WO2004066426A1 - 固体高分子型燃料電池用電解質材料の製造方法及び固体高分子型燃料電池用膜電極接合体 - Google Patents

固体高分子型燃料電池用電解質材料の製造方法及び固体高分子型燃料電池用膜電極接合体 Download PDF

Info

Publication number
WO2004066426A1
WO2004066426A1 PCT/JP2004/000404 JP2004000404W WO2004066426A1 WO 2004066426 A1 WO2004066426 A1 WO 2004066426A1 JP 2004000404 W JP2004000404 W JP 2004000404W WO 2004066426 A1 WO2004066426 A1 WO 2004066426A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
monomer
perfluoro
sulfonic acid
fuel cell
Prior art date
Application number
PCT/JP2004/000404
Other languages
English (en)
French (fr)
Inventor
Jun-Ichi Tayanagi
Atsushi Watakabe
Susumu Saito
Katsuya Ueno
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32767269&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2004066426(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to AT04703495T priority Critical patent/ATE480878T1/de
Priority to EP04703495A priority patent/EP1596453B1/en
Priority to DE602004029011T priority patent/DE602004029011D1/de
Priority to JP2005508081A priority patent/JP4677898B2/ja
Publication of WO2004066426A1 publication Critical patent/WO2004066426A1/ja
Priority to US11/183,748 priority patent/US7557178B2/en
Priority to US12/430,961 priority patent/US8198394B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2243Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
    • C08J5/225Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231 containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/10Copolymer characterised by the proportions of the comonomers expressed as molar percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/20Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a membrane electrode assembly for a polymer electrolyte fuel cell and a polymer electrolyte material therefor.
  • Hydrogen-oxygen fuel cells are attracting attention as power generation systems whose reaction product is only water in principle and has almost no adverse effect on the global environment. Solid polymer fuel cells were previously mounted on spacecraft in the Gemini and Biosatellite programs, but the power density at that time was low. Since then, higher performance alkaline fuel cells have been developed, and Al-Li fuel cells have been adopted for space use up to the present space shuttle.
  • the ion exchange capacity of the ion exchange resin coating the catalyst in the electrode that is, to use an ion exchange resin having a low content of ion exchange groups.
  • the conductivity is reduced, and the battery performance is reduced.
  • the gas permeability of the ion exchange resin is reduced, the supply of the gas supplied to the catalyst surface through the coated ion exchange resin is delayed. Therefore, the gas concentration at the reaction site decreases and the voltage loss increases, that is, the output decreases as the concentration overvoltage increases.
  • a resin having a high ion exchange capacity is used as the ion exchange resin for coating the catalyst.
  • PTFE polytetrafluoroethylene
  • TFE tetrafluoroethylene
  • Fluoride resin such as Z-hexafluoropropylene copolymer, TFE / perfluoro (alkyl vinyl ether) copolymer, etc. is contained as a water-repellent agent in the electrode, especially in the power source, to suppress flooding. Attempts have been made (see, for example, JP-A-5-36418).
  • the AZB copolymer refers to a copolymer composed of a repeating unit based on A and a repeating unit based on B.
  • the ion exchange resin in the electrode needs to have high gas permeability and high conductivity, and an ion exchange resin having a high exchange group concentration and a high water content is preferable.
  • an ion-exchange resin with a high exchange group concentration is used, fuel gas permeability and conductivity are high, and the initial output of the fuel cell is high, but flooding is likely to occur, and the output will decrease after long-term use.
  • the present invention can maintain a high output for a long period of time by having a high conductivity and a gas permeable of the ion exchange resin contained therein and having a force sword capable of maintaining high water repellency even when used for a long time.
  • An object is to provide a polymer electrolyte fuel cell.
  • the present invention provides a method for producing an electrolyte material for a polymer electrolyte fuel cell comprising a fluorine-containing polymer having an aliphatic ring structure in the main chain and having a sulfonic acid group, wherein the main chain has an aliphatic ring structure.
  • a method for producing an electrolyte material for a polymer electrolyte fuel cell characterized by comprising: dissolving or dispersing an electrolyte material obtained by the production method in an organic solvent containing an OH group; provide.
  • the present invention provides a film-like solid polymer electrolyte comprising a fluorine-containing polymer having an aliphatic ring structure in its main chain and having a sulfonic acid group; a cathode disposed on one surface of the electrolyte;
  • the fluorine-containing polymer having a S_ ⁇ 2 F groups obtained by radical polymerization, using a step of contacting with fluorine gas, a step of converting an S 0 2 F groups to sulfonic acid groups, said containing full Tsu containing polymer
  • a method for producing a membrane / electrode assembly for a polymer electrolyte fuel cell comprising the steps of:
  • the present invention provides a membrane solid polymer electrolyte comprising a fluorine-containing polymer having an aliphatic ring structure in the main chain and having a sulfonic acid group, a cathode disposed on one surface of the electrolyte, A membrane electrode assembly for a polymer electrolyte fuel cell having an anode disposed on the other surface of the fuel cell, having an aliphatic ring structure in the main chain and having one S 0 2 F group.
  • a method for producing a membrane / electrode assembly for a polymer electrolyte fuel cell comprising: BEST MODE FOR CARRYING OUT THE INVENTION
  • the electrolyte material for a polymer electrolyte fuel cell obtained by the present invention is a fluoropolymer having an aliphatic ring structure in the main chain and a sulfonic acid group, and is highly fluorinated by contact with fluorine gas. (Hereinafter referred to as the present polymer).
  • This polymer is a polymer with excellent oxygen gas permeability and oxygen gas solubility, and its water discharge is improved by being fluorinated with fluorine gas.
  • the present inventors consider that pinholes, cracks, peeling, etc. may occur, and by performing fluorination treatment (contact with fluorine gas) on this polymer, the molecular ends can be perfluorinated and stabilized.
  • the fluorination treatment of the polymer significantly improved the durability compared to the durability improvement of the fluorination treatment of the conventional polymer.
  • the present polymer is produced by synthesizing a fluorine-containing polymer having an aliphatic ring structure in its main chain and having a SO 2 F group, followed by hydrolysis and acidification. In contact with fluorine gas, it is possible to hydrolyze and acidify the fluorine-containing polymer having one S 0 2 F group first, and then fluorinate with fluorine gas, but hydrolyze and acidify It has preferred easy on the process carried out at the stage before one S 0 2 F groups (precursor of a sulfonic acid group). However, it is not limited to this method.
  • the fluorine gas used for the fluorination is usually used at a concentration of 0.1% or more and less than 100% and diluted with an inert gas such as nitrogen, helium, or carbon dioxide. Good.
  • the polymer can be brought into contact with fluorine gas in a bulk state or in a state of being dispersed or dissolved in a fluorine-containing solvent.
  • the polymer obtained by polymerization may be fluorinated as it is, but may be subjected to a heat treatment before fluorination to sufficiently remove volatile components or to thermally stabilize the polymer.
  • the temperature is preferably set to 200 to 300 ° C. in air, in an atmosphere of an inert gas such as nitrogen gas, or under reduced pressure.
  • the temperature at which the polymer is fluorinated by contact with fluorine gas is usually from room temperature to 300 ° C., from 50 to 250 ° C., particularly from 100 to 220 ° C. 50 to 200 ° C. is preferred. If the temperature is too low, the reaction between the fluorine gas and the terminal of the polymer becomes slow, and if the temperature is too high, elimination of a single SO 2 F group may occur.
  • the contact time in the above temperature range is preferably from 1 minute to 1 'week, particularly preferably from 1 to 50 hours.
  • the fluorinated solvent for example, the following solvents can be used.
  • Polyfluorotrialkylamine compounds such as perfluorotributylamine and perfluorotripropylamine.
  • Perfluorodecalin perfluorocyclohexane, perfluoro (1,2-dimethylcyclohexane), perfluoro (1,3-dimethylcyclohexane), perfluoro (1,3,5-trimethylcyclohexane) ), Polyfluorocycloalkanes such as perfluoromethylcyclobutane (irrespective of structural isomerism). Polyfluoro cyclic ether compounds such as perfluoro (2-butyltetrahydrofuran).
  • a solvent containing a hydrogen atom reacts with fluorine gas, and thus it is preferable to use a solvent containing no hydrogen atom.
  • Polymers fluorinated as described above include, for example, alkalis such as NaOH and KOH in water or alcohols such as methyl alcohol and polar solvents such as dimethyl sulfoxide and water.
  • alkalis such as NaOH and KOH in water or alcohols such as methyl alcohol and polar solvents such as dimethyl sulfoxide and water.
  • aqueous solution such as hydrochloric acid or sulfuric acid.
  • K ⁇ H aqueous solution are converted one S_ ⁇ 2 F group to an S 0 3 K group, then K ions are substituted with protons.
  • the hydrolysis and the conversion to an acid form are usually carried out at 0 t: to 120 ° C.
  • the polymer having a S 0 2 F group which is a sulfonic acid group or its precursor group to be reacted with fluorine gas, is obtained by combining a monomer having a ring structure or a cyclopolymerizable monomer with a sulfonic acid group or a precursor group of a sulfonic acid group. It can be synthesized through a copolymerization process with a monomer having the compound.
  • the above polymer is preferably a perfluoropolymer obtained by copolymerizing only a perfluoromonomer in consideration of durability as an electrolyte material of a fuel cell and easiness of a fluorination step.
  • a perfluoro compound such as perfluorobutyryl peroxide
  • a stable perfluoro group is introduced into a terminal,
  • the number of unstable terminal groups after polymerization may decrease. If such a polymer having a small number of unstable terminal groups is further treated with fluorine gas, a polymer having a very small number of unstable terminal groups can be easily obtained, which is preferable.
  • the ring structure in the present polymer is not particularly limited, but for example, a ring structure represented by the following formula is preferable.
  • n is an integer of 1 to 4
  • R f is a perful having 1 to 8 carbon atoms.
  • a fluoroalkyl group or a perfluoroalkoxy group, and X and Y each independently represent a fluorine atom or a trifluoromethyl group.
  • the ring structure is preferably a 4- to 7-membered ring, and in view of the stability of the ring, a 5- or 6-membered ring is preferable.
  • Monomers having a ring structure of a comonomer for obtaining the present polymer include perfluoro (2,2-dimethyl-1,3-dioxole) (hereinafter referred to as PDD), perfluoro (1,3-dioxole), and perfluoro ( Examples thereof include 2-methylene-4 monomethyl-1,3-dioxolane (hereinafter referred to as MMD), 2,2,4-trifluoro mouth-5-trifluoromethoxy-1,3-dioxole, and the like.
  • the cyclopolymerizable monomer of the comonomer for obtaining the present polymer includes perfluoro (3-butenyl vinyl ether) (hereinafter referred to as BVE) and perfluoro.
  • repeating unit based on the monomer having the ring structure or the cyclized polymerizable monomer described above include, for example, a repeating unit based on PDD is represented by Formula A, a repeating unit based on BVE is represented by Formula B, and a repeating unit based on MMD is represented by It is shown by equation C.
  • the “fluorine-containing polymer having an aliphatic ring structure” indicates a fluorine-containing polymer including a repeating unit having a ring structure containing no unsaturated bond.
  • a perfluorovinyl ether having one SO 2 F group is preferably exemplified.
  • CF 2 CF- (OCF 2 CFY) m one O p - (CF 2) n - S0 2 one Furuoro ether (wherein path represented by F, Y is a fluorine atom or a triflate Ruo b Methyl M is an integer of 0 to 3, n is an integer of 1 to 12, p is 0 or 1, and m + p> 0.
  • perfluorovinyl ethers the compounds of formulas 1 to 3 are preferred.
  • Q is an integer of 1-8
  • r is an integer of 1-8
  • s is 2 or 3.
  • CF 2 CF The (OCF 2 CF (CF 3) ) s O (CF 2) 2 S0 2 F
  • This polymer is synthesized through a copolymerization step of the above-mentioned cyclic monomer or cyclopolymerizable monomer and a monomer having a sulfonic acid group or a sulfonic acid group precursor group represented by, for example, Formulas 1 to 3.
  • another monomer such as tetrafluoroethylene may be copolymerized for adjusting the strength.
  • this polymer is composed of only a repeating unit based on a monomer having a ring structure and a repeating unit based on a monomer having a sulfonic acid group, the skeleton tends to be rigid and is used for a fuel cell membrane or a catalyst layer.
  • the polymer and the catalyst layer may easily become brittle.
  • this polymer has excellent water repellency by undergoing a fluorination process after polymerization, and when used as an electrolyte of a power source of a fuel cell, the fuel cell
  • the output of this polymer is improved and shows stable properties for a long period of time, when other monomers are copolymerized, repetition based on the other monomers in the present polymer is performed so as not to impair the excellent output characteristics.
  • the content of the unit is 35% or less by mass, particularly 20% or less.
  • R f 2 is a perfluoroalkyl group having 1 to 12 carbon atoms.
  • R f 3 is a perfluoroalkylene group having 2 to 6 carbon atoms, which may have a branched structure or may contain an ether bond oxygen atom.
  • Z is one CN, one COOR or one COF (R is an alkyl group having 1 to 6 carbon atoms).
  • a perfluoromonomer from the viewpoint of durability since the reaction with fluorine gas is easy.
  • tetrafluoroethylene is preferable because it is easily available and has high polymerization reactivity.
  • a perfluorovinyl ether compound represented by CF 2 CFCF— (OCF 2 CFX) t— O—R f 4 is preferable.
  • t is an integer of 0 to 3
  • X is a fluorine atom or a trifluoromethyl group
  • R f4 is a linear or branched perfluoroalkyl having 1 to 12 carbon atoms.
  • R f 4 is used interchangeably in the present specification).
  • compounds represented by formulas 4 to 6 are preferred.
  • V is an integer of 1 to 8
  • w is an integer of 1 to 8
  • X is 2 or 3.
  • CF 2 CFOCF 2 CF (CF 3 ) O (CF 2 ) W CF 3 Equation 5
  • CF 2 CF (OCF 2 CF (CF 3 )) x O (CF 2 ) 2 CF 3 Equation 6
  • the number average molecular weight of the present polymer is preferably 5,000 or more, more preferably 10,000 or more, and even more preferably 20,000 or more. Further, if the molecular weight is too large, the moldability and the solubility in a solvent described below may decrease, so the molecular weight is preferably 500,000 or less, more preferably 200,000 or less.
  • the content of the repeating unit based on the monomer having a ring structure in the present polymer is , Preferably 0.5 to 80 mol%, more preferably 1 to 80 mol%, further preferably 4 to 70 mol%, further preferably 10 to 70 mol%.
  • the repeating unit having a sulfonic acid group is preferably contained so that the ion exchange capacity of the present polymer is 0.5 to 2 meq Zg dry resin, and 0.7 to 1.5 meq Zg dry resin. More preferably, it is included so that If the ion exchange capacity is too low, the conductivity of the polymer as the electrolyte material will be low, and if it is too high, the water repellency will be poor and the durability will be poor when used in fuel cells, and the polymer strength will also be insufficient. There is a risk.
  • the polymerization for obtaining the present polymer conventionally known methods such as bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization can be employed.
  • the polymerization is carried out under conditions in which radicals are generated, and generally includes a method of irradiating radiation such as ultraviolet rays, a ray, and an electron beam, and a method of adding a radical initiator used in ordinary radical polymerization.
  • the polymerization temperature is usually about 20 to 150 ° C.
  • the radical initiator include bis (fluoroacyl) peroxides, bis (chlorofluoroacyl) peroxides, dialkylperoxydicarbonates, diasilyloxides, peroxyesters, and azo compounds. And persulfates.
  • the boiling point of the solvent used is usually from 20 to 35, preferably from 40 to 150 ° C from the viewpoint of handleability.
  • usable solvents include the same solvents as the above-mentioned fluorinated solvents exemplified as preferred fluorinated solvents when fluorinating the present polymer in a fluorinated solvent.
  • polyfluorotrialkylamine compounds perfluoroalkanes, hide-opened fluoroalkanes, black-opened fluoroalkanes, fluoroolefins having no double bond at the molecular chain end, polyfluorocycloalkanes, polyfluorocyclic ether compounds, hydrofluoroethers, Fluorine-containing low-molecular-weight polyethers, t-butyl alcohol and the like.
  • polymerization can be performed using liquid or supercritical carbon dioxide.
  • the polymer can be dissolved or well dispersed in an organic solvent having —H groups.
  • an organic solvent having an alcoholic mono-OH group is preferable.
  • the organic solvent having one OH group may be used by mixing a plurality of solvents, or may be used by mixing with water or another fluorinated solvent.
  • the other fluorinated solvent include the same solvents as the fluorinated solvents described above as preferred examples of the fluorinated solvent when the fluorination of the present polymer is performed in the fluorinated solvent.
  • the organic solvent having an OH group is preferably contained in an amount of 10% or more, especially 20% or more of the total mass of the solvent.
  • the present polymer When a mixed solvent is used, the present polymer may be dissolved or dispersed in the mixed solvent from the beginning. However, another solvent may be mixed after being dissolved or dispersed in an organic solvent having an —OH group.
  • the temperature for dissolving or dispersing is preferably in the range of 0 to 250 ° C., and particularly preferably at 20 to 150 ° C. under atmospheric pressure or under closed pressurized conditions such as auto crepe.
  • the concentration of the present polymer in the liquid composition is preferably 1 to 50%, particularly preferably 3 to 30% of the total weight of the liquid composition. If the concentration is too low, for example, a large amount of organic solvent is required at the time of preparing the cathode.
  • a conductive carbon black powder carrying platinum catalyst particles is mixed and dispersed in a liquid composition containing the present polymer, and the obtained uniform dispersion is used to obtain the following.
  • the membrane-electrode assembly for a polymer electrolyte fuel cell can be obtained by one of the two methods.
  • the first method is a method in which the above-mentioned dispersion liquid is applied to both sides of a cation exchange membrane serving as a membrane-shaped solid polymer electrolyte, dried, and then adhered with a carbon cloth or carbon paper.
  • the second method is a method in which the dispersion is coated on a carbon cloth or carbon paper and dried, and then adhered to a cation exchange membrane.
  • the catalyst contained in the cathode and the ion-exchange resin as the electrolyte material are such that the mass ratio of the catalyst to the ion-exchange resin is 40:60 to 95: 5. Is preferred from the viewpoints of electrode conductivity and water discharge.
  • the mass of the catalyst in the case of a supported catalyst carried on a carrier such as carbon also includes the mass of the carrier.
  • the ion exchange resin in the force sword may be composed of the resin of the present polymer alone, or may be a mixture of a conventionally known perfluoropolymer having a sulfonic acid group and the present polymer.
  • a polymer having a sulfonic acid group obtained by obtaining a copolymer of tetrafluoroethylene and a monomer represented by the above formulas 1 to 3, hydrolyzing the copolymer, and acid-forming the copolymer is preferred.
  • the proportion of the present polymer is preferably at least 20%, more preferably at least 50%, of the total mass of the ion exchange resin in the force sword.
  • the anode in the present invention may be the same as the force source, or may be a gas diffusion electrode or the like conventionally used.
  • the anode is formed in the same process as the force sword, and a membrane-electrode assembly having the anode on one side of the membrane and the force sword on the other side is obtained.
  • the present polymer is an electrolyte material for a polymer electrolyte fuel cell, it may be contained not in a force source but in an anode, and may be used as a material for an ion exchange membrane which is a membrane-like polymer electrolyte.
  • the obtained membrane-electrode assembly is formed, for example, with a groove serving as a passage for an oxidant gas (air, oxygen, etc.) containing fuel gas or oxygen, and is sandwiched between separations made of a conductive carbon plate or the like.
  • the polymer electrolyte fuel cell of the present invention can be obtained by being incorporated in a cell.
  • the polymer electrolyte fuel cell to which the electrolyte material of the present invention is applied is not limited to a hydrogen-Z oxygen fuel cell. It can also be applied to direct methanol fuel cells (DMFC). Also in this case, it is particularly preferable to include it in the force sword.
  • DMFC direct methanol fuel cells
  • HCFC 225 cb CC 1 F 2 CF 2 CHC 1 F (manufactured by Asahi Glass Co., Ltd.).
  • the sulfur content was determined by elemental analysis, and the PDDZPS VE ratio and ion exchange capacity were determined to be 56.5 / 43.5 (molar ratio) and 1.31 meq Zg dry resin, respectively.
  • the molecular weight was measured by GPC to find that the number average molecular weight in terms of methyl polymethacrylate was 33,000.
  • the sulfur content was determined by elemental analysis, and the BVE / PS VE ratio and ion exchange capacity were determined.
  • BVE / PS VE 67.0 / 33.0 (molar ratio), 0.99 meq. It was a dry resin.
  • the molecular weight was measured by GPC, and the number average molecular weight in terms of polymethyl methacrylate was 29,000. 10 g of the above polymer was placed in a 200 Om 1 Hastelloy autoclave, degassed, and fluorine gas (20% by volume) diluted with nitrogen gas to 0.3 MPa at a gage pressure was introduced. It was kept at 180 ° C for 4 hours. After hydrolysis with an alkali, acidification, and drying, it was dissolved in ethanol to obtain a clear 10% solution. The softening temperature of this polymer determined in the same manner as in Example 1 was 110 ° C. [Example 3]
  • the ratio was 42/3 5/22 (molar ratio), and the ion exchange capacity was 0.98 meq Zg dried resin.
  • the number average molecular weight in terms of methyl methyl acrylate by GPC was 53,000, and the weight average molecular weight was 83,000.
  • 10 g of this polymer was placed in a 200 Om 1 Hastelloy autoclave, degassed, and fluorine gas (20% by volume) diluted with nitrogen gas to a gauge pressure of 0.3 MPa was introduced. Hold at 8 O for 4 hours. Next, it was hydrolyzed with an alkali, converted to an acid form, and dried, and then dissolved in ethanol to obtain a transparent 12% solution.
  • TFE 9g, PDD 24.4g, PSVE 102.6g, IPP 0 Polymerization was carried out in the same manner as in Example 3, except that 0.8 g was used and HCFC 225 cb was not used. The polymerization was performed at 40 ° C. for 12 hours to complete the reaction. After dilution with 225 cb of HCFC, the polymerization solution was coagulated with hexane and washed three times with hexane. Vacuum drying was performed at 80 ° C overnight. Yield 37.8 g (27.7% yield).
  • the molecular weight and composition were measured in the same manner as in Example 3.
  • the number average molecular weight was 160,000 and the weight average molecular weight was 280,000.
  • the obtained polymer was heat-treated at 240 under reduced pressure for 4 hours, and then treated with fluorine gas in the same manner as in Example 3.
  • polymerization was carried out in the same manner as in Example 4. The polymerization was carried out at 40 ° C for 20 hours. The polymerization solution was diluted with HCFC 225 CB, coagulated with hexane, and washed three times with hexane. Vacuum-free drying was performed at 80 ° C. Yield 27.3 g (yield 30.1%).
  • An autoclave having an internal volume of 200 ml was charged with 14. g of MMD, 78.0 g of PSVE, and 0.3 g of a HCFC 225 cb solution containing 3% by mass of PFB, followed by freeze degassing. After introducing 14.lg of TFE, polymerization was carried out at 20 ° C for 22 hours. After diluting the polymerization solution with HCFC 225 cb, the solution is aggregated with hexane, and then diluted three times with hexane. Washed. Vacuum drying was performed at 80 ° C overnight. Yield 2.2 g.
  • the obtained polymer was subjected to molecular weight / composition measurement and fluorine gas treatment in the same manner as in Example 3.
  • the number average molecular weight in terms of polymethyl methacrylate by GPC was 155,000, and the weight average molecular weight was 239,000.
  • HCFC-225 cb solution containing 0.7 g of MMD, 92.6 g of PSVE, 50.8 g of HCFC 225 cb, and 3% by mass of PFB in a 200 ml autoclave. 57 was added and degassed by freezing. The temperature was raised to 40, and TFE was introduced until the pressure became 0.5 MPa. Thereafter, while maintaining this pressure, TFE was introduced, and polymerization was carried out at 40 for 7 hours. The polymerization solution was aggregated with HCFC 141b and washed three times with HCFC141b. Vacuum drying was performed overnight at 80 ° C. Yield 19.9 g.
  • the obtained polymer was hydrolyzed with an aqueous KOH solution and titrated with aqueous hydrochloric acid to give an ion exchange capacity of 1.13 meq / g dry resin.
  • TFEZMMDZP S VE 61/1 6/23 (molar ratio).
  • This polymer was subjected to a fluorine gas treatment in the same manner as in Example 3.
  • HCFC-225 containing 48.6 g of BVE, 86.4 g of PSVE, 86.2 g of 1,1,2-trichloromouth trifluorofluoroethane and 3% by weight of PFB in an autoclave with a content of 20 Om 1 0.75 g of the cb solution was added and the mixture was frozen and degassed.
  • the temperature was increased to 30 X, and TFE was introduced until the pressure reached 0.15 MPa. Thereafter, polymerization was carried out while introducing TFE while maintaining this pressure.
  • the polymerization time was 16 hours at 30 ° C.
  • the polymerization solution was aggregated with hexane and washed three times with hexane. True overnight at 80 ° C Air drying was performed. Yield 8.3 g.
  • the polymer of Example 4 was recovered without treatment with fluorine gas.
  • the composition and molecular weight were the same.
  • Copolymer powder composed of TFE and PSVE (ion exchange capacity of 1.1 meq Z gram dry resin when converted to acid form and measured, hereinafter referred to as copolymer A). At a pressure of 10 Pa and 250 ° C. for 4 hours. Thereafter, treatment with fluorine gas was performed in the same manner as in Example 3.
  • the fuel cell was assembled as follows.
  • This coating liquid, ethylene - give coating die coating method tetrafluoropropoxy O b ethylene Fi Lum substrate on, dried to a thickness of 1 0 xm, electrode layer of platinum content 0. 5m gZcm 2 a.
  • each of the polymers obtained in Examples 4 to 10 and Comparative Examples 1 and 2 was subjected to hot press to produce films having a thickness of 50 m.
  • This was immersed in a solution of KOHZ H 2 0 / DMSO 1 5/5 5/30 ( mass ratio) was hydrolyzed and held 80 for 1 7 hours. This was returned to room temperature, washed with water three times, and further immersed in 3 mol / L hydrochloric acid at room temperature for 2 hours to wash with water.
  • This hydrochloric acid immersion and water washing were each performed a total of three times, and finally, water washing was further performed three times. It was air-dried at 60 ° C for 16 hours to obtain an electrolyte membrane.
  • an electrolyte membrane was obtained.
  • the two electrode layers obtained as described above were pressed in a state where the above-mentioned electrolyte membranes were sandwiched between the electrode layers so that the electrode layers face each other, and the electrode layers were transferred to the membrane.
  • the electrode layers were transferred to the membrane.
  • carbon cross was disposed as gas diffusion layers on both outer sides thereof to produce a membrane electrode assembly.
  • a zig-zag thin groove for gas passages on both sides of the membrane electrode assembly Separation made of a single-bon plate, and a heater placed on the outside of the separator to form a solid with an effective membrane area of 25 cm 2 .
  • a polymer fuel cell was assembled.
  • the durability was evaluated by the following method. With the circuit open, maintain the temperature of the fuel cell at 90 T. Air containing water vapor at a dew point of 5 Ot: on the power source and hydrogen containing water vapor at a dew point of 50 on the anode are each 50 ml Z min. Supplied with After operating in this state for the time shown in the table, the fuel cell was disassembled and the state of deterioration of the electrolyte membrane was measured by mass measurement. The results are shown in the table. Here, the mass reduction rate is the value obtained by dividing the mass reduction (%) by the operation time (h).
  • the softening temperature is particularly high particularly when the homopolymer has a softening temperature of 10 ° C. or higher and is composed of a polymer copolymerized using a cyclized polymerizable monomer or a monomer having a ring structure.
  • the above-mentioned conventional polymer suddenly starts to decrease in elasticity at around 80 ° C, and its softening temperature is close to the operating temperature of the fuel cell. It is easy to change and has a problem in durability, and it is difficult to operate at temperatures over 80 ° C.
  • the electrolyte material of the present invention has a high softening temperature, when used as an electrolyte polymer contained in an electrolyte membrane or an electrode of a fuel cell, there is no change in physical properties over time, and thus high durability can be obtained. It will also be possible to operate the cell at temperatures higher than 80 ° C.
  • the electrolyte material for a polymer electrolyte fuel cell of the present invention has an aliphatic ring structure in the main chain, has excellent gas diffusivity, and is highly fluorinated, and thus has excellent water repellency. Excellent durability even when the fuel cell is operated for a long time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Inert Electrodes (AREA)

Abstract

ガス拡散性が良好な主鎖に脂肪族環構造を有しかつスルホン酸基を有する含フッ素ポリマーをフッ素ガスと接触させたフッ素化して撥水性を高め、かつ分子末端を安定化させることにより、このポリマーを固体高分子型燃料電池用電解質材料とする、撥水性やガス拡散性が良好で、高い出力密度の固体高分子型燃料電池用膜電極接合体を得る。前記含フッ素ポリマーとしては、下記モノマーAに基づく繰り返し単位と下記モノマーBに基づく繰り返し単位(ただし、Yはフッ素原子又はトリフルオロメチル基であり、mは0~3の整数であり、pは0又は1であり、nは1~12の整数である。)とを含む共重合体が好ましく採用される。 モノマーA:ラジカル重合により、主鎖に環構造を含む繰り返し単位を有するポリマーを与えるパーフルオロモノマー。 モノマーB:CF2=CF−(OCF2CFY)m−Op−(CF2)n−SO3H。

Description

明細書
固体高分子型燃料電池用電解質材料の製造方法及び固体高分子型燃料電池用膜電 極接合体 技術分野
本発明は、 固体高分子型燃料電池用膜電極接合体及びそのための固体高分子電 解質材料に関する。 背景技術
水素 ·酸素燃料電池は、 その反応生成物が原理的に水のみであり地球環境への 悪影響がほとんどない発電システムとして注目されている。 固体高分子型燃料電 池は、 かってジェミニ計画及びバイオサテライト計画で宇宙船に搭載されたが、 当時の電池出力密度は低かった。 その後、 より高性能のアルカリ型燃料電池が開 発され、 現在のスペースシャトルに至るまで宇宙用にはアル力リ型燃料電池が採 用されている。
ところが、 近年技術の進歩により固体高分子型燃料電池が再び注目されている 。 その理由として次の 2点が挙げられる。 (1 ) 固体高分子電解質として高導電 性の膜が開発された。 (2 ) ガス拡散電極層に用いられる触媒をカーボンに担持 し、 さらにこれをイオン交換樹脂で被覆することにより、 きわめて大きな活性が 得られるようになった。
そして、 固体高分子型燃料電池の電極 ·固体高分子電解質膜接合体 (以下、 単 に接合体という) の製造方法に関して多くの検討がなされている。
現在検討されている固体高分子型燃料電池は、 作動温度が 5 0〜1 2 0 °Cと低 いため、 排熱が燃料電池の補機動力等に有効利用しがたい欠点がある。 これを補 う意味でも固体高分子型燃料電池は、 特に高い出力密度が要求されている。 また 実用化への課題として、 燃料及び空気利用率の高い運転条件下でも高工ネルギ効 率、 高出力密度が得られる接合体の開発が要求されている。
低作動温度かつ高ガス利用率の運転条件では、 特に電池反応により水が生成す る力ソードにおいて、 水蒸気の凝縮による電極多孔体の閉塞 (フラッデイング) が起こりやすい。 したがって長期にわたり安定な特性を得るためには、 フラッデ ィングが起こらないように電極の撥水性を確保する必要がある。 低温で高出力密 度が得られる固体高分子型燃料電池では特に重要である。
電極の撥水性を確保するには、 電極中で触媒を被覆するイオン交換樹脂のィォ ン交換容量を小さくする、 すなわちイオン交換基の含有率が低いイオン交換樹脂 の使用が有効である。 しかし、 この場合にはイオン交換樹脂は含水率が低いため 導電性が低くなり、 電池性能が低下する。 さらに、 イオン交換樹脂のガス透過性 が低下するため、 被覆したィオン交換樹脂を通して触媒表面に供給されるガスの 供給が遅くなる。 そのため、 反応サイトにおけるガス濃度が低下して電圧損失が 大きくなる、 すなわち濃度過電圧が高くなつて出力が低下する。
このため、 触媒を被覆するイオン交換樹脂にはイオン交換容量の高い樹脂を用 い、 これに加えて、 例えば、 ポリテトラフルォロエチレン (以下、 P T F Eとい う。 ) 、 テトラフルォロエチレン (以下、 T F Eという。 ) Zへキサフルォロプ ロピレン共重合体、 T F E/パーフルォロ (アルキルビニルエーテル) 共重合体 等のフッ素樹脂等を撥水化剤として電極、 特に力ソード中に含有させ、 フラッデ ィングを抑制する試みがなされている (例えば特開平 5— 3 6 4 1 8号参照) 。 なお、 本明細書で AZB共重合体とは、 Aに基づく繰り返し単位と Bに基づく繰 り返し単位とからなる共重合体を示す。
しかし、 充分に撥水化するために電極中の上記撥水化剤の量を多くすると、 上 記撥水化剤は絶縁体のため電極の電気抵抗が増大する。 また、 電極の厚さが厚く なるためガス透過性が低下し、 逆に出力が低下する問題がある。 電極の導電性の 低下を補うためには、 例えば触媒の担体であるカーボン材料の導電性や触媒を被 覆するイオン交換樹脂のイオン導電性を高めることが必要である。 しかし、 充分 な導電性と充分な撥水性を同時に満足する電極を得るのは困難であり、 高出力か つ長期的に安定な固体高分子型燃料電池を得ることは容易ではなかった。
また、 フッ化ピッチを混合する方法 (例えば特開平 7— 2 1 1 3 2 4号参照) 、 触媒担体をフッ素化処理する方法 (例えば特開平 7— 1 9 2 7 3 8号参照) も 提案されているが、 触媒表面をイオン交換樹脂により均一に被覆できない問題が ある。 また、 電極の厚さ方向に対して撥水性に勾配を持たせる方法 (例えば特開 平 5— 2 5 1 0 8 6号、 特開平 7—1 3 4 9 9 3号参照) も提案されているが、 製造方法が煩雑である。
燃料電池の出力を高めるには、 電極中のイオン交換樹脂が高ガス透過性かつ高 導電性であることが必要であり、 交換基濃度が高く含水率の高いイオン交換樹脂 が好ましい。 しかし、 交換基濃度の高いイオン交換樹脂を用いた場合、 燃料ガス の透過性及び導電性が高く燃料電池の初期の出力は高くなるが、 フラッディング が起こりやすく、 長期間使用すると出力の低下が起こりやすい。
これらの問題を解決するために、 本発明者らは主鎖に脂肪族環構造を有するパ 一フルォロポリマーを提案している (特開 2 0 0 2— 2 6 0 7 0 5号) 。 しかし 、 通常固体高分子型燃料電池に使用されるスルホン酸基を有する鎖状のパーフル ォロポリマーに比べ改善はされるものの、 より過酷な条件にポリマーが曝される 場合、 まだ耐久性等において充分ではなかった。 発明の開示
そこで本発明は、 導電性が高くかつ含有するイオン交換樹脂のガス透過性が高 く、 長期間使用しても高い撥水性を維持できる力ソードを有することにより、 長 期間にわたって高出力を維持できる固体高分子型燃料電池を提供することを目的 とする。
本発明は、 主鎖に脂肪族環構造を有しかつスルホン酸基を有する含フッ素ポリ マ一からなる固体高分子型燃料電池用電解質材料の製造方法において、 主鎖に脂 肪族環構造を有しかつ一 S 02 F基を有する含フッ素ポリマーをラジカル重合に より得た後、 フッ素ガスと接触させる工程と、 一 S 02 F基をスルホン酸基に変 換する工程とを含むことを特徴とする固体高分子型燃料電池用電解質材料の製造 方法、 及び当該製法により得られる電解質材料を一 OH基含有有機溶媒に溶解又 は分散させることを特徴とする液状組成物の製造方法を提供する。
また、 本発明は、 主鎖に脂肪族環構造を有しかつスルホン酸基を有する含フッ 素ポリマーからなる膜状固体高分子電解質と、 該電解質の片面に配置されたカソ ードと、 該電解質のもう一方の面に配置されたァノードとを有する固体高分子型 燃料電池用膜電極接合体の製造方法であつて、 主鎖に脂肪族環構造を有しかつ一 S〇2 F基を有する含フッ素ポリマーをラジカル重合により得た後、 フッ素ガス と接触させる工程と、 一 S 02 F基をスルホン酸基に変換する工程と、 前記含フ ッ素ポリマーを用いて膜状に成形する工程とを経て製造することを特徴とする固 体高分子型燃料電池用膜電極接合体の製造方法を提供する。
さらに本発明は、 主鎖に脂肪族環構造を有しかつスルホン酸基を有する含フッ 素ポリマーからなる膜状固体高分子電解質と、 該電解質の片面に配置されたカソ ードと、 該電解質のもう一方の面に配置されたアノードとを有する固体高分子型 燃料電池用膜電極接合体の製造方法であって、 主鎖に脂肪族環構造を有しかつ一 S 02 F基を有する含フッ素ポリマーをラジカル重合により得た後、 フッ素ガス と接触させる工程と、 一 S 02 F基をスルホン酸基に変換する工程と、 前記含フ ッ素ポリマーを用いて膜状に成形する工程とを経て製造することを特徴とする固 体高分子型燃料電池用膜電極接合体の製造方法を提供する。 発明を実施するための最良の形態
本発明により得られる固体高分子型燃料電池用電解質材料は、 主鎖に脂肪族環 構造を有しスルホン酸基を有する含フッ素ポリマーであって、 フッ素ガスとの接 触により高度にフッ素化されたもの (以下、 本ポリマーという。 ) である。 本ポ リマーは酸素ガス透過性及び酸素ガス溶解性に優れるポリマ一であり、 フッ素ガ スでフッ素化されることにより、 水の排出性が向上されている。
従来より燃料電池用用途に用いられているスルホン酸基を有する鎖状のパーフ ルォロポリマーでは、 その一部の分子鎖末端に—C O OH基、 一 C F = C F 2基 、 一 C O F基、 C F 2H基等の不安定な官能基を有するため、 固体高分子型燃料 電池の電解質材料に使用すると長期間の運転で次第にポリマーが分解し、 発電電 圧が低下したり、 膜強度が低下して局部的にピンホールや割れ、 剥離等が起こる と本発明者らは考え、 このポリマ一に対しフッ素化処理(フッ素ガスとの接触)を 行うことにより、 分子末端をパーフルォロ化して安定させることができ、 耐久性 を大幅に改良できるという知見を得ている。 しかし、 過酷な運転条件にポリマー が曝される場合、 それでも耐久性は充分でなかったため、 さらなる耐久性の向上 を目的として検討した。 そして主鎖に脂肪族環構造を有しスルホン酸基を有する W
5 ポリマーは、 フッ素化処理されることにより、 上記従来ポリマーのフッ素化処理 による耐久性向上に比べ、 著しい耐久性の向上が見受けられることがわかった。 通常、 本ポリマーは、 主鎖に脂肪族環構造を有し— S 02 F基を有する含フッ 素ポリマーを合成した後、 加水分解、 酸型化して製造する。 フッ素ガスとの接触 は、 先に一 S 02 F基を有する含フッ素ポリマーを加水分解、 酸型化させた後に フッ素ガスでフッ素化させることも可能であるが、 加水分解、 酸型化する前の一 S 02 F基 (スルホン酸基の前駆体) の段階で行うのがプロセス上容易で好まし い。 しかしこの方法に限定されない。 フッ素化に用いるフッ素ガスは、 通常、 0 . 1 %以上 1 0 0 %未満の濃度として窒素、 ヘリウム、 二酸化炭素などの不活性 ガスで希釈されたものを用いるが、 希釈せずに用いてもよい。 ポリマーはバルク の状態で、 又は含フッ素溶媒に分散又は溶解した状態で、 フッ素ガスと接触させ ることができる。
重合で得られたポリマーは、 そのままフッ素化してもよいが、 揮発成分を充分 に除去するため、 又はポリマーを熱的に安定ィ匕するために、 フッ素化前に加熱処 理をしてもよい。 この場合、 空気中、 窒素ガス等の不活性ガス雰囲気中又は減圧 下で 2 0 0〜3 0 0 °Cとすることが好ましい。
フッ素ガスと接触させてポリマーをフッ素化する際の温度は、 通常室温〜 3 0 0 °Cであり、 5 0〜2 5 0 °C、 特には 1 0 0〜2 2 0で、 さらには 1 5 0〜2 0 0 °Cが好適である。 温度が低すぎると、 フッ素ガスとポリマー末端の反応が遅く なり、 温度が高すぎると一 S 02 F基の脱離を伴う場合がある。 上記温度範囲に おける接触時間は 1分〜 1'週間が好ましく、 特に好ましくは 1〜5 0時間である フッ素化の工程においてポリマーを含フッ素溶媒に溶解又は分散させてフッ素 化する場合には、 当該含フッ素溶媒としては例えば以下の溶媒を使用できる。 パーフルォロトリブチルァミン、 パーフルォロトリプロピルアミン等のポリフ ルォロトリアルキルアミン化合物。
パーフルォ口へキサン、 パーフルォロオクタン、 パーフルォロデカン、 パ一フ ルォロドデカン、 パーフルォロ (2, 7—ジメチルオクタン) 、 2 H, 3 H—パ 一フルォロペン夕ン、 1 H—パ一フルォ口へキサン、 1 H—パ一フルォロォクタ ン、 1H—パーフルォロデカン、 1H, 4 H—パ一フルォロブタン、 1H, 1H , 1H, 2H, 2 H—パーフルォ口へキサン、 1H, 1 H, 1 H, 2H, 2H— パーフルォロオクタン、 1H, 1H, 1H, 2H, 2 H—パ一フルォロデカン、 3H, 4 H—パーフルォロ (2—メチルペンタン) 、 2H, 3 H—パ一フルォロ (2 _メチルペンタン) 等のフルォロアルカン。
3, 3—ジクロロ一 1, 1, 1, 2, 2—ペン夕フルォロプロパン、 1, 3— ジクロロー 1, 1, 2, 2, 3—ペン夕フルォロプロパン、 1, 1ージクロロー 1—フルォロェタン等のクロ口フルォロアルカン。
パーフルォロデカリン、 パーフルォロシクロへキサン、 パーフルォロ (1, 2 ージメチルシクロへキサン) 、 パーフルォロ (1, 3—ジメチルシクロへキサン ) 、 パ一フルォロ (1, 3, 5—トリメチルシクロへキサン) 、 パーフルォロジ メチルシクロブタン (構造異性を問わない) 等のポリフルォロシクロアルカン。 パーフルォロ (2—プチルテトラヒドロフラン) 等のポリフルォロ環状ェ一テ ル化合物。
n-C3 F7 OCH3 、 n-C3 F7 OCH2 CF3 、 n - C3 F7 OCHF CF3 、 n— C3 F7 OC2 H5 、 n— C4 F9 OCH3 、 i s o— C4 F9 O CH3 、 n— C4 F9 OC2 H5 、 i s o_C4 F9 OC2 H5 、 n— C4 F9 〇CH2 CF3 、 n-C5 F, , OCH3 、 n - C6 F, 3 OCH3 、 n— C5 F, x OC2 H5 > CF3 OCF (CF3 ) CF2 OCH3 、 CF3 OCHFC H2 OCH3 、 CF3 OCHFCH2 OC2 H5 、 n-C3 F7 OCF2 CF ( CF3 ) OCHFCF3等のヒドロフルォロエーテル類、 フッ素含有低分子量ポ リエ一テル、 クロ口トリフルォロエチレンのオリゴマー等。
これらは、 単独で用いてもよいし、 2種以上を混合して用いてもよい。
これらの他にも広範な化合物を使用できる。 1, 1, 2—トリクロロー 1, 2 , 2—トリフルォロェタン、 1, 1, 1—トリクロ口 _ 2, 2, 2—トリフルォ ロェタン、 1, 1, 1, 3—テトラクロ口一 2, 2, 3, 3—テトラフルォロプ 口パン、 1, 1, 3, 4ーテトラクロロー 1, 2, 2, 3, 4, 4—へキサフル ォロブタン等のクロ口フルォロカ一ボン溶媒類は、 技術的には使用できるが、 地 球環境保護の観点から好ましくない。 この他に、 液体又は超臨界の二酸化炭素を 用いて反応を行うこともできる。
上述の溶媒の中で水素原子を含有する溶媒は、 フッ素ガスと反応するので、 水 素原子を含有しない溶媒を用いるほうが好ましい。
上述のようにしてフッ素化させたポリマーは、 例えば N a OHや KOH等のァ ルカリが水中、 又はメ夕ノ一ルゃェ夕ノール等のアルコール類ゃジメチルスルホ キシド等の極性溶媒と水との混合溶媒中でその— S 02 F基が加水分解された後 、 塩酸や硫酸等の水溶液により酸型化されスルホン酸基に変換される。 例えば K ◦ H水溶液により加水分解される場合は、 一 S〇2 F基が一 S 03 K基に変換さ れ、 その後 Kイオンがプロトンに置換される。 加水分解及び酸型化は通常 0 t:〜 1 2 0 °Cの間で行われる。
フッ素ガスと反応させるスルホン酸基又はその前駆体基である— S 02 F基を 有するポリマーは、 環構造を有するモノマー又は環化重合性モノマーとスルホン 酸基又はスルホン酸基の前駆体基を有するモノマーとの共重合の工程を経て合成 できる。 上記ポリマーは、 燃料電池の電解質材料としての耐久性やフッ素化工程 の容易性を考慮すると、 パーフルォロモノマ一のみを共重合して得られるパーフ ルォロポリマーであることが好ましい。 パーフルォロポリマーであっても、 連鎖 移動反応等により、 ポリマー主鎖末端に一 C O F基、 一 C O OH基、 一 C F = C F 2基等が存在し、 重合開始剤に水素原子を含むものを使用した場合には、 ポリ マー主鎖末端に重合開始剤に基づく非パーフルォ口の基が生成するため、 フッ素 化工程を経ることによりフッ素化の効果が得られる。
上記重合開始剤として、 パーフルォロブタノィルパ一ォキサイドに代表される パ一フルォロジァシルパーォキサイド等のパ一フルォロ化合物を使用する場合、 末端に安定なパーフルォロ基が導入され、 重合後の不安定末端基が少なくなる場 合がある。 このような不安定末端基の少ないポリマーをさらにフッ素ガスによる 処理を行うと、 より容易に不安定末端基が非常に少ないポリマーが得られ好まし い。
本ポリマーにおける環構造は特に限定されないが、 例えば下式で表わされる環 構造が好ましい。 式中 nは 1 ~ 4の整数であり、 R fは炭素数 1〜8のパーフル ォロアルキル基又はパーフルォロアルコキシ基であり、 X、 Yはそれぞれ独立に フッ素原子又はトリフルォロメチル基である。 いずれの環構造の場合にも 4〜 7 員環であることが好ましく、 環の安定性を考慮すると 5員環又は 6員環であるこ とが好ましい。
Figure imgf000009_0001
本ポリマーを得るためのコモノマーの環構造を有するモノマーとしては、 パー フルォロ (2, 2—ジメチル— 1, 3—ジォキソール) (以下、 PDDという。 ) 、 パーフルォロ (1, 3—ジォキソール) 、 パーフルォロ (2—メチレンー4 一メチル— 1, 3ージォキソラン) (以下 MMDという) 、 2, 2, 4一トリフ ルォ口— 5—トリフルォロメトキシー 1, 3—ジォキソール等を例示できる。 本ポリマーを得るためのコモノマーの環化重合性モノマーとしては、 パーフル ォロ (3—ブテニルビニルエーテル) (以下、 BVEという。 ) 、 パーフルォロ
[ (1ーメチルー 3—ブテニル) ビニルエーテル] 、 パーフルォロ (ァリルビ二 ルエーテル) 、 1, 1' 一 [ (ジフルォロメチレン) ビス (ォキシ) ] ビス [1 , 2, 2—トリフルォロェテン] 等を例示できる。
上述の環構造を有するモノマー又は環化重合性モノマ一に基づく繰り返し単位 を具体的に示すと、 例えば PDDに基づく繰り返し単位は式 A、 BVEに基づく 繰り返し単位は式 B、 MMDに基づく繰り返し単位は式 Cで示される。 本明細書 において 「脂肪族環構造を有する含フッ素ポリマー」 とは、 このように不飽和結 合を含まない環構造を有する繰り返し単位を含む含フッ素ポリマーを示すものと する。
Figure imgf000010_0001
Figure imgf000010_0002
環構造を有するモノマー又は環化重合性モノマーと反応させるスルホン酸基又 はスルホン酸基の前駆体基を有するモノマーとしては、 一 S02 F基を有するパ 一フルォロビニルエーテルが好ましく挙げられる。 具体的には、 CF2 =CF— (OCF2 CFY) m 一 Op - (CF2 ) n — S02 Fで表されるパ一フルォロ ビニルエーテル (式中、 Yはフッ素原子又はトリフルォロメチル基であり、 mは 0〜3の整数であり、 nは 1〜12の整数であり、 pは 0又は 1であり、 m+p >0である。 ) が好ましい。 上記パ一フルォロビニルエーテルのなかでも、 式 1 〜 3の化合物が好ましく挙げられる。 ただし、 式 1〜3中、 Qは 1〜8の整数で あり、 rは 1〜8の整数であり、 sは 2又は 3である。 一 S02F基を有するモ ノマーを用いて重合した場合、 通常加水分解、 酸型化処理を— SO 3H基に変換 して電解質材料とされる。 すなわち、 電解質材料となる本ポリマー中には CF2 二 CF— (OCF2 CFY) m 一 Op - (CF2 ) n 一 S03 Hに基づく繰り返 し単位が含まれることが好ましい。 CF2 = CFO (CF2) qS02F 式 1
CF2 = CFOCF2CF (CF3) O (CF2) rS02F 式 2
CF2 = CF (OCF2CF (CF3) ) sO (CF2) 2S02F 式 3 特に本ポリマーとしては、 パーフルォロ (3—ブテニルビニルエーテル) 、 パ 一フルォロ (2, 2—ジメチル— 1, 3—ジォキソール) 、 パーフルォロ (1, 3—ジォキソール) 、 2, 2, 4—トリフルオロー 5—トリフルォロメトキシー 1, 3—ジォキソール及びパーフルォロ (2—メチレン一 4ーメチルー 1, 3— ジォキソラン) からなる群から選択されるモノマーに基づく繰り返し単位と、 パ 一フルォロ (3, 6—ジォキサー 4—メチルー 7—ォクテン) スルホン酸 (CF 2 =CFOCF2 CF (CF3 ) O (CF2 ) 2 S03 H) 又はパーフルォロ ( 3—ォキサ一 4—ペンテン) スルホン酸 (CF2 =CFO (CF2 ) 2 S〇3 H ) に基づく繰り返し単位とを含むポリマーであることが好ましい。
本ポリマーは、 上述の環状モノマー又は環化重合性モノマーと、 例えば式 1〜 3で表わされるようなスルホン酸基又はスルホン酸基の前駆体基を有するモノマ 一との共重合の工程を経て合成されるが、 強度の調整などのため、 さらにテトラ フルォロエチレン等の他のモノマーを共重合させてもよい。 本ポリマーは、 環構 造を有するモノマーに基づく繰り返し単位とスルホン酸基を有するモノマーに基 づく繰り返し単位のみから構成される場合、 その骨格は剛直になりやすく、 燃料 電池の膜や触媒層に用いると膜や触媒層が脆くなりやすい場合もあるためである ただし本ポリマーは、 重合後、 フッ素化の工程を経ることにより撥水性に優れ 、 燃料電池の力ソードの電解質として使用する場合、 燃料電池の出力を向上させ 、 長期にわたり安定した特性を示すが、 他のモノマーを共重合する場合は、 その 優れた出力特性を損なわないように、 本ポリマー中での当該他のモノマーに基づ く繰り返し単位の含有量が質量比で 35%以下、 特に 20%以下になるようにす るのが好ましい。
上述の共重合可能なモノマーとしては、 例えばテトラフルォロエチレン、 クロ 口トリフルォロエチレン、 フッ化ビニリデン、 へキサフルォロプロピレン、 トリ フルォロエチレン、 フッ化ビエル、 エチレン等が挙げられる。 また、 CF2 =C FORf 1 、 CH2 =CHRf 2 、 CH2 =CHCH2 Rf 2 、 CF2 =CFO Rf 3 Zで表わされる化合物も使用できる。 ただし、 Rf 1 は炭素数 1〜12の パーフルォロアルキル基であり、 枝分かれ構造であってもよく、 エーテル結合性 の酸素原子を含有してもよい。 Rf 2 は炭素数 1〜12のパーフルォロアルキル 基である。 Rf 3 は炭素数 2〜 6のパーフルォロアルキレン基であり、 枝分かれ 構造であってもよくエーテル結合性の酸素原子を含有してもよい。 Zは一 C N、 一 COOR又は一 COF (Rは炭素数 1〜6のアルキル基である) である。 上記モノマーのなかでも、 パーフルォロモノマーを用いるほうがフッ素ガスと の反応が容易であり、 耐久性の観点から好ましい。 なかでもテトラフルォロェチ レンは入手が容易で重合反応性が高いので好ましい。
上記モノマーにおいて CF2 =CFORf 1 で表される化合物としては、 CF 2 =CF- (OCF2 CFX) t 一 O— Rf 4で表されるパーフルォロビニルェ 一テル化合物が好ましい。 ただし、 式中、 tは 0〜3の整数であり、 Xはフッ素 原子又はトリフルォロメチル基であり、 Rf 4 は直鎖又は分岐鎖の炭素数 1〜 1 2のパーフルォロアルキル基 (以下、 本明細書において、 Rf 4は同じ意味で用 いる。 ) である。 なかでも、 式 4〜 6で表わされる化合物が好ましく挙げられる 。 ただし、 式中、 Vは 1〜8の整数であり、 wは 1〜8の整数であり、 Xは 2又 は 3である。
CF2 = CFO (CF2) VCF3 式 4
CF2 = CFOCF2CF (CF3) O (CF2) WCF3 式 5
CF2 = CF (OCF2CF (CF3) ) xO (CF2) 2CF3 式 6
本ポリマーを用いた膜や触媒層の強度を高めるためには、 本ポリマーの数平均 分子量は 5000以上が好ましく、 10000以上、 さらには 20000以上で あるとより好ましい。 また、 分子量が大きすぎると成形性や後述する溶媒への溶 解性が低下することがあるので、 分子量は 5000000以下が好ましく、 20 00000以下であることがより好ましい。
本ポリマーにおける環構造を有するモノマーに基づく繰り返し単位の含有量は 、 0 . 5〜8 0モル%が好ましく、 1〜8 0モル%、 さらには 4〜7 0モル%、 さらには 1 0〜7 0モル%であるとより好ましい。
環構造を有するモノマーに基づく繰り返し単位は少量含まれるだけでも耐久性 向上効果があるが、 0 . 5 %未満では当該効果が出にくい場合がある。 また、 環 構造を有する繰り返し単位が多すぎると、 ポリマー中のスルホン酸基が少なくな り、 イオン交換容量が小さくなって導電性が低くなるおそれがある。
また、 スルホン酸基を有する繰り返し単位は、 本ポリマーのイオン交換容量が 0 . 5〜2ミリ当量 Zg乾燥樹脂となるように含まれることが好ましく、 0 . 7 〜1 . 5ミリ当量 Zg乾燥樹脂となるように含まれるとさらに好ましい。 イオン 交換容量が低すぎると電解質材料としてのポリマーの導電性が低くなり、 高すぎ ると撥水性が悪く燃料電池に使用した場合耐久性が悪くなるおそれがあり、 ポリ マー強度も不充分になるおそれがある。
本ポリマーを得るための重合はバルク重合、 溶液重合、 懸濁重合、 乳化重合な ど、 従来公知の方法を採用できる。 重合は、 ラジカルが生起する条件で行われ、 紫外線、 ァ線、 電子線等の放射線を照射する方法、 通常のラジカル重合で用いら れるラジカル開始剤を添加する方法が一般的である。 重合温度は通常は 2 0〜1 5 0 °C程度である。 ラジカル開始剤としては、 例えばビス (フルォロアシル) パ 一才キシド類、 ビス (クロ口フルォロアシル) パーォキシド類、 ジアルキルパー ォキシジカーボネート類、 ジァシルバーォキシド類、 パーォキシエステル類、 ァ ゾ化合物類、 過硫酸塩類等が挙げられる。
溶液重合では、 使用する溶媒の沸点は、 取り扱い性の観点から、 通常は 2 0〜 3 5 好ましくは 4 0〜1 5 0 °Cである。 使用可能な溶媒としては、 上述の 、 本ポリマーのフッ素化を含フッ素溶媒中で行う際に含フッ素溶媒の好適なもの として例示した含フッ素溶媒と同じ溶媒が挙げられる。 すなわち、 ポリフルォロ トリアルキルアミン化合物、 パーフルォロアルカン、 ハイド口フルォロアルカン 、 クロ口フルォロアルカン、 分子鎖末端に二重結合を有しないフルォロォレフィ ン、 ポリフルォロシクロアルカン、 ポリフルォロ環状エーテル化合物、 ヒドロフ ルォロエーテル類、 フッ素含有低分子量ポリエーテル、 tープ夕ノール等が挙げ られる。 これらは、 単独で用いてもよいし、 2種以上を混合して用いてもよい。 また、 この他にも液体又は超臨界の二酸化炭素を用いて重合することもできる。 本ポリマーは、 —〇H基を有する有機溶媒に溶解又は良好に分散できる。 該溶 媒としては、 アルコール性の一 OH基を有する有機溶媒が好ましい。 具体的には 、 メタノール、 エタノール、 1一プロパノール、 2, 2, 2—トリフルォロェ夕 ノール、 2, 2, 3, 3, 3—ペン夕フルオロー 1一プロパノール、 2, 2, 3 , 3—テトラフルオロー 1一プロパノール、 4, 4, 5, 5, 5—ペンタフルォ 口一1—ペン夕ノール、 1, 1, 1, 3, 3, 3—へキサフルオロー 2—プロパ ノール、 3, 3, 3—トリフルオロー 1一プロパノール、 3, 3, 4, 4, 5,
5, 6, 6, 6—ノナフルオロー 1一へキサノール、 3, 3, 4, 4, 5, 5,
6, 6, 7, 7, 8, 8, 8—トリデカフルオロー 1一才クタノール等が例示さ れる。 また、 アルコール以外に酢酸等の力ルポキシル基を有する有機溶媒も使用 できるが、 これらに限定されない。
一 OH基を有する有機溶媒は、 複数の溶媒を混合して用いてもよく、 水又は他 の含フッ素溶媒と混合して用いてもよい。 他の含フッ素溶媒としては、 上述の、 本ポリマーのフッ素化を含フッ素溶媒中で行う際に含フッ素溶媒の好適なものと して例示した含フッ素溶媒と同じ溶媒が例示される。 混合溶媒を使用する場合、 一 OH基を有する有機溶媒は、 溶媒全質量の 10%以上、 特に 20%以上含まれ ることが好ましい。
混合溶媒を用いる場合、 最初から本ポリマーを混合溶媒中に溶解又は分散させ てもよいが、 —OH基を有する有機溶媒に溶解又は分散した後、 他の溶媒を混合 してもよい。
溶解又は分散する温度は 0 〜 250 °Cの範囲が好ましく、 特に 20〜 150 °Cにて大気圧下又はォートクレープ等の密閉加圧した条件下で行うことが好まし い。
また、 水よりも沸点の低いアルコール溶媒に本ポリマーを溶解又は分散した後 、 水を添加してアルコールを留去することにより、 実質的に有機溶媒を含有しな い水分散液を調製することもできる。
上記のようにして本ポリマーを溶解又は分散させて得られる液状組成物を使用 して固体高分子型燃料電池の力ソードを作製すると、 ガス拡散性と撥水性に優れ る力ソードが得られる。 該液状組成物中の本ポリマーの濃度は、 液状組成物全質 量の 1〜5 0 %、 特に 3〜3 0 %であることが好ましい。 濃度が低すぎると例え ばカソード作製時に多量の有機溶媒が必要とされ、 濃度が高すぎると液の粘度が 高すぎて取扱性が悪くなる。
本発明においては、 例えば本ポリマーを含む液状組成物に対し、 白金触媒微粒 子を担持させた導電性のカーボンブラック粉末を混合して分散させ、 得られた均 一の分散液を用いて、 以下の 2つのいずれかの方法で固体高分子型燃料電池用膜 一電極接合体を得ることができる。 第 1の方法は、 膜状固体高分子電解質となる カチオン交換膜の両面に上述の分散液を塗布し乾燥した後、 カーボンクロス又は カーボンペーパーで密着する方法である。 第 2の方法は前記分散 ΐ夜をカーボンク ロス上又はカーボンペーパー上に塗布乾燥後、 カチオン交換膜に密着させる方法 である。
本発明の固体高分子型燃料電池において、 カソードに含まれる触媒と電解質材 料であるイオン交換樹脂とは、 質量比で触媒:イオン交換樹脂 = 4 0 : 6 0〜9 5 : 5であることが、 電極の導電性と水の排出性の観点から好ましい。 なお、 こ こでいう触媒の質量は、 カーボン等の担体に担持された担持触媒の場合は該担体 の質量も含む。
また、 力ソード中のイオン交換樹脂は、 本ポリマー単独の樹脂からなってもよ いが、 従来公知のスルホン酸基を有するパーフルォロポリマーと本ポリマーとの 混合物としてもよい。 該従来公知のポリマーとしては、 テトラフルォロエチレン と C F 2 = C F— (O C F 2 C F Y) m— O p — (C F 2 ) n —S 03 Hで表さ れるパーフルォロビニルエーテル (式中、 Yはフッ素原子又はトリフルォロメチ ル基であり、 mは 0〜 3の整数であり、 nは 1〜1 2の整数であり、 pは 0又は 1であり、 m+ p > 0である。 ) の共重合体が例示される。 特に、 テトラフルォ 口エチレンと上述の式 1〜3で表わされるモノマーとの共重合体を得てこれを加 水分解、 酸型ィ匕したスルホン酸基を有するポリマーが好ましく挙げられる。 力ソードに従来公知のポリマーを混合して用いる場合は、 本ポリマーの割合は 力ソード中のイオン交換樹脂全質量の 2 0 %以上、 特に 5 0 %以上あることが好 ましい。 本発明におけるアノードは、 力ソードと同じであってもよいが、 従来より使用 されているガス拡散電極等からなってもよい。 アノードは力ソードと同様の工程 で形成され、 膜の片面にアノード、 もう一方の面に力ソードが配置された膜ー電 極接合体が得られる。 本ポリマーは固体高分子型燃料電池用電解質材料であるが 、 力ソードではなくアノードに含有されてもよいし、 膜状固体高分子電解質であ るイオン交換膜の材料として用いてもよい。
得られた膜一電極接合体は、 例えば燃料ガス又は酸素を含む酸化剤ガス (空気 、 酸素等) の通路となる溝が形成され導電性カーボン板等からなるセパレ一夕の 間に挟まれ、 セルに組み込まれることにより本発明の固体高分子型燃料電池が得 られる。 本発明の電解質材料が適用される固体高分子型燃料電池は、 水素 Z酸素 型燃料電池に限定されない。 直接メタノール型燃料電池 (DMFC) 等への適用 も可能である。 この場合も、 特に力ソードに含有させることが好ましい。
以下に、 本発明を実施例により具体的に説明するが、 本発明はこれらに限定さ れない。
なお、 以下の例において、 下記の略号を用いる。
PSVE : CF2 =CFOCF2 CF (CF3 ) OCF2 CF2 S02 F、 PSVE2 : CF2 =CFOCF2 CF2 OCF2 CF2 S02 F、
I PP : (CH3 ) 2 CHOC (=0) 〇OC (=0) OCH (CH3 ) 2 、 PFB: CF3 CF2 CF2 C (=0) OOC (=0) CF2 CF2 CF3 HCFC 141 b : CH3 CC 12 F (旭硝子社製) 、
HCFC 225 c b : CC 1 F2 CF2 CHC 1 F (旭硝子社製) 。
[実施例 1]
PDD/P S VE共重合体の合成
内容積 200m 1のオートクレープに、 26. 0 gの PDD、 127. 8 gの PSVE、 及び 0. 46 gの I P Pをいれ、 脱気後、 窒素で 0. 3MPaまで圧 張りし、 40°Cに加熱、 撹拌することで重合を開始した。 10時間後、 冷却、 パ —ジして重合を止め、 HCFC 225 c bで希釈後、 へキサンに投入することで 沈殿させ、 へキサンで 2回、 さらに HCFC 141 bで 1回洗浄した。 ろ過後、 80°Cで 16時間、 真空乾燥することにより、 41. 6 gの白色のポリマーを得 W
16 た。 元素分析で硫黄の含有量を求め、 PDDZPS VEの比とイオン交換容量を 求めたところ、 それぞれ 56. 5/43. 5 (モル比) 、 1. 31ミリ当量 Zg 乾燥樹脂であった。 また G P Cにより分子量を測定したところポリメ夕クリル酸 メチル換算の数平均分子量は 3. 3万であった。
上記ポリマ一 10 gを 200 Omlのハステロィ製ォ一トクレーブに入れ、 脱 気した後、 ゲージ圧で 0. 3 MP aまで窒素ガスで希釈されたフッ素ガス (20 体積%) を導入し、 180°Cで 4時間保持した。 次に、 アルカリで加水分解、 酸 型化、 乾燥した後、 エタノールに溶解して透明な 10%溶液を得た。 この溶液か ら厚さ 200 mのキャスト膜を作製し、 160°Cで 30分間加熱した。 キャス ト膜を TMA (マックサイエンス社製) にセットした。 Ιππηφの石英プローブ を用いてキャスト膜に 3. 5 gの加重をかけて 5 °CZ分で昇温した。 キャスト膜 に対するプローブのめり込みにより膜の厚みが急激に減少しはじめる温度を軟化 点として計測したところ、 このポリマーの軟化温度は 150°Cであった。
[実施例 2]
BVEZP S VE共重合体の合成
300m 1のフラスコに、 窒素雰囲気下、 120. O gの BVE、 128. 5 gの PSVE、 及ぴ 0. 76 gの I PPを入れ、 40 に加熱、 撹拌することで 重合を開始した。 16. 7時間後、 重合を止め、 へキサンに投入することで沈殿 させ、 さらにへキサンで 3回洗浄した。 ろ過後、 80°Cで 16時間、 真空乾燥す る事により、 47. 8 gの白色のポリマーを得た。
元素分析で硫黄の含有量を求め、 BVE/P S VEの比とイオン交換容量を求 めたところ、 それぞれ BVE/PS VE=67. 0/33. 0 (モル比) 、 0. 99ミリ当量 Zg乾燥樹脂であった。 また GPCにより分子量を測定したところ ポリメタクリル酸メチル換算の数平均分子量は 2. 9万であった。 上記ポリマ一 10 gを 200 Om 1のハステロィ製オートクレープに入れ、 脱気した後、 ゲ一 ジ圧で 0· 3 MP aまで窒素ガスで希釈されたフッ素ガス (20体積%) を導入 し、 180°Cで 4時間保持した。 アルカリで加水分解、 酸型化、 乾燥した後、 ェ 夕ノールに溶解して透明な 10%溶液を得た。 実施例 1と同様にして求めたこの ポリマーの軟化温度は 110°Cであった。 [実施例 3]
TFE/PDDZP S VE共重合体の合成
内容積 200m 1のオートクレーブに 14. 30 の 00、 52. 64 の P SVE、 76. 94 gの HCFC 22 5 c b、 及び 0. 36 gの I PPを入れ 、 凍結脱気した。 TFEを 5. 9 g導入後、 40°Cに昇温して重合を開始した。 このとき圧力は 0. 26MP a (ゲージ圧) であった。 40°Cで 1 0時間反応さ せ、 圧力が 0. 0 7MP a (ゲージ圧) になったところで、 反応を止めた。 重合 溶液を HCFC 225 c bで希釈後へキサンにより凝集し、 さらにへキサンで 3 回洗浄した。 80°Cで一晩真空乾燥を行った。 収量 25. 0 3 g (収率 34. 4 %) 。
1 9 F— NMRでポリマー組成を求めたところ、 TFEZPDD/P S VE =
42/3 5/22 (モル比) であり、 イオン交換容量が 0. 9 8ミリ当量 Zg乾 燥榭脂であった。 また、 GPCによるポリメ夕クリル酸メチル換算の数平均分子 量は 5 · 3万、 重量平均分子量は 8. 3万であった。 このポリマー 1 0 gを 20 0 Om 1のハステロィ製オートクレープに入れ、 脱気した後、 ゲージ圧で 0. 3 MP aまで窒素ガスで希釈されたフッ素ガス (20体積%) を導入し、 1 8 O で 4時間保持した。 次に、 アルカリで加水分解、 酸型化、 乾燥した後、 エタノー ルに溶解して透明な 1 2%溶液を得た。
また、 フッ素ガスによる処理を行って得られたポリマーを用い、 熱プレスで厚 さ 1 00 mのフィルムを作製した。 これを KOHZH2 0/DMSO=l 1/
59/30 (質量比) の溶液に浸漬し、 90でで 1 7時間保持して加水分解した 。 室温に戻して水洗を 3回行つた。 さらに 2 Nの硫酸に室温で 2時間浸漬して水 洗した。 この硫酸浸漬と水洗をそれぞれ合計 3回行い、 最後にさらに 3回水洗を 行った。 8 0°Cで 1 6時間風乾し、 さらに 8 0°Cで真空乾燥し、 酸型の乾燥フィ ルムを得た。 動的粘弾性の測定を行い、 弾性率が急激に小さくなる温度を軟化温 度として求めたところ、 このポリマーの軟ィ匕温度は 1 2 0°Cであった。
[実施例 4]
TFEZPDD/P SVE共重合体その 2の合成
TFEを 9g、 PDDを 24. 4g、 PSVEを 1 02. 6 gとし、 I PPを 0 . 08 g使用し、 HCFC 225 c bは使用しなかった以外は実施例 3と同様の 方法で重合を行った。 重合は 40°C12時間行い反応を終了した。 重合溶液を H CFC 225 c bで希釈後へキサンにより凝集し、 さらにへキサンで 3回洗浄し た。 80°Cで一晩真空乾燥を行った。 収量 37. 8 g (収率 27. 7%) 。
実施例 3と同様の方法により分子量 ·組成測定を行った。 得られたポリマーの 組成は TFEZPDD/P S VE=36Z41Z23であり、 イオン交換容量は 0. 97ミリ当量 Zg乾燥樹脂であった。 また、 数平均分子量 16万、 重量平均 分子量 28万であつた。 得られたポリマーを 240 で 4時間減圧下で熱処理し た後、 実施例 3と同様の方法によりフッ素ガス処理を行った。
[実施例 5]
TFE/PDD/P S VE 2共重合体の合成
TFEを 6g、 PDDを 16. 5g、 PSVE2を 68. 3 g、 I PPを 0. 0 5 g使用し、 実施例 4と同様の方法で重合を行った。 重合は 40°C20時間行つ た。 重合溶液を HCFC 225 c bで希釈後へキサンにより凝集し、 さらにへキ サンで 3回洗浄した。 80°Cで一 B免真空乾燥を行った。 収量 27. 3 g (収率 3 0. 1%) 。
実施例 3と同様の方法により分子量 ·組成測定、 及びフッ素ガス処理を行つ た。 得られたポリマーの組成は TFE/PDDZP S VE 2 = 36/39/26 であり、 イオン交換容量は 1. 11ミリ当量 Zg乾燥樹脂であった。 また、 数平 均分子量 16. 7万、 重量平均分子量 87万であった。
[実施例 6]
TFE/MMD/P SVE共重合体の合成
内容積 200mlのオートクレーブに 14. l gの MMD、 78. 0 gの PS VE、 及び PFBを 3質量%含む HCFC 225 c b溶液 0. 3 gを入れ、 凍結 脱気した。 TFEを 14. l g導入後、 20°Cで 22時間重合を行った。 重合溶 液を HCFC 225 c bで希釈後へキサンにより凝集し、 さらにへキサンで 3回 洗浄した。 80°Cで一晩真空乾燥を行った。 収量 2. 2 g。
得られたポリマーについて、 実施例 3と同様の方法により分子量 ·組成測定、 およびフッ素ガス処理を行った。 得られたポリマーの組成は、 TFE/MMDZ PSVE=30/47/23 (モル比) であり、 イオン交換容量が 0. 93ミリ 当量 Zg乾燥樹脂であった。 また、 GPCによるポリメタクリル酸メチル換算の 数平均分子量は 1 5. 5万、 重量平均分子量は 23. 9万であった。
[実施例 7]
TFEZMMDZP SVE共重合体その 2の合成
内容積 200m 1のォ一トクレーブに 0. 7 gの MMD、 9 2. 6 gの P SV E、 50. 8 gの HCFC 22 5 c b、 及び PFBを 3質量%含む HCFC— 2 25 c b溶液 2. 57 を入れ、 凍結脱気した。 40 に昇温して T F Eを 0. 5 MP aになるまで導入し、 その後この圧力を保持したまま TFEを導入しつつ 、 40 で 7時間重合を行つた。 重合溶液を H C F C 141 bにより凝集し、 H CFC 141 bで 3回洗浄した。 80 °Cで一晩真空乾燥を行つた。 収量 1 9. 9 g。
得られたポリマ一を KOH水溶液にて加水分解後、 塩酸水にて滴定することで 求めたイオン交換容量は 1. 06ミリ当量 Zg乾燥樹脂であった。 さらに L 9 F — NMRでポリマー組成を求めたところ、 TFEZMMD/P S VE=7 7/5 /1 8 (モル比) であった。 このポリマ一を実施例 3と同様の方法によりフッ素 ガス処理を行った。
[実施例 8]
TFEZMMDZP SVE共重合体その 3の合成
内容積 20 Om 1のオートクレーブに 0. 4 gの MMD、 9 3. O gの PSV E、 53. 3 gの HCFC 225 c b、 及び PFBを 3質量%含む HCFC— 2 2 5 c b溶液 2. 62 gを入れ、 凍結脱気した。 40°Cに昇温して TFEを 0. 45 MP aになるまで導入し、 その後この圧力を保持したまま TFEを導入しつ つ、 40でで 7時間重合を行った。 重合溶液を HCFC 141 bにより凝集し、 HCFC 141 bで 3回洗浄した。 80°Cで一晩真空乾燥を行った。 収量 16. 7 g。
得られたポリマーを KOH水溶液にて加水分解後、 塩酸水にて滴定することで 求めたイオン交換容量は 1. 04ミリ当量 Zg乾燥樹脂であった。 さらに1 9 F — NMRでポリマー組成を求めたところ、 TFE/MMDZP SVE=74/8 /18 (モル比) であった。 このポリマーを実施例 3と同様の方法によりフッ素 ガス処理を行った。
[実施例 9]
TFE/MMD/P S VEその 4
内容積 20 Om 1のオートクレーブに 2. 4gの MMD、 91. 8 gの PSV E、 55. 2 gの HCFC— 225 c b、 及び PFBを 3質量%含む HCFC 2 25 c b溶液 2. 66 を入れ、 凍結脱気した。 40 °Cに昇温して T F Eを 0. 40 MP aになるまで導入し、 その後この圧力を保持したまま TFEを導入しつ つ、 重合を行つた。 重合時間は 40 °C 7時間おこなった。 重合溶液を H C F C 1 41 bにより凝集し、 H C F C 141 bで 3回洗浄した。 80 °Cで一晩真空乾燥 を行った。 収量 14. 9 g。
得られたポリマーを KOH水溶液にて加水分解後、 塩酸水にて滴定することで 求めたイオン交換容量は 1. 13ミリ当量/ g乾燥樹脂であった。 さらに1 9 F 一 N M Rでボリマー組成を求めたところ、 TFEZMMDZP S VE = 61/1 6/23 (モル比) であった。 このポリマ一を実施例 3と同様の方法によりフッ 素ガス処理を行った。
[実施例 10]
TFEZBVE/P S VE共重合体
内容積 20 Om 1のオートクレーブに 48. 6 gの BVE、 86. 4gの PS VE、 86. 2 gの 1, 1, 2—トリクロ口トリフルォロェタン、 及び PFBを 3質量%含む HCFC— 225 c b溶液 0. 75 gを入れ、 凍結脱気した。 30 Xに昇温して TFEを 0. 15MP aになるまで導入し、 その後この圧力を保持 したまま TFEを導入しつつ、 重合を行った。 重合時間は 30°C16時間行った 。 重合溶液をへキサンにより凝集し、 へキサンで 3回洗浄した。 80°Cで一晩真 空乾燥を行った。 収量 8. 3 g。
得られたポリマーを KOH水溶液にて加水分解後、 塩酸水にて滴定することで 求めたイオン交換容量は 0. 9 5ミリ当量 Zg乾燥樹脂であった。 さらに1 9 F 一 NMRでポリマー組成を求めたところ、 TFEZBVEZP S VE=6 1/2 0/1 9 (モル比) であった。 このポリマーを実施例 3と同様の方法によりフッ 素ガス処理を行った。
[比較例 1]
実施例 4のポリマーをフッ素ガスで処理せずに回収した。 組成、 分子量は同じ であった。
[比較例 2 ]
TFEと P SVEとからなる共重合体粉末 (酸型に変換して測定したときのィ オン交換容量 1. 1ミリ当量 Zグラム乾燥樹脂、 以下共重合体 Aという。 ) 1 0 gを減圧オープンで圧力 1 0 P a、 250°Cにて 4時間熱処理を行った。 その後 実施例 3と同様の方法でフッ素ガスによる処理を行つた。
[燃料電池の作製及び電解質材料の耐久性評価試験]
燃料電池セルは以下のようにして組み立てた。 C F 2 = C F 2に基づく繰り返 し単位と CF2 = CF— OCF2CF (CF3) O (CF2) 2S03Hに基づく繰 り返し単位とからなる共重合体 (イオン交換容量 1. 1ミリ当量 Zグラム乾燥樹 脂) と白金担持力一ボンとを 1 : 3の質量比で混合し、 さらにエタノールと混合 して塗工液を作製した。 この塗工液を、 エチレン--テトラフルォロエチレンフィ ルム基材上にダイコート法で塗工、 乾燥して厚さ 1 0 xm、 白金担持量 0. 5m gZcm2の電極層を得た。
次に、 実施例 4〜1 0、 比較例 1、 2で得られたポリマーそれぞれについて、 熱プレスを行って厚さ 50 mのフィルムをそれぞれ作製した。 これを KOHZ H2 0/DMSO= 1 5/5 5/30 (質量比) の溶液に浸漬し、 80 で 1 7 時間保持して加水分解した。 これを室温に戻して水洗を 3回行い、 さらに 3mo 1 /Lの塩酸に室温で 2時間浸漬して水洗した。 この塩酸浸漬と水洗をそれぞれ 合計 3回行い、 最後にさらに 3回水洗を行った。 6 0°Cで 1 6時間風乾し、 電解 質膜を得た。 また、 比較例 2の共重合体 A (フッ素化処理なし) についても同様 の方法で、 電解質膜を得た。
次に、 上記のようにして得られた 2枚の電極層を、 電極層同士が対向するよう にして間に上記電解質膜をそれぞれ挟み込んだ状態でプレスを行い、 電極層を膜 に転写したものを、 各実施例ごとに作製した。 さらにその両外側にカーボンクロ スをガス拡散層として配置して膜電極接合体を作製した。
この膜電極接合体の両外側にガス通路用の細溝をジグザグ状に切削加工した力 一ボン板製のセパレ一夕、 さらにその外側にヒータを配置し、 有効膜面積 2 5 c m2の固体高分子型燃料電池を組み立てた。
耐久性の評価は以下の方法で行った。 回路を開放した状態で燃料電池の温度を 9 0 Tに保ち、 力ソードに露点 5 O t:で水蒸気を含有する空気、 アノードに露点 5 0 で水蒸気を含有する水素をそれぞれ 5 0 m l Z分で供給した。 この状態で 表に示す時間運転を続けた後、 燃料電池を分解し、 電解質膜の劣化状態を質量測 定により測定した。 その結果を表に示す。 ここで質量減少速度とは、 質量減少 ( %) を運転時間 (h) で除した値である。
Figure imgf000023_0001
産業上の利用の可能性 本発明の電解質材料は、 従来用いられているテトラフルォロエチレン ZCF2 = CFCF2 CF (CF3 ) O (CF2 ) 2 S〇3 H共重合体の軟化温度 80°C に比べ、 実施例にも示されるように軟化温度が高いスルホン酸ポリマーである。 特に単独重合体の軟化温度が 10 o°c以上の環化重合モノマーや環構造含有モノ マ一を使用して共重合したポリマーからなる場合、 軟化温度は特に高い。
上述の従来のポリマーは 80°C付近から急激に弾性率が低下しはじめ、 その軟 化温度が燃料電池セルの運転温度に近いため燃料電池の電解質として使用すると 経時的に膨潤度などの物性が変化しやすくて耐久性に問題があり、 また、 80°C 以上の温度での運転は困難である。 一方、 本発明の電解質材料は高い軟化温度を 有するため、 燃料電池の電解質膜や電極に含まれる電解質のポリマーとして用い た場合、 経時的な物性の変化がないので、 高い耐久性が得られる。 また、 80°C より高い温度でのセルを運転することも可能となる。
さらに本発明の固体高分子型燃料電池用電解質材料は主鎖に脂肪族環構造を有 していてガス拡散性に優れ、 かつ高度にフッ素化されているため撥水性に優れて おり、 当該電解質燃料電池を長期間作動させても耐久性に優れる。

Claims

請求の範囲
1 . 主鎖に脂肪族環構造を有しかつスルホン酸基を有する含フッ素ポリマーか らなる固体高分子型燃料電池用電解質材料の製造方法において、 主鎖に脂肪族環 構造を有しかつ一 S 02 F基を有する含フッ素ポリマ一をラジカル重合により得 た後、 フッ素ガスと接触させる工程と、 一 S〇2 F基をスルホン酸基に変換する 工程とを含むことを特徴とする固体高分子型燃料電池用電解質材料の製造方法。
2 . 前記スルホン酸基を有する含フッ素ポリマーは、 下記モノマ一 Aに基づく 繰り返し単位と下記モノマー Bに基づく繰り返し単位 (ただし、 Yはフッ素原子 又はトリフルォロメチル基であり、 mは 0〜3の整数であり、 pは 0又は 1であ り、 nは 1〜1 2の整数である。 ) とを含む共重合体からなる請求の範囲 1に記 載の固体高分子型燃料電池用電解質材料の製造方法。
モノマー A:ラジカル重合により、 主鎖に環構造を含む繰り返し単位を有する ポリマーを与えるパーフルォロモノマ一。
モノマー B: C F 2 = C F— (O C F 2 C F Y) m— O p — (C F 2 ) n 一 S 03 H。
3 . 前記モノマ一 Aは、 パーフルォロ (3—プテニルビニルエーテル) 、 パー フルォロ (2 , 2—ジメチルー 1, 3—ジォキソール) 、 パ一フルォロ (1, 3 ージォキソール) 、 2 , 2 , 4—トリフルオロー 5—トリフルォロメトキシー 1
, 3—ジォキソ一ル及びパ一フルォロ (2—メチレン一 4—メチルー 1, 3—ジ ォキソラン) からなる群から選択され、 モノマー Bは、 パーフルォロ (3, 6— ジォキサー 4—メチルー 7—ォクテン) スルホン酸又はパーフルォロ ( 3—ォキ サー 4一ペンテン) スルホン酸である請求の範囲 2に記載の固体高分子型燃料電 池用電解質材料の製造方法。
4. 前記モノマー Aは、 パーフルォロ ( 2 , 2一ジメチルー 1 , 3—ジォキソ ール) 、 パーフルォロ ( 3一ブテニルビニルエーテル) 及びパーフルォロ ( 2 - メチレン一 4—メチルー 1, 3—ジォキソラン) からなる群から選択され、 前記 モノマ一 Bは、 パーフルォロ (3, 6—ジォキサー 4一メチル一 7—ォクテン) スルホン酸である請求の範囲 3に記載の固体高分子型燃料電池用電解質材料の製 造方法。
5 . イオン交換容量が 0 . 5〜2 . 0ミリ当量/ g乾燥樹脂であり、 スルホン 酸基を有するパーフルォロポリマーである請求の範囲 1〜4のいずれかに記載の 固体高分子型燃料電池用電解質材料の製造方法。
6 . 主鎖に脂肪族環構造を有しかつ一 S 02 F基を有する含フッ素ポリマーを ラジカル重合により得た後、 フッ素ガスと接触させる工程と、 一 S〇2 F基をス ルホン酸基に変換する工程とを経て、 主鎖に脂肪族環構造を有しかつスルホン酸 基を有する含フッ素ポリマーを製造し、 次いで OH基含有有機溶媒に溶解又は分 散させることを特徴とする液状組成物の製造 法。
7 . 前記スルホン酸基を有する含フッ素ポリマーは、、下記モノマー Aに基づく 繰り返し単位と下記モノマー Bに基づく繰り返し単位 (ただし、 Yはフッ素原子 又はトリフルォロメチル基であり、 mは 0〜3の整数であり、 pは 0又は 1であ り、 nは 1〜1 2の整数である。 ) とを含む共重合体からなる請求の範囲 6に記 載の液状組成物の製造方法。
モノマ一 A:ラジカル重合により、 主鎖に環構造を含む繰り返し単位を有する ポリマーを与えるパーフルォロモノマー。
モノマー B: C F 2 = C F— (O C F 2 C F Y) m - Op ― (C F 2 ) n 一 S 03 H。
8 . 膜状固体高分子電解質と、 該電解質の片面に配置され触媒と主鎖に脂肪族 環構造を有しかつスルホン酸基を有する含フッ素ポリマーとを含有する力ソード と、 該電解質のもう一方の面に配置されたァノードとを有する固体高分子型燃料 電池用膜電極接合体の製造方法において、 主鎖に脂肪族環構造を有しかつ一 S〇 2 F基を有する含フッ素ポリマーをラジカル重合により得た後、 フッ素ガスと接 触させる工程と、 一 S 02 F基をスルホン酸基に変換する工程とを経て、 前記ス ルホン酸基を有する含フッ素ポリマ一を製造することを特徴とする固体高分子型 燃料電池用膜電極接合体の製造方法。
9 . 前記スルホン酸基を有する含フッ素ポリマーは、 下記モノマー Aに基づく 繰り返し単位と下記モノマー Bに基づく繰り返し単位 (ただし、 Yはフッ素原子 又はトリフルォロメチル基であり、 mは 0〜3の整数であり、 pは 0又は 1であ り、 nは 1〜12の整数である。 ) とを含む共重合体からなる請求の範囲 8に記 載の固体高分子型燃料電池用膜電極接合体の製造方法。
モノマー A:ラジカル重合により、 主鎖に環構造を含む繰り返し単位を有する ポリマ一を与えるパーフルォロモノマー。
モノマー B: CF2 =CF— (〇CF2 CFY) m 一 Op — (CF2 ) n 一 S o3 H。
10. 前記モノマ一 Aは、 パーフルォロ ( 3 _ブテニルビ二ルェ一テル) 、 パ 一フルォロ (2, 2—ジメチルー 1, 3—ジォキソール) 、 パーフルォロ (1 , 3—ジォキソール) 、 2, 2, 4—トリフルオロー 5—トリフルォロメトキシ一 1, 3—ジォキソ一ル及びパーフルォロ (2—メチレン一 4一メチル— 1, 3— ジォキソラン) からなる群から選択され、 モノマー Bは、 パーフルォロ (3, 6 ージォキサー 4ーメチルー 7—ォクテン) スルホン酸又はパーフルォロ (3—ォ キサー 4一ペンテン) スルホン酸である請求の範囲 9に記載の固体高分子型燃料 電池用膜電極接合体の製造方法。
11. 主鎖に脂肪族環構造を有しかつスルホン酸基を有する含フッ素ポリマー からなる膜状固体高分子電解質と、 該電解質の片面に配置された力ソードと、 該 電解質のもう一方の面に配置されたァノードとを有する固体高分子型燃料電池用 膜電極接合体の製造方法であって、 主鎖に脂肪族環構造を有しかつ一 S 02 F基 を有する含フッ素ポリマーをラジカル重合により得た後、 フッ素ガスと接触させ る工程と、 一 S〇2F基をスルホン酸基に変換する工程と、 前記含フッ素ポリマ 一を用いて膜状に成形する工程とを経て製造することを特徴とする固体高分子型 燃料電池用膜電極接合体の製造方法。
12. 前記スルホン酸基を有する含フッ素ポリマーは、 下記モノマー Aに基づ く繰り返し単位と下記モノマー Bに基づく繰り返し単位 (ただし、 Yはフッ素原 子又はトリフルォロメチル基であり、 mは 0〜3の整数であり、 pは 0又は 1で あり、 nは 1〜12の整数である。 ) とを含む共重合体からなる請求の範囲 11 に記載の固体高分子型燃料電池用膜電極接合体の製造方法。
モノマー A:ラジカル重合により、 主鎖に環構造を含む繰り返し単位を有する ポリマーを与えるパ一フルォロモノマー。 モノマー B: CF2 =CF- (〇CF2 CFY) m一〇p - (CF2 ) n —S 03
13. 前記モノマー Aは、 パ一フルォロ (3—ブテニルビニルエーテル) 、 パ —フルォロ (2, 2—ジメチルー 1, 3ージォキソール) 、 パーフルォロ (1, 3—ジォキソール) 、 2, 2, 4一トリフルオロー 5—トリフルォロメトキシ一 1, 3一ジォキソール及びパ一フルォロ (2—メチレン _4_メチル _ 1, 3一 ジォキソラン) からなる群から選択され、 モノマ一 Bは、 パーフルォロ (3, 6 —ジォキサー 4ーメチルー 7—ォクテン) スルホン酸又はパーフルォロ (3—才 キサー 4一ペンテン) スルホン酸である請求の範囲 12に記載の固体高分子型燃 料電池用膜電極接合体の製造方法。
PCT/JP2004/000404 2003-01-20 2004-01-20 固体高分子型燃料電池用電解質材料の製造方法及び固体高分子型燃料電池用膜電極接合体 WO2004066426A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AT04703495T ATE480878T1 (de) 2003-01-20 2004-01-20 Herstellungsverfahren für elektrolytmaterial für festpolymerbrennstoffzellen und membranelektrodenanordnung für festpolymerbrennstoffzellen
EP04703495A EP1596453B1 (en) 2003-01-20 2004-01-20 Process for production of electrolyte material for solid polymer fuel cells and membrane electrode assembly for solid polymer fuel cells
DE602004029011T DE602004029011D1 (de) 2003-01-20 2004-01-20 Herstellungsverfahren für elektrolytmaterial für festpolymerbrennstoffzellen und membranelektrodenanordnung für festpolymerbrennstoffzellen
JP2005508081A JP4677898B2 (ja) 2003-01-20 2004-01-20 固体高分子型燃料電池用電解質材料の製造方法及び固体高分子型燃料電池用膜電極接合体
US11/183,748 US7557178B2 (en) 2003-01-20 2005-07-19 Process for producing electrolyte material for polymer electrolyte fuel cells, and membrane-electrode assembly for polymer electrolyte fuel cells
US12/430,961 US8198394B2 (en) 2003-01-20 2009-04-28 Process for producing electrolyte material for polymer electrolyte fuel cells, and membrane-electrode assembly for polymer electrolyte fuel cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003011097 2003-01-20
JP2003-011097 2003-01-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/183,748 Continuation US7557178B2 (en) 2003-01-20 2005-07-19 Process for producing electrolyte material for polymer electrolyte fuel cells, and membrane-electrode assembly for polymer electrolyte fuel cells

Publications (1)

Publication Number Publication Date
WO2004066426A1 true WO2004066426A1 (ja) 2004-08-05

Family

ID=32767269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000404 WO2004066426A1 (ja) 2003-01-20 2004-01-20 固体高分子型燃料電池用電解質材料の製造方法及び固体高分子型燃料電池用膜電極接合体

Country Status (7)

Country Link
US (2) US7557178B2 (ja)
EP (1) EP1596453B1 (ja)
JP (1) JP4677898B2 (ja)
CN (1) CN100389518C (ja)
AT (1) ATE480878T1 (ja)
DE (1) DE602004029011D1 (ja)
WO (1) WO2004066426A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004231936A (ja) * 2002-12-06 2004-08-19 Asahi Glass Co Ltd テトラフルオロエチレン共重合体、その製造方法およびペースト押し出し成形物
WO2005096422A1 (ja) 2004-04-02 2005-10-13 Asahi Glass Company, Limited 固体高分子形燃料電池用電解質材料、電解質膜及び膜電極接合体
JP2006152249A (ja) * 2004-10-26 2006-06-15 Asahi Glass Co Ltd フルオロスルホニル基と1,3−ジオキソラン構造を有する重合体およびその用途
JP2007517095A (ja) * 2003-12-17 2007-06-28 スリーエム イノベイティブ プロパティズ カンパニー 直接フッ素化により架橋されたポリマー電解質膜
WO2007089017A1 (ja) * 2006-02-03 2007-08-09 Daikin Industries, Ltd. -so3h基含有フルオロポリマー製造方法及び-so3h基含有フルオロポリマー
JP2007324060A (ja) * 2006-06-02 2007-12-13 Toyota Motor Corp フッ素系共重合体を前駆体とする燃料電池用電解質膜、該フッ素系共重合体を前駆体とする燃料電池用電解質膜の製造方法、及び該フッ素系共重合体を前駆体とする電解質膜を有する燃料電池
EP1916237A1 (en) * 2005-07-27 2008-04-30 Asahi Glass Company, Limited Compound containing fluorosulfonyl group, process for producing the same, and polymer thereof
JPWO2006019097A1 (ja) * 2004-08-18 2008-05-08 旭硝子株式会社 燃料電池用電解質ポリマー、その製造方法、電解質膜、及び膜・電極接合体
JP2008177167A (ja) * 2007-01-18 2008-07-31 Asahi Glass Co Ltd 電解質材料
JP2008308681A (ja) * 2007-05-16 2008-12-25 Asahi Glass Co Ltd パーフルオロポリマーの製造方法、製造装置、および固体高分子形燃料電池用電解質膜の製造方法
JP2010506986A (ja) * 2006-10-17 2010-03-04 ソルヴェイ・ソレクシス・エッセ・ピ・ア イオン交換基を有するフルオロポリマーを安定化する方法
US7754821B2 (en) * 2006-02-03 2010-07-13 Daikin Industries Ltd. Method for producing stabilized fluoropolymer
US8198394B2 (en) * 2003-01-20 2012-06-12 Asahi Glass Company, Limited Process for producing electrolyte material for polymer electrolyte fuel cells, and membrane-electrode assembly for polymer electrolyte fuel cells
JP2014500392A (ja) * 2010-12-20 2014-01-09 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー アイオノマー及びイオン伝導性組成物
WO2017038827A1 (ja) * 2015-08-31 2017-03-09 旭硝子株式会社 液状組成物の製造方法、触媒層形成用塗工液の製造方法および膜電極接合体の製造方法
WO2017038824A1 (ja) * 2015-08-31 2017-03-09 旭硝子株式会社 液状組成物の製造方法、触媒層形成用塗工液の製造方法および膜電極接合体の製造方法
CN115991830A (zh) * 2021-10-18 2023-04-21 山东东岳未来氢能材料股份有限公司 耐高温功能聚合物
WO2023136243A1 (ja) * 2022-01-11 2023-07-20 日東電工株式会社 フッ素樹脂の精製方法、精製されたフッ素樹脂の製造方法、フッ素樹脂、光学材料、電子材料及びプラスチック光ファイバ

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004102714A1 (ja) 2003-05-13 2004-11-25 Asahi Glass Company, Limited 固体高分子型燃料電池用電解質ポリマー、その製造方法及び膜・電極接合体
US20050037265A1 (en) * 2003-08-14 2005-02-17 Asahi Glass Company, Limited Polymer electrolyte fuel cell, electrolyte material therefore and method for its production
US20070129500A1 (en) 2003-09-10 2007-06-07 Eiji Honda Stabilized fluoropolymer and method for producing same
KR20070106200A (ko) * 2006-04-28 2007-11-01 삼성에스디아이 주식회사 연료전지용 막-전극 어셈블리, 이의 제조방법 및 이를포함하는 연료전지 시스템
US8017257B2 (en) * 2007-01-26 2011-09-13 Asahi Glass Company, Limited Polymer, polymer electrolyte membrane for polymer electrolyte fuel cell, and membrane/electrode assembly
JP2008210793A (ja) 2007-01-30 2008-09-11 Asahi Glass Co Ltd 固体高分子形燃料電池用膜電極接合体および固体高分子形燃料電池の運転方法
KR100978609B1 (ko) 2007-11-27 2010-08-27 한양대학교 산학협력단 불소가스를 이용한 직접불소화법에 의해 표면처리된수소이온전도성 고분자막, 이를 포함하는 막-전극 어셈블리및 연료전지
US20110027687A1 (en) * 2009-07-31 2011-02-03 Asahi Glass Company, Limited Electrolyte material, liquid composition and membrane/electrode assembly for polymer electrolyte fuel cell
JP5660879B2 (ja) 2010-12-20 2015-01-28 トヨタ自動車株式会社 カソード側触媒層、膜電極接合体、固体高分子型燃料電池及びその製造方法
EP2656425B1 (en) * 2010-12-20 2014-12-10 E.I. Du Pont De Nemours And Company Ionomers and ionically conductive compositions for use as one or more electrode of a fuel cell
CN104220467B (zh) * 2012-04-16 2017-08-04 旭硝子株式会社 电解质材料、液状组合物及固体高分子型燃料电池用膜电极接合体
JP6151501B2 (ja) * 2012-10-01 2017-06-21 旭化成株式会社 高分子電解質含有溶液及び固体高分子電解質膜の製造方法
EP2722350A1 (en) * 2012-10-19 2014-04-23 Solvay Specialty Polymers Italy S.p.A. Amorphous fluorinated polymer
US8906572B2 (en) 2012-11-30 2014-12-09 General Electric Company Polymer-electrolyte membrane, electrochemical fuel cell, and related method
WO2015098769A1 (ja) * 2013-12-25 2015-07-02 旭硝子株式会社 フッ素系陽イオン交換膜の製造方法
WO2018070420A1 (ja) 2016-10-14 2018-04-19 ダイキン工業株式会社 含フッ素ポリマーの粉体及びその製造方法
EP3858873A4 (en) * 2018-09-28 2022-06-29 Tosoh Corporation Fluororesin, fluororesin particles, and methods for producing these
CN113346132B (zh) * 2021-05-24 2023-03-10 上海大学 一种氟化聚环氧乙烷固态电解质材料及其制备方法和应用
KR20230026568A (ko) * 2021-08-17 2023-02-27 한양대학교 산학협력단 전고체전지용 양극 및 이를 포함하는 전고체전지
CN116364991B (zh) * 2023-05-31 2023-08-18 安徽明天新能源科技有限公司 一种催化层涂覆膜及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001357858A (ja) * 2000-06-14 2001-12-26 Asahi Glass Co Ltd 固体高分子型燃料電池
JP2002216804A (ja) * 2000-02-15 2002-08-02 Asahi Glass Co Ltd 固体高分子型燃料電池
JP2002231268A (ja) * 2001-01-26 2002-08-16 Asahi Glass Co Ltd 固体高分子型燃料電池用電解質材料及び固体高分子型燃料電池
JP2002260705A (ja) * 2000-12-26 2002-09-13 Asahi Glass Co Ltd 固体高分子電解質材料、液状組成物、固体高分子型燃料電池、含フッ素ポリマー及び含フッ素ポリマーからなる固体高分子電解質膜
JP2003321558A (ja) * 2002-02-27 2003-11-14 Asahi Kasei Corp 高分子膜の製造法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1600355A (ja) 1968-01-18 1970-07-20
EP0645406B1 (en) 1988-05-31 2001-04-11 E.I. Du Pont De Nemours And Company Amorphous copolymers of perfluoro-2,2-dimethyl-1,3-dioxole
JPH0536418A (ja) 1991-03-13 1993-02-12 Fuji Electric Co Ltd 固体高分子電解質型燃料電池およびその製造方法
JP3245929B2 (ja) 1992-03-09 2002-01-15 株式会社日立製作所 燃料電池及びその応用装置
US5399184A (en) * 1992-05-01 1995-03-21 Chlorine Engineers Corp., Ltd. Method for fabricating gas diffusion electrode assembly for fuel cells
JP3331703B2 (ja) 1993-11-09 2002-10-07 株式会社豊田中央研究所 燃料電池
JPH07192738A (ja) 1993-12-24 1995-07-28 Toshiba Corp 燃料電池用電極触媒層
JPH07211324A (ja) 1994-01-19 1995-08-11 Osaka Gas Co Ltd 電極触媒組成物、電極材およびその製造方法
JP4150867B2 (ja) * 1998-05-13 2008-09-17 ダイキン工業株式会社 燃料電池に使用するのに適した固体高分子電解質用材料
CN1337072A (zh) 1998-12-22 2002-02-20 戴维系统技术公司 膜电极组件及其生产方法
DE60143635D1 (de) 2000-02-15 2011-01-27 Asahi Glass Co Ltd Blockpolymer, Verfahren zur Herstellung von Polymer und Festpolymerelektrolytbrennstoffzelle
US6492295B2 (en) * 2000-03-15 2002-12-10 Japan Storage Battery Co., Ltd. Composite catalyst for solid polymer electrolyte type fuel cell and processes for producing the same
JP2001283866A (ja) * 2000-03-31 2001-10-12 Japan Storage Battery Co Ltd 燃料電池用ガス拡散電極およびその製造方法
DE60135080D1 (de) * 2000-12-26 2008-09-11 Asahi Glass Co Ltd Festpolymer-Elektrolyt Material, flüssige Zusammensetzung, Festpolymer Brennstoffzelle und Fluorpolymer
RU2196789C2 (ru) 2001-02-07 2003-01-20 Открытое акционерное общество "Пластполимер" (ОАО "Пластполимер") Жидкая композиция на основе перфторированного ионообменного сополимера
ITMI20010921A1 (it) 2001-05-07 2002-11-07 Ausimont Spa Polimeri (per)fluorurati amorfi
JP5105340B2 (ja) * 2001-05-23 2012-12-26 独立行政法人日本原子力研究開発機構 広いイオン交換容量を有するフッ素系高分子イオン交換膜及びその製造方法
JP4492121B2 (ja) 2001-10-30 2010-06-30 旭硝子株式会社 フルオロスルホニル基含有化合物および該化合物から誘導される化合物の製造方法
JP2004085713A (ja) * 2002-08-23 2004-03-18 Asahi Glass Co Ltd ペリクル
WO2004066426A1 (ja) * 2003-01-20 2004-08-05 Asahi Glass Company, Limited 固体高分子型燃料電池用電解質材料の製造方法及び固体高分子型燃料電池用膜電極接合体
US20050037265A1 (en) 2003-08-14 2005-02-17 Asahi Glass Company, Limited Polymer electrolyte fuel cell, electrolyte material therefore and method for its production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216804A (ja) * 2000-02-15 2002-08-02 Asahi Glass Co Ltd 固体高分子型燃料電池
JP2001357858A (ja) * 2000-06-14 2001-12-26 Asahi Glass Co Ltd 固体高分子型燃料電池
JP2002260705A (ja) * 2000-12-26 2002-09-13 Asahi Glass Co Ltd 固体高分子電解質材料、液状組成物、固体高分子型燃料電池、含フッ素ポリマー及び含フッ素ポリマーからなる固体高分子電解質膜
JP2002231268A (ja) * 2001-01-26 2002-08-16 Asahi Glass Co Ltd 固体高分子型燃料電池用電解質材料及び固体高分子型燃料電池
JP2003321558A (ja) * 2002-02-27 2003-11-14 Asahi Kasei Corp 高分子膜の製造法

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004231936A (ja) * 2002-12-06 2004-08-19 Asahi Glass Co Ltd テトラフルオロエチレン共重合体、その製造方法およびペースト押し出し成形物
US8198394B2 (en) * 2003-01-20 2012-06-12 Asahi Glass Company, Limited Process for producing electrolyte material for polymer electrolyte fuel cells, and membrane-electrode assembly for polymer electrolyte fuel cells
JP2007517095A (ja) * 2003-12-17 2007-06-28 スリーエム イノベイティブ プロパティズ カンパニー 直接フッ素化により架橋されたポリマー電解質膜
EP1734603A1 (en) * 2004-04-02 2006-12-20 Asahi Glass Company, Limited Electrolyte material for solid polymer type fuel cell, electrolyte membrane and membrane electrode assembly
US7799468B2 (en) 2004-04-02 2010-09-21 Asahi Glass Company, Limited Electrolyte material for polymer electrolyte fuel cells, electrolyte membrane and membrane-electrode assembly
WO2005096422A1 (ja) 2004-04-02 2005-10-13 Asahi Glass Company, Limited 固体高分子形燃料電池用電解質材料、電解質膜及び膜電極接合体
EP1734603A4 (en) * 2004-04-02 2008-09-03 Asahi Glass Co Ltd ELECTROLYTE FOR SOLID POLYMER TYPE FUEL CELL, ELECTROLYTE MEMBRANE, AND MEMBRANE ELECTRODE ASSEMBLY
JPWO2006019097A1 (ja) * 2004-08-18 2008-05-08 旭硝子株式会社 燃料電池用電解質ポリマー、その製造方法、電解質膜、及び膜・電極接合体
JP5168903B2 (ja) * 2004-08-18 2013-03-27 旭硝子株式会社 燃料電池用電解質ポリマー、その製造方法、電解質膜、及び膜・電極接合体
JP2006152249A (ja) * 2004-10-26 2006-06-15 Asahi Glass Co Ltd フルオロスルホニル基と1,3−ジオキソラン構造を有する重合体およびその用途
US7667083B2 (en) 2005-07-27 2010-02-23 Asahi Glass Company, Limited Fluorosulfonyl group-containing compound, method for its production and polymer thereof
EP1916237A1 (en) * 2005-07-27 2008-04-30 Asahi Glass Company, Limited Compound containing fluorosulfonyl group, process for producing the same, and polymer thereof
EP1916237A4 (en) * 2005-07-27 2008-11-26 Asahi Glass Co Ltd A COMPOSITION CONTAINING A FLUORESULFONYL GROUP, METHOD FOR THE PRODUCTION THEREOF AND POLYMER THEREOF
US7531610B2 (en) 2005-07-27 2009-05-12 Asahi Glass Company, Limited Fluorosulfonyl group-containing compound, method for its production and polymer thereof
WO2007089017A1 (ja) * 2006-02-03 2007-08-09 Daikin Industries, Ltd. -so3h基含有フルオロポリマー製造方法及び-so3h基含有フルオロポリマー
US7754821B2 (en) * 2006-02-03 2010-07-13 Daikin Industries Ltd. Method for producing stabilized fluoropolymer
US7776970B2 (en) 2006-02-03 2010-08-17 Daikin Industries, Ltd. Method for producing -SO3H group-containing fluoropolymer and -SO3H group-containing fluoropolymer
US8034880B2 (en) 2006-02-03 2011-10-11 Daikin Industries, Ltd. Method for producing—SO3H group-containing fluoropolymer and—SO3H group-containing fluoropolymer
JP2007324060A (ja) * 2006-06-02 2007-12-13 Toyota Motor Corp フッ素系共重合体を前駆体とする燃料電池用電解質膜、該フッ素系共重合体を前駆体とする燃料電池用電解質膜の製造方法、及び該フッ素系共重合体を前駆体とする電解質膜を有する燃料電池
JP2010506986A (ja) * 2006-10-17 2010-03-04 ソルヴェイ・ソレクシス・エッセ・ピ・ア イオン交換基を有するフルオロポリマーを安定化する方法
JP2008177167A (ja) * 2007-01-18 2008-07-31 Asahi Glass Co Ltd 電解質材料
JP2008308681A (ja) * 2007-05-16 2008-12-25 Asahi Glass Co Ltd パーフルオロポリマーの製造方法、製造装置、および固体高分子形燃料電池用電解質膜の製造方法
JP2014500392A (ja) * 2010-12-20 2014-01-09 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー アイオノマー及びイオン伝導性組成物
US10461336B2 (en) 2015-08-31 2019-10-29 AGC Inc. Process for producing liquid composition and process for producing catalyst layer-forming coating liquid
WO2017038824A1 (ja) * 2015-08-31 2017-03-09 旭硝子株式会社 液状組成物の製造方法、触媒層形成用塗工液の製造方法および膜電極接合体の製造方法
JPWO2017038827A1 (ja) * 2015-08-31 2018-06-28 旭硝子株式会社 液状組成物の製造方法、触媒層形成用塗工液の製造方法および膜電極接合体の製造方法
JPWO2017038824A1 (ja) * 2015-08-31 2018-07-26 旭硝子株式会社 液状組成物の製造方法、触媒層形成用塗工液の製造方法および膜電極接合体の製造方法
WO2017038827A1 (ja) * 2015-08-31 2017-03-09 旭硝子株式会社 液状組成物の製造方法、触媒層形成用塗工液の製造方法および膜電極接合体の製造方法
US10457760B2 (en) 2015-08-31 2019-10-29 AGC Inc. Process for producing liquid composition and process for producing catalyst layer-forming coating liquid
CN115991830A (zh) * 2021-10-18 2023-04-21 山东东岳未来氢能材料股份有限公司 耐高温功能聚合物
CN115991823A (zh) * 2021-10-18 2023-04-21 山东东岳未来氢能材料股份有限公司 混合型全氟质子交换膜及其制备方法
CN115991824A (zh) * 2021-10-18 2023-04-21 山东东岳未来氢能材料股份有限公司 含环状结构单元的质子交换膜及制备方法
CN115991824B (zh) * 2021-10-18 2023-12-22 山东东岳未来氢能材料股份有限公司 含环状结构单元的质子交换膜及制备方法
CN115991823B (zh) * 2021-10-18 2023-12-29 山东东岳未来氢能材料股份有限公司 混合型全氟质子交换膜及其制备方法
CN115991830B (zh) * 2021-10-18 2024-01-05 山东东岳未来氢能材料股份有限公司 耐高温功能聚合物
WO2023136243A1 (ja) * 2022-01-11 2023-07-20 日東電工株式会社 フッ素樹脂の精製方法、精製されたフッ素樹脂の製造方法、フッ素樹脂、光学材料、電子材料及びプラスチック光ファイバ

Also Published As

Publication number Publication date
CN1739216A (zh) 2006-02-22
EP1596453A1 (en) 2005-11-16
EP1596453A4 (en) 2008-08-27
JPWO2004066426A1 (ja) 2006-05-18
DE602004029011D1 (de) 2010-10-21
CN100389518C (zh) 2008-05-21
US20090215938A1 (en) 2009-08-27
US7557178B2 (en) 2009-07-07
ATE480878T1 (de) 2010-09-15
JP4677898B2 (ja) 2011-04-27
US8198394B2 (en) 2012-06-12
EP1596453B1 (en) 2010-09-08
US20060287497A1 (en) 2006-12-21

Similar Documents

Publication Publication Date Title
WO2004066426A1 (ja) 固体高分子型燃料電池用電解質材料の製造方法及び固体高分子型燃料電池用膜電極接合体
US7429428B2 (en) Polymer electrolyte material, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell
EP1914824B1 (en) Electrolyte material for solid polymer fuel cell, electrolyte membrane and membrane-electrode assembly
US7220508B2 (en) Solid polymer electrolyte material, liquid composition, solid polymer fuel cell and fluoropolymer
JP4032738B2 (ja) 固体高分子電解質材料、液状組成物、固体高分子型燃料電池、含フッ素ポリマー及び含フッ素ポリマーからなる固体高分子電解質膜
JP5286797B2 (ja) ポリマー、固体高分子形燃料電池用固体高分子電解質膜および膜電極接合体
JP6172142B2 (ja) 電解質材料、液状組成物および固体高分子形燃料電池用膜電極接合体
JP5499478B2 (ja) ポリマー、固体高分子形燃料電池用固体高分子電解質膜および膜電極接合体
CN107108781B (zh) 电解质材料、液态组合物以及固体高分子型燃料电池用膜电极接合体
JP4910269B2 (ja) 固体高分子型燃料電池用電解質材料、その製造方法及び固体高分子型燃料電池用膜電極接合体
JP2002216804A (ja) 固体高分子型燃料電池
EP1927601B1 (en) Polymer, polymer electrolyte membrane for polymer electrolyte fuel cell, and membrane/electrode assembly
JP4848587B2 (ja) 固体高分子型燃料電池用電解質材料とその製造方法、及び固体高分子型燃料電池
EP1968147A2 (en) Membrane/electrode assembly for polymer electrolyte fuel cells, and method for operating polymer electrolyte fuel cell

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005508081

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20048023953

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11183748

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004703495

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004703495

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11183748

Country of ref document: US