3,3,4,4,5,5,6,6,6-nonafluoro-1-hexanol, 3,3,4,4,5,5,6 6,7,7,8,8,8-tridecafluoro-1-octanol and the like.
  • the organic solvent which has a hydroxyl group may be used individually by 1 type, and 2 or more types may be mixed and used for it.
  • the dispersion medium preferably contains water.
  • the proportion of water is preferably 10 to 99% by mass and more preferably 40 to 99% by mass in the dispersion medium (100% by mass). By increasing the proportion of water, the dispersibility of the electrolyte material in the dispersion medium can be improved.
  • the proportion of the organic solvent having a hydroxyl group is preferably 1 to 90% by mass and more preferably 1 to 60% by mass in the dispersion medium (100% by mass).
  • the ratio of the electrolyte material is preferably 1 to 50% by mass and more preferably 3 to 30% by mass in the liquid composition (100% by mass).
  • the liquid composition of the present invention is suitably used for forming a catalyst layer in a membrane electrode assembly described later.
  • FIG. 1 is a cross-sectional view showing an example of a membrane electrode assembly for a polymer electrolyte fuel cell of the present invention (hereinafter referred to as a membrane electrode assembly).
  • the membrane electrode assembly 10 is in contact with the catalyst layer 11 between the anode 13 having the catalyst layer 11 and the gas diffusion layer 12, the cathode 14 having the catalyst layer 11 and the gas diffusion layer 12, and the anode 13 and the cathode 14.
  • a solid polymer electrolyte membrane 15 arranged in the above state.
  • the catalyst layer 11 is a layer containing a catalyst and a proton conductive polymer.
  • the catalyst include a supported catalyst in which platinum or a platinum alloy is supported on a carbon support.
  • the carbon carrier include carbon black powder.
  • Examples of the proton conductive polymer include the electrolyte material of the present invention and known electrolyte materials, and the proton conductive polymer contained in at least one of the catalyst layers of the cathode and the anode is the electrolyte material of the present invention. It is preferable that the proton conductive polymer contained in both of the catalyst layers is the electrolyte material of the present invention.
  • the catalyst layer 11 may contain a water repellent agent from the viewpoint of increasing the effect of suppressing flooding.
  • the water repellent include tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer, polytetrafluoroethylene and the like.
  • a fluorine-containing polymer that can be dissolved in a solvent is preferable because the catalyst layer 11 can be easily subjected to water repellent treatment.
  • the amount of the water repellent agent is preferably 0.01 to 30% by mass in the catalyst layer 11 (100% by mass).
  • Examples of the method for forming the catalyst layer 11 include the following methods.
  • the catalyst layer forming liquid is a liquid in which an electrolyte material and a catalyst are dispersed in a dispersion medium.
  • the catalyst layer forming liquid can be prepared, for example, by mixing the liquid composition of the present invention and a catalyst dispersion.
  • the gas diffusion layer 12 has a function of uniformly diffusing gas in the catalyst layer 11 and a function as a current collector.
  • Examples of the gas diffusion layer 12 include carbon paper, carbon cloth, and carbon felt.
  • the gas diffusion layer 12 is preferably water repellent treated with polytetrafluoroethylene or the like.
  • the membrane electrode assembly 10 may have a carbon layer 16 between the catalyst layer 11 and the gas diffusion layer 12, as shown in FIG. By disposing the carbon layer 16, gas diffusibility on the surface of the catalyst layer 11 is improved, and the power generation performance of the polymer electrolyte fuel cell is greatly improved.
  • the carbon layer 16 is a layer containing carbon and a nonionic fluorine-containing polymer.
  • carbon carbon nanofibers having a fiber diameter of 1 to 1000 nm and a fiber length of 1000 ⁇ m or less are preferable.
  • the nonionic fluorine-containing polymer include polytetrafluoroethylene.
  • the solid polymer electrolyte membrane 15 is a membrane containing a proton conductive polymer.
  • the proton conductive polymer include the electrolyte material of the present invention and known electrolyte materials.
  • Known electrolyte materials include a polymer having a repeating unit based on the above-described compound (m3) and a repeating unit based on TFE and a polymer in which —SO 2 F group is converted into a sulfonic acid group; repeating unit based on compound (m4) And a polymer obtained by converting —SO 2 F group of a polymer having a repeating unit based on TFE to a sulfonic acid group.
  • R f1 and R f2 are each a single bond or a linear perfluoroalkylene group having 1 to 6 carbon atoms (however, it may have an etheric oxygen atom), and q is 0 or 1 It is.
  • the solid polymer electrolyte membrane 15 can be formed by, for example, a method (cast method) in which a liquid composition of an electrolyte material is applied on a base film or the catalyst layer 11 and dried.
  • the liquid composition is a dispersion in which an electrolyte material is dispersed in a dispersion medium containing an organic solvent having a hydroxyl group and water.
  • the temperature of the heat treatment is preferably 130 to 200 ° C. although it depends on the type of electrolyte material. When the temperature of the heat treatment is 130 ° C. or higher, the electrolyte material does not excessively contain water. If the temperature of the heat treatment is 200 ° C. or less, thermal decomposition of the ion exchange groups is suppressed, and a decrease in proton conductivity of the solid polymer electrolyte membrane 15 is suppressed.
  • the solid polymer electrolyte membrane 15 may be treated with a hydrogen peroxide solution as necessary.
  • the solid polymer electrolyte membrane 15 may be reinforced with a reinforcing material.
  • the reinforcing material include porous bodies, fibers, woven fabrics, and nonwoven fabrics.
  • the reinforcing material include polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoro (alkyl vinyl ether) copolymer, polyethylene, polypropylene, polyphenylene sulfide, and the like.
  • the solid polymer electrolyte membrane 15 may contain one or more atoms selected from the group consisting of cerium and manganese in order to further improve the durability. Cerium and manganese decompose hydrogen peroxide, which is a causative substance that causes deterioration of the solid polymer electrolyte membrane 15. Cerium and manganese are preferably present as ions in the solid polymer electrolyte membrane 15, and may exist in any state in the solid polymer electrolyte membrane 15 as long as they are present as ions.
  • the solid polymer electrolyte membrane 15 may contain silica and heteropolyacid (zirconium phosphate, phosphomolybdic acid, phosphotungstic acid, etc.) as a water retention agent for preventing drying.
  • the membrane electrode assembly 10 is manufactured, for example, by the following method.
  • membrane electrode assembly 10 is manufactured by the following method, for example.
  • a dispersion containing carbon and a nonionic fluorine-containing polymer is applied on a base film and dried to form a carbon layer 16.
  • a catalyst layer 11 is formed on the carbon layer 16.
  • the solid polymer electrolyte membrane 15 are bonded together, the base film is peeled off to form a membrane catalyst layer assembly having the carbon layer 16, and the membrane catalyst layer assembly is sandwiched between the gas diffusion layers 12.
  • a dispersion containing carbon and a nonionic fluoropolymer was applied on the gas diffusion layer 12 and dried to form the carbon layer 16, and the catalyst layer 11 was formed on the solid polymer electrolyte membrane 15.
  • a method in which a membrane catalyst layer assembly is sandwiched between gas diffusion layers 12 each having a carbon layer 16.
  • the membrane electrode assembly 10 described above is excellent in power generation characteristics under any of low humidification, non-humidification conditions, and high humidification conditions.
  • the membrane electrode assembly of the present invention is used for a polymer electrolyte fuel cell.
  • a polymer electrolyte fuel cell is manufactured, for example, by forming a cell by sandwiching a membrane electrode assembly between two separators and stacking a plurality of cells.
  • Examples of the separator include a conductive carbon plate in which a groove serving as a passage for an oxidant gas (air, oxygen, etc.) containing fuel gas or oxygen is formed.
  • Examples of the polymer electrolyte fuel cell include a hydrogen / oxygen fuel cell and a direct methanol fuel cell (DMFC).
  • the methanol or methanol aqueous solution used for the DMFC fuel may be a liquid feed or a gas feed.
  • Examples 1 to 9 and 17 to 25 are examples, and examples 10 to 16 and 26 to 32 are comparative examples.
  • TQ is an index of the molecular weight of the polymer (F).
  • the extrusion amount when the polymer (F) is melt-extruded from a nozzle having a length of 1 mm and an inner diameter of 1 mm under an extrusion pressure of 2.94 MPa is 100 mm 3. / Second.
  • a flow tester CFT-500A manufactured by Shimadzu Corporation
  • the extrusion amount of the polymer (F) was measured while changing the temperature, and the temperature (TQ) at which the extrusion amount was 100 mm 3 / second was determined.
  • the water content of the polymer (H) was determined by the following method.
  • the polymer (F) was press-molded at a temperature TQ to obtain a film having a thickness of 100 to 200 ⁇ m.
  • the film is immersed in an aqueous solution containing 20% by mass of methanol and 15% by mass of potassium hydroxide for 40 hours to hydrolyze the —SO 2 F group of the polymer (F) in the film, Converted to SO 3 K group.
  • the film was immersed in a 3 mol / L hydrochloric acid aqueous solution for 2 hours.
  • the hydrochloric acid aqueous solution was replaced, and the same treatment was repeated four more times.
  • the film was sufficiently washed with ultrapure water, and the —SO 3 K group of the polymer in the film was converted to a sulfonic acid group to obtain a polymer (H) film.
  • the film was immersed in warm water at 80 ° C. for 16 hours, and then the film was cooled to room temperature together with warm water. The film was taken out of the water, water droplets adhering to the surface were wiped off, and the mass of the film when it was wet was measured immediately. Next, the film was put in a glove box and left in an atmosphere of flowing dry nitrogen for 24 hours or more to dry the film. And the dry mass of the film was measured in the glove box. From the difference between the moisture content of the film and the dry mass, the mass of water absorbed by the polymer (H) when moisture was obtained was determined. And the moisture content of the polymer was calculated
  • required from the following Formula. Water content (mass of water absorbed by polymer (H) when it contains water / dry mass of film) ⁇ 100.
  • Example 1 In a 125 mL stainless steel autoclave, 9.16 g of compound (m1-1), 5.67 g of compound (m2-1), 5.0 g of compound (s-1) and 2 of compound (i-1) .4 mg was charged and sufficiently deaerated under cooling with liquid nitrogen. Then, after heating up to 65 degreeC and stirring for 23.5 hours, the autoclave was cooled and reaction was stopped. After the product was diluted with the compound (s-1), n-hexane was added thereto, and the polymer was aggregated and filtered. Thereafter, the polymer was stirred in compound (s-1), re-agglomerated with n-hexane, and dried under reduced pressure at 80 ° C.
  • the polymer (F-1) is immersed in an aqueous solution containing 20% by mass of methanol and 15% by mass of potassium hydroxide for 40 hours to hydrolyze the —SO 2 F group in the polymer (F-1), Converted to —SO 3 K group. Then, the polymer was immersed in a 3 mol / L hydrochloric acid aqueous solution for 2 hours. The hydrochloric acid aqueous solution was replaced, and the same treatment was repeated four more times. The polymer was sufficiently washed with ultrapure water to obtain a polymer (H-1) in which —SO 3 K groups in the polymer were converted to sulfonic acid groups.
  • Water was further added to adjust the solid content concentration to 7.0% by mass to obtain a liquid composition (D-1) in which the polymer (H-1) was dispersed in a dispersion medium.
  • Example 2 In a 125 mL stainless steel autoclave, 9.26 g of compound (m1-1), 5.03 g of compound (m2-1), 17.5 g of compound (s-1) and 28 of compound (i-1) .3 mg was charged and sufficiently deaerated under cooling with liquid nitrogen. Then, after heating up to 65 degreeC and stirring for 8 hours, the autoclave was cooled and reaction was stopped. After the product was diluted with the compound (s-1), n-hexane was added thereto, and the polymer was aggregated and filtered. Thereafter, the polymer was stirred in compound (s-1), re-agglomerated with n-hexane, and dried under reduced pressure at 80 ° C. overnight to obtain polymer (F-2).
  • Example 3 In an autoclave made of stainless steel having an internal volume of 125 mL, 8.95 g of compound (m1-1), 5.73 g of compound (m2-1), 7.1 g of compound (s-1), and 3.2% by mass of compound 265 mg of the compound (s-1) solution containing (i-2) was charged and sufficiently deaerated under cooling with liquid nitrogen. Thereafter, the temperature was raised to 21 ° C. and stirred for 16.3 hours, and then the reaction was stopped by cooling the autoclave. After the product was diluted with the compound (s-1), n-hexane was added thereto, and the polymer was aggregated and filtered.
  • Example 4 In an autoclave made of stainless steel having an internal volume of 125 mL, 10.5 g of compound (m1-1), 2.0 g of compound (m2-1), 0.85 g of compound (m5-2-1), and 3.2% by mass 380 mg of the compound (s-1) solution containing the compound (i-2) is charged and sufficiently deaerated under cooling with liquid nitrogen. Then, after heating up to 21 degreeC and stirring for 17 hours, an autoclave is cooled and reaction is stopped. After diluting the product with the compound (s-1), n-hexane is added thereto, and the polymer is aggregated and filtered.
  • polymer (F-4) is stirred in compound (s-1), re-agglomerated with n-hexane, and dried under reduced pressure at 80 ° C. overnight to obtain polymer (F-4). Yield is 5.4 g.
  • TQ of the polymer (F-4), the ion exchange capacity and the water content of the polymer (H-4) are measured. The results are shown in Table 1.
  • polymer (F-4) polymer (H-4) and liquid composition (D-4) are obtained in the same manner as in Example 1.
  • Example 5 In a 125 mL stainless steel autoclave, 10.6 g of compound (m1-3), 6.0 g of compound (m2-1), 5.4 g of compound (s-1), and 2 of compound (i-1) .7 mg is charged and thoroughly deaerated under cooling with liquid nitrogen. Then, after heating up to 65 degreeC and stirring for 20 hours, an autoclave is cooled and reaction is stopped. After diluting the product with the compound (s-1), n-hexane is added thereto, and the polymer is aggregated and filtered. Thereafter, the polymer is stirred in compound (s-1), re-agglomerated with n-hexane, and dried under reduced pressure at 80 ° C. overnight to obtain polymer (F-5).
  • Example 6 In a 125 mL stainless steel autoclave, 7.0 g of compound (m1-2), 5.1 g of compound (m2-1), 4.5 g of compound (s-1) and 4 of compound (i-1) Charge 5 mg and thoroughly deaerate under cooling with liquid nitrogen. Then, after heating up to 65 degreeC and stirring for 16 hours, an autoclave is cooled and reaction is stopped. After diluting the product with the compound (s-1), n-hexane is added thereto, and the polymer is aggregated and filtered. Thereafter, the polymer is stirred in compound (s-1), re-agglomerated with n-hexane, and dried under reduced pressure at 80 ° C. overnight to obtain polymer (F-6).
  • Example 7 A stainless steel autoclave having an internal volume of 125 mL was charged with 7.2 g of the compound (m1-4), 5.5 g of the compound (m2-1), and 2.0 mg of the compound (i-1). Degas enough. Then, after heating up to 65 degreeC and stirring for 18 hours, an autoclave is cooled and reaction is stopped. After diluting the product with the compound (s-1), n-hexane is added thereto, and the polymer is aggregated and filtered. Thereafter, the polymer is stirred in the compound (s-1), re-agglomerated with n-hexane, and dried under reduced pressure at 80 ° C. overnight to obtain a polymer (F-7). The yield is 7.0 g.
  • Example 8 In a stainless steel autoclave with an internal volume of 31 mL, 7.2 g of compound (m1-1), 3.9 g of compound (m2-1), 12.5 g of compound (s-1), 2.0 g of TFE and compound ( 5.9 mg of i-1) was charged and sufficiently deaerated under cooling with liquid nitrogen. Then, after heating up to 65 degreeC and stirring for 6 hours, the autoclave was cooled and reaction was stopped. After the product was diluted with the compound (s-1), n-hexane was added thereto, and the polymer was aggregated and filtered. Thereafter, the polymer was stirred in compound (s-1), re-agglomerated with n-hexane, and dried under reduced pressure at 80 ° C.
  • Example 9 A stainless steel autoclave having an internal volume of 125 mL was charged with 9.15 g of the compound (m1-1), 8.60 g of the compound (m2-2), and 9.0 mg of the compound (i-1), and cooled with liquid nitrogen, Degas enough. Thereafter, the temperature is raised to 65 ° C. and held for 15 hours, and then the reaction is stopped by cooling the autoclave. After diluting the product with the compound (s-1), n-hexane is added thereto, and the polymer is aggregated and filtered. Thereafter, the polymer is stirred in compound (s-1), re-agglomerated with n-hexane, and dried under reduced pressure at 80 ° C. overnight to obtain polymer (F-9).
  • Example 10 A stainless steel autoclave having an internal volume of 230 mL was charged with 123.8 g of the compound (m3-1), 63.6 g of the compound (s-1), and 63.6 mg of the compound (i-3), and cooled with liquid nitrogen. I was deaerated well. Thereafter, the temperature was raised to 70 ° C., TFE was introduced into the system, and the pressure was maintained at 1.14 MPaG. After stirring for 8 hours, the reaction was stopped by cooling the autoclave. After the product was diluted with compound (s-1), compound (s-2) was added thereto, and the polymer was aggregated and filtered.
  • polymer (F-10) was stirred in compound (s-1), re-agglomerated with compound (s-2), and dried under reduced pressure at 80 ° C. overnight to obtain polymer (F-10).
  • the yield was 25.2g.
  • TQ of the polymer (F-10) and the ion exchange capacity and water content of the polymer (H-10) were measured. The results are shown in Table 1.
  • polymer (F-10) polymer (H-10) and liquid composition (D-10) were obtained in the same manner as in Example 1.
  • Example 11 A stainless steel autoclave with an internal volume of 230 mL was charged with 140.0 g of the compound (m4-1), 30.2 g of the compound (s-1) and 170 mg of the compound (i-3). I care. Thereafter, the temperature is raised to 65 ° C., TFE is introduced into the system, and the pressure is maintained at 1.23 MPaG. After stirring at 65 ° C. for 7.2 hours, the gas in the system is purged, and the reaction is stopped by cooling the autoclave. After the product is diluted with the compound (s-1), the compound (s-2) is added thereto, and the polymer is aggregated and filtered.
  • polymer (F-11) is obtained in the same manner as in Example 1.
  • the solid content concentration was adjusted to 15 mass%
  • the autoclave For 8 hours at 125 ° C.
  • water is added to adjust the solid content concentration to 9% by mass to obtain a liquid composition (D-11) in which the polymer (H-11) is dispersed in a dispersion medium.
  • Example 12 In a 125 mL stainless steel autoclave, 9.38 g of compound (m1-1), 11.36 g of compound (m2-1), 28.59 g of compound (s-1) and 80 of compound (i-1) .2 mg was charged and sufficiently deaerated under cooling with liquid nitrogen. Then, after heating up to 65 degreeC and stirring for 5.6 hours, the autoclave was cooled and reaction was stopped. After the product was diluted with the compound (s-1), n-hexane was added thereto, and the polymer was aggregated and filtered. Thereafter, the polymer was stirred in compound (s-1), re-agglomerated with n-hexane, and dried under reduced pressure at 80 ° C.
  • Example 13 In a 125 mL stainless steel autoclave, 9.99 g of compound (m1-1), 11.44 g of compound (m2-1), 28.58 g of compound (s-1) and 100 mg of compound (i-1) was sufficiently deaerated under cooling with liquid nitrogen. Then, after heating up to 65 degreeC and stirring for 3.5 hours, the autoclave was cooled and reaction was stopped. After the product was diluted with the compound (s-1), n-hexane was added thereto, and the polymer was aggregated and filtered. Thereafter, the polymer was stirred in compound (s-1), re-agglomerated with n-hexane, and dried under reduced pressure at 80 ° C. overnight to obtain polymer (F-13).
  • Example 14 In a stainless steel autoclave having an internal volume of 125 mL, a compound (s-) containing 4.5 g of the compound (m2-1), 80.0 g of the compound (m3-1), and 3.2% by mass of the compound (i-2) 1) Charge 30.0 mg of the solution and thoroughly deaerate under cooling with liquid nitrogen. Then, after heating up to 21 degreeC and stirring for 15 hours, an autoclave is cooled and reaction is stopped. After diluting the product with the compound (s-1), n-hexane is added thereto, and the polymer is aggregated and filtered.
  • polymer (F-14) is stirred in compound (s-1), re-agglomerated with n-hexane, and dried under reduced pressure at 80 ° C. overnight to obtain polymer (F-14).
  • the yield is 4.5g.
  • TQ of the polymer (F-14) and the ion exchange capacity and water content of the polymer (H-14) are measured. The results are shown in Table 1.
  • polymer (F-14) polymer (H-14) and liquid composition (D-14) are obtained in the same manner as in Example 1.
  • Example 15 In a 125 mL stainless steel autoclave, 0.9 g of compound (m1-1), 93.66 g of compound (m4-1), 15.4 g of TFE, and 3.2% by mass of compound (i-2) Is charged with 5.0 mg of the compound (s-1) solution containing, and sufficiently deaerated under cooling with liquid nitrogen. Then, after heating up to 21 degreeC and stirring for 15 hours, an autoclave is cooled and reaction is stopped. After the product is diluted with the compound (s-1), n-hexane is added thereto, and the polymer is aggregated and filtered.
  • polymer (F-15) is stirred in compound (s-1), re-agglomerated with n-hexane, and dried under reduced pressure at 80 ° C. overnight to obtain polymer (F-15). Yield is 9.7 g.
  • TQ of the polymer (F-15) and the ion exchange capacity and water content of the polymer (H-15) are measured. The results are shown in Table 1.
  • polymer (F-15) and liquid composition (D-15) are obtained in the same manner as in Example 1.
  • Example 16 In a 125 mL stainless steel autoclave, 4.16 g of compound (m1-1), 2.26 g of compound (m2-1), 79.0 g of compound (s-1) and 255 mg of compound (i-1) And sufficiently deaerated under cooling with liquid nitrogen. Then, after heating up to 65 degreeC and stirring for 6 hours, an autoclave is cooled and reaction is stopped. After diluting the product with the compound (s-1), n-hexane is added thereto, and the polymer is aggregated and filtered. Thereafter, the polymer is stirred in compound (s-1), re-agglomerated with n-hexane, and dried under reduced pressure at 80 ° C. overnight to obtain polymer (F-16).
  • Example 17 39 g of water was added to 10 g of a supported catalyst in which 50% by mass of platinum was supported on carbon powder, and ultrasonic waves were applied for 10 minutes to obtain a catalyst dispersion.
  • 60 g of the liquid composition (D-1) was added to the catalyst dispersion, and 64 g of ethanol was further added to adjust the solid content concentration to 8% by mass to obtain a catalyst layer forming solution.
  • the solution was applied onto a separately prepared sheet of ethylene and tetrafluoroethylene (trade name: Aflex 100N, manufactured by Asahi Glass Co., Ltd., thickness 100 ⁇ m) (hereinafter referred to as ETFE sheet), 80 It was dried at 30 ° C. for 30 minutes, and further subjected to heat treatment at 165 ° C. for 30 minutes to form a catalyst layer having a platinum amount of 0.35 mg / cm 2 .
  • ETFE sheet ethylene and tetrafluoroethylene
  • the liquid composition (D-11) was applied on an ETFE sheet with a die coater, dried at 80 ° C. for 30 minutes, and further subjected to heat treatment at 190 ° C. for 30 minutes to form a solid polymer electrolyte membrane having a thickness of 20 ⁇ m. .
  • the solid polymer electrolyte membrane is sandwiched between two catalyst layers (with ETFE film) and heated under the conditions of a press temperature of 160 ° C., a press time of 5 minutes, and a pressure of 3 MPa. Then, the catalyst layer was bonded to both surfaces of the solid polymer electrolyte membrane, and the ETFE film was peeled off from the catalyst layer to obtain a membrane catalyst layer assembly having an electrode area of 25 cm 2 .
  • a carbon layer made of carbon and polytetrafluoroethylene was formed on the gas diffusion layer made of carbon paper.
  • the membrane / catalyst layer assembly was sandwiched between two gas diffusion layers so that the carbon layer and the catalyst layer were in contact with each other to obtain a membrane / electrode assembly.
  • the membrane electrode assembly was incorporated into a power generation cell, and power generation characteristics were evaluated under the following two conditions.
  • Example 18 to 32 Membrane electrode bonding in the same manner as in Example 17 except that the liquid composition (D-1) used to form the catalyst layer was changed to liquid compositions (D-2) to (D-16), respectively. The body was manufactured and the power generation characteristics were evaluated. The evaluation results are shown in Table 2.
  • the electrolyte material of the present invention is useful as an electrolyte material for a polymer electrolyte fuel cell.
  • Other applications proto selective permeable membranes used for water electrolysis, hydrogen peroxide production, ozone production, waste acid recovery, etc .; cation exchange membranes for electrodialysis used for salt electrolysis, redox flow battery membranes, desalting or salt production Etc.).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 ジオキソラン環を有するモノマーに基づく繰り返し単位を有しているポリマーのイオン交換容量が高くても含水率の上昇が抑えられる電解質材料;低加湿、無加湿条件下および高加湿条件下においても発電特性に優れる膜電極接合体を提供する。 イオン交換基の前駆体基およびジオキソラン環を有するペルフルオロモノマーに基づく繰り返し単位(A)と、前駆体基を有さずジオキソラン環を有するペルフルオロモノマーに基づく繰り返し単位(B)とを有し、長さ1mm、内径1mmのノズルから、2.94MPaの押出し圧力の条件でポリマー(F)の溶融押出しを行った際の押出し量が100mm/秒となる温度TQが200℃以上であるポリマー(F)の前駆体基をイオン交換基に変換した、イオン交換容量が1.35ミリ当量/g乾燥樹脂以上であるポリマー(H)からなる電解質材料を用いる。

Description

電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体
 本発明は、固体高分子形燃料電池用の電解質材料、該電解質材料を含む液状組成物、および該電解質材料を触媒層に含む固体高分子形燃料電池用膜電極接合体に関する。
 固体高分子形燃料電池用膜電極接合体の触媒層に含まれる電解質材料としては、一般的に下記のポリマー(1)が知られている。
 下式(m3)で表される化合物に基づく繰り返し単位とテトラフルオロエチレン(以下、TFEと記す。)に基づく繰り返し単位とを有するポリマーの-SOF基をスルホン酸基(-SOH基)に変換したポリマー(1)。
 CF=CF(OCFCFZ)(CFSOF ・・・(m3)。
 ただし、Zは、フッ素原子またはトリフルオロメチル基であり、mは、0~3の整数であり、pは、0または1であり、nは、1~12であり、m+p>0である。
 固体高分子形燃料電池には、燃料電池システムの簡素化や低コスト化のために、反応ガス(燃料ガスおよび酸化剤ガス)の相対湿度が低い低加湿、さらには無加湿条件における運転が求められている。低加湿、無加湿条件下で充分な発電特性(出力電圧等)を発揮させるためには、触媒層に含まれる電解質材料の導電性を高くすること、すなわち電解質材料のイオン交換容量を高くする必要がある。
 しかし、ポリマー(1)のイオン交換容量を高くする、すなわち式(m3)で表される化合物に基づく繰り返し単位の割合を増やすと、ポリマー(1)の含水率(吸水性)が高くなるため、反応ガスの相対湿度が高い高加湿条件下では、触媒層において水蒸気の凝縮による細孔の閉塞(フラッディング)が発生しやすく、イオン交換容量を高くすることは困難である。
 一方、電解質材料としては分子内に環構造を有するポリマーも知られている。たとえば、-SOF基およびジオキソラン環を有するペルフルオロモノマーに基づく繰り返し単位と、-SOF基を有さず、ジオキソラン環を有するペルフルオロモノマーに基づく繰り返し単位とを有するポリマーの-SOF基をスルホン酸基(-SOH基)に変換したポリマー(2)である(特許文献1)。
 ポリマー(2)を触媒層の電解質材料に用いた固体高分子形燃料電池は、ポリマー(1)を用いたものに比べ発電特性に優れる特徴を持つ。低加湿、無加湿条件下で更なる高性能を発現させるためには、ポリマー(2)のイオン交換容量を高くすることが有効である。しかし、ポリマー(2)のイオン交換容量を単に高くしただけでは、ポリマー(2)の含水率(吸水性)が急激に高くなるため、反応ガスの相対湿度が高い高加湿条件下では、フラッディングが発生しやすくなり発電特性(出力電圧等)が低下し、ポリマー(2)の特徴を充分に引き出すことができない。
国際公開第2004/097851号パンフレット
 本発明は、ジオキソラン環を有するモノマーに基づく繰り返し単位を有しているポリマーのイオン交換容量を高くしても含水率の上昇が抑えられる電解質材料;低加湿、無加湿条件下および高加湿条件下のいずれにおいても発電特性に優れる膜電極接合体;および該膜電極接合体における触媒層の形成に好適な液状組成物を提供する。
 本発明の電解質材料は、下記ポリマー(F)の前駆体基をイオン交換基に変換した、イオン交換容量が1.35ミリ当量/g乾燥樹脂以上であるポリマー(H)からなることを特徴とする。
 ポリマー(F):イオン交換基の前駆体基およびジオキソラン環を有するペルフルオロモノマーに基づく繰り返し単位(A)と、イオン交換基およびその前駆体基を有さず、ジオキソラン環を有するペルフルオロモノマーに基づく繰り返し単位(B)とを有し、下記に定義されるTQが200℃以上であるポリマー。
 TQ:長さ1mm、内径1mmのノズルから、2.94MPaの押出し圧力の条件でポリマー(F)の溶融押出しを行った際の押出し量が100mm/秒となる温度。
 前記ポリマー(H)のイオン交換基は、下式(g1)で表される基であることが好ましい。
 -(SOX(SO ・・・(g1)。
 ただし、Mは、H、一価の金属カチオン、または1以上の水素原子が炭化水素基と置換されていてもよいアンモニウムイオンであり、Rは、エーテル結合性酸素原子を有してもよい直鎖または分岐のペルフルオロアルキル基であり、Xは、酸素原子、窒素原子または炭素原子であって、Xが酸素原子の場合a=0であり、Xが窒素原子の場合a=1であり、Xが炭素原子の場合a=2である。
 前記繰り返し単位(A)の前駆体基をイオン交換基に変換した繰り返し単位の少なくとも一種は、下式(u1)で表わされる繰り返し単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000005
 ただし、Rは、エーテル結合性酸素原子を有してもよい2価のペルフルオロ有機基であり、R~Rは、それぞれ独立にエーテル結合性酸素原子を有してもよい1価のペルフルオロ有機基またはフッ素原子である。
 前記RおよびRは、フッ素原子であることが好ましい。
 前記Mは、Hであることが好ましい。
 前記式(u1)で表わされる繰り返し単位の少なくとも一種は、下式(u1-1)で表わされる繰り返し単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000006
 前記繰り返し単位(B)の少なくとも一種は、下式(u2)で表わされる繰り返し単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000007
 ただし、R~R12は、それぞれ独立にエーテル結合性酸素原子を有してもよい1価のペルフルオロ有機基またはフッ素原子である。
 前記式(u2)で表わされる繰り返し単位の少なくとも一種は、下式(u2-1)で表わされる繰り返し単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000008
 本発明の液状組成物は、分散媒と、該分散媒に分散された本発明の電解質材料とを含み、前記分散媒が、水酸基を有する有機溶媒を含むことを特徴とする。
 本発明の固体高分子形膜電極接合体は、プロトン伝導性ポリマーを含む触媒層を有するアノードと、プロトン伝導性ポリマーを含む触媒層を有するカソードと、前記アノードと前記カソードとの間に配置される固体高分子電解質膜とを備えた固体高分子形燃料電池用膜電極接合体において、前記カソードおよび前記アノードの少なくとも一方の触媒層に含まれるプロトン伝導性ポリマーが、本発明の電解質材料であることを特徴とする。
 本発明の電解質材料は、ジオキソラン環を有するモノマーに基づく繰り返し単位を有しているポリマーのイオン交換容量を高くしても含水率の上昇が抑えられる。
 本発明の膜電極接合体は、低加湿、無加湿条件下および高加湿条件下のいずれにおいても発電特性に優れる。
 本発明の液状組成物は、本発明の膜電極接合体における触媒層の形成に好適である。
本発明の膜電極接合体の一例を示す断面図である。 本発明の膜電極接合体の他の例を示す断面図である。
 本明細書においては、式(u1)で表される繰り返し単位を単位(u1)と記す。他の式で表される繰り返し単位も同様に記す。
 また、本明細書においては、式(m1)で表される化合物を化合物(m1)と記す。他の式で表される化合物も同様に記す。
 また、本明細書においては、式(g1)で表される基を基(g1)と記す。他の式で表される基も同様に記す。
<電解質材料>
 本発明の電解質材料は、ポリマー(F)の前駆体基をイオン交換基に変換したポリマー(H)からなる。
(ポリマー(F)):
 ポリマー(F)は、特定の繰り返し単位(A)と、特定の繰り返し単位(B)と、必要に応じて他の繰り返し単位(C)とを有するポリマーである。
 繰り返し単位(A):
 繰り返し単位(A)は、イオン交換基の前駆体基およびジオキソラン環を有するペルフルオロモノマー(以下、モノマー(a)とも記す。)に基づく繰り返し単位である。
 繰り返し単位とは、モノマーが重合することによって形成された該モノマーに由来する単位を意味する。繰り返し単位は、重合反応によって直接形成された単位であってもよく、ポリマーを処理することによって該単位の一部が別の構造に変換された単位であってもよい。
 モノマーとは、重合反応性の炭素-炭素二重結合を有する化合物である。
 前駆体基とは、加水分解処理、酸型化処理等の公知の処理によりイオン交換基に変換できる基である。前駆体基としては、-SOF基等が挙げられる。
 ジオキソラン環とは、下式(s1)で表される骨格を有する環である。ジオキソラン環には、環を構成する炭素-炭素結合が二重結合である下式(s2)で表される骨格を有する環は含まれない。
Figure JPOXMLDOC01-appb-C000009
 モノマー(a)としては、重合時の高い反応性の観点から、化合物(m1)が好ましい。
Figure JPOXMLDOC01-appb-C000010
 Rは、エーテル結合性酸素原子を有してもよい2価のペルフルオロ有機基である。有機基は、炭素原子を1個以上有する基である。2価のペルフルオロ有機基としては、ペルフルオロアルキレン基が好ましい。ペルフルオロアルキレン基がエーテル結合性酸素原子を有する場合、該酸素原子は、1個であってもよく、2個以上であってもよい。また、該酸素原子は、ペルフルオロアルキレン基の炭素-炭素結合間に挿入されていてもよく、炭素原子結合末端に挿入されていてもよい。ペルフルオロアルキレン基は、直鎖状であってもよく、分岐状であってもよく、直鎖状であることが好ましい。
 R~Rは、それぞれ独立にエーテル結合性酸素原子を有してもよい1価のペルフルオロ有機基またはフッ素原子である。1価のペルフルオロ有機基としては、ペルフルオロアルキル基が好ましい。ペルフルオロアルキル基がエーテル結合性酸素原子を有する場合、該酸素原子は、1個であってもよく、2個以上であってもよい。また、該酸素原子は、ペルフルオロアルキル基の炭素-炭素結合間に挿入されていてもよく、炭素原子結合末端に挿入されていてもよい。ペルフルオロアルキル基は、直鎖状であってもよく、分岐状であってもよく、直鎖状であることが好ましい。
 RおよびRは、重合反応性が高い点から、少なくとも一方がフッ素原子であることが好ましく、両方がフッ素原子であることがより好ましい。
 化合物(m1)としては、合成が容易である点および重合反応性が高い点から、化合物(m1-1)が特に好ましい。
Figure JPOXMLDOC01-appb-C000011
 化合物(m1)は、国際公開第2003/037885号パンフレット、特開2005-314388の号公報、特開2009-040909号公報等に記載された方法により合成できる。
 繰り返し単位(B):
 繰り返し単位(B)は、イオン交換基およびその前駆体基を有さず、ジオキソラン環を有するペルフルオロモノマー(以下、モノマー(b)とも記す。)に基づく繰り返し単位である。
 イオン交換基は、H、一価の金属カチオン、アンモニウムイオン等を有する基である。イオン交換基としては、後述の基(g1)等が挙げられる。
 モノマー(b)としては、重合時の高い反応性の観点から、化合物(m2)が好ましい。
Figure JPOXMLDOC01-appb-C000012
 R~R12は、それぞれ独立にエーテル結合性酸素原子を有してもよい1価のペルフルオロ有機基またはフッ素原子である。1価のペルフルオロ有機基としては、ペルフルオロアルキル基が好ましい。ペルフルオロアルキル基がエーテル結合性酸素原子を有する場合、該酸素原子は、1個であってもよく、2個以上であってもよい。また、該酸素原子は、ペルフルオロアルキル基の炭素-炭素結合間に挿入されていてもよく、炭素原子結合末端に挿入されていてもよい。ペルフルオロアルキル基は、直鎖状であってもよく、分岐状であってもよく、直鎖状であることが好ましい。
 R11およびR12は、重合反応性が高い点から、少なくとも一方がフッ素原子であることが好ましく、両方がフッ素原子であることがより好ましい。
 化合物(m2)としては、合成が容易である点および重合反応性が高い点から、化合物(m2-1)が特に好ましい。
Figure JPOXMLDOC01-appb-C000013
 モノマー(b)として、イオン交換基およびその前駆体基を有さず、ジオキソラン環を有し、かつ重合反応性を有する炭素-炭素二重結合を1つ有するペルフルオロモノマー(以下、モノマー(b’)とも記す。)とイオン交換基およびその前駆体基を有さず、ジオキソラン環を有し、かつ重合反応性を有する炭素-炭素二重結合を2つ以上有するペルフルオロモノマー(以下、モノマー(b”)とも記す。)とを併用してもよい。モノマー(a)、モノマー(b’)およびモノマー(b”)の3つのモノマーを重合することによりポリマー(F)の分子量、つまりTQを上げることができる。
 モノマー(b”)としては、化合物(m2”)が好ましい。
Figure JPOXMLDOC01-appb-C000014
 ただし、QF1は、単結合、酸素原子、またはエーテル結合性酸素原子を有してもよい炭素数1~10のペルフルオロアルキレン基である。
 化合物(m2”)としては、合成が容易である点および重合反応性が高い点から、化合物(m2”-1)~(m2”-6)が好ましい。
Figure JPOXMLDOC01-appb-C000015
 モノマー(b”)の添加量は、ポリマー(F)を構成する全モノマー(モノマー(a)、モノマー(b’)およびモノマー(b”)の合計)100モル%のうち、0.001~50モル%が好ましい。0.001モル%未満では、分子量を上げる効果が少なく、また、50モル%より多いと、分子量が高くなりすぎ、その後工程で液状組成物の調製が難しくなる。
 他の繰り返し単位(C):
 他の繰り返し単位(C)は、前記ジオキソラン環を有するペルフルオロモノマー以外の他のモノマー(以下、モノマー(c)とも記す。)に基づく繰り返し単位である。
 モノマー(c)としては、TFE、クロロトリフルオロエチレン、トリフルオロエチレン、フッ化ビニリデン、フッ化ビニル、エチレン、プロピレンン、ペルフルオロ(3-ブテニルビニルエーテル)、ペルフルオロ(アリルビニルエーテル)、ペルフルオロα-オレフィン類(ヘキサフルオロプロピレン等)、(ペルフルオロアルキル)エチレン類((ペルフルオロブチル)エチレン等)、(ペルフルオロアルキル)プロペン類(3-ペルフルオロオクチル-1-プロペン等)、ペルフルオロ(アルキルビニルエーテル)類等が挙げられる。モノマー(c)としては、TFEが特に好ましい。TFEは高い結晶性を有するため、ポリマー(H)が含水した際の膨潤を抑える効果があり、ポリマー(H)の含水率を低減できる。
 また、モノマー(c)として、重合反応性を有する炭素-炭素二重結合を2つ以上有するペルフルオロモノマー(以下、モノマー(c”)とも記す。)を用いてもよい。モノマー(c”)を用いることにより、ポリマー(F)のTQを上げることができ、ポリマー(H)の含水率を抑制する効果を有する。
 モノマー(c”)としては、化合物(m5)が挙げられる。
 CF=CFORf3OCF=CF ・・・(m5)。
 ただし、Rf3は、直鎖または分岐構造を有するエーテル結合性酸素原子を有してもよいペルフルオロアルキレン基である。
 化合物(m5)としては、合成が容易である点から、化合物(m5-1)~(m5-3)が好ましい。
 CF=CFOCF=CF ・・・(m5-1)、
 CF=CFO(CFOCF=CF ・・・(m5-2)、
 CF=CF[OCFCF(CF)]O(CF[OCF(CF)CFOCF=CF ・・・(m5-3)。
 ただし、h、kは、2~8の整数であり、i、jは、それぞれ独立に0~5の整数であり、i+j≧1である。
 モノマー(c”)の添加量は、ポリマー(F)を構成する全モノマー(モノマー(a)、モノマー(b)およびモノマー(c)の合計)100モル%のうち、0.001~20モル%が好ましい。0.001モル%未満では、分子量を上げる効果が充分でなく、また、20モル%より多いと、モノマー(a)、モノマー(b)との反応性の違いからポリマー(F)の製造が難しくなる。
 イオン交換容量:
 ポリマー(H)のイオン交換容量は、1.35ミリ当量/g乾燥樹脂以上であり、1.4~3.8ミリ当量/g乾燥樹脂が好ましい。イオン交換容量が1.35ミリ当量/g乾燥樹脂以上であれば、ポリマー(H)の導電性が高くなるため、固体高分子形燃料電池の触媒層の電解質材料として用いた場合、充分な電池出力を得ることできる。イオン交換容量が3.8ミリ当量/g乾燥樹脂以下であれば、TQの高いポリマー(F)の合成が容易であり、また、ポリマー(H)の含水率上昇が抑えられる。
 ポリマー(H)のイオン交換容量を1.35ミリ当量/g乾燥樹脂以上にするには、ポリマー(F)を合成する際の化合物(m1)の割合を調整する。具体的には、重合時のモノマー組成を制御することが重要であり、そのためには、モノマーの重合反応性を考慮した上で仕込み組成を決める必要がある。また、モノマーを2種以上反応させる場合は、より反応性の高いモノマーを逐次的または連続的に添加することで、一定の組成で反応を進めることができる。
 TQ:
 ポリマー(F)のTQは、200℃以上であり、230℃以上が好ましく、250℃以上がより好ましい。TQが200℃以上であれば、ポリマー(F)のイオン交換容量を高くしても、ポリマー(H)の含水率の上昇が抑えられ、固体高分子形燃料電池の触媒層の電解質材料として用いた場合、触媒層におけるフラッディングが抑えられる。
 ポリマー(F)のTQは、長さ1mm、内径1mmのノズルから、2.94MPaの押出し圧力の条件でポリマー(F)の溶融押出しを行った際の押出し量が100mm/秒となる温度であり、ポリマー(F)の分子量の指標となる。
 ポリマー(F)のTQを200℃以上に調整する方法としては、特に限定はされないが(i)重合条件を調整する方法、(ii)重合反応性を有する炭素-炭素二重結合を2個以上有するペルフルオロモノマーを添加する方法、等が挙げられる。
 (i)の方法においては、重合時の連鎖移動を抑制することが重要である。具体的には、重合の形態としては溶媒を用いないバルク重合を行うことが好ましい。溶液重合を行う際には、連鎖移動性の少ない溶媒を用いることが有効である。ラジカル開始剤としては連鎖移動性の少ないラジカル開始剤、特にパーフルオロ化合物からなるラジカル開始剤を用いることが好ましい。また、ラジカル開始剤による再結合停止反応を減らすために、モノマーに対するラジカル開始剤の量を減らすことも有効である。
 (ii)の方法においては、上述したとおり、重合反応性を有する炭素-炭素二重結合を2個以上有するペルフルオロモノマーを添加することによりTQを上げることができる。
 ポリマー(F)の製造:
 ポリマー(F)は、モノマー(a)、モノマー(b)、および必要に応じてモノマー(c)を重合することによって製造される。
 重合法としては、バルク重合法、溶液重合法、懸濁重合法、乳化重合法等の公知の重合法が挙げられる。また、液体または超臨界の二酸化炭素中にて重合を行ってもよい。
 重合は、ラジカルが生起する条件で行われる。ラジカルを生起させる方法としては、紫外線、γ線、電子線等の放射線を照射する方法、ラジカル開始剤を添加する方法等が挙げられる。
 重合温度は、通常、10~150℃である。
 ラジカル開始剤としては、ビス(フルオロアシル)ペルオキシド類、ビス(クロロフルオロアシル)ペルオキシド類、ジアルキルペルオキシジカーボネート類、ジアシルペルオキシド類、ペルオキシエステル類、アゾ化合物類、過硫酸塩類等が挙げられ、不安定末端基が少ないポリマー(F)が得られる点から、ビス(フルオロアシル)ペルオキシド類等のペルフルオロ化合物が好ましい。
 溶液重合法にて用いる溶媒としては、20~350℃の沸点を有する溶媒が好ましく、40~150℃の沸点を有する溶媒がより好ましい。溶媒としては、ペルフルオロトリアルキルアミン類(ペルフルオロトリブチルアミン等)、ペルフルオロカーボン類(ペルフルオロヘキサン、ペルフルオロオクタン等)、ハイドロフルオロカーボン類(1H,4H-ペルフルオロブタン、1H-ペルフルオロヘキサン等)、ハイドロクロロフルオロカーボン類(3,3-ジクロロ-1,1,1,2,2-ペンタフルオロプロパン、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン等)が挙げられる。
 溶液重合法においては、溶媒中にモノマー、ラジカル開始剤等を添加し、溶媒中にてラジカルを生起させてモノマーの重合を行う。モノマーの添加は、一括添加であってもよく、逐次添加であってもよく、連続添加であってもよい。
 懸濁重合法においては、水を分散媒として用い、該分散媒中にモノマー、非イオン性のラジカル開始剤等を添加し、分散媒中にてラジカルを生起させてモノマーの重合を行う。
 非イオン性のラジカル開始剤としては、ビス(フルオロアシル)ペルオキシド類、ビス(クロロフルオロアシル)ペルオキシド類、ジアルキルペルオキシジカーボネート類、ジアシルペルオキシド類、ペルオキシエステル類、ジアルキルペルオキシド類、ビス(フルオロアルキル)ペルオキシド類、アゾ化合物類等が挙げられる。
 分散媒には、助剤として前記溶媒;懸濁粒子の凝集を防ぐ分散安定剤として界面活性剤;分子量調整剤として炭化水素系化合物(ヘキサン、メタノール等)等を添加してもよい。
(ポリマー(H))
 ポリマー(H)は、ポリマー(F)の前駆体基をイオン交換基に変換したポリマーであり、特定の繰り返し単位(A’)と、特定の繰り返し単位(B)と、必要に応じて他の繰り返し単位(C)とを有するポリマーである。
 繰り返し単位(A’)
 繰り返し単位(A’)は、繰り返し単位(A)の前駆体基をイオン交換基に変換した繰り返し単位である。
 イオン交換基は、基(g1)であることが好ましい。
 -(SOX(SO ・・・(g1)。
 Mは、H、一価の金属カチオン、または1以上の水素原子が炭化水素基と置換されていてもよいアンモニウムイオンであり、高導電性の観点から、Hが好ましい。
 Rは、エーテル結合性酸素原子を有してもよい直鎖または分岐のペルフルオロアルキル基である。ペルフルオロアルキル基の炭素数は、1~8が好ましく、1~6がより好ましい。2個以上のRを有する場合、Rは、それぞれ同じ基であってもよく、それぞれ異なる基であってもよい。
 Xは、酸素原子、窒素原子または炭素原子であって、Xが酸素原子の場合a=0であり、Xが窒素原子の場合a=1であり、Xが炭素原子の場合a=2である。
 基(g1)としては、スルホン酸基(-SO 基)、スルホンイミド基(-SON(SO基)、またはスルホンメチド基(-SOC(SO基)が挙げられる。
 繰り返し単位(A’)としては、繰り返し単位(A)を構成するモノマー(a)の重合反応性の高さから、単位(u1)が好ましい
Figure JPOXMLDOC01-appb-C000016
 R~Rは、化合物(m1)において説明した通りである。
 RおよびRは、重合反応性が高い点から、少なくとも一方がフッ素原子であることが好ましく、両方がフッ素原子であることがより好ましい。
 単位(u1)としては、繰り返し単位(A)を構成するモノマー(a)の合成のしやすさから、単位(u1-1)が特に好ましい。
Figure JPOXMLDOC01-appb-C000017
 繰り返し単位(B):
 繰り返し単位(B)は、イオン交換基およびその前駆体基を有さず、ジオキソラン環を有するペルフルオロモノマーに基づく繰り返し単位である。
 繰り返し単位(B)としては、モノマー(b)の重合反応性の高さから、単位(u2)が好ましい。
Figure JPOXMLDOC01-appb-C000018
 R~R12は、化合物(m2)において説明した通りである。
 R11およびR12は、重合反応性が高い点から、少なくとも一方がフッ素原子であることが好ましく、両方がフッ素原子であることがより好ましい。
 単位(u2)としては、モノマー(b)の合成のしやすさから、単位(u2-1)が特に好ましい。
Figure JPOXMLDOC01-appb-C000019
 他の繰り返し単位(C):
 他の繰り返し単位(C)は、前記ジオキソラン環を有するペルフルオロモノマー以外の他のモノマーに基づく繰り返し単位である。
 他のモノマーとしては、上述の他のモノマーが挙げられる。
 ポリマー(H)の製造:
 ポリマー(H)は、ポリマー(F)の前駆体基をイオン交換基に変換することによって製造される。
 -SOF基をスルホン酸基(-SO 基)に変換する方法としては、下記(i)の方法が挙げられ、-SOF基をスルホンイミド基(-SON(SO基)に変換する方法としては、下記(ii)の方法が挙げられる。
 (i)ポリマー(F)の-SOF基を加水分解してスルホン酸塩とし、スルホン酸塩を酸型化してスルホン酸基に変換する方法。
 (ii)ポリマー(F)の-SOF基をイミド化して塩型のスルホンイミド基とし、さらに酸型化して酸型のスルホンイミド基に変換する方法。
 (i)の方法:
 加水分解は、たとえば、溶媒中にてポリマー(F)と塩基性化合物とを接触させて行う。塩基性化合物としては、水酸化ナトリウム、水酸化カリウム等が挙げられる。溶媒としては、水、水と極性溶媒との混合溶媒等が挙げられる。極性溶媒としては、アルコール類(メタノール、エタノール等)、ジメチルスルホキシド等が挙げられる。
 酸型化は、たとえば、スルホン酸塩を有するポリマーを、塩酸、硫酸等の水溶液に接触させて行う。
 加水分解および酸型化は、通常、0~120℃にて行う。
 (ii)の方法:
 イミド化としては、下記の方法が挙げられる。
 (ii-1)-SOF基と、RSONHMとを反応させる方法。
 (ii-2)アルカリ金属水酸化物、アルカリ金属炭酸塩、MF、アンモニアまたは1~3級アミンの存在下で、-SOF基と、RSONHとを反応させる方法。
 (ii-3)-SOF基と、RSONMSi(CHとを反応させる方法。
 ただし、Mは、アルカリ金属または1~4級のアンモニウムである。
 酸型化は、塩型のスルホンイミド基を有するポリマーを、酸(硫酸、硝酸、塩酸等)で処理することにより行う。
 なお、イオン交換基がスルホンイミド基であるポリマー(H)は、化合物(m1)の-SOF基をスルホンイミド基に変換した化合物(m1')と、化合物(m2)と、必要に応じて他のモノマーと重合させることによっても製造できる。
 化合物(m1')は、化合物(m1)の炭素-炭素二重結合に塩素または臭素を付加し、-SOF基を(ii)の方法でスルホンイミド基に変換した後、金属亜鉛を用いて脱塩素または脱臭素反応を行うことにより製造できる。
 以上説明した本発明の電解質材料にあっては、特定の繰り返し単位(A)と特定の繰り返し単位(B)とを有し、かつポリマー(F)の前駆体基をイオン交換基に変換したイオン交換容量が1.35ミリ当量/g乾燥樹脂以上であるポリマー(H)からなるため、該電解質材料を触媒層に含ませた膜電極接合体は、低加湿、無加湿条件下において充分な発電特性(出力電圧等)を発揮できる。
 なお、ポリマー(H)のイオン交換容量を単に高くしただけでは、ポリマー(H)の含水率(吸水性)が急激に高くなってしまう。そこで、本発明者らが鋭意検討した結果、ポリマー(F)のイオン交換容量を高くすると同時にポリマー(F)のTQも高くすると、ポリマー(H)の含水率の上昇が抑えられることがわかった。
 従来の結晶性を有するポリマー(たとえば、上述の化合物(m3)に基づく繰り返し単位とTFEに基づく繰り返し単位とを有するポリマーの-SOF基をスルホン酸基に変換したポリマー)では、分子量(すなわちTQ)を高くすると機械的強度が高くなることは知られているが、TQを高くしても含水率の抑制効果は小さい。TQを高くすると含水率の上昇が抑えられるという現象は、本発明におけるポリマー(H)のようなアモルファスのポリマーにおいて特に顕著に見られる現象である。
<液状組成物>
 本発明の液状組成物は、分散媒と、該分散媒に分散された本発明の電解質材料とを含む組成物である。
 分散媒は、水酸基を有する有機溶媒を含む。
 水酸基を有する有機溶媒としては、メタノール、エタノール、1-プロパノール、2-プロパノール、2,2,2-トリフルオロエタノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、2,2,3,3-テトラフルオロ-1-プロパノール、4,4,5,5,5-ペンタフルオロ-1-ペンタノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、3,3,3-トリフルオロ-1-プロパノール、3,3,4,4,5,5,6,6,6-ノナフルオロ-1-ヘキサノール、3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロ-1-オクタノール等が挙げられる。
 水酸基を有する有機溶媒は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 分散媒は、水を含むことが好ましい。
 水の割合は、分散媒(100質量%)のうち、10~99質量%が好ましく、40~99質量%がより好ましい。水の割合を増やすことにより、分散媒に対する電解質材料の分散性を向上できる。
 水酸基を有する有機溶媒の割合は、分散媒(100質量%)のうち、1~90質量%が好ましく、1~60質量%がより好ましい。
 電解質材料の割合は、液状組成物(100質量%)のうち、1~50質量%が好ましく、3~30質量%がより好ましい。
 本発明の液状組成物は、後述の膜電極接合体における触媒層の形成に好適に用いられる。
<膜電極接合体>
 図1は、本発明の固体高分子形燃料電池用膜電極接合体(以下、膜電極接合体と記す。)の一例を示す断面図である。膜電極接合体10は、触媒層11およびガス拡散層12を有するアノード13と、触媒層11およびガス拡散層12を有するカソード14と、アノード13とカソード14との間に、触媒層11に接した状態で配置される固体高分子電解質膜15とを具備する。
(触媒層)
 触媒層11は、触媒と、プロトン伝導性ポリマーとを含む層である。
 触媒としては、カーボン担体に白金または白金合金を担持した担持触媒が挙げられる。
 カーボン担体としては、カーボンブラック粉末が挙げられる。
 プロトン伝導性ポリマーとしては、本発明の電解質材料、公知の電解質材料が挙げられ、カソードおよびアノードの少なくとも一方の触媒層に含まれるプロトン伝導性ポリマーが、本発明の電解質材料であり、カソードおよびアノードの両方の触媒層に含まれるプロトン伝導性ポリマーが、本発明の電解質材料であることが好ましい。
 触媒層11は、フラッディングの抑制効果が高まる点から、撥水化剤を含んでいてもよい。撥水化剤としては、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-ペルフルオロ(アルキルビニルエーテル)共重合体、ポリテトラフルオロエチレン等が挙げられる。撥水化剤としては、触媒層11を撥水化処理しやすい点から、溶媒に溶解できる含フッ素ポリマーが好ましい。撥水化剤の量は、触媒層11(100質量%)中、0.01~30質量%が好ましい。
 触媒層11の形成方法としては、下記の方法が挙げられる。
 (i)触媒層形成用液を、固体高分子電解質膜15、ガス拡散層12、またはカーボン層16上に塗布し、乾燥させる方法。
 (ii)触媒層形成用液を基材フィルム上に塗布し、乾燥させ触媒層11を形成し、該触媒層11を固体高分子電解質膜15上に転写する方法。
 触媒層形成用液は、電解質材料および触媒を分散媒に分散させた液である。触媒層形成用液は、たとえば、本発明の液状組成物と、触媒の分散液とを混合することにより調製できる。
(ガス拡散層)
 ガス拡散層12は、触媒層11に均一にガスを拡散させる機能および集電体としての機能を有する。
 ガス拡散層12としては、カーボンペーパー、カーボンクロス、カーボンフェルト等が挙げられる。
 ガス拡散層12は、ポリテトラフルオロエチレン等によって撥水化処理されていることが好ましい。
(カーボン層)
 膜電極接合体10は、図2に示すように、触媒層11とガス拡散層12との間にカーボン層16を有していてもよい。カーボン層16を配置することにより、触媒層11の表面のガス拡散性が向上し、固体高分子形燃料電池の発電性能が大きく向上する。
 カーボン層16は、カーボンと非イオン性含フッ素ポリマーとを含む層である。
 カーボンとしては、繊維径1~1000nm、繊維長1000μm以下のカーボンナノファイバーが好ましい。
 非イオン性含フッ素ポリマーとしては、ポリテトラフルオロエチレン等が挙げられる。
(固体高分子電解質膜)
 固体高分子電解質膜15は、プロトン伝導性ポリマーを含む膜である。
 プロトン伝導性ポリマーとしては、本発明の電解質材料、公知の電解質材料が挙げられる。公知の電解質材料としては、上述の化合物(m3)に基づく繰り返し単位とTFEに基づく繰り返し単位とを有するポリマーの-SOF基をスルホン酸基に変換したポリマー;化合物(m4)に基づく繰り返し単位とTFEに基づく繰り返し単位とを有するポリマーの-SOF基をスルホン酸基に変換したポリマー等が挙げられる。
Figure JPOXMLDOC01-appb-C000020
 ただし、Rf1、Rf2は、それぞれ単結合または炭素数1~6の直鎖のペルフルオロアルキレン基(ただし、エーテル結合性酸素原子を有してもよい。)であり、qは、0または1である。
 固体高分子電解質膜15は、たとえば、電解質材料の液状組成物を基材フィルムまたは触媒層11上に塗布し、乾燥させる方法(キャスト法)により形成できる。
 液状組成物は、水酸基を有する有機溶媒および水を含む分散媒に、電解質材料を分散させた分散液である。
 固体高分子電解質膜15を安定化させるために、熱処理を行うことが好ましい。熱処理の温度は、電解質材料の種類にもよるが、130~200℃が好ましい。熱処理の温度が130℃以上であれば、電解質材料が過度に含水しなくなる。熱処理の温度が200℃以下であれば、イオン交換基の熱分解が抑えられ、固体高分子電解質膜15のプロトン伝導率の低下が抑えられる。
 固体高分子電解質膜15は、必要に応じて過酸化水素水で処理してもよい。
 固体高分子電解質膜15は、補強材で補強されていてもよい。補強材としては、多孔体、繊維、織布、不織布等が挙げられる。補強材の材料としては、ポリテトラフルオロエチレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-ペルフルオロ(アルキルビニルエーテル)共重合体、ポリエチレン、ポリプロピレン、ポリフェニレンスルフィド等が挙げられる。
 固体高分子電解質膜15は、耐久性をさらに向上させるために、セリウムおよびマンガンからなる群から選ばれる1種以上の原子を含んでいてもよい。セリウム、マンガンは、固体高分子電解質膜15の劣化を引き起こす原因物質である過酸化水素を分解する。セリウム、マンガンは、イオンとして固体高分子電解質膜15中に存在することが好ましく、イオンとして存在すれば固体高分子電解質膜15中でどのような状態で存在してもかまわない。
 固体高分子電解質膜15は、乾燥を防ぐための保水剤として、シリカ、ヘテロポリ酸(リン酸ジルコニウム、リンモリブデン酸、リンタングステン酸等。)を含んでいてもよい。
(膜電極接合体の製造方法)
 膜電極接合体10は、たとえば、下記の方法にて製造される。
 (i)固体高分子電解質膜15上に触媒層11を形成して膜触媒層接合体とし、該膜触媒層接合体をガス拡散層12で挟み込む方法。
 (ii)ガス拡散層12上に触媒層11を形成して電極(アノード13、カソード14)とし、固体高分子電解質膜15を該電極で挟み込む方法。
 膜電極接合体10がカーボン層16を有する場合、膜電極接合体10は、たとえば、下記の方法にて製造される。
 (i)基材フィルム上に、カーボンおよび非イオン性含フッ素ポリマーを含む分散液を塗布し、乾燥させてカーボン層16を形成し、カーボン層16上に触媒層11を形成し、触媒層11と固体高分子電解質膜15とを貼り合わせ、基材フィルムを剥離して、カーボン層16を有する膜触媒層接合体とし、該膜触媒層接合体をガス拡散層12で挟み込む方法。
 (ii)ガス拡散層12上に、カーボンおよび非イオン性含フッ素ポリマーを含む分散液を塗布し、乾燥させてカーボン層16を形成し、固体高分子電解質膜15上に触媒層11を形成した膜触媒層接合体を、カーボン層16を有するガス拡散層12で挟み込む方法。
 以上説明した膜電極接合体10は、触媒層11が本発明の電解質材料を含んでいるため、低加湿、無加湿条件下および高加湿条件下のいずれにおいても発電特性に優れる。
<固体高分子形燃料電池>
 本発明の膜電極接合体は、固体高分子形燃料電池に用いられる。固体高分子形燃料電池は、たとえば、2つのセパレータの間に膜電極接合体を挟んでセルを形成し、複数のセルをスタックすることにより製造される。
 セパレータとしては、燃料ガスまたは酸素を含む酸化剤ガス(空気、酸素等)の通路となる溝が形成された導電性カーボン板等が挙げられる。
 固体高分子形燃料電池の種類としては、水素/酸素型燃料電池、直接メタノール型燃料電池(DMFC)等が挙げられる。DMFCの燃料に用いるメタノールまたはメタノール水溶液は、液フィードであってもよく、ガスフィードであってもよい。
 以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの例によって限定されない。
 例1~9、17~25は実施例であり、例10~16、26~32は比較例である。
(イオン交換容量)
 0.35Nの水酸化ナトリウム溶液を用いて、80℃で72時間かけてポリマー(F)を加水分解し、0.1Nの塩酸で未反応の水酸化ナトリウムを滴定することで、ポリマー(H)のイオン交換容量を求めた。
(TQ)
 TQは、ポリマー(F)の分子量の指標であり、長さ1mm、内径1mmのノズルから、2.94MPaの押出し圧力の条件でポリマー(F)の溶融押出しを行った際の押出し量が100mm/秒となる温度である。
 フローテスタCFT-500A(島津製作所社製)を用い、温度を変えてポリマー(F)の押出し量を測定し、押出し量が100mm/秒となる温度(TQ)を求めた。
(含水率)
 ポリマー(H)の含水率は、下記方法により求めた。
 温度TQにてポリマー(F)を加圧プレス成形して、厚さ100~200μmのフィルムを得た。ついで、該フィルムを、メタノールの20質量%および水酸化カリウムの15質量%を含む水溶液に40時間浸漬させることにより、該フィルム中のポリマー(F)の-SOF基を加水分解し、-SOK基に変換した。ついで、該フィルムを、3モル/Lの塩酸水溶液に2時間浸漬した。塩酸水溶液を交換し、同様の処理をさらに4回繰り返した。該フィルムを超純水で充分に水洗し、該フィルム中のポリマーの-SOK基をスルホン酸基に変換して、ポリマー(H)のフィルムを得た。
 さらに該フィルムを80℃の温水中に16時間浸漬した後、温水ごとフィルムを室温まで冷却した。水中よりフィルムを取り出し、表面に付着した水滴をふき取り、直ちにフィルムの含水時の質量を測定した。ついで、該フィルムをグローブボックス中に入れ、乾燥窒素を流した雰囲気中に24時間以上放置し、フィルムを乾燥させた。そして、グローブボックス中でフィルムの乾燥質量を測定した。フィルムの含水時の質量と乾燥質量との差から、ポリマー(H)が含水時に吸収する水の質量を求めた。そして、下式よりポリマーの含水率を求めた。
 含水率=(ポリマー(H)が含水時に吸収する水の質量/フィルムの乾燥質量)×100。
(化合物(m1))
 化合物(m1-1)の合成:
 国際公開第2003/037885号パンフレットのp.37-42の実施例に記載の方法にしたがって、化合物(m1-1)を合成した。
Figure JPOXMLDOC01-appb-C000021
 化合物(m1-2)の合成:
 特開2005-314388号公報の例5に記載の方法にしたがって、化合物(m1-2)を合成した。
Figure JPOXMLDOC01-appb-C000022
 化合物(m1-3)の合成:
 特開2005-314388号公報の例4に記載の方法にしたがって、化合物(m1-3)を合成した。
Figure JPOXMLDOC01-appb-C000023
 化合物(m1-4)の合成:
 特開2009-040909号公報の例1-6に記載の方法にしたがって、化合物(m1-4)を合成した。
Figure JPOXMLDOC01-appb-C000024
(化合物(m2))
 化合物(m2-1):
Figure JPOXMLDOC01-appb-C000025
 化合物(m2-2):
Figure JPOXMLDOC01-appb-C000026
(他のモノマー)
 化合物(m3-1):
Figure JPOXMLDOC01-appb-C000027
 化合物(m4-1)の合成:
 特開2008-202039号公報の例1に記載の方法にしたがって、化合物(m4-1)を合成した。
Figure JPOXMLDOC01-appb-C000028
 化合物(m5-2-1):
 CF=CFO(CFOCF=CF ・・・(m5-2-1)。
(ラジカル開始剤)
 化合物(i-1):
Figure JPOXMLDOC01-appb-C000029
 化合物(i-2):
 (CCOO) ・・・(i-2)。
 化合物(i-3):
 (CH(CN)C-N=N-C(CN)(CH ・・・(i-3)。
(溶媒)
 化合物(s-1):
 CClFCFCHClF ・・・(s-1)。
 化合物(s-2):
 CHCClF ・・・(s-2)。
〔例1〕
 内容積125mLのステンレス製オートクレーブに、化合物(m1-1)の9.16g、化合物(m2-1)の5.67g、化合物(s-1)の5.0gおよび化合物(i-1)の2.4mgを仕込み、液体窒素による冷却下、充分脱気した。その後、65℃に昇温して、23.5時間撹拌した後、オートクレーブを冷却して反応を停止した。
 生成物を化合物(s-1)で希釈した後、これにn-ヘキサンを添加し、ポリマーを凝集してろ過した。その後、化合物(s-1)中でポリマーを撹拌し、n-ヘキサンで再凝集し、80℃で一晩減圧乾燥し、ポリマー(F-1)を得た。収量は6.35gであった。このポリマー(F-1)を用いて、ポリマー(F-1)のTQ、およびポリマー(H-1)のイオン交換容量、含水率を測定した。結果を表1に示す。
 ポリマー(F-1)を、メタノールの20質量%および水酸化カリウムの15質量%を含む水溶液に40時間浸漬させることにより、ポリマー(F-1)中の-SOF基を加水分解し、-SOK基に変換した。ついで、該ポリマーを、3モル/Lの塩酸水溶液に2時間浸漬した。塩酸水溶液を交換し、同様の処理をさらに4回繰り返した。ポリマーを超純水で充分に水洗し、ポリマー中の-SOK基がスルホン酸基に変換されたポリマー(H-1)を得た。
 ポリマー(H-1)に、エタノールと水との混合溶媒(エタノール/水=70/30質量比)を加え、固形分濃度を15質量%に調整し、オートクレーブを用い125℃で8時間、撹拌した。さらに水を加え、固形分濃度を7.0質量%に調整し、ポリマー(H-1)が分散媒に分散した液状組成物(D-1)を得た。分散媒の組成は、エタノール/水=35/65(質量比)であった。
〔例2〕
 内容積125mLのステンレス製オートクレーブに、化合物(m1-1)の9.26g、化合物(m2-1)の5.03g、化合物(s-1)の17.5gおよび化合物(i-1)の28.3mgを仕込み、液体窒素による冷却下、充分脱気した。その後、65℃に昇温して、8時間撹拌した後、オートクレーブを冷却して反応を停止した。
 生成物を化合物(s-1)で希釈した後、これにn-ヘキサンを添加し、ポリマーを凝集してろ過した。その後、化合物(s-1)中でポリマーを撹拌し、n-ヘキサンで再凝集し、80℃で一晩減圧乾燥し、ポリマー(F-2)を得た。収量は9.8gであった。このポリマー(F-2)を用いて、ポリマー(F-2)のTQ、およびポリマー(H-2)のイオン交換容量、含水率を測定した。結果を表1に示す。
 ポリマー(F-2)を用いて、例1と同様の方法で、ポリマー(H-2)、液状組成物(D-2)を得た。
〔例3〕
 内容積125mLのステンレス製オートクレーブに、化合物(m1-1)の8.95g、化合物(m2-1)の5.73g、化合物(s-1)の7.1g、および3.2質量%の化合物(i-2)を含む化合物(s-1)溶液の265mgを仕込み、液体窒素による冷却下、充分脱気した。その後、21℃に昇温して、16.3時間撹拌した後、オートクレーブを冷却して反応を停止した。
 生成物を化合物(s-1)で希釈した後、これにn-ヘキサンを添加し、ポリマーを凝集してろ過した。その後、化合物(s-1)中でポリマーを撹拌し、n-ヘキサンで再凝集し、80℃で一晩減圧乾燥し、ポリマー(F-3)を得た。収量は12.4gであった。このポリマー(F-3)を用いて、ポリマー(F-3)のTQ、およびポリマー(H-3)のイオン交換容量、含水率を測定した。結果を表1に示す。
 ポリマー(F-3)を用いて、例1と同様の方法で、ポリマー(H-3)、液状組成物(D-3)を得た。
〔例4〕
 内容積125mLのステンレス製オートクレーブに、化合物(m1-1)の10.5g、化合物(m2-1)の2.0g、化合物(m5-2-1)の0.85g、および3.2質量%の化合物(i-2)を含む化合物(s-1)溶液の380mgを仕込み、液体窒素による冷却下、充分脱気する。その後、21℃に昇温して、17時間撹拌した後、オートクレーブを冷却して反応を停止する。
 生成物を化合物(s-1)で希釈した後、これにn-ヘキサンを添加し、ポリマーを凝集してろ過する。その後、化合物(s-1)中でポリマーを撹拌し、n-ヘキサンで再凝集し、80℃で一晩減圧乾燥し、ポリマー(F-4)を得る。収量は5.4gである。このポリマー(F-4)を用いて、ポリマー(F-4)のTQ、およびポリマー(H-4)のイオン交換容量、含水率を測定する。結果を表1に示す。
 ポリマー(F-4)を用いて、例1と同様の方法で、ポリマー(H-4)、液状組成物(D-4)を得る。
〔例5〕
 内容積125mLのステンレス製オートクレーブに、化合物(m1-3)の10.6g、化合物(m2-1)の6.0g、化合物(s-1)の5.4gおよび化合物(i-1)の2.7mgを仕込み、液体窒素による冷却下、充分脱気する。その後、65℃に昇温して、20時間撹拌した後、オートクレーブを冷却して反応を停止する。
 生成物を化合物(s-1)で希釈した後、これにn-ヘキサンを添加し、ポリマーを凝集してろ過する。その後、化合物(s-1)中でポリマーを撹拌し、n-ヘキサンで再凝集し、80℃で一晩減圧乾燥し、ポリマー(F-5)を得る。収量は8.0gである。このポリマー(F-5)を用いて、ポリマー(F-5)のTQ、およびポリマー(H-5)のイオン交換容量、含水率を測定する。結果を表1に示す。
 ポリマー(F-5)を用いて、例1と同様の方法で、ポリマー(H-5)、液状組成物(D-5)を得る。
〔例6〕
 内容積125mLのステンレス製オートクレーブに、化合物(m1-2)の7.0g、化合物(m2-1)の5.1g、化合物(s-1)の4.5gおよび化合物(i-1)の4.5mgを仕込み、液体窒素による冷却下、充分脱気する。その後、65℃に昇温して、16時間撹拌した後、オートクレーブを冷却して反応を停止する。
 生成物を化合物(s-1)で希釈した後、これにn-ヘキサンを添加し、ポリマーを凝集してろ過する。その後、化合物(s-1)中でポリマーを撹拌し、n-ヘキサンで再凝集し、80℃で一晩減圧乾燥し、ポリマー(F-6)を得る。収量は6.8gである。このポリマー(F-6)を用いて、ポリマー(F-6)のTQ、およびポリマー(H-6)のイオン交換容量、含水率を測定する。結果を表1に示す。
 ポリマー(F-6)を用いて、例1と同様の方法で、ポリマー(H-6)、液状組成物(D-6)を得る。
〔例7〕
 内容積125mLのステンレス製オートクレーブに、化合物(m1-4)の7.2g、化合物(m2-1)の5.5gおよび化合物(i-1)の2.0mgを仕込み、液体窒素による冷却下、充分脱気する。その後、65℃に昇温して、18時間撹拌した後、オートクレーブを冷却して反応を停止する。
 生成物を化合物(s-1)で希釈した後、これにn-ヘキサンを添加し、ポリマーを凝集してろ過する。その後、化合物(s-1)中でポリマーを撹拌し、n-ヘキサンで再凝集し、80℃で一晩減圧乾燥し、ポリマー(F-7)を得る。収量は7.0gである。このポリマー(F-7)を用いて、ポリマー(F-7)のTQ、およびポリマー(H-7)のイオン交換容量、含水率を測定する。結果を表1に示す。
 ポリマー(F-7)を用いて、例1と同様の方法で、ポリマー(H-7)、液状組成物(D-7)を得る。
〔例8〕
 内容積31mLのステンレス製オートクレーブに、化合物(m1-1)の7.2g、化合物(m2-1)の3.9g、化合物(s-1)の12.5g、TFEの2.0gおよび化合物(i-1)の5.9mgを仕込み、液体窒素による冷却下、充分脱気した。その後、65℃に昇温して、6時間撹拌した後、オートクレーブを冷却して反応を停止した。
 生成物を化合物(s-1)で希釈した後、これにn-ヘキサンを添加し、ポリマーを凝集してろ過した。その後、化合物(s-1)中でポリマーを撹拌し、n-ヘキサンで再凝集し、80℃で一晩減圧乾燥し、ポリマー(F-8)を得た。収量は6.1gであった。このポリマー(F-8)を用いて、ポリマー(F-8)のTQ、およびポリマー(H-8)のイオン交換容量、含水率を測定した。結果を表1に示す。
 ポリマー(F-8)を用いて、例1と同様の方法で、ポリマー(H-8)、液状組成物(D-8)を得た。
〔例9〕
 内容積125mLのステンレス製オートクレーブに、化合物(m1-1)の9.15g、化合物(m2-2)の8.60gおよび化合物(i-1)の9.0mgを仕込み、液体窒素による冷却下、充分脱気する。その後、65℃に昇温して、15時間保持した後、オートクレーブを冷却して反応を停止する。
 生成物を化合物(s-1)で希釈した後、これにn-ヘキサンを添加し、ポリマーを凝集してろ過する。その後、化合物(s-1)中でポリマーを撹拌し、n-ヘキサンで再凝集し、80℃で一晩減圧乾燥し、ポリマー(F-9)を得る。収量は8.8gである。このポリマー(F-9)を用いて、ポリマー(F-9)のTQ、およびポリマー(H-9)のイオン交換容量、含水率を測定する。結果を表1に示す。
 ポリマー(F-9)を用いて、例1と同様の方法で、ポリマー(H-9)、液状組成物(D-9)を得る。
〔例10〕
 内容積230mLのステンレス製オートクレーブに、化合物(m3-1)の123.8g、化合物(s-1)の63.6gおよび化合物(i-3)の63.6mgを仕込み、液体窒素による冷却下、充分脱気した。その後、70℃に昇温して、TFEを系内に導入し、圧力を1.14MPaGに保持した。8時間撹拌した後、オートクレーブを冷却して反応を停止した。
 生成物を化合物(s-1)で希釈した後、これに化合物(s-2)を添加し、ポリマーを凝集してろ過した。その後、化合物(s-1)中でポリマーを撹拌し、化合物(s-2)で再凝集し、80℃で一晩減圧乾燥し、ポリマー(F-10)を得た。収量は25.2gであった。このポリマー(F-10)を用いて、ポリマー(F-10)のTQ、およびポリマー(H-10)のイオン交換容量、含水率を測定した。結果を表1に示す。
 ポリマー(F-10)を用いて、例1と同様の方法で、ポリマー(H-10)、液状組成物(D-10)を得た。
〔例11〕
 内容積230mLのステンレス製オートクレーブに、化合物(m4-1)の140.0g、化合物(s-1)の30.2gおよび化合物(i-3)の170mgを仕込み、液体窒素による冷却下、充分脱気する。その後、65℃に昇温して、TFEを系内に導入し、圧力を1.23MPaGに保持する。65℃で7.2時間撹拌した後、系内のガスをパージし、オートクレーブを冷却して反応を停止する。
 生成物を化合物(s-1)で希釈した後、これに化合物(s-2)を添加し、ポリマーを凝集してろ過する。その後、化合物(s-1)中でポリマーを撹拌し、化合物(s-2)で再凝集し、80℃で一晩減圧乾燥し、ポリマー(F-11)を得る。収量は27.2gである。このポリマー(F-11)を用いて、ポリマー(F-11)のTQ、およびポリマー(H-11)のイオン交換容量、含水率を測定する。結果を表1に示す。
 ポリマー(F-11)を用いて、例1と同様の方法で、ポリマー(H-11)を得る。
 ポリマー(H-11)に、エタノール、水および1-ブタノールの混合溶媒(エタノール/水/1-ブタノール=35/50/15質量比)を加え、固形分濃度を15質量%に調整し、オートクレーブを用い125℃で8時間、撹拌する。さらに水を加え、固形分濃度を9質量%に調整し、ポリマー(H-11)が分散媒に分散した液状組成物(D-11)を得る。分散媒の組成は、エタノール/水/1-ブタノール=20/70/10(質量比)である。
〔例12〕
 内容積125mLのステンレス製オートクレーブに、化合物(m1-1)の9.38g、化合物(m2-1)の11.36g、化合物(s-1)の28.59gおよび化合物(i-1)の80.2mgを仕込み、液体窒素による冷却下、充分脱気した。その後、65℃に昇温して、5.6時間撹拌した後、オートクレーブを冷却して反応を停止した。
 生成物を化合物(s-1)で希釈した後、これにn-ヘキサンを添加し、ポリマーを凝集してろ過した。その後、化合物(s-1)中でポリマーを撹拌し、n-ヘキサンで再凝集し、80℃で一晩減圧乾燥し、ポリマー(F-12)を得た。収量は14.0gであった。このポリマー(F-12)を用いて、ポリマー(F-12)のTQ、およびポリマー(H-12)のイオン交換容量、含水率を測定した。結果を表1に示す。
 ポリマー(F-12)を用いて、例1と同様の方法で、ポリマー(H-12)、液状組成物(D-12)を得た。
〔例13〕
 内容積125mLのステンレス製オートクレーブに、化合物(m1-1)の9.99g、化合物(m2-1)の11.44g、化合物(s-1)の28.58gおよび化合物(i-1)の100mgを仕込み、液体窒素による冷却下、充分脱気した。その後、65℃に昇温して、3.5時間撹拌した後、オートクレーブを冷却して反応を停止した。
 生成物を化合物(s-1)で希釈した後、これにn-ヘキサンを添加し、ポリマーを凝集してろ過した。その後、化合物(s-1)中でポリマーを撹拌し、n-ヘキサンで再凝集し、80℃で一晩減圧乾燥し、ポリマー(F-13)を得た。収量は14.2gであった。このポリマー(F-13)を用いて、ポリマー(F-13)のTQ、およびポリマー(H-13)のイオン交換容量、含水率を測定した。結果を表1に示す。
 ポリマー(F-13)を用いて、例1と同様の方法で、ポリマー(H-13)、液状組成物(D-13)を得た。
〔例14〕
 内容積125mLのステンレス製オートクレーブに、化合物(m2-1)の4.5g、化合物(m3-1)の80.0g、および3.2質量%の化合物(i-2)を含む化合物(s-1)溶液の30.0mgを仕込み、液体窒素による冷却下、充分脱気する。その後、21℃に昇温して、15時間撹拌した後、オートクレーブを冷却して反応を停止する。
 生成物を化合物(s-1)で希釈した後、これにn-ヘキサンを添加し、ポリマーを凝集してろ過する。その後、化合物(s-1)中でポリマーを撹拌し、n-ヘキサンで再凝集し、80℃で一晩減圧乾燥し、ポリマー(F-14)を得る。収量は4.5gである。このポリマー(F-14)を用いて、ポリマー(F-14)のTQ、およびポリマー(H-14)のイオン交換容量、含水率を測定する。結果を表1に示す。
 ポリマー(F-14)を用いて、例1と同様の方法で、ポリマー(H-14)、液状組成物(D-14)を得る。
〔例15〕
 内容積125mLのステンレス製オートクレーブに、化合物(m1-1)の0.9g、化合物(m4-1)の93.66g、TFEの15.4g、および3.2質量%の化合物(i-2)を含む化合物(s-1)溶液の5.0mgを仕込み、液体窒素による冷却下、充分脱気する。その後、21℃に昇温して、15時間撹拌した後、オートクレーブを冷却して反応を停止する。
 生成物を化合物(s-1)で希釈した後、これにn-ヘキサンを添加し、ポリマーを凝集してろ過する。その後、化合物(s-1)中でポリマーを撹拌し、n-ヘキサンで再凝集し、80℃で一晩減圧乾燥し、ポリマー(F-15)を得る。収量は9.7gである。このポリマー(F-15)を用いて、ポリマー(F-15)のTQ、およびポリマー(H-15)のイオン交換容量、含水率を測定する。結果を表1に示す。
 ポリマー(F-15)を用いて、例1と同様の方法で、ポリマー(H-15)、液状組成物(D-15)を得る。
〔例16〕
 内容積125mLのステンレス製オートクレーブに、化合物(m1-1)の4.16g、化合物(m2-1)の2.26g、化合物(s-1)の79.0gおよび化合物(i-1)の255mgを仕込み、液体窒素による冷却下、充分脱気する。その後、65℃に昇温して、6時間撹拌した後、オートクレーブを冷却して反応を停止する。
 生成物を化合物(s-1)で希釈した後、これにn-ヘキサンを添加し、ポリマーを凝集してろ過する。その後、化合物(s-1)中でポリマーを撹拌し、n-ヘキサンで再凝集し、80℃で一晩減圧乾燥し、ポリマー(F-16)を得る。収量は4.3gである。このポリマー(F-16)を用いて、ポリマー(F-16)のTQ、およびポリマー(H-16)のイオン交換容量、含水率を測定する。結果を表1に示す。
 ポリマー(F-16)を用いて、例1と同様の方法で、ポリマー(H-16)、液状組成物(D-16)を得る。
Figure JPOXMLDOC01-appb-T000030
〔例17〕
 カーボン粉末に白金を50質量%担持した担持触媒の10gに水の39gを加え、10分間超音波を照射し、触媒の分散液を得た。触媒の分散液に、液状組成物(D-1)の60gを加え、さらにエタノールの64gを加えて固形分濃度を8質量%とし、触媒層形成用液を得た。該液を別途用意したエチレンとテトラフルオロエチレンとの共重合体からなるシート(商品名:アフレックス100N、旭硝子社製、厚さ100μm)(以下、ETFEシートと記す。)上に塗布し、80℃で30分乾燥させ、さらに165℃で30分の熱処理を施し、白金量が0.35mg/cmの触媒層を形成した。
 液状組成物(D-11)をETFEシート上にダイコータにて塗布し、80℃で30分乾燥し、さらに190℃で30分の熱処理を施し、厚さ20μmの固体高分子電解質膜を形成した。
 固体高分子電解質膜からETFEシートを剥離した後、固体高分子電解質膜を2枚の触媒層(ETFEフィルム付き)で挟み、プレス温度160℃、プレス時間5分、圧力3MPaの条件にて加熱プレスし、固体高分子電解質膜の両面に触媒層を接合し、触媒層からETFEフィルムを剥離して、電極面積25cmの膜触媒層接合体を得た。
 カーボンペーパーからなるガス拡散層上に、カーボンとポリテトラフルオロエチレンとからなるカーボン層を形成した。
 カーボン層と触媒層とが接するように、膜触媒層接合体を2枚のガス拡散層で挟み、膜電極接合体を得た。
 膜電極接合体を発電用セルに組み込み、下記の2つの条件下で発電特性の評価を実施した。
(発電条件1)
 膜電極接合体の温度を100℃に維持し、アノードに水素(利用率50%)、カソードに空気(利用率50%)を、それぞれ175kPa(絶対圧力)に加圧して供給した。水素および空気ともに加湿をせずに供給し、電流密度が1.0A/cmのときのセル電圧を記録し、下記基準にて評価した。結果を表2に示す。
 ◎:セル電圧が0.6V以上。
 ○:セル電圧が0.55V以上、0.6V未満。
 △:セル電圧が0.5V以上、0.55V未満。
 ×:セル電圧が0.4V以上、0.5V未満。
 ××:セル電圧が0.4V未満。
(発電条件2)
 膜電極接合体の温度を80℃に維持し、アノードに水素(利用率50%)、カソードに空気(利用率50%)を、それぞれ175kPa(絶対圧力)に加圧して供給した。水素および空気ともに相対湿度100%RHで供給し、電流密度が1.5A/cmのときのセル電圧を記録し、下記基準にて評価した。結果を表2に示す。
 ○:セル電圧が0.5V以上。
 △:セル電圧が0.5V未満。
 ×:発電できなかった。
〔例18~32〕
 触媒層を形成するのに用いた液状組成物(D-1)を、それぞれ液状組成物(D-2)~(D-16)に変更した以外は、例17と同様の方法で膜電極接合体を製造し、発電特性の評価を実施した。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000031
 本発明の電解質材料は、固体高分子形燃料電池用の電解質材料として有用である。また、他の用途(水電解、過酸化水素製造、オゾン製造、廃酸回収等に用いるプロトン選択透過膜;食塩電解、レドックスフロー電池の隔膜、脱塩または製塩に用いる電気透析用陽イオン交換膜等)にも用いることができる。
 なお、2009年5月29日に出願された日本特許出願2009-130361号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 10 膜電極接合体
 11 触媒層
 12 ガス拡散層
 13 アノード
 14 カソード
 15 固体高分子電解質膜
 16 カーボン層

Claims (10)

  1.  下記ポリマー(F)の前駆体基をイオン交換基に変換した、イオン交換容量が1.35ミリ当量/g乾燥樹脂以上であるポリマー(H)からなる、電解質材料。
     ポリマー(F):イオン交換基の前駆体基およびジオキソラン環を有するペルフルオロモノマーに基づく繰り返し単位(A)と、イオン交換基およびその前駆体基を有さず、ジオキソラン環を有するペルフルオロモノマーに基づく繰り返し単位(B)とを有し、下記に定義されるTQが200℃以上であるポリマー。
     TQ:長さ1mm、内径1mmのノズルから、2.94MPaの押出し圧力の条件でポリマー(F)の溶融押出しを行った際の押出し量が100mm/秒となる温度。
  2.  前記ポリマー(H)のイオン交換基が、下式(g1)で表される基である、請求項1に記載の電解質材料。
     -(SOX(SO ・・・(g1)。
     ただし、Mは、H、一価の金属カチオン、または1以上の水素原子が炭化水素基と置換されていてもよいアンモニウムイオンであり、Rは、エーテル結合性酸素原子を有してもよい直鎖または分岐のペルフルオロアルキル基であり、Xは、酸素原子、窒素原子または炭素原子であって、Xが酸素原子の場合a=0であり、Xが窒素原子の場合a=1であり、Xが炭素原子の場合a=2である。
  3.  前記繰り返し単位(A)の前駆体基をイオン交換基に変換した繰り返し単位の少なくとも一種が、下式(u1)で表わされる繰り返し単位である、請求項2に記載の電解質材料。
    Figure JPOXMLDOC01-appb-C000001

     ただし、Rは、エーテル結合性酸素原子を有してもよい2価のペルフルオロ有機基であり、R~Rは、それぞれ独立にエーテル結合性酸素原子を有してもよい1価のペルフルオロ有機基またはフッ素原子である。
  4.  前記RおよびRが、フッ素原子である、請求項3に記載の電解質材料。
  5.  前記Mが、Hである、請求項2~4のいずれかに記載の電解質材料。
  6.  前記式(u1)で表わされる繰り返し単位の少なくとも一種が、下式(u1-1)で表わされる繰り返し単位である、請求項3、4または5に記載の電解質材料。
    Figure JPOXMLDOC01-appb-C000002
  7.  前記繰り返し単位(B)の少なくとも一種が、下式(u2)で表わされる繰り返し単位である、請求項1~6のいずれかに記載の電解質材料。
    Figure JPOXMLDOC01-appb-C000003

     ただし、R~R12は、それぞれ独立にエーテル結合性酸素原子を有してもよい1価のペルフルオロ有機基またはフッ素原子である。
  8.  前記式(u2)で表わされる繰り返し単位の少なくとも一種が、下式(u2-1)で表わされる繰り返し単位である、請求項7に記載の電解質材料。
    Figure JPOXMLDOC01-appb-C000004
  9.  分散媒と、該分散媒に分散された請求項1~8のいずれかに記載の電解質材料とを含み、
     前記分散媒が、水酸基を有する有機溶媒を含む、液状組成物。
  10.  プロトン伝導性ポリマーを含む触媒層を有するアノードと、
     プロトン伝導性ポリマーを含む触媒層を有するカソードと、
     前記アノードと前記カソードとの間に配置される固体高分子電解質膜と
     を備えた固体高分子形燃料電池用膜電極接合体において、
     前記カソードおよび前記アノードの少なくとも一方の触媒層に含まれるプロトン伝導性ポリマーが、請求項1~8のいずれかに記載の電解質材料であることを特徴とする固体高分子形燃料電池用膜電極接合体。
PCT/JP2010/058934 2009-05-29 2010-05-26 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体 WO2010137627A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080024638.9A CN102449006B (zh) 2009-05-29 2010-05-26 电解质材料、液状组合物及固体高分子型燃料电池用膜电极接合体
JP2011516043A JP5565410B2 (ja) 2009-05-29 2010-05-26 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体
EP10780582.2A EP2436705B1 (en) 2009-05-29 2010-05-26 Electrolyte material, liquid composite, and membrane electrode assembly for solid polymer fuel cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-130361 2009-05-29
JP2009130361 2009-05-29

Publications (1)

Publication Number Publication Date
WO2010137627A1 true WO2010137627A1 (ja) 2010-12-02

Family

ID=43220625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058934 WO2010137627A1 (ja) 2009-05-29 2010-05-26 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体

Country Status (5)

Country Link
US (1) US9508463B2 (ja)
EP (1) EP2436705B1 (ja)
JP (1) JP5565410B2 (ja)
CN (1) CN102449006B (ja)
WO (1) WO2010137627A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104078691A (zh) * 2014-05-21 2014-10-01 巨化集团技术中心 一种高吸水性质子交换膜的制备方法
WO2016002889A1 (ja) * 2014-07-04 2016-01-07 旭硝子株式会社 電解質材料、液状組成物、固体高分子形燃料電池用膜電極接合体および含フッ素分岐ポリマー
JPWO2015002008A1 (ja) * 2013-07-03 2017-02-23 旭硝子株式会社 含フッ素ポリマーの製造方法
JP2020158712A (ja) * 2019-03-27 2020-10-01 東ソー株式会社 フッ素樹脂の製造方法
WO2021193717A1 (ja) * 2020-03-26 2021-09-30 東ソ-株式会社 フッ素樹脂およびその製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1220344B2 (en) 2000-12-26 2012-08-01 Asahi Glass Company, Limited Solid polymer electrolyte membrane, solid polymer fuel cell and fluorpolymer
EP2460835B1 (en) 2009-07-31 2014-06-25 Asahi Glass Company, Limited Electrolyte material, liquid composition, and membrane -electrode assembly for polymer electrolyte fuel cell
DE102012017055A1 (de) * 2012-08-29 2014-05-15 Universität Hamburg Polybutadien mit 1,3-Dioxolan-2-on-Gruppen
EP2722350A1 (en) * 2012-10-19 2014-04-23 Solvay Specialty Polymers Italy S.p.A. Amorphous fluorinated polymer
JPWO2014175123A1 (ja) * 2013-04-22 2017-02-23 旭硝子株式会社 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体
CN107108781B (zh) * 2014-12-25 2020-08-11 Agc株式会社 电解质材料、液态组合物以及固体高分子型燃料电池用膜电极接合体
CN113491024A (zh) * 2019-02-28 2021-10-08 Agc株式会社 固体高分子电解质膜、膜电极接合体和固体高分子型燃料电池
CN115991816B (zh) * 2021-10-18 2024-01-23 山东东岳未来氢能材料股份有限公司 耐高温质子交换膜及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003037885A1 (fr) 2001-10-30 2003-05-08 Asahi Glass Company, Limited Composes de fluorosulfonyle et procede de production de composes en derivant
WO2004097851A1 (ja) 2003-04-28 2004-11-11 Asahi Glass Company Limited 固体高分子電解質材料、製造方法及び固体高分子型燃料電池用膜電極接合体
WO2005037818A1 (ja) * 2003-10-16 2005-04-28 Asahi Glass Company, Limited 新規な含フッ素ジオキソラン化合物、および新規な含フッ素重合体
JP2005314388A (ja) 2004-04-02 2005-11-10 Asahi Glass Co Ltd フルオロスルホニル基を含有する化合物、およびその重合体
WO2006046620A1 (ja) * 2004-10-27 2006-05-04 Asahi Glass Company, Limited 電解質材料、電解質膜、及び固体高分子形燃料電池用膜電極接合体
JP2008202039A (ja) 2007-01-26 2008-09-04 Asahi Glass Co Ltd ポリマー、固体高分子形燃料電池用固体高分子電解質膜および膜電極接合体
JP2009040909A (ja) 2007-08-09 2009-02-26 Asahi Glass Co Ltd フルオロスルホニル基含有モノマーおよびそのポリマー、ならびにスルホン酸基含有ポリマー
JP2009130361A (ja) 2007-11-19 2009-06-11 Samsung Electronics Co Ltd インライン実装装置及び半導体装置の実装方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4973714A (en) * 1987-07-31 1990-11-27 E. I. Du Pont De Nemours And Company Halogenated 1,3-dioxolanes and derivatives
EP1220344B2 (en) * 2000-12-26 2012-08-01 Asahi Glass Company, Limited Solid polymer electrolyte membrane, solid polymer fuel cell and fluorpolymer
CN1938887A (zh) * 2004-04-02 2007-03-28 旭硝子株式会社 固体高分子型燃料电池用电解质材料、电解质膜及膜电极接合体
JP2006290779A (ja) * 2005-04-08 2006-10-26 Asahi Glass Co Ltd 新規な、含フッ素化合物および含フッ素重合体
WO2009125795A1 (ja) 2008-04-09 2009-10-15 旭硝子株式会社 固体高分子形燃料電池用の触媒層用材料

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003037885A1 (fr) 2001-10-30 2003-05-08 Asahi Glass Company, Limited Composes de fluorosulfonyle et procede de production de composes en derivant
WO2004097851A1 (ja) 2003-04-28 2004-11-11 Asahi Glass Company Limited 固体高分子電解質材料、製造方法及び固体高分子型燃料電池用膜電極接合体
WO2005037818A1 (ja) * 2003-10-16 2005-04-28 Asahi Glass Company, Limited 新規な含フッ素ジオキソラン化合物、および新規な含フッ素重合体
JP2005314388A (ja) 2004-04-02 2005-11-10 Asahi Glass Co Ltd フルオロスルホニル基を含有する化合物、およびその重合体
WO2006046620A1 (ja) * 2004-10-27 2006-05-04 Asahi Glass Company, Limited 電解質材料、電解質膜、及び固体高分子形燃料電池用膜電極接合体
JP2008202039A (ja) 2007-01-26 2008-09-04 Asahi Glass Co Ltd ポリマー、固体高分子形燃料電池用固体高分子電解質膜および膜電極接合体
JP2009040909A (ja) 2007-08-09 2009-02-26 Asahi Glass Co Ltd フルオロスルホニル基含有モノマーおよびそのポリマー、ならびにスルホン酸基含有ポリマー
JP2009130361A (ja) 2007-11-19 2009-06-11 Samsung Electronics Co Ltd インライン実装装置及び半導体装置の実装方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2436705A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015002008A1 (ja) * 2013-07-03 2017-02-23 旭硝子株式会社 含フッ素ポリマーの製造方法
CN104078691A (zh) * 2014-05-21 2014-10-01 巨化集团技术中心 一种高吸水性质子交换膜的制备方法
WO2016002889A1 (ja) * 2014-07-04 2016-01-07 旭硝子株式会社 電解質材料、液状組成物、固体高分子形燃料電池用膜電極接合体および含フッ素分岐ポリマー
JPWO2016002889A1 (ja) * 2014-07-04 2017-06-15 旭硝子株式会社 電解質材料、液状組成物、固体高分子形燃料電池用膜電極接合体および含フッ素分岐ポリマー
JP2020158712A (ja) * 2019-03-27 2020-10-01 東ソー株式会社 フッ素樹脂の製造方法
JP7295507B2 (ja) 2019-03-27 2023-06-21 東ソー株式会社 フッ素樹脂の製造方法
WO2021193717A1 (ja) * 2020-03-26 2021-09-30 東ソ-株式会社 フッ素樹脂およびその製造方法

Also Published As

Publication number Publication date
CN102449006A (zh) 2012-05-09
CN102449006B (zh) 2014-10-15
JP5565410B2 (ja) 2014-08-06
US9508463B2 (en) 2016-11-29
EP2436705A1 (en) 2012-04-04
US20100304271A1 (en) 2010-12-02
EP2436705B1 (en) 2018-01-24
JPWO2010137627A1 (ja) 2012-11-15
EP2436705A4 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
JP5565410B2 (ja) 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体
JP5609874B2 (ja) 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体
WO2011013577A1 (ja) 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体
JP5286797B2 (ja) ポリマー、固体高分子形燃料電池用固体高分子電解質膜および膜電極接合体
JP6172142B2 (ja) 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体
JP5499478B2 (ja) ポリマー、固体高分子形燃料電池用固体高分子電解質膜および膜電極接合体
CN107108781B (zh) 电解质材料、液态组合物以及固体高分子型燃料电池用膜电极接合体
WO2014175123A1 (ja) 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体
WO2018012374A1 (ja) 電解質材料、それを含む液状組成物およびその使用
WO2017221840A1 (ja) 電解質材料、その製造方法およびその使用
JP5521427B2 (ja) 燃料電池システム
WO2020145287A1 (ja) 触媒層、触媒層形成用液および膜電極接合体
JP5082470B2 (ja) 固体高分子形燃料電池用膜電極接合体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080024638.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780582

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011516043

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010780582

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE