CN111628019B - 一种三氧化二镓日盲紫外探测器及其制备方法 - Google Patents

一种三氧化二镓日盲紫外探测器及其制备方法 Download PDF

Info

Publication number
CN111628019B
CN111628019B CN202010598387.0A CN202010598387A CN111628019B CN 111628019 B CN111628019 B CN 111628019B CN 202010598387 A CN202010598387 A CN 202010598387A CN 111628019 B CN111628019 B CN 111628019B
Authority
CN
China
Prior art keywords
film
substrate
ultraviolet detector
gallium
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010598387.0A
Other languages
English (en)
Other versions
CN111628019A (zh
Inventor
刘可为
孙璇
申德振
陈星�
张振中
李炳辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Original Assignee
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Optics Fine Mechanics and Physics of CAS filed Critical Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority to CN202010598387.0A priority Critical patent/CN111628019B/zh
Publication of CN111628019A publication Critical patent/CN111628019A/zh
Application granted granted Critical
Publication of CN111628019B publication Critical patent/CN111628019B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0321Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • H01L31/1085Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type the devices being of the Metal-Semiconductor-Metal [MSM] Schottky barrier type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明提供了一种Ga2O3紫外探测器,包括依次叠加设置的衬底、Ga2O3:Zn薄膜和金属叉指电极。本申请还提供了一种Ga2O3紫外探测器的制备方法。本发明提供的Ga2O3紫外探测器的Ga2O3薄膜层具有结晶质量高、吸收截至边陡峭等特点,进而使包含Ga2O3薄膜层的紫外探测器同时具有非常高的响应速度和较低的暗电流。

Description

一种三氧化二镓日盲紫外探测器及其制备方法
技术领域
本发明涉及半导体材料生长技术领域,尤其涉及一种Ga2O3日盲紫外探测器及其制备方法。
背景技术
紫外探测技术在导弹尾焰探测、火焰传感、空气和水净化以及空对空通信等军事和民用领域有广阔的应用前景。波长小于280nm的紫外辐射由于地球上空臭氧层的阻挡,几乎无法传播到地球表面,被称为日盲紫外。工作在日盲波段的日盲紫外探测器不受太阳辐射的干扰,具有更高的灵敏度,可用于导弹预警等方面。近年来,宽禁带半导体在日盲紫外(200nm-280nm)光探测方面的具有广阔的应用前景。宽禁带半导体紫外探测器因其体积小、重量轻、工作时不需滤光片、无需制冷等优点被认为是可以取代真空光电倍增管和Si光电倍增管的第三代紫外探测器。
β-Ga2O3作为一种新型的宽禁带半导体材料,禁带宽度约为4.98eV,有许多良好的物理性能,如:禁带宽度大,击穿场强高,介电常数大,在可见光和紫外光波段透过率高,而且相较于ZnMgO,AlGaN等常见的日盲紫外材料,β-Ga2O3更容易制备出结晶性好、高质量的薄膜,是一种非常适合制备日盲探测器的材料。然而和一般氧化物半导体类似,本征β-Ga2O3通常表现出n型导电,并由于氧空位等缺陷的自补偿效应,p型Ga2O3很难获得。但器件的应用又往往基于pn结。理论上,二价元素的掺杂将会实现Ga2O3薄膜的p型转变。因此已经引起越来越多的学者的关注。
Ga2O3:Zn薄膜是以Zn通过掺杂技术来改进β-Ga2O3薄膜在光学和电学的性能所生长的薄膜禁带宽度在4.4-5.0eV之间,在原理上可以应用于248-280nm范围内的紫外光电器件等领域。但是Ga2O3:Zn薄膜自身质量的问题而限制了其在日盲紫外探测器的应用。
发明内容
本发明解决的技术问题在于提供一种具有低的暗电流和快的光响应速度的Ga2O3日盲紫外探测器。
有鉴于此,本申请提供了一种Ga2O3日盲紫外探测器,包括依次叠加设置的衬底、Ga2O3:Zn薄膜和金属叉指电极;
所述Ga2O3:Zn薄膜的制备方法,包括以下步骤:
将清洗后的衬底置于MOCVD生长腔内,在所述MOCVD生长腔内通入保护性气氛,再将所述衬底加热;
以有机锌化合物作为锌源,以有机镓化合物作为镓源,以高纯氧气作为氧源,在加热后的衬底表面生长薄膜;
将生长后的薄膜进行热处理,得到Ga2O3:Zn薄膜。
优选的,所述金属叉指电极的厚度为20~40nm。
优选的,所述保护性气氛为氮气,所述MOCVD生长腔的真空度为2x102~1x104Pa。
优选的,所述衬底的温度加热至500~800℃,所述加热的方式具体为:先以0.3m/s升温至500℃,再以0.2m/s升温至600~800℃;所述锌源选自二乙基锌和二甲基锌中的一种或两种,所述锌源以高纯氮气作为载体,所述载体流速为2~20sccm;所述镓源选自三甲基镓和三乙基镓中的一种或两种,所述镓源以高纯氮气作为载气,所述载气流速为40~80sccm;所述高纯氧气的流速为100~600sccm。
优选的,所述热处理之前还包括将生长的薄膜降温至室温,所述降温的速率为0.2~0.8℃/s。
优选的,所述热处理在氧气气氛下进行,所述热处理的温度为600~900℃,保温时间为0.5~1h。
优选的,所述Ga2O3:Zn薄膜中Zn的掺杂比例为0.1~10%。
本申请还提供了所述的Ga2O3日盲紫外探测器的制备方法,包括以下步骤:
在衬底表面制备Ga2O3:Zn薄膜;
在Ga2O3薄膜上形成叉指电极掩膜,溅射金属后去除胶体掩膜,得到金属叉指电极。
优选的,在所述金属叉指电极上按压铟粒。
优选的,所述溅射的电流为5~8mA,所述金属为金。
本申请提供了一种Ga2O3日盲紫外探测器,其包括依次叠加设置的衬底、Ga2O3:Zn薄膜和金属叉指电极,本申请采用特定的方法制备了Ga2O3:Zn薄膜,使得该种薄膜具有结晶质量高,吸收截止边陡峭的特点,进而使得包含Ga2O3:Zn薄膜层的紫外探测器具有较低的暗电流和较快的响应速度。
附图说明
图1为本发明实施例1中得到的Ga2O3:Zn紫外探测器的结构示意图;
图2为本发明实施例1中得到的Ga2O3:Zn薄膜的X射线能谱分析谱图;
图3为本发明实施例1中得到的Ga2O3:Zn薄膜的紫外-可见光吸收光谱图;
图4为本发明实施例1中得到的Ga2O3:Zn薄膜的扫描电子显微镜图片;
图5为本发明实施例1中得到的Ga2O3:Zn紫外探测器的电流-电压特性曲线;
图6为发明实施例1中得到的Ga2O3:Zn紫外探测器的时间响应特性曲线。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
鉴于目前Ga2O3薄膜的紫外探测器综合性能低的问题,本申请提供了一种Ga2O3日盲紫外探测器,其具有较低的暗电流和较高的响应速度。具体的,本申请提供了一种Ga2O3日盲紫外探测器,包括依次叠加设置的衬底、Ga2O3:Zn薄膜和金属叉指电极;
所述Ga2O3:Zn薄膜的制备方法,包括以下步骤:
将清洗后的衬底置于MOCVD生长腔内,在所述MOCVD生长腔内通入保护性气氛,再将所述衬底加热;
以有机锌化合物作为锌源,以有机镓化合物作为镓源,以高纯氧气作为氧源,在加热后的衬底表面生长薄膜;
将生长后的薄膜进行热处理,得到Ga2O3:Zn薄膜。
在本申请所述Ga2O3日盲紫外探测器中,所述衬底与所述金属叉指电极均为本领域技术人员熟知的材料,示例的,所述衬底选自蓝宝石衬底、氧化镁或铝酸镁,所述金属叉指电极具体为金叉指电极,所述金属叉指电极表面复合有铟粒。
所述Ga2O3:Zn薄膜的结构为尖晶石结构,其吸收截至边为250~280nm。所述Ga2O3:Zn薄膜的厚度为100~600nm,优选为200~500nm,进一步优选为300~400nm。所述金属叉指电极的厚度为20~40nm,优选为25~35nm。所述Ga2O3紫外探测器的光响应截止边为250~280nm。
在上述制备Ga2O3:Zn薄膜的过程中,本申请首先将衬底进行清洗,以避免引入额外的杂质,所述清洗的方法按照本领域技术人员熟知的方案进行,对此本申请没有特别的限制。本申请所述衬底优选采用c面蓝宝石作为衬底。所述衬底优选经清洗干燥后放置于MOCVD生长腔内,此时通过移动衬底的基底高度,使基底与气体喷枪的距离在10~40cm范围内调节。按照本发明,然后再所述MOCVD生长腔内通入保护性气氛,以使生长腔内的真空度为2x102~1x104Pa;更具体地,所述生长腔内的真空度为1x103~5x103Pa;所述保护性气氛在本申请中选择为氮气。然后将所述衬底加热至500~800℃,更具体地,先以0.3m/s升温至500℃,再以0.2m/s升温至600~800℃;该种衬底加热方式有利于得到质量较好的Ga2O3:Zn薄膜。
在准备工作完成之后,本申请则以有机锌化合物作为锌源,以有机镓化合物作为镓源,以高纯氧气作为氧源,在加热后的衬底表面生长薄膜;在上述过程中,所述锌源选自二乙基锌和二甲基锌中的一种或两种,所述锌源以高纯氮气作为载体,所述载体流速为2~20sccm;在具体实施例中,所述锌源选自二乙基锌,所述载体的流速为3~15sccm,更具体地,所述载体的流速为5~8sccm。所述镓源选自三甲基镓和三乙基镓中的一种或两种,所述镓源以高纯氮气作为载气,所述载气流速为40~80sccm;在具体实施例中,所述镓源选自对三甲基镓,所述载体的流速为50~70sccm。所述高纯氧气的流速为100~600sccm,在具体实施例中,所述高纯氧气的流速为300~400sccm。经过1~2h的生长之后,则得到Ga2O3:Zn薄膜。
为了获得质量更高的Ga2O3:Zn薄膜,则降低衬底温度至室温后再将其进行热处理,以对薄膜中的氧空位进行修饰,所述降温的速率为0.2~0.8℃/s,在具体实施例中,所述降温的速率为0.3~0.6℃/s。所述热处理在氧气气氛下进行,所述热处理的温度为600~900℃,保温时间为0.5~1h;更具体地,所述热处理的温度为700~850℃。所述热处理是通过热力学修饰对薄膜进行处理,以获得质量更好的薄膜。
本发明利用金属有机化合物化学气相沉积设备,将Zn替代Ga的位置,掺杂的比例调控在0.1%到10%之间,以此实现电学性质调控,并通过生长温度、锌源、镓源和氧气流量的精确控制,以及对薄膜进行后处理,实现薄膜材料生长质量的有效控制。
本申请还提供了所述的Ga2O3日盲紫外探测器的制备方法,包括以下步骤:
在衬底表面制备Ga2O3薄膜;
在Ga2O3薄膜上形成叉指电极掩膜,溅射金属后去除胶体掩膜,得到金属叉指电极。
本发明首先利用金属有机化合物化学气相沉积法在衬底表面沉积Ga2O3:Zn薄膜。具体方法如上文所述,在此不做赘述。
得到Ga2O3:Zn薄膜之后,在Ga2O3:Zn薄膜材料上使用光刻形成叉指电极掩膜,溅射金属后去除胶体掩膜,得到金属叉指电极。
其中,本发明对所述溅射金属的方法并没有特殊限制,可以采用镀膜机进行金属电极膜的制备,镀膜机溅射电流为5~8mA,优选为6~7mA。
然后,通过超声去除胶体掩膜,得到金属叉指电极。所述超声时间优选为3~5min。
最后,在金属叉指电极上按压In粒,得到MSM结构的Ga2O3紫外探测器。
本发明使用金属有机化合物化学气相沉积法制备Ga2O3:Zn薄膜,使制备得到的Ga2O3薄膜层具有结晶质量高,吸收截至边陡峭,暗电流恢复快等特点,进而使包含Ga2O3薄膜层的紫外探测器同时具有非常高的响应速度和较低的暗电流。
为了进一步理解本发明,下面结合实施例对本发明提供的Ga2O3日盲紫外探测器及其制备方法进行详细说明,本发明的保护范围不受以下实施例的限制。
实施例1
将清洗好的蓝宝石衬底放入到MOCVD生长腔内,开启分子泵,通入氮气,使生长过程中腔的真空度为5x103Pa,以0.3℃/s将衬底温度升到500℃,再以0.2℃/s将衬底温度升到600℃;
使用二乙基锌作为锌源,对三甲基镓作为镓源,通过调节锌源、镓源的载气比例来实现调节Zn、Ga两者组分比例,锌源的载气流速为3sccm,镓源的载气流速为50sccm,氧气的流速为300sccm,生长2h,关闭有机源和氧气,以0.3℃/s降低衬底温度到室温,得到Ga2O3:Zn薄膜;
将所制得Ga2O3:Zn薄膜材料置于管式退火炉中,氧气气氛下,缓慢升温至850℃,保持40min,自然降温。
在Ga2O3:Zn薄膜材料上使用负胶光刻形成50对间距为10μm、长度为500μm的叉指电极掩膜;将得到的样品放入到小型镀膜机中,在压强为8Pa的条件下,电流为6mA,溅射金属金;然后通过超声去除胶体掩膜;在叉指电极上按压In粒得到MSM结构的Ga2O3:Zn紫外探测器;器件结构图如图1所示。
对实施例1中得到的Ga2O3:Zn薄膜进行EDS测试,得到其图谱如图2所示,从图中可以看出,制备的Ga2O3:Zn薄膜中锌元素、镓元素同时存在,且锌含量大约在3%左右。
对实施例1中得到的Ga2O3:Zn薄膜进行紫外-可见光吸收光谱测试,得到其图谱如图3所示,从图中可以看出,制备的Ga2O3:Zn薄膜具有较陡的单一光吸收截止边,光吸收截止边在250nm左右。
对实施例1中得到的Ga2O3:Zn薄膜进行扫描电子显微镜(SEM)测试,得到其表面图谱如4所示。从图中可以看出,制备的Ga2O3:Zn薄膜的表面较平整,晶体质量较好。
对实施例1中得到的Ga2O3:Zn紫外探测器的电流-电压特性曲线测试,得到其图谱如5所示;从图中可以看出,制备的Ga2O3:Zn紫外探测器具有低的暗电流。
对实施例1中得到的Ga2O3:Zn紫外探测器的时间响应特性曲线,得到其图谱如6所示;从图中可以看出,制备的Ga2O3:Zn紫外探测器具有快的光响应速度。
实施例2
将清洗好的蓝宝石衬底放入到MOCVD生长腔内,开启分子泵,通入氮气,使生长过程中腔的真空度为5x103Pa,以0.3℃/s将衬底温度升到500℃,再以0.2℃/s将衬底温度升到800℃;
使用二乙基锌作为锌源,对三甲基镓作为镓源,通过调节锌源、镓源的载气比例来实现调节Zn、Ga两者组分比例,锌源的载气流速为3sccm,镓源的载气流速为50sccm,氧气的流速为300sccm,生长2h,关闭有机源和氧气,以0.3℃/s降低衬底温度到室温,得到Ga2O3:Zn薄膜;
将所制得Ga2O3:Zn薄膜材料置于管式退火炉中,氧气气氛下,缓慢升温至850℃,保持40min,自然降温。
在Ga2O3:Zn薄膜材料上使用负胶光刻形成50对间距为10μm、长度为500μm的叉指电极掩膜;将得到的样品放入到小型镀膜机中,在压强为8Pa的条件下,电流为6mA,溅射金属金;然后通过超声去除胶体掩膜;在叉指电极上按压In粒得到MSM结构的Ga2O3:Zn紫外探测器。
对实施例2中得到的ZnGa2O4紫外探测器进行测试,得到其具有快的光响应速度,光吸收截止边在252nm。
实施例3
将清洗好的蓝宝石衬底放入到MOCVD生长腔内,开启分子泵,通入氮气,使生长过程中腔的真空度为5x103Pa,以0.3℃/s将衬底温度升到500℃,再以0.2℃/s将衬底温度升到800℃;
使用二乙基锌作为锌源,对三甲基镓作为镓源,通过调节锌源、镓源的载气比例来实现调节Zn、Ga两者组分比例,锌源的载气流速为3sccm,镓源的载气流速为50sccm,氧气的流速为400sccm,生长2h,关闭有机源和氧气,以0.3℃/s降低衬底温度到室温,得到Ga2O3:Zn薄膜;
将所制得Ga2O3:Zn薄膜材料置于管式退火炉中,氧气气氛下,缓慢升温至850℃,保持40min,自然降温。
在Ga2O3:Zn薄膜材料上使用负胶光刻形成50对间距为10μm、长度为500μm的叉指电极掩膜;将得到的样品放入到小型镀膜机中,在压强为8Pa的条件下,电流为6mA,溅射金属金;然后通过超声去除胶体掩膜;在叉指电极上按压In粒得到MSM结构的Ga2O3:Zn紫外探测器。
对实施例3中得到的ZnGa2O4紫外探测器进行测试,得到其具有快的光响应速度,光吸收截止边在256nm。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (8)

1.一种Ga2O3日盲紫外探测器,其特征在于,包括依次叠加设置的衬底、Ga2O3:Zn薄膜和金属叉指电极;
所述Ga2O3:Zn薄膜的制备方法,包括以下步骤:
将清洗后的衬底置于MOCVD生长腔内,在所述MOCVD生长腔内通入保护性气氛,再将所述衬底加热;所述衬底的温度加热至500~800℃;所述加热的方式具体为:先以0.3m/s升温至500℃,再以0.2m/s升温至600~800℃;
以有机锌化合物作为锌源,以有机镓化合物作为镓源,以高纯氧气作为氧源,在加热后的衬底表面生长薄膜;所述锌源以高纯氮气作为载体,所述载体流速为2~20sccm;
将生长后的薄膜进行热处理,得到Ga2O3:Zn薄膜;
所述镓源以高纯氮气作为载气,所述载气流速为40~80sccm;所述高纯氧气的流速为100~600sccm;
所述热处理的温度为600~850℃;
所述热处理之前还包括将生长的薄膜降温至室温,所述降温的速率为0.2~0.8℃/s;
所述Ga2O3:Zn薄膜中Zn的掺杂比例为0.1~10%。
2.根据权利要求1所述的Ga2O3日盲紫外探测器,其特征在于,所述金属叉指电极的厚度为20~40nm。
3.根据权利要求1所述的Ga2O3日盲紫外探测器,其特征在于,所述保护性气氛为氮气,所述MOCVD生长腔的真空度为2x102~1x104Pa。
4.根据权利要求1所述的Ga2O3日盲紫外探测器,其特征在于,所述锌源选自二乙基锌和二甲基锌中的一种或两种,所述镓源选自三甲基镓和三乙基镓中的一种或两种。
5.根据权利要求1所述的Ga2O3日盲紫外探测器,其特征在于,所述热处理在氧气气氛下进行,所述热处理的保温时间为0.5~1h。
6.权利要求1所述的Ga2O3日盲紫外探测器的制备方法,包括以下步骤:
在衬底表面制备Ga2O3:Zn薄膜;
在Ga2O3薄膜上形成叉指电极掩膜,溅射金属后去除胶体掩膜,得到金属叉指电极;
所述Ga2O3:Zn薄膜的制备方法,包括以下步骤:
将清洗后的衬底置于MOCVD生长腔内,在所述MOCVD生长腔内通入保护性气氛,再将所述衬底加热;所述衬底的温度加热至500~800℃;所述加热的方式具体为:先以0.3m/s升温至500℃,再以0.2m/s升温至600~800℃;
以有机锌化合物作为锌源,以有机镓化合物作为镓源,以高纯氧气作为氧源,在加热后的衬底表面生长薄膜;所述锌源以高纯氮气作为载体,所述载体流速为2~20sccm;
将生长后的薄膜进行热处理,得到Ga2O3:Zn薄膜;
所述镓源以高纯氮气作为载气,所述载气流速为40~80sccm;所述高纯氧气的流速为100~600sccm;
所述热处理的温度为600~850℃;
所述热处理之前还包括将生长的薄膜降温至室温,所述降温的速率为0.2~0.8℃/s;
所述Ga2O3:Zn薄膜中Zn的掺杂比例为0.1~10%。
7.根据权利要求6所述的制备方法,其特征在于,在所述金属叉指电极上按压铟粒。
8.根据权利要求6所述的制备方法,其特征在于,所述溅射的电流为5~8mA,所述金属为金。
CN202010598387.0A 2020-06-28 2020-06-28 一种三氧化二镓日盲紫外探测器及其制备方法 Active CN111628019B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010598387.0A CN111628019B (zh) 2020-06-28 2020-06-28 一种三氧化二镓日盲紫外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010598387.0A CN111628019B (zh) 2020-06-28 2020-06-28 一种三氧化二镓日盲紫外探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN111628019A CN111628019A (zh) 2020-09-04
CN111628019B true CN111628019B (zh) 2022-05-27

Family

ID=72261098

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010598387.0A Active CN111628019B (zh) 2020-06-28 2020-06-28 一种三氧化二镓日盲紫外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN111628019B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111710593A (zh) * 2020-06-28 2020-09-25 中国科学院长春光学精密机械与物理研究所 一种Ga2O3:Zn薄膜及其制备方法
CN113707760A (zh) * 2021-07-20 2021-11-26 青岛滨海学院 一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器及其制作方法
CN115108580B (zh) * 2022-05-11 2024-03-05 中国科学院长春光学精密机械与物理研究所 氧化镓微米线制备方法、日盲紫外探测器及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110085658A (zh) * 2019-04-24 2019-08-02 中山大学 氧化镓半导体及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE525498T1 (de) * 2003-02-24 2011-10-15 Univ Waseda Verfahren zum ziehen von beta-ga2o3 einkristallen
CN106409963B (zh) * 2016-09-21 2018-06-15 浙江理工大学 一种Zn:Ga2O3薄膜基MSM结构日盲紫外光电探测器及其制备方法
TWI694495B (zh) * 2017-09-12 2020-05-21 鼎元光電科技股份有限公司 寬能隙氧化物磊晶薄膜之製造方法
CN111081799A (zh) * 2019-12-11 2020-04-28 中国科学院长春光学精密机械与物理研究所 一种锌镓氧紫外探测器及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110085658A (zh) * 2019-04-24 2019-08-02 中山大学 氧化镓半导体及其制备方法

Also Published As

Publication number Publication date
CN111628019A (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
CN111628019B (zh) 一种三氧化二镓日盲紫外探测器及其制备方法
CN111081799A (zh) 一种锌镓氧紫外探测器及其制备方法
CN111816720B (zh) MgGa2O4紫外探测器及其制备方法
Liu et al. Visible-blind photodetectors with Mg-doped ZnO nanorods
Young et al. ZnO ultraviolet photodiodes with Pd contact electrodes
CN111081533A (zh) 一种单一取向锌镓氧薄膜及其制备方法
Liu et al. Strong room-temperature ultraviolet emission from nanocrystalline ZnO and ZnO: Ag films grown by ultrasonic spray pyrolysis
KR20010076504A (ko) 상온에서 작동하는 자외선 수광, 발광소자용 ZnO박막의 제조 방법 및 그를 위한 장치
CN114657637B (zh) 镓酸锌薄膜及制备方法、紫外探测器及制备方法
CN107275441A (zh) 一种光电探测器的制备方法
CN110416333B (zh) 一种紫外光电探测器及其制备方法
CN110797422B (zh) 一种ZnGaO紫外探测器及其制备方法
CN111785793A (zh) ZnMgO紫外探测器及其制备方法
CN111900229A (zh) 一种基于β-Ga2O3薄膜的柔性日盲区深紫外光电探测器及其制备方法和应用
Jiang et al. A high-speed photoconductive UV detector based on an Mg0. 4Zn0. 6O thin film
Wang et al. Enhancing β-Ga2O3-film ultraviolet detectors via RF magnetron sputtering with seed layer insertion on c-plane sapphire substrate
CN111785795B (zh) ZnMgGaO紫外探测器及其制备方法
CN111081798A (zh) 一种锌镓氧材料薄膜及其制备方法
CN111584658B (zh) 一种Ga2O3紫外探测器及其制备方法
CN115295677A (zh) 高响应度β-Ga2O3基异质结自供能紫外探测器及其制备方法和应用
CN111710592B (zh) 一种Ga2O3薄膜及其制备方法
CN111261735B (zh) 一种ZnMgO薄膜、紫外探测器及其制备方法
CN113066876A (zh) 一种紫外探测器及其制备方法
CN110923666B (zh) 一种锌镓氧材料薄膜及其制备方法
CN111628018B (zh) 一种Ga2O3紫外探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant