WO2004074556A2 - β‐Ga2O3系単結晶成長方法、薄膜単結晶の成長方法、Ga2O3系発光素子およびその製造方法 - Google Patents

β‐Ga2O3系単結晶成長方法、薄膜単結晶の成長方法、Ga2O3系発光素子およびその製造方法 Download PDF

Info

Publication number
WO2004074556A2
WO2004074556A2 PCT/JP2004/001653 JP2004001653W WO2004074556A2 WO 2004074556 A2 WO2004074556 A2 WO 2004074556A2 JP 2004001653 W JP2004001653 W JP 2004001653W WO 2004074556 A2 WO2004074556 A2 WO 2004074556A2
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
substrate
thin film
growing
type
Prior art date
Application number
PCT/JP2004/001653
Other languages
English (en)
French (fr)
Other versions
WO2004074556A3 (ja
Inventor
Noboru Ichinose
Kiyoshi Shimamura
Kazuo Aoki
Encarnacion Antonia Garcia Villora
Original Assignee
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003046552A external-priority patent/JP4630986B2/ja
Priority claimed from JP2003066020A external-priority patent/JP4565062B2/ja
Priority claimed from JP2003137916A external-priority patent/JP4020314B2/ja
Application filed by Waseda University filed Critical Waseda University
Priority to AT04711454T priority Critical patent/ATE525498T1/de
Priority to US10/546,484 priority patent/US7393411B2/en
Priority to CA002517024A priority patent/CA2517024C/en
Priority to EP04711454A priority patent/EP1598450B1/en
Publication of WO2004074556A2 publication Critical patent/WO2004074556A2/ja
Publication of WO2004074556A3 publication Critical patent/WO2004074556A3/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/34Single-crystal growth by zone-melting; Refining by zone-melting characterised by the seed, e.g. by its crystallographic orientation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02414Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region

Definitions

  • the present invention is, / 3- Ga 2 ⁇ 3 single crystal growing method, the growth method of the thin-film single crystal relates to Ga 2 0 3 based light - emitting element and a manufacturing method thereof, particularly, reduces cracking and SoAkiraka trends, Ga 2 ⁇ 3 system that emits binding-crystalline with improved / 3- Ga 2 0 3 system single crystal growth method, in the growth method and ultraviolet regions of the child form the high-quality thin-film single-crystal thin film single crystal can
  • the present invention relates to a light emitting device and a method for manufacturing the same. Background art
  • Light emitting devices in the ultraviolet region are particularly expected to be used in mercury-free fluorescent lamps, photocatalysts that provide a clean environment, and new-generation DVDs that achieve higher-density recording. From such a background, a GaN-based blue light emitting device has been realized.
  • Japanese Patent No. 2778405 discloses a GaN blue light-emitting device that includes a sapphire substrate, a buffer layer formed on the sapphire substrate, an n-type gallium nitride-based compound semiconductor layer formed on the buffer layer, and n Patent Document 1 discloses a device including a type clad layer, an n-type active layer, a p-type clad layer, and a p-type contact layer. This conventional GaN-based blue light-emitting device emits ultraviolet light having an emission wavelength of 370 nm.
  • Oyobi 211_Rei is to use the light emitting element has been studied as there is a possibility that emits a shorter wavelength of light in the ultraviolet region.
  • CZ method Cz ochra 1 ski method
  • FZ Floating Z on e T echniqu by e
  • a thin film of Zn ⁇ is grown on a conventional substrate by a PLD (Palsed Laser Deposition) method.
  • Second 7 figures conventional - showing a Ga 2 ⁇ 3 substrate 1 ⁇ 0 formed by a bulk single crystal.
  • a CZ method or an FZ method is known (for example, M. Saurat, A. Revcolevschi, “Rev. Inn”). t. Hautes Temper. et Refract. ", p. 291, 897, 1980.)
  • the CZ method is performed as follows. First, the I r crucible filled with Ga 2 ⁇ 3 powder powder purity 4N as a raw material is covered with a quartz tube, the high-frequency oscillator while flowing a 1 vol.% Oxygen gas of argon gas mixed gas combined mixed in a quartz tube heating the I r crucible, dissolving Ga 2 0 3 powder, to produce a polycrystalline lysate Ga 2 ⁇ 3. Then, a separately prepared 3) Ga 2 O 3 seed crystal was brought into contact with the dissolved Ga 2 O 3 , and the iS—Ga 2 O 3 seed crystal was pulled at a speed of lmmZh and a crystal rotation speed of 15 rpm. A Ga 2 O 3 single crystal is manufactured. According to this method, there is an advantage that it is possible to grow a 0- Ga 2 ⁇ 3 single crystal of a large diameter.
  • the upper material for example, a method of growing a crystal while supporting the melt / 3- Ga 2 0 3 polycrystalline below the / 3-G a 2 ⁇ three crystals.
  • the composition material of the target thin film for example, Zn is irradiated in a very low-pressure oxygen atmosphere with a laser in a pulsed manner, and the components constituting the target are converted into plasma or molecular state. And grow a Zn ⁇ thin film on the substrate. This makes it possible to easily produce a thin film with a simple apparatus.
  • Zn ⁇ was released as a class material from the target material composed of the target thin film, and it was deposited on the substrate as it was.
  • ZnO molecules were present as irregularities on the substrate, and a thin film with poor surface flatness could be formed.
  • the target may be degraded or deteriorated by laser irradiation, which has been a factor that hinders the growth of the thin-film single crystal.
  • an object of the present invention is easy to control the crystal growth, size, to provide a processed hardly cracked by i3- G a 2 0 3 system single crystal growth method on a substrate such as a high-quality It is in.
  • Another object of the present invention is to provide a method for growing a thin film single crystal capable of forming a high quality thin film single crystal.
  • object of the present invention is to provide a G a 2 ⁇ 3 based light emitting device and a manufacturing method thereof for emitting light having a shorter wavelength in the ultraviolet region. Disclosure of the invention
  • the present invention / 3-G a Prepare 2 0 3 system seed crystal, 3- to G a 2 0 3 based species predetermined azimuth from the crystal) 3 G a 2 ⁇ 3 system to grow single crystals providing 3- G a 2 ⁇ 3 system single crystal growth how characterized by.
  • a substrate is prepared, and a metal target made of a pure metal or an alloy is irradiated with an excitation beam in a predetermined atmosphere, and the emitted chemical species such as atoms, molecules, and ions are mixed with the predetermined atmosphere. And growing a thin film on the substrate by bonding the atoms to the single crystal.
  • the metal beam when the metal beam is irradiated with the excitation beam, the metal atoms constituting the metal target are excited, and chemical species such as metal atoms, molecules, ions, and the like are removed from the metal target by thermal'photochemical action.
  • the released species are combined with the radicals in the atmosphere, and grow on the substrate to form a thin film on the substrate.
  • the present invention is, Ga 2 ⁇ 3 system and the first layer exhibiting n-type conductivity comprising a single crystal, the first consisting of the formed G a 2 ⁇ 3 system single crystal in contact on the layer p-type conductivity providing Ga 2 0 3 based light emitting device according to claim Rukoto and a second layer showing the sex.
  • the second layer forms forming a having p-type conductivity on the first layer exhibiting n-type conductivity, it is possible to form a light-emitting element of the PN junction, Ga 2 0 it is possible to light emission in the ultraviolet region by 3 system single Bandogiyappu the crystal has.
  • FIG. 1 is a diagram showing a schematic configuration of an infrared heating single crystal manufacturing apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a front view of a 3-Ga 2 O 3 seed crystal according to the first embodiment of the present invention.
  • Figure 3 (a) ⁇ (d) are diagrams showing a first according to the embodiment ⁇ one Ga 2 0 3 growth process of the single crystal of the present invention.
  • FIG. 4 is a diagram showing a single crystal according to the first embodiment of the present invention.
  • FIG 5 is a view showing a first according to the embodiment / 3- Ga 2 ⁇ 3 substrate formed from a single crystal of the present invention.
  • FIG. 6 is a diagram showing a first 1 / 3- Ga 2 according to the embodiment of ⁇ 3 unit lattice of the single crystal of the present invention.
  • FIG. 7 is a diagram showing a schematic configuration of a film forming apparatus according to a second embodiment of the present invention.
  • FIG. 8 is a diagram showing a cross section of a MIS type light emitting device according to a third embodiment of the present invention.
  • FIG. 9 is a sixth diagram showing a J3- Ga 2 0 3 thin film of an atomic force microscope (AFM) photograph relating to the embodiment of the present invention.
  • AFM atomic force microscope
  • the first 0 Figure is a seventh diagram showing a related / 3_Ga 2 ⁇ 3 thin atomic force micrograph of the embodiment of the present invention.
  • (A) is according to a seventh embodiment of the present invention; 8- Ga 2 ⁇ 3 thin film of reflection high energy electron
  • FIG. 14 shows a diffraction pattern
  • FIG. 13B shows a reflection high-speed electron diffraction pattern of a thin film of a comparative example corresponding to the seventh embodiment.
  • the first 2 figure is 8 shows according / 3- Ga 2 ⁇ 3 between the thin film of atom force microscope photograph to the embodiment of the present invention.
  • the first 3 Figure is a comparison view of a reflection high-energy electron diffraction pattern of the film of the comparative example corresponding to the eighth embodiment of the according to the / 3- Ga 2 ⁇ 3 thin film and the eighth embodiment of the of the present invention .
  • (A) shows an eighth reflection high-energy electron diffraction pattern of the / 3 _G a 2 ⁇ 3 thin film according to an embodiment of of the present invention
  • FIG. 14 is a view showing an atomic force microscope photograph of a / 3—Ga 2 O 3 thin film according to a ninth embodiment of the present invention.
  • the first 5 is a diagram showing a first 0 according to the embodiment I3- Ga 2 ⁇ 3 thin atomic force micrograph of the present invention.
  • FIG. 16 is a view showing a scanning electron microscope (SEM) photograph of a Ga 2 O 3 thin film according to a comparative example corresponding to the tenth embodiment of the present invention.
  • FIG. 17 is a cross-sectional view showing a Ga 2 O 3 -based light emitting device according to a 12th embodiment of the present invention.
  • the first 8 is a diagram showing a relationship between oxygen concentration and Kiyaria concentration in the first according to the second embodiment 0- Ga 2 ⁇ 3 single crystal of the present invention.
  • the first 9 is a diagram showing a schematic configuration of a fit of a film forming apparatus for producing a Ga 2 ⁇ 3 based light emitting device according to the first and second embodiments of the present invention.
  • FIG. 20 is a sectional view showing a Ga 2 O 3 -based light emitting device according to a thirteenth embodiment of the present invention.
  • the second FIG. 1 is a sectional view showing a Ga 2 0 3 based light emitting device according to a fourteenth embodiment of the present invention.
  • the second FIG. 2 is a sectional view showing a Ga 2 0 3 based light emitting device according to the first to fifth embodiments of the present invention.
  • FIG. 3 is a sectional view showing a Ga 2 ⁇ 3 based light emitting device according to Embodiment to practice the first 6 of the present invention.
  • FIG. 24 is a sectional view showing a G a 2 ⁇ 3 based light emitting device according to the the implementation of the first 7 of the present invention.
  • the second Fig. 5 is a diagram illustrating 3- A 1 Ga ⁇ O / 3- G a 2 ⁇ 3, and / 3 the relationship between G a I N_ ⁇ third lattice constant ratio and the band gap.
  • FIG. 26 is a sectional view showing a G a 2 ⁇ 3 based optical device according to an embodiment of the first 8 of the present invention.
  • FIG. 27 is a diagram showing a conventional single crystal substrate. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows an infrared heating single crystal manufacturing apparatus according to a first embodiment of the present invention.
  • Infrared heating single crystal manufacturing apparatus 1 0 1 This is to produce a 3- Ga 2 ⁇ 3 single crystal by the FZ method, the quartz tube 1 0 2, J3- Ga 2 0 3 seed crystal (hereinafter “species abbreviated as crystal ".) a seed rotation section 1 03 for holding and rotating a 1 0 7, / 3_Ga 2 0 3 polycrystalline raw material (hereinafter referred to as" polycrystalline material ".) material rotation holding and rotating 1 0 9 Unit 104, a heating unit 105 that heats and melts the polycrystalline material 109, and a control unit 106 that controls the seed rotating unit 103, the material rotating unit 104, and the heating unit 105. And is schematically configured.
  • the seed rotating unit 103 rotates the seed chuck 133 that holds the seed crystal 107, the lower rotating shaft 13 2 that transmits rotation to the seed chuck 133, and the lower rotating shaft 1 32 forward. And a lower drive unit 13 1 for moving up and down.
  • the material rotating part 104 rotates the material chuck 143 that holds the upper end part 109 a of the polycrystalline material 109, the upper rotating shaft 142 that transmits rotation to the material chuck 143, and the upper rotating shaft 14 2 in the normal and reverse directions.
  • an upper drive unit 141 for moving the upper and lower parts in the vertical direction.
  • the heating section 105 accommodates the halogen lamp 151, which heats and melts the polycrystalline material 109 from the radial direction, and the halogen lamp 151, and polycrystals the light emitted by the halogen lamp 1501.
  • An elliptical mirror 152 for condensing light on a predetermined portion of the material 109 and a power supply unit 153 for supplying power to the halogen lamp 151 are provided.
  • Quartz tube 10 2 the lower rotating shaft 1 32, a seed chuck 1 3 3, upper rotating shaft 142, material chuck 1 43, polycrystalline material 1 0 9, j3-Ga 2 0 3 of the single crystal 1 0 8 and species crystal 107 is accommodated.
  • the quartz tube 102 is supplied with a mixed gas of an oxygen gas and a nitrogen gas as an inert gas so that it can be hermetically sealed.
  • FIG. 1 a method for growing a / 3-Ga 2 —3 single crystal according to the first embodiment of the present invention will be described with reference to FIGS. 2, 3, and 4.
  • FIG. 2 a method for growing a / 3-Ga 2 —3 single crystal according to the first embodiment of the present invention will be described with reference to FIGS. 2, 3, and 4.
  • FIG. 2 a method for growing a / 3-Ga 2 —3 single crystal according to the first embodiment of the present invention will be described with reference to FIGS. 2, 3, and 4.
  • FIG. 2 shows a front view of the seed crystal 107.
  • Seed crystal 107 has a prismatic shape with a square cross section, and a part of seed crystal 107 is held by seed chuck 133.
  • Seed crystal 1 0 7 uses, for example, those cut out J3- Ga 2 ⁇ 3 single crystal along the cleavage plane.
  • Seed crystal 107 has a diameter of less than one fifth of the grown crystal or a cross-sectional area of less than 5 mm 2 to grow a good / 3—Ga 2 O 3 single crystal, and — Ga 2 ⁇ 3 It is strong enough not to break during single crystal growth.
  • the sectional area is set to 1 to 2 mm 2 .
  • the axial direction is the ⁇ 100> direction of the a-axis, the ⁇ 010> direction of the three-axis, or the ⁇ 010> direction of the c-axis.
  • the diameter means one side of a square, the long side of a rectangle, the diameter of a circle, or the like. Further, it is preferable that an error between the axial direction and each direction is within a range of ⁇ 10 °.
  • FIGS. 3 (a) to 3 (d) show the growth process of a 3 -Ga 2 ⁇ 3 single crystal (according to the first embodiment of the present invention), and FIG. 4 shows the first embodiment of the present invention. 2 shows a single crystal according to the embodiment. 3 and 4, the seed chuck 13 is omitted.
  • a polycrystalline material 109 is prepared as follows. That is, filled into a rubber tube (not shown) a predetermined amount of G a 2 ⁇ 3 powder having a purity of 4N, it cold compressed at 5 0 OMP a. Thereafter, sintering is performed at 1500 ° C. for 10 hours to obtain a rod-shaped polycrystalline material 109.
  • the upper end 107a of the seed crystal 107 is brought into contact with the lower end 109b of the polycrystalline material 109 by adjusting the vertical position of the upper rotating shaft 142. Let it. Also, the upper rotation axis 142 and the upper rotation axis 142 are so set that the light of the halogen lamp 151 is condensed at the upper end 107 a of the seed crystal 107 and the lower end 109 b of the polycrystalline material 109. Adjust the vertical position of the lower rotary shaft 1 3 2 I do.
  • the atmosphere 102a of the quartz tube 102 is filled with a total pressure of a mixed gas of nitrogen and oxygen (variable between 100% nitrogen and 100% oxygen) of 1 to 2 atm.
  • control unit 106 controls each unit according to a control program to perform single crystal growth control as follows.
  • the halogen lamp 1501 heats the upper end 107a of the seed crystal 107 and the lower end 109b of the polycrystalline material 109. Then, the heated portion is melted to form a melted droplet 108 c. At this time, only the seed crystal 107 is rotated.
  • the polycrystalline material 109 and the seed crystal 107 are melted while rotating the relevant portion in the opposite direction so as to be sufficiently blended.
  • the polycrystalline material 109 and the seed crystal 107 are pulled in opposite directions to each other to form a dash neck 108a thinner than the seed crystal 107.
  • the seed crystal 107 and the polycrystalline material 109 are heated by a halogen lamp 151 while rotating in opposite directions at 20 rpm, and the polycrystalline material 109 is heated at a rate of 5 mm / hour. Pull upward with the upper rotating shaft 142.
  • the polycrystalline material 109 melts to form a melt 108 ', and when cooled, as shown in Fig. 3 (c). the polycrystalline material 1 0 9 equal or even than that of the small diameter / 3- Ga 2 ⁇ 3 single crystal 1 0 8 is produced.
  • the single crystal of a moderate length as shown in FIG. 3 (d)
  • 3- Ga 2 ⁇ 3 to retrieve the single crystal 1 08 / 3- Ga 2 ⁇ 3 single crystal
  • the upper part 108 b of the element 108 is reduced in diameter.
  • FIG. 5 shows a substrate formed from a / 3-—Ga 2 O 3 single crystal 108.
  • J3- Ga 2 ⁇ 3 single crystal 1 0 8 when grown crystal 13 axis ⁇ 0 1 0> orientation, since strong cleavage of (1 0 0) plane, (1 00) plane
  • the substrate 160 is manufactured by cutting along a plane parallel to and a plane perpendicular to the substrate.
  • the cleavage of the (100) plane and (001) plane is weakened, so the workability of all planes And the cut surface is not restricted as described above.
  • FIG. 6 shows a unit cell of a / 3-—Ga 2 O 3 single crystal.
  • a 0—Ga 2 ⁇ 3 single crystal eight Ga atoms and 12 zero atoms are Ga (1), Ga (2), O (1), O (2), O (3).
  • a, b, and c denote the & axis ⁇ 100> direction, the b-axis ⁇ 010> direction, and the c-axis 001> direction, respectively.
  • Such crystals can be produced with good reproducibility. Therefore, it is highly useful as a substrate for semiconductors and the like.
  • / 3- Ga 2 to ⁇ three instead of crystalline 1 0 7, / 3- G a 2 ⁇ 3 the same monoclinic system, spatial group belongs to C 2Zm i3- Ga 2 ⁇ 3 of gallium, Selected from the group consisting of indium, aluminum, tin, germanium, nickel, copper, zinc, zirconium, niobium, molybdenum, titanium, vanadium, chromium, manganese, iron, cobalt, hafnium, tantalum, tandasten, silicon and magnesium grown 1 or comprising two or more elements of the oxides / 3- Ga of two ⁇ 3 solid solution / 3- Ga 2 ⁇ 3 system seed crystal made of a solid solution Kakaru using 3- Ga 2 0 3 system single crystal May be.
  • an LED that emits light in the wavelength range from ultraviolet to blue can be realized.
  • the FZ method When the FZ method is performed at a total pressure of 2 atm or more as a mixed gas of nitrogen and oxygen, generation of bubbles can be suppressed, and the crystal growth process can be further stabilized.
  • the lower rotating shaft 132 When it is necessary to pull the single crystal 108 upward, the lower rotating shaft 132 may be lowered. Further, instead of moving the halogen lamp 151, the lower rotating shaft 132 and the upper rotating shaft 142 may be moved for heating. Heating may be performed with a heating coil instead of the halogen lamp 151.
  • the present embodiment has been described as using nitrogen gas as the inert gas, the present invention may use argon instead of nitrogen gas.
  • the seed crystal 107 may have a rectangular cross section, or may have a columnar shape or an elliptic column shape instead of the prismatic shape.
  • the FZ method has been described.
  • another crystal growth method such as an EFG method (a shape control crystal growth method using a Czochra 1 ski method, which is a pulling method) may be applied.
  • FIG. 7 shows a schematic configuration of a film forming apparatus according to a second embodiment of the present invention.
  • This film forming apparatus 201 is for forming a film by the PLD method, and comprises a chamber 202 having a space 220 capable of being evacuated, and a target 203 arranged in the chamber 202.
  • Hold target board 205 and rotation mechanism 211 provided outside of champ 202 to rotate target table 205 and placed inside champ 202 to hold substrate 206
  • the substrate holder 206 containing a heater capable of heating the substrate 206 up to 150 ° C., and the radical injection for injecting radicals from the pipe 202 a into the chamber 202 Section 208, an exhaust section 209 having a vacuum pump (not shown) for evacuating the space 220 through the pipe 202b to evacuate the space 220, and a chamber.
  • a laser 5204 which is provided outside the apparatus 202 and irradiates a laser beam as an excitation beam to the target 203, is provided.
  • the target 203 is made of a pure metal or an alloy, for example, high-purity Ga or an alloy containing Ga.
  • the laser section 204 is a laser oscillation section that irradiates a laser beam 242 in a pulse form using an Nd: YA G laser, a KrF excimer laser, an Arf excimer laser, or the like as a laser source. 241, and lenses 243 and 244 for condensing the laser light 242 emitted from the laser oscillating section 241 on the target 203.
  • the substrate 206 is formed so that when the target 203 is irradiated with the laser beam 242, chemical species such as metal atoms 233 dissociated from the target 203 can contribute to the film formation. It faces the evening get 203.
  • the radical injection section 2 0 8 oxygen gas, oxygen gas containing ozone, pure ozone gas, N 2 O gas, N0 2 gas, oxygen the radical ⁇ / oxygen gas containing oxygen radicals, nitrogen radicals, NH 3 gas, nitrogen radicals
  • One or two or more of NH 3 gas or the like, that is, a gas that combines with atoms released from the target 203 during film formation is injected into the space 220.
  • This growth method includes a step of preparing a substrate 206 on which a thin film is to be grown, and a step of growing a thin film on the substrate 206.
  • FZ (F loating Z one) method by you form j3 _ G a 2 ⁇ 3 single crystal. That is, in the quartz tube; melt both at the contact portion content of the 8- Ga 2 ⁇ 3 seed crystal and J3- Ga 2 0 3 polycrystalline material. When the dissolved) 3-Ga 2 ⁇ 3 polycrystalline material of / 3- Ga 2 ⁇ three kinds descends crystal together with, the J3- Ga 2 ⁇ three crystallographic] 3- Ga 2 0 3 single crystal produced Is done. Next, to produce a substrate 20 6 This / 3- Ga 2 ⁇ 3 single crystal.
  • the cleavage of the (100) plane becomes stronger, so that it is cut along a plane perpendicular to the (100) plane and perpendicular to the (100) plane.
  • a substrate 206 is manufactured. If the crystal is grown in the ⁇ 100> direction along the a-axis and the (: axis ⁇ 001> direction, the cleavage of the (100) plane and the (001) plane is weakened, so the workability of all planes And the cut surface is not limited as described above.
  • a thin film is grown on the substrate 206 using the film forming apparatus 201 described above. That is, as a target 203, for example, a target 203 made of Ga is fixed to a target base 205. / 3- Ga 2 ⁇ 3 substrate 20 6 made of a single crystal that holds the substrate holder 20 7.
  • the vacuum pump of the gas exhaust unit 20 9 exhaust the air in the space portion 220, the degree of vacuum in the space 2 20, for example, set to about 1 X 1 0_ 9 torr, then, for example, between the oxygen gas air unit 2 20 injected with about 1 X 1 0- 7 torr for heating, an electric power is applied to the heater (not shown) by the substrate holder 20 7, the temperature of the substrate 2 0 6, for example, in 3 0 0 ° C ⁇ 1 500 ° C You. Then, oxygen radicals is injected into the space 220 by the radical injection section 208 and 1 X 1 0- 4 ⁇ 1 X 1 0- 6 torr.
  • the target 203 When a laser beam 242 with a laser output of 100 mW and a repetition frequency of 10 Hz from the laser unit 204 and a wavelength of 266 nm is irradiated on the evening target 203 rotated by the rotating mechanism 211, the target 203 is formed.
  • the Ga atoms are excited, and chemical species such as Ga atoms, Ga ions, excited Ga atoms, and excited Ga ions released from the target 203 by thermal'photochemical action become oxygen radicals in the atmosphere.
  • the substrate 206 On the substrate 206 to form a / 3—Ga 2 O 3 single crystal. Its formed / 3- Ga 2 0 3 single crystal is grown on the substrate 206, on the substrate 206 / 3- Ga 2 ⁇ 3 thin-film single crystal is formed. Incidentally, it is grown i3- Ga 2 0 3 thin film single crystal showed n-type conductivity. This conductivity is thought to be due to oxygen vacancies.
  • the second embodiment since chemical species such as metal atoms, metal ions, excited metal atoms, and excited metal ions released from the target 203 are combined with atoms in the atmosphere, surface flatness is reduced. high, it is possible to grow a thin film made of quality good / 3- Ga 2 ⁇ 3 single crystal on the substrate.
  • FIG. 8 shows a cross section of a MIS light emitting device according to the third embodiment of the present invention.
  • the MIS type light emitting element 260 includes a substrate 206 made of 3_Ga 2 O 3 single crystal, a Ga 2 O 3 thin film single crystal 261 having n-type conductivity formed on the upper surface of the substrate 206, and an n-type is formed j3_Ga 2 0 3 thin-film single crystal 261 of the top surface; 8 and G a 2 ⁇ third insulating layer 262 formed of a thin film crystal, the gold electrode 263 formed on the upper surface of the insulating layer 262, a gold electrode 263 It has a bonding 267 mounted on the upper surface and connected to a lead 268, an n-electrode 264 formed on the lower surface of the substrate 206, and a bonding 265 mounted on the lower surface of the n-electrode 264 and connected to the lead 266.
  • the insulating layer 262 has a surface formed by annealing at 900 ° C. in an oxygen atmosphere without oxygen defects of 10 to 1000 nm.
  • the Zn ⁇ -based thin film single crystal according to the fourth embodiment of the present invention uses the film forming apparatus 201 according to the second embodiment, and uses a metal made of Zn or an alloy containing Zn as the target 203. Then, it is obtained by growing on the substrate 206.
  • the Zn atom or other atom constituting the metal target 203 is irradiated. Is excited, and chemical species such as Zn atoms, Zn ions, excited Zn atoms, and excited Zn ions released from the metal target 203 by thermal and photochemical actions are combined with radicals in the atmosphere, and the The ZnO-based thin film single crystal is formed on the substrate 206 by growing on the substrate 206.
  • a buffer layer made of Zeta eta 0 based thin-film crystal may be grown Zetaita_ ⁇ based thin-film single crystal on the buffer layer. According to this configuration, a lattice mismatch is reduced and a ⁇ -based thin film single crystal with good crystallinity is formed because a ⁇ -based thin film single crystal of the same type as the buffer layer is grown on the buffer layer. can do.
  • the GaN-based thin film single crystal according to the fifth embodiment of the present invention uses the film forming apparatus 201 according to the second embodiment, and uses a nitrogen radical, NH 3 gas, and nitrogen radical as atmospheres. It is obtained by growing on the substrate 206 using one or more of the NH 3 gases containing
  • the G a element or another atom constituting the metal target 203 is formed. Is excited, and chemical species such as Ga atoms, Ga ions, excited Ga atoms, and excited Ga ions released from the metal target 203 by thermal and photochemical actions combine with radicals in the atmosphere. Grows on the substrate 206 to form a GaN-based thin film single crystal on the substrate 206.
  • 3- Ga 2 ⁇ 3 based on the substrate 20 6 made of a single crystal is grown bus Ffa layer consisting of G a N type thin-film crystal, grown G a N type thin-film single crystal on the buffer layer May be. According to this configuration, the lattice mismatch is reduced and the GaN-based thin film with good crystallinity is grown because the same type of GaN-based thin film of the same type as the buffer layer is grown on the buffer layer.
  • a single crystal can be formed.
  • a Ga 2 O 3 thin film according to a sixth embodiment of the present invention uses the film forming apparatus 201 according to the second embodiment, uses Ga as the material of the target 203, and used those composed of a 20 6 j3- Ga 2 ⁇ 3, while injecting oxygen radicals, the substrate temperature 40 0 ° C, the laser output 1 0 0 mW, a repetition frequency 1 0 Hz, degree of vacuum of 1 X 1 0- 5 torr It is obtained by irradiating the target 203 with a laser beam 242 having a wavelength of 266 nm.
  • the laser oscillation unit 241 has a fundamental wave of 1.0 64 im, which is the oscillation wavelength of the Q sw N d ⁇ YAG laser, and uses a non-illustrated nonlinear optical crystal to produce a third harmonic of 355 ⁇ m, four times Pulse oscillation of 266 nm, which is a wave, is possible.
  • Figure 9 shows a sixth atomic force microscope (AFM) photograph of 8- Ga 2 ⁇ 3 thin film according to an embodiment of the. According to this, J3- Ga 2 ⁇ 3 surface of the thin film has a high flatness, it is shown that the thin film of high quality.
  • AFM atomic force microscope
  • the sixth embodiment when a target made of Ga is irradiated with an excitation beam, Ga atoms are excited from the target, and chemical species such as Ga atoms are emitted from the target by thermal and photochemical actions. free, the free species is combined with oxygen radicals in the atmosphere, it is a colorless and transparent quality on a substrate 206 made to / 3- Ga 2 ⁇ 3 grown on the substrate] 3- G a it was possible to grow a 2 ⁇ 3 thin-film single crystal.
  • the 7 j8- Ga 2 0 3 thin film according to an embodiment of the present invention other you the substrate temperature to 1000 ° C are obtained by the same condition as the sixth embodiment.
  • Figure 10 shows a seventh atomic force microscope (AF M) photos according / 3- Ga 2 ⁇ 3 thin film to an embodiment of the. According to this, / 3- Ga 2 ⁇ 3 surface of the thin film has a high flatness, it is shown that the thin film of high quality.
  • AF M seventh atomic force microscope
  • FIG. 11 shows a pattern obtained by reflection high-energy electron diffraction (RHEED) of the / 3-Ga 2 0 3 thin film according to the seventh embodiment, and (b) shows a pattern of the seventh embodiment to be described later.
  • the corresponding pattern of the thin film according to the comparative example is shown by reflection high-energy electron diffraction. 11, it can be seen that FIG. (A) good Ri apparent high quality / 3- Ga 2 ⁇ 3 thin-film single crystal is grown.
  • the seventh embodiment when the excitation beam is applied to the evening gate made of Ga, Ga atoms are excited from the target, and the Ga atoms are emitted from the target by thermal and photochemical actions.
  • First 1 Figure (b) shows the grown / 3-Ga 2 0 3 patterns by reflection high-energy electron diffraction of a thin film. As can be seen from Fig. 11 (b), a good quality / 3—Ga 2 O s thin film single crystal has not grown.
  • the 8 / 3- Ga 2 ⁇ 3 thin film uses a film forming apparatus 20 1 according to the second embodiment, using Ga as a material of the target 20 3, and, ] used as consisting of 3- Ga 2 ⁇ 3 to the substrate 20 6, while injecting N 2 ⁇ radicals, the substrate temperature 1 00 0 ° C, the laser output 1 0 0 mW, a repetition frequency 1 0 Hz, vacuum 1 X 1 0 at 5 torr, obtained by irradiating a laser beam 242 having a wavelength of 2 66 nm to the target 203.
  • the first 2 figures of the eighth embodiment of the - Ga 2 ⁇ 3 illustrates a thin film atomic force micrograph of. According to this,] 3- Ga 2 0 3 surface of the thin film has a high flatness, and indicates that the thin film of high quality.
  • the first 3 view (a), according to an embodiment of the eighth / 3- G a 2 ⁇ 3 shows a pattern by reflection high-energy electron diffraction of a thin film
  • (b) is the eighth embodiment to be described later
  • the corresponding pattern of the thin film according to the comparative example by reflection high-speed electron diffraction is shown. It can be seen that the first 3 view (a) As is clear from the high quality J3-Ga 2 0 3 thin-film single crystal is grown.
  • the eighth embodiment when an excitation beam is applied to an evening gate made of Ga, Ga atoms are excited from the target, and Ga atoms and the like are emitted from the target by thermal and photochemical actions.
  • One Ga 2 ⁇ 3 thin film according to this comparative example using a film formation apparatus 20 1 according to the second embodiment, using a Ga 2 ⁇ 3 as a material of the target 20 3, and the substrate 20 6 J3- used as consisting of G a 2 0 3, under N0 2 radical atmosphere substrate temperature 1 0 0 0 ° C, the laser output 1 0 OMW, repetition frequency 1 0 Hz, degree of vacuum of 1 X 1 0- 5 torr, wavelength 26
  • a 6-nm laser beam 242 onto the getter 203 at a time a / 3—Ga 2 ⁇ 3 substrate 206 is obtained.
  • the 3- Ga 2 ⁇ 3 thin film is transparent.
  • the first 3 view (b) shows the grown / 3-Ga 2 0 3 patterns by reflection high-energy electron diffraction of a thin film as described above.
  • the first 3 view (b) As is apparent good / 3- Ga 2 ⁇ 3 thin-film single crystal is not grown.
  • the 3_Ga 2 O 3 thin film according to the ninth embodiment of the present invention is obtained under the same conditions as in the eighth embodiment except that the substrate temperature is set to 40 (TC).
  • FIG. 14 shows an atomic force micrograph of the / 3-Ga 2 O 3 thin film of the ninth embodiment. According to this, - Ga 2 ⁇ 3 surface of the thin film has a high flatness, thin film indicates that it is a high quality.
  • the excitation beam when the excitation beam is irradiated on the target made of Ga, the Ga atoms are excited from the target, and the Ga atoms and the like are emitted from the target by thermal and photochemical actions. species is liberated, the free species binds with N 2 ⁇ radicals in the atmosphere, 0 it is a colorless and transparent quality on a substrate 206 made to J3- Ga 2 0 3 grown on the substrate — A Ga 2 ⁇ 3 thin film single crystal was grown. (Embodiment 10)
  • the / 3-—Ga 2 O 3 thin film according to the tenth embodiment of the present invention uses the film forming apparatus 201 according to the second embodiment, uses Ga as the material of the target 203, and the substrate 2 0 6] used as consisting of 3-Ga 2 0 3, while injecting oxygen radicals, the substrate temperature 1 0 0 0 ° C, the laser output 1 0 0 mW, a repetition frequency 1 0 H z, vacuum in 1 X 1 0- 5 1 orr, obtained by irradiating a laser beam 242 of a wavelength 3 5 5 nm to evening one target 2 0 3.
  • FIG. 15 shows an atomic force micrograph of the / 3-Ga 2 O 3 thin film according to the tenth embodiment of the present invention. According to this, / 3- Ga 2 0 3 has a high surface flatness of the film, indicating that thin films of high quality.
  • the tenth embodiment when an excitation beam is applied to a target made of Ga, Ga atoms are excited from the target, and the target is exposed to thermal and photochemical effects such as Ga atoms. species is liberated, the free species is combined with oxygen radicals in the atmosphere, it is a colorless and transparent quality on a substrate 206 made of growing j3- Ga 2 0 3 on the substrate; S _ga it was possible to grow a 2 ⁇ 3 thin-film single crystal.
  • the first 6 figure shows a scanning electron microscope (SEM) photograph of a comparative example according / 3- Ga 2 0 3 thin film corresponding to the embodiment of the first 0. -Ga 2 O 3 thin film according to this comparative example, using a film forming apparatus 2 0 1 according to the second embodiment, evening with Ga 2 ⁇ 3 as a material for Getto 2 0 3, and the substrate 20 6 a / 3- Ga 2 0 used as a three oxygen atmosphere, the substrate temperature 1 0 0 0, the laser output 2 00MW, repetition frequency 1 0 Hz, vacuum degree IX 1 0 one 5 torr, wavelength 3 5 5 nm
  • the J3- G a 2 ⁇ 3 thin film is white. It is for those white class evening like is attached to the flat substrate 206, As the 3- Ga 2 ⁇ 3 film, it was found that hardly grow.
  • the property of the evening get has been described as a metal plate, it is not limited to metal, and may be made of a solid other than metal or a liquid. Further, the target is not limited to the one made of Ga, but may be an alloy containing Ga, Zn or a metal made of an alloy containing Zn. This increases the degree of freedom in selecting the type of film to be formed.
  • an electron beam, an ion beam, or the like may be used as long as a metal target or the like can be released by irradiating a metal target other than laser light.
  • the wavelength of the laser is not limited to 266 nm, but may be another wavelength such as 355 nm or 193 nm. Further, the laser output may be set to 10 mW to 40 OmW.
  • the substrate temperature may be 300 to 1500 ° C. This is because this temperature range is a temperature range for flattening and densifying the film to be grown, that is, a temperature range for improving crystallization.
  • the degree of vacuum in the chamber 202 may be 1 to 1 X 1 CT 1 Q torr. Even in this range of the degree of vacuum, a / 3—Ga 2 O 3 -based thin film single crystal can be grown.
  • Ga 2 0 3 based light emitting device according to a first embodiment 1 of the present invention, a thin film showing a substrate exhibiting n-type conductivity, a substrate exhibiting p-type conductivity, an insulating-type substrate, the p-type conductivity and It can be obtained by forming a thin film or the like exhibiting n-type conductivity and combining them.
  • a method of manufacturing the constituent elements of the light emitting element will be described.
  • Ga in the substrate is replaced with an n-type dopant
  • oxygen in the substrate is replaced with an n-type dopant, or / 3—Ga 2 0 3 oxygen in the single crystal
  • a gallium-substituted n-type dopant in which Ga is substituted with an n-type dopant Ti, Zr, Hf, V, Nb, Ta, Mo, W, Ru, Rh, Ir, C, S n, Si, Ge, Pb, Mn, As, Sb, Bi and the like.
  • oxygen-substituted n-type dopant in which oxygen is substituted with an n-type dopant include F, Cl, Br, and I.
  • a substrate exhibiting n-type conductivity is manufactured as follows. First, the FZ (F loati ng Zon e) Method / 3- Ga 2 ⁇ 3 to form a single crystal. That, / 3-Ga and 2 0 3 seed crystal - Ga 2 0 3 and a polycrystalline material separately prepared, contacting the J3_Ga 2 0 3 seed crystal and ⁇ one Ga 2 ⁇ 3 polycrystalline raw material in a quartz tube by heating the portion to melt both at the contact portion between the j3-Ga 2 ⁇ 3 seed crystal and the beta-G a 2 0 3 polycrystalline material.
  • the cleavage of the (100) and (001) planes is weakened, and the workability of all planes is improved.
  • the cut surface There is no limitation on the cut surface as described above, and it may be the (001) plane, the (0 10) plane, or the (101) plane.
  • the substrate by the above method of manufacture will exhibit n-type conductivity is due by ⁇ - G a 2 0 3 oxygen defects in the single imaging Akirachu.
  • the method of controlling the conductivity of the substrate exhibiting n-type conductivity comprising 3- Ga 2 ⁇ 3, changing the oxygen partial pressure in the atmosphere, controlling the oxygen defect concentration by changing an oxygen flow rate during growth And the method of controlling the n-type dopant concentration by the FZ method.
  • the conductivity increases as the oxygen defect concentration increases. / 3- Ga 2 ⁇ 3 relationship between oxygen flow rate and conductivity of the log during the growth of single crystals, a relationship of substantially inverse proportion.
  • the insulating substrate is manufactured as follows. First, as in the method of manufacturing a substrate exhibiting n-type conductivity, by the control of the oxygen defect concentration exhibits n-type conductivity / 3- Ga 2 ⁇ 3 growing a single crystal. Then, annealing is performed in an atmosphere at a predetermined temperature (for example, at a temperature of 900) in the atmosphere for a predetermined period (for example, 6 days) to reduce oxygen vacancies and obtain an insulating substrate made of a Ga 2 O 3 single crystal.
  • a predetermined temperature for example, at a temperature of 900
  • a predetermined period for example, 6 days
  • Ga 2 ⁇ 3 to the substrate formed from single crystal exhibits a p-type conductivity, G a p-type dopant Bok and either substituted, or oxygen p-type dopant in the substrate in the substrate
  • G a p-type dopant Bok and either substituted, or oxygen p-type dopant in the substrate in the substrate
  • H Li, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Mn are gallium-substituted p-type dopants in which Ga is replaced with a p-type dopant.
  • Examples of the oxygen-substituted p-type dopant in which oxygen is substituted with a p-type dopant include N and P.
  • a substrate exhibiting p-type conductivity is manufactured as follows. First, a
  • MgO p-type de one dopant source
  • Thin films exhibiting n-type conductivity should be formed by physical vapor deposition such as PLD, MBE, MOCVD, and sputtering methods, and chemical vapor deposition such as thermal CVD and plasma CVD. Can be.
  • Ga in the thin film must be replaced by n-type dopants, oxygen in the thin film must be replaced by n-type dopants, or by the presence of oxygen defects.
  • a gallium-substituted n-type dopant in which Ga is substituted with an n-type dopant is Ti, Zr, Hf, V, Nb, Ta, Mo, W, Ru, Rh, Ir, C , Sn, Si, Ge, Pb, Mn, As, Sb, Bi and the like.
  • oxygen-substituted n-type dopant in which oxygen is substituted with an n-type dopant include F, C1, Br, and I.
  • the following methods are available for doping a gallium-substituted n-type dopant and an oxygen-substituted n-type dopant. That is, the alloy of Ga and an n-type de one dopant target, / 3- G a 2 ⁇ 3 and n-type dopant target consisting of a sintered body of an oxide of,] 8- G a 2 ⁇ 3 and n
  • a method using an evening get made of a solid solution single crystal with an oxide of a type dopant, or a method using an evening get made of a target made of a Ga metal and an n-type dopant, and the like are available.
  • the method of controlling the conductivity of the n-type conductive thin film composed of Ga 2 ⁇ 3 includes controlling the compounding ratio of the n-type dopant in the evening gate, laser irradiation conditions and substrate composition.
  • a method of controlling the concentration of oxygen vacancies by changing the film conditions is exemplified.
  • the laser wavelength for example, 157 nm, 193 nm, 248 nm, 266 nm, 355 nm, etc.
  • the power per pulse for example, 10 to 50 OmW
  • a method of changing the repetition frequency for example, l to 200 Hz.
  • the irradiation condition of the laser For example, changing the wavelength of the laser (eg, 157 nm, 193 nm, 248 nm, 266 nm, 355 nm, etc.), the power per pulse (eg, 10-50 OmW), There is a method of changing the repetition frequency (for example, 1 to 200 Hz).
  • the wavelength of the laser eg, 157 nm, 193 nm, 248 nm, 266 nm, 355 nm, etc.
  • the power per pulse eg, 10-50 OmW
  • the repetition frequency for example, 1 to 200 Hz.
  • a method of changing the film forming conditions of the substrate for example, a method of changing the substrate temperature (for example, 300 to 1500), a method of changing the distance between the evening gate and the substrate (for example, 20 to 50 mm), degree of vacuum deposition (e.g., 1 0_ 3 ⁇ 1 0- 7 torr ) method of changing the, or a method of changing the output of the plasma gun.
  • a method of changing the substrate temperature for example, 300 to 1500
  • a method of changing the distance between the evening gate and the substrate for example, 20 to 50 mm
  • degree of vacuum deposition e.g., 1 0_ 3 ⁇ 1 0- 7 torr
  • Thin films exhibiting P-type conductivity can be formed by physical vapor deposition such as PLD, MBE, MOCVD, and sputtering, and chemical vapor deposition such as thermal CVD and plasma CVD. it can.
  • Galium-substituted p-type dopants in which G a is substituted with p-type dopants H, Li, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Mn, Fe, Co, Ni, Pd, Cu, Ag, Au, Zn, Cd, Hg, T and Pb.
  • oxygen-substituted p-type dopant in which oxygen is substituted with a p-type dopant include P.
  • the following methods are available for doping the p-type dopant.
  • a G a and p-type de one punt alloy target, / 3- G a 2 ⁇ 3 and acid p-type dopant Target made of a sintered body of the product, consisting of a solid solution single crystal composed of evening one target or evening Getto and p-type dough punt consisting Ga metal, the oxide of j3 _ G a 2 ⁇ 3 and p-type dopant
  • a method using a target and the like is a method using a target and the like.
  • the thin-film showing a P-type conductivity by G a defect, G a metal, beta-Ga 2 ⁇ 3 sintered body, or / 3- Ga 2 ⁇ 3 crystal (single crystal, polycrystal) was used as a target, Purazumaga down by in an atmosphere of N 2 ⁇ which is the radical / 3- G a 2 ⁇ 3 more can be produced in growing crystals.
  • a 2 ⁇ 3 to a method of controlling the conductivity of the thin film exhibiting p-type conductivity is made of a method of controlling a p-type dopant compounding ratio of evening Ichige Tsu Bok, irradiation conditions and the substrate of the laser one There is a method of controlling the concentration of Ga defects by changing the film forming conditions.
  • the method of controlling a p-type de one dopant level by PLD I a sintered body target made of an alloy of G a and p-type dopant,) 3-oxide G a 2 ⁇ 3 and p-type dopant used method, / 3- Ga 2 ⁇ 3 and a method using a target made of a solid solution single crystal of an oxide of a p-type dopant, the evening one target made from the target, and p-type dopa cement comprises Ga metal using that target There are methods.
  • the laser wavelength eg, 157 nm, 193 nm, 248 nm, 266 nm, 355 nm, etc.
  • the power per pulse eg, 10 to 500 mW
  • the repetition frequency for example, l to 200 Hz.
  • the wavelength of the laser eg, 157 nm, 193 nm,
  • the distance between the target and the substrate for example, 20 ⁇ 50
  • the degree of vacuum deposition e.g., a method of changing the 10- 3 ⁇ 10- 7 torr
  • a method of changing the output of the plasma gun for example, the distance between the target and the substrate (for example, 20 ⁇ 50) method of changing the mm
  • the degree of vacuum deposition e.g., a method of changing the 10- 3 ⁇ 10- 7 torr
  • a method of changing the output of the plasma gun for example, 20 ⁇ 50
  • the electrode is formed on a thin film having p-type conductivity, a substrate, or a thin film having n-type conductivity, or on a substrate by vapor deposition, sputtering, or the like.
  • the electrodes are formed of a material that provides ohmic contact.
  • thin films or substrates exhibiting n-type conductivity include metals such as Au, A1, Ti, Sn, Ge, In, Ni, Co, Pt, W, Mo, Cr, Cu, and Pb. Simple substance, at least two alloys of these (for example, Au—Ge alloy), those that form these into a two-layer structure (for example, Al / Ti, AuXN i, Au / Co), or ITO Is formed.
  • Thin films or substrates exhibiting p-type conductivity include simple metals such as Au, Al, Be, Ni, Pt, In, Sn, Cr, Ti and Zn, and at least two of these. Alloys (eg, Au-Zn alloys, Au-Be alloys), those that form them in a two-layer structure (eg, NiZAu) or ITO are formed.
  • a light-emitting element having a PN junction is formed by forming a second layer having p-type conductivity on a first layer having n-type conductivity. Therefore, light in the ultraviolet region can be emitted due to the band gap of the Ga 2 ⁇ 3 -based single crystal.
  • Figure 17 shows a cross section of Ga 2 ⁇ 3 based light emitting device according to the first and second embodiments of the present invention.
  • the light emitting element 30 1, 3 and Ga 2 0 3 n-type substrate 30 2 having n-type conductivity made of single crystal, p-type consisting of the formed on the upper surface of the n-type substrate 302 Ga 2 0 3 single crystal P-type layer 303 exhibiting conductivity, transparent electrode 304 formed on the upper surface of p-type layer 303, bonding electrode 306 formed on a part of transparent electrode 304, and entire lower surface of n-type substrate 302 And an n-electrode 305 formed on the substrate.
  • the bonding electrode 306 is formed of, for example, Pt
  • the n-electrode 305 is formed of, for example, Au
  • the lead 308 of the bonding electrode 306 is connected by a bonding 309.
  • the transparent electrode 304 is formed of, for example, AuZNi.
  • FIG. 18 shows the relationship between the oxygen concentration and the carrier concentration.
  • a i8-Ga 2 ⁇ 3 single crystal by FZ method as mentioned above.
  • i3—Ga 2 ⁇ 3 single bond During the growth of the crystal, by changing between the oxygen concentration 1 ⁇ 2 0%,] 3- Ga 2 ⁇ 3 Kiyaria concentration in the single crystal 1.
  • 4 X 1 0 17 ⁇ 1 X 1 0 16 / cm 3 It is possible to control between. 1-2 is single-crystallized by OmmZh, by performing processing such as cutting the manufactured] 3- G a 2 ⁇ 3 single crystal, the n-type substrate 30 2 having n-type conductivity is fabricated.
  • the carrier concentration of the n-type substrate 302 is 1 ⁇ 10 17 cm 3
  • the carrier concentration of the p-type layer 303 is 10 16 / cm 3 .
  • FIG. 19 shows a schematic configuration of a film forming apparatus for manufacturing a light emitting device according to a 12th embodiment of the present invention.
  • the film forming apparatus 320 forms a film by a PLD method, and includes a chamber 321 having a space 360 capable of being evacuated, and a target base holding a target 323 disposed in the chamber 321.
  • a rotating mechanism 3 30 provided outside the chamber 3 2 1 for rotating the evening gate table 3 25, and an n-type substrate 3 0 2 disposed in the chamber 3 2 1
  • a radical injection unit that injects a radical from the pipe 321a into the chamber 321 328
  • a laser unit 324 for irradiating a laser beam 342 as an excitation beam to the evening target 323 is provided.
  • Target 3 23 for example, high purity alloy containing G a and Mg of, doped with Mg J3- Ga 2 0 3 crystals (single crystal or polycrystal), I3- Ga 2 ⁇ 3 ware was de one up the Mg Use union etc. It may be composed of a solid other than the alloy, or may be in the shape of night.
  • the laser section 324 includes a laser oscillating section 341 for irradiating a laser beam 342 in a pulse shape using a Nd: YAG laser, a KrF excimer laser or an ArF excimer laser as a laser source, and a laser oscillating section 341. And lenses 343 and 344 for condensing the laser beam 342 emitted from the lens on the target 323.
  • the n-type substrate 302 is made of a / 3—Ga 2 ⁇ 3 system single crystal, and when the target 323 is irradiated with the laser beam 342, the chemical properties of the metal atoms and the like emitted from the target 323 are reduced. It faces the evening get 323 so that the seed 333 can be formed.
  • the radical injection section 32 8 oxygen gas containing oxygen gas, ozone, pure ozone gas, N 2 O gas, N_ ⁇ 2 gas, oxygen gas containing oxygen radicals, one of such oxygen radicals or Two or more gases, that is, gases combined with chemical species 33 33 such as metal atoms released from the target 32 3 during film formation are injected into the space 360.
  • the n-type substrate 3 0 2 surfaces How be described for forming the p-type layer 3 0 3 consisting of 3- G a 2 ⁇ 3.
  • the aforementioned film forming apparatus 320 is used. That is, as the target 32 3, for example, an alloy 3 23 consisting of 0 3 and 1 ⁇ is fixed to the target table 3 25.
  • the n-type substrate 302 is held by the substrate holder 327.
  • the exhaust unit 3 2 9 of the vacuum pump to evacuate the air in the space 3 6 in 0, the degree of vacuum in the space 3 6 0, for example, set to about 1 X 1 0- 9 torr, Later, e.g.
  • the heater provided in the substrate holding section 327 is energized to heat the temperature of the n-type substrate 302 to, for example, 300 to 150 ° C. Then, the degree of vacuum 1 X 1 0- 6 ⁇ 1 X 1 0- 4 torr oxygen the radical Le injected into the space 3 6 within 0 by radical injection section 3 2 8.
  • a laser output from the laser section 324 at 100 mW, a repetition frequency of 10 Hz, and a laser beam 324 at a wavelength of 266 nm is rotated by a rotating mechanism 330 onto the target 332 Then, the Ga atom and the Mg atom constituting the target 32 3 are excited, and the metal atom, the metal ion, the excited metal atom, species 3 3 3 such excitation metal ions are bonded on the oxygen radicals and the substrate 3 0 2 in the atmosphere, / 3- G a 2 0 3 p -type layer 3 0 3 of single crystal is formed.
  • This conductivity is due to the fact that Mg acts as an active element.
  • a transparent electrode 304 on the surface of the P-type layer 303 and a bonding electrode 303 on a part of the transparent electrode 304 are formed, and the entire lower surface of the n-type substrate 302 is formed.
  • An n-electrode 305 is formed.
  • the lead 308 is connected to the bonding electrode 306 by bonding 309.
  • the n-type substrate 302 Since the n-type substrate 302 has conductivity, it can have a vertical structure in which electrodes are taken out from above and below, so that the layer structure and the manufacturing process can be simplified.
  • the n-type substrate 302 Since the n-type substrate 302 has high transmittance in the light emitting region, the light extraction efficiency can be increased, and ultraviolet light with a short wavelength such as 260 nm is also extracted from the substrate side. That's a thing.
  • the second 0 Figure shows a cross section of a G a 2 0 3 based light emitting device according to the first to third embodiments of the present invention.
  • the light emitting element 301 according to this embodiment is different from the light emitting element 301 according to the first embodiment in that a light emitting element 301 is provided between the p-type layer 303 and the n-type substrate 302. it is that 3- G a 2 ⁇ 3 single crystal or Rannahli, n-type substrate 3 0 2 and Kiyaria n-type layer 3 0 7 concentration showing the different n-type conductivity is made form.
  • an n-type layer 307 is formed using the film forming apparatus 320 shown in FIG. This and can target 3 2 3, for example, an alloy containing G a and S n of pure or S n de one-flop / 3 _ G a 2 0 3 single crystal or S n-doped,) 3 _ G a 2 03 A three- crystal sintered body is used.
  • a target 3 23 of an alloy consisting of Ga and Sn is fixed to a target base 3 25.
  • the n-type substrate 302 is held by the substrate holder 327.
  • substrate holder 3 2 7 The temperature of the n-type substrate 302 is heated, for example, to 300 to 150 ° C.
  • oxygen radicals are injected into the space 360 by the radical injection unit 328 to obtain 1 ⁇ . from 1 0- 6 ⁇ 1 X 1 0- 4 t 0 and rr a vacuum of about.
  • laser unit 3 2 4 A laser output of 100 mW, a repetition frequency of 10 Hz, and a laser beam of 266 nm with a wavelength of 266 nm are applied to the rotating evening getter 3 2 3 by the rotating mechanism 330 to form the evening getter 3 2 3 Ga atoms and Sn atoms are excited, and the chemical species 33 3 such as metal atoms, metal ions, excited metal atoms, and excited metal ions released from the target 32 3 by thermal and photochemical actions are present in the atmosphere.
  • the carrier concentration of the n-type layer 307 is formed to be lower than the carrier concentration of the n-type substrate 302 by a method such as reducing the oxygen radical concentration during the growth of the film.
  • the carrier concentration of the n-type substrate 302 is 2 ⁇ 10 18 “cm 3
  • the carrier concentration of the n-type layer 307 is 10 17 / cm 3
  • the carrier concentration of the p-type layer 303 is 10 0 16 / cm 3 .
  • a transparent electrode 304 is formed on the surface of the P-type layer 303, a bonding electrode 306 is formed on a part of the transparent electrode 304, and an n-electrode 303 is formed on the entire lower surface of the n-type substrate 302. Form.
  • the lead 308 is connected to the bonding electrode 306 by bonding 309.
  • the n-type substrate 302 Since the n-type substrate 302 has conductivity, it can have a vertical structure in which electrodes are extracted from above and below, so that the layer configuration and the manufacturing process can be simplified.
  • n-type substrate 302 Since the n-type substrate 302 has high transmittance in the light emitting region, the light extraction efficiency can be increased, and ultraviolet light having a short wavelength such as 260 nm can be extracted from the substrate side. I can do it.
  • Figure 21 shows a fourteenth section of G a 2 0 3 based light emitting device according to an embodiment of the present invention.
  • a p-electrode 336 formed on the entire lower surface.
  • the bonding electrode 306 is connected to the lead 308 by a bonding 309.
  • the p electrode 336 is formed from, for example, a Pt force, and the bonding electrode 306 is formed from, for example, Au.
  • a method for manufacturing the light emitting element 301 will be described.
  • a ⁇ -Ga 2 ⁇ 3 crystal is formed by the FZ method.
  • a raw material including MgO (p-type de one pan preparative source) as a dopant / 3- Ga 2 ⁇ 3 and uniformly mixed, molding the mixture into a rod by cold compressed at 500 MP a placed in a rubber tube I do.
  • the rod-shaped material is sintered at 1500 ° C. for 10 hours in the atmosphere to obtain a 3 —Ga 2 ⁇ 3-based polycrystalline material.
  • Ga 2 ⁇ three crystal under growth atmosphere is a total pressure of 1-2 atm, hold flushed with N 2 and 0 2 gas mixture with 50 OmlZmi n, in a quartz tube; 3- Ga 2 0 3 seed crystal and / 3- Ga 2 ⁇ 3 system by contacting the polycrystalline material to heat the site of its, at the contact portion between the Ga 2 0 3 seed crystal and / 3- Ga 2 ⁇ 3 system polycrystalline material Melts both.
  • the light emitting element 301 of the fourteenth embodiment is configured to join the p-type substrate 312 and the n-type layer 313 formed on the upper surface of the p-type substrate 312, the bonding electrode When a voltage is applied with the polarity of 310 as minus and the polarity of p electrode 3 36 as plus, at the junction between p-type substrate 3 12 and n-type layer 3 13, Holes and n-type layers
  • the electrons in 3 13 are directed toward the junction with each other, and recombine near the junction, so that light is emitted near the junction.
  • the P-type substrate 312 Since the P-type substrate 312 has conductivity, it can have a vertical structure in which electrodes are extracted from above and below, so that the layer configuration and the manufacturing process can be simplified.
  • the P-type substrate 312 Since the P-type substrate 312 has high transmittance in the light emitting region, the light extraction efficiency can be increased, and ultraviolet light having a short wavelength such as 260 nm can be extracted from the substrate side. be able to.
  • the second FIG. 2 shows a cross section of a G a 2 ⁇ 3 based light emitting device according to the first to fifth embodiments of the present invention.
  • the light emitting element 301 according to this embodiment is different from the light emitting element 301 according to the fourteenth embodiment in that an n-type layer 3 13 and a p-type substrate 3 12 / 3—G a 2 ⁇ 3
  • a p-type layer 303 having p-type conductivity made of single crystal is formed.
  • the p-type layer 303 controls the conductivity as described above, and is formed to be lower than the carrier concentration of the p-type substrate 312.
  • This light emitting element 301 forms a p-type substrate 312 as in the 14th embodiment, and forms a p-type substrate on the mold substrate 312 as in the 12th embodiment.
  • a layer 303 is formed, and an n-type layer 313 is formed on the p-type layer 303 as in the thirteenth embodiment. According to the fifteenth embodiment, the following effects can be obtained. (A) Since the carrier concentration of the p-type layer 303 is formed lower than the carrier concentration of the p-type substrate 312, a decrease in luminous efficiency can be prevented.
  • the p-type substrate 312 Since the p-type substrate 312 has conductivity, it can have a vertical structure in which electrodes are taken out from above and below, so that the layer structure and the manufacturing process can be simplified.
  • the second 3 figures according to an exemplary form of the first 6 of the present invention / 3 shows a cross section of a G a 2 ⁇ 3 based light emitting device.
  • 3- G a 2 0 3 and n-type conductivity indicate to n-type layer 3 1 7 of single crystal, j3- G a 2 ⁇ 3 P-type conductivity made of single crystal formed on a lower surface of a portion of the n-type layer 3 1 7
  • the p-electrode 336 is formed of, for example, Pt, and the n-electrode 337 is formed of, for example, Au or the like.
  • the p-electrode 336 and the n-electrode 337 are in contact with the printed circuit board 366 on the printed circuit board 365 via solder poles 363 and 364, respectively.
  • the light-emitting element 301 emits light at the pn junction where the n-type layer 3117 and the p-type layer 318 are joined, but the emitted light passes through the insulating substrate 316 and exits. The light is emitted upward as an emission light 370.
  • the insulating substrate 316 is obtained as follows. A substrate made of a first and second embodiment in the manner described embodiment shows the obtained n-type conductivity obtained by / 3- Ga 2 ⁇ 3 by FZ method, by ⁇ Neil at ambient temperatures 9 50 in the atmosphere, Oxygen defects can be reduced, and an insulating substrate 316 can be obtained.
  • n-type layer 317 is formed on the insulating substrate 316 as in the fourteenth embodiment, and a part of the n-type layer 317 is masked to implement the first and second embodiments.
  • the p-electrode 336 is formed on the p-type layer 3 18 and the n-electrode 3 3 is formed on a part of the n-type layer 3 17. 7 are formed respectively.
  • insulated substrate 3 1 6 and n-type layer 3 1 7, / 3- G a 2 ⁇ 3 is mainly composed of Runode, it is possible to dispense with the buffer layer, high crystallinity An n-type layer 3 17 can be formed.
  • the insulated substrate 316 has high transmittance in the light-emitting area, the light extraction efficiency can be increased, and ultraviolet light with a short wavelength such as 26 O nm can be extracted from the substrate side.
  • a monkey There is a monkey.
  • Figure 24 shows a first cross section 7 of i3- Ga 2 0 3 based light emitting device according to an embodiment of the present invention.
  • n-electrode 337 formed on the entire surface. Ponding electrode 306 is formed of, for example, Pt, and n-electrode 337 is formed of, for example, Au.
  • the light emitting element 301 has leads 308 attached thereto by bonding 309 via bonding electrodes 306, and is mounted on a printed circuit board 380 via a metal base 381.
  • the carrier concentration of the clad layer 353 is formed lower than the carrier concentration of the P-type J3_Ga 2 ⁇ 3 contact layer 354 by the method of controlling a conductivity of a thin film exhibiting p-type conductivity of the foregoing.
  • the carrier concentration of the n-type / 3- A l uGa Oa cladding layer 351, n-type] 3- Ga 2 ⁇ 3 formed lower than the carrier concentration of the substrate 350.
  • 3-—Ga 2 O s active layer 352 is a double heterojunction sandwiched between n-type / 3-A 1 "Ga Os cladding layer 351 and ⁇ - ⁇ GauC ⁇ cladding layer 353. , formed by j3-Ga 2 0 3 having a band gap a small than the band gap of the cladding layers 351, 353.
  • the emitted light 371 is reflected from the printed circuit board 380 and emitted from above.
  • FIG. 25 is a] shows a 3- ⁇ 1 Ga ⁇ O ⁇ i3-G a 2 0 3 and J3- G a I N_ ⁇ 3 of the relationship between the lattice constants rate and Pando gap. It can be seen that increasing the concentration of A1 increases the band gap and decreasing the lattice constant ratio, and increasing the concentration of In decreases the band gap and increasing the lattice constant ratio. ; For the 3- Ga 2 ⁇ 3, b Jikuku 010> orientation, and c-axis ⁇ 001> is shown as Figure 25 for orientation, also a Jikuku 100> orientation, the same tendency appears.
  • (I) forming an active layer 352 i3- Ga 2 0 3 based shorter wavelength in a wide band gap single crystal has, for example, it is possible to light emission of a short wavelength such as 260 nm. Further, by adding A 1, emission of a shorter wavelength becomes possible.
  • n-type / 3 Ga 2 ⁇ 3 substrate 350 and the layers 35 1-354 is / 3 since the Ga 2 ⁇ 3 is constructed in the main body, it is possible to dispense with the buffer layer, A P-type layer with high crystallinity can be formed.
  • the n-type 3—Ga 2 ⁇ 3 substrate 350 has high transmittance in the light emitting region, so that the light extraction efficiency can be increased, and ultraviolet light with a short wavelength such as 260 nm can be emitted from the substrate side. Can be taken out.
  • (G) emitting light may be not emitted to the outside as output light 370 emitted upward through the transparent electrode 304, n-type j3-Ga 2 0 3 emitting light 371 toward towards the lower surface of the substrate 350, for example
  • the emission intensity is increased as compared with the case where the emission light 371 is emitted directly to the outside.
  • 3-Ga 2 ⁇ 3 active layer 352 may be formed by / 3- G a I N_ ⁇ 3. As a cladding layer when this] 3- Ga 2 0 3 may be formed by. Further, the active layer 352 may have a quantum well structure capable of increasing light emission efficiency.
  • Figure 26 shows a 18th cross exemplary according to the / 3- Ga 2 ⁇ 3 light-emitting device of the present invention.
  • An n-type Ga 2 ⁇ third contact layer 3 5 6 showing the n-type conductivity comprising crystals, n-type beta-Alpha 1 is formed on a part of the upper surface of the n-type j8-Ga 2 0 3 contact layer 3 56 and U G a Q.
  • 6 ⁇ 3 clad layer 3 5 1 is formed on the n-type j8-a 1 u Ga fl.
  • 6 ⁇ third cladding layer 3 5 consisting of ⁇ one Ga 2 ⁇ 3 i3 - and Ga 2 ⁇ 3 active layer 3 52, a J3- Ga 2 ⁇ 3 active layer 35 P-type shows a p-type conductivity are formed over the 2 i3- a l ⁇ Ga Os cladding layer 3 5 3, p-type ⁇ -A 1 14 Ga 6 ⁇ third cladding layer 3 5 G a 2 formed on the 3 ⁇ 3
  • [rho type shows the ⁇ Katashirube conductive made of single crystal J3- Ga 2 ⁇ 3 Con evening transfected layer and 3 54, p-type - Ga 2 0 3 and the transparent electrode 3 04 which is formed in the contact layer 3 54, a Bondi ring electrode 306 which is formed in a part of the transparent electrode 3 04, n-type j8-Ga 2
  • the bonding electrode 306 is formed of, for example, Pt, the lead 308 is connected by a bonding 309, the n-electrode 337 is formed of, for example, Au, and the lead 358 is formed of a bonding 359.
  • the bonding electrode 306 is formed of, for example, Pt
  • the lead 308 is connected by a bonding 309
  • the n-electrode 337 is formed of, for example, Au
  • the lead 358 is formed of a bonding 359.
  • Connected. p-type] 3- A l,. 4 Ga Q. 6 0 3 carrier concentration of the clad layer 3 5 3 p-type / 3- G a 2 0 3 is formed lower than the carrier concentration of the contact layer 3 54, n-type j8 —
  • the carrier concentration of the A 1 Ga ⁇ Os cladding layer 351 is formed lower than the carrier concentration of the n-type / 3—Ga 2 O 3 contact layer 356.
  • the emitted light 371 is reflected by the printed circuit board 380 and emitted from above.
  • (To) emitting light may be not emitted to the outside as output light 3 70 emitted upward through the transparent electrode 304, the emitted light 37 toward the toward the lower surface of the n-type 3- Ga 2 0 3 substrate 3 5 0 1 is reflected upward by the printed circuit board 380 and emitted upward, for example, so that the emission intensity is increased as compared with the case where the emitted light 371 is emitted directly to the outside.
  • the light emitting element 301 may be provided with a buffer layer.
  • the buffer layer is provided between the n-type substrate 302 and the p-type layer 303 (the first and second embodiments, FIG. 17), and between the n-type substrate 302 and the n-type layer 307. (13th embodiment, FIG. 20), between p-type substrate 31 and n-type layer 313 (14th embodiment, FIG. 21), p-type substrate 31 2 between the p-type layer 303 and the p-type layer 303 (the fifteenth embodiment, FIG.
  • the excitation beam may be an electron beam, an ion beam, or the like, as long as it can emit a chemical species such as a metal atom by irradiating a metal target other than the laser beam.
  • 8- Ga 2 ⁇ 3 may be a Ga 2 ⁇ 3 other types.
  • the present invention can be applied to a photo sensor that converts incident light into an electric signal.
  • Industrial potential As described above, according to the present invention, the azimuth from I8_Ga 2 ⁇ 3 system seed crystal Jo Tokoro by the FZ method by growing a 0- Ga 2 ⁇ 3 single crystal, cracking, twinning tendency decreased Then, the crystallinity is enhanced and the workability is improved.] A 3—Ga 2 O 3 single crystal is obtained.
  • / 3- Ga 2 ⁇ 3 system single crystal is grown on the substrate to form a thin film of the substrate / 3 Ga 2 ⁇ 3 system single crystal.
  • Ga 2 ⁇ 3 system can emit light in the ultraviolet region by the bandgap with single crystal It can be used for mercury-free fluorescent lamps, photocatalysts that provide a clean environment, and new-generation DVDs that achieve higher density recording.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Semiconductor Lasers (AREA)

Description

明 細 睿
j3— Ga203系単結晶成長方法、 薄膜単結晶の成長方法、 Ga203系発光素子および その製造方法 本出願は、 日本国特許出願第 2003—46552 、 第 2003— 66020号 および第 2003— 137916号に基づいており、 この各日本国出願の全内容は、 本出願において参照され導入される。 技術分野
本発明は、 /3— Ga23系単結晶成長方法、 薄膜単結晶の成長方法、 Ga203系発 光素子およびその製造方法に関し、 特に、 クラッキングや双晶化傾向を減少させ、 結 晶性を向上させた /3— Ga203系単結晶成長方法、 高品質の薄膜単結晶を形成するこ とができる薄膜単結晶の成長方法および紫外領域で発光する Ga23系発光素子およ びその製造方法に関する。 背景技術
紫外領域での発光素子は、 水銀フリーの蛍光灯の実現、 クリーンな環境を提供する 光触媒、 より高密度記録を実現する新世代 DVD等で特に大きな期待がもたれている。 このような背景から、 G a N系青色発光素子が実現されてきた。
この G a N系青色発光素子として、 特許第 2778405号公報には、 サファイア 基板と、 サファイア基板上に形成されたバッファ層と、 バッファ層上に形成された n 型窒化ガリウム系化合物半導体層と n型クラッド層と、 n型活性層と、 p型クラッド 層と、 p型コンタクト層とを備えるものが記載されている。 この従来の GaN系青色 発光素子は、 発光波長 370 nmの紫外光を発光する。
しかし、 従来の GaN系青色発光素子では、 バンドギャップの関係で紫外領域のさ らに短波長の光を発光する発光素子を得るのが困難である。
そこで、 —0&203ぉょび211〇は、 紫外領域のさらに短波長の光を発光する可 能性があるとして発光素子に使用することが検討されている。 例えば、 CZ法 (Cz o c h r a 1 s k i法) や F Z (F l o a t i n g Z on e T e c h n i q u e) 法により /3— Ga23バルク系単結晶の基板を作成することが検討されている。 一方、 特開 20 02- 6 8 8 8 9号は、 従来の基板上に Z n〇の薄膜を P L D (P a l s e d L a s e r D e p o s i t i o n) 法により成長させることを開示する。 第 2 7図は、 従来の — Ga23バルク系単結晶により形成した基板 1 Ί 0を示す。 このような基板 1 7 0の材料を製造するための従来の単結晶成長方法として、 C Z法 や F Z法が知られている (例えば M. S a u r a t , A. Re v c o l e v s c h i , 「Re v. I n t. Ha u t e s Temp e r. e t Re f r a c t . 」 1 9 7 1 年 8号 p. 2 9 1参照。 ) 。
CZ法は、 以下のようにして行われる。 先ず、 原料としての純度 4Nの Ga23粉 末を充填した I rるつぼを石英管で覆い、 アルゴンガスに酸素ガス 1 v o l . %を混 合した混合ガスを石英管に流しながら高周波発振器により I rるつぼを加熱し、 Ga 203粉末を溶解し、 Ga23の多結晶溶解物を生成する。 ついで、 別途準備した) 3— Ga203種結晶を、 溶解した Ga203に接触し、 lmmZh、 結晶回転数 1 5 r pm の速度で iS— Ga203種結晶を引上げ、 —Ga203単結晶の作製を行う。 この方法 によれば、 大きな直径の 0— Ga23単結晶を成長させることができるという利点が ある。
また、 FZ法は、 上側の原料、 例えば、 /3— Ga203多結晶の融液を下側の /3—G a23種結晶で支えながら結晶を成長させる方法である。 この方法によれば、 容器を 使用しないので、 容器からの汚染が防げること、 容器による使用雰囲気の制限が無い こと、 容器と反応しやすい材料の育成ができること等の利点がある。
また、 PLD法は、 非常に低圧の酸素雰囲気中で、 目的の薄膜の組成材料、 例えば Z n〇夕一ゲットにレーザをパルス的に照射し、 夕ーゲットを構成する成分をプラズ マや分子状態として基板上まで飛ばして基板上に Zn〇の薄膜を成長させるものであ る。 これにより、 簡単な装置で容易に薄膜を作製することができる。
しかし、 従来の CZ法では、 Ga203融液からの融液成分の激しい蒸発や著しい不 安定成長のために、 結晶成長を制御することが困難であった。
また、 FZ法では、 1 cm2程度の単結晶が条件によっては得られるが、 溶融帯か らの激しい蒸発、 急峻な温度勾配のために、 双晶化、 クラッキングが生じ、 基板に必 要とされる大型化、 高品質化は困難であった。 さらに、 方位の定まっていない)8— G a 23単結晶で基板 1 7 0を作製する場合、 クラッキング 1 7 1が生じるために、 劈開面 (1 0 0 ) 以外の方位で切断することが非常に困難であった。
また、 従来の P L D法による薄膜成長方法では、 目的の薄膜の組成材料からなる夕 —ゲットから Z n〇がクラス夕として遊離し、 それがそのままの状態で基板上に堆積 することがあつたため、 Z n O分子が基板上に凹凸となって存在し、 表面平坦性の悪 い薄膜が形成されるおそれがあった。 また、 ターゲットがレーザの照射によって劣化 あるいは変質を起こすことがあるために、 薄膜単結晶の成長を阻害する要因となって いた。
従って、 本発明の目的は、 結晶成長の制御が容易で、 大型化、 高品質化の基板等に 加工しても割れを生じにくい i3— G a 203系単結晶成長方法を提供することにある。 また、 本発明の目的は、 高品質の薄膜単結晶を形成することができる薄膜単結晶の 成長方法を提供することにある。
さらに、 本発明の目的は、 紫外領域のさらに短波長の光を発光する G a 23系発光 素子およびその製造方法を提供することにある。 発明の開示
本発明は、 /3— G a 203系種結晶を準備し、 ]3— G a 203系種結晶から所定の方位 に)3— G a 23系単結晶を成長させることを特徴とする 3— G a 23系単結晶成長方 法を提供する。
この構成によれば、 クラッキング、 双晶化傾向が減少し、 結晶性が高くなり、 加工 性が良くなる。
本発明は、 基板を準備し、 所定の雰囲気中で純金属あるいは合金からなる金属夕一 ゲットに励起ビームを照射し、 これにより放出された原子、 分子、 イオン等の化学種 と前記所定の雰囲気の原子とを結合させて前記基板上に薄膜を成長させることを特徴 とする薄膜単結晶の成長方法を提供する。
この構成によれば、 励起ビームを金属ターゲットに照射すると、 金属ターゲットを 構成している金属原子が励起され、 熱的 '光化学的作用により、 金属ターゲットから 金属原子、 分子、 イオン等の化学種が遊離し、 その遊離した化学種が雰囲気中のラジ カルと結合し、 それが基板上に成長して基板上に薄膜が形成される。 本発明は、 Ga23系単結晶からなる n型導電性を示す第 1の層と、 前記第 1の層 上に接して形成された G a 23系単結晶からなる p型導電性を示す第 2の層とを備え ることを特徴とする Ga203系発光素子を提供する。
この構成によれば、 n型導電性を示す第 1の層上に p型導電性を示す第 2の層を形 成することにより、 PN接合の発光素子を形成することができるため、 Ga203系単 結晶が有するバンドギヤップにより紫外領域の発光が可能となる。 図面の簡単な説明
第 1図は、 本発明の第 1の実施の形態に係る赤外線加熱単結晶製造装置の概略構成 を示す図である。
第 2図は、 本発明の第 1の実施の形態に係る 3— Ga203の種結晶の正面図である。 第 3図 (a) 〜 (d) は、 本発明の第 1の実施の形態に係る ^一 Ga203単結晶の 成長過程を示す図である。
第 4図は、 本発明の第 1の実施の形態に係る単結晶を示す図である。
第 5図は、 本発明の第 1の実施の形態に係る /3— Ga23単結晶から形成した基板 を示す図である。
第 6図は、 本発明の第 1の実施の形態に係る /3— Ga23単結晶の単位格子を示す 図である。
第 7図は、 本発明の第 2の実施の形態に係る成膜装置の概略構成を示す図である。 第 8図は、 本発明の第 3の実施の形態に係る M I S型発光素子の断面を示す図であ る。
第 9図は、 本発明の第 6の実施の形態に係る J3— Ga203薄膜の原子間力顕微鏡 (AFM) 写真を示す図である。
第 1 0図は、 本発明の第 7の実施の形態に係る /3_Ga23薄膜の原子間力顕微鏡 写真を示す図である。
第 1 1図は、 本発明の第 7の実施の形態に係る i3— Ga23薄膜および第 7の実施 の形態に対応する比較例の薄膜の反射高速電子回折 (RHEED) パターンの比較図 である。 (a) は本発明の第 7の実施の形態に係る;8— Ga23薄膜の反射高速電子 回折パターンを示し、 (b) は、 第 7の実施の形態に対応する比較例の薄膜の反射高 速電子回折パ夕一ンを示す。
第 1 2図は、 本発明の第 8の実施の形態に係る /3— Ga23薄膜の原子間力顕微鏡 写真を示す図である。
第 1 3図は、 本発明の第 8の実施の形態に係る /3— Ga23薄膜および第 8の実施 の形態に対応する比較例の薄膜の反射高速電子回折パターンの比較図である。 (a) は本発明の第 8の実施の形態に係る /3 _G a23薄膜の反射高速電子回折パターンを 示し、 (b) は、 第 8の実施の形態に対応する比較例の薄膜の反射高速電子回折パ夕 ーンを示す。
第 14図は、 本発明の第 9の実施の形態に係る /3— Ga203薄膜の原子間力顕微鏡 写真を示す図である。
第 1 5図は、 本発明の第 1 0の実施の形態に係る i3— Ga23薄膜の原子間力顕微 鏡写真を示す図である。
第 1 6図は、 本発明の第 1 0の実施の形態に対応する比較例による 一 Ga23薄 膜の走査型電子顕微鏡 (SEM) 写真を示す図である。
第 1 7図は、 本発明の第 1 2の実施の形態に係る Ga203系発光素子を示す断面図 である。
第 1 8図は、 本発明の第 1 2の実施の形態に係る 0— Ga23単結晶の酸素濃度と キヤリァ濃度との関係を示す図である。
第 1 9図は、 本発明の第 1 2の実施の形態に係る Ga23系発光素子を製造するた めの成膜装置の概略構成を示す図である。
第 20図は、 本発明の第 1 3の実施の形態に係る Ga203系発光素子を示す断面図 である。
第 2 1図は、 本発明の第 14の実施の形態に係る Ga203系発光素子を示す断面図 である。
第 2 2図は、 本発明の第 1 5の実施の形態に係る Ga203系発光素子を示す断面図 である。
第 2 3図は、 本発明の第 1 6の実施に形態に係る Ga23系発光素子を示す断面図 である。 . 第 24図は、 本発明の第 1 7の実施に形態に係る G a 23系発光素子を示す断面図 である。
第 2 5図は、 ]3— A 1 Ga^O /3— G a23、 および /3— G a I n〇3の格子 定数率とバンドギャップとの関係を示す図である。
第 26図は、 本発明の第 1 8の実施の形態に係る G a 23系光素子を示す断面図で ある。
第 2 7図は、 従来の単結晶基板を示す図である。 発明を実施するための最良の形態
(第 1の実施の形態)
第 1図は、 本発明の第 1の実施の形態に係る赤外線加熱単結晶製造装置を示す。 こ の赤外線加熱単結晶製造装置 1 0 1は、 FZ法により 3— Ga23単結晶を製造する ものであり、 石英管 1 0 2と、 j3— Ga203種結晶 (以下 「種結晶」 と略す。 ) 1 0 7を保持 ·回転するシード回転部 1 03と、 /3_Ga203多結晶素材 (以下 「多結晶 素材」 と略す。 ) 1 0 9を保持 ·回転する素材回転部 1 04と、 多結晶素材 1 0 9を 加熱して溶融する加熱部 1 0 5と、 シード回転部 1 03、 素材回転部 1 04および加 熱部 1 0 5を制御する制御部 1 0 6とを有して概略構成されている。
シード回転部 1 0 3は、 種結晶 1 0 7を保持するシードチャック 1 33と、 シード チャック 1 3 3に回転を伝える下部回転軸 1 3 2と、 下部回転軸 1 3 2を正回転させ るとともに、 上下方向に移動させる下部駆動部 1 3 1とを備える。
素材回転部 1 04は、 多結晶素材 1 0 9の上端部 1 0 9 aを保持する素材チャック 143と、 素材チヤック 143に回転を伝える上部回転軸 142と、 上部回転軸 14 2を正逆回転させるとともに、 上下方向に移動させる上部駆動部 141とを備える。 加熱部 1 0 5は、 多結晶素材 1 0 9を径方向から加熱して溶融するハロゲンランプ 1 5 1と、 ハロゲンランプ 1 5 1を収容し、 ハロゲンランプ 1 5 1の発光する光を多 結晶素材 1 0 9の所定部位に集光する楕円鏡 1 52と、 ハロゲンランプ 1 5 1に電源 を供給する電源部 1 5 3とを備える。
石英管 10 2には、 下部回転軸 1 32、 シードチャック 1 3 3、 上部回転軸 142、 素材チャック 1 43、 多結晶素材 1 0 9、 j3—Ga203の単結晶 1 0 8および種結晶 1 0 7が収容される。 石英管 1 0 2は、 酸素ガスと不活性ガスとしての窒素ガスとの 混合ガスを供給されて密閉できるようになつている。
次に、 本発明の第 1の実施の形態に係る /3— Ga23単結晶成長方法を、 第 2図、 第 3図および第 4図を参照しで説明する。
(1) 種結晶の作製
第 2図は、 種結晶 1 0 7の正面図を示す。 種結晶 1 0 7は、 断面正方形の角柱状を 呈し、 種結晶 1 0 7の一部がシードチヤック 1 3 3に保持される。 種結晶 1 0 7は、 例えば、 j3— Ga23単結晶を劈開面に沿って切り出したものを使用する。 種結晶 1 0 7は、 良好な /3— Ga203単結晶を成長させるため、 成長結晶の 5分の 1以下の径 または 5 mm2以下の断面積を有し、 — Ga23単結晶の成長の際に破損しない強 度を有する。 本実施の形態では、 断面積を 1〜 2mm2とした。 その軸方向は、 a軸 <1 0 0>方位、 3軸<0 1 0〉方位、 あるいは c軸 <0 0 1〉方位である。 なお、 ここで、 径とは、 正方形の一辺、 矩形の長辺あるいは円の直径等をいう。 また、 軸方 向と各方位との誤差は、 プラスマイナス 1 0° の範囲内とするのが好ましい。
第 3図 (a) 〜 (d) は、 本発明の第 1の実施の形態に係る )3— Ga23単結晶の 成長過程を示し、 第 4図は、 本発明の第 1の実施の形態に係る単結晶を示す。 なお、 第 3図および第 4図ではシードチャック 1 3 3は省略してある。
( 2 ) 多結晶素材 1 0 9の作製
まず、 多結晶素材 1 0 9を、 以下のようにして作製しておく。 すなわち、 純度 4N の G a 23の粉末の所定量を図示しないゴム管に充填し、 5 0 OMP aで冷間圧縮す る。 その後、 1 50 0°Cで 1 0時間焼結し、 棒状の多結晶素材 1 0 9を得る。
(3) /3— Ga23単結晶 1 08の作製
次に、 第 1図に示すように、 種結晶 1 07の一部をシードチャック 1 3 3に保持し、 棒状の多結晶素材 1 0 9の上端部 1 0 9 aを素材チヤック 1 43に保持する。 次に、 第 3図 (a) に示すように、 上部回転軸 142の上下位置を調節して種結晶 1 0 7の 上端 1 0 7 aと多結晶素材 1 0 9の下端 10 9 bを接触させる。 また、 ハロゲンラン プ 1 5 1の光を種結晶 1 0 7の上端 1 0 7 aと多結晶素材 1 0 9の下端 1 0 9 bとの 部位に集光するように、 上部回転軸 142および下部回転軸 1 3 2の上下位置を調節 する。 石英管 1 0 2の雰囲気 1 0 2 aは、 窒素と酸素の混合気体 (1 00 %窒素から 1 0 0%酸素の間で変化する) の全圧 1気圧から 2気圧に満たされている。
操作者が図示しない電源スィッチをオンにすると、 制御部 1 0 6は、 制御プロダラ ムに従い、 各部を制御して以下のように単結晶成長制御を行う。 加熱部 1 0 5に電源 が投入されると、 ハロゲンランプ 1 5 1は、 種結晶 1 0 7の上端 1 0 7 aと多結晶素 材 1 0 9の下端 1 0 9 bの部位を加熱して、 その加熱部位を溶解し、 溶解滴 1 0 8 c を形成する。 このとき、 種結晶 1 0 7のみを回転させておく。
ついで、 多結晶素材 1 0 9と種結晶 1 0 7とが十分になじむように当該部を反対方 向に回転させながら溶解する。 第 3図 (b) に示すように、 適度の)3— Ga23単結 晶の溶解物 1 0 8 ' ができたときに、 多結晶素材 1 0 9の回転を停止し、 種結晶 1 0 7のみを回転させて多結晶素材 1 0 9および種結晶 1 0 7を互いに反対方向に引っ張 り、 種結晶 1 0 7よりも細いダッシュネック 1 0 8 aを形成する。
ついで、 種結晶 1 0 7と多結晶素材 1 0 9を 20 r pmで互いに反対方向に回転さ せながらハロゲンランプ 1 5 1で加熱し、 かつ、 多結晶素材 1 0 9を 5mm/時間の 割合で上部回転軸 1 42により上方に引っ張る。 ハロゲンランプ 1 51により多結晶 素材 1 0 9を加熱すると、 多結晶素材 1 0 9は、 溶解して溶解物 1 0 8 ' を形成する とともに、 それが冷却すると第 3図 (c) に示すように、 多結晶素材 1 0 9と同等ま たはそれよりも小さな径の /3— Ga23単結晶 1 0 8が生成する。 適度の長さの単結 晶を形成した後、 第 3図 (d) に示すように、 生成した ] 3— Ga23単結晶 1 08を 取り出すために /3— Ga23単結晶 1 0 8の上部 1 0 8 bを細径化する。
(4) 基板の作製
第 5図は、 /3— Ga203単結晶 1 0 8から形成した基板を示す。 j3— Ga23単結 晶 1 0 8は、 13軸<0 1 0>方位に結晶成長させた場合には、 (1 0 0) 面の劈開性 が強くなるので、 (1 00) 面に平行な面と垂直な面で切断して基板 1 6 0を作製す る。 &軸<1 00>方位、 c軸 <:0 0 1>方位に結晶成長させた場合は、 (1 00) 面、 (0 0 1) の劈開性が弱くなるので、 全ての面の加工性が良くなり、 上記のよう な切断面の制限はない。
第 6図は、 /3— Ga203単結晶の単位格子を示す。 0— Ga23単結晶は、 8つの G a原子および 1 2の 0原子が、 Ga (1) , Ga (2) , O (1) , O (2) , O (3) として示される。 同図中、 a, b, cは、 それぞれ &軸<1 0 0>方位、 b軸 <0 1 0>方位、 c軸ぐ 00 1>方位を示す。
この第 1の実施の形態によれば、 以下の効果が得られる。
(ィ) 所定の方向に結晶を成長させているので、 直径 1 cm以上の大きな /3— G a23単結晶 1 0 8を得ることができる。
(口) この /3— Ga203単結晶 1 0 8は、 &軸<1 00〉方位、 1)軸<0 1 0>方 位、 あるいは c軸ぐ 00 1>方位を結晶軸とすることにより、 クラッキング、 双晶化 傾向が減少し、 高い結晶性が得られる。
(八) また、 このような結晶が、 再現性よく生成できる。 そのため、 半導体等の基 板としての利用価値も高い。
なお、 本発明は、 上記の実施の形態に限定されず、 種々の変形実施が可能である。 例えば、 /3— Ga23種結晶 1 0 7の代わりに、 /3— G a23と同じ単斜晶系、 空 間群が C 2Zmに属する i3— Ga23のガリウム、 インジウム、 アルミニウム、 錫、 ゲルマニウム、 ニッケル、 銅、 亜鉛、 ジルコニウム、 ニオブ、 モリプデン、 チタン、 バナジウム、 クロム、 マンガン、 鉄、 コバルト、 ハフニウム、 タンタル、 タンダステ ン、 ケィ素およびマグネシウムからなる群から選択される 1または 2以上の元素の酸 化物を含む /3— Ga23固溶体からなる /3— Ga23系種結晶を用いてかかる固溶体 からなる 3— Ga203系単結晶を成長させてもよい。 これにより、 紫外から青色の波 長域で発光する L E Dを実現できる。
また、 窒素と酸素の混合気体として全圧が 2気圧以上で FZ法を行うと、 バブルの 発生を抑えることができ、 結晶成長過程をより安定化できる。
また、 単結晶 1 0 8を上方に引っ張る必要があるとき、 下部回転軸 1 3 2を下げて もよい。 また、 ハロゲンランプ 1 5 1を移動させるのではなく、 下部回転軸 1 3 2お よび上部回転軸 142を移動させて加熱してもよい。 ハロゲンランプ 1 5 1の代わり に加熱コィルで加熱してもよい。
本実施の形態は、 不活性ガスとして窒素ガスを使用するものとして説明したが、 本 発明は、 窒素ガスの代わりにアルゴンを使用してもよい。
また、 種結晶 1 0 7は、 断面長方形でもよく、 角柱状の代わりに、 円柱状や楕円柱 状であってもよい。 また、 本実施の形態は、 F Z法について説明したが、 E F G法 (引上げ法である C z o c h r a 1 s k i法を利用した形状制御結晶成長法) 等の他の結晶成長法を適用 してもよい。
(第 2の実施の形態)
第 7図は、 本発明の第 2の実施の形態に係る成膜装置の概略構成を示す。 この成膜 装置 2 0 1は、 P L D法によって成膜するものであり、 真空可能な空間部 2 2 0を有 するチヤンバ 2 0 2と、 チヤンバ 2 0 2内に配置されたターゲット 2 0 3を保持する ターゲット台 2 0 5と、 チャンパ 2 0 2の外部に設けられ、 ターゲット台 2 0 5を回 転させる回転機構 2 1 1と、 チャンパ 2 0 2内に配置され、 基板 2 0 6を保持すると ともに、 基板 2 0 6を 1 5 0 0 °Cまで加熱可能なヒ一タを内蔵する基板保持部 2 0 7 と、 チャンバ 2 0 2内にパイプ 2 0 2 aからラジカルを注入するラジカル注入部 2 0 8と、 パイプ 2 0 2 bを介して空間部 2 2 0を排気して空間部 2 2 0を真空にする真 空ポンプ (図示せず) を有する排気部 2 0 9と、 チャンバ 2 0 2の外部に設けられ、 夕ーゲット 2 0 3に励起ビームとしてのレーザ光を照射するレーザ ¾52 0 4とを備え る。
ターゲット 2 0 3は、 純金属あるいは合金、 例えば、 高純度の G aあるいは G aを 含む合金からなる。
レーザ部 2 0 4は、 N d : YA Gレ一ザ、 K r Fエキシマレーザ、 A r Fエキシマ レ一ザ等をレーザ源としてレ一ザ光 2 4 2をパルス状に照射するレーザ発振部 2 4 1 と、 レ一ザ発振部 2 4 1から出射されたレーザ光 2 4 2をターゲット 2 0 3上に集光 するレンズ 2 4 3 , 2 4 4とを備える。
基板 2 0 6は、 ターゲット 2 0 3にレーザ光 2 4 2が照射されたときに、 夕ーゲッ ト 2 0 3から解離した金属原子 2 3 3等の化学種が成膜に寄与できるように、 夕ーゲ ット 2 0 3と対向している。
ラジカル注入部 2 0 8は、 酸素ガス、 オゾンを含む酸素ガス、 純オゾンガス、 N2 Oガス、 N02ガス、 酸素ラジカ^/を含む酸素ガス、 酸素ラジカル、 窒素ラジカル、 NH3ガス、 窒素ラジカルを含む NH3ガス等のうち 1または 2以上のガス、 すなわち 成膜時に夕ーゲット 2 0 3から遊離した原子と結合するガスを空間部 2 2 0に注入す るようになっている。 次に、 第 2の実施の形態に係る薄膜単結晶の成長方法を説明する。 この成長方法は、 薄膜を成長させる基板 20 6を準備する工程と、 基板 20 6上に薄膜を成長させるェ 程とからなる。 ここでは、 /3— Ga203からなる基板 2 06上に j3—Ga23からな る薄膜を形成する場合について説明する。
(1) 基板 206の準備
まず、 FZ (F l o a t i n g Z o n e ) 法により j3 _ G a23単結晶を形成す る。 すなわち、 石英管中で ;8— Ga23種結晶と j3— Ga203多結晶素材との接触部 分で両者を溶融する。 溶解した)3—Ga23多結晶素材を /3— Ga23種結晶ととも に下降させると、 j3— Ga23種結晶上に ]3— Ga203単結晶が生成される。 次に、 この /3— Ga23単結晶により基板 20 6を作製する。 なお、 軸<01 0>方位に 結晶成長させた場合には、 (1 0 0) 面の劈開性が強くなるので、 (1 0 0) 面に平 行な面と垂直な面で切断して基板 2 06を作製する。 a軸ぐ 1 00>方位、 (:軸<0 0 1 >方位に結晶成長させた場合は、 ( 1 00 ) 面、 (0 0 1) の劈開性が弱くなる ので、 全ての面の加工性が良くなり、 上記のような切断面の制限はない。
(2) 薄膜の成長
前述の成膜装置 2 0 1を使用して基板 206上に薄膜を成長させる。 すなわち、 夕 —ゲット 20 3として、 例えば、 G aからなるターゲット 20 3をターゲット台 20 5に固定する。 /3— Ga23単結晶からなる基板 20 6を基板保持部 20 7に保持す る。 排気部 20 9の真空ポンプにより空間部 220中の空気を排気し、 空間部 2 20 内の真空度を、 例えば、 1 X 1 0_9t o r r程度にし、 その後、 例えば酸素ガスを空 間部 2 20に注入し 1 X 1 0— 7t o r r程度にして、 基板保持部 20 7により図示し ないヒータに通電し、 基板 2 0 6の温度を、 例えば、 3 0 0°C〜1 500°Cに加熱す る。 次いで、 酸素ラジカルをラジカル注入部 208によって空間部 220内に注入し て 1 X 1 0— 4〜1 X 1 0— 6t o r rとする。 レーザ部 204からレーザ出力 1 00m W、 繰り返し周波数 1 0 Hzで、 波長 2 66 nmのレーザ光 242を回転機構 2 1 1 により回転する夕ーゲット 20 3に照射すると、 ターゲット 20 3を構成している G a原子が励起され、 熱的 '光化学的作用により、 ターゲット 2 0 3から放出される G a原子、 Gaイオン、 励起 G a原子、 励起 G aイオン等の化学種が雰囲気中の酸素ラ ジカルと基板 206上で結合し、 /3— Ga203単結晶が形成される。 その形成された /3— Ga203単結晶は、 基板 206上に成長して、 基板 206上に /3— Ga23薄膜 単結晶が形成される。 なお、 成長した i3— Ga203薄膜単結晶は、 n型導電性を示し た。 この導電性は、 酸素欠陥によると考えられる。
この第 2の実施の形態によれば、 ターゲット 203から遊離した金属原子、 金属ィ オン、 励起金属原子、 励起金属イオン等の化学種と雰囲気中の原子とを結合させるた め、 表面平坦性が高く、 品質の良い /3— Ga23単結晶からなる薄膜を基板上に成長 させることができる。
(第 3の実施の形態)
図 8は、 本発明の第 3の実施の形態に係る MI S型発光素子の断面を示す。 この M I S型発光素子 260は、 3_Ga203単結晶からなる基板 206と、 この基板 20 6の上面に形成される n型導電性を示す Ga203薄膜単結晶 261と、 この n型 の j3_Ga203薄膜単結晶 26 1の上面に形成される ;8— G a23薄膜結晶からなる 絶縁層 262と、 絶縁層 262の上面に形成される金電極 263と、 金電極 263の 上面に取り付けられ、 リード 268が接続されるボンディング 267と、 基板 206 の下面に形成された n電極 264と、 n電極 264の下面に取り付けられ、 リード 2 66が接続されるボンディング 265とを備える。
絶縁層 262は、 酸素雰囲気中で 900°Cァニールすることにより形成した表面に 10から 1000 nmの酸素欠陥のないものである。
この第 3の実施の形態によれば、 発光波長 260 nm付近の発光素子が得られる。 (第 4の実施の形態)
本発明の第 4の実施の形態に係る Z n〇系薄膜単結晶は、 第 2の実施の形態に係る 成膜装置 201を使用し、 ターゲット 203として Znあるいは Znを含む合金から なる金属を使用し、 基板 206上に成長させることにより得られる。
この第 4の実施の形態によれば、 励起ビームを Z nあるいは Z nを含む合金からな る金属ターゲッ卜 203に照射すると、 金属ターゲッ卜 203を構成している Z n原 子あるいは他の原子が励起され、 熱的,光化学的作用により、 金属ターゲット 203 から放出される Zn原子、 Znイオン、 励起 Zn原子、 励起 Z nイオンなどの化学種 が雰囲気中のラジカルと結合し、 それが基板 206上に成長して基板 206上に Zn O系薄膜単結晶が形成される。 なお、 β - G a 23系単結晶からなる基板上に Ζ η 0系薄膜結晶からなるバッファ 層を成長させ、 そのバッファ層の上に Ζη〇系薄膜単結晶を成長させてもよい。 この 構成によれば、 バッファ層の上にバッファ層と同種の Ζη〇系の薄膜単結晶を成長さ せるために、 格子不整合が低減され、 結晶性のよい Ζ ηθ系の薄膜単結晶を形成する ことができる。
(第 5の実施の形態)
本発明の第 5の実施の形態に係る G a N系薄膜単結晶は、 第 2の実施の形態に係る 成膜装置 20 1を使用し、 雰囲気として窒素ラジカル、 NH3ガス、 および窒素ラジ カルを含む NH3ガスのうち 1または 2以上のガスを使用し、 基板 2 0 6上に成長さ せることにより得られる。
この第 5の実施の形態によれば、 励起ビームを G aあるいは G aを含む合金からな る金属ターゲット 203に照射すると、 金属ターゲット 2 0 3を構成している G a原 子あるいは他の原子が励起され、 熱的,光化学的作用により、 金属ターゲット 2 03 から放出される G a原子、 Gaイオン、 励起 G a原子、 励起 G aイオンなどの化学種 が雰囲気中のラジカルと結合し、 それが基板 2 0 6上に成長して基板 20 6上に Ga N系薄膜単結晶が形成される。
なお、 )3— Ga23系単結晶からなる基板 20 6上に G a N系薄膜結晶からなるバ ッファ層を成長させ、 そのバッファ層の上に G a N系薄膜単結晶を成長させてもよい。 この構成によれば、 バッファ層の上にバッファ層と同種の同種の G a N系の薄膜単結 晶を成長させるために、 格子不整合が低減され、 結晶性のよい G a N系の薄膜単結晶 を形成することができる。
(第 6の実施の形態)
本発明の第 6の実施の形態に係る — Ga203薄膜は、 第 2の実施の形態に係る成 膜装置 2 0 1を使用し、 ターゲット 20 3の材料として Gaを用い、 かつ、 基板 20 6に j3— Ga23からなるものを用い、 酸素ラジカルを注入しながら、 基板温度 40 0°C、 レーザ出力 1 0 0mW、 繰り返し周波数 1 0Hz、 真空度 1 X 1 0— 5t o r r で、 波長 26 6 n mのレーザ光 242をターゲット 20 3に照射することにより得ら れる。 このレーザ発振部 241は、 Q s w N d ·· Y A Gレーザの発振波長である 1. 0 64 imを基本波とし、 図示しない非線形光学結晶を利用して 3倍波である 355 η m、 4倍波である 266 nmのパルス発振が可能となっている。 レーザ光 242の照 射後、 ;8— Ga23基板 206上に無色 ·透明の 3— G a203薄膜が成長した。 第 9図は、 第 6の実施の形態に係る 8— Ga23薄膜の原子間力顕微鏡 (AFM) 写真を示す。 これによれば、 j3— Ga23薄膜の表面が高い平坦性を有し、 薄膜が高 品質であることを示している。
この第 6の実施の形態によれば、 励起ビームを Gaからなるターゲットに照射する と、 ターゲットから Ga原子が励起され、 熱的 ·光化学的作用により、 ターゲットか ら G a原子などの化学種が遊離し、 その遊離した化学種が雰囲気中の酸素ラジカルと 結合し、 それが基板上に成長して /3— Ga23からなる基板 206上に無色 ·透明な 良質の ]3— G a23薄膜単結晶を成長させることができた。
(第 7の実施の形態)
本発明の第 7の実施の形態に係る j8— Ga203薄膜は、 基板温度を 1000°Cにす る他は第 6の実施の形態と同一条件により得られる。
第 10図は、 第 7の実施の形態に係る /3— Ga23薄膜の原子間力顕微鏡 (AF M) 写真を示す。 これによれば、 /3— Ga23薄膜の表面が高い平坦性を有し、 薄膜 が高品質であることを示している。
第 1 1図 ) は、 第 7の実施の形態に係る /3— Ga203薄膜の反射高速電子回折 (RHEED) によるパターンを示し、 (b) は、 後述する第 7の実施の形態に対応 する比較例による薄膜の反射高速電子回折によるパターンを示す。 第 11,図 (a) よ り明らかなように高品質の /3— Ga23薄膜単結晶が成長していることがわかる。 この第 7の実施の形態によれば、 励起ビームを G aからなる夕一ゲッ卜に照射する と、 ターゲットから G a原子が励起され、 熱的 ·光化学的作用により、 ターゲットか ら G a原子などの化学種が遊離し、 その遊離した化学種が雰囲気中の酸素ラジカルと 結合し、 それが基板上に成長して /3—Ga203からなる基板 206上に無色 ·透明な 良質の /3—G a 203薄膜単結晶を成長させることができた。
(第 7の実施の形態に対応する比較例) この比較例による j8— Ga23薄膜は、 第 2の実施の形態に係る成膜装置 2 0 1を 使用し、 ターゲット 20 3の材料として Ga23を用い、 かつ、 基板 20 6に /3—G a203からなるものを用い、 酸素ラジカル雰囲気下、 基板温度 1 0 00°C、 レーザ出 力 1 0 0 mW、 繰返し周波数 1 0 H z、 真空度 1 X 1 0— 51 o r rで、 波長 26 6 n mのレーザ光 242をターゲット 20 3に照射することにより ;3— Ga23基板 20 6上に得られる。 この 3— Ga23薄膜は、 透明である。
第 1 1図 (b) は、 成長した /3—Ga203薄膜の反射高速電子回折によるパターン を示す。 第 1 1図 (b) より明らかなように良質な /3— Ga2Os薄膜単結晶が成長し ていない。
この比較例によれば、 Ga203からなるターゲットを用いた場合、 良好な薄膜単結 晶が生じなかった。 このことから、 Gaからなるターゲットが、 薄膜単結晶の成長に 適することがわかる。 また、 第 1 1図からわかるように、 Gaからなるターゲットに 加えて、 酸素ラジカルの存在が j3— Ga203からなる基板 206上に j3— Ga23薄 膜単結晶を成長させる上で効果的であることがわかる。
(第 8の実施の形態)
本発明の第 8の実施の形態に係る /3— Ga23薄膜は、 第 2の実施の形態に係る成 膜装置 20 1を使用し、 ターゲット 20 3の材料として Gaを用い、 かつ、 基板 20 6に ]3— Ga23からなるものを用い、 N2〇ラジカルを注入しながら、 基板温度 1 00 0°C、 レーザ出力 1 0 0mW、 繰返し周波数 1 0Hz、 真空度 1 X 1 0— 5t o r rで、 波長 2 66 n mのレーザ光 242をターゲット 203に照射することにより得 られる。
第 1 2図は、 第 8の実施の形態の — Ga23薄膜の原子間力顕微鏡写真を示す。 これによれば、 ]3— Ga203薄膜の表面が高い平坦性を有し、 薄膜が高品質であるこ とを示している。
第 1 3図 (a) は、 第 8の実施の形態に係る /3— G a23薄膜の反射高速電子回折 によるパターンを示し、 (b) は、 後述する第 8の実施の形態に対応する比較例によ る薄膜の反射高速電子回折によるパターンを示す。 第 1 3図 (a) より明らかなよう に高品質の J3—Ga203薄膜単結晶が成長していることがわかる。 この第 8の実施の形態によれば、 励起ビームを Gaからなる夕一ゲッ卜に照射する と、 ターゲットから Ga原子が励起され、 熱的 ·光化学的作用により、 ターゲットか ら G a原子などの化学種が遊離し、 その遊離した化学種が雰囲気中の N2〇ラジカル と結合し、 それが基板上に成長して ]3— Ga23からなる基板 206上に無色'透明 な良質の G a23薄膜単結晶を成長させることができた。
(第 8の実施の形態に対応する比較例)
この比較例による 一 Ga23薄膜は、 第 2の実施の形態に係る成膜装置 20 1を 使用し、 ターゲット 20 3の材料として Ga23を用い、 かつ、 基板 20 6に j3— G a203からなるものを用い、 N02ラジカル雰囲気下、 基板温度 1 0 0 0°C、 レーザ 出力 1 0 OmW、 繰返し周波数 1 0Hz、 真空度 1 X 1 0— 5t o r rで、 波長 26 6 nmのレーザ光 242を夕一ゲット 20 3に照射することにより、 /3— Ga23基板 206上に得られる。 この 3— Ga23薄膜は、 透明である。
第 1 3図 (b) は、 上記のように成長した /3—Ga203薄膜の反射高速電子回折に よるパターンを示す。 第 1 3図 (b) より明らかなように良質な /3— Ga23薄膜単 結晶が成長していない。
この比較例によれば、 Gaからなるターゲットに加えて、 N20ラジカルの存在が ]3— Ga23からなる基板 2 0 6上に /3— G a23薄膜単結晶を成長させる上で効果 的であることがわかる。
(第 9の実施の形態)
本発明の第 9の実施の形態に係る ]3_Ga203薄膜は、 基板温度を 40 (TCにする 他は第 8の実施の形態と同一条件により得られる。
第 1 4図は、 第 9の実施の形態の /3— Ga203薄膜の原子間力顕微鏡写真を示す。 これによれば、 — Ga23薄膜の表面が高い平坦性を有し、 薄膜が高品質であるこ とを示している。
この第 9の実施の形態によれば、 励起ビームを G aからなるターゲッ卜に照射する と、 ターゲットから G a原子が励起され、 熱的 ·光化学的作用により、 ターゲットか ら G a原子などの化学種が遊離し、 その遊離した化学種が雰囲気中の N2〇ラジカル と結合し、 それが基板上に成長して j3— Ga203からなる基板 206上に無色 ·透明 な良質の 0— Ga23薄膜単結晶を成長させることができた。 (第 1 0の実施の形態)
本発明の第 1 0の実施の形態に係る /3— Ga203薄膜は、 第 2の実施の形態に係る 成膜装置 20 1を使用し、 ターゲット 203の材料として Gaを用い、 かつ、 基板 2 0 6に ]3—Ga203からなるものを用い、 酸素ラジカルを注入しながら、 基板温度 1 0 0 0 °C、 レーザ出力 1 0 0 mW、 繰返し周波数 1 0 H z、 真空度 1 X 1 0—51 o r rで、 波長 3 5 5 nmのレーザ光 242を夕一ゲット 2 0 3に照射することにより得 られる。
第 1 5図は、 本発明の第 1 0の実施の形態に係る /3— Ga23薄膜の原子間力顕微 鏡写真を示す。 これによれば、 /3— Ga203薄膜の表面が高い平坦性を有し、 薄膜が 高品質であることを示している。
この第 1 0の実施の形態によれば、 励起ビームを G aからなるターゲットに照射す ると、 ターゲットから G a原子が励起され、 熱的 ·光化学的作用により、 ターゲット から G a原子などの化学種が遊離し、 その遊離した化学種が雰囲気中の酸素ラジカル と結合し、 それが基板上に成長して j3— Ga203からなる基板 206上に無色 ·透明 な良質の;S _Ga23薄膜単結晶を成長させることができた。
(第 1 0の実施の形態に対応する比較例)
第 1 6図は、 第 1 0の実施の形態に対応する比較例に係る /3— Ga203薄膜の走査 型電子顕微鏡 (SEM) 写真を示す。 この比較例による —Ga2O3薄膜は、 第 2の 実施の形態に係る成膜装置 2 0 1を使用し、 夕ーゲット 2 0 3の材料として Ga23 を用い、 かつ、 基板 20 6に /3— Ga203からなるものを用い、 酸素雰囲気下、 基板 温度 1 0 0 0 、 レーザ出力 2 00mW、 繰返し周波数 1 0Hz、 真空度 I X 1 0一5 t o r rで、 波長 3 5 5 nmのレーザ光 242を夕ーゲット 203に照射することに より /3— G a23基板 20 6上に得られる。 この j3— G a23薄膜は、 白色である。 これは、 白いクラス夕状のものが平坦な基板 206に付着したものであり、 ]3— Ga 23膜としては、 ほとんど成長していないことがわかった。
この比較例によれば、 G aからなる夕一ゲッ卜に加えて、 酸素ラジカルの存在が j3— Ga23からなる基板 2 0 6上に ]3— G a23薄膜単結晶を成長させる上で効果 的であることがわかる。 なお、 /3— Ga203単結晶からなる基板上に ]3— Ga203単結晶薄膜を成長させる 方法として、 PLD法について述べてきたが、 PLD法に限定されることなく、 MB E (Mo l e c u l a r B e am Ep i t axy) 法、 MOCVD (Me t a l O r g an i c Vap o r De p o s i t i on) 法等の物理的気相成長法、 熱 CVD (Chem i c a l Vap o r De p o s i t i on) , プラズマ CVD 等の化学的気相成長法を用いてもよい。
また、 夕一ゲットは、 その性状が金属板として説明してきたが、 金属製に限定する ものではなく、 金属以外の固体からなるものであっても、 液状であってもよい。 また、 ターゲットは、 Gaからなるものに限定するものではなく、 Gaを含む合金、 Znあ るいは Znを含む合金からなる金属であってもよい。 これにより成膜しょうとする膜 の種類の選択の自由度が増える。
また、 励起ビームとしては、 レーザ光以外に金属ターゲットに照射して金属原子等 を遊離させることができるものならば、 電子ビーム、 イオンビーム等でもよい。
また、 レ一ザの波長は、 266 nmに限定するものではなく、 例えば、 355 nm、 193 nm等他の波長であってもよい。 また、 レ一ザ出力を 10mW〜40 OmWと してもよい。
また、 基板温度は、 300〜1500°Cであってもよい。 この温度範囲は、 成長さ せる膜を平坦化し、 密にさせるための温度範囲、 すなわち、 結晶化を向上させる温度 範囲だからである。
また、 チャンバ 202内の真空度は、 1〜1 X 1 CT1Qt o r rであってもよい。 こ の真空度の範囲でも /3— Ga203系薄膜単結晶を成長させることができる。
(第 1 1の実施の形態)
本発明の第 1 1の実施の形態に係る Ga203系発光素子は、 n型導電性を示す基板、 p型導電性を示す基板、 絶縁型の基板、 p型導電性を示す薄膜および n型導電性を示 す薄膜等を形成し、 これらを組み合わせることにより得られる。 以下、 それら発光素 子の構成要素の製造方法等について説明する。
(1) n型導電性を示す基板の製造方法
基板が n型導電性を示すためには、 基板中の G aが n型ド一パントと置換されるか、 基板中の酸素が n型ド一パントと置換されるか、 または /3— Ga203単結晶中の酸素 欠陥によらなければならない。 G aが n型ド一パントと置換されるガリウム置換型 n 型ド一パントとして、 T i、 Z r、 Hf、 V、 Nb、 Ta、 Mo、 W、 Ru、 Rh、 I r、 C、 S n、 S i、 Ge、 P b、 Mn、 As、 S b、 B i等が挙げられる。 酸素 が n型ド一パントと置換される酸素置換型 n型ドーパントとして、 F、 C l、 B r、 I等が挙げられる。
n型導電性を示す基板は、 以下のように製作する。 まず、 FZ (F l o a t i ng Zon e) 法により /3— Ga23単結晶を形成する。 すなわち、 /3—Ga203種結晶 と — Ga203多結晶素材とを別個に準備し、 石英管中で j3_Ga203種結晶と β 一 Ga23多結晶素材とを接触させてその部位を加熱し、 j3—Ga23種結晶と β— G a203多結晶素材との接触部分で両者を溶融する。 溶解した /3— G a23多結晶素 材を ]3—Ga23種結晶とともに結晶化させると、 ]3— Ga203種結晶上に /3— Ga 23単結晶が生成される。 次に、 この) 3— Ga23単結晶に切断等の加工を施すこと により、 n型導電性を示す基板が製作される。 なお、 13軸<010>方位に結晶成長 させた場合には、 (100) 面の劈開性が強くなるので、 (100) 面に平行な面と 垂直な面で切断して基板を作製する。 a軸ぐ 100>方位、 c軸ぐ 001>方位に結 晶成長させた場合は、 (100) 面、 (001) 面の劈開性が弱くなるので、 全ての 面の加工性が良くなり、 上記のような切断面の制限はなく、 ( 001 ) 面、 (0 1 0) 面、 (101) 面であってもよい。
上記の製造方法により基板が n型導電性を示すことになるのは、 β— G a 203単結 晶中の酸素欠陥によるためである。
(2) n型導電性を示す基板の導電率制御
3— Ga23からなる n型導電性を示す基板の導電率を制御する方法には、 雰囲気 中の酸素分圧を変えたり、 成長中に酸素流量を変えることにより酸素欠陥濃度を制御 する方法、 FZ法により n型ド一パン卜濃度を制御する方法等が挙げられる。 導電率 は、 酸素欠陥濃度が大きくなると大きくなる。 /3— Ga23単結晶の成長中における 酸素流量と導電率の対数との関係は、 略反比例の関係にある。
i3— Ga23単結晶の成長時に、 1〜2気圧で、 0〜0. Sm /hの間で酸素流量 を変化させ酸素濃度を変化させることにより、 キャリア濃度を 101(i〜l 019Zcm3 の間で制御することができる。 (3) 絶縁型基板の製造方法
絶縁型基板は、 以下のように製作する。 まず、 n型導電性を示す基板の製造方法と 同様に、 酸素欠陥濃度のコントロールにより n型導電性を示す /3— Ga23単結晶を 成長させる。 次いで、 大気中で所定の温度 (例えば、 温度 900で) の雰囲気で所定 の期間 (例えば 6日間) ァニールすることにより、 酸素欠陥を減少させ、 Ga23単 結晶からなる絶縁型基板が得られる。
(4) p型導電性を示す基板の製造方法
/3— Ga23単結晶から形成される基板が p型導電性を示すためには、 基板中の G aが p型ドーパン卜と置換されるか、 または基板中の酸素が p型ドーパントと置換さ れなければならない。 Gaが p型ドーパントと置換されるガリウム置換型 p型ドーパ ントとして、 H、 L i、 Na、 K、 Rb、 C s、 F r、 Be、 Mg、 Ca、 S r、 B a、 Ra、 Mn、 Fe、 Co、 N i、 Pd、 Cu、 Ag、 Au、 Zn、 Cd、 Hg、 T l、 Pb等が挙げられる。 酸素が p型ド一パン卜と置換される酸素置換型 p型ドー パントとして、 N、 P等が挙げられる。
p型導電性を示す基板は、 以下のように製作する。 まず、 FZ法により |8— Ga2 03結晶を形成する。 原料として、 例えば、 MgO (p型ド一パント源) を含む /3— Ga203を均一に混合し、 混合物をゴム管に入れ 50 OMP aで冷間圧縮して棒状に 成形する。 棒状に形成したものを大気中において 1500°Cで 10時間焼結して Mg を含む j8— Ga203系多結晶素材を得る。 /3— Ga203種結晶を準備し、 成長雰囲気 が全圧 1〜2気圧の下、 N2および 02混合ガスを 50 OmlZm i nで流しながら、 石英管中で /3—Ga203種結晶と /3—G a 23系多結晶素材とを接触させてその部位 を加熱し、 /3— Ga23種結晶と /3— Ga203系多結晶素材との接触部分で両者を溶 融する。 溶解した j8_Ga23系多結晶素材を /3— Ga203種結晶とともに回転速度 20 r pmで反対方向に回転させながら、 かつ 5 mmZhの成長速度で成長させると、 /3— Ga23種結晶上に透明で、 Mgを含む絶縁性の ]3— G a23系単結晶が生成す る。 この j8— Ga23系単結晶により基板を作製し、 この基板を酸素雰囲気中におい て所定の温度 (例えば 950 ) で所定の期間ァニールすると、 酸素欠陥が減少し、 ρ型導電性を示す基板が得られる。
(5) ρ型導電性を示す基板の導電率制御 j3— Ga23からなる n型導電性を示す基板の導電率を制御する方法には、 FZ法 により p型ドーパント濃度を制御する方法が挙げられる。
(6) n型導電性を示す薄膜の製造方法
n型導電性を示す薄膜は、 PLD法、 MBE法、 MOCVD法、 スパッ夕法等の物 理的気相成長法、 熱 CVD、 プラズマ CVD等の化学的気相成長法等により成膜する ことができる。
PLD法による成膜を説明する。 n型導電性を示すためには、 薄膜中の G aが n型 ド一パントと置換されるか、 薄膜中の酸素が n型ドーパントと置換されるか、 または 酸素欠陥の存在によらなければならない。 G aが n型ド一パントと置換されるガリウ ム置換型 n型ド一パントとして、 T i、 Z r、 Hf、 V、 Nb、 Ta、 Mo、 W、 R u、 Rh、 I r、 C、 Sn、 S i、 Ge、 Pb、 Mn、 As、 Sb、 B i等が挙げら れる。 酸素が n型ド一パントと置換される酸素置換型 n型ドーパントとして、 F、 C 1、 B r、 I等が挙げられる。
PLD法において、 ガリウム置換型 n型ドーパントおよび酸素置換型 n型ド一パン トをド一プする方法には、 下記の方法がある。 すなわち、 Gaと n型ド一パントの合 金からなるターゲット、 /3— G a 23と n型ドーパントの酸化物との焼結体からなる ターゲット、 ]8— G a 23と n型ドーパントの酸化物との固溶体単結晶からなる夕一 ゲット、 または G a金属からなるターゲットおよび n型ドーパントからなる夕一ゲッ 卜を用いる方法等がある。
また、 PLD法において、 酸素欠陥により n型導電性を示す薄膜は、 ターゲットと して j3— Ga203結晶 (単結晶、 多結晶) を用い、 酸素雰囲気中で成膜することによ り作製できる。
(7) n型導電性を示す薄膜の導電率制御 ,
/3— Ga23からなる n型導電性を示す薄膜の導電率を制御する方法には、 夕一ゲ ッ卜の n型ドーパント配合比を制御する方法、 レーザの照射条件や基板の成膜条件を 変えて酸素欠陥濃度を制御する方法等が挙げられる。
P LD法により n型ド一パント濃度を制御する方法には、 G aと n型ドーパン卜の 合金からなるターゲット、 /3— G a 23と n型ドーパントの酸化物との焼結体からな るターゲット、 j8— G a 203と n型ドーパン卜の酸化物との固溶体単結晶からなる夕 一ゲットを用いる方法においては、 Gaとドーパントの成分比を変える方法、 または G a金属からなる夕一ゲットおよび n型ドーパントからなるターゲットを用いる方法 においては、 ターゲットへのレーザーの照射方法を変える方法がある。 例えば、 レー ザの波長 (例えば、 1 5 7 nm、 1 9 3 nm、 248 nm、 26 6 nm、 3 55 nm 等) を変える方法、 1パルスあたりのパワー (例えば、 1 0〜5 0 OmW) や繰り返 しの周波数 (例えば、 l〜20 0Hz) を変える方法等がある。
PLD法により酸素欠陥濃度を制御する方法には、 夕一ゲッ卜へのレーザ一照射条 件を変える方法がある。 例えば、 レーザの波長 (例えば、 1 5 7 nm、 1 93 nm、 248 nm, 26 6 nm, 3 5 5 nm等) を変える方法、 1パルスあたりのパヮ一 (例えば、 1 0〜 50 OmW) や繰り返しの周波数 (例えば、 l〜200Hz) を変 える方法がある。 あるいは、 基板の成膜条件を変える方法、 例えば基板温度 (例えば、 3 0 0〜 1 50 0 ) を変える方法、 夕一ゲッ卜と基板の距離 (例えば、 20〜5 0 mm) を変える方法,成膜の真空度 (例えば、 1 0_3〜1 0—7t o r r) を変える方法、 プラズマガンの出力を変える方法等がある。
(8) p型導電性を示す薄膜の製造方法
P型導電性を示す薄膜は、 PLD法、 MBE法、 MOCVD法、 スパッタ法等の物 理的気相成長法、 熱 CVD、 プラズマ CVD等の化学的気相成長法等により成膜する ことができる。
PLD法による成膜を説明する。 p型導電性を示すためには、 薄膜中の G aが p型 ドーパントと置換されるか、 または薄膜中の酸素が p型ドーパントと置換されるか、 G a欠陥によらなければならない。 G aが p型ド一パントと置換されるガリゥム置換 型 p型ド一パントとして、 H、 L i、 Na、 K、 Rb、 C s、 F r、 B e、 Mg、 C a、 S r、 B a、 Ra、 Mn、 F e、 C o、 N i、 P d、 Cu、 Ag、 Au、 Zn、 Cd、 Hg、 Tし P b等が挙げられる。 酸素が p型ド一パン卜と置換される酸素置 換型 p型ドーパントとして、 P等が挙げられる。
P LD法によりガリゥム置換型 p型ド一パントをド一プする方法および酸素置換型 p型ドーパントをドープする方法は、 薄膜成長工程で p型ドーパントをドープするも のである。 p型ドーパントをド一プする方法には、 下記の方法がある。 すなわち、 G aと p型ド一パントの合金からなるターゲット、 /3— G a 23と p型ドーパントの酸 化物との焼結体からなるターゲット、 j3 _ G a 23と p型ドーパントの酸化物との固 溶体単結晶からなる夕一ゲット、 または Ga金属からなる夕ーゲットおよび p型ドー パントからなるターゲットを用いる方法等がある。
また、 G a欠陥により P型導電性を示す薄膜は、 ターゲットとして G a金属、 β— Ga23焼結体、 あるいは /3— Ga23結晶 (単結晶、 多結晶) を用い、 プラズマガ ンによりラジカルにされた N2〇の雰囲気中で /3— G a23結晶を成長させることに より作製できる。
(9) p型導電性を示す薄膜の導電率制御
/3— G a23からなる p型導電性を示す薄膜の導電率を制御する方法には、 夕一ゲ ッ卜の p型ドーパント配合比を制御する方法、 レーザ一の照射条件や基板の成膜条件 を変えて G a欠陥濃度を制御する方法等が挙げられる。
P L D法により p型ド一パント濃度を制御する方法には、 G aと p型ドーパントの 合金からなるターゲット、 )3— G a 23と p型ドーパントの酸化物との焼結体からな るターゲットを用いる方法、 /3— Ga23と p型ドーパントの酸化物との固溶体単結 晶からなるターゲットを用いる方法、 Ga金属からなるターゲットおよび p型ドーパ ントからなる夕一ゲットを用いる方法等がある。 )3— Ga23と p型ドーパントの酸 化物との固溶体単結晶からなる夕一ゲットを用いる方法においては、 Gaと p型ドー パントの成分比を変える方法があり、 G a金属からなるターゲットおよび p型ドーパ ン卜からなる夕一ゲットを用いる方法においては、 ターゲットへのレーザーの照射方 法を変える方法がある。 例えば、 レーザの波長 (例えば、 1 57 nm、 1 9 3 nm、 248 nm、 26 6 nm、 3 5 5 nm等) を変える方法、 1パルスあたりのパワー (例えば、 1 0〜5 0 0mW) や繰り返しの周波数 (例えば、 l〜200Hz) を変 える方法等がある。
P LD法により G a欠陥濃度を制御する方法には、 夕ーゲッ卜へのレーザ一照射条 件を変える方法がある。 例えば、 レーザの波長 (例えば、 1 57 nm、 1 9 3 nm,
248 nm, 26 6 nm, 3 5 5 nm等) を変える方法、 1パルスあたりのパワー (例えば、 1 0〜5 0 0mW) や繰り返しの周波数 (例えば、 l〜200Hz) を変 える方法がある。 あるいは、 基板の成膜条件を変える方法、 例えば基板温度 (例えば、
3 0 0~1 5 00°C) を変える方法、 ターゲットと基板の距離 (例えば、 20〜50 mm) を変える方法,成膜の真空度 (例えば、 10—3〜10—7t o r r) を変える方法、 プラズマガンの出力を変える方法等がある。
(10) 電極
電極は、 p型導電性を示す薄膜、 あるいは基板、 または n型導電性を示す薄膜、 あ るいは基板上に蒸着、 スパッ夕等により形成される。 電極は、 ォーミック接触が得ら れる材料で形成される。 例えば、 n型導電性を示す薄膜あるいは基板には、 Au、 A 1、 T i、 Sn、 Ge、 I n、 N i、 Co、 P t、 W、 Mo、 C r、 Cu、 Pb等の 金属単体、 これらのうち少なくとも 2種の合金 (例えば、 Au— Ge合金) 、 これら を 2層構造に形成するもの (例えば、 A l/T i、 AuXN i , Au/Co) 、 ある いは I TOが形成される。 p型導電性を示す薄膜あるいは基板には、 Au、 A l、 B e、 N i、 P t、 I n、 Sn、 C r、 T i、 Zn等の金属単体、 これらのうち少なく とも 2種の合金 (例えば、 Au— Zn合金、 Au— Be合金) 、 これらを 2層構造に 形成するもの (例えば、 N iZAu) あるいは I TOが形成される。
この第 1 1の実施の形態によれば、 n型導電性を示す第 1の層上に p型導電性を示 す第 2の層を形成することにより、 PN接合の発光素子を形成することができるため、 Ga23系単結晶が有するバンドギャップにより紫外領域の発光が可能となる。
(第 12の実施の形態)
第 17図は、 本発明の第 1 2の実施の形態に係る Ga23系発光素子の断面を示す。 この発光素子 30 1は、 3— Ga203単結晶からなる n型導電性を示す n型基板 30 2と、 この n型基板 302の上面に形成され Ga203単結晶からなる p型導電性 を示す P型層 303と、 この p型層 303の上面に形成される透明電極 304と、 透 明電極 304の一部に形成されるボンディング電極 306と、 n型基板 302の下面 の全面に形成される n電極 305とを備える。 ボンディング電極 306は、 例えば、 P tから形成され、 n電極 305は、 例えば、 Auから形成され、 ボンディング電極 306は、 リード 308がボンディング 309によって接続される。 透明電極 304 は、 例えば、 AuZN iにより形成する。
次に、 この発光素子 301の製造方法について図面を参照して説明する。
第 18図は、 酸素濃度とキャリア濃度との関係を示す。 まず、 前述したように FZ 法により i8—Ga23単結晶を形成する。 第 18図に示すように、 i3— Ga23単結 晶の成長時に、 酸素濃度 1〜2 0 %の間で変化させることにより、 ]3— Ga23単結 晶のキヤリァ濃度を 1. 4 X 1 017〜 1 X 1 016/ c m3の間で制御することが可能で ある。 1〜2 OmmZhで単結晶化させ、 製造された ]3— G a23単結晶に切断等の 加工を施すことにより、 n型導電性を示す n型基板 30 2が製作される。 この n型基 板 3 0 2のキャリア濃度は、 1 X 1 017 cm3、 p型層 3 0 3のキャリア濃度は、 1 016/cm3である。
第 1 9図は、 本発明の第 1 2の実施の形態に係る発光素子を製造するための成膜装 置の概略構成を示す。 この成膜装置 3 20は、 PLD法によって成膜するものであり、 真空可能な空間部 36 0を有するチャンバ 3 2 1と、 チャンバ 32 1内に配置された ターゲット 3 2 3を保持するターゲット台 3 2 5と、 チャンバ 3 2 1の外部に設けら れ、 夕一ゲッ卜台 32 5を回転させる回転機構 3 30と、 チャンバ 3 2 1内に配置さ れ、 n型基板 3 0 2を保持するとともに、 n型基板 30 2を 1 50 0 °Cまで加熱可能 なヒ一夕を内蔵する基板保持部 3 2 7と、 チャンバ 32 1内にパイプ 32 1 aからラ ジカルを注入するラジカル注入部 3 28と、 パイプ 32 1 bを介して空間部 360を 排気して空間部 360を真空にする真空ポンプ (図示せず) を有する排気部 3 29と、 チャンバ 3 2 1の外部に設けられ、 夕ーゲット 3 23に励起ビ一ムとしてのレーザ光 342を照射するレーザ部 3 24とを備える。
ターゲット 3 23は、 例えば、 高純度の G aと Mgを含む合金、 Mgをドープした j3— Ga203結晶 (単結晶あるいは多結晶) 、 Mgをド一プした i3— Ga23焼結体 等を用いる。 合金以外の固体からなるものであっても、 ί夜状であってもよい。
レーザ部 3 24は、 Nd : Y AGレーザ、 Kr Fエキシマレ一ザまたは A r Fェキ シマレーザ等をレーザ源としてレーザ光 342をパルス状に照射するレーザ発振部 3 4 1と、 レーザ発振部 341から出射されたレーザ光 342を夕ーゲット 323上に 集光するレンズ 343、 344とを備える。
n型基板 3 0 2は、 /3— G a23系単結晶からなり、 ターゲット 323にレーザ光 342が照射されたときに、 夕一ゲット 3 2 3から放出された金属原子等の化学種 3 3 3が成膜できるように、 夕ーゲット 3 23と対向している。
ラジカル注入部 32 8は、 酸素ガス、 オゾンを含む酸素ガス、 純オゾンガス、 N2 Oガス、 N〇2ガス、 酸素ラジカルを含む酸素ガス、 酸素ラジカル等のうち 1または 2以上のガス、 すなわち成膜時にターゲット 3 2 3から放出された金属原子等の化学 種 3 3 3と結合するガスを空間部 3 6 0に注入するようになっている。
次に、 n型基板 3 0 2の表面に ]3— G a 23からなる p型層 3 0 3を形成する方法 について説明する。 n型基板 3 0 2上に p型層 3 0 3を成長させるには、 前述の成膜 装置 3 2 0を使用する。 すなわち、 ターゲット 3 2 3として、 例えば、 0 3と1^ か らなる合金の夕ーゲット 3 2 3をターゲット台 3 2 5に固定する。 n型基板 3 0 2を 基板保持部 3 2 7に保持する。 排気部 3 2 9の真空ポンプにより空間部 3 6 0中の空 気を排気し、 空間部 3 6 0内の真空度を、 例えば、 1 X 1 0— 9 t o r r程度にし、 そ の後、 例えば酸素ガスをラジカル注入部 3 2 8によって空間部 3 6 0に注入し 1 X 1 0— 7 t o r r程度の真空度にする。 基板保持部 3 2 7に設けたヒータに通電し、 n型 基板 3 0 2の温度を、 例えば、 3 0 0〜1 5 0 0 °Cに加熱する。 次いで、 酸素ラジカ ルをラジカル注入部 3 2 8によって空間部 3 6 0内に注入して真空度を 1 X 1 0— 6〜 1 X 1 0— 4 t o r rとする。 レーザ部 3 2 4からレ一ザ出力 1 0 0 mW、 繰り返し周 波数 1 0 H zで、 波長 2 6 6 n mのレーザ光 3 4 2を回転機構 3 3 0により回転する ターゲット 3 2 3に照射すると、 ターゲット 3 2 3を構成している G a原子、 M g原 子が励起され、 熱的 ·光化学的作用により、 ターゲット 3 2 3から放出される金属原 子、 金属イオン、 励起金属原子、 励起金属イオン等の化学種 3 3 3が雰囲気中の酸素 ラジカルと基板 3 0 2上で結合し、 /3— G a 203単結晶からなる p型層 3 0 3が形成 される。 この導電性は、 M gがァクセプ夕一として働くことによるものである。 その後、 適宜手段により、 P型層 3 0 3の表面に透明電極 3 0 4および透明電極 3 0 4の一部にボンディング電極 3 0 6を形成し、 n型基板 3 0 2の下面の全面に n電 極 3 0 5を形成する。 その後、 リード 3 0 8をボンディング 3 0 9によりボンディン グ電極 3 0 6に接続する。
この第 1 2の実施の形態によれば、 以下の効果が得られる。
(ィ) n型基板 3 0 2と p型層 3 0 3とを接合することにより、 P N接合の発光素子 を形成することができるため、 ιδ— G a 23系単結晶が有する広いバンドギャップに より短波長、 例えば、 2 6 0 n mのような短波長の発光が可能となる。 (口) n型基板 3 0 2および p型層 3 0 3は、 /3— G a 203を主体に構成されている ので、 バッファ層を不要にすることが可能となり、 結晶性の高い p型層を形成するこ とができる。
(ハ) n型基板 3 0 2は、 導電性を有するため、 上下から電極を取り出す垂直型の構 造をとることができるので、 層構成、 製造工程の簡素化を図ることができる。
(二) n型基板 3 0 2は、 発光領域で透過性が高いので、 光の取り出し効率を高くす ることができ、 2 6 0 nmのような短波長の紫外光を基板側からも取り出すことがで さる。
(ホ) n型基板 3 0 2や p型層 3 0 3に酸化物系;8— G a 23系単結晶を用いている ため、 高温の大気中でも安定に動作する発光素子を形成することができる。
(第 1 3の実施の形態)
第 2 0図は、 本発明の第 1 3の実施の形態に係る G a 203系発光素子の断面を示す。 この実施の形態に係る発光素子 3 0 1が、 第 1 2の実施の形態に係る発光素子 3 0 1 と異なるところは、 p型層 3 0 3と n型基板 3 0 2との間に、 3— G a 23単結晶か らなり、 n型基板 3 0 2とキヤリァ濃度が異なる n型導電性を示す n型層 3 0 7が形 成されていることである。
次に、 n型基板 3 0 2の表面に n型層 3 0 7を形成する場合について説明する。 こ の場合、 第 1 8図に示す成膜装置 3 2 0を使用して n型層 3 0 7を形成する。 このと き、 ターゲット 3 2 3は、 例えば、 高純度の G aと S nを含む合金、 または S nド一 プ /3 _ G a 203単結晶または S nドープ)3 _ G a 203結晶焼結体からなるものを用い る。
まず、 例えば、 G aと S nからなる合金のターゲット 3 2 3をターゲット台 3 2 5 に固定する。 n型基板 3 0 2を基板保持部 3 2 7に保持する。 排気部 3 2 9の真空ポ ンプにより空間部 3 6 0中の空気を排気し、 空間部 3 6 0内の真空度を、 例えば、 1 X 1 0 "9 t ο r r程度にし、 その後、 例えば酸素ガスをラジカル注入部 3 2 8によつ て空間部 3 6 0に注入し 1 X 1 0—7 1 o r r程度の真空度にする。 基板保持部 3 2 7 に設けたヒータに通電し、 n型基板 3 0 2の温度を、 例えば、 3 0 0〜1 5 0 0 °Cに 加熱する。 次いで、 酸素ラジカルをラジカル注入部 3 2 8によって空間部 3 6 0内に 注入して 1 X 1 0— 6〜1 X 1 0— 4 t 0 r r程度の真空度とする。 レーザ部 3 2 4から レーザ出力 1 0 0mW、 繰り返し周波数 1 0 Hzで、 波長 266 nmのレーザ光 34 2を回転機構 3 3 0により回転する夕ーゲット 3 2 3に照射すると、 夕一ゲット 3 2 3を構成している Ga原子、 S n原子が励起され、 熱的 ·光化学的作用により、 ター ゲット 3 2 3から放出される金属原子、 金属イオン、 励起金属原子、 励起金属イオン 等の化学種 3 3 3が雰囲気中の酸素ラジカルと n型基板 302上で結合し、 n型層 3 0 7が形成される。 このとき n型層 30 7のキャリア濃度は、 膜の成長中において酸 素ラジカル濃度を減少するなどの方法により、 n型基板 3 02のキャリア濃度よりも 低くなるように形成する。 例えば、 n型基板 3 0 2のキャリア濃度 2 X 1 018 "cm3、 n型層 3 0 7のキャリア濃度は、 1 017/cm3、 p型層 3 03のキャリア濃度は、 1 016/cm3である。
その後、 適宜手段により、 P型層 30 3の表面に透明電極 3 04を形成し、 透明電 極 304の一部にボンディング電極 306を、 n型基板 3 02の下面の全面に n電極 3 05を形成する。 その後、 リード 30 8をボンディング 30 9によりボンディング 電極 30 6に接続する。
この第 1 3の実施の形態によれば、 下記の効果が得られる。
(ィ) n型層 3 0 7のキャリア濃度を n型基板 302のキャリア濃度より低く形成す ることにより、 p型層 3 0 3の結晶性がよくなり、 第 1 2の実施の形態に比べて発光 効率が向上する。
(口) n型層 3 0 7と p型層 30 3とを接合することにより、 PN接合の発光素子を 形成することができるため、 β - G a203系単結晶が有する広いバンドギヤップによ り短波長、 例えば、 26 0 nmのような短波長の発光が可能となる。
(Λ) n型基板 3 0 2および n型層 30 7は、 /3— G a23を主体に構成されている ので、 バッファ層を不要にすることが可能となり、 結晶性の高い p型層 303を形成 することができる。
(二) n型基板 3 0 2は、 導電性を有するため、 上下から電極を取り出す垂直型の構 造をとることができるので、 層構成、 製造工程の簡素化を図ることができる。
(ホ) n型基板 3 0 2は、 発光領域で透過性が高いので、 光の取り出し効率を高くす ることができ、 26 0 nmのような短波長の紫外光を基板側からも取り出すことがで きる。 (へ) n型基板 302、 n型層 307や p型層 303に酸化物系) 3— Ga23系単結 晶を用いているため、 高温の大気中でも安定に動作する発光素子を形成することがで きる。
(第 14の実施の形態)
第 21図は、 本発明の第 14の実施の形態に係る G a 203系発光素子の断面を示す。 この発光素子 301は、 jS— Ga23単結晶からなる p型導電性を示す p型基板 31 2と、 この p型基板 31 2の上面に形成される /3— Ga23単結晶からなる n型導電 性を示す n型層 313と、 この n型層 313の上面に形成される透明電極 304と、 透明電極 304の一部に形成されるボンディング電極 306と、 p型基板 312の下 面の全面に形成される p電極 336とを備える。 ボンディング電極 306は、 リード 308がボンディング 309によって接続される。 p電極 336は、 例えば、 P t力、 ら形成され、 ボンディング電極 306は、 例えば、 Auから形成される。
次に、 この発光素子 301の製造方法について説明する。 まず、 FZ法により β — Ga23結晶を形成する。 原料として、 ドーパントとしての MgO (p型ド一パン ト源) を含む /3— Ga23とを均一に混合し、 混合物をゴム管に入れ 500 MP aで 冷間圧縮して棒状に成形する。 棒状に成形したものを大気中において 1500 で 1 0時間焼結して /3— Ga23系多結晶素材を得る。 Ga23種結晶を準備し、 成長雰 囲気が全圧 1〜 2気圧のもと、 N2および 02混合ガスを 50 OmlZmi nで流しな がら、 石英管中で;3— Ga203種結晶と /3— Ga23系多結晶素材とを接触させてそ の部位を加熱し、 Ga203種結晶と /3— Ga23系多結晶素材との接触部分で両 者を溶融する。 溶解した ]3— Ga23系多結晶素材を 3— Ga23種結晶とともに回 転速度 20 r pmで反対方向に回転させながら、 かつ 5mm_ hの引き下げ速度で成 長させると、 j3— Ga23種結晶上に透明な i3— Ga203系単結晶が生成する。 次に、 この /3—Ga203系単結晶に切断等の加工を施すことにより基板を作製する。 次に、 この基板を酸素雰囲気中において 950ででァニールすると、 p型導電性を示す p型 基板 3 12となる。 次いで、 n型層 313を、 第 13の実施の形態に示すように形成 し、 ボンディング電極 306、 p電極 336等を形成する。
この第 14の実施の形態の発光素子 301は、 p型基板 312と、 この p型基板 3 12の上面に形成する n型層 3 13とを接合することとしたため、 ボンディング電極 3 0 6の極性をマイナス、 p電極 3 3 6の極性をプラスとして電圧を印加すると、 p 型基板 3 1 2と n型層 3 1 3との接合部において、 p型基板 3 1 2内の正孔と n型層
3 1 3内の電子とが互いに接合部に向い、 それらが接合部付近で再結合するために、 接合部付近が発光する。
この第 1 4の実施の形態によれば、 下記の効果が得られる。
(ィ) P型基板 3 1 2と n型層 3 1 3とを接合することにより、 P N接合の発光素子 を形成することができるため、 ]3— G a 203系単結晶が有する広いバンドギャップに より短波長、 例えば、 2 6 0 n mのような短波長の発光が可能となる。
(口) p型基板 3 1 2および n型層 3 1 3は、 /3— G a 203を主体に構成されている ので、 バッファ層を不要にすることが可能となり、 結晶性の高い n型層 3 1 3を形成 することができる。
(ハ) P型基板 3 1 2は、 導電性を有するため、 上下から電極を取り出す垂直型の構 造をとることができるので、 層構成、 製造工程の簡素化を図ることができる。
(二) P型基板 3 1 2は、 発光領域で透過性が高いので、 光の取り出し効率を高くく することができ、 2 6 0 n mのような短波長の紫外光を基板側からも取り出すことが できる。
(ホ) p型基板 3 1 2や n型層 3 1 3に酸化物系 — G a 23系単結晶を用いている ため、 高温の大気中でも安定に動作する発光素子を形成することができる。
(第 1 5の実施の形態)
第 2 2図は、 本発明の第 1 5の実施の形態に係る G a 23系発光素子の断面を示す。 この実施の形態に係る発光素子 3 0 1が、 第 1 4の実施の形態に係る発光素子 3 0 1 と異なるところは、 n型層 3 1 3と p型基板 3 1 2との間に、 /3— G a 23単結晶か らなる p型導電性を示す p型層 3 0 3が形成されていることである。 この p型層 3 0 3は、 前記の導電率制御を行い、 p型基板 3 1 2のキャリア濃度よりも低く形成され ている。
この発光素子 3 0 1は、 第 1 4の実施の形態のようにして p型基板 3 1 2を形成し、 その 型基板 3 1 2上に第 1 2の実施の形態のようにして p型層 3 0 3を形成し、 そ の p型層 3 0 3の上に第 1 3の実施の形態のようにして n型層 3 1 3を形成する。 この第 1 5の実施の形態によれば、 以下の効果が得られる。 (ィ) p型層 3 0 3のキャリア濃度を p型基板 3 1 2のキャリア濃度より低く形成し ているので、 発光効率の低下を防止することができる。
(口) n型層 3 1 3と p型層 3 0 3とを接合することにより、 P N接合の発光素子を 形成することができるため、 /3— G a 23系単結晶が有する広いバンドギャップによ り短波長、 例えば、 2 6 0 n mのような短波長の発光が可能となる。
(ハ) p型基板 3 1 2および p型層 3 0 3は、 j8— G a 23を主体に構成されている ので、 バッファ層を不要にすることが可能となり、 結晶性の高い n型層 3 1 3を形成 することができる。
(二) p型基板 3 1 2は、 導電性を有するため、 上下から電極を取り出す垂直型の構 造をとることができるので、 層構成、 製造工程の簡素化を図ることができる。
(ホ) p型基板 3 1 2は、 発光領域で透過性が高いので、 光の取り出し効率を高くす ることができ、 2 6 0 n mのような短波長の紫外光を基板側からも取り出すことがで さる。
(へ) p型基板 3 1 2や n型層 3 1 3に酸化物系 /3— G a 203系単結晶を用いている ため、 高温の大気中でも安定に動作する発光素子を形成することができる。
(第 1 6の実施の形態)
第 2 3図は、 本発明の第 1 6の実施に形態に係る /3— G a 23系発光素子の断面を 示す。 この発光素子 3 0 1は、 /3— G a 23単結晶からなる絶縁型基板 3 1 6と、 こ の絶縁型基板 3 1 6の下面に形成される )3— G a 203単結晶からなる n型導電性を示 す n型層 3 1 7と、 この n型層 3 1 7の一部の下面に形成される j3— G a 23単結晶 からなる P型導電性を示す P型層 3 1 8と、 この p型層 3 1 8上に形成される p電極 3 3 6と、 n型層 3 1 7上に形成される n電極 3 3 7とを備える。 p電極 3 3 6は、 例えば、 P tから形成され、 n電極 3 3 7は、 例えば、 A u等から形成される。 p電 極 3 3 6および n電極 3 3 7は、 それぞれ半田ポール 3 6 3、 3 6 4を介してプリン ト基板 3 6 5上のプリントパ夕一ン 3 6 6と接触される。
この発光素子 3 0 1は、 n型層 3 1 7と p型層 3 1 8とが接合された p n接合部で 発光するが、 発光した光は、 絶縁型基板 3 1 6を透過して出射光 3 7 0として上方に 出射する。 次に、 この発光素子 30 1の製造方法について説明する。 絶縁型基板 3 1 6は、 以 下のようにして得られる。 F Z法によって第 1 2の実施に形態のようにして得られた n型導電性を示す /3— Ga23からなる基板を、 大気中で温度 9 50 の雰囲気でァ ニールすることにより、 酸素欠陥を減少させることができ、 絶縁型基板 3 1 6が得ら れる。 この絶縁型基板 3 1 6上に第 14の実施の形態のようにして n型層 3 1 7を形 成し、 この n型層 3 1 7の一部をマスキングして第 1 2の実施の形態のように p型層 3 1 8を形成し、 マスキングを除去した後、 この p型層 3 1 8上に p電極 336を、 n型層 3 1 7の一部の上に n電極 3 3 7をそれぞれ形成する。
この第 1 6の実施の形態によれば、 以下の効果が得られる。
(ィ) n型層 3 1 7と p型層 3 1 8とを接合することにより、 PN接合の発光素子を 形成することができるため、 β一 G a 203系単結晶が有する広いパンドギヤップによ り短波長、 例えば、 2 60 nmのような短波長の発光が可能となる。
(口) プリン卜基板やリードフレームとの接続方法が、 フリップチップ ·ポンディン グが可能となるので、 発光領域からの発熱を効率よくプリント基板や、 リードフレー ムに逃がすことができる。
ひ、) 絶縁型基板 3 1 6および n型層 3 1 7は、 /3— G a23を主体に構成されてい るので、 バッファ層を不要にすることが可能となり、 結晶性の高い n型層 3 1 7を形 成することができる。
(二) 絶縁型基板 3 1 6は、 発光領域で透過性が高いので、 光の取り出し効率を高く することができ、 2 6 O nmのような短波長の紫外光を基板側からも取り出すことが でさる。
(ホ) 絶縁型基板 3 1 6や n型層 3 1 7、 p型層 3 1 8に酸化物系 /3— Ga203系単 結晶を用いているため、 高温の大気中でも安定に動作する発光素子を形成することが できる。
(第 1 7の実施の形態)
第 24図は、 本発明の第 1 7の実施の形態に係る i3— Ga203系発光素子の断面を 示す。 この発光素子 3 0 1は'、 Ga203単結晶からなる n型導電性を示す n型 /3 一 Ga23基板 3 50と、 この n型 /3— Ga203基板 3 50の上に形成される n型導 電性を示す n型 ]3— A 1 G a^Oaクラッド層 3 5 1と、 この n型 j3— A l MGa 063クラッド層 351の上に形成され、 jS—Ga203からなる /3— Ga23活性層 3 52と、 ]3— Ga23活性層 352の上部に形成される p型導電性を示す p型;3— A 1 GaM03クラッド層 353と、 p型 j3— A 1 uGa。.63クラッド層 353の上 面に形成される )3— Ga203単結晶からなる p型導電性を示す p型 /3— Ga203コン タクト層 354と、 この p型 j8— Ga23コンタクト層 354の上面に形成される透 明電極 304と、 透明電極 304の一部の上に形成されるボンディング電極 306と、 n型 0— Ga23基板 350の下面の全面に形成される n電極 337とを備える。 ポ ンデイング電極 306は、 例えば P tから形成され、 n電極 337は、 例えば、 Au から形成される。
この発光素子 301は、 ボンディング電極 306を介してボンディング 309によ りリード 308を取り付け、 金属べ一スト 381を介してプリント基板 380に搭載 される。
P型 β—Α 1
Figure imgf000035_0001
クラッド層 353のキャリア濃度は、 前述の p型導電性 を示す薄膜の導電率制御方法により P型 j3_Ga23コンタクト層 354のキャリア 濃度より低く形成する。 また、 同様に、 n型 /3— A l uGa Oaクラッド層 351 のキャリア濃度は、 n型 ]3— Ga23基板 350のキャリア濃度より低く形成する。
]3— Ga2Os活性層 352は、 n型 /3— A 1 "Ga Osクラッド層 351および ρ β-Α Ι GauC^クラッド層 353によりサンドイッチ状に挟まれたダブル ヘテロ接合とされており、 各クラッド層 351、 353のバンドギャップよりも小さ なバンドギャップを有する j3—Ga203で形成する。
発光光 37 1は、 プリント基板 380により反射して上方から出射する。
第 25図は、 ]3—Α 1 Ga^O^ i3—G a203および j3— G a I n〇3の格子定 数率とパンドギャップとの関係を示す。 A 1の濃度を高めるとバンドギャップが大き くなるとともに、 格子定数率が小さくなり、 I nの濃度を高めると、 バンドギャップ が小さくなるとともに、 格子定数率が大きくなることがわかる。 ;3— Ga23につい ては、 b軸く 010>方位、 および c軸〈001〉方位について第 25図のように示され、 a軸く 100>方位についても、 同様な傾向が現れる。
この第 17の実施の形態によれば、 以下の効果が得られる。 (ィ) 活性層 352を形成する i3— Ga203系単結晶が有する広いバンドギャップに より短波長、 例えば、 260 nmのような短波長の発光が可能となる。 また、 A 1を 添加することによりさらに短波長の発光が可能となる。
(口) ダブルへテロ接合を有するため、 キャリアとなる電子と正孔とが ;8— Ga23 活性層 352に閉じこめられて再結合する確率が高くなるので、 発光効率が大幅に上 昇させることができる。
ひ、) n型 /3— Ga23基板 350および各層 35 1〜354は、 /3— Ga23を主 体に構成されているので、 バッファ層を不要にすることが可能となり、 結晶性の高い P型層を形成することができる。
(二) n型 j3_Ga203基板 350は、 導電性を有するため、 上下から電極を取り出 す垂直型の構造をとることができるので、 層構成、 製造工程の簡素化を図ることがで きる。
(ホ) n型 3— Ga23基板 350は、 発光領域で透過性が高いので、 光の取り出し 効率を高くすることができ、 260 nmのような短波長の紫外光を基板側からも取り 出すことができる。
(へ) n型 ]3_Ga203基板 350および各層 351〜354に酸化物系 /3— Ga2 o3系単結晶を用いているため、 高温の大気中でも安定に動作する発光素子を形成す ることができる。
(ト) 発光光は、 透明電極 304を透過して上方に出射する出射光 370として外部 に射出する他、 n型 j3—Ga203基板 350の下面の方に向う発光光 371は、 例え ば、 n電極 337あるいは金属べ一スト 381により反射させられて上方に出射する ため、 発光光 37 1が直接外部に出射するのと比べて、 発光強度が増大する。
なお、 )3—Ga23活性層 352は、 /3— G a I n〇3により形成してもよい。 こ の時クラッド層として ]3— Ga203で形成しても良い。 また活性層 352として、 発 光効率を高めることができる量子井戸構造のものであってもよい。
(第 18の実施の形態)
第 26図は、 本発明の第 18の実施の形態に係る /3— Ga23系発光素子の断面を 示す。 この発光素子 30 1は、 ]3— Ga23単結晶からなる絶縁型 /3— Ga2p3基板 355と、 この絶縁型 — Ga23基板 355の上面に形成される /3— Ga23単結 晶からなる n型導電性を示す n型 Ga23コンタクト層 3 5 6と、 この n型 j8—Ga 203コンタクト層 3 56の一部の上面に形成される n型 β—Α 1 UG aQ.63クラッ ド層 3 5 1と、 この n型 j8—A 1 uGafl.63クラッド層 3 5 1の上に形成され、 β 一 Ga23からなる i3— Ga23活性層 3 52と、 j3— Ga23活性層 3 5 2の上に 形成される p型導電性を示す P型 i3— A l ^Ga Osクラッド層 3 5 3と、 p型 β -A 114Ga 63クラッド層 3 5 3の上に形成される G a23単結晶からなる ρ型導 電性を示す Ρ型 j3— Ga23コン夕クト層 3 54と、 p型 — Ga203コンタクト層 3 54に形成される透明電極 3 04と、 透明電極 3 04の一部に形成されるボンディ ング電極 306と、 n型 j8—Ga23コンタクト層 3 56の上に形成される n電極 3 3 7とを備える。 ボンディング電極 3 06は、 例えば、 P tから形成され、 リード 3 0 8がボンディング 3 0 9によって接続され、 n電極 33 7は、 例えば、 Auから形 成され、 リード 3 58がボンディング 3 5 9によって接続される。 p型 ]3— A l ,.4 GaQ.603クラッド層 3 5 3のキャリア濃度を p型 /3— G a203コンタクト層 3 54 のキャリア濃度より低く形成し、 n型 j8— A 1 Ga^Osクラッド層 3 5 1のキヤ リア濃度を n型 /3— Ga203コンタクト層 3 56のキャリア濃度より低く形成する。 この発光素子 30 1は、 プリント基板 3 8 0に搭載される。
一 Ga23活性層 3 5 2は、 第 1 7の実施の形態と同様に n型 β—Α 1 Ga0.63クラッド層 3 5 1および p型 i3— A 114Ga。.603クラッド層 3 5 3によりサンド イッチ状に挟まれたダブルへテロ接合とされており、 各クラッド層 3 5 1、 3 53の バンドギャップよりも小さなバンドギャップを有する /3_Ga203で形成される。 発光光 3 7 1は、 プリント基板 3 80により反射して上方から出射する。
この第 1 8の実施の形態によれば、 以下の効果が得られる。
(ィ) 活性層 3 5 2を形成する /3— Ga23系単結晶が有する広いバンドギャップに より短波長、 例えば、 26 0 nmのような短波長の発光が可能となる。 また、 A 1を 添加することによりさらに短波長の発光が可能となる。
(口) ダブルへテロ接合を有するため、 キャリアとなる電子と正孔とが /3— Ga203 活性層 3 52に閉じこめられて再結合する確率が高くなるので、 発光効率が大幅に上 昇する。 (ハ) 絶縁型 jS— Ga23基板 3 5 5および n型 jS—A 1 L4G a0.6O3クラッド層 3 5 1は、 /3—Ga203を主体に構成されているので、 バッファ層を不要にすることが 可能となり、 結晶性の高い n型層を形成することができる。
(二) 絶縁型 0— Ga23基板 3 5 5が、 発光領域で透過性が高いので、 光の取り出 し効率を高くすることができる。
(ホ) 絶縁型 /3— Ga23基板 3 5 5や各層 3 5 1、 3 5 3、 3 5 2、 3 56に酸化 物系 ^ _Ga203系単結晶を用いているため、 高温の大気中でも安定に動作する発光 素子を形成することができる。
(へ) 発光光は、 透明電極 304を透過して上方に出射する出射光 3 70として外部 に射出する他、 n型 3— Ga203基板 3 5 0の下面の方に向う発光光 37 1は、 例え ば、 プリント基板 3 80により反射させられて上方に出射するため、 発光光 3 7 1が 直接外部に出射するのと比べて、 発光強度が増大する。
なお、 第 1 2〜1 8の実施の形態において、 発光素子 3 0 1にバッファ層を設けて もよい。 バッファ層は、 n型基板 3 0 2と p型層 30 3との間 (第 1 2の実施の形態、 第 1 7図) 、 n型基板 3 0 2と n型層 3 0 7との間 (第 1 3の実施の形態、 第 2 0 図) 、 P型基板 3 1 2と n型層 3 1 3との間 (第 14の実施の形態、 第 2 1図) 、 p 型基板 3 1 2と p型層 3 0 3との間 (第 1 5の実施の形態、 第 22図) 、 絶縁型基板 3 1 6と n型層 3 1 7との間 (第 1 6の実施の形態、 第 2 3図) 、 n型 /3— Ga2〇 型基板 3 5 0と n型 /3— A 1 ,.4G a。.63クラッド層 3 5 1との間 (第 1 7の実施の 形態、 第 24図) 、 絶縁型 i3— Ga23基板 3 5 5と n型 /3—Ga23コンタクト層 3 5 6の間 (第 1 8の実施の形態、 第 2 6図) に形成する。
また、 励起ビームとしては、 レーザ光以外に金属ターゲットに照射して金属原子等 の化学種を遊離させることができるものならば、 電子ビーム、 イオンビーム等でもよ い。
また、 |8— Ga23は、 他のタイプの Ga23であってもよい。
また、 第 1 2〜1 8の実施の形態は、 発光素子について説明してきたが、 入射光を 電気信号に変換するフォ卜センサにも適用することができる。 産業上の利用の可能性 以上説明したように、 本発明によれば、 FZ法により i8_Ga23系種結晶から所 定の方位に 0— Ga23系単結晶を成長させて、 クラッキング、 双晶化傾向が減少し、 結晶性が高くなり、 加工性のよい ]3— Ga203系単結晶を得る。
また、 /3— Ga23系単結晶を基板上に成長させて基板上に /3— Ga23系単結晶 の薄膜を形成する。
さらに、 一 G a 203系単結晶の薄膜を組み合わせることにより P N接合の発光素 子を形成することができるので、 Ga23系単結晶が有するバンドギャップにより紫 外領域の発光が可能となり、 水銀フリ一の蛍光灯、 クリーンな環境を提供する光触媒、 より高密度記録を実現する新世代 DVD等に使用することができる。

Claims

請求の範囲
1. /3— Ga23系種結晶を準備し、
前記 ]3— Ga203系種結晶から所定の方位に 3—Ga23系単結晶を成長させるこ とを特徴とする i3— Ga203系単結晶成長方法。
2. 前記所定の方位は、 &軸<1 0 0>方位であることを特徴とする請求の範囲 1に 記載の /3— Ga23系単結晶成長方法。
3. 前記所定の方位は、 b軸ぐ 0 1 0>方位であることを特徴とする請求の範囲 1に 記載の 0— Ga203系単結晶成長方法。
4. 前記所定の方位は、 c軸ぐ 00 1>方位であることを特徴とする請求の範囲 1に 記載の 0— Ga203系単結晶成長方法。
5. 前記 /3_Ga203系単結晶の成長は、 F Z法によることを特徴とする請求の範囲 1に記載の ]3— G a23系単結晶成長方法。
6. 前記 FZ法で用いる /3— Ga203系多結晶原料棒の直径は、 成長結晶の直径と等 しいかそれよりも大きいことを特徴とする請求の範囲 5に記載の j3— G a23系単結 晶成長方法。
7. 前記 F Z法は、 全圧が 1〜 2気圧で 02と不活性ガスの混合気体の雰囲気中で行 うことを特徴とする請求の範囲 5に記載の 0— G a203系単結晶成長方法。
8. 前記 /3—Ga203系種結晶は、 単結晶であることを特徴とする請求の範囲 1に記 載の /3— Ga203系単結晶成長方法。
9. 前記 3— Ga203系種結晶は、 所定の方位に成長したものであることを特徴とす る請求の範囲 1に記載の ]3— G a23系単結晶成長方法。
1 0. 前記所定の方位は、 a軸く 1 00>方位であることを特徴とする請求の範囲 9 に記載の i8_Ga23系単結晶成長方法。
1 1. 前記所定の方位は、 軸<0 1 0>方位であることを特徴とする請求の範囲 9 に記載の ]3— Ga23系単結晶成長方法。
1 2. 前記所定の方位は、 c軸く 0 0 1>方位であることを特徴とする請求の範囲 9 に記載の;3— Ga203系単結晶成長方法。
1 3. 前記 i3-Ga203系種結晶は、 成長結晶の 5分の 1以下の径を有し、 前記 0— Ga203系単結晶の成長の際に破損しない強度を有することを特徴とする請求の範囲 1に記載の 3— G a23系単結晶成長方法。
1 4. 前記)3— Ga23系種結晶は、 5 mm2以下の断面積を有し、 前記 一 Ga23系単結晶の成長の際に破損しない強度を有することを特徴とする請求の範囲 1に記 載の /3— Ga203系単結晶成長方法。
1 5. 前記 3— Ga203系種結晶は、 3—Ga23と同じ単斜晶系、 空間群が C 2, mに属する j3—Ga23固溶体を含むことを特徴とする請求の範囲 1に記載の β— Ga23系単結晶成長方法。
1 6. 前記 /3— Ga203系成長結晶は、 j3— Ga23と同じ単斜晶系、 空間群が C 2 Zmに属する ]3— Ga23固溶体を含むことを特徴とする請求の範囲 1に記載の β 一 G a 203系単結晶成長方法。
1 7. 前記 /3— Ga23固溶体は、 ガリウム、 インジウム、 アルミニウム、 錫、 ゲル マニウム、 ニッケル、 銅、 亜鉛、 ジルコニウム、 ニオブ、 モリブデン、 チタン、 バナ ジゥム、 クロム、 マンガン、 鉄、 コバルト、 ハフニウム、 タンタル、 タングステン、 ケィ素およびマグネシウムからなる群から選択される 1または 2以上の元素の酸ィ匕物 を含むことを特徴とする請求の範囲 1 5または 1 6に記載の /3— G a 23系単結晶成 長方法。
1 8 . 基板を準備し、
所定の雰囲気中で純金属あるいは合金からなる金属ターゲッ卜に励起ビームを照射 し、 これにより金属ターゲットから放出された原子、 分子、 イオン等の化学種と前記 所定の雰囲気に含まれる原子とを結合させて前記基板上に薄膜を成長させることを特 徴とする薄膜単結晶の成長方法。
1 9 . 前記所定の雰囲気は、 注入したラジカルを含むことを特徴とする請求の範囲 1 8に記載の薄膜単結晶の成長方法。
2 0 . 前記所定の雰囲気は、 真空度 1〜1 X 1 0—1Q t 0 r rであることを特徴とする 請求の範囲 1 8に記載の薄膜単結晶の成長方法。
2 1 . 前記金属ターゲットは、 前記金属ターゲットを構成する前記純金属あるいは前 記合金を含む液状であることを特徴とする請求の範囲 1 8に記載の薄膜単結晶の成長 方法。 .
2 2 . 前記励起ビームは、 レーザ光であることを特徴とする請求の範囲 1 8に記載の 薄膜単結晶の成長方法。
2 3 . 前記基板は、 3 0 0で〜 1 5 0 0でに加熱することを特徴とする請求の範囲 1 8に記載の薄膜単結晶の成長方法。
2 4 . /3— G a 23系単結晶からなる基板を準備し、
酸素ガス、 オゾンを含む酸素ガス、 純オゾンガス、 N20ガス、 N〇2ガス、 酸素ラ ジカルを含む酸素ガス、 および酸素ラジカルのうち 1または 2以上のガスからなる雰 囲気中で G aあるいは G aを含む合金からなる金属夕ーゲットに励起ビームを照射し、 これにより金属ターゲットから放出された原子、 分子、 イオン等の化学種と前記ガス とを結合させて前記基板上に j8— Ga23系からなる薄膜単結晶を成長させることを 特徴とする薄膜単結晶の成長方法。
25. 前記 j3— Ga23系からなる薄膜単結晶の成長は、 3— Ga23系の薄膜結晶 からなるバッファ層を形成し、 前記バッファ層上に成長させることを特徴とする請求 の範囲 24に記載の薄膜単結晶の成長方法。
26. 0— Ga23系単結晶からなる基板を準備し、
酸素ガス、 オゾンを含む酸素ガス、 純オゾンガス、 N20ガス、 N02ガス、 酸素ラ ジカルを含む酸素ガス、 および酸素ラジカルのうち 1または 2以上のガスからなる雰 囲気中で Znあるいは Z nを含む合金からなる金属夕ーゲットに励起ビームを照射し、 これにより金属ターゲットから放出された原子、 分子、 イオン等の化学種と前記ガス とを結合させ、 前記基板上に Zn〇系からなる単結晶を成長させることを特徴とする 薄膜単結晶の成長方法。
27. 前記 Z ηθ系からなる薄膜単結晶の成長は、 ZnO系の薄膜結晶からなるバッ ファ層を形成し、 前記バッファ層上に成長させることを特徴とする請求の範囲 26に 記載の薄膜単結晶の成長方法。
28. j3—Ga23系単結晶からなる基板を準備し、
窒素ラジカル、 NH3ガス、 および窒素ラジカルを含む NH3ガスのうち 1または 2 以上のガスからなる雰囲気中で G aあるいは G aを含む合金からなる金属夕ーゲット に励起ビームを照射し、 これにより金属ターゲットから放出された原子、 分子、 ィォ ン等の化学種と前記ガスとを結合させて上記基板上に G a N系からなる薄膜単結晶を 成長させることを特徴とする薄膜単結晶の成長方法。
29. 前記 G a N系からなる薄膜単結晶の成長は、 GaN系の薄膜結晶からなるバッ ファ層を形成し、 前記バッファ層上に成長させることを特徴とする請求の範囲 2 8に 記載の薄膜単結晶の成長方法。
30'. 前記基板の準備は、 FZ法により形成することを特徴とする請求の範囲 24、 26または 28のいずれかに記載の薄膜単結晶の成長方法。
3 1. Ga23系単結晶からなる n型導電性を示す第 1の層と、
前記第 1の層上に形成された G a23系単結晶からなる p型導電性を示す第 2の層 とを備えることを特徴とする Ga203系発光素子。
32. 前記第 1の層および第 2の層は、 これらの間に活性層を備えることを特徴とす る請求の範囲 3 1に記載の Ga23系発光素子。
33. 前記第 1の層および第 2の層は、 一方が基板、 他方が前記基板上に成長させる 薄膜であることを特徴とする請求の範囲 3 1に記載の Ga23系発光素子。
34. 前記基板は、 前記薄膜を成長させる表面が、 (1 0 0) 面となっていることを 特徴とする請求の範囲 3 3に記載の Ga23系発光素子。
35. 前記基板は、 前記薄膜を成長させる表面が、 (0 0 1) 面となっていることを 特徴とする請求の範囲 3 3に記載の Ga23系発光素子。
36. 前記基板は、 前記薄膜を成長させる表面が、 (0 1 0) 面となっていることを 特徴とする請求の範囲 3 3に記載の G a23系発光素子。
37. 前記基板は、 前記薄膜を成長させる表面が、 (1 0 1) 面となっていることを 特徴とする請求の範囲 3 3に記載の Ga203系発光素子。
3 8. 前記第 1の層は、 基板または薄膜であり、
前記基板または薄膜は、 前記 G a23系単結晶中の酸素欠陥により n型導電性を示 すことを特徴とする請求の範囲 3 1に記載の G a 203系発光素子。
39. 前記第 1の層は、 基板または薄膜であり、
前記基板または前記薄膜に n型ドーパントを添加することにより n型導電性を示す ことを特徴とする請求の範囲 3 1に記載の G a203系発光素子。
40. 前記第 2の層は、 基板または薄膜であり、
前記基板または薄膜は、 前記 Ga203系単結晶中の Ga欠陥により p型導電性を示 すことを特徴とする請求の範囲 3 1に記載の G a 203系発光素子。
41. 前記第 2の層は、 基板または薄膜であり、
前記基板または前記薄膜に P型ドーパン卜を添加することにより p型導電性を示す ことを特徴とする請求の範囲 3 1に記載の Ga23系発光素子。
42. G a 203系単結晶からなる n型導電性を示す基板と、
前記基板上に形成された G a 23系単結晶からなる p型導電性を示す薄膜とを備え ることを特徴とする G a 203系発光素子。
43. 前記基板と前記 p型導電性を示す薄膜との間に、 Ga23系単結晶からなり、 前記基板とキヤリァ濃度が異なる n型導電性を示す薄膜が形成されていることを特徴 とする請求の範囲 42に記載の G a 23系発光素子。
44. 前記基板と前記 n型導電性を示す薄膜との間に、 Ga23系単結晶からなるバ ッファ層が形成されていることを特徴とする請求の範囲 43に記載の Ga203系発光 素子。
45. Ga23系単結晶からなる p型導電性を示す基板と、 前記基板上に形成された G a 23系単結晶からなる n型導電性を示す薄膜とを備え ' ることを特徴とする G a 203系発光素子。
46. 前記基板と前記 n型導電性を示す薄膜との間に、 Ga23系単結晶からなり、 前記基板とキヤリァ濃度が異なる P型導電性を示す薄膜が形成されていることを特徴 とする請求の範囲 45に記載の G a 203系発光素子。
47. 前記基板と前記 p型導電性を示す薄膜との間に、 Ga23系単結晶からなるバ ッファ層が形成されていることを特徴とする請求の範囲 46に記載の Ga203系発光 素子。
48. Ga23系単結晶からなる n型導電性を示す基板を形成し、
前記基板をァニールすることによって絶縁基板を形成し、
前記絶縁基板上に、 n型ドーパントを添加することによって n型導電性を示す薄膜 を形成し、
さらにその上に、 p型ド一パン卜を添加することによってお型導電性を示す薄膜を 形成することを特徴とする発光素子の製造方法。
PCT/JP2004/001653 2003-02-24 2004-02-16 β‐Ga2O3系単結晶成長方法、薄膜単結晶の成長方法、Ga2O3系発光素子およびその製造方法 WO2004074556A2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AT04711454T ATE525498T1 (de) 2003-02-24 2004-02-16 Verfahren zum ziehen von beta-ga2o3 einkristallen
US10/546,484 US7393411B2 (en) 2003-02-24 2004-02-16 β-Ga2O3 single crystal growing method, thin-film single crystal growing method, Ga2O3 light-emitting device, and its manufacturing method
CA002517024A CA2517024C (en) 2003-02-24 2004-02-16 .beta.-ga2o3 single crystal growing method, thin-film single crystal growing method, ga2o3 light-emitting device, and its manufacturing method
EP04711454A EP1598450B1 (en) 2003-02-24 2004-02-16 Beta-Ga2O3 SINGLE CRYSTAL GROWING METHOD

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003046552A JP4630986B2 (ja) 2003-02-24 2003-02-24 β−Ga2O3系単結晶成長方法
JP2003-046552 2003-02-24
JP2003-066020 2003-03-12
JP2003066020A JP4565062B2 (ja) 2003-03-12 2003-03-12 薄膜単結晶の成長方法
JP2003-137916 2003-05-15
JP2003137916A JP4020314B2 (ja) 2003-05-15 2003-05-15 Ga2O3系発光素子およびその製造方法

Publications (2)

Publication Number Publication Date
WO2004074556A2 true WO2004074556A2 (ja) 2004-09-02
WO2004074556A3 WO2004074556A3 (ja) 2004-11-11

Family

ID=32912842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001653 WO2004074556A2 (ja) 2003-02-24 2004-02-16 β‐Ga2O3系単結晶成長方法、薄膜単結晶の成長方法、Ga2O3系発光素子およびその製造方法

Country Status (8)

Country Link
US (4) US7393411B2 (ja)
EP (3) EP2267194B1 (ja)
KR (1) KR100787272B1 (ja)
AT (1) ATE525498T1 (ja)
CA (1) CA2517024C (ja)
RU (1) RU2313623C2 (ja)
TW (3) TWI370804B (ja)
WO (1) WO2004074556A2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6977397B2 (en) 2002-05-31 2005-12-20 Koha Co., Ltd. Light emitting element and method of making same
WO2006038567A1 (ja) * 2004-10-01 2006-04-13 Waseda University p型Ga2O3膜の製造方法およびpn接合型Ga2O3膜の製造方法
JP2011061225A (ja) * 2010-11-01 2011-03-24 Waseda Univ pn型Ga2O3膜の製造方法
CN110911270A (zh) * 2019-12-11 2020-03-24 吉林大学 一种高质量氧化镓薄膜及其同质外延生长方法
US11462400B1 (en) 2021-11-10 2022-10-04 Silanna UV Technologies Pte Ltd Ultrawide bandgap semiconductor devices including magnesium germanium oxides
US11522103B1 (en) 2021-11-10 2022-12-06 Silanna UV Technologies Pte Ltd Epitaxial oxide materials, structures, and devices
US11621329B1 (en) 2021-11-10 2023-04-04 Silanna UV Technologies Pte Ltd Epitaxial oxide materials, structures, and devices
US11629401B1 (en) 2021-10-27 2023-04-18 Silanna UV Technologies Pte Ltd Method for heating a wide bandgap substrate by providing a resistive heating element which emits radiative heat in a mid-infrared band

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7393411B2 (en) * 2003-02-24 2008-07-01 Waseda University β-Ga2O3 single crystal growing method, thin-film single crystal growing method, Ga2O3 light-emitting device, and its manufacturing method
JP2005235961A (ja) * 2004-02-18 2005-09-02 Univ Waseda Ga2O3系単結晶の導電率制御方法
US7829444B2 (en) * 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
JP5003013B2 (ja) * 2006-04-25 2012-08-15 株式会社日立製作所 シリコン発光ダイオード、シリコン光トランジスタ、シリコンレーザー及びそれらの製造方法。
JP5529420B2 (ja) * 2009-02-09 2014-06-25 住友電気工業株式会社 エピタキシャルウエハ、窒化ガリウム系半導体デバイスを作製する方法、窒化ガリウム系半導体デバイス、及び酸化ガリウムウエハ
US8529802B2 (en) * 2009-02-13 2013-09-10 Samsung Electronics Co., Ltd. Solution composition and method of forming thin film and method of manufacturing thin film transistor using the solution composition
KR101664958B1 (ko) * 2009-04-09 2016-10-12 삼성전자주식회사 산화물 박막 형성용 용액 조성물 및 상기 산화물 박막을 포함하는 전자 소자
US8319300B2 (en) 2009-04-09 2012-11-27 Samsung Electronics Co., Ltd. Solution composition for forming oxide thin film and electronic device including the oxide thin film
WO2011074407A1 (en) 2009-12-18 2011-06-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR100969127B1 (ko) * 2010-02-18 2010-07-09 엘지이노텍 주식회사 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지
US9187815B2 (en) * 2010-03-12 2015-11-17 United Technologies Corporation Thermal stabilization of coating material vapor stream
KR102001261B1 (ko) * 2010-12-20 2019-07-17 토소가부시키가이샤 질화갈륨 소결체 또는 질화갈륨 성형물 및 그들의 제조방법
USD649134S1 (en) 2010-12-28 2011-11-22 Samsung Electronics Co., Ltd. Portable telephone
USD647870S1 (en) 2010-12-28 2011-11-01 Samsung Electronics Co., Ltd. Portable telephone
USD672327S1 (en) 2010-12-28 2012-12-11 Samsung Electronics Co., Ltd. Portable telephone
US9437689B2 (en) * 2011-09-08 2016-09-06 Tamura Corporation Ga2O3 semiconductor element
WO2013035465A1 (ja) * 2011-09-08 2013-03-14 株式会社タムラ製作所 Ga2O3系単結晶体のドナー濃度制御方法
CN103781948B (zh) * 2011-09-08 2017-11-17 株式会社田村制作所 晶体层叠结构体及其制造方法
US9142623B2 (en) 2011-09-08 2015-09-22 Tamura Corporation Substrate for epitaxial growth, and crystal laminate structure
US9461124B2 (en) * 2011-09-08 2016-10-04 Tamura Corporation Ga2O3 semiconductor element
JP2013102081A (ja) 2011-11-09 2013-05-23 Tamura Seisakusho Co Ltd ショットキーバリアダイオード
JP5491483B2 (ja) * 2011-11-15 2014-05-14 株式会社タムラ製作所 β−Ga2O3系単結晶の成長方法
JP6082700B2 (ja) 2011-11-29 2017-02-15 株式会社タムラ製作所 Ga2O3系結晶膜の製造方法
JP5756075B2 (ja) * 2012-11-07 2015-07-29 株式会社タムラ製作所 β−Ga2O3系単結晶の育成方法
JP5536920B1 (ja) * 2013-03-04 2014-07-02 株式会社タムラ製作所 Ga2O3系単結晶基板、及びその製造方法
JP5788925B2 (ja) 2013-04-04 2015-10-07 株式会社タムラ製作所 β−Ga2O3系単結晶の成長方法
JP5984069B2 (ja) * 2013-09-30 2016-09-06 株式会社タムラ製作所 β−Ga2O3系単結晶膜の成長方法、及び結晶積層構造体
JP5892495B2 (ja) * 2013-12-24 2016-03-23 株式会社タムラ製作所 Ga2O3系結晶膜の成膜方法、及び結晶積層構造体
JP6013383B2 (ja) * 2014-02-28 2016-10-25 株式会社タムラ製作所 β−Ga2O3系単結晶基板の製造方法
TWI550909B (zh) 2014-03-21 2016-09-21 A flip chip type light emitting diode and a method for manufacturing the same, and a flip chip type structure thereof
JP5907465B2 (ja) * 2014-08-29 2016-04-26 株式会社タムラ製作所 半導体素子及び結晶積層構造体
EP3042986A1 (en) 2015-01-09 2016-07-13 Forschungsverbund Berlin e.V. Method for growing beta phase of gallium oxide (ß-Ga2O3) single crystals from the melt contained within a metal crucible by controlling the partial pressure of oxygen.
JP6726910B2 (ja) * 2016-04-21 2020-07-22 国立大学法人信州大学 酸化ガリウム結晶の製造装置および酸化ガリウム結晶の製造方法
US10593544B2 (en) * 2016-10-14 2020-03-17 Case Westen Reverse University Method for forming a thin film comprising an ultrawide bandgap oxide semiconductor
CN108342775B (zh) * 2017-01-25 2024-04-12 中国科学院上海光学精密机械研究所 一种钽掺杂β氧化镓晶态材料及其制备方法和应用
SG11202000619WA (en) * 2017-01-25 2020-02-27 Shanghai Inst Optics & Fine Mech Cas Gallium oxide-doped crystalline material, preparation method and application thereof
JP2018135228A (ja) * 2017-02-21 2018-08-30 住友金属鉱山株式会社 LiTaO3単結晶の育成方法とLiTaO3単結晶の処理方法
KR101897494B1 (ko) 2017-06-27 2018-09-12 충남대학교산학협력단 산화질화갈륨 박막의 제조방법
CN107827369B (zh) * 2017-12-06 2020-08-07 浙江海洋大学 一种ZnMgO纳米柱及其制备方法
JP6834062B2 (ja) * 2018-08-01 2021-02-24 出光興産株式会社 結晶構造化合物、酸化物焼結体、及びスパッタリングターゲット
CN109136859A (zh) * 2018-10-22 2019-01-04 哈尔滨工业大学 一种制备高透光率氧化镓薄膜的方法
CN109671612B (zh) * 2018-11-15 2020-07-03 中国科学院上海微系统与信息技术研究所 一种氧化镓半导体结构及其制备方法
FR3085535B1 (fr) 2019-04-17 2021-02-12 Hosseini Teherani Ferechteh Procédé de fabrication d’oxyde de gallium de type p par dopage intrinsèque, le film mince obtenu d’oxyde de gallium et son utilisation
WO2021064795A1 (ja) * 2019-09-30 2021-04-08 日本碍子株式会社 α-Ga2O3系半導体膜
US11674239B2 (en) * 2020-02-27 2023-06-13 Fujikoshi Machinery Corp. Gallium oxide crystal manufacturing device
US11680337B2 (en) 2020-04-03 2023-06-20 Psiquantum, Corp. Fabrication of films having controlled stoichiometry using molecular beam epitaxy
US11342484B2 (en) * 2020-05-11 2022-05-24 Silanna UV Technologies Pte Ltd Metal oxide semiconductor-based light emitting device
WO2021246697A1 (ko) * 2020-06-05 2021-12-09 고려대학교 산학협력단 베타 산화갈륨 박막 제조방법
CN111628019B (zh) * 2020-06-28 2022-05-27 中国科学院长春光学精密机械与物理研究所 一种三氧化二镓日盲紫外探测器及其制备方法
US20230420617A1 (en) * 2020-10-30 2023-12-28 The Regents Of The University Of California Nitride based ultraviolet light emitting diode with an ultraviolet transparent contact
CN112281211A (zh) * 2020-11-06 2021-01-29 鲁东大学 一种多晶氧化镓纳米片薄膜的制备方法
CN112993085A (zh) * 2021-02-09 2021-06-18 中国科学院上海光学精密机械研究所 一种氧化镓x射线探测器及其制备方法
CN113223929A (zh) * 2021-04-16 2021-08-06 西安电子科技大学 基于非平衡激光等离子体的氧化镓高效掺杂方法
CN113584587B (zh) * 2021-07-30 2022-04-08 中国科学院宁波材料技术与工程研究所 Sn掺杂的介稳态氧化镓晶相薄膜及其制备方法与应用
WO2023084283A1 (en) * 2021-11-10 2023-05-19 Silanna UV Technologies Pte Ltd Epitaxial oxide materials, structures, and devices
EP4219803A1 (en) 2022-01-31 2023-08-02 Siltronic AG Method and apparatus for producing electrically conducting bulk beta-ga2o3 single crystals and electrically conducting bulk beta-ga2o3 single crystal

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226899A (ja) * 1988-07-16 1990-01-29 Mitsumi Electric Co Ltd Fe−Si−Al系合金単結晶の育成法
JP2854623B2 (ja) 1989-09-05 1999-02-03 株式会社東芝 酸化物超電導体薄膜の製造方法
US5418216A (en) * 1990-11-30 1995-05-23 Fork; David K. Superconducting thin films on epitaxial magnesium oxide grown on silicon
US5330855A (en) * 1991-09-23 1994-07-19 The United States Of America, As Represented By The Secretary Of Commerce Planar epitaxial films of SnO2
JP2735422B2 (ja) * 1991-12-03 1998-04-02 日鉄鉱業株式会社 ルチル単結晶の処理方法
JPH05179430A (ja) 1991-12-28 1993-07-20 Nec Corp パルスレーザ蒸着法によるセラミックス複合系材料薄膜の製造方法
JP2778405B2 (ja) 1993-03-12 1998-07-23 日亜化学工業株式会社 窒化ガリウム系化合物半導体発光素子
US5670966A (en) 1994-12-27 1997-09-23 Ppg Industries, Inc. Glass antenna for vehicle window
US5625202A (en) * 1995-06-08 1997-04-29 University Of Central Florida Modified wurtzite structure oxide compounds as substrates for III-V nitride compound semiconductor epitaxial thin film growth
EP0856600B1 (en) 1997-01-30 2001-04-25 Nippon Telegraph And Telephone Corporation LiGa02 single crystal, single-crystal substrate, and method of manufacturing the same
US6030453A (en) * 1997-03-04 2000-02-29 Motorola, Inc. III-V epitaxial wafer production
US6057561A (en) * 1997-03-07 2000-05-02 Japan Science And Technology Corporation Optical semiconductor element
JPH11145717A (ja) 1997-11-11 1999-05-28 Asahi Glass Co Ltd 車両用ガラスアンテナ
US6065543A (en) 1998-01-27 2000-05-23 Halliburton Energy Services, Inc. Sealed lateral wellbore junction assembled downhole
US6159834A (en) * 1998-02-12 2000-12-12 Motorola, Inc. Method of forming a gate quality oxide-compound semiconductor structure
US6094295A (en) * 1998-02-12 2000-07-25 Motorola, Inc. Ultraviolet transmitting oxide with metallic oxide phase and method of fabrication
EP0975027A2 (en) * 1998-07-23 2000-01-26 Sony Corporation Light emitting device and process for producing the same
JP2000174529A (ja) 1998-12-07 2000-06-23 Asahi Glass Co Ltd 自動車用高周波ガラスアンテナ
JP2001286814A (ja) 2000-04-05 2001-10-16 Horiba Ltd 粒子膜形成方法
US7182812B2 (en) * 2002-09-16 2007-02-27 University Of Louisville Direct synthesis of oxide nanostructures of low-melting metals
US7445671B2 (en) * 2000-06-29 2008-11-04 University Of Louisville Formation of metal oxide nanowire networks (nanowebs) of low-melting metals
JP4083396B2 (ja) * 2000-07-10 2008-04-30 独立行政法人科学技術振興機構 紫外透明導電膜とその製造方法
JP3579712B2 (ja) 2000-08-28 2004-10-20 独立行政法人産業技術総合研究所 酸化物立方晶系(111)基板を用いる酸化亜鉛等の六方晶系物質の(0001)エピタキシャル薄膜の作製方法及び同法で作製した薄膜
WO2002043466A2 (en) * 2000-11-30 2002-06-06 North Carolina State University Non-thermionic sputter material transport device, methods of use, and materials produced thereby
JP5110744B2 (ja) * 2000-12-21 2012-12-26 フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー 発光装置及びその製造方法
JP3969959B2 (ja) 2001-02-28 2007-09-05 独立行政法人科学技術振興機構 透明酸化物積層膜及び透明酸化物p−n接合ダイオードの作製方法
TW541723B (en) * 2001-04-27 2003-07-11 Shinetsu Handotai Kk Method for manufacturing light-emitting element
JP3907981B2 (ja) 2001-07-30 2007-04-18 富士通株式会社 データ処理プログラム及びデータ処理装置
US7169227B2 (en) * 2001-08-01 2007-01-30 Crystal Photonics, Incorporated Method for making free-standing AIGaN wafer, wafer produced thereby, and associated methods and devices using the wafer
JP2003066020A (ja) 2001-08-22 2003-03-05 Sumitomo Chem Co Ltd 分析システム
JP2003137916A (ja) 2001-11-07 2003-05-14 Mitsubishi Rayon Co Ltd 両親媒性重合体の製造方法
AU2003217189A1 (en) * 2002-01-22 2003-09-02 Massachusetts Institute Of Technology A method of fabrication for iii-v semiconductor surface passivation
JP3679097B2 (ja) * 2002-05-31 2005-08-03 株式会社光波 発光素子
AU2003262981A1 (en) * 2002-08-28 2004-03-19 Moxtronics, Inc. A hybrid beam deposition system and methods for fabricating zno films, p-type zno films, and zno-based ii-vi compound semiconductor devices
JP3795007B2 (ja) * 2002-11-27 2006-07-12 松下電器産業株式会社 半導体発光素子及びその製造方法
US7393411B2 (en) * 2003-02-24 2008-07-01 Waseda University β-Ga2O3 single crystal growing method, thin-film single crystal growing method, Ga2O3 light-emitting device, and its manufacturing method
TWI312582B (en) * 2003-07-24 2009-07-21 Epistar Corporatio Led device, flip-chip led package and light reflecting structure
JP2005235961A (ja) * 2004-02-18 2005-09-02 Univ Waseda Ga2O3系単結晶の導電率制御方法
KR100665298B1 (ko) * 2004-06-10 2007-01-04 서울반도체 주식회사 발광장치
US7087351B2 (en) * 2004-09-29 2006-08-08 Eastman Kodak Company Antistatic layer for electrically modulated display
JP2007165626A (ja) * 2005-12-14 2007-06-28 Toyoda Gosei Co Ltd 発光素子及びその製造方法
US7488384B2 (en) * 2006-05-03 2009-02-10 Ohio University Direct pyrolysis route to GaN quantum dots
US20080008964A1 (en) * 2006-07-05 2008-01-10 Chia-Hua Chan Light emitting diode and method of fabricating a nano/micro structure

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TOMM Y ET AL.: "JOURNAL OF CRYSTAL GROWTH", vol. 220, December 2000, ELSEVIER, article "Czochralski grown Ga203 crystals", pages: 510 - 514
VILLORA E.G. ET AL.: "Cathodoluminescence of undoped Beta-Ga203 single crystals", SOLID STATE COMMUNICATIONS, vol. 120, 2001, pages 455 - 458, XP002981301, DOI: doi:10.1016/S0038-1098(01)00409-4

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6977397B2 (en) 2002-05-31 2005-12-20 Koha Co., Ltd. Light emitting element and method of making same
US7319249B2 (en) 2002-05-31 2008-01-15 Koha Co., Inc. Light emitting element and method of making same
US7608472B2 (en) 2002-05-31 2009-10-27 Koha Co., Ltd. Light emitting element and method of making same
US7629615B2 (en) 2002-05-31 2009-12-08 Koha Co., Ltd. Light emitting element and method of making same
US8450747B2 (en) 2002-05-31 2013-05-28 Koha Co., Ltd. Light emitting element and method of making same
US8791466B2 (en) 2002-05-31 2014-07-29 Koha Co., Ltd. Light emitting element and method of making same
US9117974B2 (en) 2002-05-31 2015-08-25 Koha Co., Ltd. Light emitting element and method of making same
WO2006038567A1 (ja) * 2004-10-01 2006-04-13 Waseda University p型Ga2O3膜の製造方法およびpn接合型Ga2O3膜の製造方法
JP2006108263A (ja) * 2004-10-01 2006-04-20 Univ Waseda p型Ga2O3膜の製造方法およびpn接合型Ga2O3膜の製造方法
JP2011061225A (ja) * 2010-11-01 2011-03-24 Waseda Univ pn型Ga2O3膜の製造方法
CN110911270A (zh) * 2019-12-11 2020-03-24 吉林大学 一种高质量氧化镓薄膜及其同质外延生长方法
CN110911270B (zh) * 2019-12-11 2022-03-25 吉林大学 一种高质量氧化镓薄膜及其同质外延生长方法
US11629401B1 (en) 2021-10-27 2023-04-18 Silanna UV Technologies Pte Ltd Method for heating a wide bandgap substrate by providing a resistive heating element which emits radiative heat in a mid-infrared band
WO2023073404A1 (en) * 2021-10-27 2023-05-04 Silanna UV Technologies Pte Ltd Methods and systems for heating a wide bandgap substrate
US11462400B1 (en) 2021-11-10 2022-10-04 Silanna UV Technologies Pte Ltd Ultrawide bandgap semiconductor devices including magnesium germanium oxides
US11522103B1 (en) 2021-11-10 2022-12-06 Silanna UV Technologies Pte Ltd Epitaxial oxide materials, structures, and devices
US11522087B1 (en) 2021-11-10 2022-12-06 Silanna UV Technologies Pte Ltd Epitaxial oxide integrated circuit
US11563093B1 (en) 2021-11-10 2023-01-24 Silanna UV Technologies Pte Ltd Epitaxial oxide materials, structures, and devices
US11621329B1 (en) 2021-11-10 2023-04-04 Silanna UV Technologies Pte Ltd Epitaxial oxide materials, structures, and devices
US11637013B1 (en) 2021-11-10 2023-04-25 Silanna UV Technologies Pte Ltd Epitaxial oxide high electron mobility transistor
US11695096B2 (en) 2021-11-10 2023-07-04 Silanna UV Technologies Pte Ltd Epitaxial oxide materials, structures, and devices
US11855152B2 (en) 2021-11-10 2023-12-26 Silanna UV Technologies Pte Ltd Ultrawide bandgap semiconductor devices including magnesium germanium oxides

Also Published As

Publication number Publication date
EP2267194A3 (en) 2011-10-19
EP2273569A2 (en) 2011-01-12
EP2267194A2 (en) 2010-12-29
EP1598450A4 (en) 2008-04-23
WO2004074556A3 (ja) 2004-11-11
US7713353B2 (en) 2010-05-11
US20060150891A1 (en) 2006-07-13
CA2517024A1 (en) 2004-09-02
TW201144227A (en) 2011-12-16
RU2005126721A (ru) 2006-02-10
TWI450865B (zh) 2014-09-01
EP2267194B1 (en) 2013-04-17
ATE525498T1 (de) 2011-10-15
US8747553B2 (en) 2014-06-10
RU2313623C2 (ru) 2007-12-27
US20120304918A1 (en) 2012-12-06
CA2517024C (en) 2009-12-01
EP1598450B1 (en) 2011-09-21
TWI370804B (en) 2012-08-21
EP1598450A2 (en) 2005-11-23
US7393411B2 (en) 2008-07-01
US20080265264A1 (en) 2008-10-30
TW200424128A (en) 2004-11-16
TW201242901A (en) 2012-11-01
KR20060007366A (ko) 2006-01-24
US20100229789A1 (en) 2010-09-16
US8262796B2 (en) 2012-09-11
EP2273569A3 (en) 2011-03-02
KR100787272B1 (ko) 2007-12-20

Similar Documents

Publication Publication Date Title
WO2004074556A2 (ja) β‐Ga2O3系単結晶成長方法、薄膜単結晶の成長方法、Ga2O3系発光素子およびその製造方法
CN100370065C (zh) β-Ga2O3单晶生长方法、薄膜单晶生长方法、Ga2O3发光器件及其制造方法
JP3679097B2 (ja) 発光素子
JP4831940B2 (ja) 半導体素子の製造方法
US7323356B2 (en) LnCuO(S,Se,Te)monocrystalline thin film, its manufacturing method, and optical device or electronic device using the monocrystalline thin film
JP5276769B2 (ja) 六方晶系ウルツ鉱型単結晶、その製造方法、および六方晶系ウルツ鉱型単結晶基板
JP5638772B2 (ja) 酸化亜鉛系半導体の成長方法及び半導体発光素子の製造方法
JP5355221B2 (ja) 酸化亜鉛系半導体の成長方法及び半導体発光素子の製造方法
JP4020314B2 (ja) Ga2O3系発光素子およびその製造方法
JP2001168392A (ja) 半導体素子及びその製造方法
KR101458629B1 (ko) ZnO계 화합물 반도체 층의 제조방법
JP2004269338A (ja) 薄膜単結晶の成長方法
JP2009013028A (ja) 酸化アルミニウム−酸化ガリウム固溶体およびその製造方法
JP3980035B2 (ja) 発光素子およびその製造方法
Ichinose et al. β-Ga 2 O 3 single crystal growing method including crystal growth method
JP5721016B2 (ja) 酸化亜鉛系半導体発光素子及びZnO系単結晶層成長方法
JP2004228318A (ja) 酸化物半導体発光素子

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2005126721

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2517024

Country of ref document: CA

Ref document number: 1020057015608

Country of ref document: KR

Ref document number: 20048050077

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004711454

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006150891

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10546484

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004711454

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057015608

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10546484

Country of ref document: US