WO2007089017A1 - -so3h基含有フルオロポリマー製造方法及び-so3h基含有フルオロポリマー - Google Patents

-so3h基含有フルオロポリマー製造方法及び-so3h基含有フルオロポリマー Download PDF

Info

Publication number
WO2007089017A1
WO2007089017A1 PCT/JP2007/051947 JP2007051947W WO2007089017A1 WO 2007089017 A1 WO2007089017 A1 WO 2007089017A1 JP 2007051947 W JP2007051947 W JP 2007051947W WO 2007089017 A1 WO2007089017 A1 WO 2007089017A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
fluoropolymer
membrane
agent
treated
Prior art date
Application number
PCT/JP2007/051947
Other languages
English (en)
French (fr)
Inventor
Tadashi Ino
Tadaharu Isaka
Masahiro Kondo
Masanori Ikeda
Nobuyuki Uematsu
Takehiro Koga
Original Assignee
Daikin Industries, Ltd.
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd., Asahi Kasei Chemicals Corporation filed Critical Daikin Industries, Ltd.
Priority to CN2007800042375A priority Critical patent/CN101379095B/zh
Priority to EP12160975.4A priority patent/EP2474562B1/en
Priority to EP07708065.3A priority patent/EP1985636B1/en
Priority to US12/278,084 priority patent/US7776970B2/en
Priority to JP2007556949A priority patent/JP5156399B2/ja
Publication of WO2007089017A1 publication Critical patent/WO2007089017A1/ja
Priority to US12/831,109 priority patent/US8034880B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/06Oxidation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/18Introducing halogen atoms or halogen-containing groups
    • C08F8/20Halogenation
    • C08F8/22Halogenation by reaction with free halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/44Preparation of metal salts or ammonium salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2237Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds containing fluorine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/10Copolymer characterised by the proportions of the comonomers expressed as molar percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/50Chemical modification of a polymer wherein the polymer is a copolymer and the modification is taking place only on one or more of the monomers present in minority
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a SO 2 H group-containing fluoropolymer, —SO 2 H group-containing fluoropolymer
  • the present invention relates to a polymer, a polymer electrolyte membrane containing the fluoropolymer, an electrode catalyst layer containing the fluoropolymer, a membrane Z electrode assembly, and a polymer electrolyte fuel cell.
  • the SO H group-containing fluoropolymer obtained through this process is used for electric cells such as fuel cells and chemical sensors.
  • This SO 2 H group-containing fluoropolymer is, for example, a long-term electrolyte membrane for fuel cells.
  • Non-Patent Document 1 It is presumed that it is decomposed by hydroxyl radicals generated inside the fuel cell (for example, see Non-Patent Document 1).
  • Patent Document 1 a fluorine radical-generating compound such as fluorine gas is brought into contact with a solid-state sulfo group-containing fluoropolymer at 20 to 300 ° C to form a polymer chain. Treatment methods have been reported that convert at least 40% of the unstable end groups to stable end groups.
  • the temperature is stable at 200 to 300 ° C, at a vacuum of 0.02 MPa or less for 0.1 hour or more, and in contact with fluorine gas at a temperature of 150 to 200 ° C.
  • a method for obtaining polymers has been reported!
  • Patent Document 3 proposes a method for sufficiently stabilizing a sulfo group-containing fluoropolymer mainly containing a carboxylic acid as a labile group by fluorine treatment or the like under a condition in which moisture is controlled.
  • Fluoropolymers are included. However, in addition to the above, fluoropolymers can be added to —CHOR, —COOR () by polymerization initiators, chain transfer agents, terminal terminators, etc.
  • R represents H or a hydrocarbon group.
  • Patent Document 2 when fluorine gas treatment is performed at a high temperature of 150 ° C or higher, generation of new unstable groups due to cleavage of the polymer main chain occurs during the treatment. Therefore, when melt molding is performed subsequent to fluorine treatment, the moldability of the resulting polymer is not always satisfactory.
  • the soft temperature of a sulfonyl group-containing fluoropolymer is usually 200 ° C or lower, and the polymer obtained by this method is a lump or sheet by fusion or the like even when a powder or pellet is used. Thus, the handling property was remarkably inferior.
  • Patent Document 1 Japanese Patent Publication No. 46-23245
  • Patent Document 2 International Publication 2004Z102714 Pamphlet
  • Patent Document 3 International Publication 2005Z28522 Pamphlet
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004-18673
  • Non-Patent Document 1 Dennis E. Curtin, Robert D. Lousenberg, Timothy J. Henry, Paul C. Tangeman and Monica E. Tisack, Proceedings of the 10th Fuel Cell Symposium Lecture, P 121 (2003)
  • An object of the present invention is to provide a novel production method capable of sufficiently stabilizing an unstable end group under mild conditions in view of the above-described present situation.
  • Step A By applying at least the following Step A, Step B and Step C in this order to the treated fluoropolymer having a monomer unit in this order, or by terminal stabilization treatment including Step P and Step Q, SO H group-containing fluoropolymer
  • the inventors have found that the edge can be stabilized and have arrived at the present invention.
  • the SO H group-containing fluoropolymer production method (hereinafter referred to as “one SO”), characterized in that it comprises an operation in which at least the following Step A, Step B and Step C are performed in this order on the remer.
  • Step A is a step A1 in which an unstable end group is converted to a readily decomposable end group by the action of a halogenating agent.
  • step B the readily decomposable end group is converted to —CFTCO Z by the action of a decomposition treatment agent.
  • Step C converts the one CFTCO Z into one CFT by the action of a fluorine additive.
  • T represents F, a perfluoroalkyl group having 1 to 10 carbon atoms, or a perfluoroalkoxy group having 2 to 15 carbon atoms
  • z represents ⁇ , ⁇ ⁇ 4, or an alkali metal element.
  • RR 2 , R 3 And R 4 represents H or an alkyl group having 1 to 4 carbon atoms, which may be the same or different from each other, and the perfluoroalkyl group and the perfluoroalkoxy group each represent an etheric oxygen [-o -] And Z or —SO X group, where X is as defined above.
  • T is as defined above.
  • X 1 represents F or C 1.
  • Rx represents a halogenated alkyl group.
  • Neurogenic agents are F, CI, Br, NF, PCI, PCI, SF, SCI, SCI, C1F, C1F
  • R 16 and R 17 are the same or different
  • the halogenating agent is allowed to act at 0 ° C. or more and less than 150 ° C.
  • the SO H group-containing full-fluid according to any one of [1] to [5]
  • the terminal stabilization treatment includes the following steps P and Q:
  • Mouth polymer production method (hereinafter, this production method is referred to as “one SO H group-containing
  • the fluorinating agent is selected from the group consisting of F, NF, PF, SF, IF, K NiF, C1F and C1F.
  • the SO H group-containing full-fluid according to any one of [1] to [8], wherein the fluorinating agent also has at least one selected fluorine source power.
  • the fluorinating agent is gaseous, and the fluorine source is 1% by mass or more of the fluorinating agent.
  • Y 1 represents F, C 1 or a perfluoroalkyl group.
  • N represents an integer of 0 to 3
  • n Y 1 s may be the same or different.
  • Y 2 represents F or C 1.
  • M represents an integer of 2 to 6
  • m Y 2 may be the same or different, and X is as defined above.
  • a repeating unit derived from an ethylenic fluorine monomer copolymerizable with the sulfo group-containing perhalobyl ether ().
  • a copolymer containing bets, in the copolymer, the repeating units) 5 to 50 mole 0/0, the repeating unit (j8) power 0-95 mole 0/0, the repeating unit (alpha ) And the repeating unit (j8) are 95 to: LOO mol%
  • n 0 or 1
  • a membrane Z electrode assembly comprising a polymer electrolyte membrane and an electrode, characterized in that it satisfies at least one selected from the group consisting of the following conditions (1) and (2) Membrane Z electrode assembly
  • the polymer electrolyte membrane is the polymer electrolyte membrane according to [19]
  • the electrode includes the electrode catalyst layer according to [20].
  • a polymer electrolyte fuel cell comprising the membrane Z electrode assembly according to [21]
  • the SO 2 H group-containing fluoropolymer production method of the present invention has the above-described configuration.
  • the SO H group-containing fluoropolymer of the present invention has greatly reduced unstable end groups.
  • the electrode catalyst layer, polymer electrolyte membrane, membrane Z electrode assembly and solid polymer fuel cell of the present invention have the SO H group-containing fluoropolymer of the present invention, durability, etc.
  • the method for producing a —SO 2 H group-containing fluoropolymer of the present invention comprises —SO 2 X group (X represents F or C1). To express. ) To produce a SO 2 H group-containing fluoropolymer by subjecting the treated fluoropolymer to a treatment comprising a specific step described later. The above process
  • the treated fluoropolymer in the present invention contains —SO X group (X represents F or C1).
  • the SO X group-containing monomer unit is composed of all monomers.
  • the “total monomer unit” indicates all the parts derived from the monomer in the molecular structure of the fluoropolymer to be treated.
  • the SO X group-containing monomer unit generally has the following general formula (I)
  • Y 1 represents F, C 1 or a perfluoroalkyl group.
  • N represents an integer of 0 to 3
  • n Y 1 s may be the same or different.
  • Y 2 represents sulfo represents F or C1 m represents an integer of 2 to 6 m pieces of Y 2 may be the same or different X is represented by F or C1) -.... Le group containing par It is derived from halobum ether.
  • n is more preferably 0 or 1 from the viewpoint of the synthesis surface and operability.
  • Y 2 is F, and m is an integer of 2 to 6. More preferably, Y 2 is F, and m is more preferably an integer of 2-4.
  • the sulfo group-containing perhalovinyl ether can be used alone or in combination of two or more.
  • the treated fluoropolymer in the present invention includes a repeating unit ( ⁇ ) derived from a sulfo group-containing perhalobutyl ether and an ethylenic fluoromonomer copolymerizable with the sulfo group-containing perhalobutyl ether.
  • the ethylenic fluoromonomer constituting the repeating unit (j8) does not have etheric oxygen [one O-], and is a monomer having a butyl group.
  • the vinyl group is hydrogenated by a fluorine atom. Some or all of the atoms may be replaced.
  • etheric oxygen means the —O— structure constituting the monomer molecule. means.
  • ethylenic fluoromonomer examples include, for example, the following general formula (II)
  • Rf 1 represents F, C1 or a linear or branched fluoroalkyl group having 1 to 9 carbon atoms.
  • Y 3 represents H or F
  • Y 4 represents H, F, CI, or a linear or branched fluoroalkyl group having 1 to 9 carbon atoms.
  • Examples of the ethylenic fluoromonomer include tetrafluoroethylene [TFE], hexafluoropropylene [HFP], chlorofluoroethylene [CTFE], vinyl fluoride, and vinyl fluoride.
  • TFE tetrafluoroethylene
  • HFP hexafluoropropylene
  • CTFE chlorofluoroethylene
  • vinyl fluoride vinyl fluoride
  • vinyl fluoride vinyl fluoride
  • VDF redene
  • trifluoroethylene trifluoroethylene
  • fluorinated buluyl, HFP are preferred TFE
  • CTFE and HFP are more preferred.
  • TFE and HFP are more preferred.
  • TFE is particularly preferred.
  • ethylenic fluoromonomer 1 type (s) or 2 or more types can be used.
  • treated Furuoroporima in the present invention sulfo - repeating unit derived from Le group-containing perhalo Bulle ether (alpha) from 5 to 50 mole 0/0, the repeating unit derived from an ethylenically Furuoromonoma (j8) is The copolymer is preferably 50 to 95 mol%, and the sum of the repeating units (iii) and the repeating units ( ⁇ ) is 95 to: LOO mol%.
  • the repeating unit ( ⁇ ) derived from the sulfo group-containing perhalobutyl ether has a more preferable lower limit of 7 mol%, a further preferable lower limit of 10 mol%, a more preferable upper limit of 35 mol%, and further preferable.
  • the upper limit is 30 mol%.
  • the repeating unit (j8) derived from the ethylenic fluoromonomer has a more preferable lower limit force of S65 mol%, a further preferable lower limit of 70 mol%, a more preferable upper limit of 90 mol%, still more preferably an upper limit of 87 mol%.
  • the treated fluoropolymer in the present invention is derived from a third component monomer other than the above.
  • the sulfo - Le group-containing perhalo Bulle repeating unit derived from Byurue one ether other than ether (gamma), more preferably 4 mol% or less, more preferably those having 3 mole 0/0 or less There is no problem.
  • the bull ethers other than the sulfol group-containing perhalobyl ether constituting the repeating unit ( ⁇ ) are not particularly limited as long as they do not contain a sulfol group.
  • Rf 2 represents a fluoroalkyl group having 1 to 9 carbon atoms or a fluoropolyether group having 1 to 9 carbon atoms.
  • Y 5 represents H or F
  • Rf 3 represents a linear or branched fluoroalkyl group optionally having an ether group having 1 to 9 carbon atoms.
  • the hydrogen-containing vinyl ether etc. which are represented by these are mentioned.
  • As said vinyl ether 1 type (s) or 2 or more types can be used.
  • the treated fluoropolymer in the present invention generally has an unstable end group.
  • stable end group means “an easily decomposable end group” or “fluorinated” that occurs in the course of the treatment described later.
  • CF TCO Z (T is as defined above. ⁇ represents ⁇ , ⁇ 4 or an alkali metal element.
  • R ⁇ R 2, R 3 and R 4 are the same or different and each represents H or an alkyl group having 1 to 4 carbon atoms. In the present invention, the group possessed by the treated fluoropolymer is shown.
  • Examples of the unstable terminal group that the fluoropolymer to be treated in the present invention may have include groups represented by the following formulas (1) to (7).
  • T represents F, a perfluoroalkyl group having 1 to 10 carbon atoms, or a perfluoroalkoxy group having 2 to 15 carbon atoms
  • R 10 , R 11 and R 14 represent a hydrocarbon group having 1 to 10 carbon atoms in which a part of hydrogen atoms may be substituted with a halogen element
  • R 12 , R 13 and R 15 are H or hydrogen
  • R 12 and R 13 are the same or different.
  • nl represents an integer of 1 to 3
  • n2, n3 and n4 each represents an integer of 0 or 1.
  • the perfluoroalkyl group and the perfluoroalkoxy group may contain etheric oxygen and Z or SO X, respectively. X is the same as defined above.
  • these terminal groups may be further changed by water, alcohol, amine, etc. that may exist in the surrounding environment.
  • Examples of the group (i) derived from the polymerization initiator, chain transfer agent and Z or polymerization terminator include, for example:
  • Examples of the group (ii) generated by the single molecule termination reaction include CF COF.
  • Examples of the terminal group (iii) in which the terminal group once generated at the time of polymerization is further changed by the surrounding medium include, for example, those converted to a carboxyl group by water in which CF COF can coexist (one C
  • the unstable terminal group represented by any one of the above formulas (1) to (7) has a problem that the stability is insufficient when the treatment with the conventional fluorine gas is performed. It was.
  • the cause is that each of the above unstable end groups is easily converted into a COF, a fluorinated ester structure, or the like, and the converted end groups are very stable in fluorine gas. It is considered that the processing was sufficient—CFT (T is the same as the above definition).
  • terminal groups such as —COF, fluorinated ester structure and the like are converted into COOH in the process of processing into an electrolyte membrane, which causes deterioration of the durability of the fuel cell.
  • the significance of the present invention is to sufficiently stabilize the above-mentioned fluoropolymer having an unstable terminal group under mild conditions.
  • the unstable terminal groups in the treated fluoropolymer are represented by the above (1) to (7)
  • the unstable terminal group can be converted into an easily decomposable terminal group, and the force can be converted even under mild conditions. Therefore, the SO H group-containing fluoropolymer can be produced efficiently.
  • the unstable terminal group is a group represented by the formula in which the group force consisting of the above (1), (3), (4), (5) and (6) is also selected, particularly one CF OCOOC H , One CF CH OH, one CF COOC
  • the end stabilization in the present invention can be performed more easily.
  • the treated fluoropolymer is usually an aggregate of a plurality of treated fluoropolymer molecules.
  • the aggregate of the plurality of treated fluoropolymer molecules may be an aggregate of a treated fluoropolymer molecule having an unstable end group and a treated fluoropolymer molecule having no unstable end group.
  • At least one unstable terminal group is present in the aggregate of the plurality of fluoropolymer molecules to be treated.
  • the plurality of unstable terminal groups may be only one kind or two or more kinds in the aggregate of the plurality of treated fluoropolymer molecules.
  • the two or more types of unstable terminal groups may be two or more types per treated fluoropolymer molecule, and the types of unstable terminal groups may be partially or completely different depending on the treated fluoropolymer molecule. .
  • the plurality of unstable terminal groups may all be converted into the same type of group, or the group may be converted into a different type of group depending on the group.
  • an unconverted group may be included in a part of the plurality.
  • the treated fluoropolymer in the present invention can be prepared by a conventionally known method such as solution polymerization, suspension polymerization or emulsion polymerization.
  • the fluoropolymer to be treated may be in the form of a resin powder, a pellet, or a film obtained by molding.
  • the above-mentioned fluoropolymer to be treated is sufficient in that each process described below is sufficiently performed.
  • it is desirable to be in the form of rosin powder it is desirable to be in the form of pellets from the viewpoint of handling.
  • the final molded product is in the form of a film.
  • the SO H group-containing fluoropolymer production method (1) of the present invention comprises the above-mentioned fluorocarbon to be treated.
  • Step A and Step B or Step B and Step C there may be another step between Step A and Step B or Step B and Step C as long as each step does not adversely affect the next step.
  • processing steps such as pelletization and film formation may be used, or the SO X group, SO H group or other groups contained in the above-mentioned fluoropolymer to be treated or the fluoropolymer in each step.
  • a chemical reaction that converts at least part of it to another group may be used, or the SO X group, SO H group or other groups contained in the above-mentioned fluoropolymer to be treated or the fluoropolymer in each step.
  • the step A is generally a step A1 in which the unstable terminal group is converted into a readily decomposable terminal group by the action of a halogenating agent.
  • the “easily decomposable end group” is a group that is converted from the above-mentioned unstable end group by the action of a halogenating agent, and by the action of the decomposition treatment agent in step B. It is a group that can be converted to a “fluorinated end group” described later.
  • CFTCO CT has the same definition as above.
  • X 1 represents F or C1.
  • -CFTCO Rx (T is as defined above.
  • Rx represents a halogenated alkyl group.
  • CFTCOX 1 CFTCOF is preferred.
  • CFTCOORx Rx is preferably a halogenated alkyl group having 1 to 3 carbon atoms.
  • Rx is a perhaloalkyl group having 1 to 3 carbon atoms.
  • CFTCOOCX 1 (X 1 is Same as righteousness. -CFTCOOCF is particularly preferable.
  • the unstable terminal group represented by the above formula (1), (2), (3), (4), (5) or (7) can be obtained by acting a halogenating agent, for example. Convert to CF COF and the above formula (
  • the hydrogen atom of the alkyl group R is replaced with a halogen element.
  • CF COOCX H (where X is F or C1, n5 is an integer from 1 to 3)
  • groups represented by the above formula (7) represents an alkyl group - a hydrogen atom R 1 5 is sufficient force is replaced by a fluorine halogen agent treatment - CF T I spoon (T
  • halogenating agent in the above step A generally, a halogen gas alone or a mixture thereof, AX (wherein A represents a group 15 to 18 element, PO, SO or SO as a central element y 2
  • X represents a halogen element. However, when A is a group 17 element, X is different from the group 17 element as A. y represents the valence of A. ) Or a transition metal perfluoride can be used.
  • halogenating agent examples include F, C1 and Br, and mixtures thereof; NF, PF
  • R 16 R 17 NSF examples include Et NSF.
  • F F, CI, Br, NF, PCI, PCI in that it is easy to obtain and easy to handle.
  • gaseous fluorine-containing agent that also serves as a fluorine source is more preferable.
  • the halogenating agent is a gaseous compound, it is preferably used after being diluted to 1 to 90% by mass with an inert gas such as nitrogen.
  • the halogenating agent is preferably allowed to act at 0 ° C or more and less than 150 ° C.
  • the above temperature has a more preferable lower limit of 20 ° C., a further preferable lower limit of 50 ° C., a more preferable upper limit of 140 ° C., and a further preferable upper limit of 130 ° C.
  • Step A varies depending on the halogenating agent to be used, the type of fluoropolymer to be treated, and the like.
  • a pressure vessel is used with a gaseous compound, for example, it is preferably performed at a gauge pressure of 0.08 to 3 MPa.
  • the lower limit of the pressure is more preferably 0.05 MPa, and the more preferable upper limit is IMPa.
  • the object to which Step A is applied is preferably performed under the condition that the water content is 500 ppm or less.
  • a more preferable upper limit of the water content is 450 ppm, and a further preferable upper limit is 350 ppm.
  • the lower limit of the moisture content of the halogenated agent treatment target can be set to, for example, 0. Olppm from the viewpoint of economy and productivity as long as it is within the above range.
  • the water content is a value obtained by measurement using the force fisher titration method.
  • One or different represents H or an alkyl group having 1 to 4 carbon atoms.
  • M 1 represents an L-valent metal.
  • the -SOH and SOM groups are highly hygroscopic. For this reason, when it is operated with a fluorinating agent at a high water content, the fluorine source reacts with water, causing a problem that the fluorination is inhibited.
  • the method of bringing the water content in the above-mentioned object into the above-mentioned range For example, after undergoing centrifugal dehydration or the like as desired, the temperature is changed stepwise as desired for ⁇ to ⁇ hours, and the pressure is reduced as desired. Heating method; It can be carried out by a known drying method such as a method of melting in a vent type extruder and venting pore force dehydration.
  • the step is a step of converting the readily decomposable end group into a fluorinated end group by acting a decomposition treatment agent.
  • the “fluorinated end group” refers to an end group that can be easily fluorinated after the above-described easily decomposable end group is decomposed.
  • fluorinated end group is as defined above. Represents an alkali metal element.
  • the above-mentioned defect affects the alkali metal element or the like, but in terms of the efficiency of fluorination in the process, Particularly preferred.
  • the decomposition treatment agent may be any of a liquid decomposition treatment agent and a gaseous decomposition treatment agent, such as water, fluoroalcohol, or a mixture containing these, but as a decomposition treatment agent, Particularly preferred is water.
  • a liquid decomposition treatment agent such as water, fluoroalcohol, or a mixture containing these, but as a decomposition treatment agent, Particularly preferred is water.
  • easily decomposable end groups can be converted to fluorinated end groups simply by contacting with humid air, which is very reactive with water. The process becomes simple.
  • the decomposition treatment agent When water is used as the decomposition treatment agent, a water-soluble organic solvent such as dioxane, acetone, monoglyme, diglyme, methyl-pyrrolidone, dimethylformamide may be used as necessary.
  • the amount of the decomposition treatment agent used in the above step B can be appropriately selected according to the type of the decomposition treatment agent to be used.
  • the treated fluoropolymer that has undergone step A is 100 parts by mass. 1 to: It is preferable to use LOOOO parts by mass.
  • the step B is preferably performed at a temperature of 0 to 180 ° C.
  • the temperature is more preferably a lower limit force S20 ° C, a further preferable lower limit is 50 ° C, a more preferable upper limit is 170 ° C, and a further preferable upper limit is 160 ° C.
  • step B when a pressure vessel is used, it is preferably carried out under a gauge pressure of 0.08 to 3 MPa, but a more preferable lower limit is 0.05 MPa, and a more preferable upper limit lMPa.
  • Step C is generally a step of converting the fluorinated end group to -CFT (T is the same as defined above) by allowing a fluorinating agent to act.
  • step C it is desirable that the object to be treated with the fluorinating agent (hereinafter referred to as “the object to be treated with the fluorinating agent”) be contained in a state containing as little water as possible. It is preferable that the treatment is performed under the condition that the moisture contained in the object to be treated is 500 ppm or less of the object to be treated with the fluorinating agent.
  • the fluorination may be inhibited due to moisture in the fluorination agent treatment target.
  • a more preferred upper limit is 450 ppm, and a more preferred upper limit is 350 ppm.
  • the lower limit of the moisture in the fluorinating agent treatment target can be set to, for example, 0. Olppm, from the viewpoint of economy and productivity as long as it is within the above range.
  • the method for bringing the moisture in the fluorinating agent treatment target to the above range is not particularly limited, and examples thereof include the method exemplified in the description of the step A described above.
  • the fluorinating agent used in the above step C is F, NF, PF, SF, IF, K NiF, C1F and
  • At least one selected fluorine source is preferred.
  • the gaseous source is gaseous. F is particularly preferable.
  • the fluorinating agent comprises the fluorine source and optionally a gas inert to fluorination.
  • the inert gas include nitrogen gas and argon gas.
  • the fluorine source When the fluorine source is in a gaseous state, it is preferably 1% by mass or more of the fluorinating agent, more preferably 10% by mass or more. % Or less.
  • Step C is preferably performed under a gauge pressure of 0.08 to 3 MPa when a gaseous fluorinating agent is used.
  • a more preferable lower limit of the pressure is a gauge pressure of 0.05 MPa, and a more preferable upper limit is IMPa.
  • the temperature of the step C is preferably a force that is preferably 0 ° C or higher and lower than 150 ° C, and a more preferable lower limit is 20.
  • a more preferred lower limit is 50 ° C
  • a more preferred upper limit is 140 ° C
  • a still more preferred upper limit is 130 ° C.
  • Step C can be operated either continuously or notch.
  • the apparatus includes a stationary reactor such as a shelf-type reactor or a cylindrical reactor; and a stirring blade.
  • Reactor such as a shelf-type reactor or a cylindrical reactor; and a stirring blade.
  • Reactor Rotary kiln, W cone type reactor, V-type renderer, etc., container rotating (tumbling) type reactor; Vibrating reactor; Various fluidized bed reactors such as stirred fluidized bed; etc.
  • the object to be treated is in the form of a resin powder or a pellet, it is preferable to perform the fluorination treatment in a container rotating reactor or a vibrating reactor because it is easy to keep the reaction temperature homogeneous.
  • the object to be treated is a film-like molded body, it may be treated in a roll-shaped state, or may be treated while being continuously wound.
  • SO X group (X is as defined above for F or C1) -containing monomer unit and unstable terminal
  • the present invention also includes a SO H group-containing fluoropolymer production method (2) characterized in that the terminal stabilization treatment includes the following steps P and Q.
  • the "unstable end group” refers to the above-described unstable end group for the fluoropolymer to be treated and other unstable CF COOH, -CF CO 2 other than the unstable end group.
  • This is a concept that may include an end group such as F and -CF CF.
  • step P above 90% or more of the unstable end groups mentioned above — CFTCO Z (T and Z
  • step A and step B described above may be performed as step P, and an oxidant such as ozone is brought into contact with the fluoropolymer to be treated. Then, the produced —CF 2 COF may be hydrolyzed with water or the like.
  • treated fluoroporo any operation may be performed, for example, step A and step B described above may be performed as step P, and an oxidant such as ozone is brought into contact with the fluoropolymer to be treated. Then, the produced —CF 2 COF may be hydrolyzed with water or the like.
  • treated fluoroporo treated fluoroporo
  • the treatment time that may be treated under a reduced pressure of 0.02 MPa or less is, for example, 0.1 hours or more. be able to.
  • Examples of the fluorine-containing glaze in the above-mentioned step Q include the same as those in the above-mentioned step C, and among these, F is particularly preferable.
  • the fluorinating agent is preferably used after being diluted in the same manner as in Step C described above.
  • reaction conditions in the above step Q vary depending on the fluorinating agent to be used, the type of fluoropolymer to be treated, etc., and are not particularly limited, but it is preferable to carry out the reaction under a pressure of 0.08 to 3 MPa.
  • the above process Q is performed on the fluoropolymer that has undergone the process P, it can be performed at a temperature of 0 ° C or higher and lower than 150 ° C.
  • the above temperature has a preferred lower limit of 20 ° C, a more preferred lower limit of 50 ° C, a preferred upper limit of 140 ° C, and a more preferred upper limit of 130 ° C.
  • the SO H group-containing fluoropolymer production method of the present invention includes, for example, the obtained SO H
  • the number of unstable terminal groups per 10 6 carbon atoms can be 20 or less, and the number of unstable terminal groups per 10 6 carbon atoms is preferably 15 or less, more Preferably it can be 10 or less.
  • the conversion rate is also referred to as “-CF T ratio”. ) Generally 90% or more, more preferably 95% or more
  • the CFT conversion rate is obtained by, for example, performing step A and step B or step P.
  • step A or step P can be further improved by preferably performing step A or step P within the above temperature range.
  • damage to the fluoropolymer can be sufficiently prevented by preferably controlling the temperature at which the halogenating agent or fluorine-containing agent acts within the above-mentioned range.
  • the SO H group-containing fluoropolymer production method of the present invention generally comprises the steps A to C described above.
  • This step may be performed before or after step A or step P described above, but may be performed after each step. However, in terms of the moisture management described above during the treatment with a fluorinating agent. It is preferable to carry out after completion of steps A to C or after completion of steps P and Q.
  • This step includes the above-mentioned steps A to C or the above-mentioned steps P and Q containing SO X group-containing fluoro.
  • a strong base such as a NaOH solution, a KOH solution, or a solution of each organic solvent or a mixture of an organic solvent and water to saponify the —SO X group. Convert to a metal salt, and after washing with water if necessary,
  • the SO X group is, for example, SO F, NaOH aqueous solution or KOH aqueous solution
  • a 3 3 group-containing fluoropolymer is also one aspect of the present invention.
  • the amount of fluoride ions dissolved by Fenton treatment consisting of immersion in 2 and holding at 80 ° C for 2 hours is 100 mass of the membrane derived from the SO H group-containing fluoropolymer
  • the SO H group-containing fluoropolymer of the present invention has a fluoride ion amount within the above range.
  • the degree of stability of the stable fluoropolymer is sufficiently high.
  • the amount of fluoride ions eluted by the Fenton treatment is the same as the SO H group-containing fluoride.
  • polymers derived from, for example, 1. 0 X 10- 5 parts by mass or more, preferably also acceptable industrial comprising at 1. 0 X 10_ 4 parts by mass or more.
  • the amount of the fluoride ion can be determined by ion chromatography (IC 20 01 manufactured by Tosoh Corporation, TSKgel SuperIC-Anion manufactured by Tosoh Corporation as anion analysis column). It is measured by the method of “Fenton treatment” described later.
  • the —SO 2 H group-containing fluoropolymer of the present invention is used by the production method of the present invention described above.
  • the SO H group-containing fluoropolymer of the present invention is excellent in chemical stability.
  • Fluoride ion amount to be output is 2. It is more preferably not more than 8 X 10- 4 parts by mass or less preferably fixture 2. 5 X 10 _ 4 parts by weight. —SO 2 H group-containing fluoropolymer of the present invention
  • Fluoride ion amount eluted by the above Fenton treatment is within the above-mentioned range, relative to film 100 parts by weight from the SO H group-containing Furuoroporima, for example 1. 0 X 10- 5 parts by weight
  • preferably 1 can be tolerated even industrial be at 0 X 10- 4 parts by mass or more.
  • the H group-containing fluoropolymer is made of the above-described —SO 2 H group-containing fluoropolymer of the present invention.
  • the SO H group-containing fluoropolymer having a film thickness of 170 ⁇ m is used.
  • This film is prepared by the following method (1) or (2).
  • the polymer electrolyte membrane of the present invention comprises the above-described —SO 2 H group-containing fluoropolymer of the present invention.
  • the polymer electrolyte membrane of the present invention comprises the above-mentioned —SO 2 H group-containing full electrolyte.
  • the polymer electrolyte membrane of the present invention preferably has a thickness of 5 to 150 m. If it is less than 5 / zm, the mechanical strength is low during the fuel cell operation process when used in a fuel cell. The film is easy to break down and immediately. Furthermore, the generation efficiency of hydrogen or oxygen cross leaks cannot be increased. On the other hand, if it exceeds 150 m, sufficient initial characteristics with high membrane resistance cannot be achieved when used in fuel cells.
  • the above-mentioned “initial characteristics” means that the fuel cell operation is performed using the polymer electrolyte of the present invention, the current density voltage curve is measured, and the value of the numerical value of the voltage and power generation at a wide current density This refers to performance.
  • the more preferable lower limit of the thickness of the polymer electrolyte membrane is 10 m, and the more preferable upper limit is 100 ⁇ m.
  • the polymer electrolyte membrane of the present invention is an —SO 2 H group-containing fluoropolymer of the present invention.
  • the film-like shape can be molded by a melt molding method such as a molding method using a ⁇ die, an inflation molding method, or a calendar molding method. This type of melt molding is used when a SOH group-containing fluoropolymer is directly molded.
  • the shapeable temperature is close to the thermal decomposition temperature of the fluoropolymer, the SO X group-containing fluoropolymer after the polymerization is completed, or the above-mentioned steps A, B and C or the steps P and
  • R 2 R 3 R 4 or M 1 R 3 and R 4 are the same or different, and H or charcoal
  • -SO M type fluoropolymer In the form of fluoropolymer (hereinafter referred to as -SO M type fluoropolymer).
  • the fluoropolymer When the fluoropolymer is molded into a membrane, it can be obtained as a membrane-like single SO H group-containing fluoropolymer by subjecting it to the hydrolysis treatment described above.
  • one When one is formed into a film, it can be converted into a film-like SO H group-containing fluoropolymer by forming into a film and then treating with acid and Z or water or hot water. Furthermore, when melt-molded in the form of a film in the form of a SO H group-containing fluoropolymer,
  • the SO H group-containing fluoropolymer or SO M type fluoropolymer is used.
  • the molding conditions can be appropriately set according to the molding method to be performed.
  • the molten resin temperature is preferably 100 to 400 ° C, more preferably 200. ⁇ 300. C.
  • a method (cast method) in which a fluoropolymer solution for molding is cast on a support, a liquid coating film is formed on the support, and a liquid medium is removed from the liquid coating film can be mentioned. it can.
  • the molding fluoropolymer solution is not particularly limited as long as the below-described molding fluoropolymer is dispersed or dissolved in a liquid medium.
  • the molding fluoropolymer is converted into water, alcohol, organic solvent, or other suitable solvent. More preferably, it is obtained by dispersing or dissolving in an appropriate solvent at 80 to 300 ° C. using an autoclave or the like.
  • a third component other than the molding fluoropolymer may be mixed as necessary. Further, other components may be mixed into the obtained dispersion or solution.
  • the molding fluoropolymer is the SO H group-containing fluoropolymer, SO M
  • the molding fluoropolymer is a SO M type fluoropolymer
  • the molding fluoropolymer is a SO M type fluoropolymer
  • the polymer electrolyte membrane of the present invention can be obtained by forming the fluoropolymer into a film and then subjecting it to acid treatment and water or hot water treatment.
  • SO X group after completion of polymerization In the case of using a fluoropolymer solution for molding having a contained fluoropolymer strength, the above-mentioned steps A to C or steps P and Q are performed after the molding fluoropolymer is molded into a film shape, and then hydrolyzed, so that When using a fluoropolymer solution for molding with a SO X group-containing fluoropolymer subjected to steps A to C or steps P and Q
  • the polymer electrolyte membrane of the present invention can be obtained by forming the fluoropolymer for molding into a film and then hydrolyzing it.
  • the support used for casting is not limited, but general polymer films, metal foils, substrates such as alumina, si, and the like can be suitably used. Such a support can be removed from the polymer electrolyte membrane as desired when forming a membrane Z electrode assembly (described later).
  • a polymer electrolyte membrane containing a reinforcing body (the porous membrane) can also be produced.
  • a fibrillar fiber such as PTFE
  • Japanese Patent Laid-Open No. 53-149881 and Japanese Patent Publication No. 63-61337 are used. It is also possible to produce a polymer electrolyte membrane reinforced with fibrillated fibers as shown in
  • the polymer electrolyte membrane of the present invention was obtained by subjecting to a heat treatment (annealing) at 40 to 300 ° C, preferably 60 to 220 ° C, more preferably 80 to 160 ° C, as desired. It may be a thing. Furthermore, in order to fully exhibit the original ion exchange capacity, acid treatment may be performed with hydrochloric acid, nitric acid or the like, if desired. Further, it is possible to give stretch orientation to the film forming direction in the film forming step, and it is also possible to give stretch orientation by using a horizontal uniaxial tenter or a sequential or simultaneous biaxial tenter.
  • the polymer electrolyte membrane of the present invention is used as a membrane material for a solid polymer electrolyte fuel cell, which will be described later, as well as a lithium battery membrane, a salt electrolysis membrane, a water electrolysis membrane, a hydrohalic acid battery. Electrolysis of membranes for decontamination, membranes for oxygen concentrators, membranes for humidity sensors, membranes for gas sensors, separation membranes It can also be suitably used as a membrane material for a membrane or an ion exchange membrane. In addition, when using them, the SO H group-containing fluoropolymer of the present invention is converted to a SO M type as necessary.
  • the electrocatalyst layer of the present invention contains the —SO 2 H group-containing fluoropolymer.
  • the electrode catalyst layer is usually a liquid containing the SO H group-containing fluoropolymer and an active substance.
  • the active substance is not particularly limited as long as it has activity in the electrode catalyst layer, and examples thereof include a catalyst or a substance in which they are supported on a carrier.
  • the catalyst is not particularly limited as long as it is normally used as an electrode catalyst.
  • it is a metal containing platinum, ruthenium or the like, or an organometallic complex having a central metal that usually has one or more metal powers. And an organometallic complex in which at least one of the central metals is platinum or ruthenium.
  • a metal containing platinum is preferable among the powers of platinum simple substance (platinum black), ruthenium simple substance, platinum ruthenium alloy and the like.
  • grains such as a silica, an alumina, carbon, etc. can be illustrated. Of these, carbon is particularly preferred because of its excellent conductivity.
  • the liquid medium used in obtaining the electrode catalyst layer includes the SO 2 H group-containing
  • alcohols such as methanol
  • nitrogen-containing solvents such as N-methylpyrrolidone [NMP]
  • ketones such as acetone
  • acetic acid Esters such as ethyl
  • polar ethers such as diglyme and tetrahydrofuran [THF]
  • polar organic solvents such as carbonates such as diethylene carbonate.
  • the liquid composition comprises at least the SO H group-containing fluoropolymer and the activity.
  • It consists of a substance and a liquid medium, and may contain other components as necessary.
  • the other components include alcohols for improving leveling properties and polyoxyethylenes for improving film-forming properties for the purpose of forming into a film by casting, impregnation, etc. Etc.
  • particles such as carbon can be used, and a single powder such as PTFE or other resin compound as a binder may be used at the same time.
  • the substrate is not particularly limited, and examples thereof include a porous support, a resin molded body, a metal plate, and the like. Furthermore, an electrolyte membrane used for a fuel cell or the like, a porous carbon electrode (current collector) Body) and the like are also preferable.
  • the electrolyte membrane may be one having an SO H group-containing fluoropolymer power of the present invention, which is preferably made of fluorine resin in the usual sense. Electrolysis above
  • the membrane may contain substances other than fluorine resin and SOH group-containing fluoropolymer in the normal sense.
  • coating the liquid composition on a substrate means that the liquid composition is applied to the substrate, dried as necessary, and optionally a soft spot of the SO H group-containing fluoropolymer. is there
  • the heating conditions are as follows: SO H group-containing fluoropolymer and active substance are fixed on the substrate
  • the electrode catalyst layer of the present invention is preferably composed of the SO 2 H group-containing fluoropolymer, carbon, and catalyst (Pt or the like) when used as a polymer electrolyte fuel cell.
  • the membrane Z electrode assembly of the present invention is a membrane Z electrode assembly comprising a polymer electrolyte membrane and an electrode, and has at least one selected from the group forces defined by the following conditions (1) and (2): It meets.
  • the polymer electrolyte membrane is the polymer electrolyte membrane of the present invention described above
  • the electrode includes the above-described electrode catalyst layer of the present invention.
  • the electrode in the membrane Z electrode assembly is generally one in which at least one of the force sword side and the anode side is the above-described electrode catalyst layer of the present invention.
  • the membrane Z electrode assembly of the present invention can be used, for example, in a polymer electrolyte fuel cell.
  • the polymer electrolyte fuel cell having the membrane Z electrode assembly of the present invention is also one of the present inventions. It is.
  • the solid polymer electrolyte fuel cell is not particularly limited as long as it has the membrane Z electrode assembly.
  • a membrane Z electrode assembly in which the polymer electrolyte membrane of the present invention is held tightly between an anode and a force sword. rane / electrode assembly (hereinafter often referred to as “MEA”).
  • the anode also serves as the anode catalyst layer force and has proton conductivity
  • the cathode serves as the cathode catalyst layer and has proton conductivity
  • the membrane Z electrode assembly in a broad sense includes a gas diffusion layer (described later) bonded to the outer surface of each of the anode catalyst layer and the force sword catalyst layer.
  • the anode catalyst layer includes a catalyst that easily generates protons by oxidizing a fuel (for example, hydrogen), and the force sword catalyst layer includes protons, electrons, and an oxidizing agent (for example, oxygen or air). It includes a catalyst that reacts to produce water.
  • a fuel for example, hydrogen
  • the force sword catalyst layer includes protons, electrons, and an oxidizing agent (for example, oxygen or air).
  • It includes a catalyst that reacts to produce water.
  • platinum or an alloy having the same strength as platinum and ruthenium is preferably used as the catalyst, and the catalyst particles are preferably 10 to 1,000 angstroms or less.
  • Such catalyst particles are preferably supported on conductive particles having a size of about 0.01 to L0 m such as furnace black, channel black, acetylene black, carbon black, activated carbon, and graphite.
  • the anode catalyst layer and the force sword catalyst layer include SO H group-containing fluorine obtained by polymerization of the sulfonyl group-containing perhalovinyl ether represented by the general formula (I) and TFE.
  • Examples of methods for producing MEA include the following methods. First, a —SO 2 H group-containing fluoropolymer dissolved in a mixed solution of alcohol and water
  • a commercially available platinum-supported carbon for example, TEC10E40E, manufactured by Nihon Kuninaka Naka Metal Co., Ltd.
  • TEC10E40E manufactured by Nihon Kuninaka Naka Metal Co., Ltd.
  • the MEA can be obtained by removing the sheet.
  • the method for producing MEA is described in detail, for example, in JOURNAL OF APPLIED ELECTROCHEMISTRY, 22 (1992) p. 1-7.
  • gas diffusion layer commercially available carbon cloth or carbon paper can be used.
  • a typical example of the former is carbon cloth E-tek, B-l (manufactured by DE NORA N ORTH AMERICA, USA), and a typical example of the latter is CARBEL (registered trademark, Japan Japan Gore-Tex ( Co., Ltd.), TGP-H (manufactured by Torayen, Japan), carbon paper 2050 (manufactured by SPECTRACORP, USA), and the like.
  • a structure in which the electrode catalyst layer and the gas diffusion layer are integrated is called a “gas diffusion electrode”.
  • MEA can also be obtained by joining the gas diffusion electrode to the polymer electrolyte membrane of the present invention.
  • a typical example of a commercially available gas diffusion electrode is a gas diffusion electrode ELAT (registered trademark, manufactured by DE NORA NORTH AMERICA, USA) using carbon cloth as a gas diffusion layer.
  • Each obtained sample was heat-pressed at 270 ° C. to obtain a transparent film.
  • the resulting films were analyzed in the range of wave numbers 400 ⁇ 4000Cm _1 at a Fourier transform type infrared absorption spectroscopy. Obtain a difference spectrum from a sufficiently fluorinated standard sample until there is no substantial difference in the spectrum, and absorb at the wave number assigned to each functional group. The number of functional groups per 6 io carbon atoms was calculated according to the following formula.
  • I is the absorbance
  • K is the correction factor shown in Table 1
  • t is the thickness of the finalem used for the measurement (unit: mm).
  • the initial concentration of iron ( ⁇ ) cation is 2 ppm and the initial concentration of hydrogen peroxide is 1% by mass.
  • Hydrogen peroxide solution a liter of polymer electrolyte membrane b gram to membrane liquid ratio [bZa] 3.2
  • the fluoropolymer the polymer electrolyte membrane
  • the fluoride ion F—amount was measured.
  • the measuring device was IC 2001 manufactured by Tosoh Corporation in Japan, and TSKgel SuperIC-Anion manufactured by Tosoh Corporation in Japan was used as anion analysis column.
  • the amount of eluted fluoride ions was expressed as the mass of the eluted fluoride ions per 100 parts by mass of the sample polymer mass.
  • an electrode catalyst layer having a thickness of about 10 m was obtained by drying at room temperature for 1 hour and in air at 120 ° C for 1 hour.
  • an anode catalyst layer having a Pt loading amount and a polymer loading amount of 0.15 mg / cm 2 is used as an anode catalyst layer, and a Pt loading amount and a polymer loading amount of 0.30 mg Zcm 2 are both strong.
  • a sword catalyst layer was obtained.
  • the anode catalyst layer and the force sword catalyst layer thus obtained are faced to each other, a polymer electrolyte membrane is sandwiched between them, and hot pressing is performed at 160 ° C and a surface pressure of 0. IMPa.
  • the force sword catalyst layer was transferred and joined to the polymer electrolyte membrane to produce MEA.
  • a force bon cloth (ELAT (registered trademark) B 1 made by DE NORA NORTH AMERICA, USA) as a gas diffusion layer on both sides of this MEA (the outer surface of the anode catalyst layer and force sword catalyst layer) and incorporate it into the evaluation cell. It is.
  • This evaluation cell is connected to an evaluation device (Japan )
  • the fuel cell evaluation system (890CL) manufactured by Toyo Tec-Riki Co., Ltd. was heated to 80 ° C, and then hydrogen gas was supplied to the anode side at 150ccZmin and air gas was supplied to the power sword side at 400ccZmin.
  • the water publishing method was used for gas humidification, and the initial characteristics were investigated by measuring the current density voltage curve in the state where the gas was humidified and supplied to the cell at 80 ° C for hydrogen gas and 50 ° C for air gas.
  • the fluorine ion concentration in the waste water can be measured using the bench-top pH ion meter model 920Aplus model.
  • 9609 In a durability test measured over time using a BNionplus fluorine composite electrode (manufactured by Japan National), when pinholes occur in the polymer electrolyte membrane, a large amount of hydrogen gas leaks to the force sword side happenss. In order to detect the onset of this phenomenon, the hydrogen concentration in the power sword side exhaust gas was measured over time with a micro GC (CP4900, manufactured by Varian, The Netherlands), and this measured value was 10% of the value at the start of the measurement. The test was terminated when the number of times exceeded.
  • Ml of the fluoropolymer was performed using MELT INDEXER TYPE C-5059D (manufactured by Toyo Seiki, Japan) under the conditions of 270 ° C and a load of 2.16 kg in accordance with JIS K 7210. The weight of the extruded polymer was expressed in grams per 10 minutes.
  • TFE 6 g was injected to initiate the polymerization reaction.
  • TFE 6 g was replenished continuously, so that the internal pressure of the autoclave is maintained at 0.27 MPa.
  • FE was injected. Three hours after the start of polymerization, TFE in the vessel was purged with nitrogen to normal pressure. Autoclave force After taking out the reaction mixture, when methanol was added to the reaction mixture, a solid was precipitated. The solid was filtered, washed with HFC43-lOmee, and dried to obtain 80 g of fluoropolymer 1A.
  • the Ml of the fluoropolymer 1A was 5.9 (gZlO content).
  • the above fluoropolymer 1 A was heat-pressed at 270 ° C and lOMPa for 20 minutes.
  • a transparent film having a thickness of 0 ⁇ m was obtained.
  • Furuoroporima 1 A IR result of the measurement, the number 10 6 per carbon - COOCH the 180 and -
  • the membrane made of the fluoropolymer 1A was treated in a 20% aqueous sodium hydroxide solution at 90 ° C. for 24 hours and then washed with water. Subsequently, it was treated in 6N sulfuric acid at 60 ° C for 24 hours. Thereafter, the membrane was washed with water until the washing solution became neutral to obtain an electrolyte membrane.
  • the electrolyte membrane was measured for Ew according to the above-described method for measuring the equivalent weight Ew. As a result, it was 936 (g / eq).
  • the resulting gaseous neurogenating agent was introduced until the gauge pressure reached 0. IMPa and held for 30 minutes.
  • the gaseous halogenating agent in the autoclave is evacuated and evacuated.
  • Furuoroporima 1B results of IR measurement of 95 pieces and -C several 10 6 per COOCF carbon
  • a stainless steel 500 mL autoclave was charged with 40 g of fluorinated fluoropolymer lB and 200 mL of water, and heated at 120 ° C. in the container for 5 hours. After cooling to room temperature, the white solid was taken out and dried in a vacuum drier at 120 ° C for 6 hours to obtain 39 g of fluoropolymer 1C.
  • the fluoropolymer 1C was heat-pressed at 270 ° C. and lOMPa for 20 minutes to obtain a transparent film having a thickness of 170 ⁇ m.
  • Furuoroporima 1C Result of IR measurement, the number 10 6 per carbon, it also includes 120 to -COOH ChikaraTsuta. No peaks derived from unstable end groups other than COOH were observed. Through this process, it was confirmed that a fluoropolymer in which almost 100% of the unstable end groups contained was —COOH was obtained.
  • a fluoropolymer 1D was obtained in the same manner as in the above step A except that 30 g of fluoropolymer 1C was used instead of 60 g of fluoropolymer 1A.
  • the Ml of fluoropolymer 1D was 5.6 (gZ 10 min).
  • the fluoropolymer 1D was heat-pressed at 270 ° C. and lOMPa for 20 minutes to obtain a transparent film having a thickness of 170 ⁇ m.
  • the above fluoropolymer 1D-powered membrane is placed in a 20% aqueous sodium hydroxide solution at 90 ° C for 24 hours. After time treatment, it was washed with water. Subsequently, it was treated in 6N sulfuric acid at 60 ° C for 24 hours. Thereafter, the membrane was washed with water until the washing solution became neutral to obtain an electrolyte membrane 1E.
  • the electrolyte membrane 1E was measured according to the above-described method for measuring the equivalent weight Ew. As a result, it was 938 (g / eq).
  • Tetrafluoroethylene [TFE] was pressurized to 0.27 MPa with a gauge pressure, and as a polymerization initiator, 5 mass% HFC of (C F CO)
  • the Ml of the fluoropolymer 2 A was 21.0 (gZ 10 min).
  • the fluoropolymer 2A was heat-pressed at 270 ° C. and lOMPa for 20 minutes to obtain a transparent film having a thickness of 155 ⁇ m.
  • the Ew of the above electrolyte membrane was measured according to the above-described method for measuring the equivalent weight Ew. As a result, it was 945 (gZeq).
  • the resulting gaseous neurogenating agent is introduced until the gauge pressure reaches 0. IMPa and kept for 30 minutes. I had it.
  • the gaseous halogenating agent in the autoclave is evacuated and evacuated.
  • the mixture was cooled to room temperature, the gaseous halogenating agent in the autoclave was evacuated, vacuum and nitrogen substitution were repeated three times, then the autoclave was opened, and fluoropolymer 2B was obtained.
  • the fluoropolymer 2B was heat-pressed at 270 ° C. and lOMPa for 20 minutes to obtain a transparent film having a thickness of 155 ⁇ m.
  • Furuoroporima 2B results of IR measurement of the 120 pieces of several 10 6 per COOCF carbon
  • a stainless steel 500 mL autoclave was charged with 2B 40 g of fluorinated fluoropolymer and 200 mL of water, and heated at 120 ° C. in the container for 5 hours. After cooling to room temperature, the white solid was taken out and dried in a vacuum dryer at 120 ° C. for 6 hours to obtain 39 g of fluoropolymer 2C.
  • the fluoropolymer 2C was heat pressed at 270 ° C. and lOMPa for 20 minutes to obtain a transparent film having a thickness of 160 ⁇ m.
  • Furuoroporima 2C result of IR measurement, the number 10 6 per carbon, it also includes 170 pieces of -COOH ChikaraTsuta. No peaks derived from unstable end groups other than COOH were observed. This process proved that almost 100% of the unstable end groups of fluoropolymer 2B were converted to COOH.
  • a fluoropolymer 2D was obtained in the same manner as in the above step A except that 30 g of fluoropolymer 2C was used instead of 60 g of fluoropolymer 2A.
  • the Ml of the fluoropolymer 2D was 20.2 (gZlO content).
  • the fluoropolymer 2D was heat-pressed at 270 ° C. and lOMPa for 20 minutes to obtain a transparent film having a thickness of 160 ⁇ m.
  • the above-mentioned fluoropolymer 2D membrane was treated in a 20% aqueous sodium hydroxide solution at 90 ° C. for 24 hours and then washed with water. Subsequently, it was treated in 6N sulfuric acid at 60 ° C for 24 hours. Thereafter, the membrane was washed with water until the washing solution became neutral to obtain an electrolyte membrane 2E.
  • Example 1 A film having a thickness of 170 m obtained by heat pressing at 270 ° C. and lOMPa for 20 minutes using the fluoropolymer 1B obtained in (2-2) of Example 1 was obtained in Example 1 (3 ) To obtain an electrolyte membrane 1ER.
  • the electrolyte membrane was measured for Ew according to the above-described method for measuring the equivalent weight Ew. As a result, it was 940 (gZ eq).
  • Tetrafluoroethylene [TFE] was pressurized to 0.17 MPa by gauge pressure, and 5 masses of (CF 2 CO 3) as a polymerization initiator. / 0 HFC43—
  • lOmee solution 3.7 g was injected to initiate the polymerization reaction.
  • TFE was continuously supplied, and TFE was appropriately injected so that the internal pressure of the autoclave was maintained at 0.17 MPa.
  • the TFE in the vessel was purged with nitrogen to normal pressure.
  • Autoclave force After taking out the reaction mixture, methanol was added to the reaction mixture to precipitate a solid. The solid was filtered, washed with HFC43-10 mee, and dried to obtain 50. Og of fluoropolymer 3A.
  • the Ml of the fluoropolymer 3A was 15.9 (gZlO content).
  • the fluoropolymer 3A was heat-pressed at 270 ° C. and lOMPa for 20 minutes to obtain a transparent film having a thickness of 170 ⁇ m.
  • Furuoroporima 3A results of IR measurement of the 105 pieces of several 10 6 per COOCH carbon
  • the membrane made of the fluoropolymer 3A was treated in a 20% aqueous sodium hydroxide solution at 90 ° C. for 24 hours and then washed with water. Subsequently, it was treated in 6N sulfuric acid at 60 ° C for 24 hours. Thereafter, the membrane was washed with water until the washing solution became neutral to obtain an electrolyte membrane.
  • the Ew of the above electrolyte membrane was measured according to the above-described method for measuring the equivalent weight Ew. As a result, it was 980 (g / eq).
  • the resulting gaseous neurogenating agent was introduced until the gauge pressure reached 0. IMPa and held for 30 minutes.
  • the gaseous halogenating agent in the autoclave is evacuated and evacuated.
  • the mixture was cooled to room temperature, the gaseous halogenating agent in the autoclave was evacuated, vacuum and nitrogen substitution were repeated three times, then the autoclave was opened, and fluoropolymer 3B was obtained.
  • the fluoropolymer 3B was heat-pressed at 270 ° C. and lOMPa for 20 minutes to obtain a transparent film having a thickness of 170 ⁇ m.
  • a 500 mL autoclave made of stainless steel was charged with 32 g of fluorinated fluoropolymer 3B and 180 mL of water, and heated at 120 ° C. in the container for 5 hours. After cooling to room temperature, the white solid was taken out and dried in a vacuum dryer at 120 ° C for 6 hours to obtain fluoropolymer 3C.
  • the above fluoropolymer 3C was heat-pressed at 270 ° C and lOMPa for 20 minutes. A transparent film having a thickness of 0 ⁇ m was obtained.
  • Furuoroporima 3C result of IR measurement the number 10 6 per carbon, it also includes 120 to -COOH ChikaraTsuta. No peaks derived from unstable end groups other than COOH were observed. Through this process, it was confirmed that a fluoropolymer in which almost 100% of the unstable end groups contained was —COOH was obtained.
  • a fluoropolymer 3D was obtained in the same manner as in the above step A except that 24 g of fluoropolymer 3C was used instead of 37 g of fluoropolymer 3A.
  • the fluoropolymer 1D was heat-pressed at 270 ° C. and lOMPa for 20 minutes to obtain a transparent film having a thickness of 170 ⁇ m.
  • the above fluoropolymer 3D-strength membrane was treated in a 20% aqueous sodium hydroxide solution at 90 ° C. for 24 hours and then washed with water. Subsequently, it was treated in 6N sulfuric acid at 60 ° C for 24 hours. Thereafter, the membrane was washed with water until the washing solution became neutral to obtain an electrolyte membrane 3E.
  • the electrolyte membrane 3E was measured according to the above-described method for measuring the equivalent weight Ew. As a result, it was 982 (g / eq).
  • Tetrafluoroethylene [TFE] gas was introduced here at a gauge pressure of 0.30 MPa, followed by a 10 mass% perfluoro-hexane solution of a polymerization initiator (C F COO).
  • TFE CFOCF CF SO F intermittently total 4
  • the Ml of the fluoropolymer 4A was 15.2 (gZlO content).
  • the fluoropolymer 4A was heat-pressed at 270 ° C. and lOMPa for 20 minutes to obtain a transparent film having a thickness of 170 ⁇ m.
  • the membrane composed of the fluoropolymer 4A was treated in a 20% aqueous sodium hydroxide solution at 90 ° C. for 24 hours and then washed with water. Subsequently, it was treated in 6N sulfuric acid at 60 ° C for 24 hours. Thereafter, the membrane was washed with water until the washing solution became neutral to obtain an electrolyte membrane.
  • the Ew of the above electrolyte membrane was measured according to the above-described method for measuring the equivalent weight Ew. As a result, it was 740 (g / eq).
  • the obtained gaseous norogenizing agent was introduced until the gauge pressure reached 0. IMPa and held for 30 minutes.
  • the gaseous halogenating agent in the autoclave is evacuated and evacuated.
  • the Ml of the fluoropolymer 4B was 15.0 (gZlO content).
  • the fluoropolymer 4B was heat-pressed at 270 ° C. and lOMPa for 20 minutes to obtain a transparent film having a thickness of 170 ⁇ m.
  • the fluoropolymer 4C was heat-pressed at 270 ° C. and lOMPa for 20 minutes to obtain a transparent film having a thickness of 170 ⁇ m.
  • Furuoroporima 4C result of IR measurement the number 10 6 per carbon, it may contain 150 pieces of COOH ChikaraTsuta. No peaks derived from unstable end groups other than COOH were observed. Through this process, it was confirmed that a fluoropolymer in which almost 100% of the unstable end groups contained was —COOH was obtained.
  • a fluoropolymer 4D was obtained in the same manner as in the above step A except that 50 g of fluoropolymer 4C was used instead of 100 g of fluoropolymer 4A.
  • the Ml of fluoropolymer 4D was 14.9 (g / 10 min).
  • the fluoropolymer 4D was heat-pressed at 270 ° C. and lOMPa for 20 minutes to obtain a transparent film having a thickness of 170 ⁇ m.
  • the above-mentioned fluoropolymer 4D strong membrane was treated in a 20% aqueous sodium hydroxide solution at 90 ° C. for 24 hours and then washed with water. Subsequently, it was treated in 6N sulfuric acid at 60 ° C for 24 hours. That The post-cleaning solution was washed with water until it became neutral to obtain an electrolyte membrane 4E.
  • the equivalent weight Ew of the electrolyte membrane 4E was measured according to the above-described method for measuring the equivalent weight Ew. As a result, it was 736 (gZeq).
  • Example 1 (3) Using the fluoropolymer 4B obtained in (2-1) of Example 4, a film having a thickness of 170 m obtained by heat pressing at 270 ° C. and lOMPa for 20 minutes was obtained as Example 1 (3). The same processing was performed to obtain an electrolyte membrane 2ER.
  • Fluoropolymer 5A was obtained in the same manner as in Example 4 except that was used.
  • the fluoropolymer 5A lOOg was placed in an autoclave (hastelloy) with an internal volume of 300 mL, and the temperature was raised to 120 ° C. while vacuum degassing. After repeating vacuum and nitrogen replacement 3 times, nitrogen was introduced to gauge pressure OMPa. Continue to dilute SF to 50% by mass with nitrogen gas
  • the resulting gaseous neurogenating agent was introduced until the gauge pressure reached 0. IMPa and held for 30 minutes.
  • the gaseous halogenating agent in the autoclave is evacuated and evacuated.
  • Furuoroporima 5B results of IR measurement of the contained 190 pieces of several 10 6 per COF carbon.
  • the Ml of fluoropolymer 5C was 20 (gZlO content).
  • a fluoropolymer 5D was obtained in the same manner as in (2-1) of Example 4 except that 50 g of fluoropolymer 5C was used instead of 100 g of fluoropolymer 5A.
  • the Ml of fluoropolymer 5D was 19 (gZ 10 min).
  • the above fluoropolymer 5D-strength membrane was treated in a 20% aqueous sodium hydroxide solution at 90 ° C. for 24 hours and then washed with water. Subsequently, it was treated in 6N sulfuric acid at 60 ° C for 24 hours. Thereafter, the membrane was washed with water until the washing solution became neutral to obtain an electrolyte membrane 5E.
  • the equivalent weight Ew of the electrolyte membrane 5E was measured according to the above-described method for measuring the equivalent weight Ew. As a result, it was 736 (gZeq).
  • fluoropolymer 6A was obtained in the same manner as in Example 4 except that 3 g of jetyl ether was used instead of 3 g of methanol.
  • This fluoropolymer 6A was treated in the order of step A, step B and step C in the same manner as in Example 4 (2) to obtain fluoropolymer 6D.
  • fluoropolymer 6D As a result of IR measurement of fluoropolymer 6D, 10 COOH atoms per 10 6 carbon atoms, and other peaks derived from unstable end groups were not observed.
  • the above fluoropolymer 6D-strength membrane was treated in a 20% aqueous sodium hydroxide solution at 90 ° C. for 24 hours and then washed with water. Subsequently, it was treated in 6N sulfuric acid at 60 ° C for 24 hours. Thereafter, the membrane was washed with water until the washing solution became neutral to obtain an electrolyte membrane 6E.
  • the equivalent weight Ew of the electrolyte membrane 6E was measured according to the above-described method for measuring the equivalent weight Ew. As a result, it was 728 (gZeq).
  • Fluoropolymer 7A was obtained in the same manner as in Example 4 except that ethane lOOcc was used as the chain transfer agent instead of 3 g of methanol.
  • Furuoroporima 7B result of IR measurement of the contained 120 several 10 6 per COF carbon.
  • This fluoropolymer 7B was treated in the order of step B and step C in the same manner as in Example 2 (2-2) and (2-3) to obtain fluoropolymer 7D.
  • the fluoropolymer 7D strong membrane was treated in a 20% aqueous sodium hydroxide solution at 90 ° C. for 24 hours and then washed with water. Subsequently, it was treated in 6N sulfuric acid at 60 ° C for 24 hours. Thereafter, the membrane was washed with water until the washing solution became neutral to obtain an electrolyte membrane 7E.
  • the equivalent weight Ew of the electrolyte membrane 7E was measured according to the above-described method for measuring the equivalent weight Ew. As a result, it was 736 (gZeq).
  • the obtained gaseous fluorine-containing agent was introduced until the gauge pressure reached 0. IMPa and held for 3 hours.
  • the membrane having the fluoropolymer 8Q strength was treated in a 20% aqueous sodium hydroxide solution at 90 ° C. for 24 hours and then washed with water. Subsequently, it was treated in 6N sulfuric acid at 60 ° C for 24 hours. That The post-cleaning solution was washed with water until it became neutral to obtain an electrolyte membrane 8E.
  • the equivalent weight Ew of the electrolyte membrane 8E was measured according to the above-described method for measuring the equivalent weight Ew. As a result, it was 985 (gZeq).
  • Tetrafluoroethylene [TFE] gas was introduced here at a gauge pressure up to 0.30 MPa, followed by 10% by weight perfluorohexane hexane of the polymerization initiator (C F COO).
  • the polymerization reaction was initiated by injecting 50.4 g of the solution.
  • the Ml of the fluoropolymer 9A was 5.2 (gZlO content).
  • the fluoropolymer 9A was heat-pressed at 270 ° C. and lOMPa for 20 minutes to obtain a transparent film having a thickness of 170 ⁇ m.
  • the gaseous halogenating agent was introduced until the gauge pressure reached 0. IMPa and held for 30 minutes. Next, the gaseous halogenating agent in the autoclave was evacuated and evacuated.
  • the mixture was cooled to room temperature, the gaseous halogenating agent in the autoclave was evacuated, vacuum and nitrogen substitution were repeated three times, then the autoclave was opened, and fluoropolymer 9B was obtained.
  • the Ml of the fluoropolymer 9B was 5.2 (gZlO content).
  • the fluoropolymer 9B was heat-pressed at 270 ° C. and lOMPa for 20 minutes to obtain a transparent film having a thickness of 170 ⁇ m.
  • the fluoropolymer 9B was stirred in distilled water for 1 hour at a temperature of 25 ° C. and then separated and dried at 100 ° C. for 16 hours to obtain a fluoropolymer 9C.
  • the fluoropolymer 9C was heat-pressed at 270 ° C. and lOMPa for 20 minutes to obtain a transparent film having a thickness of 170 ⁇ m.
  • Furuoroporima 9C Result of IR measurement the number 10 6 per carbon, it also includes 125 to -COOH ChikaraTsuta. No peaks derived from unstable end groups other than COOH were observed. Through this process, it was confirmed that a fluoropolymer in which almost 100% of the unstable end groups contained was —COOH was obtained.
  • a fluoropolymer 9D was obtained in the same manner as in the above step A except that 3 kg of fluoropolymer 9C was used instead of 5 kg of fluoropolymer 9A.
  • the Ml of the fluoropolymer 9D was 5. l (gZlO content).
  • fluoropolymer 9D is 50 ⁇ m thick by T-die extrusion molding at 280 ° C. A thin film was obtained.
  • the thin film having the 9D strength of the fluoropolymer was treated in a 20% aqueous sodium hydroxide solution at 90 ° C. for 24 hours and then washed with water. Subsequently, it was treated in 6N sulfuric acid at 60 ° C for 24 hours. Thereafter, the membrane was washed with water until the cleaning solution became neutral to obtain an electrolyte membrane 9E.
  • the equivalent weight Ew of the electrolyte membrane 9E was measured according to the above-described method for measuring the equivalent weight Ew, and was 724 (gZeq).
  • the fluoride ions was 2. 5 X 10_ 4 parts by mass with respect to film 100 parts by weight.
  • the fluoride ion was 5.9 ⁇ 10 ⁇ 3 parts by mass with respect to 100 parts by mass of the film.
  • the fluoride ion was 1.0 X 10-3 parts by mass with respect to 100 parts by mass of the film.
  • the fluoride ions was 1. 7 X 10_ 4 parts by mass with respect to film 100 parts by weight.
  • the fluoride ions was 3. 9 X 10_ 4 parts by mass with respect to film 100 parts by weight.
  • the fluoride ions was 2. 6 X 10_ 4 parts by mass with respect to film 100 parts by weight.
  • the fluoride ions was 2. 8 X 10_ 4 parts by mass with respect to film 100 parts by weight.
  • the fluoride ions was 2. 4 X 10_ 4 parts by mass with respect to film 100 parts by weight.
  • the fluoride ions was 2. 2 X 10_ 4 parts by mass with respect to film 100 parts by weight.
  • the fluoride ions 4. was 1 X 10_ 4 parts by mass with respect to film 100 parts by weight.
  • the fluoride ions was 2. 5 X 10_ 4 parts by mass with respect to film 100 parts by weight.
  • MEA membrane Z electrode assembly
  • a thin film having a thickness of 50 ⁇ m was obtained by extrusion melt molding at ° C.
  • This thin film was treated in the same manner as in Example 9 (3) to obtain an electrolyte membrane 9ER.
  • the obtained MEA was incorporated into the evaluation cell, and the initial characteristics at a cell temperature of 80 ° C were measured according to the method described above.
  • the relationship between voltage (V) and current density (AZcm 2 ) was 0.5 at AZcm 2 . . 73V, 1. OAZcm 2 at 0. 49V, was 1. in 5AZcm 2 0. 17V.
  • the durability test at 100 ° C the operation was terminated due to a cross leak after 125 hours of operation. After 50 hours, the fluorine ion concentration in the wastewater was 1.3 ppm on the power sword side and 2.7 ppm on the anode side.
  • the Ml of the fluoropolymer 20A was 3.6 (gZlO content).
  • the Fonole ropolymer 20A was heat-pressed at 270 ° C. and lOMPa for 20 minutes f3 ⁇ 4 to obtain a transparent film having a thickness of 170 ⁇ m.
  • the gaseous halogenating agent in the reactor is evacuated and evacuated.
  • the gaseous halogenating agent obtained by diluting to 20% by mass was introduced until the gauge pressure reached OMPa and held for 3 hours.
  • the mixture was cooled to room temperature, the gaseous halogenating agent in the reactor was evacuated, evacuated, and purged with nitrogen three times. A portion of the polymer was sampled to obtain fluoropolymer 20B.
  • the Ml of the fluoropolymer 20B was 3.3 (gZlO content).
  • Fonole ropolymer 20B was heat-pressed at 270 ° C. and lOMPa [20 / min] for 20 minutes to obtain a transparent film having a thickness of 170 ⁇ m.
  • step A the vibration reactor was vibrated at a frequency of 50 rpm, and the temperature was raised to 120 ° C. while vacuum degassing.
  • the Fonole ropolymer 20C was heat-pressed at 270 ° C. and lOMPa for 20 minutes f3 ⁇ 4 to obtain a transparent film having a thickness of 170 ⁇ m.
  • Furuoroporima 20C result of IR measurement the number 10 6 per carbon, it may contain 90 pieces of COOH ChikaraTsuta. No peaks derived from unstable end groups other than COOH were observed. Through this process, it was confirmed that a fluoropolymer in which almost 100% of the unstable end groups contained was —COOH was obtained.
  • Step B the temperature was raised to 120 ° C. while vacuum degassing while vibrating the vibration reactor at a frequency of 50 rpm. After repeating the vacuum and nitrogen replacement three times, nitrogen was introduced to a gauge pressure of -0.05 MPa.
  • the gaseous halogenating agent obtained by diluting F gas with nitrogen gas to 20% by mass is obtained.
  • the gaseous halogenating agent in the reactor is evacuated and evacuated.
  • the gaseous halogenating agent obtained by diluting to 20% by mass was introduced until the gauge pressure reached OMPa and held for 3 hours.
  • the gaseous halogenating agent in the reactor was evacuated, evacuated and purged with nitrogen three times, then the reactor was opened and the fluoropolymer 20D was recovered.
  • the Ml of fluoropolymer 20D was 3.4 (gZlO content).
  • a thin film having a thickness of 50 ⁇ m was obtained by extrusion melt molding at 280 ° C. with a T-die of fluoropolymer 20D.
  • the obtained thin film was IR measurement, I be the number 10 6 per carbon, the content of COOH which is 12 ChikaraTsuta. Other unstable terminal groups were undetectable. From this, it was confirmed that most of the unstable end groups contained in the fluoropolymer 20A had disappeared.
  • the fluoropolymer 20D strength thin film was treated in a 20% aqueous sodium hydroxide solution at 90 ° C. for 24 hours and then washed with water. Subsequently, it was treated in 6N sulfuric acid at 60 ° C for 24 hours. Thereafter, the membrane was washed with water until the washing solution became neutral to obtain an electrolyte membrane 20E.
  • Ew of the above electrolyte membrane 20E according to the method for measuring the equivalent weight Ew described above it was 730 (g / eq) Industrial applicability
  • the SO H group-containing fluoropolymer production method of the present invention has the above-described configuration.
  • the SO H group-containing fluoropolymer of the present invention is caused by corrosion of equipment and materials used.
  • the electrode catalyst layer, polymer electrolyte membrane, membrane Z electrode assembly and solid polymer fuel cell of the present invention have the SO H group-containing fluoropolymer of the present invention, various characteristics,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本発明は、不安定末端基の充分な安定化を温和条件下で行うことができる新規製造方法を提供する。本発明は、-SO2X基(XはF又はClを表す。)含有モノマー単位を有する被処理フルオロポリマーに、少なくとも下記工程A、工程B及び工程Cをこの順に施す操作を含むことを特徴とする-SO3H基含有フルオロポリマー製造方法である。 A:ハロゲン化剤を作用させる工程 B:分解処理剤を作用させる工程 C:ふっ素化剤を作用させる工程

Description

明 細 書
- SO H基含有フルォロポリマー製造方法及び— SO H基含有フルォロ
3 3
ポリマー 技術分野
[0001] 本発明は SO H基含有フルォロポリマー製造方法、—SO H基含有フルォロポリ
3 3 マー、該フルォロポリマーを含む高分子電解質膜、該フルォロポリマーを含む電極 触媒層、膜 Z電極接合体及び固体高分子型燃料電池に関する。
背景技術
[0002] 含ふつ素モノマーと、 SO F基を有するパーフルォロビュルエーテルとの共重合を
2
経て得られる SO H基含有フルォロポリマーは、燃料電池、化学センサー等の電
3
解質膜材料としての用途が知られている。
[0003] この SO H基含有フルォロポリマーは、例えば、燃料電池用電解質膜として長期
3
間使用した場合、劣化により燃料電池力 の排水中にふつ素イオンが溶出する問題 が報告されている。
[0004] この原因としては、フルォロポリマー中に含有される不安定末端基である CO Hが
2
、燃料電池内部で発生する水酸基ラジカルによって分解するためと推測されている( 例えば、非特許文献 1参照)。
[0005] この問題を解決するため、特許文献 1では固体状態のスルホ -ル基含有フルォロポ リマーに対し、ふつ素ガス等のふつ素ラジカル発生化合物を 20〜300°Cで接触させ てポリマー鎖の不安定末端基の少なくとも 40%を安定末端基に転換する処理方法 が報告されている。
また、特許文献 2では、 200〜300°Cの温度、且つ 0. 02MPa以下の真空で 0. 1時 間以上処理し、 150〜200°Cの温度でふつ素ガスと接触させることで安定なポリマー を得る方法が報告されて!ヽる。
更に、特許文献 3では不安定基として主にカルボン酸を含有するスルホ -ル基含有 フルォロポリマーを、水分を制御した条件でのふつ素処理等によって充分に安定ィ匕 する方法が提案されている。 [0006] これらの既存技術は、—COF、—COOH、—CF=CF、—CF Hを不安定な基とし
2 2
て含むフルォロポリマーを対象にしている。し力しながら、フルォロポリマーは、重合 開始剤、連鎖移動剤、末端停止剤等により、上記に加えて— CH OR、— COOR(
2
各式において、 Rは Hあるいは炭化水素基を表す。)等の不安定な基を有しており、 既存の技術では、これらの不安定な基を充分に安定ィ匕することができず、燃料電池 等に使用した場合、充分な耐久性が実現できな力つた。
また、特許文献 2で提案されているように、 150°C以上の高温でふつ素ガス処理を行 うと、処理に伴いポリマー主鎖の開裂による新たな不安定な基の生成が起こるために 充分な安定化効果が得られず、また、ふつ素ガス処理と同時に架橋構造の生成が起 こるため、ふつ素処理に引き続いて溶融成形を行う場合、得られるポリマーの成形性 は必ずしも満足できるものではな力つた (特許文献 4参照)。更に、通常スルホニル基 含有フルォロポリマーの軟ィ匕温度は 200°C以下であり、この方法で得られるポリマー は、パウダーあるいはペレットの形状の物を用いた場合でも融着等により塊状又はシ ート状となり、ハンドリング性に著しく劣るものであった。
これらのことから、フルォロポリマーを温和な条件でかつ効率よく安定ィ匕する技術が 望まれていた。
特許文献 1:特公昭 46 - 23245号公報
特許文献 2:国際公開 2004Z102714号パンフレット
特許文献 3:国際公開 2005Z28522号パンフレット
特許文献 4:特開 2004— 18673号公報
非特許文献 1 : Dennis E. Curtin、 Robert D. Lousenberg、 Timothy J. H enry、 Paul C. Tangeman and Monica E. Tisackゝ第 10回燃料電池シン ポジゥム講演予稿集、 P121 (2003)
発明の開示
発明が解決しょうとする課題
[0007] 本発明の目的は、上記現状に鑑み、不安定末端基の充分な安定化を温和条件下で 行うことができる新規製造方法を提供することにある。
課題を解決するための手段 [0008] 本発明者らは、上記課題を解決するために鋭意検討した結果、—SO X基 (Xは、 F
2
又は C1を表す。)含有モノマー単位を有する被処理フルォロポリマーに、少なくとも下 記工程 A、工程 B及び工程 Cをこの順に施す操作、又は、工程 P及び工程 Qを含む 末端安定化処理により、比較的温和な条件で SO H基含有フルォロポリマーを末
3
端安定化させ得ることを見出し、本発明に到った。
[0009] 即ち、本発明は
[l] -SO X基 (Xは F又は C1を表す。)含有モノマー単位を有する被処理フルォロポ
2
リマーに、少なくとも下記工程 A、工程 B及び工程 Cをこの順に施す操作を含むことを 特徴とする SO H基含有フルォロポリマー製造方法 (以下、本製造方法を「一 SO
3 3
H基含有フルォロポリマー製造方法(1)」と称することもある)
A:ハロゲン化剤を作用させる工程
B:分解処理剤を作用させる工程
C:ふつ素化剤を作用させる工程
[2]被処理フルォロポリマーは、不安定末端基を有することを特徴とする [1]記載の SO H基含有フルォロポリマー製造方法
3
[3]工程 Aは、ハロゲン化剤を作用させることにより不安定末端基を易分解性末端基 に変換する工程 A1であり、
工程 Bは、分解処理剤を作用させることにより該易分解性末端基を—CFTCO Zに
2 変換する工程 B1であり、
工程 Cは、ふつ素ィ匕剤を作用させることにより該一 CFTCO Zを一 CF Tに変換する
2 2
工程 C 1であることを特徴とする [2]記載の SO H基含有フルォロポリマー製造方
3
(Tは F、炭素数 1〜 10のパーフルォロアルキル基又は炭素数 2〜 15のパーフルォロ アルコキシ基を表し、 zは、 Η、 ΝΙ^ 4又はアルカリ金属元素を表す。 R R2、 R 3及び R4は、 H又は炭素数 1〜4のアルキル基を表し、同一でも異なっていてもよい。 該パーフルォロアルキル基及び該パーフルォロアルコキシ基は、それぞれエーテル 性酸素〔- o -〕及び Z又は— SO X基を含んでもよい。 Xは上記定義と同じ。 )
2
[4]易分解性末端基が、—CFTCOX1及び— CFTCO Rxよりなる群力 選ばれる 少なくとも 1種であることを特徴とする [3]記載の SO H基含有フルォロポリマー製
3
造方法
(Tは、上記定義と同じ。 X1は、 F又は C1を表す。 Rxは、ハロゲン化アルキル基を表 す。)
[5]ノヽロゲンィ匕剤は、 F、 CI、 Br、 NF、 PCI、 PCI、 SF、 SCI、 SCI、 C1F、 C1F
2 2 2 3 3 5 4 2 4
、 BrF、 IF、 POC1、 SOC1及び R16R17NSF (R16及び R17は、同一又は異なって
3 3 5 3 2 3
、炭素数 1〜3のアルキル基を表す。)よりなる群力 選択される少なくとも 1種である ことを特徴とする [1]〜 [4]の何れ力 1項に記載の SO H基含有フルォロポリマー
3
製造方法
[6]工程 Aにおいて、ハロゲン化剤を 0°C以上、 150°C未満で作用させることを特徴と する [1]〜 [5]の何れか 1項に記載の SO H基含有フル
3 ォロポリマー製造方法
[7]分解処理剤は、水であることを特徴とする [1]〜 [6]の何れか 1項に記載の SO H基含有フルォロポリマー製造方法
3
[8] -SO X基含有モノマー単位と不安定末端基とを有する被処理フルォロポリマー
2
に末端安定化処理を行う SO H基含有フル
3 ォロポリマー製造方法において、該末 端安定化処理が、下記工程 P及び Qを含むことを特徴とする SO H基含有フルォ
3
口ポリマー製造方法 (以下、本製造方法を「一 SO H基含有フル
3 ォロポリマー製造方 法(2)」と称することもある。なお、上述の SO H基含有フルォロポリマー製造方法(
3
1)及び— SO H基含有フルォロポリマー製造方法(2)とを総称して、「本発明の— S
3
O H基含有フルォロポリマー製造方法」ということがある。 )
3
P :不安定な末端基の 90%以上が CFTCO Zである SO H基含有フルォロポ
2 3
リマーを得る工程
Q :ふつ素ィ匕剤を作用させることにより該一 CFTCO Zを一 CF Tに変換する工程
2 2
(Τ、 Ζ及び Xは、上記定義と同じ。 )
[9]ふつ素化剤は、 F、 NF、 PF、 SF、 IF、 K NiF、 C1F及び C1Fよりなる群から
2 3 5 4 5 3 7 3
選択される少なくとも 1種のふつ素源力もなるふつ素化剤であることを特徴とする [1] 〜 [8]の何れか 1項に記載の SO H基含有フル
3 ォロポリマー製造方法
[10]ふつ素化剤は、ガス状であり、ふつ素源は、該ふつ素化剤の 1質量%以上であ ることを特徴とする [9]に記載の SO H基含有フルォロポリマー製造方法
3
[11]ふつ素源が Fであることを特徴とする [9]又は [10]に記載の SO H基含有フ
2 3 ルォロポリマー製造方法
[12]ふつ素化剤を 0°C以上、 150°C未満で作用させることを特徴とする [1]〜[11] の何れか 1項に記載の SO H基含有フルォロポリマー製造方法
3
[13]被処理フルォロポリマー力 下記一般式 (I)
CF =CF— O— (CF CFY1— O) - (CFY2) — SO X (I)
2 2 n m 2
(式中、 Y1は F、 C1又はパーフルォロアルキル基を表す。 nは 0〜3の整数を表し、 n 個の Y1は同一でも異なっていてもよい。 Y2は F又は C1を表す。 mは 2〜6の整数を表 し、 m個の Y2は同一でも異なっていてもよい。 Xは、上記定義と同じ。 )
で表されるスルホ -ル基含有パーハロビュルエーテルに由来する繰り返し単位( α ) と、該スルホ-ル基含有パーハロビュルエーテルと共重合可能なエチレン性フルォ 口モノマーに由来する繰り返し単位( )とを含む共重合体であって、該共重合体中 に、該繰り返し単位 )が 5〜50モル0 /0、該繰り返し単位( j8 )力 0〜95モル0 /0、該 繰り返し単位( α )と該繰り返し単位( j8 )の和が 95〜: LOOモル%であることを特徴と する [1]〜[12]の何れか 1項に記載の SO H基含有フルォロポリマー製造方法
3
[14]上記一般式 (I)において、 nは 0又は 1である [13]に記載の SO H基含有フ
3
ルォロポリマー製造方法
[15]上記一般式 (I)にお!/、て、 Y2は Fであり、 mは 2〜6の整数である [ 13]又は [ 14 ]に記載の SO H基含有フル
3 ォロポリマー製造方法
[16] [1]〜[15]の何れか 1項に記載の SO H基含有フル
3 ォロポリマー製造方法 により得られたことを特徴とする SO H基含有フルォロポリマー
3
[17]—SO H基含有フルォロポリマーであって、 170 mの膜厚を有する該 SO
3 3
H基含有フルォロポリマーの膜にっ 、て、フェントン処理により溶出するフッ化物ィォ ン量が該膜 100質量部に対し、 8. 0 X 10—4質量部以下であることを特徴とする— S O H基含有フルォロポリマー
3
[18] [1]〜[15]の何れか 1項に記載の SO H基含有フル
3 ォロポリマー製造方法 により得られる SO H基含有フルォロポリマーであって、 170 mの膜厚を有する 該 SO H基含有フルォロポリマーの膜について、フェントン処理により溶出するフッ
3
化物イオン量が該膜 100質量部に対し、 8. 0 X 10—4質量部以下であることを特徴と する SO H基含有フルォロポリマー
3
[19] [16]〜[18]の何れか 1項に記載の SO H基含有フルォロポリマーを含むこ
3
とを特徴とする高分子電解質膜
[20] [16]〜[18]の何れか 1項に記載の SO H基含有フルォロポリマーを含むこ
3
とを特徴とする電極触媒層
[21]高分子電解質膜と電極とからなる膜 Z電極接合体であって、下記条件(1)及び (2)よりなる群カゝら選ばれる少なくとも 1つを満たすものであることを特徴とする膜 Z電 極接合体
(1)該高分子電解質膜は、 [19]に記載の高分子電解質膜である
(2)該電極は、 [20]に記載の電極触媒層を含む
[22] [21]に記載の膜 Z電極接合体を有することを特徴とする固体高分子型燃料電 池
である。
発明の効果
[0010] 本発明の SO H基含有フルォロポリマー製造方法は、上記構成よりなるものである
3
ので、温和で経済的な反応条件下で不安定末端基を安定ィ匕することができ、また、 使用する装置や材料について制限を緩和することができ、各工程において被処理フ ルォロポリマーの分解あるいは不要な架橋構造が生じにく 、。
本発明の SO H基含有フルォロポリマーは、不安定末端基が大幅に低減されてい
3
るので、化学的安定性等、各種特性に優れている。
本発明の電極触媒層、高分子電解質膜、膜 Z電極接合体及び固体高分子型燃料 電池は、本発明の SO H基含有フルォロポリマーを有するものなので、耐久性等、
3
各種特性に優れている。
発明を実施するための最良の形態
[0011] 以下、本発明について詳細に説明する。
本発明の— SO H基含有フルォロポリマー製造方法は、—SO X基 (Xは F又は C1を 表す。)を有する被処理フルォロポリマーに、後述する特定の工程を含む処理を施す ことより SO H基含有フルォロポリマーを製造する方法である。なお、上記処理は
3
後述の不安定末端基を安定化する処理であり、本明細書において「不安定末端基 安定化処理」若しくは略して「安定化処理」 t 、うことがある。
[0012] 本発明における被処理フルォロポリマーは、—SO X基 (Xは F又は C1を表す。)含有
2
モノマー単位を有するものである。
[0013] 上記被処理フルォロポリマーにおいて、 SO X基含有モノマー単位は、全単量体
2
単位の 5〜50モル%であることが好ましい。ここで「全単量体単位」とは、被処理フル ォロポリマーの分子構造上、モノマーに由来する部分の全てを示す。
[0014] 上記 SO X基含有モノマー単位は、一般に、下記一般式 (I)
2
CF =CF— O— (CF CFY1— O) - (CFY2) — SO X (I)
2 2 n m 2
(式中、 Y1は、 F、 C1又はパーフルォロアルキル基を表す。 nは、 0〜3の整数を表し、 n個の Y1は、同一でも異なっていてもよい。 Y2は F又は C1を表す。 mは 2〜6の整数を 表す。 m個の Y2は、同一でも異なっていてもよい。 Xは F又は C1を表す。)で表される スルホ -ル基含有パーハロビュルエーテルに由来するものである。
[0015] 上記一般式 (I)において、合成面及び操作性の観点から、 nは 0又は 1であることがよ り好ましぐまた、 Y2は Fであり、 mは 2〜6の整数であることがより好ましぐ Y2は Fであ り、 mは 2〜4の整数であることが更に好ましい。
上記被処理フルォロポリマーにお 、て、上記スルホ -ル基含有パーハロビニルエー テルは、 1種又は 2種以上を組み合わせて用いることができる。
[0016] 本発明における被処理フルォロポリマーは、スルホ -ル基含有パーハロビュルエー テルに由来する繰り返し単位( α )と、該スルホ-ル基含有パーハロビュルエーテル と共重合可能なエチレン性フルォロモノマーに由来する繰り返し単位( j8 )とを含む 共重合体である。
[0017] 上記繰り返し単位( j8 )を構成することとなるエチレン性フルォロモノマーは、エーテ ル性酸素〔一 O—〕を有さず、ビュル基を有するモノマーである力 ビニル基はふつ素 原子により水素原子の一部又は全部が置換されて 、てもよ 、。
本明細書において、「エーテル性酸素」とは、モノマー分子を構成する— O—構造を 意味する。
[0018] 上記エチレン性フルォロモノマーとしては、例えば、下記一般式 (II)
CF =CF-Rf1 (II)
2
(式中、 Rf1は、 F、 C1又は炭素数 1〜9の直鎖状又は分岐状のフルォロアルキル基を 表す。)
で表されるハロエチレン性フルォロモノマー、あるいは下記一般式 (III)
CHY3 = CFY4 (III)
(式中、 Y3は H又は Fを表し、 Y4は H、 F、 CI又は炭素数 1〜9の直鎖状又は分岐状 のフルォロアルキル基を表す。)
で表される水素含有フルォロエチレン性フルォロモノマー等が挙げられる。
[0019] 上記エチレン性フルォロモノマーとしては、例えば、テトラフルォロエチレン〔TFE〕、 へキサフルォロプロピレン〔HFP〕、クロ口トリフルォロエチレン〔CTFE〕、フッ化ビ- ル、フッ化ビ-リデン〔VDF〕、トリフルォロエチレン、へキサフルォロイソブチレン及び パーフルォロブチルエチレン等が挙げられる力 TFE、 VDF、 CTFE、トリフルォロ エチレン、フッ化ビュル、 HFPであることが好ましぐ TFE、 CTFE、 HFPがより好まし ぐ TFE、 HFPが更に好ましぐ TFEが特に好ましい。
上記エチレン性フルォロモノマーとしては、 1種又は 2種以上を用いることができる。
[0020] 本発明における被処理フルォロポリマーは、スルホ -ル基含有パーハロビュルエー テルに由来する繰り返し単位(α )が 5〜50モル0 /0、エチレン性フルォロモノマーに 由来する繰り返し単位( j8 )が 50〜95モル%、該繰り返し単位(ひ )と該繰り返し単位 ( β )との和が 95〜: LOOモル%である共重合体であることが好ましい。
上記スルホ -ル基含有パーハロビュルエーテルに由来する繰り返し単位( α )は、よ り好ましい下限が 7モル%、更に好ましい下限が 10モル%、より好ましい上限が 35モ ル%、更に好まし 、上限が 30モル%である。
上記エチレン性フルォロモノマーに由来する繰り返し単位( j8 )は、より好ましい下限 力 S65モル%、更に好ましい下限が 70モル%、より好ましい上限が 90モル%、更に好 まし 、上限が 87モル%である。
[0021] 本発明における被処理フルォロポリマーは、上記以外の第 3成分モノマーに由来す る繰り返し単位として、該スルホ-ル基含有パーハロビュルエーテル以外のビュルェ 一テルに由来する繰り返し単位(γ )を、より好ましくは 4モル%以下、更に好ましくは 3モル0 /0以下有するものであっても差し支えな 、。
該繰り返し単位( γ )を構成することとなるスルホ -ル基含有パーハロビュルエーテル 以外のビュルエーテルとしては、スルホ -ル基を含有しな 、ものであれば特に限定さ れず、例えば、下記一般式 (IV)
CF =CF-0-Rf2 (IV)
2
(式中、 Rf2は、炭素数 1〜9のフルォロアルキル基又は炭素数 1〜9のフルォロポリエ 一テル基を表す。 )
で表されるパーフルォロビュルエーテル、ある 、は下記一般式 (V)
CHY5 = CF-0-Rf3 (V)
(式中、 Y5は、 H又は Fを表し、 Rf3は、炭素数 1〜9のエーテル基を有していてもよい 直鎖状又は分岐状のフルォロアルキル基を表す。 )
で表される水素含有ビニルエーテル等が挙げられる。上記ビニルエーテルとしては、 1種又は 2種以上を用いることができる。
[0022] 本発明における被処理フルォロポリマーは、一般に、不安定末端基を有するもので ある。
[0023] 本発明において、「不安定末端基」とは、その一般的字義の通りに解すれば、後述の 処理の過程にお!ヽて生じる「易分解性末端基」、「可ふつ素化性末端基」及び「 CF TCO Z (Tは、上記定義と同じ。 Ζは、 Η、 ΝΚ 4又はアルカリ金属元素を表す
2
。 R\ R2、 R3及び R4は、同一若しくは異なって、 H又は炭素数 1〜4のアルキル基を 表す。;)」を含み得るとも考えられる力 本発明では被処理フルォロポリマーが有して いる基を示す。
[0024] 本発明における被処理フルォロポリマーが有し得る不安定末端基としては、例えば、 下記式(1)〜(7)で表される各基等が挙げられる。
(1) CFT— R5 (OH)
nl
(2) -CFT- (R6) -OR7
n2
(3)— CFT—(R8) -COR9 (4) CFT—(R10) — OCOOR11
n4
(5) -CFT-CONR12R13
(6) - CFT - COOR14
(7) - CFT - R15
(各式中、 Tは、 F、炭素数 1〜10のパーフルォロアルキル基、又は、炭素数 2〜15 のパーフルォロアルコキシ基を表し、
Figure imgf000011_0001
R10, R11及び R14は、水素 原子の一部がハロゲン元素に置換していてもよい炭素数 1〜10の炭化水素基を表し 、 R12、 R13及び R15は、 H又は水素原子の一部がハロゲン元素に置換していてもよい 炭素数 1〜10の炭化水素基を表す。なお、上記(5)において R12及び R13は、同一又 は異なる。 nlは 1〜3の整数を表し、 n2、 n3及び n4は、それぞれ 0又は 1の整数を表 す。上記パーフルォロアルキル基及びパーフルォロアルコキシ基は、それぞれエー テル性酸素及び Z又は SO Xを含んでもよい。 Xは、上記定義と同じ。 )
2
[0025] 本発明における被処理フルォロポリマーは、上記不安定末端基を有するものであれ ば、該不安定末端基以外の不安定な CF COOH、 -CF COF、—CF = CF等
2 2 2 の末端基をも有するものであってもよ 、。
上記不安定末端基及び不安定なその他の末端基が生じる原因としては、例えば、
(i)被処理フルォロポリマーを得るための重合反応にぉ 、て添加する重合開始剤、 連鎖移動剤及び z又は重合停止剤に由来する基
(ii)一分子停止反応 (ビュルエーテルの β 開裂等)により生じる基
(iii)本発明における処理を施す前にこれらの末端基が周囲の環境中に存在し得る 水、アルコール、アミン等により更に変化したもの
等が挙げられる。
[0026] 上記重合開始剤、連鎖移動剤及び Z又は重合停止剤等に由来する基 (i)としては、 例えば、
(i— a)重合開始剤としてジ n—プロピルパーォキシジカーボネートを使用した場合に 生成し得る CF OCOOC H (上記 (4) )等
2 3 7
(i—b)連鎖移動剤あるいは重合停止剤としてアルコールを使用した場合、 -CF C
2
H OH、 一 CF CH CH OH (上記(1) )あるいは一 CF COOCH 、 一 CF COOC H CH (上記(6) )等
2 3
(i— c)連鎖移動剤としてエーテル類を使用した場合に生成し得る—CF CH OCH
2 2 3
(上記 (2) )等
(i—d)連鎖移動剤にケトン類を使用した場合に生成し得る—CF CH COCH (上
2 2 3 記 (3) )等
(i e)連鎖移動剤として炭化水素を使用した場合、生成し得る CF CH CH (上
2 2 3 記 (7) )等、
(i f) pH調整等の目的でアンモニアを作用させた場合に生成する CF CONH (
2 2 上記 (5) )等
が挙げられる。
[0027] 上記一分子停止反応により生じる基 (ii)としては、 CF COF等が挙げられる。
2
重合時に一旦生じた末端基が周囲の媒体により更に変化した末端基 (iii)としては、 例えば、上記 CF COFが共存し得る水によりカルボキシル基に変化したもの(一 C
2
F CO H)、上記 CF COFが共存し得るアルコールによりエステル基に変化したも
2 2 2
の( CF CO CH 、 一 CF CO C H (上記(6) )等)、上記 CF COFがァミン若し
2 2 3 2 2 2 5 2 くはアンモニアによりアミド結合に変化したもの( CF CO NH 、— CF CO N (CH
2 2 2 2 2
) (上記 (5) )等)が挙げられる。
3 2
[0028] 上述の式(1)〜(7)の何れか 1つで表される不安定末端基は、従来のふつ素ガスに よる処理を行うと安定ィ匕が不充分となる問題があった。その原因としては、上記各不 安定末端基が COF、ふつ素化エステル構造等の末端基に変換され易ぐ該変換 後の末端基はふつ素ガス中において非常に安定なので、従来のフッ素ガスによる処 理では充分に— CF T(Tは、上記定義と同じ。)に変換できな力 たためと考えられ
2
る。また、上記— COF、フッ素化エステル構造等の末端基は、電解質膜に加工する 過程で COOHに変換されるため、燃料電池の耐久性を劣化させる原因となって!/ヽ た。
本発明の意義は、上記問題に対し、上述の不安定末端基を有するフルォロポリマー を温和な条件下で充分に安定ィ匕する点にある。
上記被処理フルォロポリマーにおける不安定末端基は、上記(1)〜(7)で表される 各基の少なくとも 1つである場合、例えば後述の工程 Aにおいて、該不安定末端基を 易分解性末端基に変換することができ、し力も該変換を温和な条件下であっても行う ことができるので、 SO H基含有フルォロポリマーを効率よく製造することができる。
3
なかでも、上記不安定末端基が、上記(1)、(3)、(4)、(5)及び (6)よりなる群力も選 択される式で表される基、特に一CF OCOOC H 、 一 CF CH OH、 一CF COOC
2 3 7 2 2 2
H及び CF CONHである場合、本発明における末端安定化を更に容易に行うこ
3 2 2
とがでさる。
また、(2)、 (4)及び (7)よりなる群から選択される式で表される基を含有する場合に は、後述の工程 Aにおいて酸素等の酸ィ匕性ガスを共存させる方法が効果的である。
[0029] 上記被処理フルォロポリマーは、通常、複数個の被処理フルォロポリマー分子の集 合体である。
該複数個の被処理フルォロポリマー分子の集合体は、不安定末端基を有する被処 理フルォロポリマー分子と、不安定末端基を有しな 、被処理フルォロポリマー分子と の集合体であってもよい。
上記不安定末端基は、該複数個の被処理フルォロポリマー分子の集合体にぉ 、て 、少なくとも 1個存在すればよいのであるが、通常、複数個が存在する。
該複数個の不安定末端基は、上記複数個の被処理フルォロポリマー分子の集合体 において、 1種類のみであってもよいし、 2種類以上であってもよい。該 2種類以上の 不安定末端基は、被処理フルォロポリマー分子 1個あたり 2種類以上であってもよい し、被処理フルォロポリマー分子により不安定末端基の種類が一部又は全部異なつ ていてもよい。
上記複数個の不安定末端基は、本発明における処理の過程において、該複数個が 全て同一種類の基に変換してもよいし、該複数個のうち基により異なる種類の基に変 換してもよいし、該複数個のうち一部に未変換の基を含むこととなってもよい。
本発明における被処理フルォロポリマーは、例えば、溶液重合、懸濁重合、乳化重 合等の従来公知の方法にて調製することができる。
[0030] 上記被処理フルォロポリマーは、榭脂粉末状、ペレット状、成形して得た膜状の何れ であってもよい。上記被処理フルォロポリマーは、後述の各工程を充分に行う点では 、榭脂粉末状であることが望ましいが、取り扱い性の点では工業上はペレット状であ ることが望ましい。また、成形加工時にポリマー主鎖が断裂し、新たな不安定末端が 生成する問題を避けるためには、最終成形品の形態、特に膜状であることが好ましい
[0031] 本発明の SO H基含有フルォロポリマー製造方法(1)は、上述の被処理フルォロ
3
ポリマーに、少なくとも下記工程 A、工程 B及び工程 Cをこの順に施す操作を含むも のである。
A:ハロゲン化剤を作用させる工程
B:分解処理剤を作用させる工程
C:ふつ素化剤を作用させる工程
また、上記工程 Aと工程 B、あるいは工程 Bと工程 Cとの間に、所望により、それぞれ 次工程に悪影響を及ぼさな 、ものであれば別の工程を含んで 、ても全く差し支えな い。
これら別の工程としては、例えばペレット化、成膜等の加工工程であってもよいし、上 記被処理フルォロポリマー又は各工程におけるフルォロポリマーに含有される SO X基、 SO H基あるいはその他の基の少なくとも一部を別の基に変換する化学反
2 3
応工程であってもよい。
[0032] 上記工程 Aは、一般にハロゲン化剤を作用させることにより上記不安定末端基を易 分解性末端基に変換する工程 A1である。
本発明において、「易分解性末端基」とは、上述の不安定末端基からハロゲン化剤を 作用することにより変換される基であって、かつ工程 Bにおける分解処理剤を作用さ せることにより後述の「可ふつ素化性末端基」に変換し得る基である。
該易分解性末端基としては、例えば、 CFTCO CTは上記定義と同じ。 X1は F又 は C1を表す。)、 -CFTCO Rx (Tは上記定義と同じ。 Rxはハロゲン化アルキル基を
2
表す。)等が挙げられる。
上記一 CFTCOX1としては、 CFTCOFが好ましぐ上記一 CFTCOORxとしては 、 Rxが炭素数 1〜3のハロゲン化アルキル基であるものが好ましぐ Rxが炭素数 1〜 3のパーハロアルキル基であるものがより好ましぐ CFTCOOCX1 (X1は上記定 義と同じ。)等が更に好ましぐ -CFTCOOCFが特に好ましい。
3
本発明において、ハロゲン化剤を作用させることにより、例えば、上述の式(1)、 (2) 、(3)、(4)、(5)又は(7)で表される不安定末端基は CF COFに変換し、上記式(
2
6)で表される不安定末端基は、アルキル基 R の水素原子がハロゲン元素に置換
14
された CF COOCX H (式中、 Xは、 F又は C1であり、 n5は 1〜3の整数であ
2 n5 3-n5
る。 )に変換することができる。このうち、上記式(7)で表される基は、アルキル基— R1 5の水素原子がハロゲン化剤処理によりふつ素に置換される力 充分な— CF Tィ匕 (T
2 は上記定義と同じ。)を比較的低温下で且つできるだけ短時間で行うため、ハロゲン ィ匕剤に酸素等の酸化剤を共存させることにより CF COX1 (式中、 X1は上記定義と
2
同じ。 )に変換する方法が好ましい。
本発明の SO H基含有フルォロポリマー製造方法では、被処理フルォロポリマー
3
力 上記(1)〜(7)で表される基よりなる群力も選ばれる少なくとも 1種の不安定末端 基を有する場合であっても、ハロゲン化剤で処理することにより CF COX1又は
2
COORx (各式において、 X1及び Rxは上記定義と同じ。 )に変換し、更に分解処理 剤を作用させて— CFTCOOZ (T及び Zは、上記定義と同じ。 )に変換した後、ふつ 素化剤を作用させて一 CF T化するので、効率よく一 CF T化することができる。
2 2
上記工程 Aにおけるハロゲン化剤として、一般に、ハロゲンガスの単体若しくはその 混合物、 AX (式中、 Aは、中心元素となる 15〜18族元素、 PO、 SO又は SOを表し y 2
、 Xは、ハロゲン元素を表す。但し、 Aが 17族元素のとき、 Xは該 Aとしての 17族元素 とは異なる。 yは、 Aの価数を表す。)で表されるハロゲンィ匕物、又は、遷移金属の過 ふつ素化物等を用いることができる。
上記ハロゲン化剤としては、例えば F、 C1及び Br並びにこれらの混合物; NF、 PF
2 2 2 3
、 PF、 PCI、 PCI、 AsF、 SbF、 OF、 SF、 SCI、 SCI、 C1F、 C1F、 BrF、 Br
3 5 3 5 5 5 2 4 2 4 3 3
F、 IF、 IF、 XeF、 POC1、 SOC1、 AgF、 CoF、 K NiF及び R16R1?NSF (R16
5 5 7 2 3 2 2 3 3 7 3 及び R17は、同一又は異なって、炭素数 1〜3のアルキル基を表す。)並びにこれらの 混合物等が挙げられる。上記 R16R17NSFとしては、例えば Et NSFが挙げられる。
3 2 3
なかでも、入手し易ぐ取り扱いが容易である点で、 F、 CI、 Br、 NF、 PCI、 PCI
2 2 2 3 3 5
、 SF、 SCI、 SCI、 C1F、 C1F、 BrF、 IF、 POC1、 SOC1及び R16R17NSF (R16 及び R17は、上記定義と同じ。)よりなる群力 選択される少なくとも 1種が使用される 力 F、 NF、 PF、 SF、 IF、 C1F及び C1Fよりなる群力 選択される少なくとも 1種
2 3 5 4 5 3
のふつ素源力もなるガス状ふつ素ィ匕剤がより好ましぐ Fであることが特に好ましい。
2
なお、必要に応じて酸素等の酸ィ匕性ガスと混合して使用することができる。
上記ハロゲン化剤は、ガス状ィ匕合物である場合、窒素等の不活性ガスで 1〜90質量 %に希釈して使用することが好ましい。
[0034] 上記工程 Aにおいて、ハロゲン化剤は 0°C以上、 150°C未満で作用させることが好ま しい。上記温度は、より好ましい下限が 20°C、更に好ましい下限が 50°Cであり、より 好ましい上限が 140°C、更に好ましい上限が 130°Cである。ハロゲン化剤の作用を 該範囲内の温度で行うことにより、易分解性末端基への変換率を高く維持しながら、 炭素 炭素二重結合の形成、主鎖切断等の被処理フルォロポリマーの損傷や不要 な架橋構造の形成等を抑制することができる。
工程 Aは、使用するハロゲン化剤、被処理フルォロポリマーの種類等に応じて異なる 力 例えばガス状化合物で圧力容器を使用する場合、ゲージ圧— 0. 08〜3MPaの 圧力下で行うことが好ましい。上記圧力は、より好ましい下限が 0. 05MPaであり、 より好ましい上限が IMPaである。
[0035] 上記ハロゲン化剤としてふつ素化剤を使用する場合、工程 Aを適用する対象物は、 水分が質量で 500ppm以下である条件下に行うことが好ましい。
上記水分量は、より好ましい上限が 450ppm、更に好ましい上限が 350ppmである。 上記ハロゲン化剤処理対象物中の水分は、上記範囲内であれば経済性、生産性の 観点から、その下限を例えば 0. Olppmとすることができる。なお、上記水分量は、力 ールフィッシャー滴定法を用いて測定し得られた値である。
特許文献 3に記載されているように、例えば—SO F基を有するモノマー力 乳化重
2
合により被処理フルォロポリマーを得た場合、乳化重合過程において、 -SO F基の
2 ごく一部が— SO H基に変換し、更に場合によっては、環境に存在するアンモニア等
3
により— SO M基(Mは、 NI^RSRSR4又は M1 を表す。 R R2、 R3及び R4は、同
3 1/L
一又は異なって、 H若しくは炭素数 1〜4のアルキル基を表す。 M1は、 L価の金属を 表す。)に変換される可能性があるが、該ー SO H基および SO M基は高吸湿性 のため、高い含水率下でふつ素化剤と作用させると、ふつ素源 が水と反応し、ふ つ素化が阻害される問題を起こす。
上記対象物中の水分を上述の範囲にする方法としては特に限定されず、例えば、所 望により遠心脱水等を経た後、 〜 で 〜 時間、温度を所望により段階的 に変え、所望により減圧し、加熱する方法;ベント型押出機内で溶融させてベント孔 力 脱水させる方法等の公知の乾燥方法で行うことができる。
工程 は、一般に分解処理剤を作用させることにより上記易分解性末端基を可ふつ 素化性末端基に変換する工程である。
本発明にお ヽて「可ふつ素化性末端基」とは、上記の易分解性末端基が分解した後 、容易にふつ素化が可能となる末端基を示す。
上記可ふつ素化性末端基としては、 は、上記定義と同じ。 は、 、 又はアルカリ金属元素を表す。
、 及び は、同一若しくは異なって、 又は炭素数 〜 のアルキル基を表す。)等 が挙げられる。
該 は、工程 において容易に は、上記定義と同じ。)に変換 することができる。
上記 Ζは、一般に、反応媒体に上記 NI アルカリ金属元素等が存在する場 合、該存在する 、アルカリ金属元素等に影響するが、工程 におけるふ つ素化の効率の点で、 であることが特に好ましい。
上記分解処理剤は、水、フルォロアルコール若しくはこれらを含む混合物カゝらなる液 状分解処理剤及びガス状分解処理剤の ヽずれであっても構わな \ヽが、分解処理剤 としては、水であることが特に好ましい。易分解性末端基は、水に対して非常に反応 性が大きぐ湿った空気と接触させるだけで可ふつ素化性末端基に変換できる場合も あるので、上記分解処理剤として水を使用すると、工程 は簡便になる。
なお、分解処理剤として水を使用する場合、必要に応じて ジォキサン、ァセト ン、モノグライム、ジグライム、 メチル —ピロリドン、 ジメチルホルムアミ ド等の水溶性有機溶媒を使用しても差し支えない。 上記工程 Bにおける分解処理剤の使用量は、使用する分解処理剤の種類に応じて 適宜選択することができるが、液状分解処理剤を使用する場合、工程 Aを経た被処 理フルォロポリマー 100質量部に対し 1〜: LOOOO質量部使用するのが好ましい。 上記工程 Bは、 0〜180°Cの温度で行うことが好ましい。該温度は、より好ましい下限 力 S20°C、更に好ましい下限が 50°Cであり、より好ましい上限が 170°C、更に好ましい 上限が 160°Cである。
上記工程 Bにおいて、圧力容器を使用する場合、ゲージ圧— 0. 08〜3MPaの圧力 下で行うことが好ましいが、より好ましい下限が 0. 05MPaであり、より好ましい上限 力 lMPaである。
[0037] 工程 Cは、一般に、ふつ素化剤を作用させることにより、上記の可ふつ素化性末端基 を— CF T(Tは、上記定義と同じ。 )に変換する工程である。
2
[0038] 工程 Cは、ふつ素化剤を作用させる対象 (以下、「ふつ素化剤処理対象物」と記載す る)が水分をできるだけ含まない状態で行うことが望ましぐふつ素化剤処理対象物中 に含有される水分が該ふつ素化剤処理対象物の 500ppm以下である条件下にて行 うことが好ましい。
上記水分量が 500ppmを超えると、上述したように、 SO Fを有するモノマーを乳
2
化重合して得られたフルォロポリマー等、高吸湿性の被処理フルォロポリマーを用い る場合、ふつ素化剤処理対象物中の水分が原因でふつ素化が阻害されることがある 上記水分量は、より好ましい上限が 450ppm、更に好ましい上限が 350ppmである。 上記ふつ素化剤処理対象物中の水分は、上記範囲内であれば経済性、生産性の観 点から、その下限を例えば 0. Olppmとすることができる。
ふつ素化剤処理対象物中の水分を上述の範囲にする方法としては特に限定されず 、例えば、上述の工程 Aに関する説明で例示した方法等が挙げられる。
[0039] 上記工程 Cで使用されるふつ素化剤は、 F、 NF、 PF、 SF、 IF、 K NiF、 C1F及
2 3 5 4 5 3 7 び C1Fよりなる群力 選択される少なくとも 1種のふつ素源力 なるふつ素化剤が好ま
3
しぐ上記ふつ素源としては、ガス状であることが好ましぐ Fが特に好ましい。
2
上記ふつ素化剤は、上記ふつ素源と、所望によりふつ素化に不活性な気体とからなる ものが使用され、不活性な気体としては、例えば、窒素ガス、アルゴンガス等が挙げ られる。
上記ふつ素源は、ガス状である場合、上記ふつ素化剤の 1質量%以上であることが好 ましぐ 10質量%以上であることがより好ましぐ上記範囲内であれば、 50質量%以 下であってもよい。
上記工程 Cは、ガス状ふつ素化剤を使用する場合、ゲージ圧— 0. 08〜3MPaの圧 力下で行うことが好ましい。上記圧力は、より好ましい下限がゲージ圧 0. 05MPa であり、より好ましい上限が IMPaである。
[0040] 工程 Cの温度は、好ましくは 0°C以上、 150°C未満である力 より好ましい下限は 20 。C、更に好ましい下限は 50°Cであり、また、より好ましい上限は 140°C、更に好ましい 上限は 130°Cである。該範囲内の温度で行うことにより、 -CF T(Tは、上記定義と
2
同じ。)への変換率を高く維持しながら、被処理フルォロポリマー中の炭素 炭素二 重結合の形成、主鎖切断や架橋構造の形成等を抑制することができる。
[0041] 上記工程 Cは、連続式、ノ ツチ式の何れの操作も可能であり、その装置としては、棚 段型反応器、筒型反応器等の静置式反応器;攪拌翼を備えた反応器;ロータリーキ ルン、 Wコーン型反応器、 V型プレンダー等の容器回転 (転倒)式反応器;振動式反 応器;攪拌流動床等の種々の流動床反応器;等から適宜選択される。また、処理対 象物が、榭脂粉末状、ペレット状の場合には、容器回転式反応器又は振動式反応器 でふつ素化処理を行うことが、反応温度を均質に保ちやすい点で好ましい。また処理 対象物が膜状成形体である場合、ロール状に捲回した状態で処理してもよいし、連 続的に巻きだしながら処理してもよい。
[0042] SO X基 (Xは、 F又は C1を表す上記定義と同じ。)含有モノマー単位と不安定末端
2
基とを有する被処理フルォロポリマーに末端安定化処理を行う SO H基含有フル
3
ォロポリマー製造方法において、該末端安定化処理が、下記工程 P及び Qを含むこ とを特徴とする SO H基含有フルォロポリマー製造方法 (2)も本発明に含まれる。
3
P :不安定な末端基の 90%以上が CFTCO Zである SO H基含有フルォロポ
2 3
リマーを得る工程
Q :ふつ素ィ匕剤を作用させることにより上記一 CFTCO Zを一 CF Tに変換するェ 程
(X、 T及び zは、上記定義と同じ。 )
[0043] 上記工程 Pにおいて、「不安定な末端基」は、被処理フルォロポリマーについて上述 した不安定末端基及び該不安定末端基以外の不安定な CF COOH、 -CF CO
2 2
F、 -CF = CF等の末端基を含み得る概念である。
2
上記工程 Pにおいて、上述の不安定な末端基の 90%以上が— CFTCO Z (T及び Z
2 は、上記定義と同じ。)である SO H基含有フルォロポリマーを得ることができる操
3
作であれば何れの操作を行ってもよぐ例えば、上記工程 Pとして、上述の工程 A及 び工程 Bを実施してもよ 、し、被処理フルォロポリマーにオゾン等の酸化剤を接触さ せた後、生成した—CF COFを水等で加水分解してもよい。また、被処理フルォロポ
2
リマーを 200〜300°Cの高温で処理した後、生成した— CF COFを水等で加水分解
2
する方法も挙げられる。ここで、被処理フルォロポリマーを 200〜300°Cの高温で処 理する場合に、 0. 02MPa以下の減圧下で処理してもよぐ処理時間としては、例え ば、 0. 1時間以上処理することができる。
[0044] 上記工程 Qにおけるふつ素ィ匕剤としては、上述の工程 Cと同様のものが挙げられ、中 でも Fが特に好ましい。
2
上記ふつ素化剤は、上述の工程 Cと同様に希釈して使用することが好ましい。
上記工程 Qにおける反応条件は、使用するふつ素化剤、被処理フルォロポリマーの 種類等に応じて異なり、特に限定されないが、 0. 08〜3MPaの圧力下で行うこと が好ましい。
上記工程 Qは、工程 Pを経たフルォロポリマーについて行うものなので、 0°C以上、 1 50°C未満の温度下に行うことが可能である。
上記温度は、好ましい下限が 20°C、より好ましい下限が 50°Cであり、好ましい上限が 140°C、より好ましい上限が 130°Cである。
[0045] 本発明の SO H基含有フルォロポリマー製造方法は、例えば、得られる SO H
3 3 基含有フルォロポリマーにおいて、炭素数 106個あたり不安定末端基数を 20個以下 にすることが可能であり、該炭素数 106個あたりの不安定末端基数は、好ましくは 15 個以下、より好ましくは 10個以下にすることができる。 [0046] 本発明の SO H基含有フルォロポリマー製造方法を行った場合、被処理フルォロ
3
ポリマー中の不安定末端基の— CF Tへの変換率 (Tは、上記定義と同じ。以下、該
2
変換率を「― CF Tィ匕率」ともいう。)を、一般に 90%以上、より好ましくは 95%以上と
2
することができる。
本発明において、上記 CF T化率は、例えば、工程 A及び工程 B、又は工程 Pを行
2
うことにより向上でき、好ましくは工程 A又は工程 Pを上述の温度範囲内で行うことに より、更に高めることができる。
本発明の SO H基含有フルォロポリマー製造方法は、上述の各工程を経るので、
3
高温加熱下でふつ素化する際に生じていたフルォロポリマーの主鎖切断等の損傷 や不要な架橋構造の形成等を防止することができる。
本発明において、該フルォロポリマーの損傷は、好ましくはハロゲン化剤又はふつ素 ィ匕剤を作用させる温度を上述の範囲内に抑えることにより充分に防止することができ る。
[0047] 本発明の SO H基含有フルォロポリマー製造方法は、一般に、上述の工程 A〜C
3
又は上記工程 P及び Qに加え、更に— SO X基 (Xは、上記定義と同じ。以下、本段
2
落において同様。)を加水分解する工程をも含む。
本工程は、上述の工程 A又は工程 Pを行う前に行ってもよいし、該各工程の後に行う ものであってもよいが、ふつ素化剤処理時における上述の水分量管理の点で、工程 A〜C全て終了後又は工程 P及び Q全て終了後に行うことが好ま 、。
本工程は、上述の工程 A〜C又は上記工程 P及び Qを経た SO X基含有フルォロ
2
ポリマーと NaOH水溶液や KOH水溶液あるいはそれぞれの有機溶媒溶液又は有 機溶媒と水との混合溶液に溶解した溶液等の強塩基とを接触させてケン化すること により— SO X基をスルホ -ゥム金属塩に変換し、更に、必要に応じ水洗後、更に、
2
硝酸、硫酸、塩酸等の酸性液に作用させて、スルホニル金属塩を SO Hに変換す
3 るものである。
上記 SO X基が、例えば SO Fである場合、 NaOH水溶液又は KOH水溶液あ
2 2
るいはそれぞれの有機溶媒溶液又は有機溶媒と水との混合溶液に溶解した溶液と 接触させて、 -SO Na又は SO Kに変換し必要に応じ水洗した後、更に酸性液に 作用させて SO Hに変換する。
3
[0048] 上述の本発明の SO H基含有フルォロポリマー製造方法により得られた SO H
3 3 基含有フルォロポリマーもまた、本発明の一つである。
本発明の— SO H基含有フルォロポリマーは、それを膜状にした場合に、鉄 (Π)陽ィ
3
オンの初期濃度が 2ppm且つ過酸化水素の初期濃度が 1質量%である過酸化水素 水溶液 aリットルに上記— SO H基含有フルォロポリマー由来の膜 bグラムを膜液比〔
3
b/a] 3. 2にて浸漬して 80°Cにて 2時間保持することよりなるフェントン処理により溶 出したフッ化物イオン量が上記 SO H基含有フルォロポリマー由来の膜 100質量
3
部に対し、 8. 0 X 10—4質量部以下であるものが好ましい。
本発明の SO H基含有フルォロポリマーは、上記範囲内のフッ化物イオン量であ
3
れば、安定ィ匕フルォロポリマーの安定ィ匕の程度が充分に高 、ものである。
上記フェントン処理により溶出したフッ化物イオン量は、上記 SO H基含有フルォ
3
口ポリマー由来の膜 100質量部に対し、 5. 0 X 10—4質量部以下であるものがより好 ましぐ 4. 0 X 10—4質量部以下であるものが更に好ましい。上記フェントン処理により 溶出したフッ化物イオン量は、上記範囲内であれば、上記 SO H基含有フルォロ
3
ポリマー由来の膜 100質量部に対し、例えば 1. 0 X 10—5質量部以上、好ましくは 1. 0 X 10_4質量部以上であっても工業上許容することができる。
本明細書において、上記フッ化物イオン量は、イオンクロマト法 (東ソ一社製 IC 20 01、陰イオン分析用カラムとして、東ソ一社製 TSKgel SuperIC— Anionを使用) にて定量すること力もなる、後述の「フェントン処理」の方法にて測定したものである。 本発明の— SO H基含有フルォロポリマーは、上述の本発明の製造方法により、使
3
用する装置や材料の腐食に起因する汚染、ポリマー鎖分解等を発生させることなく 得られるので、化学的安定性等、各種物性に優れたフルォロポリマーを得ることがで きる。
本発明の SO H基含有フルォロポリマーは、上述したように化学的安定性に優れ
3
るので、使用条件が通常過酷な固体高分子電解質型燃料電池等の燃料電池の電 解質膜及び/又は触媒層の材料として好適に用いることができる。
[0049] -SO H基含有フルォロポリマーであって、 170 mの膜厚を有する上記 SO H 基含有フルォロポリマーの膜にっ 、て、フェントン処理により溶出するフッ化物イオン 量が上記膜 100質量部に対し、 8. 0 X 1CT4質量部以下であることを特徴とする— S O H基含有フルォロポリマーも、本発明の一つである。上記フェントン処理により溶
3
出するフッ化物イオン量は、 2. 8 X 10—4質量部以下であることが好ましぐ 2. 5 X 10 _4質量部以下であることがより好ましい。本発明の— SO H基含有フルォロポリマー
3
は、フェントン処理により溶出するフッ化物イオン量が上記範囲内のものであるので、 燃料電池用電解質膜として使用した場合に極めて耐久性に優れるものである。上記 フェントン処理により溶出したフッ化物イオン量は、上記範囲内であれば、上記 SO H基含有フルォロポリマー由来の膜 100質量部に対し、例えば 1. 0 X 10—5質量部
3
以上、好ましくは 1. 0 X 10—4質量部以上であっても工業上許容することができる。
[0050] 膜とした場合にフッ化物イオンの溶出量が 8. 0 X 10—4質量部以下である上記 SO
H基含有フルォロポリマーは、上述の本発明の— SO H基含有フルォロポリマー製
3 3
造方法により得ることができる。
[0051] 本明細書において、上記 170 μ mの膜厚を有する SO H基含有フルォロポリマー
3
の膜は、以下の(1)又は(2)の方法により作成するものである。
(1) -SO H基含有フルォロポリマーがパウダーである場合、 270°C、 lOMPaにお
3
いて 20分間ヒートプレスして、膜厚 170 mの膜を作成する。
(2) -SO H基含有フルォロポリマーが膜等に成形されている場合、成形体をオート
3
クレープに投入し、 1: 1の割合の水とエタノールとからなる混合溶媒の存在下に 180 〜240°Cで加熱して液状にし、キャスト製膜により膜厚 170 mの膜を作成する。
[0052] 本発明の高分子電解質膜は、上述した本発明の— SO H基含有フルォロポリマーを
3
含むものである。
本発明の高分子電解質膜は、上記— SO H基含有フル
3 ォロポリマーを含むものであ るので、燃料電池、化学センサー等における電解質膜材料として用いた際、長期間 使用しても劣化せず、該膜材料の劣化が原因で生じる Fイオンが燃料電池の排水に 混入する事態を回避することができる。
[0053] 本発明の高分子電解質膜は、膜厚が 5〜 150 mであるものが好ましい。 5 /z m未満 であると、燃料電池に使用した場合、燃料電池運転過程において機械的強度が低 下しやすぐ膜が破壊しやすい。更には水素あるいは酸素のクロスリークが大きぐ発 電効率を高く出来ない。逆に 150 mを超えると、燃料電池に使用した場合、膜抵抗 が大きぐ充分な初期特性を発揮することができない。
本明細書において、上記「初期特性」とは、本発明の高分子電解質を用いて燃料電 池運転を行 ヽ、電流密度 電圧曲線を測定し電圧の数値の大きさと広 ヽ電流密度 での発電性能等をいう。
上記高分子電解質膜の膜厚のより好ましい下限は 10 m、より好ましい上限は 100 μ mであ 。
本発明の高分子電解質膜は、一般に、本発明の— SO H基含有フルォロポリマーか
3
らなる膜状の形態のものである。
上記膜状の形態のものへの成形は、例えば、 τダイによる成形法、インフレーション 成形法、カレンダーによる成形法等の溶融成形法により行うことができる。このような 溶融成形は、 SO H基含有フルォロポリマーを直接成形しょうとした場合に溶融成
3
形可能温度とフルォロポリマーの熱分解温度が接近しているため、重合完了後の SO X基含有フルォロポリマー、若しくは上述の工程 A、 B及び Cあるいは工程 P及び
2
Qを経た後の SO X基含有フルォロポリマーに行う力、又は SO M (Mは、 NR1
2 3
R2R3R4又は M1 R3及び R4は、同一又は異なって、 H若しくは炭
Figure imgf000024_0001
素数 1〜4のアルキル基を表す。 M1は、 L価の金属を表す。)の形態のフルォロポリ マー(以下、 - SO M型フルォロポリマーとする)に行うことが好ましい。
3
重合完了後の SO X基含有フルォロポリマーを溶融成形した場合には、その後膜
2
形態にて、上述の工程 A〜Cあるいは工程 P、 Qを行うことが出来る。 - SO X基含有
2 フルォロポリマーを膜状に成形した場合には、更に上述の加水分解処理を施すこと により膜状の一 SO H基含有フルォロポリマーとして得ることが出来、燃料電池用用
3
途の膜等に好適に使用することが出来る。
また、工程 A〜C又は工程 P及び Qを行った後— SO M型に変換したフルォロポリマ
3
一を膜状に成形した場合は、膜状に成形した後に酸処理及び Z又は水あるいは熱 水処理することにより膜状の SO H基含有フルォロポリマーに変換することもできる 更には、 SO H基含有フルォロポリマーの形態で膜状に溶融成形を行った場合、
3
そのまま使用することも可能であるが、更に必要に応じて酸処理及び Z又は水あるい は熱水処理した後に使用することも好ましい。
上記成形に際しては、上記 SO H基含有フルォロポリマーあるいは SO M型フ
3 3 ルォロポリマーあるいは SO X基含有フルォロポリマーに、必要に応じてその他の
2
成分を混合しても構わない。
上記成形の条件は、行う成形法等に応じ適宜設定することができ、例えば、 Tダイに よる溶融成形法の場合、溶融榭脂温度は、 100〜400°Cが好ましぐ更に好ましくは 200〜300。Cである。
上記本発明の SO H基含有フルォロポリマーを膜状 (フィルム状)に成形する別の
3
方法としては、成形用フルォロポリマー溶液を支持体上にキャストして、支持体上に 液状塗膜を形成し、そして、液状塗膜から液状媒体を除去する方法 (キャスト法)も挙 げることができる。
上記成形用フルォロポリマー溶液は、後述の成形用フルォロポリマーが液状媒体に 分散あるいは溶解されたものであれば特に限定されな 、が、例えば成形用フルォロ ポリマーを水やアルコール、有機溶媒等力 なる適当な溶媒に分散又は溶解して、 より好ましくは該適当な溶媒にオートクレープ等を用いて 80〜300°Cで分散又は溶 解して得られる。
また上記成形用フルォロポリマーの分散又は溶解に際し、必要に応じて上記成形用 フルォロポリマー以外の第三成分を混合しても構わない。また、得られた分散液ある いは溶液にその他の成分を混合しても構わな 、。
上記成形用フルォロポリマーは、上述の SO H基含有フルォロポリマー、 SO M
3 3 型フルォロポリマー、重合完了後の SO X基含有フルォロポリマーあるいは、上述
2
の工程 A〜Cあるいは工程 P、 Qを経た後の SO X基含有フルォロポリマーの何れ
2
であってもよい。
上記成形用フルォロポリマーがー SO M型フルォロポリマーである場合、該成形用
3
フルォロポリマーを膜状に成形した後に、酸処理及び、水あるいは熱水処理を施す ことによって本発明の高分子電解質膜とすることが出来る。重合完了後の SO X基 含有フルォロポリマー力 なる成形用フルォロポリマー溶液を用いた場合には、該成 形用フルォロポリマーを膜状に成形した後に上述の工程 A〜Cあるいは工程 P、 Qを 施し、その後加水分解を施すことにより、上述の工程 A〜Cあるいは工程 P、 Qを施し た SO X基含有フルォロポリマー力 なる成形用フルォロポリマー溶液を用いた場
2
合には、該成形用フルォロポリマーを膜状に成形した後に加水分解を施すことにより 、それぞれ本発明の高分子電解質膜とすることが出来る。
上記成形用フルォロポリマー溶液を支持体上にキャストする方法としては、グラビア口 一ノレコータ、ナチユラノレローノレコータ、リノ一スローノレコータ、ナイフコータ、ディップ コータ、ノイブドクターコータ等の公知の塗工方法を用いることができる。
キャストに用いる支持体は限定されないが、一般的なポリマーフィルム、金属箔、アル ミナ、 si等の基板等が好適に使用できる。このような支持体は、膜 Z電極接合体 (後 述する)を形成する際には、所望により、高分子電解質膜から除去することができる。
[0056] また、特公平 5— 75835号公報に記載のポリテトラフルォロエチレン〔PTFE〕膜を延 伸処理した多孔質膜に膜キャスト液を含浸させて力 液状媒体を除去することにより 、補強体 (該多孔質膜)を含んだ高分子電解質膜を製造することもできる。また、膜キ ャスト液に PTFE等カゝらなるフィブリルィ匕繊維を添カ卩してキャストしてカゝら液状媒体を 除去することにより、特開昭 53— 149881号公報と特公昭 63— 61337号公報に示 されるような、フィブリル化繊維で補強された高分子電解質膜を製造することもできる
[0057] 本発明の高分子電解質膜は、所望により、 40〜300°C、好ましくは 60〜220°C、更 に好ましくは 80〜160°Cで加熱処理(アニーリング)に付して得たものであってもよい 。更に、本来のイオン交換能を充分に発揮させるために、所望により、塩酸や硝酸等 で酸処理を行ってもよい。また、成膜工程で成膜方向に対して延伸配向を付与する ことが可能であり、更に横 1軸テンターや逐次又は同時 2軸テンターを使用することに よって延伸配向を付与することもできる。
[0058] 本発明の高分子電解質膜は、後述する固体高分子電解質型燃料電池の膜材として の用途の他、リチウム電池用膜、食塩電解用膜、水電解用膜、ハロゲン化水素酸電 解用膜、酸素濃縮器用膜、湿度センサー用膜、ガスセンサー用膜、分離膜等の電解 質膜又はイオン交換膜の膜材としても好適に用いることができる。また、これらの使用 に際しては、必要に応じて本発明の SO H基含有フルォロポリマーを SO M型
3 3 フルォロポリマー等に変換して用いることも可能である。
[0059] 本発明の電極触媒層は、上記— SO H基含有フルォロポリマーを含むものである。
3
上記電極触媒層は、通常、上記 SO H基含有フルォロポリマーと活性物質とを液
3
状媒体に分散した液状組成物を基材に塗装することにより得られたものである。
上記活性物質としては、上記電極触媒層にお ヽて活性を有し得るものであれば特に 限定されず、例えば、触媒あるいはそれらを担体に担持させたもの等が挙げられる。 上記触媒としては、電極触媒として通常使用されるものであれば特に限定されず、例 えば、白金、ルテニウム等を含有する金属、あるいは通常 1種類以上の金属力 なる 中心金属をもつ有機金属錯体であって、その中心金属の少なくとも 1つが白金又は ルテニウムである有機金属錯体等が挙げられる。
上記白金、ルテニウム等を含有する金属としては、白金の単体(白金黒)、ルテニウム 単体、白金 ルテニウム合金等が挙げられる力 なかでも白金を含有する金属が好 ましい。
上記触媒を担持する担体として特に限定されないが、シリカ、アルミナ、カーボン等 の粒子等を例示することができる。中でも導電性に優れることからカーボンであること が特に好ましい。
[0060] 上記電極触媒層を得るに際して用いられる液状媒体としては、上記 SO H基含有
3 フルォロポリマー力もなる粒子又は溶液の良好な分散性が望まれる場合には、水の 他にも、メタノール等のアルコール類; N メチルピロリドン〔NMP〕等の含窒素溶剤; アセトン等のケトン類;酢酸ェチル等のエステル類;ジグライム、テトラヒドロフラン〔TH F]等の極性エーテル類;ジエチレンカーボネート等の炭酸エステル類等の極性を有 する有機溶剤が挙げられ、これらの中から 1種又は 2種以上を混合して用いることが できる。
[0061] 上記液状組成物は、少なくとも、上記 SO H基含有フルォロポリマーと、上記活性
3
物質及び液状媒体とからなるものであり、必要に応じてその他の成分を含有していて ちょい。 上記その他の成分としては、例えば、キャスト製膜、含浸等により膜状に成形する目 的においては、レべリング性を改善するためのアルコール類、造膜性を改善するため のポリオキシエチレン類等が挙げられる。また、カーボン等の粒子を用いることも可能 であるし、結着剤として PTFEその他の榭脂化合物等を単独ある ヽは同時に用いて も構わない。
[0062] 上記基材としては特に限定されず、例えば、多孔性支持体、榭脂成形体、金属板等 が挙げられ、更には燃料電池等に用いられる電解質膜、多孔性カーボン電極 (集電 体)等も好ましい。
上記電解質膜としては、通常の意味でのふつ素榭脂からなるものであることが好まし ぐ本発明の一 SO H基含有フルォロポリマー力もなるものであってもよい。上記電解
3
質膜は、本発明の電極触媒層の性質を妨げない範囲であれば、通常の意味でのふ つ素榭脂及び SO H基含有フルォロポリマー以外の物質をも含むものであってよ
3
い。
[0063] 上記「液状組成物を基材に塗装する」ことは、上記液状組成物を上記基材に塗布し、 必要に応じて乾燥し、更に所望により SO H基含有フルォロポリマーの軟ィ匕点ある
3
いはガラス転移点以上の温度で加熱することよりなる。
上記加熱の条件は、 SO H基含有フルォロポリマーと活性物質とを基材上に固定
3
することができるものであれば特に限定されないが、例えば、 50〜350°C、より好まし くは 80〜160°Cで数分間、例えば、 2〜30分間加熱することが好ましい。
本発明の電極触媒層としては、固体高分子型燃料電池として使用する場合、上記 SO H基含有フルォロポリマー、カーボン及び触媒 (Pt等)からなるものが好ましい。
3
[0064] 本発明の膜 Z電極接合体は、高分子電解質膜と電極とからなる膜 Z電極接合体で あって、下記条件(1)及び (2)よりなる群力も選ばれる少なくとも 1つを満たすもので ある。
(1)上記高分子電解質膜は、上述の本発明の高分子電解質膜である
(2)上記電極は、上述の本発明の電極触媒層を含む
[0065] 上記膜 Z電極接合体における電極は、一般に、少なくとも力ソード側、アノード側の いずれか一方が上述の本発明の電極触媒層であるものである。 [0066] 本発明の膜 Z電極接合体は、例えば、固体高分子型燃料電池に用いることができる 本発明の膜 Z電極接合体を有する固体高分子型燃料電池もまた、本発明の 1つで ある。
上記固体高分子電解質型燃料電池は、上記膜 Z電極接合体を有するものであれば 特に限定されず、通常、固体高分子電解質型燃料電池を構成する電極、集電体、ガ ス拡散層、セパレータ等の構成成分を含むものであってよい。
[0067] 本発明の高分子電解質膜を、固体高分子型燃料電池に用いる場合、本発明の高分 子電解質膜をアノードと力ソードの間に密着保持されてなる膜 Z電極接合体 (memb rane/electrode assembly) (以下、しばしば「MEA」と称する)として使用すること ができる。
ここでアノードは、アノード触媒層力もなるものであって、プロトン伝導性を有し、カソ 一ドはカソード触媒層カゝらなるものであって、プロトン伝導性を有する。また、アノード 触媒層と力ソード触媒層のそれぞれの外側表面に後述のガス拡散層を接合したもの も広義の膜 Z電極接合体に含む。
[0068] 上記アノード触媒層は、燃料 (例えば水素)を酸ィ匕して容易にプロトンを生ぜしめる触 媒を包含し、力ソード触媒層は、プロトン及び電子と酸化剤(例えば酸素や空気)を反 応させて水を生成させる触媒を包含する。アノードと力ソードのいずれについても、触 媒としては白金若しくは白金とルテニウム等力もなる合金が好適に用いられ、 10〜1 000オングストローム以下の触媒粒子であることが好ましい。また、このような触媒粒 子は、ファーネスブラック、チャンネルブラック、アセチレンブラック、カーボンブラック 、活性炭、黒鉛といった 0. 01〜: L0 m程度の大きさの導電性粒子に担持されてい ることが好ましい。触媒層投影面積に対する触媒粒子の担持量は、 0. OOlmg/cm 2以上、 lOmgZcm2以下であることが好ましい。
更にアノード触媒層と力ソード触媒層は、上述の一般式 (I)で表されるスルホニル基 含有パーハロビニルエーテルと TFEとの重合を経て得られる SO H基含有フルォ
3
口ポリマーを含有することが好まし 、。
[0069] MEAの作製方法としては、例えば、次のような方法が挙げられる。 まず、—SO H基含有フルォロポリマーをアルコールと水の混合溶液に溶解したもの
3
に、触媒として市販の白金担持カーボン (例えば、 TEC10E40E、日本国田中貴金 属 (株)社製)を分散させてペースト状にする。これを 2枚の PTFEシートのそれぞれ の片面に一定量塗布して乾燥させて触媒層を形成する。次に、各触媒層の PTFEシ ートの塗布面を向かい合わせにして、その間に本発明の高分子電解質膜を挟み込 み、 100〜200°Cで熱プレスにより転写接合してから、 PTFEシートを取り除くことに より、 MEAを得ることができる。当業者には MEAの作製方法は周知である。 MEAの 作製方法は、例えば、 JOURNAL OF APPLIED ELECTROCHEMISTRY, 22 (1992) p. 1—7に詳しく記載されている。
ガス拡散層としては、市販のカーボンクロスもしくはカーボンペーパーを用いることが できる。前者の代表例としては、カーボンクロス E— tek, B—l (米国 DE NORA N ORTH AMERICA社製)が挙げられ、後者の代表例としては、 CARBEL (登録商 標、 日本国ジャパンゴァテックス (株))、 TGP— H (日本国東レネ土製)、カーボンぺー パー 2050 (米国 SPECTRACORP社製)等が挙げられる。
また、電極触媒層とガス拡散層が一体化した構造体は「ガス拡散電極」と呼ばれる。 ガス拡散電極を本発明の高分子電解質膜に接合しても MEAが得られる。市販のガ ス拡散電極の代表例としては、ガス拡散層としてカーボンクロスを使用したガス拡散 電極 ELAT (登録商標、米国 DE NORA NORTH AMERICA社製)が挙げら れる。
実施例
[0070] 以下に実施例及び比較例を挙げて本発明を更に詳しく説明するが、本発明はこれら 実施例のみに限定されるものではない。
[0071] 各実施例及び比較例における測定は、以下の方法にて行った。
[0072] 1. IRによる官能基定量
得られた各サンプルを、 270°Cでヒートプレスして、透明なフィルムを得た。
得られたフィルムは、フーリエ変換式赤外吸光分光法にて波数 400〜4000cm_1の 範囲で分析した。もはやスペクトルに実質的差異がみられなくなるまで充分にふつ素 化した標準サンプルとの差スペクトルを取得し、各官能基に帰属される波数での吸光 度を読み取り、次式に従って炭素数 io6個あたりの官能基の個数を算出した。
炭素数 106個あたりの末端基の個数 = I XK/t
(上記式において、 Iは上記吸光度、 Kは表 1に示す補正係数、 tは測定に供したフィ ノレムの厚さ(単位: mm)である。 )
なお、—COOHについては、表 1に示した 2つの COOHを示す波数につき上式か ら算出した値の和を炭素数 106個あたりの— COOHの個数とした。
また、この算式で炭素数 106個あたりの官能基の個数が 1未満となった場合、本測定 法において測定限界以下とする力 官能基の存在そのものを否定する訳ではない。
[0073] [表 1]
Figure imgf000031_0001
[0074] 上記フーリエ変換式赤外吸光分光法に用いるフーリエ変換式赤外吸光分光器として 、パーキンエルマ一社製 Spectrum One型スぺクトロメーターを使用し、走査回数 は 8回とした。
[0075] 2.フェントン試薬による安定性試験
鉄 (Π)陽イオンの初期濃度が 2ppm且つ過酸ィ匕水素の初期濃度が 1質量%である 過酸化水素水溶液 aリットルに高分子電解質膜 bグラムを膜液比〔bZa〕 3. 2にて浸 漬して 80°Cにて 2時間保持した後、フルォロポリマー(上記高分子電解質膜)を取り 除き、液量を測定したあと適宜、イオンクロマト用蒸留水で希釈し、イオンクロマト法で フッ化物イオン F—量を測定した。測定装置は日本国東ソ一社製 IC 2001、陰ィォ ン分析用カラムとして、日本国東ソ一社製 TSKgel SuperIC— Anionを使用した。 溶出したフッ化物イオン量は、試料ポリマー質量 100質量部あたりの溶出したフツイ匕 物イオンの質量で表した。
[0076] 3.イオン交換当量重量 Ewの測定方法 0. lgに切り出した高分子電解質膜を飽和 NaCl水溶液 30mlに 25°Cの温度下に浸 漬し、攪拌しながら 30分間放置した後、フエノールフタレインを指示薬として、 pHメー タ(日本国東興ィ匕学研究所社製: TPX— 90)の値が 6. 95-7. 05の範囲の値を示 す点を当量点として、 0. 01N水酸ィ匕ナトリウム水溶液を用いて中和滴定した。中和 後得られた Na型電解質膜を純水ですすいだ後、真空乾燥して秤量した。中和に要 した水酸ィ匕ナトリウムの当量を M (mmol)、 Na型電解質膜の重量を W(mg)とし、下 記式により当量重量 Ew (g/eq)を求めた。
Ew= (W/M) - 22
[0077] 4.燃料電池評価
高分子電解質膜の燃料電池評価を以下のように行った。まず、以下のように電極触 媒層を作製する。 Pt担持カーボン(日本国田中貴金属 (株)社製 TEC10E40E、 Pt 36. 4wt%) l. OOgに対し、 5質量%フルォロポリマーを溶媒組成 (質量比):ェタノ ール Z水 = 50Z50)の溶液とし、更に 11質量%に濃縮したポリマー溶液を 3. 31g 添加、更〖こ 3. 24gのエタノールを添カ卩して後、ホモジナイザーでよく混合して電極ィ ンクを得た。この電極インクをスクリーン印刷法にて PTFEシート上に塗布した。塗布 量は、 Pt担持量及びポリマー担持量共に 0. 15mg/cm2〖こなる塗布量と、 Pt担持 量及びポリマー担持量共に 0. 30mg/cm2になる塗布量の 2種類とした。塗布後、 室温下で 1時間、空気中 120°Cにて 1時間、乾燥を行うことにより厚み 10 m程度の 電極触媒層を得た。これらの電極触媒層のうち、 Pt担持量及びポリマー担持量が共 に 0. 15mg/cm2のものをアノード触媒層とし、 Pt担持量及びポリマー担持量が共 に 0. 30mgZcm2のものを力ソード触媒層とした。
このようにして得たアノード触媒層と力ソード触媒層を向い合わせて、その間に高分 子電解質膜を挟み込み、 160°C、面圧 0. IMPaでホットプレスすることにより、ァノー ド触媒層と力ソード触媒層を高分子電解質膜に転写、接合して MEAを作製した。
[0078] (1)初期特性の測定
この MEAの両側(アノード触媒層と力ソード触媒層の外表面)にガス拡散層として力 一ボンクロス(米国 DE NORA NORTH AMERICA社製 ELAT (登録商標) B 1)をセットして評価用セルに組み込んだ。この評価用セルを評価装置(日本国 (株 )東陽テク-力社製燃料電池評価システム 890CL)にセットして 80°Cに昇温した後、 アノード側に水素ガスを 150ccZmin、力ソード側に空気ガスを 400ccZminで流し た。ガス加湿には水パブリング方式を用い、水素ガスは 80°C、空気ガスは 50°Cでカロ 湿してセルへ供給した状態にて、電流密度 電圧曲線を測定して初期特性を調べ た。
[0079] (2)耐久性試験
初期特性を調べた後、耐久性試験をセル温度 100°Cで行った。いずれの場合もァノ ード、力ソード共にガス加湿温度は 60°Cとした。セル温度が 100°Cの場合、アノード 側に水素ガスを 74ccZmin、力ソード側に空気ガスを 102ccZminで流し、アノード 側を 0. 30MPa (絶対圧力)、力ソード側を 0. 15MPa (絶対圧力)で加圧した状態で 、電流密度 0. 3AZcm2で発電した。このとき膜や電極中のポリマーが劣化するとァ ノード側及び力ソード側の排水中のふつ素イオン濃度が増加するので、排水中のふ つ素イオン濃度をベンチトップ型 pHイオンメーターモデル 920Aplusのモデル 9609 BNionplusふつ素複合電極 (日本国メデイトリアル社製)を用いて経時的に測定した 耐久性試験において、高分子電解質膜にピンホールが生じると、水素ガスが力ソード 側へ大量にリークする現象が起きる。この現象の発現を検知するため、力ソード側排 気ガス中の水素濃度をマイクロ GC (CP4900、オランダ国 Varian社製)にて経時的 に測定し、この測定値が測定開始時の値の 10倍以上になった時点で試験終了とし た。
5.メルトインデックス〔MI〕の測定方法
フルォロポリマーの Mlの測定は、 JIS K 7210に従って 270°C、荷重 2. 16kgの条 件下で、 MELT INDEXER TYPE C— 5059D (日本国東洋精機社製)を用い て測定した。押し出されたポリマーの重量を 10分間あたりのグラム数で表した。
[0080] 実施例 1
(1)ポリマー合成
容積 lOOOmLのステンレス製攪拌式オートクレープを充分に窒素置換後、 310gの C F =CFO (CF ) SO Fと 630gの HFC43— lOmeeをオートクレーブに仕込み、 35 °Cに温度を調節した。テトラフルォロエチレン〔TFE〕をゲージ圧力で 0. 27MPaに 加圧し、さらに重合開始剤として、(C F CO ) の 5質量。/ oHFC43— lOmee溶液 5
3 7 2 2
. 6gを圧入して重合反応を開始した。重合により消費された TFEを補給するため、連 続的に TFEを補給して、オートクレーブの内圧が 0. 27MPaに保たれるように適宜 T
FEを圧入した。重合開始から 3時間後、容器内の TFEを窒素でパージして常圧にし た。オートクレープ力 反応混合物を取り出した後、該反応混合物にメタノールをカロ えると固形物が析出した。この固形物を濾過し、さらに HFC43— lOmeeで洗浄後、 乾燥させると 80gのフルォロポリマー 1 Aが得られた。
上記フルォロポリマー 1Aの Mlは、 5. 9 (gZlO分)であった。
上記フルォロポリマー 1 Aを、 270°C、 lOMPaにおいて 20分間ヒートプレスして、 17
0 μ mの厚みを有する透明な膜を得た。
フルォロポリマー 1 Aの IR測定の結果、炭素数 106個あたり— COOCHを 180個と—
3
COFを 25個含んで!/、た。
さらに上記フルォロポリマー 1Aからなる膜を、 20%水酸ィ匕ナトリウム水溶液中、 90°C で 24時間処理した後水洗した。引き続き、 6規定硫酸中、 60°Cで 24時間処理した。 その後洗浄液が中性になるまで水洗して、電解質膜を得た。上記電解質膜を前述の 当量重量 Ewの測定方法に従って Ewを測定した結果、 936 (g/eq)であった。 (2)安定化
(2— 1)工程 A
内容積 300mLのオートクレーブ(ノヽステロイ製)に上記フルォロポリマー 1 A 60gを 入れ、真空脱気しながら 120°Cに昇温した。真空、窒素置換を 3回繰り返した後、窒 素をゲージ圧 OMPaまで導入した。引き続き、 Fガスを窒素ガスで 20質量%に希釈
2
し得られたガス状ノヽロゲン化剤をゲージ圧が 0. IMPaになるまで導入して、 30分保 持した。
次に、オートクレープ内のガス状ハロゲン化剤を排気し、真空引きした後、 Fガスを
2 窒素ガスで 20質量%に希釈し得られたガス状ハロゲン化剤をゲージ圧が 0. IMPa になるまで導入して、 3時間保持した。
その後、室温まで冷却し、オートクレープ内のガス状ハロゲン化剤を排気し、真空、 窒素置換を 3回繰り返した後、オートクレープを開放し、フルォロポリマー 1Bを得た。 上記フルォロポリマー 1Bを、 270°C、 lOMPaにおいて 20分間ヒートプレスして、 170 μ mの厚みを有する透明な膜を得た。
フルォロポリマー 1Bの IR測定の結果、炭素数 106個あたり COOCFを 95個と—C
3
OFを 30個含んでいた。
[0081] (2— 2)工程 B
ステンレス製 500mLオートクレーブに、ふつ素化処理をしたフルォロポリマー lB40g と水 200mLを入れ、容器内温度 120°Cで 5時間加熱した。室温まで冷却後、白色固 体を取り出し、 120°Cで 6時間、真空乾燥器で乾燥させると、 39gのフルォロポリマー 1Cが得られた。
上記フルォロポリマー 1Cを、 270°C、 lOMPaにおいて 20分間ヒートプレスして、 17 0 μ mの厚みを有する透明な膜を得た。
フルォロポリマー 1Cの IR測定の結果、炭素数 106個あたり、—COOHを 120個含む ことがわ力つた。 COOH以外の不安定な末端基に由来するピークは観測されなか つた。この工程により、含有する不安定な末端基のほぼ 100%がー COOHであるフ ルォロポリマーが得られたことを確認した。
[0082] (2— 3)工程 C
フルォロポリマー 1A 60gのかわりにフルォロポリマー 1C 30gを用いた以外は、上 記工程 Aと同様の処理を実施して、フルォロポリマー 1Dを得た。
フルォロポリマー 1Dの Mlは、 5. 6 (gZ 10分)であった。
上記フルォロポリマー 1Dを、 270°C、 lOMPaにおいて 20分間ヒートプレスして、 17 0 μ mの厚みを有する透明な膜を得た。
得られた膜を IR測定したところ、炭素数 106個あたり、—COOHの含有量が 10個で あることがわ力つた。それ以外の不安定な末端基は検出されな力つた。このことからフ ルォロポリマー 1 Aに含まれて 、た不安定な末端基の殆どが消失したことが確認でき た。
[0083] (3)けんィ匕
上記フルォロポリマー 1D力 なる膜を、 20%水酸化ナトリウム水溶液中、 90°Cで 24 時間処理した後水洗した。引き続き、 6規定硫酸中、 60°Cで 24時間処理した。その 後洗浄液が中性になるまで水洗して、電解質膜 1Eを得た。上記電解質膜 1Eを前述 の当量重量 Ewの測定方法に従って Ewを測定した結果、 938 (g/eq)であった。
[0084] 実施例 2
(1)ポリマー合成
容積 lOOOmLのステンレス製攪拌式オートクレープを充分に窒素置換後、 310gの C F =CFO (CF ) SO F、 630gの HFC43— 10mee、 0. 15gのメタノールをオートク
2 2 4 2
レーブに仕込み、 35°Cに温度を調節した。テトラフルォロエチレン〔TFE〕をゲージ 圧力で 0. 27MPaに加圧し、さらに重合開始剤として、 (C F CO ) の 5質量%HFC
3 7 2 2
43— lOmee溶液 5. 6gを圧入して重合反応を開始した。重合により消費された TFE を補給するため、連続的に TFEを補給して、オートクレーブの内圧が 0. 27MPaに 保たれるように適宜 TFEを圧入した。重合開始から 3. 5時間後、容器内の TFEを窒 素でパージして常圧にした。オートクレープ力も反応混合物を取り出した後、該反応 混合物にメタノールをカ卩えると固形物が析出した。この固形物を濾過し、さらに HFC 43— lOmeeで洗浄後、乾燥させると 75gのフルォロポリマー 2Aが得られた。
上記フルォロポリマー 2 Aの Mlは 21. 0 (gZ 10分)であつた。
上記フルォロポリマー 2Aを、 270°C、 lOMPaにおいて 20分間ヒートプレスして、 15 5 μ mの厚みを有する透明な膜を得た。
フルォロポリマー 2Aの IR測定の結果、炭素数 106個あたり— COOCHを 180個と—
3
COFを 30個及び—CH OHを 60個含んでいた。
2
さらに上記電解質膜を前述の当量重量 Ewの測定方法に従って Ewを測定した結果 、 945 (gZeq)であった。
[0085] (2)安定ィ匕
(2— 1)工程 A
内容積 300mLのオートクレーブ(ノヽステロイ製)に上記フルォロポリマー 2A 60gを 入れ、真空脱気しながら 120°Cに昇温した。真空、窒素置換を 3回繰り返した後、窒 素をゲージ圧 OMPaまで導入した。引き続き、 Fガスを窒素ガスで 20質量%に希釈
2
し得られたガス状ノヽロゲン化剤をゲージ圧が 0. IMPaになるまで導入して、 30分保 持した。
次に、オートクレープ内のガス状ハロゲン化剤を排気し、真空引きした後、 Fガスを
2 窒素ガスで 20質量%に希釈し得られたガス状ハロゲン化剤をゲージ圧が 0. IMPa になるまで導入して、 3時間保持した。
その後、室温まで冷却し、オートクレープ内のガス状ハロゲン化剤を排気し、真空、 窒素置換を 3回繰り返した後、オートクレープを開放し、フルォロポリマー 2Bを得た。 上記フルォロポリマー 2Bを、 270°C、 lOMPaにおいて 20分間ヒートプレスして、 155 μ mの厚みを有する透明な膜を得た。
フルォロポリマー 2Bの IR測定の結果、炭素数 106個あたり COOCFを 120個と
3
COFを 80個、及び— COOHを 20個含んでいた。
[0086] (2— 2)工程 B
ステンレス製 500mLオートクレーブに、ふつ素化処理をしたフルォロポリマー 2B40g と水 200mLを入れ、容器内温度 120°Cで 5時間加熱した。室温まで冷却後、白色固 体を取り出し、 120°Cで 6時間、真空乾燥器で乾燥させると、 39gのフルォロポリマー 2Cが得られた。
上記フルォロポリマー 2Cを、 270°C、 lOMPaにおいて 20分間ヒートプレスして、 16 0 μ mの厚みを有する透明な膜を得た。
フルォロポリマー 2Cの IR測定の結果、炭素数 106個あたり、—COOHを 170個含む ことがわ力つた。 COOH以外の不安定な末端基に由来するピークは観測されなか つた。この工程により、フルォロポリマー 2Bが有していた不安定な末端基のほぼ 100 %が COOHに変換されたことがわ力つた。
[0087] (2— 3)工程 C
フルォロポリマー 2A 60gのかわりにフルォロポリマー 2C 30gを用いた以外は、上 記工程 Aと同様の処理を実施して、フルォロポリマー 2Dを得た。
フルォロポリマー 2Dの Mlは、 20. 2 (gZlO分)であった。
上記フルォロポリマー 2Dを、 270°C、 lOMPaにおいて 20分間ヒートプレスして、 16 0 μ mの厚みを有する透明な膜を得た。
得られた膜を IR測定したところ、炭素数 106個あたり、 COOHを 9個と一 COFを 5 個含むことがわ力つた。それ以外の不安定な末端基は検出されな力つた。このことか らフルォロポリマー 2Aに含まれていた不安定な末端基の殆どが消失したことが確認 できた。
[0088] (3)けんィ匕
上記フルォロポリマー 2D力 なる膜を、 20%水酸化ナトリウム水溶液中、 90°Cで 24 時間処理した後水洗した。引き続き、 6規定硫酸中、 60°Cで 24時間処理した。その 後洗浄液が中性になるまで水洗して、電解質膜 2Eを得た。
[0089] 比較例 1
実施例 1の(2— 2)で得られたフルォロポリマー 1Bを用いて、 270°C、 lOMPaにお いて 20分間ヒートプレスして得られた、 170 mの厚みを有する膜を実施例 1 (3)と 同様に処理して、電解質膜 1ERを得た。
上記電解質膜を前述の当量重量 Ewの測定方法に従って Ewを測定した結果、 940 (gZ eqノであった。
[0090] 実施例 3
(1)ポリマー合成
容積 lOOOmLのステンレス製攪拌式オートクレープを充分に窒素置換後、 230gの C F =CFOCF CF (CF ) 0 (CF ) SO Fと 700gの HFC43— lOmeeをオートクレー
2 2 3 2 2 2
ブに仕込み、 35°Cに温度を調節した。テトラフルォロエチレン〔TFE〕をゲージ圧力 で 0. 17MPaに加圧し、さらに重合開始剤として(C F CO ) の 5質量。/ 0HFC43—
3 7 2 2
lOmee溶液 3. 7gを圧入して重合反応を開始した。重合により消費された TFEを補 給するため、連続的に TFEを補給して、オートクレーブの内圧が 0. 17MPaに保た れるように適宜 TFEを圧入した。重合開始から 3時間後、容器内の TFEを窒素でパ ージして常圧にした。オートクレープ力 反応混合物を取り出した後、該反応混合物 にメタノールをカ卩えると固形物が析出した。この固形物を濾過し、さらに HFC43— 10 meeで洗浄後、乾燥させると 50. Ogのフルォロポリマー 3Aが得られた。
上記フルォロポリマー 3Aの Mlは 15. 9 (gZlO分)であった。
上記フルォロポリマー 3Aを、 270°C、 lOMPaにおいて 20分間ヒートプレスして、 17 0 μ mの厚みを有する透明な膜を得た。 フルォロポリマー 3Aの IR測定の結果、炭素数 106個あたり COOCHを 105個と
3
COFを 30個含んで!/、た。
さらに上記フルォロポリマー 3Aからなる膜を、 20%水酸ィ匕ナトリウム水溶液中、 90°C で 24時間処理した後水洗した。引き続き、 6規定硫酸中、 60°Cで 24時間処理した。 その後洗浄液が中性になるまで水洗して、電解質膜を得た。上記電解質膜を前述の 当量重量 Ewの測定方法に従って Ewを測定した結果、 980 (g/eq)であった。
[0091] (2)安定ィ匕
(2— 1)工程 A
内容積 300mLのオートクレーブ(ノヽステロイ製)に上記フルォロポリマー 3A 37gを 入れ、真空脱気しながら 120°Cに昇温した。真空、窒素置換を 3回繰り返した後、窒 素をゲージ圧 OMPaまで導入した。引き続き、 Fガスを窒素ガスで 20質量%に希釈
2
し得られたガス状ノヽロゲン化剤をゲージ圧が 0. IMPaになるまで導入して、 30分保 持した。
次に、オートクレープ内のガス状ハロゲン化剤を排気し、真空引きした後、 Fガスを
2 窒素ガスで 20質量%に希釈し得られたガス状ハロゲン化剤をゲージ圧が 0. IMPa になるまで導入して、 3時間保持した。
その後、室温まで冷却し、オートクレープ内のガス状ハロゲン化剤を排気し、真空、 窒素置換を 3回繰り返した後、オートクレープを開放し、フルォロポリマー 3Bを得た。 上記フルォロポリマー 3Bを、 270°C、 lOMPaにおいて 20分間ヒートプレスして、 170 μ mの厚みを有する透明な膜を得た。
フルォロポリマー 3Bの IR測定の結果、炭素数 106個あたり、 -COOCFを 90個と
3
COFを 30個含んで!/、た。
[0092] (2— 2)工程 B
ステンレス製 500mLオートクレーブに、ふつ素化処理をしたフルォロポリマー 3B 32 gと水 180mLを入れ、容器内温度 120°Cで 5時間加熱した。室温まで冷却後、白色 固体を取り出し、 120°Cで 6時間、真空乾燥器で乾燥させてフルォロポリマー 3Cを得 た。
上記フルォロポリマー 3Cを、 270°C、 lOMPaにおいて 20分間ヒートプレスして、 17 0 μ mの厚みを有する透明な膜を得た。
フルォロポリマー 3Cの IR測定の結果、炭素数 106個あたり、—COOHを 120個含む ことがわ力つた。 COOH以外の不安定な末端基に由来するピークは観測されなか つた。この工程により、含有する不安定な末端基のほぼ 100%がー COOHであるフ ルォロポリマーが得られたことを確認した。
[0093] (2— 3)工程 C
フルォロポリマー 3A 37gのかわりにフルォロポリマー 3C 24gを用いた以外は、上 記工程 Aと同様の処理を実施して、フルォロポリマー 3Dを得た。
上記フルォロポリマー 1Dを、 270°C、 lOMPaにおいて 20分間ヒートプレスして、 17 0 μ mの厚みを有する透明な膜を得た。
得られた膜を IR測定したところ、炭素数 106個あたり、—COOHの含有量が 10個で あることがわ力つた。それ以外の不安定な末端基は検出されな力つた。このことからフ ルォロポリマー 3Aに含まれていた不安定な末端基の殆どが消失したことが確認でき た。
[0094] (3)けんィ匕
上記フルォロポリマー 3D力 なる膜を、 20%水酸化ナトリウム水溶液中、 90°Cで 24 時間処理した後水洗した。引き続き、 6規定硫酸中、 60°Cで 24時間処理した。その 後洗浄液が中性になるまで水洗して、電解質膜 3Eを得た。上記電解質膜 3Eを前述 の当量重量 Ewの測定方法に従って Ewを測定した結果、 982 (g/eq)であった。
[0095] 実施例 4
(1)ポリマー合成
容積 3000mlのステンレス製攪拌式オートクレープを、充分に真空、窒素置換した後 、オートクレーブを充分に真空にしてから、パーフルォ口へキサンを 1530gと連鎖移 動剤としてのメタノール 3g及び CF =CFOCF CF SO Fを 990g仕込み、 25°Cに
2 2 2 2
温調した。ここにテトラフルォロエチレン〔TFE〕ガスをゲージ圧力で 0. 30MPaまで 導入し、引き続き重合開始剤(C F COO) の 10質量%パーフルォ口へキサン溶液
3 7 2
13. 14gを圧入して重合反応を開始した。
重合により消費された TFEを補給するため、連続的に TFEを供給してオートクレー ブの圧力を 0. 30MPaに保つようにした。 CF =CFOCF CF SO Fを断続的に計 4
2 2 2 2
7g供給して重合を継続した。
供給した TFEが 73gになった時点で、オートクレープの圧力を開放し、重合を停止し た。
重合反応終了後、メタノールを 1500ml投入し、 10分間攪拌させた。次に、遠心分離 器を用いて固液分離し、その固形分にメタノールを 1500ml投入し、 10分間攪拌さ せた。この操作を 3回行い、ポリマーを洗浄した。次に、この洗浄ポリマーを 120°C真 空下で残留メタノールを除去し、 128gのフルォロポリマー 4Aを得た。
フルォロポリマー 4Aの Mlは 15. 2 (gZlO分)であった。
上記フルォロポリマー 4Aを、 270°C、 lOMPaにおいて 20分間ヒートプレスして、 17 0 μ mの厚みを有する透明な膜を得た。
フルォロポリマー 4Aの IR測定の結果、炭素数 106個あたり— COOCHを 110個と—
3
COFを 10個、及び—CH OHを 65個含んでいた。
2
更に、上記フルォロポリマー 4Aからなる膜を、 20%水酸ィ匕ナトリウム水溶液中、 90°C で 24時間処理した後水洗した。引き続き、 6規定硫酸中、 60°Cで 24時間処理した。 その後洗浄液が中性になるまで水洗して、電解質膜を得た。上記電解質膜を前述の 当量重量 Ewの測定方法に従って Ewを測定した結果、 740 (g/eq)であった。 (2)安定ィ匕
(2— 1)工程 A
内容積 300mLのオートクレーブ(ノヽステロイ製)に上記フルォロポリマー 3A 100g を入れ、真空脱気しながら 120°Cに昇温した。真空、窒素置換を 3回繰り返した後、 窒素をゲージ圧 OMPaまで導入した。引き続き、 Fガスを窒素ガスで 20質量%に希
2
釈し得られたガス状ノヽロゲン化剤をゲージ圧が 0. IMPaになるまで導入して、 30分 保持した。
次に、オートクレープ内のガス状ハロゲン化剤を排気し、真空引きした後、 Fガスを
2 窒素ガスで 20質量%に希釈し得られたガス状ハロゲン化剤をゲージ圧が 0. IMPa になるまで導入して、 3時間保持した。
その後、室温まで冷却し、オートクレープ内のガス状ハロゲン化剤を排気し、真空、 窒素置換を 3回繰り返した後、オートクレープを開放し、フルォロポリマー 4Bを得た。 フルォロポリマー 4Bの Mlは、 15. 0 (gZlO分)であった。
上記フルォロポリマー 4Bを、 270°C、 lOMPaにおいて 20分間ヒートプレスして、 170 μ mの厚みを有する透明な膜を得た。
フルォロポリマー 4Bの IR測定の結果、炭素数 106個あたり COOCFを 90個と—C
3
OFを 60個含んでいた。
[0097] (2— 2)工程 B
上記フルォロポリマー 4Bを、滅菌器 (装置名: 1ST— 50型、千代田製作所社製)にて 121°C、大気圧下の条件下にある水蒸気に 6時間接触させた後、乾燥窒素を充填し 、室温まで放冷してサンプル 4Cを得た。
上記フルォロポリマー 4Cを、 270°C、 lOMPaにおいて 20分間ヒートプレスして、 17 0 μ mの厚みを有する透明な膜を得た。
フルォロポリマー 4Cの IR測定の結果、炭素数 106個あたり、 COOHを 150個含む ことがわ力つた。 COOH以外の不安定な末端基に由来するピークは観測されなか つた。この工程により、含有する不安定な末端基のほぼ 100%がー COOHであるフ ルォロポリマーが得られたことを確認した。
[0098] (2— 3)工程 C
フルォロポリマー 4A 100gのかわりにフルォロポリマー 4C 50gを用いた以外は、 上記工程 Aと同様の処理を実施して、フルォロポリマー 4Dを得た。
フルォロポリマー 4Dの Mlは、 14. 9 (g/10分)であった。
上記フルォロポリマー 4Dを、 270°C、 lOMPaにおいて 20分間ヒートプレスして、 17 0 μ mの厚みを有する透明な膜を得た。
フルォロポリマー 4Dの IR測定の結果、炭素数 106個あたり、 COOHを 10個含むこ とがわかった。それ以外の不安定な末端基は検出されな力つた。このことからフルォ 口ポリマー 4Aに含まれていた不安定な末端基の殆どが消失したことが確認できた。 (3)けん化
上記フルォロポリマー 4D力 なる膜を、 20%水酸化ナトリウム水溶液中、 90°Cで 24 時間処理した後水洗した。引き続き、 6規定硫酸中、 60°Cで 24時間処理した。その 後洗浄液が中性になるまで水洗して、電解質膜 4Eを得た。電解質膜 4Eの当量重量 Ewを、前述の当量重量 Ewの測定方法に従って測定した結果、 736 (gZeq)であつ た。
[0099] 比較例 2
実施例 4の(2—1)で得られたフルォロポリマー 4Bを用いて、 270°C、 lOMPaにお いて 20分間ヒートプレスして得られた、厚み 170 mの膜を実施例 1 (3)と同様に処 理して、電解質膜 2ERを得た。
[0100] 実施例 5
(1)ポリマー合成
重合開始剤として、 (C F COO) の代わりに、 (n-C H OCOO) のメタノール溶液
3 7 2 3 7 2
を用いたこと以外は、実施例 4と同様にして、フルォロポリマー 5Aを得た。
フルォロポリマー 5Aの IR測定の結果、炭素数 106個あたり— OCOOC Hを 60個と
3 7
、 -COOCHを 80個、 COFを 11個、及び— CH OHを 38個含んでいた。
3 2
[0101] (2)安定ィ匕
(2— 1)工程 A
内容積 300mLのオートクレーブ(ハステロィ製)に上記フルォロポリマー 5A lOOg を入れ、真空脱気しながら 120°Cに昇温した。真空、窒素置換を 3回繰り返した後、 窒素をゲージ圧 OMPaまで導入した。引き続き、 SFを窒素ガスで 50質量%に希釈
4
し得られたガス状ノヽロゲン化剤をゲージ圧が 0. IMPaになるまで導入して、 30分保 持した。
次に、オートクレープ内のガス状ハロゲン化剤を排気し、真空引きした後、 SFを窒素
4 ガスで 50質量%に希釈し得られたガス状ハロゲン化剤をゲージ圧が 0. IMPaにな るまで導入して、 3時間保持した。
その後、室温まで冷却し、真空、窒素置換を 3回繰り返した後、オートクレープを開放 し、フルォロポリマー 5Bを得た。
フルォロポリマー 5Bの IR測定の結果、炭素数 106個あたり COFを 190個含んでい た。
[0102] (2— 2)工程 B 上記フルォロポリマー 5Bを、実施例 4の(2— 2)と同様に処理して、サンプル 5Cを得 た。
フルォロポリマー 5Cの Mlは、 20 (gZlO分)であった。
フルォロポリマー 5Cの IR測定の結果、炭素数 106個あたり、 COOHを 190個含む ことがわ力つた。 COOH以外の不安定な末端基に由来するピークは観測されなか つた。この工程により、含有する不安定な末端基のほぼ 100%がー COOHであるフ ルォロポリマーが得られたことを確認した。
[0103] (2— 3)工程 C
フルォロポリマー 5A 100gのかわりにフルォロポリマー 5C 50gを用いた以外は、 実施例 4の(2—1)と同様の処理を実施して、フルォロポリマー 5Dを得た。
フルォロポリマー 5Dの Mlは、 19 (gZ 10分)であった。
フルォロポリマー 5Dの IR測定の結果、炭素数 106個あたり、—COOHを 5個含むこ とがわかった。それ以外の不安定な末端基は検出されな力つた。このことからフルォ 口ポリマー 5Aに含まれていた不安定な末端基の殆どが消失したことが確認できた。 (3)けん化
上記フルォロポリマー 5D力 なる膜を、 20%水酸化ナトリウム水溶液中、 90°Cで 24 時間処理した後水洗した。引き続き、 6規定硫酸中、 60°Cで 24時間処理した。その 後洗浄液が中性になるまで水洗して、電解質膜 5Eを得た。電解質膜 5Eの当量重量 Ewを、前述の当量重量 Ewの測定方法に従って測定した結果、 736 (gZeq)であつ た。
[0104] 実施例 6
(1)ポリマー合成、安定ィ匕
連鎖移動剤として、メタノール 3gの代わりに、ジェチルエーテル 3gを用いたこと以外 は、実施例 4と同様にして、フルォロポリマー 6Aを得た。
フルォロポリマー 6Aの IR測定の結果、不安定な末端基として、 -OCH CH 、 一 C
2 3
OF、 一 COOHを含んでいることがわかった。
このフルォロポリマー 6Aを実施例 4の(2)と同様に、工程 A、工程 B、工程 Cの順で 処理して、フルォロポリマー 6Dを得た。 フルォロポリマー 6Dの IR測定の結果、炭素数 106個あたり COOHを 10個含み、 それ以外の不安定な末端基に由来するピークは観測されな力つた。
(2)けん化
上記フルォロポリマー 6D力 なる膜を、 20%水酸化ナトリウム水溶液中、 90°Cで 24 時間処理した後水洗した。引き続き、 6規定硫酸中、 60°Cで 24時間処理した。その 後洗浄液が中性になるまで水洗して、電解質膜 6Eを得た。電解質膜 6Eの当量重量 Ewを、前述の当量重量 Ewの測定方法に従って測定した結果、 728 (gZeq)であつ た。
[0105] 実施例 7
(1)ポリマー合成
連鎖移動剤として、メタノール 3gの代わりに、ェタン lOOccを用いたこと以外は、実施 例 4と同様にして、フルォロポリマー 7Aを得た。
フルォロポリマー 7Aの IR測定の結果、不安定な末端基として、 CH CH 、 -COF
2 3
、 一 COOHを含んでいることがわかった。
[0106] (2)安定ィ匕
内容積 300mLのオートクレーブ(ノヽステロイ製)に上記フルォロポリマー 7A 100g を入れ、真空、窒素置換を 3回繰り返した後、窒素をゲージ圧 OMPaまで導入した。 引き続き、窒素ガスで 20質量%に希釈した Fガスをゲージ圧が 0. 05MPaになるま
2
で導入し、さらに酸素ガスをゲージ圧が 0. IMPaになるまで導入し、 16時間保持し た。
その後、真空、窒素置換を 3回繰り返した後、オートクレープを開放し、フルォロポリ マー 7Bを得た。
フルォロポリマー 7Bの IR測定の結果、炭素数 106個あたり COFを 120個含んでい た。
このフルォロポリマー 7Bを実施例 4の(2— 2)及び(2— 3)と同様に、工程 B、工程 C の順で処理して、フルォロポリマー 7Dを得た。
フルォロポリマー 7Dの IR測定の結果、炭素数 106個あたり COOHを 9個含み、そ れ以外の不安定な末端基に由来するピークは観測されな力つた。 (3)けん化
上記フルォロポリマー 7D力 なる膜を、 20%水酸化ナトリウム水溶液中、 90°Cで 24 時間処理した後水洗した。引き続き、 6規定硫酸中、 60°Cで 24時間処理した。その 後洗浄液が中性になるまで水洗して、電解質膜 7Eを得た。電解質膜 7Eの当量重量 Ewを、前述の当量重量 Ewの測定方法に従って測定した結果、 736 (gZeq)であつ た。
実施例 8
(1)ポリマー合成、安定ィ匕
実施例 3で得られたフルォロポリマー 3A 10gを石英製のボートに入れて管状炉に 仕込んだ。窒素を流通しながら 100°Cに昇温し、オゾン発生器で作製したオゾンガス を導入して 2時間反応させた。
引き続き、イオン交換水を入れた洗気ビンでパブリングさせて湿らせた窒素ガスを導 入しながら、室温まで冷却し、フルォロポリマー 8Pを得た。
フルォロポリマー 8Pの IR測定の結果、炭素数 106個あたり— COOCHを 10個と—C
3
OOHを 130個と含んでいた。この工程により、含有する不安定な末端基のほぼ 93% がー COOHであるフルォロポリマーが得られたことを確認した。
次に内容積 50mLのオートクレーブ(ノヽステロイ製)に上記フルォロポリマー 8P 5gを 入れ、真空脱気しながら 120°Cに昇温した。真空、窒素置換を 3回繰り返した後、窒 素をゲージ圧 OMPaまで導入した。引き続き、 Fガスを窒素ガスで 20質量%に希釈
2
し得られたガス状ふつ素ィ匕剤をゲージ圧が 0. IMPaになるまで導入して、 3時間保 持した。
その後、室温まで冷却し、真空、窒素置換を 3回繰り返した後、オートクレープを開放 し、フルォロポリマー 8Qを得た。
フルォロポリマー 8Qの IR測定の結果、炭素数 106個あたり— COOHを 9個含んでい た。
(2)けん化
上記フルォロポリマー 8Q力もなる膜を、 20%水酸ィ匕ナトリウム水溶液中、 90°Cで 24 時間処理した後水洗した。引き続き、 6規定硫酸中、 60°Cで 24時間処理した。その 後洗浄液が中性になるまで水洗して、電解質膜 8Eを得た。電解質膜 8Eの当量重量 Ewを、前述の当量重量 Ewの測定方法に従って測定した結果、 985 (gZeq)であつ た。
[0108] 実施例 9
(1)ポリマー合成
容積 100Lのガラスライニング製攪拌式オートクレープを、充分に真空、窒素置換し た後、オートクレープを充分に真空にしてから、パーフルォ口へキサンを 50kgと連鎖 移動剤としてのメタノール 30g及び CF =CFOCF CF SO Fを 30kgを仕込み、 25
2 2 2 2
°Cに温調した。ここにテトラフルォロエチレン〔TFE〕ガスをゲージ圧力で 0. 30MPa まで導入し、引き続き重合開始剤(C F COO) の 10質量%パーフルォ口へキサン
3 7 2
溶液 50. 4gを圧入して重合反応を開始した。
重合により消費された TFEを補給するため、連続的に TFEを供給してオートクレー ブの圧力を 0. 30MPaに保つようにした。 CF =CFOCF CF SO Fを断続的に計 3
2 2 2 2
. 7kg供給して重合を継続した。
供給した TFEが 5. 9kgになった時点で、オートクレープの圧力を開放し、重合を停 止した。
重合反応終了後、メタノールを 30L投入し、 10分間攪拌させた。次に、遠心分離器 を用いて固液分離し、その固形分にメタノールを 50L投入し、 10分間攪拌させた。こ の操作を 3回行い、ポリマーを洗浄した。次に、この洗浄ポリマーを 120°C真空下で 残留メタノールを除去し、 8. 2kgのフルォロポリマー 9Aを得た。
フルォロポリマー 9Aの Mlは 5. 2 (gZlO分)であった。
上記フルォロポリマー 9Aを、 270°C、 lOMPaにおいて 20分間ヒートプレスして、 17 0 μ mの厚みを有する透明な膜を得た。
フルォロポリマー 9Aの IR測定の結果、炭素数 106個あたり COOCHを 100個と
3
COFを 10個、及び—CH OHを 45個含んでいた。
2
[0109] (2)安定ィ匕
(2— 1)工程 A
内容積 50Lのオートクレーブ(ハステロィ製)に上記フルォロポリマー 9A5kgを入れ、 真空脱気しながら 120°Cに昇温した。真空、窒素置換を 3回繰り返した後、窒素をゲ ージ圧 OMPaまで導入した。引き続き、 Fガスを窒素ガスで 20質量%に希釈し得ら
2
れたガス状ノヽロゲン化剤をゲージ圧が 0. IMPaになるまで導入して、 30分保持した 次に、オートクレープ内のガス状ハロゲン化剤を排気し、真空引きした後、 Fガスを
2 窒素ガスで 20質量%に希釈し得られたガス状ハロゲン化剤をゲージ圧が 0. IMPa になるまで導入して、 3時間保持した。
その後、室温まで冷却し、オートクレープ内のガス状ハロゲン化剤を排気し、真空、 窒素置換を 3回繰り返した後、オートクレープを開放し、フルォロポリマー 9Bを得た。 フルォロポリマー 9Bの Mlは、 5. 2 (gZlO分)であった。
上記フルォロポリマー 9Bを、 270°C、 lOMPaにおいて 20分間ヒートプレスして、 170 μ mの厚みを有する透明な膜を得た。
フルォロポリマー 9Bの IR測定の結果、炭素数 106個あたり COOCFを 90個と—C
3
OFを 35個含んでいた。
[0110] (2— 2)工程 B
上記フルォロポリマー 9Bを、 25°Cの温度下に蒸留水中で 1時間攪拌した後ろ別し、 100°Cで 16時間乾燥させてフルォロポリマー 9Cを得た。
上記フルォロポリマー 9Cを、 270°C、 lOMPaにおいて 20分間ヒートプレスして、 17 0 μ mの厚みを有する透明な膜を得た。
フルォロポリマー 9Cの IR測定の結果、炭素数 106個あたり、—COOHを 125個含む ことがわ力つた。 COOH以外の不安定な末端基に由来するピークは観測されなか つた。この工程により、含有する不安定な末端基のほぼ 100%がー COOHであるフ ルォロポリマーが得られたことを確認した。
[0111] (2— 3)工程 C
フルォロポリマー 9A 5kgのかわりにフルォロポリマー 9C 3kgを用いた以外は、上 記工程 Aと同様の処理を実施して、フルォロポリマー 9Dを得た。
フルォロポリマー 9Dの Mlは、 5. l (gZlO分)であった。
更に、フルォロポリマー 9Dを Tダイによる 280°Cの押し出し溶融成形により 50 μ m厚 の薄膜を得た。
得られた薄膜を IR測定したところ、炭素数 106個あたり、— COOHの含有量が 10個 であることがわ力つた。それ以外の不安定な末端基は検出されな力つた。このことから フルォロポリマー 9Aに含まれていた不安定な末端基の殆どが消失したことが確認で きた。
(3)けん化
上記フルォロポリマー 9D力もなる薄膜を、 20%水酸ィ匕ナトリウム水溶液中、 90°Cで 2 4時間処理した後水洗した。引き続き、 6規定硫酸中、 60°Cで 24時間処理した。その 後洗浄液が中性になるまで水洗して、電解質膜 9Eを得た。電解質膜 9Eの当量重量 Ewを、前述の当量重量 Ewの測定方法に従って測定した結果、 724 (gZeq)であつ た。
[0112] 実施例 10
-SO H基含有フルォロポリマー力 なる実施例 1の電解質膜 IEについて、上記記
3
載の方法でフェントン処理を行った結果、フッ化物イオンは膜 100質量部に対し 2. 5 X 10_4質量部であった。
[0113] 比較例 3
-SO H基含有フルォロポリマー力 なる比較例 1の電解質膜 1ERについて、上記
3
記載の方法でフェントン処理を行った結果、フッ化物イオンは膜 100質量部に対し 5 . 9 X 10—3質量部であった。
比較例 4
-SO H基含有フルォロポリマー力 なる比較例 2の電解質膜 2ERについて、上記
3
記載の方法でフェントン処理を行った結果、フッ化物イオンは膜 100質量部に対し 1 . 0 X 10—3質量部であった。
[0114] 実施例 11
-SO H基含有フルォロポリマー力 なる実施例 2の電解質膜 2Eについて、上記記
3
載の方法でフェントン処理を行った結果、フッ化物イオンは膜 100質量部に対し 1. 7 X 10_4質量部であった。
実施例 12 -SO H基含有フルォロポリマー力 なる実施例 3の電解質膜 3Eについて、上記記
3
載の方法でフェントン処理を行った結果、フッ化物イオンは膜 100質量部に対し 3. 9 X 10_4質量部であった。
実施例 13
-SO H基含有フルォロポリマー力もなる実施例 4の電解質膜 4Eについて、上記記
3
載の方法でフェントン処理を行った結果、フッ化物イオンは膜 100質量部に対し 2. 6 X 10_4質量部であった。
実施例 14
-SO H基含有フルォロポリマー力 なる実施例 5の電解質膜 5Eについて、上記記
3
載の方法でフェントン処理を行った結果、フッ化物イオンは膜 100質量部に対し 2. 8 X 10_4質量部であった。
実施例 15
-SO H基含有フルォロポリマー力 なる実施例 6の電解質膜 6Eについて、上記記
3
載の方法でフェントン処理を行った結果、フッ化物イオンは膜 100質量部に対し 2. 4 X 10_4質量部であった。
実施例 16
-SO H基含有フルォロポリマー力 なる実施例 7の電解質膜 7Eについて、上記記
3
載の方法でフェントン処理を行った結果、フッ化物イオンは膜 100質量部に対し 2. 2 X 10_4質量部であった。
実施例 17
-SO H基含有フルォロポリマー力 なる実施例 8の電解質膜 8Eについて、上記記
3
載の方法でフェントン処理を行った結果、フッ化物イオンは膜 100質量部に対し 4. 1 X 10_4質量部であった。
実施例 18
-SO H基含有フルォロポリマー力 なる実施例 9の電解質膜 9Eについて、上記記
3
載の方法でフェントン処理を行った結果、フッ化物イオンは膜 100質量部に対し 2. 5 X 10_4質量部であった。
実施例 19 上記実施例 9で作成したフルォロポリマー 9Dを実施例 9の(3)とポリマーの形態がパ ウダ一であることを除き同様の方法でケンィ匕処理して得られた電解質ポリマーを、 5L のオートクレーブ中、水 Zエタノールで、内温 175°Cで 4時間処理することで、水 Zェ タノール = 1Z1 (重量)に対しポリマー濃度が 5%の溶液を調製した。この溶液と上 記実施例 9のフルォロポリマー 9D力 なる電解質膜 9Eを用いて前述の方法に従い 膜 Z電極接合体 (MEA)を作製した。
上記 MEAを評価用セルに組み込み、セル温度 80°Cにおける初期特性を前述の方 法に従い測定したところ、電圧 (V)と電流密度 (AZcm2)の関係において、 0. 5AZ cm2で 0. 76V、 1. OAZcm2で 0. 67V、 1. 5AZcm2で 0. 55Vと非常に高いセル 性能が得られた。また、 100°Cでの耐久性試験においては、 550時間の運転ができ 、高い耐久性が得られた。 50時間経過後の排水中のふつ素イオン濃度は、力ソード 側で 0. 15ppm、アノード側で 0. 21ppmであった。また、 400時間後の排水中のふ つ素イオン濃度は、力ソード側で 0. 20ppm、アノード側で 0. 45ppmであった。 比較例 5
実施例 9の(2— 2)で得られたフルォロポリマー 9Bの一部を用いて、 Tダイによる 280
°Cの押し出し溶融成形により 50 μ m厚の薄膜を得た。
この薄膜を実施例 9 (3)と同様に処理して、電解質膜 9ERを得た。
次に、上記実施例 9で作成したフルォロポリマー 9Bを実施例 9の(3)とポリマーがフ ルォロポリマー 9Bのパウダーであることを除き同様の方法で処理して得られた電解 質ポリマーを、 5Lのオートクレーブ中、水 Zエタノールで、内温 175°Cで 4時間処理 することで、水 Zエタノール = 1Z1 (重量)に対しポリマー濃度が 5%の溶液を調製し た。この溶液と上記で得られた電解質膜 9ERを用いて前述の方法に従 ヽ膜 Z電極 接合体 (MEA)を作製した。
得られた MEAを評価用セルに組み込み、セル温度 80°Cにおける初期特性を前述 の方法に従い測定したところ、電圧 (V)と電流密度 (AZcm2)の関係において、 0. 5 AZcm2で 0. 73V、 1. OAZcm2で 0. 49V、 1. 5AZcm2では 0. 17Vであった。ま た、 100°Cでの耐久性試験においては、 125時間の運転でクロスリークにより運転が 終了した。 50時間経過後の排水中のふつ素イオン濃度は、力ソード側で 1. 3ppm、アノード側 で 2. 7ppmであった。
実施例 20
(1)ポリマー合成
連鎖移動剤として、メタノール 30gの代わりに、メタノール 15gを用いたこと以外は、実 施例 9と同様にして、 8. Okgのフルォロポリマー 20Aを得た。
フルォロポリマー 20Aの Mlは 3. 6 (gZlO分)であった。
フノレ才ロポリマー 20Aを、 270°C、 lOMPa【こお!ヽて 20分 f¾ヒートプレスして、 170 μ mの厚みを有する透明な膜を得た。
フルォロポリマー 20Aの IR測定の結果、炭素数 106個あたり— COOCHを 80個と
3
COFを 12個、及び—CH OHを 36個含んでいた。
2
(2)安定化
(2— 1)工程 A
内容積 50Lのハステロィ製振動式反応機 (大河原製作所製)に上記フルォロポリマ 一 20A 7kgを入れ、振動数 50rpmで振動させつつ、真空脱気しながら 120°Cに昇 温した。真空、窒素置換を 3回繰り返した後、窒素をゲージ圧— 0. 05MPaまで導入 した。引き続き、 Fガスを窒素ガスで 20質量%に希釈し得られたガス状ハロゲン化剤
2
をゲージ圧が OMPaになるまで導入して、 30分保持した。
次に、反応機内のガス状ハロゲン化剤を排気し、真空引きした後、 Fガスを窒素ガス
2
で 20質量%に希釈し得られたガス状ハロゲン化剤をゲージ圧が OMPaになるまで導 入して、 3時間保持した。
その後、室温まで冷却し、反応機内のガス状ハロゲン化剤を排気し、真空引き、窒素 置換を 3回繰り返した後、ポリマーの一部をサンプリングし、フルォロポリマー 20Bを 得た。
フルォロポリマー 20Bの Mlは 3. 3 (gZlO分)であった。
フノレ才ロポリマー 20Bを、 270°C、 lOMPa【こお!/ヽて 20分 f¾ヒートプレスして、 170 μ mの厚みを有する透明な膜を得た。
フルォロポリマー 20Bの IR測定の結果、炭素数 106個あたり、 -COOCFを 62個と COFを 30個含んで!/、た。
[0118] (2— 2)工程 B
工程 Aに引き続き、振動反応機を動数 50rpmで振動させつつ、真空脱気しながら 12 0°Cに昇温した。
温度が 120°Cになった後、窒素で常温に戻し、純水を入れて 80°Cに加熱したバブラ 一で加湿した窒素を、 5L 'min_ 1の流速で、 4時間流通した。
その後、乾燥窒素を 5L 'min_1の流速で流通しながら、室温まで冷却し、ポリマーの 一部をサンプリングし、フルォロポリマー 20Cを得た。
フノレ才ロポリマー 20Cを、 270°C、 lOMPa【こお!ヽて 20分 f¾ヒートプレスして、 170 μ mの厚みを有する透明な膜を得た。
フルォロポリマー 20Cの IR測定の結果、炭素数 106個あたり、 COOHを 90個含む ことがわ力つた。 COOH以外の不安定な末端基に由来するピークは観測されなか つた。この工程により、含有する不安定な末端基のほぼ 100%がー COOHであるフ ルォロポリマーが得られたことを確認した。
[0119] (2— 3)工程 C
工程 Bに引き続き、振動反応機を動数 50rpmで振動させつつ、真空脱気しながら 12 0°Cに昇温した。真空、窒素置換を 3回繰り返した後、窒素をゲージ圧—0. 05MPa まで導入した。
引き続き、 Fガスを窒素ガスで 20質量%に希釈し得られたガス状ハロゲン化剤をゲ
2
ージ圧が OMPaになるまで導入して、 30分保持した。
次に、反応機内のガス状ハロゲン化剤を排気し、真空引きした後、 Fガスを窒素ガス
2
で 20質量%に希釈し得られたガス状ハロゲン化剤をゲージ圧が OMPaになるまで導 入して、 3時間保持した。
その後、室温まで冷却した後、反応機内のガス状ハロゲン化剤を排気し、真空引き、 窒素置換を 3回繰り返した後、反応機を開放し、フルォロポリマー 20Dを回収した。 フルォロポリマー 20Dの Mlは 3. 4 (gZlO分)であった。
更に、フルォロポリマー 20Dの Tダイによる 280°Cの押出溶融成形により 50 μ m厚の 薄膜を得た。 得られた薄膜を IR測定したところ、炭素数 106個あたり、 COOHの含有量が 12個 であることがわ力つた。それ以外の不安定な末端基は検出されな力つた。このことから フルォロポリマー 20Aに含まれていた不安定な末端基の殆どが消失したことが確認 できた。
[0120] (3)けん化
上記フルォロポリマー 20D力 なる薄膜を、 20%水酸ィ匕ナトリウム水溶液中、 90°Cで 24時間処理した後水洗した。引き続き、 6規定硫酸中、 60°Cで 24時間処理した。そ の後洗浄液が中性になるまで水洗して、電解質膜 20Eを得た。上記電解質膜 20Eを 前述の当量重量 Ewの測定方法に従って Ewを測定した結果、 730 (g/eq)であった 産業上の利用可能性
[0121] 本発明の SO H基含有フルォロポリマー製造方法は、上記構成よりなるものである
3
ので、温和で経済的な反応条件下で不安定末端基を安定ィ匕することができ、また、 使用する装置や材料について制限を緩和することができ、各工程において被処理フ ルォロポリマーの分解あるいは不要な架橋構造が生じにく 、。
本発明の SO H基含有フルォロポリマーは、使用する装置や材料等の腐食に起
3
因するフルォロポリマーの汚染が少なぐまた、製造時に分解されていないので、化 学的安定性等、各種特性に優れている。
本発明の電極触媒層、高分子電解質膜、膜 Z電極接合体及び固体高分子型燃料 電池は、本発明の SO H基含有フルォロポリマーを有するものなので、各種特性、
3
特に耐久性等に優れて 、る。

Claims

請求の範囲
[1] SO X基 (Xは F又は C1を表す。)含有モノマー単位を有する被処理フルォロポリマ
2
一に、少なくとも下記工程 A、工程 B及び工程 Cをこの順に施す操作を含む ことを特徴とする SO H基含有フルォロポリマー製造方法。
3
A:ハロゲン化剤を作用させる工程
B:分解処理剤を作用させる工程
C:ふつ素化剤を作用させる工程
[2] 被処理フルォロポリマーは、不安定末端基を有することを特徴とする請求項 1記載の
-SO H基含有フルォロポリマー製造方法。
3
[3] 工程 Aは、ハロゲン化剤を作用させることにより不安定末端基を易分解性末端基に 変換する工程 A1であり、
工程 Bは、分解処理剤を作用させることにより該易分解性末端基を—CFTCO Zに
2 変換する工程 B1であり、
工程 Cは、ふつ素ィ匕剤を作用させることにより該一 CFTCO Zを一 CF Tに変換する
2 2
工程 C1である
ことを特徴とする請求項 2記載の SO H基含有フルォロポリマー製造方法。
3
(Tは、 F、炭素数 1〜10のパーフルォロアルキル基又は炭素数 2〜15のパーフルォ 口アルコキシ基を表し、 zは、 Η、 ΝΙ^ 4又はアルカリ金属元素を表す。 R R2、 R3及び R4は、 H又は炭素数 1〜4のアルキル基を表し、同一でも異なっていてもよい 。該パーフルォロアルキル基及びパーフルォロアルコキシ基は、それぞれエーテル 性酸素〔- o -〕及び Z又は— SO X基を含んでもよい。 Xは前記定義と同じ。 )
2
[4] 易分解性末端基は、 CFTCOX1及び一 CFTCO Rxよりなる群カゝら選ばれる少な
2
くとも 1種であることを特徴とする請求項 3記載の SO H基含有フルォロポリマー製
3
造方法。
(Tは、前記定義と同じ。 X1は、 F又は C1を表す。 Rxは、ハロゲン化アルキル基を表 す。)
[5] ノヽロゲンィ匕剤は、 F、 CI、 Br、 NF、 PCI、 PCI、 SF、 SCI、 SCI、 C1F、 C1F、
2 2 2 3 3 5 4 2 4 3
BrF、 IF、 POC1、 SOC1及び R16R17NSF (R16及び R17は、同一又は異なって、 炭素数 1〜3のアルキル基を表す。 )よりなる群力 選択される少なくとも 1種であるこ とを特徴とする請求項 1〜4の何れか 1項に記載の SO H基含有フルォロポリマー
3
製造方法。
[6] 工程 Aにおいて、ハロゲン化剤を 0°C以上、 150°C未満で作用させることを特徴とす る請求項 1〜5の何れか 1項に記載の SO H基含有フル
3 ォロポリマー製造方法。
[7] 分解処理剤は、水であることを特徴とする請求項 1〜6の何れか 1項に記載の SO
3
H基含有フルォロポリマー製造方法。
[8] -SO X基含有モノマー単位と不安定末端基とを有する被処理フル
2 ォロポリマーに 末端安定化処理を行う SO H基含有フル
3 ォロポリマー製造方法において、 該末端安定化処理が、下記工程 P及び Qを含むことを特徴とする SO H基含有フ
3
ルォロポリマー製造方法。
P :不安定な末端基の 90%以上が CFTCO Zである SO H基含有フルォロポ
2 3
リマーを得る工程
Q :ふつ素ィ匕剤を作用させることにより該一 CFTCO Zを一 CF Tに変換する工程
2 2
(Τ、 Ζ及び Xは、前記定義と同じ。 )
[9] ふつ素化剤は、 F、 NF、 PF、 SF、 IF、 K NiF、 C1F及び C1Fよりなる群から選
2 3 5 4 5 3 7 3
択される少なくとも 1種のふつ素源力 なるふつ素化剤であることを特徴とする請求項 1〜8の何れか 1項に記載の SO H基含有フル
3 ォロポリマー製造方法。
[10] ふつ素ィ匕剤は、ガス状であり、ふつ素源は、該ふつ素ィ匕剤の 1質量%以上であること を特徴とする請求項 9に記載の SO H基含有フルォロポリマー製造方法。
3
[11] ふつ素源は Fであることを特徴とする請求項 9又は 10に記載の SO H基含有フル
2 3
ォロポリマー製造方法。
[12] ふつ素化剤を 0°C以上、 150°C未満で作用させることを特徴とする請求項 1〜11の 何れ力 1項に記載の SO H基含有フル
3 ォロポリマー製造方法。
[13] 被処理フルォロポリマーは、下記一般式 (I)
CF =CF— O— (CF CFY1— O) — (CFY2) —SO X (I)
2 2 n m 2
(式中、 Y1は F、 CI又はパーフルォロアルキル基を表す。 nは 0〜3の整数を表し、 n 個の Y1は同一でも異なっていてもよい。 Y2は F又は C1を表す。 mは 2〜6の整数を表 し、 m個の Y2は、同一でも異なっていてもよい。 Xは、前記定義と同じ。 ) で表されるスルホ -ル基含有パーハロビュルエーテルに由来する繰り返し単位( α ) と、該スルホ-ル基含有パーハロビュルエーテルと共重合可能なエチレン性フルォ 口モノマーに由来する繰り返し単位( )とを含む共重合体であって、
該共重合体中に、該繰り返し単位 ( a )が 5〜50モル%、該繰り返し単位 ( β )が 50
〜95モル0 /0、該繰り返し単位 )と該繰り返し単位( j8 )との和が 95〜: LOOモル0 /0で あることを特徴とする請求項 1〜12の何れか 1項に記載の SO H基含有フルォロポ
3
リマー製造方法。
[14] 上記一般式 (I)において、 nは 0又は 1である請求項 13に記載の SO H基含有フル
3
ォロポリマー製造方法。
[15] 上記一般式 (I)において、 Y2は Fであり、 mは 2〜6の整数である請求項 13又は請求 項 14に記載の SO H基含有フルォロポリマー製造方法。
3
[16] 請求項 1〜15の何れか 1項に記載の SO H基含有フルォロポリマー製造方法によ
3
り得られたことを特徴とする SO H基含有フルォロポリマー。
3
[17] -SO H基含有フルォロポリマーであって、
3
170 mの膜厚を有する該 SO H基含有フルォロポリマーの膜について、フェント
3
ン処理により溶出するフッ化物イオン量が該膜 100質量部に対し、 8. 0 X 10—4質量 部以下である
ことを特徴とする一 SO H基含有フルォロポリマー。
3
[18] 請求項 1〜15の何れか 1項に記載の SO H基含有フル
3 ォロポリマー製造方法によ り得られる SO H基含有フルォロポリマーであって、
3
170 mの膜厚を有する該 SO H基含有フルォロポリマーの膜について、フェント
3
ン処理により溶出するフッ化物イオン量が該膜 100質量部に対し、 8. 0 X 1CT4質量 部以下である
ことを特徴とする一 SO H基含有フルォロポリマー。
3
[19] 請求項 16〜18の何れ力 1項に記載の— SO H基含有フルォロポリマーを含むことを
3
特徴とする高分子電解質膜。
[20] 請求項 16〜18の何れか 1項に記載の— SO H基含有フルォロポリマーを含むことを 特徴とする電極触媒層。
[21] 高分子電解質膜と電極とからなる膜 Z電極接合体であって、下記条件(1)及び (2) よりなる群カゝら選ばれる少なくとも 1つを満たすものであることを特徴とする膜 Z電極 接合体。
(1)該高分子電解質膜は、請求項 19に記載の高分子電解質膜である
(2)該電極は、請求項 20に記載の電極触媒層を含む
[22] 請求項 21に記載の膜 Z電極接合体を有することを特徴とする固体高分子型燃料電 池。
PCT/JP2007/051947 2006-02-03 2007-02-05 -so3h基含有フルオロポリマー製造方法及び-so3h基含有フルオロポリマー WO2007089017A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2007800042375A CN101379095B (zh) 2006-02-03 2007-02-05 含有-so3h基的含氟聚合物的制造方法和含有-so3h基的含氟聚合物
EP12160975.4A EP2474562B1 (en) 2006-02-03 2007-02-05 Method for producing -SO3H group-containing fluoropolymer and -SO3H group-containing fluoropolymer
EP07708065.3A EP1985636B1 (en) 2006-02-03 2007-02-05 Method for producing -so3h group-containing fluoropolymer
US12/278,084 US7776970B2 (en) 2006-02-03 2007-02-05 Method for producing -SO3H group-containing fluoropolymer and -SO3H group-containing fluoropolymer
JP2007556949A JP5156399B2 (ja) 2006-02-03 2007-02-05 −so3h基含有フルオロポリマー製造方法及び−so3h基含有フルオロポリマー
US12/831,109 US8034880B2 (en) 2006-02-03 2010-07-06 Method for producing—SO3H group-containing fluoropolymer and—SO3H group-containing fluoropolymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-027375 2006-02-03
JP2006027375 2006-02-03

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/278,084 A-371-Of-International US7776970B2 (en) 2006-02-03 2007-02-05 Method for producing -SO3H group-containing fluoropolymer and -SO3H group-containing fluoropolymer
US12/831,109 Division US8034880B2 (en) 2006-02-03 2010-07-06 Method for producing—SO3H group-containing fluoropolymer and—SO3H group-containing fluoropolymer

Publications (1)

Publication Number Publication Date
WO2007089017A1 true WO2007089017A1 (ja) 2007-08-09

Family

ID=38327574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051947 WO2007089017A1 (ja) 2006-02-03 2007-02-05 -so3h基含有フルオロポリマー製造方法及び-so3h基含有フルオロポリマー

Country Status (5)

Country Link
US (2) US7776970B2 (ja)
EP (2) EP1985636B1 (ja)
JP (1) JP5156399B2 (ja)
CN (2) CN102127180B (ja)
WO (1) WO2007089017A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093565A1 (ja) * 2008-01-21 2009-07-30 Daikin Industries, Ltd. 末端処理されたフッ化ビニリデン系エラストマーの製造方法
JP2015516024A (ja) * 2012-05-09 2015-06-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 変色を低減させるためのフッ素化ポリマー樹脂の前処理およびフッ素化の利用
WO2019093433A1 (ja) * 2017-11-10 2019-05-16 ダイキン工業株式会社 エチレン/テトラフルオロエチレン共重合体

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005028522A1 (ja) 2003-09-10 2005-03-31 Asahi Kasei Chemicals Corporation 安定化フルオロポリマー及びその製造方法
CN103788280B (zh) 2008-04-24 2016-08-17 3M创新有限公司 质子传导材料
JP2010027952A (ja) * 2008-07-23 2010-02-04 Toshiba Corp 半導体装置の製造方法
KR101740746B1 (ko) * 2009-06-12 2017-05-26 솔베이 스페셜티 폴리머스 이태리 에스.피.에이. 낮은 표면장력, 낮은 액체 점도 및 높은 고형물 함량을 갖는 플루오로아이오노머 분산액
WO2011051168A1 (en) 2009-10-29 2011-05-05 Solvay Solexis S.P.A. Process for the isolation of sulfonyl fluoride polymers and polymers obtained therefrom
EP2511311B1 (en) * 2009-12-11 2013-11-27 Shandong Huaxia Shenzhou New Material Co., Ltd. Perfluorinated ion exchange resin, preparation method and use thereof
EP2576048A4 (en) * 2010-05-28 2014-01-01 Graphea Inc CATALYSTS AND SYSTEMS BASED ON GRAPHENE OXIDE AND GRAPHITE OXIDE
WO2012176810A1 (ja) * 2011-06-22 2012-12-27 ダイキン工業株式会社 高分子多孔質膜及び高分子多孔質膜の製造方法
CN103665215B (zh) * 2013-11-29 2015-09-30 中昊晨光化工研究院有限公司 一种ptfe悬浮树脂的端基氟化处理方法
CN103665198B (zh) * 2013-11-29 2016-01-06 中昊晨光化工研究院有限公司 一种ptfe悬浮树脂端基的处理方法
US11492431B2 (en) 2017-09-14 2022-11-08 3M Innovative Properties Company Fluorinated copolymer having sulfonyl pendant groups and compositions and articles including the same
CN109762083B (zh) * 2018-12-29 2021-06-29 山东华夏神舟新材料有限公司 含氟聚合物不稳定端基的稳定化处理方法
KR102659583B1 (ko) * 2021-03-16 2024-04-23 현대모비스 주식회사 고분자 전해질막 및 이를 포함하는 연료전지

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4623245B1 (ja) 1968-01-18 1971-07-02
JPS53149881A (en) 1977-06-03 1978-12-27 Asahi Glass Co Ltd Strengthened cation exchange resin membrane and production thereof
JPS6361337A (ja) 1986-09-01 1988-03-17 Fujitsu Ltd 自動リセツト方法
JPH0575835B2 (ja) 1985-04-22 1993-10-21 Japan Gore Tex Inc
JP2004018673A (ja) 2002-06-17 2004-01-22 Daikin Ind Ltd 含フッ素成形体、含フッ素成形体製造方法、含フッ素ポリマー及び含フッ素ポリマー製造方法
JP2004102714A (ja) 2002-09-10 2004-04-02 Kyodo Printing Co Ltd 広告システム及び広告方法
WO2004066426A1 (ja) * 2003-01-20 2004-08-05 Asahi Glass Company, Limited 固体高分子型燃料電池用電解質材料の製造方法及び固体高分子型燃料電池用膜電極接合体
WO2004102714A1 (ja) * 2003-05-13 2004-11-25 Asahi Glass Company, Limited 固体高分子型燃料電池用電解質ポリマー、その製造方法及び膜・電極接合体
JP2005028522A (ja) 2003-07-07 2005-02-03 Brother Ind Ltd 工作機械及び工作機械の折損検出方法
WO2005028522A1 (ja) * 2003-09-10 2005-03-31 Asahi Kasei Chemicals Corporation 安定化フルオロポリマー及びその製造方法
JP2006299092A (ja) * 2005-04-20 2006-11-02 Asahi Kasei Corp 化学的安定性に優れた電解質膜の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63304033A (ja) * 1987-06-03 1988-12-12 Toray Ind Inc ヒートシール用フッ素樹脂成形物の製造方法
JP3275431B2 (ja) * 1993-03-25 2002-04-15 ダイキン工業株式会社 フッ素樹脂成形体およびその製法
CN101348538B (zh) * 2003-09-10 2011-10-05 旭化成电子材料株式会社 稳定的含氟聚合物及其制造方法
EP1914251A1 (en) * 2006-10-17 2008-04-23 Solvay Solexis S.p.A. Process for stabilizing fluoropolymer having ion exchange groups

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4623245B1 (ja) 1968-01-18 1971-07-02
JPS53149881A (en) 1977-06-03 1978-12-27 Asahi Glass Co Ltd Strengthened cation exchange resin membrane and production thereof
JPH0575835B2 (ja) 1985-04-22 1993-10-21 Japan Gore Tex Inc
JPS6361337A (ja) 1986-09-01 1988-03-17 Fujitsu Ltd 自動リセツト方法
JP2004018673A (ja) 2002-06-17 2004-01-22 Daikin Ind Ltd 含フッ素成形体、含フッ素成形体製造方法、含フッ素ポリマー及び含フッ素ポリマー製造方法
JP2004102714A (ja) 2002-09-10 2004-04-02 Kyodo Printing Co Ltd 広告システム及び広告方法
WO2004066426A1 (ja) * 2003-01-20 2004-08-05 Asahi Glass Company, Limited 固体高分子型燃料電池用電解質材料の製造方法及び固体高分子型燃料電池用膜電極接合体
WO2004102714A1 (ja) * 2003-05-13 2004-11-25 Asahi Glass Company, Limited 固体高分子型燃料電池用電解質ポリマー、その製造方法及び膜・電極接合体
JP2005028522A (ja) 2003-07-07 2005-02-03 Brother Ind Ltd 工作機械及び工作機械の折損検出方法
WO2005028522A1 (ja) * 2003-09-10 2005-03-31 Asahi Kasei Chemicals Corporation 安定化フルオロポリマー及びその製造方法
JP2006299092A (ja) * 2005-04-20 2006-11-02 Asahi Kasei Corp 化学的安定性に優れた電解質膜の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DENNIS E. CURTIN ET AL., PREPRINTS FOR THE 10TH FUEL CELL SYMPOSIUM, 2003, pages 121
JOURNAL OF APPLIED ELECTROCHEMISTRY, vol. 22, 1992, pages 1 - 7

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093565A1 (ja) * 2008-01-21 2009-07-30 Daikin Industries, Ltd. 末端処理されたフッ化ビニリデン系エラストマーの製造方法
JP5219163B2 (ja) * 2008-01-21 2013-06-26 ダイキン工業株式会社 末端処理されたフッ化ビニリデン系エラストマーの製造方法
US8722809B2 (en) 2008-01-21 2014-05-13 The University Of Tokyo Process for preparing end-modified vinylidene fluoride elastomer
JP2015516024A (ja) * 2012-05-09 2015-06-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 変色を低減させるためのフッ素化ポリマー樹脂の前処理およびフッ素化の利用
WO2019093433A1 (ja) * 2017-11-10 2019-05-16 ダイキン工業株式会社 エチレン/テトラフルオロエチレン共重合体
JP2019090013A (ja) * 2017-11-10 2019-06-13 ダイキン工業株式会社 エチレン/テトラフルオロエチレン共重合体
US11548960B2 (en) 2017-11-10 2023-01-10 Daikin Industries, Ltd. Ethylene/tetrafluoroethylene copolymer
US11905349B2 (en) 2017-11-10 2024-02-20 Daikin Industries, Ltd. Ethylene/tetrafluoroethylene copolymer

Also Published As

Publication number Publication date
EP1985636A4 (en) 2011-09-07
EP2474562A2 (en) 2012-07-11
EP2474562B1 (en) 2022-06-15
JP5156399B2 (ja) 2013-03-06
US20100273088A1 (en) 2010-10-28
EP1985636B1 (en) 2019-07-17
CN102127180A (zh) 2011-07-20
US8034880B2 (en) 2011-10-11
EP1985636A1 (en) 2008-10-29
US20090061280A1 (en) 2009-03-05
CN102127180B (zh) 2012-10-17
EP2474562A3 (en) 2012-08-15
CN101379095B (zh) 2011-03-02
CN101379095A (zh) 2009-03-04
US7776970B2 (en) 2010-08-17
JPWO2007089017A1 (ja) 2009-06-25

Similar Documents

Publication Publication Date Title
WO2007089017A1 (ja) -so3h基含有フルオロポリマー製造方法及び-so3h基含有フルオロポリマー
JP4015168B2 (ja) 安定化フルオロポリマー及びその製造方法
US7488788B2 (en) Electrolyte polymer for polymer electrolyte fuel cells, process for its production and membrane-electrode assembly
JP5862372B2 (ja) ポリマーの製造方法、固体高分子形燃料電池用電解質膜の製造方法および膜電極接合体の製造方法
JP2009521579A (ja) 無機充填剤を含有する化学安定化イオノマーを製造する方法
JP5103024B2 (ja) 安定化フルオロポリマー
JP5755346B2 (ja) 燃料電池用電極触媒層、膜電極接合体及び固体高分子型燃料電池。
JP5119854B2 (ja) 含フッ素ポリマー分散体及び含フッ素ポリマー分散体製造方法
EP1972024A2 (en) Chemically stabilized ionomers containing inorganic fillers
JP5158353B2 (ja) 燃料電池用電解質膜及び燃料電池用電解質膜・電極接合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007556949

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12278084

Country of ref document: US

Ref document number: 200780004237.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007708065

Country of ref document: EP