JPWO2011013577A1 - 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体 - Google Patents

電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体 Download PDF

Info

Publication number
JPWO2011013577A1
JPWO2011013577A1 JP2011524751A JP2011524751A JPWO2011013577A1 JP WO2011013577 A1 JPWO2011013577 A1 JP WO2011013577A1 JP 2011524751 A JP2011524751 A JP 2011524751A JP 2011524751 A JP2011524751 A JP 2011524751A JP WO2011013577 A1 JPWO2011013577 A1 JP WO2011013577A1
Authority
JP
Japan
Prior art keywords
polymer
group
compound
electrolyte material
repeating unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011524751A
Other languages
English (en)
Inventor
了 本村
了 本村
貢 齋藤
貢 齋藤
下平 哲司
哲司 下平
淳 渡壁
淳 渡壁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JPWO2011013577A1 publication Critical patent/JPWO2011013577A1/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F216/14Monomers containing only one unsaturated aliphatic radical
    • C08F216/1408Monomers containing halogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/106Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1051Non-ion-conducting additives, e.g. stabilisers, SiO2 or ZrO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

低加湿ないし無加湿条件下および高加湿条件下のいずれにおいても発電特性に優れる膜電極接合体;膜電極接合体の触媒層に好適で含水率が低い電解質材料を提供する。イオン交換基の前駆体基および該前駆体基が結合した5員環を有するペルフルオロモノマーに基づく繰り返し単位(A)と式(u2)で表される繰り返し単位(B)とを有し、固有粘度が0.3dL/g以上であるであるポリマー(F)の前駆体基をイオン交換基に変換したポリマー(H)からなる電解質材料を用いる。[化1]R1〜R4はフッ素原子、炭素数1〜6のペルフルオロアルキル基等。

Description

本発明は、固体高分子形燃料電池用の電解質材料、該電解質材料を含む液状組成物、および該電解質材料を触媒層に含む固体高分子形燃料電池用膜電極接合体に関する。
固体高分子形燃料電池用膜電極接合体の触媒層に含まれる電解質材料としては、一般的に下記のポリマー(1)が知られている。
下式(m3)で表される化合物に基づく繰り返し単位とテトラフルオロエチレン(以下、TFEと記す。)に基づく繰り返し単位とを有するポリマーの−SOF基をスルホン酸基(−SOH基)に変換したポリマー(1)。
CF=CF(OCFCFZ)(CFSOF ・・・(m3)。
ただし、Zは、フッ素原子またはトリフルオロメチル基であり、mは、0〜3の整数であり、pは、0または1であり、nは、1〜12であり、m+p>0である。
固体高分子形燃料電池には、燃料電池システムの簡素化や低コスト化のために、反応ガス(燃料ガスおよび酸化剤ガス)の相対湿度が低い低加湿ないし無加湿条件における運転、また、高温条件(90℃以上)における運転が求められている。それに伴い、電解質材料としても、ポリマー(1)に代わる、低加湿ないし無加湿条件下で、さらには高温条件下でも発電性能に優れる材料が必要とされている。特に触媒層の電解質材料は、電極性能を大きく左右するため重要である。
ポリマー(1)以外の電解質材料として分子内に環構造を有するポリマーが知られている。たとえば、−SOF基およびジオキソラン環を有するペルフルオロモノマーに基づく繰り返し単位と、−SOF基を有さず、ジオキソラン環を有するペルフルオロモノマーに基づく繰り返し単位とを有するポリマーの−SOF基をスルホン酸基(−SOH基)に変換したポリマー(2)である(特許文献1)。
ポリマー(2)を触媒層の電解質材料に用いた固体高分子形燃料電池は、ポリマー(1)を用いたものに比べ、セル温度:70℃、加湿度:100%RHと、一般的な加湿度の高い条件で、開回路電圧が向上しており電極性能の向上が認められている。しかしながら、加湿度が30%RH以下の低加湿条件ないし無加湿条件下での発電性能は検証されていない。
また、低加湿ないし無加湿条件下において高性能を発現させるためには、触媒層の電解質材料のイオン交換容量を高くすることが有効である。しかし、電解質材料のイオン交換容量を単に高くしただけでは、電解質材料の含水率(吸水性)が急激に高くなるため、反応ガスの相対湿度が高い高加湿条件下では、フラッディングが発生しやすくなり、発電特性が低下してしまう。特に分子内に環構造を含有するポリマーは、ポリマー(1)に比べ、含水率が高くなる傾向があり、電解質材料の特徴を充分に引き出すことが難しい。
国際公開第2004/097851号パンフレット
本発明は、低加湿ないし無加湿条件下、および高加湿条件下のいずれにおいても発電特性に優れる膜電極接合体;該膜電極接合体の触媒層に好適であり、含水率が低い電解質材料;および該膜電極接合体における触媒層の形成に好適な液状組成物を提供する。
本発明の電解質材料は、下記ポリマー(F)の前駆体基をイオン交換基に変換したポリマー(H)からなることを特徴とする。
ポリマー(F):イオン交換基の前駆体基および該前駆体基が結合した5員環を有するペルフルオロモノマーに基づく繰り返し単位(A)と、下式(u2)で表される繰り返し単位(B)とを有し、固有粘度が、0.3dL/g以上であるポリマー。
Figure 2011013577
ただし、sは、0または1であり、RおよびRは、それぞれ独立にフッ素原子、炭素数1〜5のペルフルオロアルキル基、または互いに連結して形成されたスピロ環(ただし、sが0の場合)であり、RおよびRは、それぞれ独立にフッ素原子または炭素数1〜5のペルフルオロアルキル基であり、Rは、フッ素原子、炭素数1〜5のペルフルオロアルキル基、または炭素数1〜5のペルフルオロアルコキシ基である。
前記ポリマー(H)のイオン交換基は、下式(g1)で表される基であることが好ましい。
−(SOX(SO ・・・(g1)。
ただし、Mは、H、一価の金属カチオン、または1以上の水素原子が炭化水素基と置換されていてもよいアンモニウムイオンであり、Rは、エーテル結合性酸素原子を有してもよい直鎖または分岐のペルフルオロアルキル基であり、Xは、酸素原子、窒素原子または炭素原子であって、Xが酸素原子の場合a=0であり、Xが窒素原子の場合a=1であり、Xが炭素原子の場合a=2である。
前記繰り返し単位(A)の前駆体基をイオン交換基に変換した繰り返し単位の少なくとも一種は、下式(u11)で表わされる繰り返し単位であることが好ましい。
Figure 2011013577
ただし、R11は、エーテル結合性酸素原子を有してもよい2価のペルフルオロ有機基であり、R12、R13、R15、R16は、それぞれ独立にエーテル結合性酸素原子を有してもよい1価のペルフルオロ有機基またはフッ素原子であり、R14は、エーテル結合性酸素原子を有してもよい1価のペルフルオロ有機基、フッ素原子、または−R11(SOX(SO基である。
前記式(u11)におけるR15およびR16は、フッ素原子であることが好ましい。
前記式(u11)におけるMは、Hであることが好ましい。
前記式(u11)で表わされる繰り返し単位の少なくとも一種は、下式(u11−1)で表わされる繰り返し単位であることが好ましい。
Figure 2011013577
前記繰り返し単位(A)の前駆体基をイオン交換基に変換した繰り返し単位の少なくとも一種は、下式(u12)で表わされる繰り返し単位であることが好ましい。
Figure 2011013577
ただし、R21は、炭素数1〜6のペルフルオロアルキレン基または炭素−炭素結合間にエーテル結合性酸素原子を有する炭素数2〜6のペルフルオロアルキレン基であり、R22は、フッ素原子、炭素数1〜6のペルフルオロアルキル基、炭素−炭素結合間にエーテル結合性酸素原子を有する炭素数2〜6のペルフルオロアルキル基、または−R21(SOX(SO基である。
前記式(u12)におけるMは、Hであることが好ましい。
前記式(u12)で表わされる繰り返し単位の少なくとも一種は、下式(u12−1)で表わされる繰り返し単位であることが好ましい。
Figure 2011013577
前記式(u12)で表わされる繰り返し単位の少なくとも一種は、下式(u12−2)で表わされる繰り返し単位であることが好ましい。
Figure 2011013577
前記式(u2)におけるRは、フッ素原子であることが好ましい。
前記式(u2)で表わされる繰り返し単位の少なくとも一種は、下式(u2−1)で表わされる繰り返し単位であることが好ましい。
Figure 2011013577
前記ポリマー(F)は、TFEに基づく繰り返し単位をさらに有していてもよい。
本発明の液状組成物は、分散媒と、該分散媒に分散された本発明の電解質材料とを含み、前記分散媒が、水酸基を有する有機溶媒を含むことを特徴とする。
本発明の固体高分子形膜電極接合体は、プロトン伝導性ポリマーを含む触媒層を有するアノードと、プロトン伝導性ポリマーを含む触媒層を有するカソードと、前記アノードと前記カソードとの間に配置される固体高分子電解質膜とを備えた固体高分子形燃料電池用膜電極接合体において、前記カソードおよび前記アノードの少なくとも一方の触媒層に含まれるプロトン伝導性ポリマーが、本発明の電解質材料であることを特徴とする。
本発明の膜電極接合体は、低加湿ないし無加湿条件下、および高加湿条件下のいずれにおいても発電特性に優れる。
本発明の電解質材料は、膜電極接合体の触媒層に好適である。さらに、含水率が低い。
本発明の液状組成物は、本発明の膜電極接合体における触媒層の形成に好適である。
本発明の膜電極接合体の一例を示す断面図である。 本発明の膜電極接合体の他の例を示す断面図である。
本明細書においては、式(u11)で表される繰り返し単位を単位(u11)と記す。他の式で表される繰り返し単位も同様に記す。
また、本明細書においては、式(m11)で表される化合物を化合物(m11)と記す。他の式で表される化合物も同様に記す。
また、本明細書においては、式(g1)で表される基を基(g1)と記す。他の式で表される基も同様に記す。
本明細書において繰り返し単位とは、モノマーが重合することによって形成された該モノマーに由来する単位を意味する。繰り返し単位は、重合反応によって直接形成された単位であってもよく、ポリマーを処理することによって該単位の一部が別の構造に変換された単位であってもよい。
また、モノマーとは、重合反応性の炭素−炭素二重結合を有する化合物である。
また、イオン交換基とは、H、一価の金属カチオン、アンモニウムイオン等を有する基である。イオン交換基としては、後述の基(g1)等が挙げられる。
また、前駆体基とは、加水分解処理、酸型化処理等の公知の処理によりイオン交換基に変換できる基である。前駆体基としては、−SOF基等が挙げられる。
<電解質材料>
本発明の電解質材料は、ポリマー(F)の前駆体基をイオン交換基に変換したポリマー(H)からなる。
(ポリマー(F))
ポリマー(F)は、特定の繰り返し単位(A)と、特定の繰り返し単位(B)と、必要に応じて他の繰り返し単位(C)とを有するポリマーである。
繰り返し単位(A):
繰り返し単位(A)は、イオン交換基の前駆体基および該前駆体基が結合した5員環を有するペルフルオロモノマー(以下、モノマー(a)とも記す。)に基づく繰り返し単位である。
5員環は、エーテル結合性酸素原子を1個または2個有してもよい環状のペルフルオロ有機基である。
モノマー(a)における重合反応性の炭素−炭素二重結合は、5員環を構成する隣接する2個の炭素原子から構成されてもよく、5員環を構成する1個の炭素原子とこれに隣接する5員環外に存在する1個の炭素原子から構成されてもよく、5員環外に存在する隣接する2個の炭素原子から構成されてもよい。5員環外に存在する隣接する2個の炭素原子から構成される重合反応性の炭素−炭素二重結合は、エーテル結合性酸素原子を有してもよい2価のペルフルオロ有機基(たとえば、エーテル結合性酸素原子を有してもよいペルフルオロアルキレン基等)を介して5員環に結合してもよい。
前駆体基は、5員環に直接結合していてもよく、エーテル結合性酸素原子を有してもよい2価のペルフルオロ有機基(たとえば、エーテル結合性酸素原子を有してもよいペルフルオロアルキレン基等)を介して結合してもよい。
モノマー(a)としては、たとえば、化合物(m11)〜(m13)が挙げられ、ポリマーの電極性能を向上させる効果が高い点から、化合物(m11)または化合物(m12)が好ましく、モノマーの合成のしやすさから、化合物(m11)がより好ましい。
Figure 2011013577
11は、エーテル結合性酸素原子を有してもよい2価のペルフルオロ有機基である。有機基は、炭素原子を1個以上有する基である。2価のペルフルオロ有機基としては、ペルフルオロアルキレン基が好ましい。ペルフルオロアルキレン基がエーテル結合性酸素原子を有する場合、該酸素原子は、1個であってもよく、2個以上であってもよい。また、該酸素原子は、ペルフルオロアルキレン基の炭素−炭素結合間に挿入されていてもよく、炭素原子結合末端に挿入されていてもよい。ペルフルオロアルキレン基は、直鎖状であってもよく、分岐状であってもよく、直鎖状であることが好ましい。
12、R13、R15、R16は、それぞれ独立にエーテル結合性酸素原子を有してもよい1価のペルフルオロ有機基またはフッ素原子である。1価のペルフルオロ有機基としては、ペルフルオロアルキル基が好ましい。R15およびR16は、重合反応性が高い点から、少なくとも一方がフッ素原子であることが好ましく、両方がフッ素原子であることがより好ましい。
14は、エーテル結合性酸素原子を有してもよい1価のペルフルオロ有機基、フッ素原子、または−R11SOF基である。
1価のペルフルオロ有機基としては、ペルフルオロアルキル基が好ましい。ペルフルオロアルキル基がエーテル結合性酸素原子を有する場合、該酸素原子は、1個であってもよく、2個以上であってもよい。また、該酸素原子は、ペルフルオロアルキル基の炭素−炭素結合間に挿入されていてもよく、炭素原子結合末端に挿入されていてもよい。ペルフルオロアルキル基は、直鎖状であってもよく、分岐状であってもよく、直鎖状であることが好ましい。化合物(m11)が2個のR11を有する場合、R11は、それぞれ同じ基であってもよく、それぞれ異なる基であってもよい。
21は、炭素数1〜6のペルフルオロアルキレン基または炭素−炭素結合間にエーテル結合性酸素原子を有する炭素数2〜6のペルフルオロアルキレン基である。ペルフルオロアルレン基がエーテル結合性酸素原子を有する場合、該酸素原子は、1個であってもよく、2個以上であってもよい。ペルフルオロアルレン基は、直鎖状であってもよく、分岐状であってもよく、直鎖状であることが好ましい。
22は、フッ素原子、炭素数1〜6のペルフルオロアルキル基、炭素−炭素結合間にエーテル結合性酸素原子を有する炭素数2〜6のペルフルオロアルキル基、または−R21(SOX(SO基である。ペルフルオロアルキル基がエーテル結合性酸素原子を有する場合、該酸素原子は、1個であってもよく、2個以上であってもよい。ペルフルオロアルキル基は、直鎖状であってもよく、分岐状であってもよく、直鎖状であることが好ましい。化合物(m12)が2個のR21を有する場合、R21は、それぞれ同じ基であってもよく、それぞれ異なる基であってもよい。
31は、炭素数1〜6のペルフルオロアルキレン基または炭素−炭素結合間にエーテル結合性酸素原子を有する炭素数2〜6のペルフルオロアルキレン基である。ペルフルオロアルキレン基がエーテル結合性酸素原子を有する場合、該酸素原子は、1個であってもよく、2個以上であってもよい。ペルフルオロアルキレン基は、直鎖状であってもよく、分岐状であってもよく、直鎖状であることが好ましい。
32〜R35は、フッ素原子、炭素数1〜6のペルフルオロアルキル基、または炭素−炭素結合間にエーテル結合性酸素原子を有する炭素数2〜6のペルフルオロアルキル基である。ペルフルオロアルキル基がエーテル結合性酸素原子を有する場合、該酸素原子は、1個であってもよく、2個以上であってもよい。ペルフルオロアルキル基は、直鎖状であってもよく、分岐状であってもよく、直鎖状であることが好ましい。
36は、単結合、炭素数1〜6のペルフルオロアルキレン基または炭素−炭素結合間にエーテル結合性酸素原子を有する炭素数2〜6のペルフルオロアルキレン基である。ペルフルオロアルキレン基がエーテル結合性酸素原子を有する場合、該酸素原子は、1個であってもよく、2個以上であってもよい。ペルフルオロアルキレン基は、直鎖状であってもよく、分岐状であってもよく、直鎖状であることが好ましい。
化合物(m11)としては、たとえば、化合物(m11−1)〜(m11−4)が挙げられ、合成が容易である点および重合反応性が高い点から、化合物(m11−1)が特に好ましい。
Figure 2011013577
化合物(m12)としては、たとえば、化合物(m12−1)または化合物(m12−2)が挙げられる。
Figure 2011013577
化合物(m13)としては、たとえば、化合物(m13−1)または化合物(m13−2)が挙げられる。
Figure 2011013577
化合物(m11)は、国際公開第2003/037885号パンフレット、特開2005−314388号公報、特開2009−040909号公報等に記載された方法により合成できる。
化合物(m12)は、特開2006−152249号公報等に記載された方法により合成できる。
化合物(m13)は、特開2006-241302号公報等に記載された方法により合成できる。
繰り返し単位(B):
繰り返し単位(B)は、式(u2)で表される繰り返し単位を構成し得るペルフルオロモノマー(以下、モノマー(b)とも記す。)に基づく繰り返し単位である。
モノマー(b)としては、化合物(m2)が挙げられる。
Figure 2011013577
sは、0または1である。
およびRは、それぞれ独立にフッ素原子、炭素数1〜5のペルフルオロアルキル基、または互いに連結して形成されたスピロ環(ただし、sが0の場合)である。
およびRは、それぞれ独立にフッ素原子または炭素数1〜5のペルフルオロアルキル基である。
は、フッ素原子、炭素数1〜5のペルフルオロアルキル基、または炭素数1〜5のペルフルオロアルコキシ基である。Rは、重合反応性が高い点から、フッ素原子が好ましい。
ペルフルオロアルキル基およびペルフルオロアルコキシ基は、直鎖状であってもよく、分岐状であってもよく、直鎖状であることが好ましい。
化合物(m2)としては、たとえば、化合物(m2−1)〜(m2−11)が挙げられ、ポリマーの電極性能を向上させる効果が高い点から、化合物(m2−1)が特に好ましい。
Figure 2011013577
化合物(m2)は、Macromolecule、第26巻 第22号、1993年、p.5829−5834、または特開平6−92957号公報に記載された方法により合成できる。
他の繰り返し単位(C):
他の繰り返し単位(C)は、モノマー(a)およびモノマー(b)以外の他のモノマー(以下、モノマー(c)とも記す。)に基づく繰り返し単位である。
モノマー(c)としては、TFE、クロロトリフルオロエチレン、トリフルオロエチレン、フッ化ビニリデン、フッ化ビニル、エチレン、プロピレン、ペルフルオロ(3−ブテニルビニルエーテル)、ペルフルオロ(アリルビニルエーテル)、ペルフルオロα−オレフィン類(ヘキサフルオロプロピレン等)、(ペルフルオロアルキル)エチレン類((ペルフルオロブチル)エチレン等)、(ペルフルオロアルキル)プロペン類(3−ペルフルオロオクチル−1−プロペン等)、ペルフルオロ(アルキルビニルエーテル)類等が挙げられる。モノマー(c)としては、TFEが特に好ましい。TFEは高い結晶性を有するため、ポリマー(H)が含水した際の膨潤を抑える効果があり、ポリマー(H)の含水率を低減できる。
モノマー(c)として、イオン交換基およびその前駆体基を有さず、ジオキソラン環を有し、かつ重合反応性を有する炭素−炭素二重結合を1個有するペルフルオロモノマー(以下、モノマー(c’)とも記す。)を用いてもよい。
モノマー(c’)としては、重合反応性が高い点から、化合物(m51)が好ましい。
Figure 2011013577
41〜R46は、それぞれ独立にエーテル結合性酸素原子を有してもよい1価のペルフルオロ有機基またはフッ素原子である。1価のペルフルオロ有機基としては、ペルフルオロアルキル基が好ましい。ペルフルオロアルキル基がエーテル結合性酸素原子を有する場合、該酸素原子は、1個であってもよく、2個以上であってもよい。また、該酸素原子は、ペルフルオロアルキル基の炭素−炭素結合間に挿入されていてもよく、炭素原子結合末端に挿入されていてもよい。ペルフルオロアルキル基は、直鎖状であってもよく、分岐状であってもよく、直鎖状であることが好ましい。
45およびR46は、重合反応性が高い点から、少なくとも一方がフッ素原子であることが好ましく、両方がフッ素原子であることがより好ましい。
化合物(m51)としては、たとえば、化合物(m51−1)または化合物(m51−2)が挙げられ、合成が容易である点および重合反応性が高い点から、化合物(m51−1)が特に好ましい。
Figure 2011013577
また、モノマー(c)として、重合反応性を有する炭素−炭素二重結合を2個以上有するペルフルオロモノマー(以下、モノマー(c”)とも記す。)を用いてもよい。モノマー(c”)を用いることにより、ポリマー(F)の固有粘度を上げることができ、ポリマー(H)の含水率を抑制する効果を有する。
モノマー(c”)としては、たとえば、化合物(m52)または化合物(m53)が挙げられる。
CF=CF−Q−CF=CF ・・・(m52)。
Figure 2011013577
は、酸素原子、または直鎖または分岐構造を有するエーテル結合性酸素原子を有してもよいペルフルオロアルキレン基である。
は、単結合、酸素原子、またはエーテル結合性酸素原子を有してもよい炭素数1〜10のペルフルオロアルキレン基である。
化合物(m52)としては、合成が容易である点から、化合物(m52−1)〜(m52−3)が好ましい。
CF=CFOCF=CF ・・・(m52−1)、
CF=CFO(CFOCF=CF ・・・(m52−2)、
CF=CF[OCFCF(CF)]O(CF[OCF(CF)CFOCF=CF ・・・(m52−3)。
ただし、h、kは、2〜8の整数であり、i、jは、それぞれ独立に0〜5の整数であり、i+j≧1である。
化合物(m53)としては、合成が容易である点および重合反応性が高い点から、化合物(m53−1)〜(m53−6)が好ましい。
Figure 2011013577
モノマー(c”)の添加量は、ポリマー(F)を構成する全モノマー(モノマー(a)、モノマー(b)およびモノマー(c)の合計)100モル%のうち、0.001〜20モル%が好ましい。0.001モル%未満では、分子量を上げる効果が充分でなく、また、20モル%より多いと、モノマー(a)、モノマー(b)との反応性の違いからポリマー(F)の製造が難しくなる。
固有粘度:
ポリマー(F)の固有粘度は、0.3dL/g以上であり、0.3〜2.0dL/gが好ましく、0.4〜1.0dL/gがより好ましい。固有粘度が0.3dL/g以上であれば、ポリマー(H)のイオン交換容量を高くしても、ポリマー(H)の含水率の上昇が抑えられ、固体高分子形燃料電池の触媒層の電解質材料として用いた場合、触媒層におけるフラッディングが抑えられる。
ポリマーの固有粘度は、下記の通り定義され、ポリマーの分子量の指標となる。
Figure 2011013577
ただし、〔η〕は、固有粘度であり、ηは、ポリマー溶液の粘度であり、ηは、溶媒の粘度であり、cは、ポリマー溶液の濃度である。
ポリマー(F)の固有粘度を0.3dL/g以上に調整する方法としては、たとえば、(i)重合条件を調整する方法、(ii)重合の際に化合物(c”)を添加する方法、等が挙げられる。
(i)の方法においては、重合時の連鎖移動を抑制することが重要である。具体的には、重合の形態としては溶媒を用いないバルク重合を行うことが好ましい。溶液重合を行う際には、連鎖移動性の少ない溶媒を用いることが有効である。ラジカル開始剤としては連鎖移動性の少ないラジカル開始剤、特にペルフルオロ化合物からなるラジカル開始剤を用いることが好ましい。また、ラジカル開始剤による再結合停止反応を減らすために、モノマーに対するラジカル開始剤の量を減らすことも有効である。
(ii)の方法においては、上述したとおり、化合物(c”)を添加することにより固有粘度を上げることができる。
ポリマー(F)の製造:
ポリマー(F)は、モノマー(a)、モノマー(b)、および必要に応じてモノマー(c)を重合することによって製造される。
重合法としては、バルク重合法、溶液重合法、懸濁重合法、乳化重合法等の公知の重合法が挙げられる。また、液体または超臨界の二酸化炭素中にて重合を行ってもよい。
重合は、ラジカルが生起する条件で行われる。ラジカルを生起させる方法としては、紫外線、γ線、電子線等の放射線を照射する方法、ラジカル開始剤を添加する方法等が挙げられる。
重合温度は、通常、10〜150℃である。
ラジカル開始剤としては、ビス(フルオロアシル)ペルオキシド類、ビス(クロロフルオロアシル)ペルオキシド類、ジアルキルペルオキシジカーボネート類、ジアシルペルオキシド類、ペルオキシエステル類、アゾ化合物類、過硫酸塩類等が挙げられ、不安定末端基が少ないポリマー(F)が得られる点から、ビス(フルオロアシル)ペルオキシド類等のペルフルオロ化合物が好ましい。
溶液重合法にて用いる溶媒としては、20〜350℃の沸点を有する溶媒が好ましく、40〜150℃の沸点を有する溶媒がより好ましい。溶媒としては、ペルフルオロトリアルキルアミン類(ペルフルオロトリブチルアミン等)、ペルフルオロカーボン類(ペルフルオロヘキサン、ペルフルオロオクタン等)、ハイドロフルオロカーボン類(1H,4H−ペルフルオロブタン、1H−ペルフルオロヘキサン等)、ハイドロクロロフルオロカーボン類(3,3−ジクロロ−1,1,1,2,2−ペンタフルオロプロパン、1,3−ジクロロ−1,1,2,2,3−ペンタフルオロプロパン等)、ハイドロフルオロエーテル類(CFCHOCFCFH等)が挙げられる。
溶液重合法においては、溶媒中にモノマー、ラジカル開始剤等を添加し、溶媒中にてラジカルを生起させてモノマーの重合を行う。モノマーおよび開始剤の添加は、一括添加であってもよく、逐次添加であってもよく、連続添加であってもよい。
懸濁重合法においては、水を分散媒として用い、該分散媒中にモノマー、非イオン性のラジカル開始剤等を添加し、分散媒中にてラジカルを生起させてモノマーの重合を行う。
非イオン性のラジカル開始剤としては、ビス(フルオロアシル)ペルオキシド類、ビス(クロロフルオロアシル)ペルオキシド類、ジアルキルペルオキシジカーボネート類、ジアシルペルオキシド類、ペルオキシエステル類、ジアルキルペルオキシド類、ビス(フルオロアルキル)ペルオキシド類、アゾ化合物類等が挙げられる。
分散媒には、助剤として前記溶媒;懸濁粒子の凝集を防ぐ分散安定剤として界面活性剤;分子量調整剤として炭化水素系化合物(ヘキサン、メタノール等)等を添加してもよい。
(ポリマー(H))
ポリマー(H)は、ポリマー(F)の前駆体基をイオン交換基に変換したポリマーであり、特定の繰り返し単位(A’)と、特定の繰り返し単位(B)と、必要に応じて他の繰り返し単位(C)とを有するポリマーである。
繰り返し単位(A’):
繰り返し単位(A’)は、繰り返し単位(A)の前駆体基をイオン交換基に変換した繰り返し単位である。
イオン交換基は、基(g1)であることが好ましい。
−(SOX(SO ・・・(g1)。
は、H、一価の金属カチオン、または1以上の水素原子が炭化水素基と置換されていてもよいアンモニウムイオンであり、高導電性の観点から、Hが好ましい。
は、エーテル結合性酸素原子を有してもよい直鎖または分岐のペルフルオロアルキル基である。ペルフルオロアルキル基の炭素数は、1〜8が好ましく、1〜6がより好ましい。2個以上のRを有する場合、Rは、それぞれ同じ基であってもよく、それぞれ異なる基であってもよい。
Xは、酸素原子、窒素原子または炭素原子であって、Xが酸素原子の場合a=0であり、Xが窒素原子の場合a=1であり、Xが炭素原子の場合a=2である。
基(g1)としては、スルホン酸基(−SO 基)、スルホンイミド基(−SON(SO基)、またはスルホンメチド基(−SOC(SO基)が挙げられる。
繰り返し単位(A’)としては、たとえば、単位(u11)〜(u13)が挙げられ、ポリマーの電極性能を向上させる効果が高い点から、単位(u11)または単位(u12)が好ましく、モノマーの合成のしやすさから、単位(u11)がより好ましい。
Figure 2011013577
11〜R13、R15、R16は、化合物(m11)において説明した通りである。
14は、エーテル結合性酸素原子を有してもよい1価のペルフルオロ有機基、フッ素原子、または−R11(SOX(SO基である。
15およびR16は、重合反応性が高い点から、少なくとも一方がフッ素原子であることが好ましく、両方がフッ素原子であることがより好ましい。
21、R22は、化合物(m12)において説明した通りである。
31〜R36は、化合物(m13)において説明した通りである。
単位(u11)としては、繰り返し単位(A)を構成するモノマー(a)の合成のしやすさから、単位(u11−1)が特に好ましい。
単位(u12)としては、たとえば、単位(u12−1)または単位(u12−2)が挙げられる。
Figure 2011013577
繰り返し単位(B):
繰り返し単位(B)は、モノマー(b)に基づく繰り返し単位、すなわち単位(u2)である。
Figure 2011013577
〜Rは、化合物(m2)において説明した通りである。
は、重合反応性が高い点から、フッ素原子であることが好ましい。
単位(u2)としては、ポリマーの電極性能を向上させる効果が高い点から、単位(u2−1)が特に好ましい。
Figure 2011013577
他の繰り返し単位(C):
他の繰り返し単位(C)は、モノマー(c)に基づく繰り返し単位である。
他の繰り返し単位(C)としては、ポリマー(H)の含水率を低減できる点から、TFEに基づく繰り返し単位が特に好ましい。
イオン交換容量:
ポリマー(H)のイオン交換容量は、0.7〜2.3ミリ当量/g乾燥樹脂が好ましく、1.1〜2.0ミリ当量/g乾燥樹脂がより好ましい。イオン交換容量が0.7ミリ当量/g乾燥樹脂以上であれば、ポリマー(H)の導電性が高くなるため、固体高分子形燃料電池の触媒層の電解質材料として用いた場合、充分な電池出力を得ることできる。イオン交換容量が2.3ミリ当量/g乾燥樹脂以下であれば、固有粘度の高いポリマー(F)の合成が容易であり、また、ポリマー(H)の含水率上昇が抑えられる。
ポリマー(H)のイオン交換容量を0.7ミリ当量/g乾燥樹脂以上にするには、ポリマー(F)を合成する際のモノマー(a)の割合を調整する。具体的には、重合時のモノマー組成を制御することが重要であり、そのためには、モノマーの重合反応性を考慮した上で仕込み組成を決める必要がある。また、モノマーを2種以上反応させる場合は、より反応性の高いモノマーを逐次的または連続的に添加することで、一定の組成で反応を進めることができる。
ポリマー(H)の製造:
ポリマー(H)は、ポリマー(F)の前駆体基をイオン交換基に変換することによって製造される。
−SOF基をスルホン酸基(−SO 基)に変換する方法としては、下記(i)の方法が挙げられ、−SOF基をスルホンイミド基(−SON(SO基)に変換する方法としては、下記(ii)の方法が挙げられる。
(i)ポリマー(F)の−SOF基を加水分解してスルホン酸塩とし、スルホン酸塩を酸型化してスルホン酸基に変換する方法。
(ii)ポリマー(F)の−SOF基をイミド化して塩型のスルホンイミド基とし、さらに酸型化して酸型のスルホンイミド基に変換する方法。
(i)の方法:
加水分解は、たとえば、溶媒中にてポリマー(F)と塩基性化合物とを接触させて行う。塩基性化合物としては、水酸化ナトリウム、水酸化カリウム等が挙げられる。溶媒としては、水、水と極性溶媒との混合溶媒等が挙げられる。極性溶媒としては、アルコール類(メタノール、エタノール等)、ジメチルスルホキシド等が挙げられる。
酸型化は、たとえば、スルホン酸塩を有するポリマーを、塩酸、硫酸等の水溶液に接触させて行う。
加水分解および酸型化は、通常、0〜120℃にて行う。
(ii)の方法:
イミド化としては、下記の方法が挙げられる。
(ii−1)−SOF基と、RSONHMとを反応させる方法。
(ii−2)アルカリ金属水酸化物、アルカリ金属炭酸塩、MF、アンモニアまたは1〜3級アミンの存在下で、−SOF基と、RSONHとを反応させる方法。
(ii−3)−SOF基と、RSONMSi(CHとを反応させる方法。
ただし、Mは、アルカリ金属または1〜4級のアンモニウムである。
酸型化は、塩型のスルホンイミド基を有するポリマーを、酸(硫酸、硝酸、塩酸等)で処理することにより行う。
なお、イオン交換基がスルホンイミド基であるポリマー(H)は、モノマー(a)の−SOF基をスルホンイミド基に変換したモノマー(a')と、モノマー(b)と、必要に応じてモノマー(c)とを重合させることによっても製造できる。
モノマー(a')は、モノマー(a)の炭素−炭素二重結合に塩素または臭素を付加し、−SOF基を(ii)の方法でスルホンイミド基に変換した後、金属亜鉛を用いて脱塩素または脱臭素反応を行うことにより製造できる。
以上説明した本発明の電解質材料にあっては、特定の繰り返し単位(A)と特定の繰り返し単位(B)とを有するポリマー(F)の前駆体基をイオン交換基に変換したポリマー(H)からなるため、該電解質材料を触媒層に含ませた膜電極接合体は、低加湿ないし無加湿条件下、および高加湿条件下のいずれにおいても充分な発電特性(出力電圧等)を発揮できる。特に、高温条件、かつ低加湿度条件ないし無加湿条件(セル温度:90℃以上、加湿度:30%RH以下)というような厳しい条件下においてでも、高い発電特性(出力電圧等)を発揮できる。
なお、低加湿ないし無加湿条件下においてさらなる高性能を発現させるために、ポリマー(H)のイオン交換容量を高くすると、ポリマー(H)の含水率(吸水性)が急激に高くなってしまう。そこで、本発明者らが鋭意検討した結果、ポリマー(H)のイオン交換容量を高くすると同時にポリマー(F)の固有粘度も高くすると、ポリマー(H)の含水率の上昇が抑えられることがわかった。
従来の結晶性を有するポリマー(たとえば、上述の化合物(m3)に基づく繰り返し単位とTFEに基づく繰り返し単位とを有するポリマーの−SOF基をスルホン酸基に変換したポリマー)では、分子量(すなわち固有粘度)を高くすると機械的強度が高くなることは知られているが、固有粘度を高くしても含水率の抑制効果は小さい。固有粘度を高くすると含水率の上昇が抑えられるという現象は、本発明におけるポリマー(H)のようなアモルファスのポリマーにおいて特に顕著に見られる現象である。
<液状組成物>
本発明の液状組成物は、分散媒と、該分散媒に分散された本発明の電解質材料とを含む組成物である。
分散媒は、水酸基を有する有機溶媒を含む。
水酸基を有する有機溶媒としては、メタノール、エタノール、1−プロパノール、2−プロパノール、2,2,2−トリフルオロエタノール、2,2,3,3,3−ペンタフルオロ−1−プロパノール、2,2,3,3−テトラフルオロ−1−プロパノール、4,4,5,5,5−ペンタフルオロ−1−ペンタノール、1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール、3,3,3−トリフルオロ−1−プロパノール、3,3,4,4,5,5,6,6,6−ノナフルオロ−1−ヘキサノール、3,3,4,4,5,5,6,6,7,7,8,8,8−トリデカフルオロ−1−オクタノール等が挙げられる。
水酸基を有する有機溶媒は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
分散媒は、水を含むことが好ましい。
水の割合は、分散媒(100質量%)のうち、10〜99質量%が好ましく、40〜99質量%がより好ましい。水の割合を増やすことにより、分散媒に対する電解質材料の分散性を向上できる。
水酸基を有する有機溶媒の割合は、分散媒(100質量%)のうち、1〜90質量%が好ましく、1〜60質量%がより好ましい。
電解質材料の割合は、液状組成物(100質量%)のうち、1〜50質量%が好ましく、3〜30質量%がより好ましい。
液状組成物の調製方法としては、大気圧下、またはオートクレーブ等で密閉した状態下において、分散媒中の電解質材料にせん断を加える方法が挙げられる。調製温度は、0〜250℃が好ましく、20〜150℃がより好ましい。必要に応じて、超音波等のせん断を付与してもよい。
本発明の液状組成物は、後述の膜電極接合体における触媒層の形成に好適に用いられる。
<膜電極接合体>
図1は、本発明の固体高分子形燃料電池用膜電極接合体(以下、膜電極接合体と記す。)の一例を示す断面図である。膜電極接合体10は、触媒層11およびガス拡散層12を有するアノード13と、触媒層11およびガス拡散層12を有するカソード14と、アノード13とカソード14との間に、触媒層11に接した状態で配置される固体高分子電解質膜15とを具備する。
(触媒層)
触媒層11は、触媒と、プロトン伝導性ポリマーとを含む層である。
触媒としては、カーボン担体に白金または白金合金を担持した担持触媒が挙げられる。
カーボン担体としては、カーボンブラック粉末が挙げられる。
プロトン伝導性ポリマーとしては、本発明の電解質材料、公知の電解質材料が挙げられ、カソードおよびアノードの少なくとも一方の触媒層に含まれるプロトン伝導性ポリマーが、本発明の電解質材料であり、カソードの触媒層に含まれるプロトン伝導性ポリマーが、本発明の電解質材料であることがより好ましい。
触媒層11は、フラッディングの抑制効果が高まる点から、撥水化剤を含んでいてもよい。撥水化剤としては、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−ペルフルオロ(アルキルビニルエーテル)共重合体、ポリテトラフルオロエチレン等が挙げられる。撥水化剤としては、触媒層11を撥水化処理しやすい点から、溶媒に溶解できる含フッ素ポリマーが好ましい。撥水化剤の量は、触媒層11(100質量%)中、0.01〜30質量%が好ましい。
触媒層11の形成方法としては、下記の方法が挙げられる。
(i)触媒層形成用液を、固体高分子電解質膜15、ガス拡散層12、またはカーボン層16上に塗布し、乾燥させる方法。
(ii)触媒層形成用液を基材フィルム上に塗布し、乾燥させ触媒層11を形成し、該触媒層11を固体高分子電解質膜15上に転写する方法。
触媒層形成用液は、電解質材料および触媒を分散媒に分散させた液である。触媒層形成用液は、たとえば、本発明の液状組成物と、触媒の分散液とを混合することにより調製できる。
(ガス拡散層)
ガス拡散層12は、触媒層11に均一にガスを拡散させる機能および集電体としての機能を有する。
ガス拡散層12としては、カーボンペーパー、カーボンクロス、カーボンフェルト等が挙げられる。
ガス拡散層12は、ポリテトラフルオロエチレン等によって撥水化処理されていることが好ましい。
(カーボン層)
膜電極接合体10は、図2に示すように、触媒層11とガス拡散層12との間にカーボン層16を有していてもよい。カーボン層16を配置することにより、触媒層11の表面のガス拡散性が向上し、固体高分子形燃料電池の発電性能が大きく向上する。
カーボン層16は、カーボンと非イオン性含フッ素ポリマーとを含む層である。
カーボンとしては、繊維径1〜1000nm、繊維長1000μm以下のカーボンナノファイバーが好ましい。
非イオン性含フッ素ポリマーとしては、ポリテトラフルオロエチレン等が挙げられる。
(固体高分子電解質膜)
固体高分子電解質膜15は、プロトン伝導性ポリマーを含む膜である。
プロトン伝導性ポリマーとしては、本発明の電解質材料、または公知の電解質材料が挙げられる。公知の電解質材料としては、化合物(m3)に基づく繰り返し単位とTFEに基づく繰り返し単位とを有するポリマーの−SOF基をスルホン酸基に変換したポリマー;化合物(m4)に基づく繰り返し単位とTFEに基づく繰り返し単位とを有するポリマーの−SOF基をスルホン酸基に変換したポリマー等が挙げられる。
CF=CF(OCFCFZ)(CFSOF ・・・(m3)。
Figure 2011013577
Zは、フッ素原子またはトリフルオロメチル基であり、mは、0〜3の整数であり、pは、0または1であり、nは、1〜12であり、m+p>0である。
f1、Rf2は、それぞれ単結合または炭素数1〜6の直鎖のペルフルオロアルキレン基(ただし、エーテル結合性酸素原子を有してもよい。)であり、qは、0または1である。
固体高分子電解質膜15は、たとえば、電解質材料の液状組成物を基材フィルムまたは触媒層11上に塗布し、乾燥させる方法(キャスト法)により形成できる。
液状組成物は、水酸基を有する有機溶媒および水を含む分散媒に、電解質材料を分散させた分散液である。
固体高分子電解質膜15を安定化させるために、熱処理を行うことが好ましい。熱処理の温度は、電解質材料の種類にもよるが、130〜200℃が好ましい。熱処理の温度が130℃以上であれば、電解質材料が過度に含水しなくなる。熱処理の温度が200℃以下であれば、イオン交換基の熱分解が抑えられ、固体高分子電解質膜15のプロトン伝導率の低下が抑えられる。
固体高分子電解質膜15は、必要に応じて過酸化水素水で処理してもよい。
固体高分子電解質膜15は、補強材で補強されていてもよい。補強材としては、多孔体、繊維、織布、不織布等が挙げられる。補強材の材料としては、ポリテトラフルオロエチレン、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−ペルフルオロ(アルキルビニルエーテル)共重合体、ポリエチレン、ポリプロピレン、ポリフェニレンスルフィド等が挙げられる。
固体高分子電解質膜15は、耐久性をさらに向上させるために、セリウムおよびマンガンからなる群から選ばれる1種以上の原子を含んでいてもよい。セリウム、マンガンは、固体高分子電解質膜15の劣化を引き起こす原因物質である過酸化水素を分解する。セリウム、マンガンは、イオンとして固体高分子電解質膜15中に存在することが好ましく、イオンとして存在すれば固体高分子電解質膜15中でどのような状態で存在してもかまわない。
固体高分子電解質膜15は、乾燥を防ぐための保水剤として、シリカ、またはヘテロポリ酸(リン酸ジルコニウム、リンモリブデン酸、リンタングステン酸等)を含んでいてもよい。
(膜電極接合体の製造方法)
膜電極接合体10は、たとえば、下記の方法にて製造される。
(i)固体高分子電解質膜15上に触媒層11を形成して膜触媒層接合体とし、該膜触媒層接合体をガス拡散層12で挟み込む方法。
(ii)ガス拡散層12上に触媒層11を形成して電極(アノード13、カソード14)とし、固体高分子電解質膜15を該電極で挟み込む方法。
膜電極接合体10がカーボン層16を有する場合、膜電極接合体10は、たとえば、下記の方法にて製造される。
(i)基材フィルム上に、カーボンおよび非イオン性含フッ素ポリマーを含む分散液を塗布し、乾燥させてカーボン層16を形成し、カーボン層16上に触媒層11を形成し、触媒層11と固体高分子電解質膜15とを貼り合わせ、基材フィルムを剥離して、カーボン層16を有する膜触媒層接合体とし、該膜触媒層接合体をガス拡散層12で挟み込む方法。
(ii)ガス拡散層12上に、カーボンおよび非イオン性含フッ素ポリマーを含む分散液を塗布し、乾燥させてカーボン層16を形成し、固体高分子電解質膜15上に触媒層11を形成した膜触媒層接合体を、カーボン層16を有するガス拡散層12で挟み込む方法。
以上説明した膜電極接合体10は、触媒層11が本発明の電解質材料を含んでいるため、低加湿、無加湿条件下および高加湿条件下のいずれにおいても発電特性に優れる。特に、高温条件かつ低加湿度条件ないし無加湿条件というような厳しい条件下においてでも、発電特性に優れる。
<固体高分子形燃料電池>
本発明の膜電極接合体は、固体高分子形燃料電池に用いられる。固体高分子形燃料電池は、たとえば、2枚のセパレータの間に膜電極接合体を挟んでセルを形成し、複数のセルをスタックすることにより製造される。
セパレータとしては、燃料ガスまたは酸素を含む酸化剤ガス(空気、酸素等)の通路となる溝が形成された導電性カーボン板等が挙げられる。
固体高分子形燃料電池の種類としては、水素/酸素型燃料電池、直接メタノール型燃料電池(DMFC)等が挙げられる。DMFCの燃料に用いるメタノールまたはメタノール水溶液は、液フィードであってもよく、ガスフィードであってもよい。
以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの例によって限定されない。例1〜9、15〜23は実施例であり、例10〜14、24〜28は比較例である。
(固有粘度)
ポリマー(F)の固有粘度は、「新実験化学講座19 高分子化学II」、丸善株式会社、p.607〜611に記載の方法により求めた。
ヘキサフルオロベンゼンを溶媒にしてポリマー(F)を溶解し、溶液を得た。30℃に保持された恒温槽中で、ウベローデ型粘度計(柴田科学社製)を用い、溶媒、ポリマーが溶解した溶液の落下時間、溶液のポリマー濃度から固有粘度を算出した。
(イオン交換容量)
ポリマー(H)のイオン交換容量は、下記方法により求めた。
ポリマー(H)をグローブボックス中に入れ、乾燥窒素を流した雰囲気中に24時間以上放置し、乾燥させた。グローブボックス中でポリマー(H)の乾燥質量を測定した。
ポリマー(H)を2モル/Lの塩化ナトリウム水溶液に浸漬し、60℃で1時間放置した後、室温まで冷却した。ポリマー(H)を浸漬していた塩化ナトリウム水溶液を、0.5モル/Lの水酸化ナトリウム水溶液で滴定することにより、ポリマー(H)のイオン交換容量を求めた。
(含水率)
ポリマー(H)の含水率は、下記方法により求めた。
ポリマー(F)が流動する温度までポリマー(F)を加温した後、加圧プレス成形によって厚さ100〜200μmのフィルムに加工した。ついで、該フィルムを、メタノールの20質量%および水酸化カリウムの15質量%を含む水溶液に40時間浸漬させることにより、該フィルム中のポリマー(F)の−SOF基を加水分解し、−SOK基に変換した。ついで、該フィルムを、3モル/Lの塩酸水溶液に2時間浸漬した。塩酸水溶液を交換し、同様の処理をさらに4回繰り返し、該フィルム中のポリマーの−SOK基をスルホン酸基に変換した。該フィルムを超純水で充分に水洗し、ポリマー(H)のフィルムを得た。
該フィルムを80℃の温水中に16時間浸漬した後、温水ごとフィルムを室温まで冷却した。水中よりフィルムを取り出し、表面に付着した水滴をふき取り、直ちにフィルムの含水時の質量を測定した。ついで、該フィルムをグローブボックス中に入れ、乾燥窒素を流した雰囲気中に24時間以上放置し、フィルムを乾燥させた。グローブボックス中でフィルムの乾燥質量を測定した。フィルムの含水時の質量と乾燥質量との差から、ポリマー(H)が含水時に吸収する水の質量を求めた。そして、下式よりポリマー(H)の含水率を求め、下記基準にて評価した。
含水率=(フィルムが含水時に吸収する水の質量/フィルムの乾燥質量)×100。
A:含水率が250%未満。
B:含水率が250%以上600%未満。
C:含水率が600%以上。
(化合物(m11))
化合物(m11−1)の合成:
国際公開第2003/037885号パンフレットのp.37−42の実施例に記載の方法にしたがって、化合物(m11−1)を合成した。
Figure 2011013577
化合物(m11−2)の合成:
特開2005−314388号公報の例4に記載の方法にしたがって、化合物(m11−2)を合成した。
Figure 2011013577
化合物(m11−3)の合成:
特開2005−314388号公報の例5に記載の方法にしたがって、化合物(m11−3)を合成した。
Figure 2011013577
(化合物(m12))
化合物(m12−1)の合成:
特開2006−152249号公報の例1に記載の方法にしたがって、化合物(m12−1)を合成した。
Figure 2011013577
化合物(m12−2)の合成:
特開2006−152249号公報の例2に記載の方法にしたがって、化合物(m12−2)を合成した。
Figure 2011013577
(化合物(m2))
化合物(m2−1):
Figure 2011013577
(化合物(m51))
化合物(m51−1):
Figure 2011013577
(化合物(m3))
化合物(m3−1):
Figure 2011013577
(化合物(m4))
化合物(m4−1)の合成:
国際公開第2007/013532号パンフレットのp.24に記載の方法にしたがって、化合物(m4−1)を合成した。
Figure 2011013577
(ラジカル開始剤)
化合物(i−1):
Figure 2011013577
化合物(i−2):
(CCOO) ・・・(i−2)。
化合物(i−3):
((CHCHOCOO) ・・・(i−3)。
(溶媒)
化合物(s−1):
CClFCFCHClF ・・・(s−1)。
化合物(s−2):
CHCClF ・・・(s−2)。
〔例1〕
内容積125mLのステンレス製オートクレーブに、化合物(m11−1)の5.97g、化合物(m2−1)の13.70g、化合物(s−1)の13.75gおよび化合物(i−1)の17.1mgを仕込み、液体窒素による冷却下、充分脱気した。その後、65℃に昇温して、6時間保持した後、オートクレーブを冷却して反応を停止した。
生成物を化合物(s−1)で希釈した後、これにn−ヘキサンを添加し、ポリマーを凝集してろ過した。その後、化合物(s−1)中でポリマーを撹拌し、n−ヘキサンで再凝集し、80℃で一晩減圧乾燥し、ポリマー(F−1)を得た。収量は3.7gであった。ポリマー(F−1)の固有粘度を測定した。結果を表1に示す。
ポリマー(F−1)を、メタノール20質量%および水酸化カリウム15質量%を含む50℃の水溶液に40時間浸漬させることにより、ポリマー(F−1)中の−SOF基を加水分解し、−SOK基に変換した。ついで、該ポリマーを、3モル/Lの塩酸水溶液に室温で2時間浸漬した。塩酸水溶液を交換し、同様の処理をさらに4回繰り返し、ポリマー中の−SOK基がスルホン酸基に変換されたポリマー(H−1)を得た。該ポリマー(H−1)を超純水で充分に水洗した。ポリマー(H−1)のイオン交換容量、含水率を測定した。結果を表1に示す。
ポリマー(H−1)に、エタノールと水との混合溶媒(エタノール/水=60/40質量比)を加え、固形分濃度を15質量%に調整し、オートクレーブを用い105℃で8時間、撹拌し、ポリマー(H−1)が分散媒に分散した液状組成物(D−1)を得た。
〔例2〕
内容積125mLのステンレス製オートクレーブに、化合物(m11−1)の11.17g、化合物(m2−1)の23.26g、化合物(s−1)の12.06gおよび化合物(i−1)の22.3mgを仕込み、液体窒素による冷却下、充分脱気した。その後、65℃に昇温して、18時間撹拌した後、オートクレーブを冷却して反応を停止した。
生成物を化合物(s−1)で希釈した後、これにn−ヘキサンを添加し、ポリマーを凝集してろ過した。その後、化合物(s−1)中でポリマーを撹拌し、n−ヘキサンで再凝集し、80℃で一晩減圧乾燥し、ポリマー(F−2)を得た。収量は14.8gであった。ポリマー(F−2)の固有粘度を測定した。結果を表1に示す。
ポリマー(F−2)を用いて、例1と同様の方法で、ポリマー(H−2)、液状組成物(D−2)を得た。ポリマー(H−2)のイオン交換容量、含水率を測定した。結果を表1に示す。
〔例3〕
内容積125mLのステンレス製オートクレーブに、化合物(m11−1)の6.20g、化合物(m2−1)の18.0g、化合物(s−1)の7.5gおよび化合物(i−1)の15.5mgを仕込み、液体窒素による冷却下、充分脱気する。その後、65℃に昇温して、18時間撹拌した後、オートクレーブを冷却して反応を停止する。
生成物を化合物(s−1)で希釈した後、これにn−ヘキサンを添加し、ポリマーを凝集してろ過する。その後、化合物(s−1)中でポリマーを撹拌し、n−ヘキサンで再凝集し、80℃で一晩減圧乾燥し、ポリマー(F−3)を得る。収量は8.0gである。ポリマー(F−3)の固有粘度を測定する。結果を表1に示す。
ポリマー(F−3)を用いて、例1と同様の方法で、ポリマー(H−3)、液状組成物(D−3)を得る。ポリマー(H−3)のイオン交換容量、含水率を測定する。結果を表1に示す。
〔例4〕
内容積125mLのステンレス製オートクレーブに、化合物(m11−2)の12.07g、化合物(m2−1)の23.26g、化合物(s−1)の12.0gおよび化合物(i−1)の22.0mgを仕込み、液体窒素による冷却下、充分脱気する。その後、65℃に昇温して、18時間撹拌した後、オートクレーブを冷却して反応を停止する。
生成物を化合物(s−1)で希釈した後、これにn−ヘキサンを添加し、ポリマーを凝集してろ過する。その後、化合物(s−1)中でポリマーを撹拌し、n−ヘキサンで再凝集し、80℃で一晩減圧乾燥し、ポリマー(F−4)を得る。収量は14.0gである。ポリマー(F−4)の固有粘度を測定する。結果を表1に示す。
ポリマー(F−4)を用いて、例1と同様の方法で、ポリマー(H−4)、液状組成物(D−4)を得る。ポリマー(H−4)のイオン交換容量、含水率を測定する。結果を表1に示す。
〔例5〕
内容積125mLのステンレス製オートクレーブに、化合物(m11−3)の5.23g、化合物(m2−1)の18.0g、化合物(s−1)の7.5g、化合物(i−1)の14.5mgを仕込み、液体窒素による冷却下、充分脱気する。その後、65℃に昇温して、18時間撹拌した後、オートクレーブを冷却して反応を停止する。
生成物を化合物(s−1)で希釈した後、これにn−ヘキサンを添加し、ポリマーを凝集してろ過する。その後、化合物(s−1)中でポリマーを撹拌し、n−ヘキサンで再凝集し、80℃で一晩減圧乾燥し、ポリマー(F−5)を得る。収量は9.2gである。ポリマー(F−5)の固有粘度を測定する。結果を表1に示す。
ポリマー(F−5)を用いて、例1と同様の方法で、ポリマー(H−5)、液状組成物(D−5)を得る。ポリマー(H−5)のイオン交換容量、含水率を測定する。結果を表1に示す。
〔例6〕
内容積125mLのステンレス製オートクレーブに、化合物(m12−1)の15.29g、化合物(m2−1)の15.0g、化合物(s−1)の10.0gおよび化合物(i−1)の23mgを仕込み、液体窒素による冷却下、充分脱気する。その後、65℃に昇温して、18時間撹拌した後、オートクレーブを冷却して反応を停止する。
生成物を化合物(s−1)で希釈した後、これにn−ヘキサンを添加し、ポリマーを凝集してろ過する。その後、化合物(s−1)中でポリマーを撹拌し、n−ヘキサンで再凝集し、80℃で一晩減圧乾燥し、ポリマー(F−6)を得る。収量は12.0gである。ポリマー(F−6)の固有粘度を測定する。結果を表1に示す。
ポリマー(F−6)を用いて、例1と同様の方法で、ポリマー(H−6)、液状組成物(D−6)を得る。ポリマー(H−6)のイオン交換容量、含水率を測定する。結果を表1に示す。
〔例7〕
内容積125mLのステンレス製オートクレーブに、化合物(m12−2)の20.07g、化合物(m2−1)の15.0g、化合物(s−1)の12.0gおよび化合物(i−1)の23mgを仕込み、液体窒素による冷却下、充分脱気する。その後、65℃に昇温して、18時間撹拌した後、オートクレーブを冷却して反応を停止する。
生成物を化合物(s−1)で希釈した後、これにn−ヘキサンを添加し、ポリマーを凝集してろ過する。その後、化合物(s−1)中でポリマーを撹拌し、n−ヘキサンで再凝集し、80℃で一晩減圧乾燥し、ポリマー(F−7)を得る。収量は14.0gである。ポリマー(F−7)の固有粘度を測定する。結果を表1に示す。
ポリマー(F−7)を用いて、例1と同様の方法で、ポリマー(H−7)、液状組成物(D−7)を得る。ポリマー(H−7)のイオン交換容量、含水率を測定する。結果を表1に示す。
〔例8〕
内容積125mLのステンレス製オートクレーブに、化合物(m11−1)の22.26g、化合物(m2−1)の15.25g、化合物(s−1)の11.0gおよび化合物(i−1)の24mgを仕込み、液体窒素による冷却下、充分脱気する。その後、TFEの3.0gを仕込んで、65℃に昇温して、18時間撹拌した後、オートクレーブを冷却して反応を停止する。
生成物を化合物(s−1)で希釈した後、これにn−ヘキサンを添加し、ポリマーを凝集してろ過する。その後、化合物(s−1)中でポリマーを撹拌し、n−ヘキサンで再凝集し、80℃で一晩減圧乾燥し、ポリマー(F−8)を得る。収量は15.0gである。共重合体を構成する繰り返し単位の組成を、19F−NMRにより分析したところ、TFEに基づく繰り返し単位は、14mol%である。ポリマー(F−8)の固有粘度を測定する。結果を表1に示す。
ポリマー(F−8)を用いて、例1と同様の方法で、ポリマー(H−8)、液状組成物(D−8)を得る。ポリマー(H−8)のイオン交換容量、含水率を測定する。結果を表1に示す。
〔例9〕
内容積125mLのステンレス製オートクレーブに、化合物(m11−1)の21.2g、化合物(m2−1)の21.96g、化合物(s−1)の13.0gおよび化合物(i−1)の25mgを仕込み、液体窒素による冷却下、充分脱気する。その後、TFEの4.25gを仕込んで、65℃に昇温して、18時間撹拌した後、オートクレーブを冷却して反応を停止する。
生成物を化合物(s−1)で希釈した後、これにn−ヘキサンを添加し、ポリマーを凝集してろ過する。その後、化合物(s−1)中でポリマーを撹拌し、n−ヘキサンで再凝集し、80℃で一晩減圧乾燥し、ポリマー(F−9)を得る。収量は17.0gである。共重合体を構成する繰り返し単位の組成を、19F−NMRにより分析したところ、TFEに基づく繰り返し単位は、16mol%である。ポリマー(F−9)の固有粘度を測定する。結果を表1に示す。
ポリマー(F−9)を用いて、例1と同様の方法で、ポリマー(H−9)、液状組成物(D−9)を得る。ポリマー(H−9)のイオン交換容量、含水率を測定する。結果を表1に示す。
〔例10〕
内容積125mLのステンレス製オートクレーブに、化合物(m3−1)の49.64g、化合物(s−1)の28.22gおよび化合物(s−1)に3.2質量%の濃度で溶解した化合物(i−2)の38.9mgを仕込み、液体窒素による冷却下、充分脱気した。その後、30℃に昇温して、TFEを系内に導入し、圧力を0.37MPaGに保持した。4.8時間撹拌した後、オートクレーブを冷却して反応を停止した。
生成物を化合物(s−1)で希釈した後、これに化合物(s−2)を添加し、ポリマーを凝集してろ過した。その後、化合物(s−1)中でポリマーを撹拌し、化合物(s−2)で再凝集し、80℃で一晩減圧乾燥し、ポリマー(F−10)を得た。収量は15.0gであった。ポリマー(F−10)の固有粘度を測定した。結果を表1に示す。
ポリマー(F−10)を用いて、例1と同様の方法で、ポリマー(H−10)を得た。ポリマー(H−10)のイオン交換容量、含水率を測定した。結果を表1に示す。
ポリマー(H−10)に、エタノールと水との混合溶媒(エタノール/水=70/30質量比)を加え、固形分濃度を15質量%に調整し、オートクレーブを用い125℃で8時間、撹拌した。さらに水を加え、固形分濃度を7.0質量%に調整し、ポリマー(H−10)が分散媒に分散した液状組成物(D−10)を得た。分散媒の組成は、エタノール/水=35/65(質量比)であった。
〔例11〕
内容積125mLのステンレス製オートクレーブに、化合物(m4−1)の45.9g、化合物(s−1)の16.5gおよび化合物(i−3)の12.65mgを仕込み、液体窒素による冷却下、充分脱気した。その後、40℃に昇温して、TFEを系内に導入し、圧力を0.55MPaGに保持した。40℃で4.3時間撹拌した後、系内のガスをパージし、オートクレーブを冷却して反応を終了させた。
生成物を化合物(s−1)で希釈した後、これに化合物(s−2)を添加し、ポリマーを凝集してろ過した。その後、化合物(s−1)中でポリマーを撹拌し、化合物(s−2)で再凝集し、80℃で一晩減圧乾燥し、ポリマー(F−11)を得た。収量は6.5gであった。ポリマー(F−11)の固有粘度を測定した。結果を表1に示す。
ポリマー(F−11)を用いて、例1と同様の方法で、ポリマー(H−11)を得た。
ポリマー(H−11)のイオン交換容量、含水率を測定した。結果を表1に示す。
ポリマー(H−11)に、エタノール、水および1−ブタノールの混合溶媒(エタノール/水/1−ブタノール=35/50/15質量比)を加え、固形分濃度を15質量%に調整し、オートクレーブを用い125℃で8時間、撹拌した。さらに水を加え、固形分濃度を9質量%に調整し、ポリマー(H−11)が分散媒に分散した液状組成物(D−11)を得た。分散媒の組成は、エタノール/水/1−ブタノール=20/70/10(質量比)であった。
〔例12〕
内容積125mLのステンレス製オートクレーブに、化合物(m11−1)の9.38g、化合物(m51−1)の11.36g、化合物(s−1)の28.59gおよび化合物(i−1)の80.2mgを仕込み、液体窒素による冷却下、充分脱気した。その後、65℃に昇温して、5.6時間撹拌した後、オートクレーブを冷却して反応を停止した。
生成物を化合物(s−1)で希釈した後、これにn−ヘキサンを添加し、ポリマーを凝集してろ過した。その後、化合物(s−1)中でポリマーを撹拌し、n−ヘキサンで再凝集し、80℃で一晩減圧乾燥し、ポリマー(F−12)を得た。収量は14.0gであった。ポリマー(F−12)の固有粘度を測定した。結果を表1に示す。
ポリマー(F−12)を用いて、例10と同様の方法で、ポリマー(H−12)、液状組成物(D−12)を得た。ポリマー(H−12)のイオン交換容量、含水率を測定した。結果を表1に示す。
〔例13〕
内容積125mLのステンレス製オートクレーブに、化合物(m3−1)の66.9g、化合物(m2−1)の11.47gおよび化合物(i−3)の23mgを仕込み、液体窒素による冷却下、充分脱気する。その後、40℃に昇温して、24時間撹拌した後、オートクレーブを冷却して反応を停止する。
生成物を化合物(s−1)で希釈した後、これにn−ヘキサンを添加し、ポリマーを凝集してろ過する。その後、化合物(s−1)中でポリマーを撹拌し、n−ヘキサンで再凝集し、80℃で一晩減圧乾燥し、ポリマー(F−13)を得る。収量は19.5gである。ポリマー(F−13)の固有粘度を測定する。結果を表1に示す。
ポリマー(F−13)を用いて、例10と同様の方法で、ポリマー(H−13)、液状組成物(D−13)を得る。ポリマー(H−13)のイオン交換容量、含水率を測定する。結果を表1に示す。
〔例14〕
内容積125mLのステンレス製オートクレーブに、化合物(m11−1)の6.18g、化合物(m2−1)の14.23g、化合物(s−1)の29.61gおよび化合物(i−1)の100mgを仕込み、液体窒素による冷却下、充分脱気した。その後、65℃に昇温して、5時間撹拌した後、オートクレーブを冷却して反応を停止した。
生成物を化合物(s−1)で希釈した後、これにn−ヘキサンを添加し、ポリマーを凝集してろ過した。その後、化合物(s−1)中でポリマーを撹拌し、n−ヘキサンで再凝集し、80℃で一晩減圧乾燥し、ポリマー(F−14)を得た。収量は7.5gであった。ポリマー(F−14)の固有粘度を測定した。結果を表1に示す。
ポリマー(F−14)を用いて、例10と同様の方法で、ポリマー(H−14)、液状組成物D−14を得た。ポリマー(H−14)のイオン交換容量、含水率を測定した。結果を表1に示す。
Figure 2011013577
〔例15〕
カーボン粉末に白金を50質量%担持した担持触媒の10gに水の39gを加え、10分間超音波を照射し、触媒の分散液を得た。触媒の分散液に、液状組成物(D−1)の60gを加え、さらにエタノールの64gを加えて固形分濃度を8質量%とし、触媒層形成用液を得た。該液を別途用意したエチレンとTFEとの共重合体からなるシート(商品名:アフレックス100N、旭硝子社製、厚さ100μm)(以下、ETFEシートと記す。)上に塗布し、80℃で30分乾燥させ、さらに165℃で30分の熱処理を施し、白金量が0.35mg/cmの触媒層を形成した。
液状組成物(D−11)をETFEシート上にダイコータにて塗布し、80℃で30分乾燥し、さらに190℃で30分の熱処理を施し、厚さ20μmの固体高分子電解質膜を形成した。
固体高分子電解質膜からETFEシートを剥離した後、固体高分子電解質膜を2枚のETFEシート付き触媒層で挟み、プレス温度160℃、プレス時間5分、圧力3MPaの条件にて加熱プレスし、固体高分子電解質膜の両面に触媒層を接合し、触媒層からETFEシートを剥離して、電極面積25cmの膜触媒層接合体を得た。
カーボンペーパーからなるガス拡散層上に、カーボンとポリテトラフルオロエチレンとからなるカーボン層を形成した。
カーボン層と触媒層とが接するように、膜触媒層接合体をガス拡散層で挟み、膜電極接合体を得た。
膜電極接合体を発電用セルに組み込み、下記の2つの条件下で発電特性の評価を実施した。
(発電条件1)
膜電極接合体の温度を100℃に維持し、アノードに水素(利用率50%)、カソードに空気(利用率50%)を、それぞれ175kPa(絶対圧力)に加圧して供給した。水素および空気ともに加湿をせずに供給し、電流密度が1.0A/cmのときのセル電圧を記録し、下記基準にて評価した。結果を表2に示す。
◎:セル電圧が0.6V以上。
○:セル電圧が0.55V以上、0.6V未満。
△:セル電圧が0.5V以上、0.55V未満。
×:セル電圧が0.4V以上、0.5V未満。
××:セル電圧が0.4V未満。
(発電条件2)
膜電極接合体の温度を80℃に維持し、アノードに水素(利用率50%)、カソードに空気(利用率50%)を、それぞれ175kPa(絶対圧力)に加圧して供給した。水素および空気ともに相対湿度100%RHで供給し、電流密度が1.5A/cmのときのセル電圧を記録し、下記基準にて評価した。結果を表2に示す。
○:セル電圧が0.5V以上。
△:セル電圧が0.5V未満。
×:発電できなかった。
〔例16〜28〕
触媒層を形成するのに用いた液状組成物(D−1)を、それぞれ液状組成物(D−2)〜(D−14)に変更した以外は、例15と同様の方法で膜電極接合体を製造し、発電特性の評価を実施した。評価結果を表2に示す。
Figure 2011013577
本発明の電解質材料は、固体高分子形燃料電池用の電解質材料として有用である。また、他の用途(水電解、過酸化水素製造、オゾン製造、廃酸回収等に用いるプロトン選択透過膜;食塩電解、レドックスフロー電池の隔膜、脱塩または製塩に用いる電気透析用陽イオン交換膜等)にも用いることができる。
なお、2009年7月31日に出願された日本特許出願2009−179065号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
10 膜電極接合体
11 触媒層
12 ガス拡散層
13 アノード
14 カソード
15 固体高分子電解質膜
16 カーボン層

Claims (15)

  1. 下記ポリマー(F)の前駆体基をイオン交換基に変換したポリマー(H)からなる、電解質材料。
    ポリマー(F):イオン交換基の前駆体基および該前駆体基が結合した5員環を有するペルフルオロモノマーに基づく繰り返し単位(A)と、下式(u2)で表される繰り返し単位(B)とを有し、固有粘度が、0.3dL/g以上であるポリマー。
    Figure 2011013577
    ただし、sは、0または1であり、RおよびRは、それぞれ独立にフッ素原子、炭素数1〜5のペルフルオロアルキル基、または互いに連結して形成されたスピロ環(ただし、sが0の場合)であり、RおよびRは、それぞれ独立にフッ素原子または炭素数1〜5のペルフルオロアルキル基であり、Rは、フッ素原子、炭素数1〜5のペルフルオロアルキル基、または炭素数1〜5のペルフルオロアルコキシ基である。
  2. 前記ポリマー(H)のイオン交換基が、下式(g1)で表される基である、請求項1に記載の電解質材料。
    −(SOX(SO ・・・(g1)。
    ただし、Mは、H、一価の金属カチオン、または1以上の水素原子が炭化水素基と置換されていてもよいアンモニウムイオンであり、Rは、エーテル結合性酸素原子を有してもよい直鎖または分岐のペルフルオロアルキル基であり、Xは、酸素原子、窒素原子または炭素原子であって、Xが酸素原子の場合a=0であり、Xが窒素原子の場合a=1であり、Xが炭素原子の場合a=2である。
  3. 前記繰り返し単位(A)の前駆体基をイオン交換基に変換した繰り返し単位の少なくとも一種が、下式(u11)で表わされる繰り返し単位である、請求項2に記載の電解質材料。
    Figure 2011013577
    ただし、R11は、エーテル結合性酸素原子を有してもよい2価のペルフルオロ有機基であり、R12、R13、R15、R16は、それぞれ独立にエーテル結合性酸素原子を有してもよい1価のペルフルオロ有機基またはフッ素原子であり、R14は、エーテル結合性酸素原子を有してもよい1価のペルフルオロ有機基、フッ素原子、または−R11(SOX(SO基である。
  4. 前記R15およびR16が、フッ素原子である、請求項3に記載の電解質材料。
  5. 前記Mが、Hである、請求項2〜4のいずれかに記載の電解質材料。
  6. 前記式(u11)で表わされる繰り返し単位の少なくとも一種が、下式(u11−1)で表わされる繰り返し単位である、請求項4または5に記載の電解質材料。
    Figure 2011013577
  7. 前記繰り返し単位(A)の前駆体基をイオン交換基に変換した繰り返し単位の少なくとも一種が、下式(u12)で表わされる繰り返し単位である、請求項2に記載の電解質材料。
    Figure 2011013577
    ただし、R21は、炭素数1〜6のペルフルオロアルキレン基または炭素−炭素結合間にエーテル結合性酸素原子を有する炭素数2〜6のペルフルオロアルキレン基であり、R22は、フッ素原子、炭素数1〜6のペルフルオロアルキル基、炭素−炭素結合間にエーテル結合性酸素原子を有する炭素数2〜6のペルフルオロアルキル基、または−R21(SOX(SO基である。
  8. 前記Mが、Hである、請求項7に記載の電解質材料。
  9. 前記式(u12)で表わされる繰り返し単位の少なくとも一種が、下式(u12−1)で表わされる繰り返し単位である、請求項7または8に記載の電解質材料。
    Figure 2011013577
  10. 前記式(u12)で表わされる繰り返し単位の少なくとも一種が、下式(u12−2)で表わされる繰り返し単位である、請求項7または8に記載の電解質材料。
    Figure 2011013577
  11. 前記Rが、フッ素原子である、請求項1〜10のいずれかに記載の電解質材料。
  12. 前記式(u2)で表わされる繰り返し単位の少なくとも一種が、下式(u2−1)で表わされる繰り返し単位である、請求項1〜11のいずれかに記載の電解質材料。
    Figure 2011013577
  13. 前記ポリマー(F)が、テトラフルオロエチレンに基づく繰り返し単位をさらに有する、請求項1〜12のいずれかに記載の電解質材料。
  14. 分散媒と、該分散媒に分散された請求項1〜13のいずれかに記載の電解質材料とを含み、
    前記分散媒が、水酸基を有する有機溶媒を含む、液状組成物。
  15. プロトン伝導性ポリマーを含む触媒層を有するアノードと、
    プロトン伝導性ポリマーを含む触媒層を有するカソードと、
    前記アノードと前記カソードとの間に配置される固体高分子電解質膜と
    を備えた固体高分子形燃料電池用膜電極接合体において、
    前記カソードおよび前記アノードの少なくとも一方の触媒層に含まれるプロトン伝導性ポリマーが、請求項1〜13のいずれかに記載の電解質材料であることを特徴とする固体高分子形膜電極接合体。
JP2011524751A 2009-07-31 2010-07-22 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体 Withdrawn JPWO2011013577A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009179065 2009-07-31
JP2009179065 2009-07-31
PCT/JP2010/062380 WO2011013577A1 (ja) 2009-07-31 2010-07-22 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体

Publications (1)

Publication Number Publication Date
JPWO2011013577A1 true JPWO2011013577A1 (ja) 2013-01-07

Family

ID=43527356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011524751A Withdrawn JPWO2011013577A1 (ja) 2009-07-31 2010-07-22 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体

Country Status (5)

Country Link
US (1) US20110027687A1 (ja)
EP (1) EP2461333B1 (ja)
JP (1) JPWO2011013577A1 (ja)
CN (1) CN102473473A (ja)
WO (1) WO2011013577A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1220344B2 (en) 2000-12-26 2012-08-01 Asahi Glass Company, Limited Solid polymer electrolyte membrane, solid polymer fuel cell and fluorpolymer
WO2013031479A1 (ja) * 2011-08-26 2013-03-07 旭硝子株式会社 固体高分子電解質膜および固体高分子形燃料電池用膜電極接合体
WO2013157395A1 (ja) * 2012-04-16 2013-10-24 旭硝子株式会社 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体
ES2702356T3 (es) * 2012-08-20 2019-02-28 Sony Corp Equipo electrónico, método de operación del equipo, y programa
CN105144448A (zh) * 2013-04-22 2015-12-09 旭硝子株式会社 电解质材料、液状组合物以及固体高分子型燃料电池用膜电极接合体
JP6324056B2 (ja) * 2013-12-19 2018-05-16 旭化成株式会社 アルカリ水電解用隔膜及びこれを用いたアルカリ水電解槽
EP3165546B1 (en) * 2014-07-04 2019-09-04 AGC Inc. Electrolyte material, liquid composition, membrane electrode assembly for solid polymer fuel cell, and fluorinated branched polymer
EP3483966B1 (en) * 2016-07-11 2022-08-24 AGC Inc. Electrolyte material, liquid composition containing same and use of same
CN106229536B (zh) * 2016-08-31 2023-07-28 东方电气(成都)氢燃料电池科技有限公司 电解液平衡装置及具有其的液流电池
JP6721760B2 (ja) * 2018-06-15 2020-07-15 日本碍子株式会社 電気化学セル
WO2020145287A1 (ja) * 2019-01-08 2020-07-16 Agc株式会社 触媒層、触媒層形成用液および膜電極接合体
WO2020184681A1 (ja) * 2019-03-13 2020-09-17 Agc株式会社 膜電極接合体
KR20220113412A (ko) 2019-12-24 2022-08-12 에이지씨 가부시키가이샤 촉매층, 고체 고분자형 연료 전지용 막 전극 접합체, 및 고체 고분자형 연료 전지
CN114938687A (zh) * 2019-12-27 2022-08-23 Agc株式会社 催化剂层、催化剂层形成用液和膜电极接合体
EP4129992A4 (en) * 2020-03-26 2024-04-10 Tosoh Corp FLUORINATED RESIN AND ASSOCIATED PRODUCTION METHOD
CN115991820B (zh) * 2021-10-18 2024-01-05 山东东岳未来氢能材料股份有限公司 聚合型膦酸离子膜及制备方法
US11485814B1 (en) * 2022-05-10 2022-11-01 Sparkling Tycoon Limited Perfluoro copolymers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004097851A1 (ja) * 2003-04-28 2004-11-11 Asahi Glass Company Limited 固体高分子電解質材料、製造方法及び固体高分子型燃料電池用膜電極接合体
WO2005096422A1 (ja) * 2004-04-02 2005-10-13 Asahi Glass Company, Limited 固体高分子形燃料電池用電解質材料、電解質膜及び膜電極接合体
JP2006152249A (ja) * 2004-10-26 2006-06-15 Asahi Glass Co Ltd フルオロスルホニル基と1,3−ジオキソラン構造を有する重合体およびその用途
JP2008177167A (ja) * 2007-01-18 2008-07-31 Asahi Glass Co Ltd 電解質材料
JP2009040909A (ja) * 2007-08-09 2009-02-26 Asahi Glass Co Ltd フルオロスルホニル基含有モノマーおよびそのポリマー、ならびにスルホン酸基含有ポリマー

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692957A (ja) 1992-09-16 1994-04-05 Asahi Glass Co Ltd 含フッ素ジオキソラン化合物の製造方法
EP1220344B2 (en) * 2000-12-26 2012-08-01 Asahi Glass Company, Limited Solid polymer electrolyte membrane, solid polymer fuel cell and fluorpolymer
ATE383352T1 (de) 2001-10-30 2008-01-15 Asahi Glass Co Ltd Fluorsulfonylverbindungen und verfahren zur herstellung von davon abgeleiteten verbindungen
WO2004066426A1 (ja) * 2003-01-20 2004-08-05 Asahi Glass Company, Limited 固体高分子型燃料電池用電解質材料の製造方法及び固体高分子型燃料電池用膜電極接合体
JP4871591B2 (ja) * 2003-05-13 2012-02-08 旭硝子株式会社 固体高分子型燃料電池用電解質ポリマー、その製造方法及び膜・電極接合体
JP4894154B2 (ja) 2004-04-02 2012-03-14 旭硝子株式会社 フルオロスルホニル基を含有する化合物の重合体
CN1938887A (zh) * 2004-04-02 2007-03-28 旭硝子株式会社 固体高分子型燃料电池用电解质材料、电解质膜及膜电极接合体
JP2006241302A (ja) 2005-03-03 2006-09-14 Asahi Glass Co Ltd 新規な、ペルフルオロ(2−ビニル−1,3−ジオキソラン)構造を有する化合物および含フッ素重合体
WO2007013532A1 (ja) 2005-07-27 2007-02-01 Asahi Glass Company, Limited フルオロスルホニル基含有化合物、その製造方法およびそのポリマー
US8017257B2 (en) * 2007-01-26 2011-09-13 Asahi Glass Company, Limited Polymer, polymer electrolyte membrane for polymer electrolyte fuel cell, and membrane/electrode assembly
US20090110967A1 (en) * 2007-10-31 2009-04-30 Asahi Glass Company Limited Electrolyte membrane for polymer electrolyte fuel cell, process for its production, membrane/electrode assembly for polymer electrolyte fuel cell and method of operating polymer electrolyte fuel cell
JP4805375B2 (ja) 2009-05-18 2011-11-02 東レ株式会社 Frp構造体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004097851A1 (ja) * 2003-04-28 2004-11-11 Asahi Glass Company Limited 固体高分子電解質材料、製造方法及び固体高分子型燃料電池用膜電極接合体
WO2005096422A1 (ja) * 2004-04-02 2005-10-13 Asahi Glass Company, Limited 固体高分子形燃料電池用電解質材料、電解質膜及び膜電極接合体
JP2006152249A (ja) * 2004-10-26 2006-06-15 Asahi Glass Co Ltd フルオロスルホニル基と1,3−ジオキソラン構造を有する重合体およびその用途
JP2008177167A (ja) * 2007-01-18 2008-07-31 Asahi Glass Co Ltd 電解質材料
JP2009040909A (ja) * 2007-08-09 2009-02-26 Asahi Glass Co Ltd フルオロスルホニル基含有モノマーおよびそのポリマー、ならびにスルホン酸基含有ポリマー

Also Published As

Publication number Publication date
EP2461333A1 (en) 2012-06-06
WO2011013577A1 (ja) 2011-02-03
CN102473473A (zh) 2012-05-23
EP2461333A4 (en) 2015-06-17
EP2461333B1 (en) 2016-12-14
US20110027687A1 (en) 2011-02-03

Similar Documents

Publication Publication Date Title
JP5609874B2 (ja) 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体
WO2011013577A1 (ja) 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体
JP5565410B2 (ja) 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体
JP5286797B2 (ja) ポリマー、固体高分子形燃料電池用固体高分子電解質膜および膜電極接合体
JP6172142B2 (ja) 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体
WO2014175123A1 (ja) 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体
JP6593346B2 (ja) 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体
JP6947175B2 (ja) 電解質材料、その製造方法およびその使用
JP6848951B2 (ja) 液状組成物、触媒層形成用塗工液および固体高分子形燃料電池用膜電極接合体の製造方法
JP5521427B2 (ja) 燃料電池システム
JPWO2020145287A1 (ja) 触媒層、触媒層形成用液および膜電極接合体
WO2022075462A1 (ja) 膜電極接合体および固体高分子形燃料電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20140416